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PREFACE

Once upon a time students of mathematics and students of science or
engineering took the same courses in mathematical analysis beyond calculus.
Now it is common to separate ‘‘advanced mathematics for science and engi-
neering”’ from what might be called ‘“advanced mathematical analysis for
mathematicians.”” It seems to me both useful and timely to attempt a
reconciliation.

The separation between kinds of courses has unhealthy effects. Mathe-
matics students reverse the historical development of analysis, learning the
unifying abstractions first and the examples later (if ever). Science students
learn the examples as taught generations ago, missing modern insights. A
choice between encountering Fourier series as a minor instance of the repre-
sentation theory of Banach algebras, and encountering Fourier series in
isolation and developed in an ad hoc manner, is no choice at all.

It is easy to recognize these problems, but less easy to counter the legiti-
mate pressures which have led to a separation. Modern mathematics has
broadened our perspectives by abstraction and bold generalization, while
developing techniques which can treat classical theories in a definitive way.
On the other hand, the applier of mathematics has continued to need a variety
of definite tools and has not had the time to acquire the broadest and most
definitive grasp—to learn necessary and sufficient conditions when simple
sufficient conditions will serve, or to learn the general framework encompass-
ing different examples.

This book is based on two premises. First, the ideas and methods of the
theory of distributions lead to formulations of classical theories which are
satisfying and complete mathematically, and which at the same time provide
the most useful viewpoint for applications. Second, mathematics and science
students alike can profit from an approach which treats the particular in a
careful, complete, and modern way, and which treats the general as obtained
by abstraction for the purpose of illuminating the basic structure exemplified
in the particular. As an example, the basic L? theory of Fourier series can be
established quickly and with no mention of measure theory once L?(0, 2#) is
known to be complete. Here L%(0, 2) is viewed as a subspace of the space of
periodic distributions and is shown to be a Hilbert space. This leads to a dis-
cussion of abstract Hilbert space and orthogonal expansions. It is easy to
derive necessary and sufficient conditions that a formal trigonometric series
be the Fourier series of a distribution, an L? distribution, or a smooth
function. This in turn facilitates a discussion of smooth solutions and distri-
bution solutions of the wave and heat equations.

The book is organized as follows. The first two chapters provide back-
ground material which many readers may profitably skim or skip. Chapters
3, 4, and 5 treat periodic functions and distributions, Fourier series, and
applications. Included are convolution and approximation (including the

vii



viii Preface

Weierstrass theorems), characterization of periodic distributions, elements of
Hilbert space theory, and the classical problems of mathematical physics. The
basic theory of functions of a complex variable is taken up in Chapter 6.
Chapter 7 treats the Laplace transform from a distribution-theoretic point of
view and includes applications to ordinary differential equations. Chapters 6
and 7 are virtually independent of the preceding three chapters; a quick
reading of sections 2, 3, and 5 of Chapter 3 may help motivate the procedure
of Chapter 7.

I am indebted to Max Jodeit and Paul Sally for lively discussions of what
and how analysts should learn, to Nancy for her support throughout, and
particularly to Fred Flowers for his excellent handling of the manuscript.

Added for second printing: 1 am very grateful to several colleagues, in partic-
ular to Ronald Larsen and to S. Dierolf, for their lists of errors.

Richard Beals
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Chapter 1
Basic Concepts

§1. Sets and functions

One feature of modern mathematics is the use of abstract concepts to
provide a language and a unifying framework for theories encompassing
numerous special cases and examples. Two important examples of such
concepts, that of “ metric space” and that of ““ vector space,” will be taken up
later in this chapter. In this section we discuss briefly the concepts, even more
basic, of “set” and of *“function.”

We assume that the intuitive notion of a “set” and of an “element” of a
set are familiar. A set is determined when its elements are specified in some
manner. The exact manner of specification is irrelevant, provided the elements
are the same. Thus

A={3,5T
means that 4 is the set with three elements, the integers 3, 5, and 7. This is the
same as

A= {7’ 3’ 5}:
or

A = {n| nis an odd positive integer between 2 and 8}

or
A={n+1|n=1,2,3}

In expressions such as the last two, the phrase after the vertical line is sup-
posed to prescribe exactly what precedes the vertical line, thus prescribing
the set. It is convenient to allow repetitions; thus 4 above is also

{5,3,7,3,3},
still a set with three elements. If x is an element of 4 we write
x€A or A>sx.
If x is not an element of 4 we write
xX¢A or Apx.

The sets of all integers and of all positive integers are denoted by Z and
Z ., respectively:

Z={,1,-1,2,-2,3,-3,...},
z, ={1,2,3,4,...}.
As usual the three dots ... indicate a presumed understanding about what

is omitted.
1



2 Basic concepts
Other matters of notation:

& denotes the empty set (no elements).
A U B denotes the union, {x | x € A or x € B (or both)}.
AN B denotes the intersection, {x | x € A and x € B}.

The union of 4,, 4,, ..., 4, is denoted by
m
AIUA2UA3U"'UAM or UA,’,

and the intersection by
m

AANANAz0 - N4, or () A
=1

The union and the intersection of an infinite family of sets 4;, A, . .. indexed
by Z, are denoted by

U A, and ﬁ Aj.
i=1 i=1

More generally, suppose J is a set, and suppose that for each jeJ we are
given a set 4;. The union and intersection of all the 4, are denoted by

U4, and () A4,

jel jel

A set A is a subset of a set B if every element of 4 is an element of B; we
write
A< B or B> A.

In particular, for any A we have @ < A.If A < B, the complement of A in B
is the set of elements of B not in A4:

B\A ={x|xeB,x¢A}
Thus C = B\A is equivalent to the two conditions
AV C = B, ANC=g.

The product of two sets A and B is the set of ordered pairs (x, y) where
x € A and y € B; this is written A x B. More generally, if 4;, A4, ..., A, are
the sets then

AIXAQX"'XAn
is the set whose elements are all the ordered n-tuples (x;, xs, . . ., X,), where
each x; € A;. The product
AXxXAXx---xA

of n copies of 4 is also written 4™
A function from a set A to a set B is an assignment, to each element of 4,
of some unique element of B. We write

fid—B



Sets and functions 3

for a function f from A to B. If x € A, then f(x) denotes the element of B
assigned by f to the element x. The elements assigned by f are often called
values. Thus a real-valued function on A is a function f: 4 — R, R the set of
real numbers. A complex-valued function on A is a function f: A — C, C the
set of complex numbers.

A function f: A — B is said to be I-1 (*“one-to-one”) or injective if it
assigns distinct elements of B to distinct elements of A: If x,ye A and
x # y, then f(x) # f(»). A function f: A — B is said to be onto or surjective
if for each element y € B, there is some x € 4 such that f(x) = y. A function
f: A— B which is both 1-1 and onto is said to be bijective.

If f:A— B and g: B— C, the composition of f and g is the function
denoted by g o f:

gofiA—C, gof(x) = g(f(x)), for all xe€ A.

If /: A — Bis bijective, there is a unique inverse function f~*: B — A with the
properties: f~1o f(x) = x, for all xe 4; fof~%(y) = y, for all ye B.

Examples

Consider the functions (1 Z -7, g:Z—Z, h: Z — Z, defined by

f(n)=n%+1, nelZz,
g(n) = 2n, nel,
hn) =1 — n, nel.

Then £ is neither 1-1 nor onto, g is 1-1 but not onto, # is bijective, h~(n) =
1 — n,and fo h(n) = n® — 2n + 2.

A set A is said to be finite if either A = @ or thereisan neZ,, and a
bijective function f from A to the set {1, 2, ..., n}. The set A4 is said to be
countable if there is a bijective f: A — Z . This is equivalent to requiring that
there be a bijective g: Z, — A (since if such an fexists, we can take g = f~1;
if such a g exists, take f = g~1). The following elementary criterion is
convenient.

Proposition 1.1. If there is a surjective (onto) function - 7 , — A, then A
is either finite or countable.

Proof. Suppose A is not finite. Define g: Z, —Z, as follows. Let
g(1) = 1. Since 4 is not finite, 4 # {f(1)}. Let g(2) be the first integer m such
that f(m) # f(1). Having defined g(1), g(2), ..., g(n), let g(n + 1) be the first
integer m such that f(m) ¢ {f(1), f(2),...,f(n)}. The function g defined
inductively on all of Z, in this way has the property that fog:Z, — A4 is
bijective. In fact, it is 1-1 by the construction. It is onto because f'is onto and
by the construction, for each n the set {f(1),f(2),...,f(n)} is a subset of

{fog(1),f°8(2),.... g} O

Corollary 1.2. If B is countable and A < B, then A is finite or countable.
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Proof. If A = @, we are done. Otherwise, choose a function f:Z, —- B
which is onto. Choose an element x; € A. Define g: Z, — A4 by: g(n) = f(n)
if f(n) € A, g(n) = x,if f(n) ¢ A. Then g is onto, so A is finite or countable. [J

Proposition 1.3. If A,, Ay, As, ... are finite or countable, then the sets
U A, and U A
=1 i=1

re finite or countable.

Proof. We shall prove only the second statement. If any of the A4, are
empty, we may exclude them and renumber. Consider only the second case.
For each A4; we can choose a surjective function f;: Z, — A4,. Define f: Z, —
Uiz1 4, by f(1) = £1(1), fB3) = £,2), f(5) = £13), ..., f(2) = f(1), £(6) =
f2(2), f(10) = fz(3), ..., and in general f(2/-'(2k — 1)) = f(k),j, k=1, 2,
3,....Any xe U2, 4,is in some A4;, and therefore there is k € Z , such that
JS{k) = x. Then f(2'~1(2k — 1)) = x, so fis onto. By Proposition 1.1, U5, 4,
is finite or countable. []

Example

Let Q be the set of rational numbers: Q = {m/n|meZ,neZ,}. This is
countable. In fact, let 4, = {j/n|jeZ, —n? < j < n?}. Then each 4, is
finite, and Q = UZ., 4,.

Proposition 1.4. If A, A,, ..., A, are countable sets, then the product set
A, X Ay X -+ - x A, is countable.

Proof. Choose bijective functions f;: A; > Z,,j = 1,2,..., n. For each
meZ,, let B, be the subset of the product set consisting of all »-tuples
(%15 Xs, . .., X,) such that each fj(x;) < m. Then B, is finite (it has m" ele-
ments) and the product set is the union of the sets B,. Proposition 1.3 gives
the desired conclusion. [J

A sequence in a set A is a collection of elements of A4, not necessarily
distinct, indexed by some countable set J. Usually J is taken to be Z, or
Z, v {0}, and we use the notations

(an):’=1 = (als as, as, . . ~),
@70 = (@0, a1, aa,. .).

Proposition 1.5. The set S of all sequences in the set {0, 1} is neither finite
nor countable.

Proof. Suppose f:Z, — S. We shall show that f is not surjective. For
each meZ,, f(m) is a sequence (@ m)n-1 = (@1,ms da,m - . -), Where each
a, n is 0 or 1. Define a sequence (a,)7-1 by settinga, = 0ifa,, = 1,a, = 1
if a,, = 0. Then for each me Z ., (a,)7=; # (@n,m)v=1 = f(m). Thus f'is not
surjective. []
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We introduce some more items of notation. The symbol = means
“implies” ; the symbol <= means ““is implied by”’; the symbol <> means “is
equivalent to.”

Anticipating §2 somewhat, we introduce the notation for intervals in the
set R of real numbers. If a, b € R and a < b, then

(@b)={x|xeR,a<x<b},
(@bl={x|xeR,a< x < b},
[a,0) ={x|xeR,a < x < b},
[a,b) = {x|xeR,a < x < b}.

Also,

(@, ) ={x|xeR,a < x},
(—0,d] ={x|xeR,x < a}, etc.

§2. Real and complex numbers

We denote by R the set of all real numbers. The operations of addition
and multiplication can be thought of as functions from the product set
R x R to R. Addition assigns to the ordered pair (x, y) an element of R
denoted by x + y; multiplication assigns an element of R denoted by xy.
The algebraic properties of these functions are familiar.

Axioms of addition

Al. x+y)+z=x+(y + 2),forany x,y,zeR.

A2. x+ y=y + x, for any x, yeR.

A3. There is an element 0 in R such that x + 0 = x for every x € R.
A4. For each x € R there is an element —x € R such that x + (—x) = 0.

Note that the element O is unique. In fact, if 0’ is an element such that
x + 0’ = x for every x, then

0=0+0=0+0=0.
Also, given x the element —x is unique. In fact, if x + y = 0, then

y=y+0=y+@x+(=x))=0p+x+(-x
=(x+MN+(=x)=0+(-x)=(-x)+0=—x.

This uniqueness implies —(—x) = x, since (—x) + x =x + (—x) = 0.

Axioms of multiplication

M1. (xy)z = x(yz), for any x, y,z€ R.

M2. xy = yx, for any x, ye R.

M3. There is an element 1 # 0 in R such that x1 = x for any x e R.

M4. For each xe R, x # 0, there is an element x~! in R such that
xx"l=1,
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Note that 1 and x~* are unique. We leave the proofs as an exercise.

Distributive law
DL. x(y + z) = xy + xz, for any x, y, ze R.

Note that DL and A2 imply (x + y)z = xz + yz.
We can now readily deduce some other well-known facts. For example,

0x=0+0).x=0.x +0-x,
s0 0-x = 0. Then
x+(-D)x=1x+(-1)x=(0+(-1)x=0-x=0,
s0 (—1)-x = —x. Also,
(=x)y=((=D-x)y =(=D-(y) = —xp.
The axioms A1-A4, M1-M4, and DL do not determine R. In fact there
is a set consisting of two elements, together with operations of addition and

multiplication, such that the axioms above are all satisfied: if we denote the
elements of the set by 0, 1, we can define addition and multiplication by

0+0=14+1=0, 04+1=14+0=1,
00=1.0=0-1=0, 1.1 =1

There is an additional familiar notion in R, that of positivity, from which
one can derive the notion of an ordering of R. We axiomatize this by intro-
ducing a subset P < R, the set of “positive” elements.

Axioms of order

Ol. If x € R, then exactly one of the following holds: xe P, x =0, or
~X€P.

02. If x,yeP,thenx + yeP.

03. If x, y € P, then xy € P.

It follows from these that if x # 0, then x2 € P. In fact if x € P then this
follows from O3, while if —x € P, then (—x)? € P, and (—x)? = —(x(—x))
~(—x?) = x2 In particular, 1 = 12 P,

We define x < yif y— xeP, x > yif y < x. It follows that xe P <
x > 0. Also, if x < yand y < z, then

z—x=@Z-y)+(y—-x)ep,
so x < z. In terms of this order, we introduce the Archimedean axiom.

04. If x,y > 0, then there is a positive integer n such that nx = x +
x4+ xis >y

(One can think of this as saying that, given enough time, one can empty
a large bathtub with a small spoon.)
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The axioms given so far still do not determine R; they are all satisfied by
the subset Q of rational numbers. The following notions will make a distinc-
tion between these two sets.

A nonempty subset 4 < R is said to be bounded above if there is an x € R
such that every y € A4 satisfies y < x (asusual, y < x meansy < xory = x).
Such a number x is called an upper bound for A. Similarly, if there is an
x € R such that every y € A4 satisfies x < y, then A4 is said to be bounded below
and x is called a lower bound for A.

A number x € R is said to be a least upper bound for a nonempty set
A < R if x is an upper bound, and if every other upper bound x’ satisfies
x' > x. If such an x exists it is clearly unique, and we write

x = lub A.

Similarly, x is a greatest lower bound for A if it is a lower bound and if every
other lower bound x’ satisfies x* < x. Such an x is unique, and we write

x = glb A.
The final axiom for R is called the completeness axiom.

05. If A is a nonempty subset of R which is bounded above, then 4 has
a least upper bound. .

Note thatif 4 = Ris bounded below, thentheset B = {x | x e R, —x € 4}
is bounded above. If x = lub B, then —x = glb 4. Therefore OS5 is equiva-
lent to: a nonempty subset of R which is bounded below has a greatest lower
bound.

Theorem 2.1. Q) does not satisfy the completeness axiom.

Proof. Recall that there is no rational p/q, p, g € Z, such that (p/q)? = 2:
in fact if there were, we could reduce to lowest terms and assume either p or g
is odd. But p? = 2g%is even, so p is even, so p = 2m, m € Z. Then 4m? = 242,
s0 g2 = 2m? is even and ¢ is also even, a contradiction.

Let A ={x|xeQ,x? < 2}. This is nonempty, since 0,1 4. It is
bounded above, since x > 2 implies x2 > 4, so 2 is an upper bound. We shall
show that no x € Q is a least upper bound for A4.

If x < 0,then x < 1 € 4, so xis not an upper bound. Suppose x > 0 and
x? < 2. Suppose heQ and 0 < h < 1. Then x + heQ and x + & > x.
Also, (x + )2 = x% 4+ 2xh + h? < x> + 2xh + h = x% + 2x + 1)h. If we
choose i > 0 so small that A < 1 and & < (2 — x2)/(2x + 1), then (x + k)?
< 2. Thenx + he A, and x + h > x, so x is not an upper bound of A4.

Finally, suppose x € @, x > 0, and x2 > 2. Suppose s € @Qand0 < & < x.
Then x — he@Q and x — h > 0. Also, (x — h)? = x2 — 2xh + h? > x? —
2xh. If we choose h > 0 so small that # < 1 and # < (x2 — 2)/2x, then
(x — h)? > 2. It follows that if ye A4, then y < x — h. Thus x — h is an
upper bound for A less than x, and x is not the least upper bound. []

We used the non-existence of a square root of 2 in Q to show that O5 does
not hold. We may turn the argument around to show, using OS5, that there is
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a real number x > 0 such that x2 = 2. In fact,let 4 = {y | yeR, y? < 2}.
The argument proving Theorem 2.1 proves the following: 4 is bounded
above; its least upper bound x is positive; if x2 < 2 then x would not be an
upper bound, while if x2 > 2 then x would not be the least upper bound.
Thus x? = 2.

Two important questions arise concerning the above axioms. Are the
axioms consistent, and satisfied by some set R? Is the set of real numbers the
only set satisfying these axioms?

The consistency of the axioms and the existence of R can be demonstrated
(to the satisfaction of most mathematicians) by constructing R, starting with
the rationals.

In one sense the axioms do not determine R uniquely. For example, let
RC be the set of all symbols x°, where x is (the symbol for) a real number.
Define addition and multiplication of elements of R° by

X0+ 3% = (x + »)° x%° = (xp)°.

Define P° by x° € P° <~ x € P. Then RO satisfies the axioms above. This is
clearly fraudulent: R is just a copy of R. It can be shown that any set with
addition, multiplication, and a subset of positive elements, which satisfies all
the axioms above, is just a copy of R.

Starting from R we can construct the set C of complex numbers, without
simply postulating the existence of a *“ quantity” i such that i2 = —1. Let C°

K
x’y) + (x,’y') = (X + x’,y + y'), "
7 ’ n _ , , , ,
1t 1.)“:7’*‘[ (x,y)(X,y) = (xx -, xy' + xy).

be the product set RZ = R x R, whose elements are ordered pairs (x, y) of
}&al}lbprs. Define addition and multiplication by e zw'\ﬂ’ *lﬁ
¥

iy

’ 4

ﬂ}t can be shown by straightforward calculations that C° together with these
operations satisfies Al, A2, M1, M2, and DL. To verify the remaining
algebraic axioms, note that

(x,y) + (0,0) = (x, »).
(x’ y) + (—X, -y) = (0, 0):
(x, (1, 0) = (x9 »)s
(x9 y)(x/(x2 + y2)9 —y/(x2 + yz)) = (1’0) if (xs y) # (0, 0)

If x € R, let x° denote the element (x, 0) € C°. Let i® denote the element
(0, 1). Then we have

(x’y) = (x9 0) + (O,J’) = (x, 0) + (0’ 1)(}” 0) =x0 + i°y°.

Also, (i°? = (0, 1)(0, 1) = (—1,0) = —1° Thus we can write any element
of C° uniquely as x° + i°°, x, y € R, where (i°)2 = —1° We now drop the
superscripts and write x + iy for x° + i°° and C for C°: this is legitimate,
since for elements of R the new operations coincide with the old: x° + y° =
(x + »)°, x°° = (xp)°. Often we shall denote elements of C by z or w. When
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we write z = x + iy, we shall understand that x, y are real. They are called
the real part and the imaginary part of z, respectively:

z =x+ iy, x = Re (2), y =Im(2).

There is a very useful operation in C, called complex conjugation, defined
by:
¥ =(x 4+ ip)* =x — iy.
Then z* is called the complex conjugate of z. It is readily checked that

(z + w)* = z* + wH, (zw)* = z*w*,
EM* =2 z*z=x% + )2

Thus z*z # 0if z # 0. Define the modulus of z, |z|, by

2| = (z*2)"2 = (x% + yH)'2, z=x+ iy
Thenif z # 0,

1 = z¥*z|z| =2 = z(z*|z| ~9),
or
z71 = z*|z| -2
Adding and subtracting gives
z + z* = 2x, z — z*¥ =2y ifz=x+ iy.

Thus

Re(2) =3z + z*), Im(2) =3i~1(z — z*).

The usual geometric representation of C is by a coordinatized plane:
z = x + iy is represented by the point with coordinates (x, y). Then by the
Pythagorean theorem, |z| is the distance from (the point representing) z to
the origin. More generally, |z — w]| is the distance from z to w.

Exercises

1. There is a unique real number x > 0 such that x® = 2.
2. ShowthatRe(z + w) = Re(z) + Re(w),Im(z + w) = Im(z) + Im(w).
3. Suppose z = x + iy, x, y€ R. Then

x| < |zl, |yl <lzl, |z < |x] + |yl
4. For any z, we C,
|zw*| = |z] [w].
S. For any z, we C,

|z + w| < |z| + |w|.
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(Hint: |z + w|® = (z + w)*(z + w) = [z|2 + 2 Re (zw*) + |w|?; apply Ex-
ercises 3 and 4 to estimate |Re (zw*)|.)

6. The Archimedean axiom O4 can be deduced from the other axioms for
the real numbers. (Hint: use O5).

7. If a > 0 and n is a positive integer, there is a unique b > 0 such that
b = a.

§3. Sequences of real and complex numbers

A sequence (z,)z-1 of complex numbers is said to converge to z € C if for
each ¢ > 0, there is an integer N such that |z, — z| < ¢ whenever n > N,
Geometrically, this says that for any circle with center z, the numbers z, all
lie inside the circle, except for possibly finitely many values of ». If this is the
case we write

z,—>z, or limz, =z or limz, =z
n—»ow
The number z is called the limit of the sequence (z,)>-,. Note that the limit is
unique: suppose z, — z and also z, — w. Given any ¢ > 0, we can take n so
large that |z, — z| < e and also |z, — w| < . Then

lz—w < |z—z)| + |za — W] <&+ & =2e.
Since this is true for all ¢ > 0, necessarily z = w.

The following proposition collects some convenient facts about con-
vergence.

Proposition 3.1. Suppose (z,)7-, and (w,)2-, are sequences in C.

(@) z,—zifand only if z, — z — 0.

(b) Let z, = x, + iy, Xp, ¥y real. Then z, —z = x + iy if and only if
X, —>Xx and y, —> y.

) If z, =z and w,, — w, then z, + w, — z + w.

(d) If z, — z and w, — w, then z,w, — zw.

() If z,—z # 0, then there is an integer M such that z, # 0 if n = M.

Moreover (z,” )=y converges to z~ 1,

Proof. (a) This follows directly from the definition of convergence.
(b) By Exercise 3 of §2,
2|x, — x| + |yn — ¥ < |za — 2| < 2|xn — x| + 2|y, — ).

It follows easily that z, — z— 0 if and only if x, — x —0and y, — y—0.

(c) This follows easily from the inequality

|(Z,, + W,,) - (z + W)l = |(zn - z) + (W,, - W)l < |zn - Z| + |W,, - wl'

(d) Choose M so large that if n > M, then |z, — z| < 1. Then for
n=>M,

|za] = |(za — 2) + 2| < 1 + |2].
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Let K =1+ |w| + |z|. Thenforalln > M,
lznwn - le = |Z,.(W,, - W) + (z, — Z)Wl
=< |zn| |wn - Wl + lZ,. - Zl lWl
< K(|lwp, — w| + |2z, — 2|).
Since w, — w —0and z, — z —0, it follows that z,w, — zw — 0.
(e) Take M so large that |z, — z| < %|z| when n > M. Then forn > M,

|zl + 32| — %[zl
|Zn| + IZ - an - %lzl = |2n + (z - Zn)l - 'Hzl = %lzl

Therefore, z, # 0. Also for n > M.

=

(z - zn)z_lzn_ll

|za™* — 272 = |
< |z = z4|-|2z| 72 @z]) " = K|z — z,,

where K = 2|z|~2. Since z — z,— 0 we have z,”* — z7* —0. []

A sequence (z,)-, in C is said to be bounded if there is an M > O such that
|z.] < M for all n; in other words, there is a fixed circle around the origin
which encloses all the z,’s.

A sequence (x,)-; in R is said to be increasing if for each n, x, < x,41;
it is said to be decreasing if for each n, x, > x, ;.

Proposition 3.2. A bounded, increasing sequence in R converges. A bounded,
decreasing sequcnce in R converges.

Proof. Suppose (x,)7-1 is a bounded, increasing sequence. Then the set
{x,|n=1,2,...} is bounded above. Let x be its least upper bound. Given
e > 0, x — ¢ is not an upper bound, so there is an N such that xy > x — e.
If n > N, then

X —e<xy<x,<x

s0 |x, — x| < e. Thus x, —x. The proof for a decreasing sequence is
similar. ]

If A = Ris bounded above, the least upper bound of 4 is often called the
supremum of A, written sup A. Thus

sup A = lub A.

Similarly, the greatest lower bound of a set B < R which is bounded below
is also called the infimum of A, written inf A:

inf A = glb A.

Suppose (x,)-, is a bounded sequence of reals. We shall associate with
this given sequence two other sequences, one increasing and the other
decreasing. For each n, let 4, = {x,, X, +1, Xn 42, ...}, and set

x, = inf 4,, X, = sup A,.
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Now A4, > A,.,, so any lower or upper bound for 4, is a lower or upper
bound for A4, ;. Thus

x;t < x;l+19 x;+1 < x:.

Choose M so that |x,| < M, all n. Then —M is a lower bound and M an
upper bound for each A4,. Thus

3.1 -M<x<xi<M, all n.

We may apply Proposition 3.2 to the bounded increasing sequence (x})>-,
and the bounded decreasing sequence (x;)2-, and conclude that both
converge. We define

liminf x, = lim x;,,

lim sup x,, = lim x;.
These numbers are called the lower limit and the upper limit of the sequence
(%)= 1, respectively. It follows from (3.1) that
(3.2) —M < liminfx, < limsupx, < M.

A sequence (z,)2-, in C is said to be a Cauchy sequence if for each ¢ > 0
there is an integer N such that |z, — z,| < ¢ whenever n > N and m > N.
The following theorem is of fundamental importance.

Theorem 3.3. A sequence in C (or R) converges if and only if it is a Cauchy
sequence.

Proof. Suppose first that z, — z. Given ¢ > 0, we can choose N so that
|zn — z| < 4eif n > N. Then if n, m > N we have

|Zn — Zm| < |zn — 2| + |2 — za| <3+ de=-.

Conversely, suppose (z,)2-; is a Cauchy sequence. We consider first the
case of a real sequence (x,)7-, which is a Cauchy sequence. The sequence
(x,)=, is bounded: in fact, choose M so that |x, — xu| < 1 if n,m > M.
Then if n > M,

|%a] < [%n — Xpa| + |0e] < 1+ [xp].

Let K = max {|x,], |Xz|, ..., |*u-1|; |*u| + 1}. Then for any n, |x,| < K.
Now since the sequence is bounded, we can associate the sequences (x;)2-,
and (x;)?-; as above. Given ¢ > 0, choose N so that |x, — x,| < e if
n,m = N. Now suppose n > m > N. It follows that

Xm — &< Xp < X + &, n>mz>=N.
By definition of x;, we also have, therefore,
Xp—e< X < Xn+e n=m2=N.
Letting x = lim inf x, = lim x;,, we have

Xp — < X< Xn+e, m = N,
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or |X, — X| < e,m > N. Thus x, — x.

Now consider the case of a complex Cauchy sequence (z,)*-,. Let
Zp = Xp + iVn, Xn, Yn € R. Since |x, — xu| < |2, — 2z, (¥4)2=1 is a Cauchy
sequence. Therefore x, —x e R. Similarly, y,—yeR. By Proposition
3.1(b), z,—>x +iy. 0

The importance of this theorem lies partly in the fact that it gives a cri-
terion for the existence of a limit in terms of the sequence itself. An im-
miediately recognizable example is the sequence

3, 3.1, 3.14, 3.142, 3.1416, 3.1415%9,...,

where successive terms are to be computed (in principle) in some specified
way. This sequence can be shown to be a Cauchy sequence, so we know it has
a limit. Knowing this, we are free to give the limit a name, such as “=”.

We conclude this section with a useful characterization of the upper and
lower limits of a bounded sequence.

Proposition 3.4. Suppose (x,)3-, is a bounded sequence in R. Then lim inf x,,
is the unique number x' such that

()’ for any ¢ > O, there is an N such that x, > x' — ¢ whenever n > N,
(ii)’ for any e > 0 and any N, there is ann > N such that x, < x' + «.

Similarly, lim sup x, is the unigue number x" with the properties

()" for any € > 0, there is an N such that x, < x" + ¢ whenever n > N,
(ii)" for any ¢ > 0 and any N, there is an n > N such that x, > x — s.

Proof. We shall prove only the assertion about lim inf x,. First, let
x, = inf {xX,, X, +1,...} = inf 4, as above, and let x’ = lim x), = lim inf x,,.
Suppose & > 0. Choose N so that xy > x' — e. Then n > N implies x, >
Xy > x' — &, s0 (i)’ holds. Given ¢ > 0 and N, we have xj, < x’ < x’ + Je.
Therefore x’ + 4eis not a lower bound for Ay, so thereis an n > N such that
X, < X' + 3e < x’ + e. Thus (ii)’ holds.

Now suppose x’ is a number satisfying (i)’ and (ii)’. From (i)’ it follows
that inf 4, > x' — e whenever # > N. Thus liminfx, > x’ — e, all ¢, so
lim inf x,, > x’. From (ii)’ it follows that for any N and any e, inf 4y <
x' + e. Thus for any N, inf Ay < x’, so lim inf x, < x’. We have lim inf
x,=x'. 0

Exercises

1. The sequence (1/n);=, has limit 0. (Use the Archimedean axiom, §2.)

2. If x, > 0 and x, — 0, then x,'?2 — 0.

3. If a > 0, then a*™ — 1 as n —oco. (Hint: if a > 1, let ¢*™ = 1 + x,.
By the binomial expansion, or by induction, a = (1 + x,)* = 1 + nx,. Thus
X, <n~'a—0.Ifa < 1, then g*/» = (b*/")~ where b = a~* > 1.)
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4, limn'™ =1. (Hint: let nt" =1+ y,. Forn =2, n=(1 + y,)* =
1 + ny, + 4n(n — Dy,2 > In(n — D)y,2, so y,2 <2(n — 1)~*—=0. Thus
yn—0.)

5. If ze C and |z| < 1, then z"— 0 as n — 0.

6. Suppose (x,)>-, is a bounded real sequence. Show that x, — x if and
only if lim inf x, = x = lim sup x,,.

7. Prove the second part of Proposition 3.4.

8. Suppose (x,)r=1 and (a,)7-, are two bounded real sequences such that
a,—a > 0. Then

lim inf a,x, = a-lim inf x,, lim sup a,x, = a-lim sup x,,.

§4. Series

Suppose (z,)7-1 is a sequence in C. We associate to it a second sequence
(5,)%- 1, where

n
So= D =21+ Z3++ In.
m=1

If (s,)2-, converges to s, it is reasonable to consider s as the infinite sum
D=1 Z,. Whether (s,)7-, converges or not, the formal symbol >3-, z, or > z,
is called an infinite series, or simply a series. The number z, is called the nth
term of the series, s, is called the nth partial sum. If s, — s we say that the
series X z, converges and that its sum is s. This is written

4.1) s = i Zp.

(Of course if the sequence is indexed differently, e.g., (z,)7=0, We make the
corresponding changes in defining s, and in (4.1).) If the sequence (s,)-, does
not converge, the series > z, is said to diverge.

In particular, suppose (x,)2-, is a real sequence, and suppose each x, > 0.
Then the sequence (s,)7-; of partial sums is clearly an increasing sequence.
Either it is bounded, so (by Proposition 3.2) convergent, or for each M > 0
there is an N such that

n
Sn= D Xm>M  whenevern > N.
m=1
In the first case we write
d
4.2) Z X, < 0©
n=1

and in the second case we write

4.3) D Xp = 0.
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Thus (4.2) <= > x, converges, (4.3) < > x, diverges.

Examples

1. Consider the series >o-,n"!, We claim >, n 1= oo, In fact
(symbolically),

Dnt=1+4+4+3+i+i+3+5+5+-
23 +3+G+D+GHEHEHD A+
=31+ 1+ 2() + 4@) + 8(%) +
=i+i+i+.=00

2. >2.1n" 2 < oo. In fact (symbolically),

2=+ @+ AP+ + G2+

T+ @P+@*+ @ +@*+ @+ @+
1+ 23) + 4()* + 8(4)* + - -
l+3+3+3+---=2

Al

(We leave it to the reader to make the above rigorous by considering the
respective partial sums.)

How does one tell whether a series converges ? The question is whether the
sequence (s,)7-, of partial sums converges. Theorem 2.3 gives a necessary and
sufficient condition for convergence of this sequence: that it be a Cauchy
sequence. However this only refines our original question to: how does one
tell whether a series has a sequence of partial sums which is a Cauchy
sequence ? The five propositions below give some answers.

Proposition 4.1.  If > 7., =, converges, then =, — 0.

Proof. If 3 z, converges, then the sequence (s,)7-; of partial sums is a
Cauchy sequence, so s, — S,—1 —>0.But s, — s,_; = z,. [I

Note that the converse is false: 1/n — 0 but > 1/n diverges.

Proposition4.2.  [f'|z| < 1, then S2_ =" converges; the sum is (1 — z)~1.
If|z| = 1, then S0 =" diverges.

Proof. The nth partial sum is
Sp=1+z4+224..- 421

Then s,(1 —z)=1-2" so s, =(1 — z")/(1 — z). If |z| < 1, then as
n— oo, z" — 0 (Exercise 5 of §3). Therefore s, — (1 — z)~~ If |z| > 1, then
|z"| = 1, and Proposition 4.1 shows divergence. [J

The series >2_, z" is called a geometric series.

Proposition 4.3. (Comparison test). Suppose (=)=, is a sequcnce in C
and (a,)5-1 a sequence in R with each a, = 0. If there are constants M, N
such that

|zn] < Ma, whenever n = N,
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and if 3, a, converges, then Y, z, converges.

Proof. Lets, = D8_12Zp by =2%-1a, If n,m > N then
n n
=Z = Z |24

i=m+1
<M 3 a =M@, - b.

J=m+1

2 — Sm| =

But (b,)-, is a Cauchy sequence, so this inequality implies that (s,)= is
also a Cauchy sequence. []

Proposition 4.4. (Ratio test). Suppose (z,)7-1 is a sequence in C an
suppose z, # 0, all n.

@17

lim sup |z,41/2.] < 1,
then Y z, converges.
(b) If
lim inf |z, 4,/z,] > 1,

then 3 z, diverges.

Proof. (a) In this case, take r so that lim sup |z,.,/2z,] < r < 1. By
Proposition 3.4, there is an N so that |z,,./z,| < r whenever n > N. Thus if
n>N,

|2a] € Flza-1]| S Por|zp-g| < -+ < PP V|2y| = Mr®,

where M = r~¥|zy|. Propositions 4.2 and 4.3 imply convergence.
(b) In this case, Proposition 3.4 implies that for some N, |z,,1/z,] = 1if
n > N. Thus forn > N.

Iznl = Izn—ll 22 IZNI > 0.
We cannot have z, — 0, so Proposition 4.1 implies divergence. []

Corollary 4.5. If z, #0 for n=1,2,... and if im |z,,./z,| exists,
then the series 3, z,, converges if the limit is <1 and diverges if the limit is > 1.

Note that for both the series > 1/n and 3 1/n?, the limit in Corollary 4.5
equals 1. Thus either convergence or divergence is possible in this case.

Proposition 4.6. (Root test). Suppose (z,)57=; is a sequence in C.
@ 1f
lim sup |z, < 1,

then 3, z, converges.

®) If

lim sup |z,|™ > 1,

then 3 z, diverges.
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Proof. (a) In this case, take r so that lim sup |z,|*/" < r < 1. By Propo-
sition 3.4, there is an N so that |z,|'* < r whenever n > N. Thusif n > N,
then |z,| < r™ Propositions 4.2 and 4.3 imply convergence.

(b) In this case, Proposition 3.4 implies that |z,|!® > 1 for infinitely
many values of n. Thus Proposition 4.1 implies divergence. [

Note the tacit assumption in the statement and proof that (|z,|*")2-, is a
bounded sequence, so that the upper and lower limits exist. However, if this
sequence is not bounded, then in particular |z,| > 1 for infinitely many
values of n, and Proposition 4.1 implies divergence.

Corollary 4.7. If lim |z,|Y™ exists, then the series 3, z, converges if the
imit is <1 and diverges if the limit is > 1.

Note that for both the series 3 1/n and 3 1/n?, the limit in Corollary 4.7
equals 1 (see Exercise 4 of §3). Thus either convergence or divergence is
possible in this case.

A particularly important class of series are the power series. If (a,)7-o is
a sequence in C and z, a fixed element of C, then the series

4.2) 20 a,(z — zp)"

is the power series around z, with coefficients (a,)7-o. Here we use the conven-
tion that w® = 1 for all we C, including w = 0. Thus (4.2) is defined, as a
series, for each z e C. For z = z, it converges (with sum q,), but for other
values of z it may or may not converge.

Theorem 4.8. Consider the power series (4.2). Define R by

R=0 if (|a,|Y™2= 1 is not a bounded sequence,
R = (lim sup |a,|Y™)~? if lim sup |a,|*™ > 0,
R=ow if lim sup |a,|™ = 0.

Then the power secries (4.2) converges if |z — zo| < R, and diverges if
|z — zo] > R.

Proof. We have
4.3) |an(z — zo)*|M™ = @,z — 2.

Suppose z # z,. If (|a,|™)2=1 is not a bounded sequence, then neither is
(4.3), and we have divergence. Otherwise the conclusions follow from (4.3)
and the root test, Proposition 4.6. []

The number R defined in the statement of Theorem 4.8 is called the radius
of convergence of the power series (4.2). It is the radius of the largest circle in
the complex plane inside which (4.2) converges.

Theorem 4.8 is quite satisfying from a theoretical point of view: the
radius of convergence is shown to exist and is (in principle) determined in all
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cases. However, recognizing lim sup |a,|*'* may be very difficult in practice.
The following is often helpful.

Theorem 4.9. Supposea, # 0forn > N, and supposelim |a,,/a,| exists.
Then the radius of convergence R of the power series (4.2) is given by

R = (lim |a,,1/a,[)~* iflim |a, ,1/a,| > 0.
R=o if lim |a, 4 1/a,| = 0.

Proof. Apply Corollary 4.5 to the series (4.2), noting that if z # z, then

|an+1(z — zo)**Hau(z — 2o)*| = |an+1/aal-|z — 2ol. 0

Exercises

1. If 32, z, converges with sum s and >, w, converges with sum ¢,
then >3-, (z, + w,) converges with sum s + ¢.

2. Suppose > a, and 3 b, each have all non-negative terms. If there are
constants M > 0 and N such that b, > Ma, whenever n > N, and if > a, =
0, then > b, = c0.

3. Show that >, (n + 1)/(2n® + 1) divergesand 2., (n + 1)/(2n® + 1)
converges. (Hint: use Proposition 4.3 and Exercise 2, and compare these to
> 1/n, > 1/n2)

4. (2*-Test). Suppose a, > a; =--->a, >0, all n. Then > ,a, <
0 <> >, 2¥aux < oo. (Hint: use the methods used to show divergence of
> 1/n and convergence of > 1/n2)

‘/(Integral Test). Suppose a; > a;, =--+- > a, >0, all n. Suppose
'f: [1, ) — R is a continuous function such that f(n) = a,, all n, and f(y) <
f(x)if y > x. Then 3, a, < 0 <[ f(x) dx < co.

6,/Suppose p > 0. The series >3-, n~? converges if p > 1 and diverges
if p < 1. (Use Exercise 4 or Exercise 5.)

7. The series >3-, n~*(log n)~2 converges; the series Y-, n~(log n)~?
diver\g;,s.

8VThe series >~ z"/n! converges for any ze C. (Here 0! = 1,n! =
nn—D@n—2)-...-1)

9. Determine the radius of convergence of

i 2"z"n, i n"z*/nl, i n! z*,
n=0 n=1 n=0

i n! z*|/(2n)!

n=0

10. (Alternating series). Suppose |x;| = |xg| = -+ = |x,, all n, x, = 0
if nodd, x, < 0ifneven, and x, — 0. Then > x, converges. (Hint: the partial
sums satisfy s, < 5, < s <-++ < 55 < 553 < §y.)

11. >3 (—1)*/n converges.
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§5. Metric spaces

A metric on a set S is a function d from the product set S x S to R, with
the properties

D1. d(x,x) =0, d(x,y) > 0,if x,ye S, x # y.
D2. d(x,y) = d(y, x), all x, y e S.
D3. d(x,z) < d(x,y) + d(»,2),all x,y,z€ S.

We shall refer to d(x, y) as the distance from x to y. A metric space is a set S
together with a given metric d. The inequality D3 is called the triangle
inequality. The elements of S are often called points.

As an example, take S = R2 = R x R, with

(.1 d((x, ), &, »)) = [(x — x)* + (y = ¥)I"

If we coordinatize the Euclidean plane in the usual way, and if (x, y), (x', ")
are the coordinates of points P and P’ respectively, then (5.1) gives the length
of the line segment PP’ (Pythagorean theorem). In this example, D3 is the
analytic expression of the fact that the length of one side of a triangle is at
most the sum of the lengths of the other two sides. The same example in
different guise is obtained by letting S = C and taking

(5.2) d(z,w) = |z — w|

as the metric. Then D3 is a consequence of Exercise 5 in §2.
Some other possible metrics on R? are:

dl((x’ ¥) (', )= |x - xll + |y - y'l’
dz((x9 J’), (x's y')) = max {lx - xll’ |y - y'l},
ds((x, y), (@, ¥)) =0  if (x,y) = (x, y'), and 1 otherwise.

Verification that the functions d,, d;, and dj satisfy the conditions D1, D2, D3
is left as an exercise. Note that d; works for any set S: if x, ye .S we set
dix,y)=1if x # yand 0if x = y.

A still simpler example of a metric space is R, with distance function d
given by

(5.3) d(x,y) = |x - yl.

Again this coincides with the usual notion of the distance between two points
on the (coordinatized) line.

Another important example is R", the space of ordered n-tuples x =
(%1, Xg, . . ., X,) of elements of R. There are various possible metrics on R*
like the metrics d,, d,, d; defined above for R", but we shall consider here
only the generalization of the Euclidean distance in R% and R3. If x =

(x].’ X2y o0y xn) and .V = (yls Yo, - . -9yn) we set
(54  dx,p) =[(xs — »1)* + (k2 — y2)* + - -+ + (xa — ya)°I2

When n = 1 we obtain R with the metric (5.3); when n = 2 we obtain R?
with the metric (5.1), in somewhat different notation. It is easy to verify that
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d given by (5.4) satisfies D1 and D2, but condition D3 is not so easy to verify.
For now we shall simply asser? that d satisfies D3; a proof will be given in a
more general setting in Chapter 4.

Often when the metric d is understood, one refers to a set S alone as a
metric space. For example, when we refer to R, C, or R™ as a metric space with
no indication what metric is taken, we mean the metric to be given by (5.3),
(5.2), or (5.4) respectively.

Suppose (S, d) is a metric space and T is a subset of S. We can consider
T as a metric space by taking the distance function on 7 x T to be the
restriction of dto T x T.

The concept of metric space has been introduced to provide a uniform
treatment of such notions as distance, convergence, and limit which occur in
many contexts in analysis. Later we shall encounter metric spaces much more
exotic than R" and C.

Suppose (S, d) is a metric space, x is a point of S, and r is a positive real
number. The ball of radius r about x is defined to be the subset of S consisting
of all points in .S whose distance from x is less than r:

B(x) ={y|yeS,d(xy) <r}.
Clearly x € B/(x). If 0 < r < s, then B(x) = By(x).

Examples

When S = R (metric understood), B,(x) is the open interval (x — r, x + r).
When S = R? or C, B,(z) is the open disc of radius r centered at z. Here we
take the adjective “open’ as understood; we shall see that the interval and
the disc in question are also open in the sense defined below.

A subset A < S is said to be a neighborhood of the point x € S if 4 con-
tains B,(x) for some r > 0. Roughly speaking, this says that A contains all
points sufficiently close to x. In particular, if 4 is a neighborhood of x it
contains x itself.

A subset 4 = S is said to be open if it is a neighborhood of each of its
points. Note that the empty set is an open subset of S: since it has no points
(elements), it is a neighborhood of each one it has.

Example

Consider the interval 4 = (0, 1] < R. This is a neighborhood of each of
its points except x = 1. In fact, if 0 < x < 1, let » = min {x, 1 — x}. Then
A 2 B(x) = (x — r, x + r). However, for any r > 0, B,(1) contains 1 + 4r,
which is not in A.

We collect some useful facts about open sets in the following proposition.

Proposition 5.1.  Suppose (S, d) is a metric space.

(a) For any x € S and any r > 0, B,(x) is open.
(b) If Ay, A, ..., A, are open subsets of S, then (-1 A, are also open.
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(©) If (Ap)pep is any collection of open subsets of S, then \ Jpep Ag 15 also
open.

Proof. (a) Suppose y € B(x). We want to show that for some s > 0,
B(y) = B/(x). The triangle inequality makes this easy, for we can choose
s = r — d(y, x). (Since y € B/(x), ss positive.) If z € B(y), then

diz,x) <d(z,y) + d(y,x) <s +d(y,x) =r.

Thus z € B,(x).

(b) Suppose x € (& -1 An. Since each A4,,is open, there is #(m) > 0so that
B,m(x) < A,,. Let r = min{r(1),r(2),...,r(n)}. Then r > 0 and B,(x) <
B,ny(x) € Am, 50 B(x) = N%_; A, (Why is it necessary here to assume that
Ay, A, . .. is a finite collection of sets ?)

(c) Suppose x € A = |Jgep 4;5. Then for some particular B, x € 4;. Since
A, is open, there is an r > 0 so that B,(x) < A; < A. Thus 4 is open. []

Again suppose (S, d) is a metric space and suppose A < S. A point xe S
is said to be a limit point of A if for every r > O there is a point of 4 with
distance from x less than r:

BxX)NA+#g ifr > 0.

In particular, if x € 4 then x is a limit point of 4. The set 4 is said to be
closed if it contains each of its limit points. Note that the empty set is closed,
since it has no limit points.

Example

The interval (0, 1] = R has as its set of limit points the closed interval
[0, 1]. In fact if 0 < x < 1, then x is certainly a limit point. If x = 0 and
r > 0, then B(0)N (0,11 = (—r,r)N (0, 1] # @.If x < Oand r = |x]|, then
B(x)n (0,1] = o, while if x > 1 and r = x — 1, then B(x) N (0, 1] = &.
Thus the interval (0, 1] is neither open nor closed. The exact relationship
between open sets and closed sets is given in Proposition 5.3 below.

The following is the analogue for closed sets of Proposition 5.1.
Proposition 5.2. Suppose (S, d) is a metric space.

(a) Foranyxe Sandanyr > 0,the closedballC = {y |y € S, d(x,y) < r}
is a closed set.

(b) If Ay, A, . . ., A, are closed subsets of S, then \ &, A,, is closed.

(©) If (Ap)sen is any collection of closed subsets of S, then (\pep Ay is closed.

Proof. (a) Suppose z is a limit point of the set C. Given ¢ > 0, there is
a point y € B,(z) N C. Then

d(z,x) <d(z,y)+d(y,x) <e+r.

Since this is true for every ¢ > 0, we must have d(z, x) < r. Thus ze C.
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(b) Suppose x ¢ A = | U8, Ap. For each m, x is not a limit point of 4,
so there is r(m) > 0 such that B,,(x) N 4, = . Let

r = min {r(1), r2), .. ., r(n)}.

Then B,(x) N A, = &, all m, so B(x) N A = @. Thus x is not a limit point
of A.

(c) Suppose x is a limit point of A = (e Ag. For any r > 0, B(x) N
A # @.But A © Az, s0 B(x) N A; # &. Thus x is a limit point of 4, so it
is in Ag. This is true for each B,so xe 4. []

Proposition 5.3.  Suppose (S, d) is a metric space. A subset A < S is open
if and only if its complement is closed.

Proof. Let B be the complement of 4. Suppose B is closed, and suppose
x € A. Then x is not a limit point of B, so for some r > 0 we have B,(x) N
B = . Thus B/(x) < A, and A is a neighborhood of x.

Conversely, suppose 4 is open and suppose x ¢ B. Then x € A4, so for
some r > 0 we have B,(x) < A. Then B(x) " B = &, and x is not a limit
point of B. It follows that every limit point of Bis in B. [J

The set of limit points of a subset 4 < S is called the closure of A; we
shall denote itby A~. We have 4 € A~ and 4 isclosed ifand onlyif 4 = A4~.
In the example above, we saw that the closure of (0, 1] < Ris [0, 1].

Suppose A, B are subsets of S and 4 < B. We say that A4 is dense in B if
B < A-. In particular, 4 is dense in S if 4~ = S. As an example, Q (the
rationals) is dense in R. In fact, suppose x € R and r > 0. Choose a positive
integer n so large that 1/n < r. There is a unique integer m so that m/n <
x<(m+ 1)/n. Thend(x,mn) =x —mln < (m+ )lIn—mn=1n<r,
so mfn e B(x). Thus xe Q.

A sequence (x,)2-; in S'is said to converge to x € S if for each £ > 0 there
is an N so that d(x,, x) < e if n > N. The point x is called the limit of the
sequence, and we write

lim x, = x orx,—x.

n—+ o
When S = R or C (with the usual metric), this coincides with the definition
in §3. Again the limit, if any, is unique.

A sequence (x,);-, in S is said to be a Cauchy sequence if for each e > 0
there is an N so that d(x,, x,) < eif n, m > N. Again when S = R or C, this
coincides with the definition in §3.

The metric space (S, d) is said to be complete if every Cauchy sequence in
S converges to a point of S. As an example, Theorem 3.3 says precisely that
R and C are complete metric spaces with respect to the usual metrics.

Many processes in analysis produce sequences of numbers, functions,
etc., in various metric spaces. It is important to know when such sequences
converge. Knowing that the metric space in question is complete is a powerful
tool, since the condition that the sequence be a Cauchy sequence is then a
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necessary and sufficient condition for convergence. We have already seen this
in our discussion of series, for example.

Note that R" is complete. To see this note that in R",
max {Ixj - yilaj =1,..., n} =< d(x9y) < n-max {Ixi—yil,j =1,.. .,Il}.

It follows that a sequence of points in R converges if and only if each of the
n corresponding sequences of coordinates converges in R. Similarly, a se-
quence of points in R™ is a Cauchy sequence if and only if each of the »
corresponding sequences of coordinates is a Cauchy sequence in R. Thus
completeness of R™ follows from completeness of R. (This is simply a general-
ization of the argument showing C is complete.)

Exercises

1. If (S, d) is a metric space, x € S, and r > 0, then
{y|yeS,dy,x) > r}

is an open subset of S.

2. The point x is a limit point of a set A = § if and only if there is a
sequence (x,), in 4 such that x, — x.

3. If a sequence (x,)>-; in a metric space converges to x € S and also
converges to y € S, then x = y.

4. If a sequence converges, then it is a Cauchy sequence.

5. If (S, d) is a complete metric space and 4 < S is closed, then (4, d) is
complete. Conversely, if B < S and (B, d) is complete, then B is a closed
subset of S.

6. The interval (0, 1) is open as a subset of R, but not as a subset of G.

7. Let § = Q (the rational numbers) and let d(x, y) = |x — y|, x, ye Q.
Show that (S, d) is not complete.

8. The set of all elements x = (x;, X5, . . ., X,;) in R™ such that each x; is
rational is a dense subset of R™.

9.)Verify that R is complete.

§6. Compact Sets

Suppose that (S, d) is a metric space, and suppose 4 is a subset of S. The
subset 4 is said to be compact if it has the following property: suppose that
for each x € A there is given a neighborhood of x, denoted N(x); then there
are finitely many points x;, xs, ..., X, in 4 such that A4 is contained in the
union of N(x,), N(x3), . .., N(x,). (Note that we are saying that this is true
for any choice of neighborhoods of points of A4, though the selection of
points x;,xz,... may depend on the selection of neighborhoods.) It is
obvious that any finite subset A is compact.
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Examples

1. The infinite interval (0,c0) < R is not compact. For example, let
N(x)=(x—-1,x+ 1), xe(0,0). Clearly no finite collection of these
intervals of finite length can cover all of (0, c0).

2. Even the finite interval (0, 1] < R is not compact. To see this, let
N(x) = (3x, 2), xe(0, 1]. For any x,, xa, ..., x, € (0, 1], the union of the
intervals N(x;) will not contain y if y < 4 min {x,, x,, . . ., x,}.

3. The set A = {0} U{l,1,4,4 ...} = R is compact. In fact, suppose
for each x € A we are given a neighborhood N(x). In particular, the neigh-
borhood N(0) of 0 contains an interval (—¢, €). Let M be a positive integer
larger than 1/e. Then 1/n € N(0) for n > M, and it follows that 4 = N(0) U
NI)UNF)V---UN1/M).

The first two examples illustrate general requirements which compact sets
must satisfy. A subset 4 of S, when (S, d) is a metric space, is said to be
bounded if there is a ball B,(x) containing A.

Proposition 6.1. Suppose (S, d) is a metric space, S # &, and suppose
A < S is compact. Then A is closed and bounded.

Proof. Suppose y ¢ A. We want to show that y is not a limit point of 4.
For any x € A, let N(x) be the ball of radius 4d(x, y) around x. By assump-
tion, there are x, X5, ..., X, € A such that 4 < J2_, N(x,). Let r be the
minimum of the numbers 1d(x,, ), .. ., 3d(x,, ). If x € 4, then for some m,
d(x, xn) < 3d(xn, y). But then

d(Xmy ¥) < d(Xm, X) + d(x,y)
< 3d(xm, y) + d(x, ).

so d(x,y) > 3d(x,,y) = r. Thus B(y) N A = @, and y is not a limit point
of A.

Next, we want to show that A4 is bounded. For each x € 4, let N(x) be the
ball of radius 1 around x. Again, by assumption there are x,, x3,..., X, € 4
such that 4 = Jr-; N(x,). Let

r=1 + max {d(xl, xz)’ d(xla xa), ) d(xls xn)}-
If ye A then for some m, d(y, x,) < 1. Therefore d(y, x,) < d(y, xn) +
d(Xm, X1) < 1 + d(xp, x1) < r, and we have 4 < B/(x;). []

The converse of Proposition 6.1, that a closed, bounded subset of a metric
space is compact, is not true in general. It is a subtle but extremely important
fact that it is true in R", however.

Theorem 6.2. (Heine-Borel Theorem). A subset of R" or of C is compact
if and only if it is closed and bounded.

Proof. We have seen that in any metric space, if 4 is compact it is
necessarily closed and bounded. Conversely, suppose 4 < R* is closed and
bounded. Let us assume at first that » = 1. Since A4 is bounded, it is contained
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in some closed interval [a, b]. Suppose for each x € 4, we are given a neigh-
borhood N(x) of x. We shall say that a closed subinterval of [a, b] is nice if
there are points x;, Xs, . . ., Xn € 4 such that U7, N(x,) contains the inter-
section of the subinterval with 4; we are trying to show that [a, b] itself is
nice. Suppose it is not. Consider the two subintervals [a, c] and [c, b], where
¢ = ¥(a + b) is the midpoint of [a, b]. If both of these were nice, it would
follow that [a, b] itself is nice. Therefore we must have one of them not nice;
denote its endpoints by a,, by, and let ¢; = 3(a; + b,). Again, one of the
intervals [a,, ¢,] and [c,, b,] must not be nice; denote it by [as, b;]. Continu-
ing in this way we get a sequence of intervals [a,, b,], m =0, 1,2, ... such
that [a,, bo] = [a, b}, each [a,, b,] is the left or right half of the interval
[@m -1, bm-1], and each interval [a,,, b,] is not nice. It follows that g, < a, <
oL ay by, <---<b; <by and b, — a, = 2 ™(by — ay) = 0. There-
fore there is a point x such that a,, — x and b,, — x. Moreover, a,, < x < b,,
for all m. We claim that x € 4; it is here that we use the assumption that 4 is
closed. Since [a,, b,] is not nice, it must contain points of A: otherwise
A N [ay, b,] = @ would be contained in any Jj.; N(x;). Let

Xm € [, bu] O A.

Clearly x,, — x, since a,, — x and b,, — x. Since 4 is closed, we get x € 4.
Now consider the neighborhood N(x). This contains an interval (x — e,
x + &). If we choose m so large that b,, — a, < e, then since a,, < x < b,
this implies [a,,, b,] = N(x). But this means that [a,,, b,] is nice. This contra-
diction proves the theorem for the case n = 1.

The same method of proof works in R", where instead of intervals we use
squares, cubes, or their higher dimensional analogues. For example, when
n = 2 we choose M so large that A4 is contained in the square with corners
(£ M, + M). If this square were not nice, the same would be true of one of
the four equal squares into which it can be divided, and so on. Continuing we
get a sequences of squares Sy © S; © S; O - - -, each of side } the length of
the preceding, each intersecting 4, and each not nice. The intersection
M=o Sm contains a single point x, and x is in 4. Then N(x) contains S,, for
large m, a contradiction. Since as metric space C = R?, this also proves the
result for C. [j

Suppose (x,)>- ; is a sequence in a set S. A subsequence of this sequence is
a sequence of the form (y,)-, where for each k there is a positive integer n,
so that

N <Ny <o <M < Npgypy <oy
yk = xnk-
Thus, (y,)2=, is just a selection of some (possibly all) of the x,’s, taken in

order. As an example, if (x,)2-; < R has x, = (—1)*/n, and if we take

m = 2k, then (x,)7-1 = (=1, %, -4}, —%.. )and ()f=1 = G $: 4, . )
As a second example, let (x,)7-; be an enumeration of the rationals. Then for
any real number x, there is a subsequence of (x,)7=; which converges to x.
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Suppose (S, d) is a metric space. A set A < S is said to be sequentially
compact if, given any sequence (x,)i-; < 4, some subsequence converges
to a point of A.

Examples

1. Any finite set is sequentially compact. (Prove this.)

2. The interval (0,0) = R is not sequentially compact; in fact let
x, = n. No subsequence of (x,)=-, converges.

3. The bounded interval (0, 1] < R is not sequentially compact; in fact
let x, = 1/n. Any subsequence of (x,)?-, converges to 0, which is not in
o, 1].

Proposition 6.3. Suppose (S, d) is a metric space, S # @, and suppose
A < S is sequentially compact. Then A is closed and bounded.

Proof. Suppose x is a limit point of A. Choose x, € By;,(x) N A4,
n=12,3,.... Any subsequence of (x,)-, converges to x, since x, — x. It
follows (since by assumption some subsequence converges to a point of A)
that x € A. Thus 4 is closed.

Suppose 4 were not bounded. Take x € S and choose x, € A such that
X, ¢ By(x). Letr, = d(x, x;) + 1. By the triangle inequality, B,(x,) < B, (x).
Since A is not bounded, there is x, € A such that x, ¢ B, (x). Thus also
d(x,, x;) = 1. Let r, = max {d(x, x,), d(x, x5)} + 1 and choose x; € 4 such
that x; ¢ B,,(x). Then d(x,, x5) > 1 and d(x,, x;) = 1. Continuing in this
way we can find a sequence (x,)2., < 4 such that d(x,, x,) > 1 if m # n.
Then no subsequence of this sequence can converge, and 4 is not sequentially
compact. []

Theorem 6.4. (Bolzano-Weierstrass Theorem). A subset A of R™ or of C
is sequentiallv compact if and only if it is closed and bounded.

Proof. We have shown that 4 sequentially compact implies A4 closed and
bounded. Suppose 4 is closed and bounded, and suppose first that n = 1.
Take an interval [a, b] containing A. Let ¢ = 3(a + b). One (or both) of the
subintervals [a, ] and [c, b] must contain x, for infinitely many integers n;
denote such a subinterval by [a,, b;], and consider [a,, ¢,], [c,, b,] Where
¢; = ¥(a;, + b,). Proceeding in this way we can find intervals [a,, b,] with
the PTOPertieS [ao, bO] = [aa b]’ [am’ bm] < [am—h bm-l], bm —ap =
2-™b, — ao), and [a,, b,,] contains x, for infinitely many values of n. Then
there is a point x such that a,, — x, b,, — x. We choose integers n;, n, . ..
so that x,, € [ay, b,], no > n, and x,, € [ay, bo], n3 > ny and x,,, € [ag, bs), etc.
Then this subsequence converges to x. Since A is closed, x € 4.

The generalization of this proof to higher dimensions now follows as in
the proof of Theorem 6.2. [

Both the terminology and the facts proved suggest a close relationship
between compactness and sequential compactness. This relationship is made
precise in the exercises below.
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Exercises

1. Suppose (x,)>-, is a sequence in a metric space (S, d) which converges
toxe S.Let A = {x} U {x,}2,. Then 4 is compact and sequentially compact.

2. Let @, the rationals, have the usual metric. Let 4 = {x | x € Q, x% < 2}.
Then A is bounded, and is closed as a subset of @, but is not compact.

3. Suppose A is a compact subset of a metric space (S, d). Then 4 is
sequentially compact. (Hint: otherwise there is a sequence (x,)7=; in 4 with
no subsequence converging to a point of 4. It follows that for each x € 4.
there is an r(x) > 0 such that the ball N(x) = B,,(x) contains x, for only
finitely many values of n. Since A is compact, this would imply that
{1, 2, 3,...} is finite, a contradiction.)

4. A metric space is said to be separable if there is a dense subset which is
countable. If (S, d) is separable and 4 < S is sequentially compact, then 4 is
compact. (Hint: suppose for each x € 4 we are given a neighborhood N(x).
Let {x;, x3, X3, . . .} be a dense subset of S. For each x € A we can choose an
integer m and a rational r,, such that x € B, (x,) < N(x). The collection of
balls B, (x,) so obtained is (finite or) countable; enumerate them as C,,
C,, . ... Since each C; is contained in some N(x), it is sufficient to show that
for some n, \J}=1, C; @ A. If this were not the case, we could take y, € 4,
Ym¢Ur-1Cy, n=1,2,.... Applying the assumption of sequential com-
pactness to this sequence and noting how the C, were obtained, we get a
contradiction.)

§7. Vector spaces

A vector space over R is a set X in which there are an operation of addi-
tion and an operation of multiplication by real numbers which satisfy certain
conditions. These abstract from the well-known operations with directed line
segments in Euclidean 3-space.

Specifically, we assume that there is a function from X x X to X, called
addition, which assigns to the ordered pair (X, y) € X x X an element of X
denoted x + y. We assume

VL x+y+z=x+(y+2)alx,y,zeX.

V2. x+y=y+xalx,yeX

V3. There exists 0 € X such that x + 0 = x, all X.

V4. For all x € X, there exists —x € X such that x + (—x) = 0.

We assume also that there is a function from R x X to X, called scalar
multiplication, assigning to the ordered pair (a, x) € R x X an element of X
denoted ax. We assume

V5. (ab)x = a(bx), alla, beR, x e X.

V6. a(x + y) = ax + ay, allaeR, x,ye X.
V7. (@ + b)x = ax + bx, alla,beR,xeX.
V8. Ix = x, all xe X.
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Summarizing: a vector space over R, or a real vector space, is a set X with
addition satisfying V1-V4 and scalar multiplication satisfying V5-V8. The
elements of X are called vectors and the elements of R, in this context, are
often called scalars.

Similarly, a vector space over C, or a complex vector space, is a set X
together with addition sstisfying V1-V4 and scalar multiplication defined
from C x X to X and satisfying V5-V8. Here the scalars are, of course,
complex numbers.

Examples

1. R is a vector space over R, with addition as usual and the usual
multiplication as scalar multiplication.

2. The set with one element 0 is a vector space over R or C with0 + 0 =
0,40 = 0, all a.

3. R"is a vector space over R if we take addition and scalar multiplication
as

(%15 X25+ + o5 Xn) + (V15 Y25 -+ -5 Yu) = (X1 + Y1, X2 + Yay .« s X + Vi),

a(xy, Xa, . . ., Xp) = (axy, axg, . . ., ax,).

4. C is a vector space over R or C with the usual addition and scalar
multiplication.

5. Let S be any set, and let F(S; R) be the set whose elements s are the
functions from S to R. Define addition and scalar multiplication in F(S; R) by

U+ 8)s) =f(s) + g(s), se€S,
(@ Xs) = af(s), seS,aeR.

Then F(S; R) is a vector space over R.

6. The set F(S; C) of functions from S to C can be made a complex
vector space by defining addition and scalar multiplication as in 5.

7. Let X be the set of all functions f: R — R which are polynomials, i.e.,
for some ay, a;, ..., a € R,

fx) =ao+ ay + ax® + -+ + ax", allxeR.

With addition and scalar multiplication defined as in 5, this is a real vector
space.

8. The set of polynomials with complex coefficients can be considered as
a complex vector space.

Let us note two elementary facts valid in every vector space: the element
0 of assumption V3 is unique, and for any x € X, Ox = 0. First, suppose
0’ € X has the property that x + 0’ = x for each x € X. Then in particular
0 =0 +4+0=0+ 0 = 0 (using V2 and V3). Next, if x € X, then

0x = 0x + 0 = Ox + [0x + (—0x)]
= [0x + 0x] 4+ (—0x) = (0 + O)x + (—0x)
=0x + (—0x) = 0.



Vector spaces 29

Note also that the element —x in V4 is unique. In fact if x + y = 0, then

y=y+0=y+ [x+ (-x)]=[y + x] +(—x)
=x+yl+(x)=0+(—x)=(—x) + 0= —x.

This implies that (—1)x = —x, since
x+(—Dx=[1+(-Dx=0x=0.

A non-empty subset Y of a (complex) vector space X is called a subspace
of X if it is closed with respect to the operations of addition and scalar multi-
plication. This means that if x, ye Y and ae C, thenx + yand ay are in Y.
If so, then Y itself is a vector space over C, with the operations inherited
from X.

Examples

1. Any vector space is a subspace of itself.

2. The set {0} is a subspace.

3. {x | x, = 0} is a subspace of R".

4. In the previous set of examples, the space X in example 7 is a subspace
of F(R; R).

5. Let X again be the space of polynomials with real coefficients. For each
n=0,1,2,...,let X, be the subset of X consisting of polynomials of degree
< n. Then each X, is a subspace of X. For m < n, X, is a subspace of X,.

Suppose X, X, ..., X, are elements of the vector space X. A linear
combination of these vectors is any vector x of the form

X = a1X; + axXp + - - + a;X,,
where ay, a,, . . ., a, are scalars.

Proposition 7.1. Ler S be a nonempty subset of the vector space X, and let
Y be the set of all linear combinations of elements of S. Then Y is a subspace of
Xand Y > S.

If Z is any other subspace of X which contains the set S, then Z > Y.

Proof. If x,y€Y, then by definition they can be expressed as finite
sums x = > a;X;, ¥y = 2 b;y;, where each x;€S and each y,eS. Then
ax = Y (aa,)x, is a linear combination of the x,’s, and x + y is a linear
combination of the x,’s and the y,’s. If xe€ S, then x = 1xeY. Thus Yis a
subspace containing S.

Suppose Z is another subspace of X containing S. Suppose x € Y. Then
for some x,, X3, ..., X, €S, X = 3 a;X;. Since Z is a subspace and x;, Xy, . . .,
X, €Z, we have a;X;, @sXo,..., a,X, € Z. Moreover, a;X; + a;X2 €Z, so
(a:x; + a;X;) + asx; € Z. Continuing we eventually find that xe Z. []

We can paraphrase Proposition 7.1 by saying that any subset S of a
vector space X is contained in a unique smallest subspace Y. This subspace is
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called the span of S. We write Y = span (S). The set S'is said to span Y. Note
that if S is empty, the span is the subspace {0}.

Examples

Let X be the space of all polynomials with real coefficients. Let f;, be the
polynomial defined by f,,(x) = x™. Then span {fq, fi, . . ., fy} is the subspace
X, of polynomials of degree <.

A linear combination a;x; + a;X; + - -+ + a,X, of the vectors x;, X, . . .,
X, is said to be nontrivial if at least one of the coefficients a,, a,, . . ., a, is not
zero. The vectors Xx;, X, . . ., X, are said to be linearly dependent if some non-
trivial linear combination of them is the zero vector. Otherwise they are said
to be linearly independent. More generally, an arbitrary (possibly infinite)
subset S is said to be linearly dependent if some nontrivial linear combination
of finitely many distinct elements of S is the zero vector; otherwise S is said
to be linearly independent. (Note that with this definition, the empty set is
linearly independent.)

Lemma 7.2. Vectors Xy, Xg, ..., X, in X, n > 2, are linearly dependent if
and only if some x; is a linear combination of the others.

Proof. If x,,Xs,...,X, are linearly dependent, there are scalars a,,
a, ..., a,, not all 0, such that 3 a;x; = 0. Renumbering, we may suppose
a; # 0. Then x; = 3%, (—a; 7 1a)x;.

Conversely, suppose x,, say, is a linear combination >7}-, b,x;. Letting
a; = l,and g; = —b;forj = 2, we have 3 a;x; = 0. []

The vector space X is said to be finite dimensional if there is a finite subset
which spans X. Otherwise, X is said to be infinite dimensional. A basis of a
(finite-dimensional) space X is an ordered finite subset (x;, X, . . ., X,) Which
is linearly independent and spans X.

Examples

1. R* has basis vectors (e, es,...,¢,), where ¢, =(1,0,0,...,0),
e =(0,10,...,0),...,e,=(0,0,...,0,1). This is called the standard
basis in R",

2. The set consisting of the single vector 1 is a basis for C as a complex
vector space, but not as a real vector space. The set (1, i) is a basis for C as a
real vector space, but is linearly dependent if C is considered as a complex
vector space.

Theorem 7.3. A finite-dimensional vector space X has a basis. Any two
bases of X have the same number of elements.

Proof. Let {X;, Xs,...,X,} span X. If these vectors are linearly inde-
pendent then we may order this set in any way and have a basis. Otherwise
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if n > 2 we may use Lemma 7.2 and renumber, so that x, is a linear combina-
tion 37-{ a;x;. Since span {X;, Xg, . .., X,} = X, any x € X is a linear com-
bination

n n—-1 n—-1
X = z bix; = z bx; + b,,(z a,x,)
i=1 i=1 i=1
n-1

(b; + bpajx;.

Thus span {x;, Xs, ..., X,-1} = X. If these vectors are not linearly inde-
pendent, we may renumber and argue as before to show that

span {X;, X2, ..., Xp-2} = X.

Eventually we reach a linearly independent subset which spans X, and thus
get a basis, or else we reach a linearly dependent set {x,} spanning X and con-
sisting of one element. This implies x; = 0, so X = {0}, and the empty set is
the basis.

Now suppose (X3, Xz, ..., X,) and (y;, ¥s, - --, ¥Yn) are bases of X, and
suppose m < n.If n = 0, then m = 0. Otherwise x; s 0. The y,’s span X, so
X; = 2 a;y; Renumbering, we may assume a; # 0. Then

m
= g.-1 -1
i=a X — Z a,” "a;y;.
i=2

Thus y, is a linear combination of X, y.,..., y.. It follows easily that
span {Xi, ¥a,. .., Ym} > span {yi, Ya,...,Ym} = X. If m = 1 this shows that
span {x;} = X, and the linear independence of the x,'s then implies n = 1.
Otherwise x; = bXx; + 275 b;y;. The independence of x; and x, implies
some b; # 0. Renumbering, we assume b, # 0. Then

Y2 = bz—l(xz — bx, — Z b!Yj)-
i=3
This implies that

span {xl, X2, Ya, LS ] ym} = Span {xl’ Y2 .- )'m} = X'

Continuing in this way, we see that after the y,’s are suitably renumbered,
each set {X;, Xz, ..., Xi, Y41, - -» ¥Ym} SPans X, k < m. In particular, taking
k = m we have that {X;, X, . . ., X,,} spans X. Since the x,’s were assumed
linearly independent, we must have n < m. Thusn = m. [

If X has a basis with »n elements, n = 0, 1, 2, ..., then any basis has »
elements. The number 7 is called the dimension of n. We write n = dim X.
The argument used to prove Theorem 7.3 proves somewhat more.

Theorem 7.4. Suppose X is a finite-dimensional vector space with dimen-
sion n. Any subset of X which spans X has at least n elements. Any subset of X
which is linearly independent has at most n elements. An ordered subset of n
elements which either spans X or is linearly independent is a basis.
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Suppose (x3, X3, . . ., X,) is a basis of X. Then any x € X can be written as
a linear combination x = X a,x;. The scalars a,, g, ..., a, are unique; in
factif x = 2 b;x,, then

0=x—x=2(a,—b,)x,.

Since the x,’s are linearly independent, each a; — b; = 0, i.e., @, = b,. Thus
the equation x = 3 a,x; associates to each x € X a unique ordered n-tuple
(ay, as, . . ., a,) of scalars, called the coordinates of x with respect to the basis
(X1, . - -, X,)- Note that if x and y correspond respectively to (a,, a,, . . ., a,)
and (by, b, . . ., b,), then ax corresponds to (aa, aa,, ..., aa,) and x + y
corresponds to (a; + by, as + bs,...,a, + b,). In other words, the basis
(X1, Xa, - - ., X,) gives rise to a function from X onto R™ or C* which preserves
the vector operations.

Suppose X and Y are vector spaces, either both real or both complex.
A function T: X — Y is said to be linear if for all vectors x, X' € X and all
scalars a,

T(ax) = aT(x), T(x + y) = T(x) + T(y).

A linear function is often called a linear operator or a linear transformation.
A linear function T: X — R (for X a real vector space) or T: X — C (for X
a complex vector space) is called a linear functional.

Examples

1. Suppose X is a real vector space and (xXy, Xg, ..., X,) a basis. Let
TG ax;) = (ay, as, - . ., a,). Then T: X — R" is a linear transformation.

2. Let T'(z) = z*, ze C. Then T is a linear transformation of C into itself
if C is considered as a real vector space, but is not linear if C is considered as
a complex vector space.

3. Let f;: R* — R be defined by f(x;, xg, . . ., X,) = x;. Then f; is a linear
functional.

4. Let X be the space of polynomials with real coefficients. The two func-
tions S, T defined below are linear transformations from X to itself. If

() = -0 agx’, then
SN = > G+ D-tap*,

i=0

i=1

Note that T(S(f)) = f, while S(T'(f)) = fif and only if g, = 0.

Exercises

1. If the linearly independent finite set {x, X, . . ., X,} does not span X,
then there is a vector x,,; € X such that {x;, X, ..., X5, X541} is linearly
independent. ’
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2. If X is finite-dimensional and x,, X, ..., X, are linearly independent,
then there is a basis of X containing the vectors x, Xs, . . ., X,.

3. If X is a finite-dimensional vector space and Y < X is a subspace, then
Y is finite-dimensional. Moreover, dimY < dim X, and dimY < dim X
unless Y = X.

4. If Y and Z are subspaces of the finite-dimensional vector space X and
YNZ = {0}, then dimY + dim Z < dim X.

5. Suppose Y and Z are subspaces of the finite-dimensional vector space
X, and suppose span (Y U Z) = X. Then dimY + dim Z > dim X.

6. If Y is a subspace of the finite dimensional vector space X, then there
is a subspace Z with the properties Y N Z = {0};dim Y + dim Z = dim X;;
any vector x € X can be expressed uniquely in the form x = y + z, where
ye Y, ze Z. (Such subspaces are said to be complementary.)

7. Prove Theorem 7.4.

8. The polynomials f,(x) = x™, 0 < m < n, are a basis for the vector
space of polynomials of degree <n.

9. The vector space of all polynomials is infinite dimensional.

10. If S is a non-empty set, the vector space F(S; R) of functions from
S to R is finite dimensional if and only if S is finite.

11. If X and Y are vector spaces and T: X — Y is a linear transformation,
then the sets

NT) ={x|xe X, T(x) =0}
R(T) = {T() | xe X}

are subspaces of X and Y, respectively. (They are called the null space or
kernel of T, and the range of T, respectively.) T'is 1-1 if and only if N(T") = {0}.

12. If X is finite dimensional, the subspaces N(T") and R(T) in problem 11
satisfy dim N(T) + dim R(7) = dim X. In particular, if dimY = dim X,
then T is 1-1 if and only if it is onto. (Hint: choose a basis for N(7") and use
problem 2 to extend to a basis for X. Then the images under T of the basis
elements not in N(T') are a basis for R(T").)



Chapter 2

Continuous Functions

§1. Continuity, uniform continuity, and compactness

Suppose (S, d) and (S’, d’) are metric spaces. A function f: S — S’ is
said to be continuous at the point x € S if for each ¢ > 0 there isa 8 > 0 such
that

d(fx),f(y) <e ifd(x,y) <.

In particular, if S and S’ are subsets of R or of C (with the usual metrics) then
the condition is

/() —f(x)| <e if|y—x] <.

(This definition is equivalent to the following one, given in terms of con-
vergence of sequences: f is continuous at x if f(x,) — f(x) whenever (x,)2-,
is a sequence in S which converges to x. The equivalence is left as an
exercise.)

Recall that we can add, multiply, and take scalar multiples of functions
with values in C (or R):if £, g: S— Cand a e C, x € S, then

(f + 8)(x) = f(x) + g(x),
(@)(x) = af(x),
(8)x) = f(x)g(x),
(18)(x) = f(x)/g(x)  if g(x) # O.

Proposition 1.1. Suppose (S, d) is any metric space, and suppose
f, g S— C are functions which arc continuous at x. Then f + g, af, and [g are
continuous at x. If g(x) # 0, then flg is defined in a ball B,(x) and is continuous
at x.

Proof. Continuity of f+ g and af at x follow from the definition of
continuity and the inequalities

(f+ 8)») — (F + )| = |f/(¥) — f(x) + g(y) — g()]
< |f) = f) + |g(y) — g(x)l,
@) = (@) = |a| |f(») — fx)|.

To show continuity of fg at x we choose 8, > 0 so small that if d(y, x) < 8,
then | f(y) — f(x)| < 1. Let M be the larger of | g(x)| and |f(x)| + 1. Given
e > 0, choose 8 > 0 so small that

/() = fx)] < e2M,  |g(y) — g(x)| < ¢2M
34
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if d(y, x) < 8. Then d(y, x) < 8 implies

|(/2)») — (X)) = |f(Me(y) — f(x)egx)|
= [/(Me(y) — f(ex) + f(¥)ex) — f(x)e(x)|
< /Ol 1e(y) — gx)| + [f(¥) — fG)] |g(x)|
< [fO)|-e/2M + M-¢]2M

= [FO)|-el2M + &2.
But also

D) = /) = ) + fx)| < [f(») — [ + | fx)]
<1+ |fx) =M,

so [(/2)(») — (/B)(x)| < e
Finally, suppose g(x) # 0. Choose r > 0 so that |g(y) — g(x)| < }|g(x)|

if d(y, x) < r. Then if d(y, x) < r we have

lgxX)| = |g(y) + g(x) — g(»)]
< le)| + el

so |g(»)| = |g(x)| > 0. Thus 1/g is defined on B,(x). Since the product of
functions continuous at x is continuous at x, we only need show that 1/g is
continuous at x. But if y € B,(x), then

[1/g(y) — 1/gx)| = |&(y) — gx)|/|g(¥)| | g@)|
< K|g(») — g()|,

where K = 2/| g(x)|?. Since g is continuous at x, it follows that 1/gis. [I

A function f: S — S’ is said to be continuous if it is continuous at each
point of S.
The following is an immediate consequence of Proposition 1.1.

Corollary 1.2. Suppose f, g: S — C are continuous. Then f + g, af, and
Jg are also continuous. If g(x) # 0, all x, then f]g is continuous.

A function f: S — S’ is said to be uniformly continuous if for each ¢ > 0
there is a 8 > 0 such that

d(f(x),f(y) <e ifd(x,y) <38
In particular, if S, S’ = C, then this condition reads

f) —f&®) <e if|ly—x| <8

The distinction between continuity and uniform continuity is important
If fis continuous, then for each x and each ¢ > O there is a 8 > 0 such that
the above condition holds; however, 8 may depend on x. As an example, let
S =28"=R,f(x) = x®.Then|f(y) — f(¥)| = |y* = x*| = |y + x[ [y — x|.
If |x]| is very large, then |y — x| must be very small for |f(y) — f(x)| to be
less than 1. Thus this function is not uniformly continuous. (However it is
clear that any uniformly continuous function is continuous.)

In one important case, continuity does imply uniform continuity.
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Theorem 1.3. Suppose (S, d) and (S, d’) are metric spaces and suppose
S S — S’ is continuous. If S is compact, then f is uniformly continuous.

Proof. Given e > 0, we know that for each x € S there is a number
8(x) > O such that

(), f(y) <t ifd(x,y) < 25(x).
Let N(x) = Byx(x). By the definition of compactness, there are points

X3, Xgy. .., X, €S such that S < |J N(x;). Let 8 = min {8(x,), 8(xy), ...,
8(x,)}, and suppose d(x, y) < 8. There is some x; such that x € N(x;). Then

d(x, x) < 8(x;) < 28(xy),
d(xi, y) < d(xi, x) + d(x,y) < 8(x) + & < 25(x,),
so

d'(fx),f(y)) < d'(f(x), f(x)) + d'(f(x), [(»)
<det+ide=c 0

There are other pleasant properties of continuous functions on compact

sets. A function f: S — C is said to be bounded if f(S) is a bounded set in C,
i.e., there is an M > O such that

[fG)] < M, allxes.

Theorem 1.4. Suppose (S, d) is a compact metric space and suppose
f: S — C is continuous. Then f is bounded and there is a point x, € S such that

|/(xo)| = sup {|/(x)] |x € S}.

If f(S) < R, then there are x,, x_ € S such that

J(x;) = sup{f(x) | xe S},
flx_) = inf{f(x) | xe S}.

Proof. Foreach x € S, there is a number 8(x) > Osuch that | f(y) — f(%)|
< 1 if y € Byy(x) = N(x). Choose x,...,x, such that S < |J N(x,). If
x € S then x € N(x;) for some i, and

/Gl < [/l + [fG) = fGe)] < [f(x)] + 1.

Thus we can take M = 1 + max {|f(x1)|, ..., | f(x.)[} and we have shown
that fis bounded.

Let a = sup {|f(x)| | x € S}, and suppose |f(x)| < a, all x€ S. Then for
each x € S there are numbers a(x) < a and ¢(x) > 0 such that | f(y)| < a(x)
if y € Byx(x) = M(x). Choose y,..., yn such that S = |J M(y,), and let
a; = max{a(y), ..., a(yn)} < a.If x € S then x € M(y;) for some i, so

[f)] < a(y) < a; < a.

This contradicts the assumption that a = sup {|f(x)| | x € S}. Thus there
must be a point x, with | f(x)| = a.

The proof of the existence of x, and x_ when f'is real-valued is similar,
and we omit it. []
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Both theorems above apply in particular to continuous functions defined
on a closed bounded interval [a, b] = R. We need one further fact about such
functions when real-valued: they skip no values.

Theorem 1.5. (Intermediate Value Theorem). Suppose f: [a, b] — R is
continuous. Suppose either

fla) < c < f(b) or f(b) <c < fla).
Then there is a point x, € [a, b] such that f(x,) = c.

Proof. We consider only the case f(a) < ¢ < f(b). Consider the two
intervals [a, 3(a + b)], [3(a + b), b]. For at least one of these, ¢ lies between
the values of f at the endpoints; denote this subinterval by [a,, b;]. Thus
fla)) < ¢ < f(b)). Continuing in this way we get a sequence of intervals
[@n, ba] With [a,41, brs1] € [@n, ba), brsy — Gnyy = 3(b, — a,), and f(a,) <
¢ < f(b,). Then there is x, € [a, b] such that a, — x,, b, — x,. Thus

S(xo) = lim f(a,) < c.
Sf(xo) = limf(b,) > c. 0

Exercises

1. Prove the equivalence of the two definitions of continuity at a point.
2. Use Theorem 1.6 to give another proof of the existence of V2. Prove
that any positive real number has a positive nth root,n = 1, 2,....
3. Suppose f: S — S’, where (S, d) and (S’, d') are metric spaces. Prove
that the following are equivalent:
(a) fis continuous;
(b) for each open set A’ = S, f~*(A’) is open;
(c) for each closed set A’ = S’, f~1(A’) is closed.
4. Find continuous functions f;: (0, 1) - R, j = 1, 2, 3, such that
Jf1 is not bounded,
f2 is bounded but not uniformly continuous,
fs is bounded but there are no points x,, x_ € (0, 1) such that f3(x,) =
sup {f3(x) | x € (0, 1)}, fa(x-) = inf {fa(x) | x € (0, 1)}.
5. Suppose f: S — S’ is continuous and S is compact. Prove that f(S) is
compact.
6. Use Exercise 5 and Theorem 6.2 of Chapter 1 to give another proof of
Theorem 1.4.
7. Use Exercise 3 of Chapter 1, §6 to give a third proof of Theorem 1.4.
(Hint: take (x,)2-1 < S such that lim | f(x,)| = sup {f(x) | x € S}, etc.)
8. Suppose (S, d) is a metric space, x € S, and r > 0. Show that there is
a continuous function f: S — R with the properties: 0 < f(y) < 1, all ye S,
Sf(y) = 0if y ¢ B(x), f(x) = 1. (Hint: take f(y) = max {1 — r~d(y, x), 0}.
9. Suppose (S, d) is a metric space and suppose S is not compact. Show
that there is a continuous f: S — R which is not bounded. (Hint: use Exercise
8.)
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§2. Integration of complex-valued functions
A partition of a closed interval [a, b] < R is a finite ordered set of points
P = (xo, Xy, . . ., X,,) With
Aa=X, < X3 <--+<x,=b.
The mesh of the partition P is the maximum length of the subintervals

[xi-1, X4]:
|P| = max {x; — x;_, |i=1,2,...,n}.

If - [a, b] — C is a bounded function and P = (xo, X, . . ., X,) is a parti-
tion of [a, b], then the Riemann sum of f associated with the partition P is the
number

S(i P) = :Zlf(xo(xi 5.

The function f'is said to be integrable (in the sense of Riemann) if there is
number z € C such that

lim S(f;P) = z.

1PI-0
More precisely, we mean that for any ¢ > O there is a 8§ > 0 such that
@10 |S(f; P) —z| < & if |P| < 8.
If this is the case, the number z is called the integral of f on [a, b] and denoted
by

b b

f f or f Fx) dx.
If f: [a, b] — C is bounded, suppose |f(x)| < M, all x € [a, b]. Then for

any partition P of [a, b],

|S(f; P)| < Z [fOe) Gy — xi-1) < MZ (i — x1-1) = M(b — a).

Therefore, if f'is integrable,

b
[
Recall that f: [a, b] — C is a sum f = g + ih where g and A are real-

valued functions. The functions g and 4 are called the real and imaginary
parts of fand are defined by

g(x) = Re(f(x)), h(x)=Im(f(x)), x¢€la,b]
We denote g by Re fand A by Im f.
Proposition 2.1. A4 bounded function [~ [a, b] — C is integrable if and only
if the real and imaginary parts of f are integrable. If so,

ff=f:Ref+iJjImf.

2.2) <M®—a), M =sup{|f(x)|]|xela,b].
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Proof. Recall that if z = x + iy, x, y € R, then
(2.3) 3x| + 3yl < |z < |x] + [¥]-
If P is any partition of [a, b], then

S(f; P) = S(Ref; P) + iS(Im f; P),

and S(Re f; P), S(Im f; P) are real. Let z = x + iy, x, y real, and apply
(2.3) to S(f; P) — z. We get

3SRef; P) — x| + 3[SAmf; P) — y|

< |S(f; P) — z| < |S(Ref; P) — x| + [S(Imf; P) — y|.

Thus S(f; P) — zas | P| — 0 if and only if S(Re f; P) — x and S(Im f'; P) —
yas|P|—=0. O

Proposition 2.2. Suppose f:[a, b]— C and g: [a, b)] — C are bounded
integrable functions, and suppose c € C. Then f + g and cf are integrable, and

b b b b b
[ora=[r+]e [og=c|r
Proof. For any partition P of [a, b],
S(f+gP)=S(;P)+ S(gP), S(f;P)=cS(f;P).
The conclusions follow easily from these identities and the definition. [

Neither of these propositions identifies any integrable functions. We shall
see shortly that continuous functions are integrable. The following criterion
is useful in that connection.

Proposition 2.3. A4 bounded function f: [a, b] — C is integrable if and only
if for each € > O there is a 8 > 0 such that

(2.9 IS5 P) = S5 Q) <& if|P], Q] < 8.

Proof. Suppose fis integrable, and let z = _f: f. For any & > O there is a
8 > O such that S(f; P) is in the disc of radius 4¢ around z if | P| < 8. Then
|P] < 8, |Q| < 8 implies S(f; P), S(f; Q) are at distance < e.

Conversely, suppose for each £ > 0 there is a § > 0 such that (2.4) holds.
Take partitions P, with |P,| < I/n,n =1,2,3,..., and let z, = S(f; P,).
It follows from our assumption that (z,)-; is a Cauchy sequence. Let z be
its limit. If » is large, | P,| is small and S(f; P,) is close to z, and if |Q)] is
small, S(f; Q) is close to S(f: P,). Thus S(f; Q) —zas [Q| -0. [

Theorem 2.4. If f: [a, b] — C is continuous, it is integrable.

Proof. We know by §1 that fis bounded and uniformly continuous.
Given ¢ > 0, choose 8 > 0so that | f(x) — f(y)| < eif [x — y| < 8. Suppose
P, Q are partitions of [a, b] with | P| < 8, |Q| < 8. Suppose P = (xo, X1, - - -»
x,). Let P’ be a partition which includes all points of P and of Q, P’ =
(Yos Y1 - - -» Ym)- We examine one summand of S(f; P). Suppose

Xicl = Yju1 < Py <+ < Y = X
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Then
1.3
G — xi-1) — Zf ) — J’t—1)|
i=3

> (/) ~ W0 - y,-1)|

K
<e¢ Z = yi-1) = elx — x;-4),
i=1

since each |x; — y;| < 8. Adding, we get
|S(f; P) — S(f; P)| < (b — a).
Similarly,
IS(f; @) — S(f; P)| < &b — a),
1)
|S(f; P) — S(f; Q)] < 2&(b — a).
By Proposition 2.3, fis integrable. []
We now want to consider the effect of integrating over subintervals.

Proposition 2.5. Suppose a < b < ¢ and f: [a, ¢] — C is bounded. Then
[fis integrable if and only if it is integrable as a function on [a, b] and on [b, c].

If so, then
[r-] e [

Proof. Suppose f is integrable on [a, b] and on [b, c]. Given ¢ > 0,
choose 8 > 0 so that

S(f; P) — ff

<30 |swo-[7r

b

<!
2 &

if P, Q are partitions of [a, b, [b, c] respectively, | P| < 8, |Q| < 8. Suppose

P’ is a partition of [a, c], |P'| < 8. If b is a point of P’, then P’ determines

partitions P of [a, b] and Q of [b, c], |P| < &, |Q| < 8. It follows from (2.5)

that

@9 jsier - [ r-[s

If b is not a point of P’, let P” be the partition obtained by adjoining b. Then
(2.6) holds with P” in place of P’. Suppose |f(x)| < M, all x € [a, b]. The
sums S(f; P") and S(f; P") differ only in terms corresponding to the sub-
interval determined by P’ which contains b. It is easy to check, then, that

|S(f; PY) — S(f; P")| < 25M.

2.5

< e&.

Thus

|S(f;P’) - f:f—f:f <o+ 25M
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if | P’| < 8. It follows that f is integrable with integral f : f+ f: f

Conversely, suppose f is not integrable on [a, b] or [b, c]; say it is not
integrable on [a, b]. Then there is an ¢ > 0 such that for any 8 > 0 there are
partitions P;, P, of [a, b] with |P,| < §, |P;| < §, but

[S(f; P) — S(f; Py)| > e.

Let Q be a partition of [b, ¢] with |Q| < 8, and let P;, P; be the partitions of
[a, ] containing all points of Q and of Py, P, respectively. Then |P;| < 8,
| P3| < 8, and

IS(f P1) — S(f; P2)| = |S(f; P1) — S(f; P3)| > e.
By Proposition 1.3, fis not integrable. [

Suppose 1 [ao, bo] — C is integrable, and suppose a, b € [a,, bo). If a < b,
then fis integrable on [a, b]. (In fact f is integrable on [a,, b], therefore on
[a, b], by two applications of Proposition 2.5.) If b < a, then f is integrable

on [b, a] and we define
b a
Jor=-1s

We also define
a
j f=0.
a
Then one can easily check, case by case, that for any a, b, ¢ € [ay, b,],
c b c
@7 [r=[r+]r
a a b

It is convenient to extend the notion of the integral to certain unbounded
functions and to certain functions on unbounded intervals; such integrals are
called improper integrals. We give two examples, and leave the remaining
cases to the reader.

Suppose f: (ay, b] — C is bounded and integrable on each subinterval
[a, b, ay < a < b. We set

b b
@.8) J f=1im [ f
ao @=agJ g

if the limit exists.
Suppose f: [a, ©0) — C is bounded and integrable on each subinterval
[a, b], a < b < c0. We set

(2.9) f:f= lim fbf

b=

if the limit exists; this means that there is a z € C such that for each ¢ > 0

(-

<e ifb 2 b(e).
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Exercises

1. Let f: [0, 1] — R with f(x) = 0 if x is irrational, f(x) =1 if x is
rational. Show that f'is not integrable.

2. Let f: [0, 1] — R be defined by: f(0) = 0, f(x) = sin (1/x) if x # 0.
Sketch the graph. Show that f'is integrable.

3. Suppose £, g: [a, b] — C are bounded, f'is integrable, and g(x) = f(x)
except on a finite set of points in [a, b]. Then g is integrable and f: g= f: f.

4. Suppose f: [a, b] — C is bounded and is continuous except at some
finite set of points in [a, b]. Show that fis integrable.

5. Suppose f: [a, b] — C is continuous and f(x) > 0, all x € [a, b]. Show
that [ f = 0 implies f(x) = 0, all x € [a, b].

6. Suppose f: [a, b] — C is bounded, integrable, and real-valued. Suppose

b
[r
Show that f'is constant.

7. Do Exercise 6 without the assumption that fis real-valued.

8. Let f: [0, 1] — C be defined by: f(x) = 0 if x = 0 or x is irrational,
f(x) = 1/q if x = p/q, p, q relatively prime positive integers. Show that fis
continuous at x if and only if x is zero or irrational. Show that f'is integrable
and [[ f=0.

= M(b — a), where M = sup{|f(x)||xe€la,bl}.

§3. Differentiation of complex-valued functions

Suppose (a, b) is an open interval in R and that f: (@, b)) — C. As in the
case of a real-valued function, we say that the function f'is differentiable at the
point x € (a, b) if the limit

(€3)) lim [ = f()

yx Y — X

exists. More precisely, this means that there is a number z € C such that for
any € > 0, thereis a 8 > 0 with

(32 IS =Ny = %) -zl <e  ifO<]|y—x]<3é

If so, the (unique) number z is called the derivative of f at x and denoted
variously by

7@ o, oo Lo,

Proposition 3.1. If f: (a, b) — C is differentiable at x € (a, b) then f is
continuous at Xx.
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Proof. Choose 8 > 0 so that (3.2) holds with z = f’(x) and ¢ = 1. Then
when |y — x| < 8 we have

/) =) < 1/ = f(x) — 2(y — %)| + |2(y — )|
<@+ 2Dy — x|

Asy—x,f(y)—>fx). [

Proposition 3.2. The function f: (a, b) — C is differentiable at x € (a, b) if
and only if the real and imaginary partsg = Re fandh = Im fare differentiable
at x. If so, then

f'(x) = g'(x) + il'(x).

Proof. As in the proof of Proposition 2.1, the limit (3.1) exists if and
only if the limits of the real and imaginary parts of this expression exist. If so,
these are respectively g'(x) and A'(x). [

Proposition 3.3. Suppose f:(a, b) - C and g: (a, b) — C are differenti-
able at x € (a, b), and suppose c € C. Then the functions [ + g, cf, and fg are
differentiable at x, and

(+8®) =S + g(x),
() (x) = f"(x),
(8 (x) =S (¥)g(x) + f(x)g'(x).

If g(x) # O then flg is differentiable at x and
(18)'(x) = [f'(x)g(x) — f(x)g'(x)1g(x) 2.

Proof. This can be proved by reducing it to the (presumed known)
theorem for real-valued functions, using Proposition 3.2. An alternative is
simply to repeat the proofs, which are no different in the complex case. We
shall do this for the product, as an example. We have

(D)) — (BX) = [(Ne() — f(x)g(x)
= [f(») — f®)]g(y) + f(¥)[e(») — )]

Divide by (¥ — x) and let y — x. Since g(y) — g(x), the first term converges
to f'(x)g(x). The second converges to f(x)g'(x). [

We recall the following theorem, which is only valid for real-valued
functions.

Theorem 3.4. (Mean Value Theorem). Suppose f: [a, b] — R is contin-
uous, and is differentiable at each point of (a, b). Then there is a c € (a, b) such
that

S©) =1/() - f@)b — a)~*.

Proof. Suppose first that f(b) = f(a). By Theorem 1.4 there are points
¢, and c_ in [a, b] such that f(c,) > f(x), all x € [a, b] and f(c_) < f(x), all
x € [a, b). If ¢, and c_ are both either a or b, then f'is constant and f’'(c) = O,
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all ¢ € (a, b). Otherwise, suppose ¢ € (a, b). It follows that [f(y) — f(c,)] x
(y — c;) tis 20ify < ¢, and <0if y > ¢,. Therefore the limit as y — ¢,
is zero. Similarly, if ¢_ # a and ¢_ # b, then f'(c_) = 0. Thus in this case
f'(e) = 0 for some c € (a, b).

In the general case, let

g(x) = f(x) — (x — aLf®) — f(@Nb — a)~*.
Then g(a) = f(a) = g(b). By what we have just proved, there is a c € (a, b)
such that
0 =g'(c) =f"(c) — Lfb) — f@I — a)~~. 0

Corollary 3.5. Suppose f: [a, b] — C is continuous, and is differentiable at
each point of (a, b). If ' (x) = O for each x € (a, b), then f is constant.

Proof. Letg, hbe the real and imaginary parts of f. Then g’(x) = A'(x) =
0, x € (a, b). We want to show g, h constant. If [x, y] < [a, b], Theorem 3.1
applied to g, & on [x, y] implies g(x) = g(»), h(x) = h(y). [

Theorem 3.6. (Fundamental Theorem of Calculus). Suppose f: [a, b] —
C is continuous and suppose c € [a, b]. The function F: [a, b] — C defined by

Fo) = [
is differentiable at each point x of (a, b) and
F'(x) = f(x).

Proof. Let g be the constant function g(y) = f(x), y €(a, b). Given
‘e > 0, choose 8 so small that [ f(y) — g(»)| = |f()) — f(x)| < eif |y — x| <
8. Then

(33) Fo)-Foy = [ 1= [r=['r
=fg +f(f— 8
~fer -9+ [ -9
If |y — x| < 8, then

[[0-9|< 1y = sl suptse) 6l 11r = < Iy = =1

< e|ly — x|.

Thus dividing (3.3) by (y — x) we get
[[F(») — FGIy — %)™ = f(x)| <e. o

Theorem 3.7. Suppose f: [a, b] — R is continuous and differentiable at each
point of (a, b) and suppose f'(x) > 0, all x € (a, b). Then f is strictly increasing
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on (a, b). For each y € [f(a), f(b)] there is a unique point x = g(y) € [a, b]
such that f(x) = y. The function g = f~1 is differentiable at each point of
(f(a), /(b)) and
g =i~

Proof. If x,ye[a, b] and x < y, application of Theorem 3.4 to [x, y]
shows that f(x) < f(y). In particular, f(a) < f(b). By Theorem 1.6, if
f(@) < y < f(b) there is x € [a, b] with f(x) = y. Since fis strictly increasing,
x is unique. Letting g = f~! we note that g is continuous. In fact, suppose
y € (f(a),f(b)) and £ > 0. Take y’, y" such that

fla) <y <y<y" <fb)
and )" —y <e y—y <e Let x' =g()), x =g(y), x" = g(y"). Then
x' < x<x" Letd = min{x" — x,x — x}.If |[x — w| < Sthenwe (x, x"),

so f(w) € (¥, ¥"), so | f(w) — f(x)| = |f(w) — y| < e Continuity at f(a) and
f(b) is proved similarly.
Finally, let x = g(y), x’ = g(»"). Then

3.3 g0) — &) _ Jf’ —-x
G.3 Y=y T I
As y' — y, we have shown that x’ — x. Thus (3.3) converges to f'(x)~! =

[FA(¢:(62)) ]

Proposition 3.8. (Chain rule). Suppose g: (a, b) — R is differentiable at
x, and suppose f: g((a, b)) — C is differentiable at g(x). Then the composite
Sfunction f o g is differentiable at x and

(349 (S 8)(x) = f'(g(x)g'(x).
Proof. We have
(3.5  fog(y) — fogx) = flg(»)) — f(g(x))
_fe(y) — f(g(x)) g(y) — &(x) .. _
“Te—g»  y—x O~

if g(y) # g(x). If g'(x) # O then g(y) # g(x) if y is close to x and y # x.
Taking the limit as y — x we get (3.4). Suppose g'(x) = 0. For each y near x
either g(y) = g(x), so fog(y) — feog(x) = 0, or (3.5) holds. In either case,
[fog(y) — fog(x)I(y — x)~1is close to zero for y near x. [J

Proposition 3.9. (Change of variables in integration). Suppose g: [a, b] —

R is continuous, and is differentiable at each point of (a, b). Suppose [ g([a, b])
— C is continuous. Then

9(b)

b
r={ ¢oox.
g(a) a
Proof. Define F: g([a, b]) — C and G: [a, b] — C by

) =[ £ 6@=[ s

9(a)
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We want to prove that F(g(b)) = G(b); we shall in fact show that Fog = G
on [a, b]. Since F o g(a) = G(a) = 0, it suffices to prove that the derivatives
are the same. But

(Fog) =(F-g)g' =(f-8)¢ =G 0

A function f: (a, b) — C is said to be differentiable if it is differentiable at
each point of (a, b). If f is differentiable, then the derivative f* is itself a
function from (a, b) to C which may (or may not) have a derivative f"(x) =
(f') (x) at x € (a, b). This is called the second derivative of f at x and denoted
also by

1, .

Higher derivatives are defined similarly, by induction:

FOX) =), fPx)=f(),
SEPE) =(®)(x), k=0,1,2...

The function f: (a, b) — C is said to be of class C*, or k-times continuously
differentiable, if each of the derivatives £, f”, ..., f® is a continuous function
on (a, b). The function is said to be a class C®, or infinitely differentiable, if
£ is continuous on (&, b) for every integer k > 0.

Exercises

1. Show that any polynomial is infinitely differentiable.

2. Show that the Mean Value Theorem is not true for complex-valued
functions, in general, by finding a differentiable function f such that f(0) =
0=f(1)butf'(x) #0for0 < x < 1.

3. State and prove a theorem analogous to Theorem 3.7 when f'(x) < 0,
all x € (a, b).

4. Suppose f, g are of class C* and ¢ € C. Show that f + g, ¢f, and fg are
of class C*.

5. Suppose p is a polynomial with real coefficients. Show that between
any two distinct real roots of p there is a real root of p'.

6. Show that for any k = 0, 1, 2, ... there is a function f: R — R which
is of class C¥, such that f(x) = 0 if x <0, f(x) > 0 if x > 0. Is there a
function of class C* having this property?

7. Prove the following extension of the mean value theorem: if fand g are
continuous real-valued functions on [a, b], and if the derivatives exist at each
point of (a, b), then there is ¢ € (a, b) such that

/) — f@]g'(c) = [2(b) — g(@1f (o).
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8. Prove L’Hdépital’s rule: if fand g are as in Exercise 7 and if
lim f*(x)[g"()]™*
exists and f(a) = g(a) = 0, then
lim /()[g(9)]*

exists and the two limits are equal.

§4. Sequences and series of functions

Suppose that S is any set and that f/: S — C is a bounded function. Let
|f] = sup{|f(x)| | x € S}.
A sequence of bounded functions (f,)?-, from S to C is said to converge
uniformly to fif
Lim |f, -] =0,

This sequence (f;)5 - is said to be a uniform Cauchy sequence if foreach e > 0
there is an integer N so that

4.1 lfo = ful <& ifn,m > N.

It is not difficult to show that if the sequence converges uniformly to a
function f; then it is a uniform Cauchy sequence. The converse is also true.

Theorem 4.1. Suppose (f,)x-, is a sequence of bounded functions from a
set S to C which is a uniform Cauchy sequence. Then there is a unique bounded
Junction f: S — C such that (f,)7-1 converges uniformly to f. If S is a metric
space and each f, is continuous, then f is continuous.

Proof. For each x € S, we have

Ifn(x) _fm(x)l < lf;l _fml‘

Therefore (f,(x))2- is a Cauchy sequence in C. Denote the limit by f(x). We
want to show that (f;)>-, converges uniformly to the function f defined in
this way. Given ¢ > 0, take N so large that (4.1) holds. Then for a fixed
m > N,

lfm(x) - f(x)l lfm(x) - }Ln;fn(x)l

lim |£,() = /9] < .

Thus |f — f| < ¢ if m > N, and (f;)7’=, converges uniformly to f. If the
sequence also converged uniformly to g, then for each x € S,

|fa(x) — &) < |f» — gl
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50 fn(x) = g(x) as n— o0, and g = f. The function fis bounded, since

[fO)] = 1f) = fu®) + fu®)] < &+ |fu(¥)] < & + | fuls

so|f] < e+ |fu],if m>N.
Finally, suppose each f; is continuous on the metric space S. Suppose
x e Sand e > 0. Choose N as above. Choose 8 > 0 so small that

[fv(p) — fu(x)| < & ifd(y, x) < 8.
Then

/) = )] < ) = LD + | AD) = AG)] + /() — [(x)]
< |f=ful + 14G) = A + |f = Al
<3 ifdy,x) <.

Thus fis continuous. []

The usefulness of the notion of uniform convergence is indicated by the
next theorem and the example following.

Theorem 4.2. Suppose (f,)3-1 is a sequence of continuous complex-valued
Junctions on the interval [a, b], and suppose it converges uniformly to f. Then

b b
J f = lim [ S
a n—J g
Proof. By (2.2),

fﬂ—ff

Asn— oo, this—0. [

f:(ﬁ.—n\s \fo = 71-16 — al.

Example

For each positive integer n, let f;: [0, 1] — R be the function whose graph
consists of the line segments joining the pairs of points (0, 0), ((21)~2, 2n);
(@n)~4 2n), (n"1,0); (n~%0),(1,0). Then f, is continuous, f,(x)—0 as
n— oo for each x € [0, 1], but f;ﬁ. =1,alln.

Here we are interested particularly in sequences of functions which are
partial sums of power series. Associated with the sequence (a,)-o in C and
the point z, € C is the series

“4.2) Z ax(z — zp)", zeC.
n=0

Recall from §3 of Chapter 1 that there is a number R,0 < R < oo, such that
(4.2) converges when |z — z,| < R and diverges when |z — z,| > R; R is
called the radius of convergence of (3.2). The partial sums

n

4.3 f@) = D an(z — zo)"

m=0
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are continuous functions on C which converge at each point z with |z — z,| <
R to the function

©

(“.4) f@) =2 anz—z)" |z—1z| <R

m=0

Theorem 4.3. Let R be the radius of convergence of the power series (4.2)-
Then the function f defined by (4.4) is a continuous function. Moreover, the
unctions f, defined by (4.3) converge to f uniformly on each disc

D, = {z| |z — zo| < r}, 0<r<R

Proof. We prove uniform convergence first. Given 0 < r < R, choose s
with r < s < R. Take w with |w — z,| = 5. By assumption, > a,(w — z,)"
converges. Therefore the terms of this series — 0. It follows that there is a
constant M so that

|an(w — zo)"| < M, n=0,1,....
Since |w — z,| = s, this means
4.5) la;| < Ms—™, n=0,1,...,

Now suppose z € D, and m < n. Then

n

z af(z — zo)

m+1

|f2(2) — ful2)]

IA
3

laj |z — zol’
1

3
]

< Z Ms=r?
m+1
n 8m+1 —_ 8n+1 M8m+1
= ] = s
= M'ZIS M—F——F— <7

where 8 = rfs < 1. As m — oo the final expression on the right — 0, so
(f)2-0 is a uniform Cauchy sequence on D,. It follows that it converges to f
uniformly on D, and that f is continuous on D,. Since this is true for each
r < R, fis continuous. [J

In particular, suppose x, € R. The power series
(4.6) > aix — xo)
n=0

defines a continuous function in the open interval (x, — R, x, + R). Is this
function differentiable ?

Theorem 4.4. Suppose the power series (4.6) has radius of convergence R’
Then the function f defined by this series is differentiable, and

“.7 S(x) = i na,(x — xo)" "%, [x — xo| < R.

n=1
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Proof. To simplify notation we shall assume x, = 0. We claim first that
the two series
4.8 Z na,x""1, z nla,x" 2
n=2

n=1

converge uniformly for |x| < r < R. Take r < s < R. Then (4.5) holds. It
follows that

i |mapx™-t < M i ms—mym-1
m=1

m=1

n
= Mr? Z maé™,
m=1
8 =rls <1. Take e > 0 so small that (1 + ¢)8 < 1. By Exercise 4 of
Chapter 1, §3, m < (1 + &)™ for all large m. Therefore there is a constant M’
so that
m< M'(1 + &)™, m=12,....

Then

n n
2. lmapx™=3 < r MM’ Y (1 + msm.
m=1 m=1
This last series converges, so the first series in (4.8) converges uniformly for
|x| < r. Similarly, m® < (1 + &)™ for large m, and the second series in (4.8)
converges uniformly for |x| < r.

Let g be the function defined by the first series in (4.8). Recall that we are
taking x, to be 0. We want to show that

“.9) UO) = f))y — %)~ — glx) >0 as y—x.
Assume |x| < r,|y| < r. Then the expression in (4.9) is

)

(4.10) D @yt — x* — iy — )Ny — 0L

n=2
Now

Pt = x" = (y — x)gu(x,¥)
where
8% y) = y" Tt A XYy TE 4+ X0y 4 X7

Thus

| gx(x, ¥)| < nr-? iflx| <r, |y <r
Then

Y= x" — nx*" Yy — x)
= -2+ x4+ X" — nxY)
=NO" =%+ ("2 =% Yx + - +(y — x)x""2
+ xn-l - xn—l]
= (¥ — X)?[gn-1(x, ¥) + 8n-a(x, )% + - -+ + g1(x,y)x*"2),
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so
[y" — x" — nx" Yy — x)| < |y — x|?-n?r"-2

It follows that for |x| < r,|y| < r we have

|A») = fNy — x)~* — g(=)|

IA

(-]
D ladl |y — x|n?r»-2|y — x| -1
n=2

@©
|y — x| > n?la|r=2 = K|y — x|,
n=2

K constant. Thus f'(x) = g(x). 0

Corollary 4.5. The function f in Theorem 4.4 is infinitely differentiable,
and

[

(4.11) [®(x) = Z nn—1Dn —2)---(n— k + Da(x — x5)" %,

n=k

|x - xol < R.
Proof. This follows from Theorem 4.4 by induction on k. [

In particular, if we take x = x, in (4.11) then all terms of the series except
the first are zero and (4.11) becomes

(4.12) a. = (k)™ f9Axo).

This means that the coefficients of the power series (4.6) are determined
uniquely by the junction f (provided the radius of convergence is positive).

Exercises

1. Find the function defined for |x| < 1 by f(x) = X2, x*/n. (Hint:

f&) =[5
2. Show that if fis defined by (4.6), then

[[1=3 0+ Dae - xre,

3. Find the function defined for |x| < 1 by f(x) = 32, nx" 1.

4, Suppose there is a sequence (x,)7-; such that |x,,; — Xo| < |x, — x|,
X, — X, and f(x,) = 0 for each n, where f is defined by (4.6). Show that
f(x) = 0 for all x. (Hint: show that ay, a;, as, . . . are each zero.)

§5. Differential equations and the exponential function

Rather than define the general notion of a “differential equation” here,
we shall consider some particular examples. We begin with the problem of
finding a continuously differentiable function E: R — C such that

(5.1) EQ =1, E'(x)=Ex, xecR.
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Suppose there were such a function E, and suppose it could be defined by a
power series

E(x) = z: a,x".

Then (5.1) and Theorem 4.4 imply

@ L
Z na,x""! = Z ax",
n=1 n=0

or
@ 0
D (14 Dagax = D axm.
n=0 n=0

Since the coefficients are uniquely determined, this implies

Qniy = a,/(n + 1), n=0,1,2,....
But

a=EQ0) =1,

so inductively

a,=0m)t=[nnm-Dn-2)-.--1]7%
We have shown that if there is a solution of (5.1) defined by a power series,
then it is given by

(5.2) E(x) = i (nh)~1x".

The ratio test shows that (5.2) converges for all real or complex x, and
application of Theorem 4.4 shows that E is indeed a solution of (5.1). We
shall see that it is the only solution.

Theorem 5.1. For each a, c € C there is a unique continuously differenti-
able function f: R — C such that

(5.3 O =¢, [fi(x)=4d(x), xeR.

This function is
(5.4 f(x) = cE(ax) = ¢ i (n!)~la™x".
n=0

Proof. The function given by (5.4) can be found by the argument used
to find E, and Theorem 4.4 shows that it is a solution of (5.3). To show
uniqueness, suppose f is any solution of (5.3), and let g(x) = E(—ax), so that

g0) =1, g'(x) = —agx).
Then fg is differentiable and
(f8) =fg+ /e =ag—ag=0.
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Therefore fg is constant and this constant value is f(0)g(0) = c. If ¢ # 0, this
implies fg is never zero, so g is never zero. Then for any c,
f(x) = clg(x), allx.
Thus fis unique. [J
This can be extended to more complicated problems.

Theorem 5.2. For each a, c € C and each continuous function h: R — C
there is a unique continuously differentiable function f: R — C such that

(5.5) fO) =¢c, [f'(x)=af(x)+ h(x), xeR.

Proof. Let fo(x) = E(ax), g(x) = E(—ax). As in the preceding proof,
Jfog is constant, =1. Therefore neither function vanishes. Any solution f of
(5.5) can be written as

f=rifo, where f =gf.
Then
[ =fifo + fifo = fifo + of,
so0 (5.5) holds if and only if
fO)=c,  fi(x)fo(x) = k().

These conditions are equivalent to
fix)=c+ f: gh.
Thus the unique solution of (5.5) is given by
GO S0 = el + 1) [ b
= cE(ax) + E(ax) jo " E(—at)h(t) dt. 0

Now we consider equations involving the second derivative as well.

Theorem 5.3. For any b, ¢, dy, d,€C and any continuous function
h: R — C there is a unique f: R — C of class C? which satisfies

.7 fO) =d,, f(0)=d,
(5.8) S'(x) + bf'(x) + ¢f(x) = h(x), xeR.

Proof. To motivate the proof, we introduce two operations on functions
of class C* from R to C: given such a function g, let

Dg=g, Ig=g¢
If g is of class C?, let D?g = g". Then (5.8) can be written
D3f + bDf + cIf = h.
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This suggests the polynomial z2 + 2bz + ¢. We know there are roots a,, a,
of this polynomial such that

224+bz+c=(C—a)(z—ay), allzeC.
Thus
= —a, — Qy, ¢ = a,4,3.
From the properties of differentiation it follows that
(D — aiD)[(D — aa)f] = D*f — (a, + a2)Df + azaf
=Y+
Let
g=f"—af =(D - al)f.
We have shown that f'is a solution of (5.8) if and only if
(D-aNg=g —ag=nh .

If also (5.7) holds, then g(0) = f'(0) — a.f(0) = d; — axd,. Thus f is a
solution of (5.7), (5.8) if and only if

(5.9 SO =do, [ —af=g,
where
(5.10) g0)=d, —axd,, . g —ag=h

But (5.10) has a unique solution g, and once g has been found then (5.9) has
a unique solution. It follows that (5.7), (5.8) has a unique solution. [J

Now we return to the function E,

E(z) = i m)~"z", zeC.

n=0

Define the real number e by

(5.11) e=E1)= Y ().
n=0
Theorem 5.4. The function E is a function from R to R of class C*.
Moreover,

(@) E(x) > 0,xeR,

(b) for each y > 0, there is a unique x € R such that E(x) = y,
(©) E(x +y) = E(x)E(y), all x,y R,

(d) for any rational r, E(r) = €'.

Proof. Since E is defined by a power series, it is of class C*. It is clearly
real for x real, and positive when x > 0. As above, E(x)E(—x) = 1, all x,
so also E(x) > 0 when x < 0.
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To prove (b), we wish to apply Theorem 1. Taking the first two terms in
the series shows (since y > 0) that E(y) > 1 + y > y. Also, E(y~%) > y~%,
so

E(=y ) =EQ@ )<y )=y

Thus there is x e (—y~%,y) such that E(x) = y. Since E‘' = E > 0, E is
strictly increasing and x is unique.

We have proved (c) when x = — y. Multiplying by E(—x)E(—y), we want
to show

E(x + y)E(—x)E(=y) =1, all x,yeR.
Fix y. This equation holds when x = 0, and differentiation with respect to x

shows that the left side is constant.
Finally, repeated use of (c) shows that

E(nx) = E(x)", n=0,+1, £2,....
Thus

e = E(1) = E(n/n) = E(1/n)",
et = E(1/n), n=1273,....
emr = (et™)ym = E(1/n)™ = E(m/n). 0

Because of (d) above and the continuity of E, it is customary to define
arbitrary complex powers of e by

(5.12) e*=E(@) = > (n) 'z~
n=0

The notation

(5.13) e =expz

is also common.
We extend part of Theorem 5.4 to the complex exponential function.
(Recall that z* denotes the complex conjugate of z € C.)

Theorem 5.5. For any complex numbers z and w,
(5.19) E(z + w) = E(z)E(w), E(z*) = E(2)*.

Proof. The second assertion can be proved by examining the partial
sums of the series. To prove the first assertion, recall that we showed in the
proof of Theorem 5.1 that E(zx)E(—:zx) is constant, x € R. Therefore
E(2)E(—2z) = E(0)> = 1. We want to show

E(z + w)E(—=2)E(—w) =1, allz,weC.
Let
g(x) = E((z + w)x)E(—zx)E(—wx), xeR.

Differentiation shows g is constant. But g(0) = 1. [
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The notation (5.12) and the identity (5.14) can be used to consolidate
expressions for the solutions of the differential equations above. The unique
solution of

SO =c, f'=af+h
is
(5.15) fX) = ce** + f " enx=0p(r) dit.

The unique solution of
0 =dy, fO=4d, f+d +cf=h

is given by

(5.16) F(x) = doe®s™ + L " esatx-g(s) dt,
where

(5.17) () = (dy — audp)e™r™ + fo " ent-0n(r) i,

and a,, a, are the roots of 22 + bz + c.

Exercises

1. Find the solution of
=1, f@O0=0 f"=2f"+f=0

by the procedure in Theorem 5.3, and also by determining the coefficients in
the power series expansion of f.
2. Let f, g be the functions such that

SO =1 f©0=0 f"+b"+¢f=0,
g0)=0, g0)=1, g +bg +cg=0.

Show that for any constants d,, d; the function 2 = d, f + d,gis a solution of
(*) h" + bk + ch = 0.

Show that conversely if 4 is a solution of this equation then there are unique
constants d,, d; € C such that h = d, f + d,g. (This shows that the set of
solutions of (*) is a two-dimensional complex vector space, and (f; g) is a
basis.)

3. Suppose h(x) = I, d.x", the series converging for all x. Show that
the solution of

SO =0=f'0), [ +b " +cf=h
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is of the form >=_, a,x", where this series converges for all x. (Hint: deter-
mine the coefficients ay, a,, . . . inductively, and prove convergence.)

4. Suppose 2% + bz2 + cz +d = (z — a))(z — a;)(z — a3), all zeC.
Discuss the problem of finding a function fsuch that

fO) =e, [fO=e, [fO)=e, [ +d"+cf +d=0.

§6. Trigonometric functions and the logarithm

In §5 the exponential function arose naturally from study of the differen-
tial equation f’ = f. In this section we discuss solutions of one of the simplest
equations involving the second derivative: f” + f = 0.

Theorem 6.1. There are unigue functions S, C: R — C of class C? such
that

(6.1) S0 =0, S@©=1 S"+S=0,
6.2) C0)=1, C'(0)=0, C"+C=0.

Proof. Existence and uniqueness of such functions is a consequence of
Theorem 5.3. [

Let us obtain expressions for S and C using the method of Theorem 5.3.
The roots of z2 + 1 are z = #+i. Therefore

Sx) = J; i e '*=Deg(t) dt

where
g(x) = e'~.

Thus

x x

S(x) =f e—l(x-t)eil dt = e—le eﬁﬂ dt
(V] o
= e~1%(2i)" e |3 = (2i)) e *(e** — 1),

©.3) S(x) = 5. (e — &=,

A similar calculation gives
6.4) C(x) = 3(e* + e~t*).

Theorem 6.2. The functions S, C defined by (6.3) and (6.4) are real-
valued functions of class C* on R. Moreover,

@ S'=CC = -8,
(b) S(x)? + C(x)> =1, all xeR,
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(c) there is a smallest positive number p such that C(p) = 0,
(d) if p is the number in (c), then
S(x + 4p) = S(x), C(x + 4p) = C(x), all xeR.
Proof. Since the exponential function exp (ax) is of class C® as a func-

tion of x for each aeC, S and C are of class C®. Since (exp (ix))* =
exp (—ix), S and C are real-valued. In fact,

C(x) = Re(e”), S(x) = Im(e™),
s0
e* = C(x) + iS(x).

Differentiation of (6.3) and (6.4) shows S’ = C, C’ = —S. Differentiation
of S + C? shows that S(x)? + C(x)?is constant; the value for x = Ois 1.

To prove (c), we suppose that C(x) s 0 for all x > 0. Since C(0) = 1 and
C is continuous, the Intermediate Value Theorem implies C(x) > 0, all
x > 0. Since S’ = C, S is then strictly increasing for x > 0. In particular,
S(x) = S(1) > 0, all x > 1. But then

0< Clx) =C() + f “Ccwad = cq) - f TS dt
< C(1) -r S()dt = c(1) — (x — DSA), x> 1.

But for large x the last expression is negative, a contradiction. Thus C(x) = 0
for some x > 0. Let p = inf{x | x > 0, C(x) = 0}. Then p = 0. There is a
sequence (x,)5° such that C(x,) = 0,p < x, < p + 1/n. Thus C(p) = 0, and
p is the smallest positive number at which C vanishes.

To prove (d) we note that

1= S@) + COY = SEY,

s0o S(p) = +1. But S(0) = 0 and S’ = C is positive on [0, p), so S(p) > 0,
Thus S(p) = 1. Consider S(x + p) as a function of x. It satisfies (6.2), and so
by uniqueness we must have

Sx+p=C(kx), xeR.
Similarly, — C(x + p) considered as a function of x satisfies (6.1), so
Cx+p)=—-Sx), =xeR.
Then

S(x+4p)=C(x +3p) = =-S(x+2p) = —C(x + p) = S(x),
Cx+4p)=—-Sx+3p)=-Cx+2p)=Sx+p=C(x). 10

We define the positive number = by
= 2p,
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p the number in (c), (d) of Theorem 6.3. We define the functions sine and
cosine for all z e C by

6.5 sinz= %i(e'z — e %) = i [n + DN-Y(=1)rz2r+1,

n=0

(6.6) cosz= %(e" +em) = ’20 [2n1]-}(=1y2%",

Note that because of the way we have defined = and the sine and cosine
functions, it is necessary to prove that they have the usual geometric sig-
nificance.

Theorem 6.3. Let y: [0, 2] — R? be defined by
¥(t) = (cos t, sin ¢).

Then vy is a 1-1 mapping of [0, 27] onto the unit circle about the origin in R2.
The length of the arc of this circle from y(0) to ¥(t) is t. In particular, the
length of the unit circle is 2m.

Proof. We know from Theorem 6.2 that (cos ?)® + (sint)? = 1, so
(cos t, sin t) lies on the unit circle. The discussion in the proof of Theorem 6.2
shows that on the interval [0, 4], cos ¢ decreases strictly from 1 to 0 while
sin ¢ increases strictly from O to 1. Therefore, y maps [0, 4#7] into the portion
of the circle lying in the quadrant x > 0,y > 0 in a 1-1 manner. Further-
more, suppose 0 < x < 1,0 < y < 1,and x? + y? = 1. By the Intermediate
Value Theorem and the continuity of cosine, there is a unique ¢ € [0, =] such
that cost = x. Then sint >0, (sint)2=1—-x2=y% and y >0, so
sin ¢ = y. Thus y maps [0, 3=] onto the portion of the circle in question.

Since cos(t + 3n) = —sint and sin (f + 37) = cos ¢, the cosine de-
creases from 0 to — 1 and the sine decreases from 1 to 0 on [, #]. As above,
we find that y maps this interval 1-1 and onto the portion of the circle in the
quadrant x < 0, y > 0. Continuing in this way we see that y does indeed
map [0, 27) 1-1 onto the unit circle.

The length of the curve y from ¢(0) to (¢) is usually defined to be the
limit, if it exists, of the lengths of polygonal approximations. Specifically,

suppose

O=t<ti<ty<---<tl,=1L.
The sum of the lengths of the line segments joining the points y(t,-,) and
W), i=1,2,...,nis

6.7 > [(cos t; — cos #;_3)® + (sin #; — sin #;_y)?]"2,
i=1

By the Mean Value Theorem, there are ¢; and ¢; between ¢;_, and ¢, such that

CoStl; — COStj_, = —sin t;(t‘ - t{-l)s
sin t; — sin #;,_; = cos t{(t; — t;_4).
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Therefore, the sum (6.7) is
21 [(sin £)? + (cos D2t — ti—2).
i=

Since sine and cosine are continuous, hence uniformly continuous on [0, ¢],
and since (sin #)? + (cos ¢)2 = 1, itis not hard to show that as the maximum
length |¢; — #,_4] — 0, (6.7) approaches ¢. [

This theorem shows that sine, cosine, and = as defined above do indeed
have the usual interpretation. Next we consider them as functions from
CtoC.

Theorem 6.4. The sine, cosine, and exponential functions have the following
properties:

(@) exp(iz) =cosz + isinz,all zeC,

(b) sin (z + 27) = sin z, cos (z + 27) = cos z, exp (z + 2#i) = exp z,
all zeC,

() if weCand w # 0, there is a ze C such that w = exp (2). If also
w = exp (2’), then there is an integer n such that z' = z + 2nwi.

Proof. The identity (a) follows from solving (6.5) and (6.6) for exp (iz).
By Theorem 2.2 and the definition of =,

exp (2mi) = cos 27 + isin 27 = 1.
Then since exp (z + w) = exp z exp w we get
exp (z + 2mi) = exp z.

This identity and (6.5), (6.6) imply the rest of (b).
Suppose we C, w # 0. Letr = |w|. If x, y are real,

lexp (iy)|? = |cos y + isin y|? = (cos y)® + (siny)® = 1.
Therefore
lexp (x + iy)|2 = |exp x exp (iy)| = |exp x| = exp x.

To have exp (x + iy) = w, then, we must have exp x = r. By Theorem 5.4
there is a unique such x € R. We also want exp (iy) = r~*w = a + bi. Since
|r=*w| =1, a® + b® = 1. By Theorem 6.3 there is a unique y € [0, 27) such
that cosy =a, siny = b. Then exp(iy) =cosy + isiny =a + ib. We
have shown that there are x, y € R such that if z = x + iy,

expz=expxexp(@)=r-r-tw=w
Suppose z' = x’' + iy, x’, ¥’ real, and exp z' = w. Then

r=|w| = |expz’| = |expx’| = exp X/,
x' = x. There is an integer n such that

2nr <y — y < 2nm + 2m,
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or
y=y+2ne+h, hel0,2n).

Since exp z' = exp z, we have
exp (iy) = exp (i) = exp (i(y + 2nm + h)) = exp (iy + ih),
s0
1 = exp (—iy) exp (iy + ih) = exp (ih).
Since 4 € [0, 2#), this implies A = 0. Thus ' = y + 2n7. []

The trigonometric functions tangent, secant, etc., are defined for complex
values by

tan z = sin z/cos z, zeC, cosz # 0,

etc.
If w, ze C and w = exp z, then z is said to be a logarithm of w,

z = log w.

Theorem 6.4 shows that any w # 0 has a logarithm; in fact it has infinitely
many, whose imaginary parts differ by integral multiples of 2. Thus log w is
not a function of w, in the usual sense. It can be considered a function by
restricting the range of values of the imaginary part. For example, if w # 0
the z such that exp z = w, Im z € [@, @ + 27) is unique, for any given choice
of aeR.

If x > 0, it is customary to take for log x the unique real y such that
exp y = x. Thus as a function from (0, o) to R, the logarithm is the inverse
of the exponential function. Theorem 3.7 shows that it is differentiable, with

d d -1

ax (log x) = (d—y eylu=locx) = e71o8¥ = x~1,
Thus
(6.8) log x = f “1td, x>0

1

Exercises

1. Prove the identities

sin (z + w) = sinzcos w + cos z sin w,
cos(z + w) =coszcosw — sin zsin w

for all complex z, w. (Hint: use (6.5) and (6.6).)
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2. Show that tan x is a strictly increasing function from (—4a, 4=) onto
R. Show that the inverse function tan~? x satisfies

£ (tanx) = (1 + 391

3. Show that [*_ (1 + x*)~1dx = m.

4, Show that
log(l+x)=f 1+ 1tat, -1 < x < 0.
[}
5. Show that
St L
log(l+x)—n21 — X" l<x<l.

(Hint: use Exercise 4.)

§7. Functions of two variables

Suppose A4 is an open subset of R?, i.e., for each (x,, o) € 4 there is an
open disc with center (x,, y,) contained in 4:

A>{(%, )| (x— %)+ (y — yo)? < r?}, somer > 0.

In particular, 4 contains (x, y,) for each x in the open interval x, — r <
X < xo + r, and A4 contains (x,, y) for each y in the open interval y, — r <

y<yotr.
Suppose f: 4 — C. It makes sense to ask whether f(x, y,) is differentiable
as a function of x at x,. If so, we denote the derivative by

D, f(xo, yo) = ll_fl: L Cx, o) — f(x0, Yo)l(x — x0) 2.

Other common notations are

0

g(xO, yO)’ a_;{ (xo,yo)’ fx(xo’ yo), Dxf(xOs J’o)-

Similarly, if f(x,, y) is differentiable at y, as a function of y we set
Daf(t0, yo) = lim [fxo, ) = (o yI¥ = y0)™.
(]
The derivatives D, f, D, f are called the first order partial derivatives of f.

The second order partial derivatives are the first order derivatives of the first
order derivatives:

D12f = DI(DLf)9 Dzzf = Dz(sz),
D,D,f = Dl(Daf), D,D,f = Dz(Dxf)-
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Other notations are

o, ¥ & ¥
a3 9y oxoy  oyox

Higher order partial derivatives are defined similarly. An (# + 1)-order
partial derivative of fis D, g or D,g, where g is an n-order partial derivative
of f. The function f: A — C is said to be n-times continuously differentiable,
or of class C*" if all the partial derivatives of f of order < » exist and are con-
tinuous at each point of 4. If this is true for every integer n, then fis said to
be infinitely differentiable, or of class C*.

Theorem 7.1. (Equality of mixed partial derivatives). If f: A — C is of
class C2, then D,D,f = D,D,f.

Proof. Suppose (a, b) € A. Choose r > 0 so small that 4 contains the
closed square with center (a, b), edges parallel to the coordinate axes, and
sides of length 2r. Thus (x, y) € A4 if

» etc.

|x—al<r and |y—b| <r

In this square we apply the fundamental theorem of calculus to fas a function
of x with y fixed, and conclude

fx,y) = fx D, f(s, y)ds + f(a, ).

Let g(y) = f(a, y). We claim that

) Duf5,) = [ DaDifs,5) ds + £ .

If so, then differentiation with respect to x shows D, D, f = D, D, f. To prove
(7.1) we consider

ey + ) = 05 = [ DaDifis, ) ds - g'0)

= [ @,y + ) = Dufts, ) ~ DaD, S5, N s
+ [y + &) — 8() — £}

The second term in brackets — 0 as ¢ — 0. If fis real-valued, we may apply
the Mean Value Theorem to the first term and conclude that for each s and y
and for each small e, there is a point y' = y’(s, y, €) between y and y + esuch
that

(7.2) YD, f(s,y + &) — Dy f(s,y)) — D:D1f(s,y)
= DD, f(s, ') — Dy D1 fTs, ).
Now |y’ — y| < &, so |[(s, ") — (s, y)| < &. Since D,D, f is uniformly con-

tinuous on the square |[x — a| < r, |y — b| < r, it follows that the maximum
value of (7.2) converges to zero as ¢ — 0. This implies convergence to zero of
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the integral of (7.1) with respect to s, proving (7.1) when f is real. In the
general case, we look at the real and imaginary parts of fseparately. []

Remarks. In the course of proving Theorem 7.1 we have, in effect,
proved the following. If fis a complex-valued function of class C* defined on
a rectangle |[x — a| < ry, |y — b| < ry, then the derivative with respect to
yof

f f(s, ) ds
is
X
[ Dasts, 9 ds.
a
Similarly, the derivative with respect to x of
v
f flx, 1) dt
b
is
Y
f D, f(x, 1) dt.
b

We need one more result of this sort: if a = b, r, = r,, then

v
FO) = [ fs,ds
a
is defined for |y — a| < r;. The derivative is

(1.3) [ Dasts, s + 10,9

In fact

Fo+a-Fo) =[ sy +a-sea+| fsna.

Divide by e and let e — 0. By the argument above, the first integral converges
to

[ Datts.nyds.

In the second integral, we are integrating a function whose values are very
close to f(y, ), over an interval of length e. Then, dividing by e, we see that
the limit is f(y, y).

We need two results on change of order of integration.

Theorem 7.2. Suppose f is a continuous complex valued function on the
rectangle

A={xy)]|asx<sbc=<y=<d}.
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Then the functions

d b
s = o nd, o) =[ fsnas
are continuous, and

[[ewax=["sna.

Proof. The preceding remarks show that g and A are not only continuous
but differentiable. More generally,

L "R, 0 at, J " s, 1) ds

are continuous functions of s and of ¢ respectively. Define

Fi(x,y) = j x{ f *f6s, 1) dt} s,

Fa(x,y) = f:{ ff(s, t) ds} dt.

We want to show that F;(b, d) = Fy(b, d). The remarks preceding this theo-
rem show that

D.Fy(x,y) = f " f(s, y) ds = DyFilx, ).

Therefore, F, — F, is constant along each vertical line segment in the
rectangle A. Similarly, D,F, = D,F,, so F; — F, is constant along each
horizontal line segment. Since Fy(a,c) = Fy(a,c) =0, F, = F,. ]

The next theorem describes the analogous situation for integration over
a triangle.

Theorem 7.3. Suppose f is a continuous complex-valued function defined
on the triangle
A={xy)]|0<x<a0<y<x.

f: { [ dy} dx = f: { L " fx, ) dx} &.

Proof. Consider the two functions of 1,0 < ¢ < a, defined by

J: { f: ftx,7) dy} @ [ ' { J: S5, y) dx} dy.

By the remarks following Theorem 7.1, the derivatives of these functions with
respect to ¢ are

Then

[rens. | fit yydy + ) "0 .
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Thus these functions differ by a constant. Since both are zero when ¢ = 0,
they are identical. []

Finally we need to discuss polar coordinates. If (x, y) € R? and (x,y) #
(0, 0), let

r=(x2 + y)3,
Then
(xR +(@"y)P=1,

so there is a unique 6, 0 < 6 < 2w, such that cos 6 = r~'x, sin 0 = r-1y,
This means

x = rcos 0, y=rsinf
r=(2+y3)¥2, 6 = tan~! (y[x).

Thus any point p of the plane other than the origin is determined uniquely
either by its Cartesian coordinates (x, y) or by its polar coordinates r, 0. A
function defined on a subset of R? can be expressed either as f(x, y) or
g(r, 0). These are related by

74 Sfx, y) = g((* + y*)'2, tan~* (y/x)),
.5 g(r, 6) = f(rcos 6, r sin 6).

Theorem 7.4. Suppose f is a continuous complex-valued function defined
on the disc

Dy ={(x,y)| x* + y* < R}

Suppose g is related to f by (1.5). Then

R (R2-92)1/3 R 251
f {J S, ) dx} dy = f { g(r, O)r do} dr.
-R -(R3-9y3)112 0 )

Proof. Look first at the quadrant x > 0, y > 0. For a fixed y > 0, if
x = 0 then x = (r? — y2?)'/2, Proposition 3.9 on coordinate changes gives

(R2-y2)1/2 R
[ fwn s = [ fer - 9 0062~ - ar

[}

We integrate the integral on the right over 0 < y < R, and use Theorem 7.3
to get

f ”of @ = y)'2, )r® -y~ dJ’}r dr.

Let y =rsin 6,0 €[0,4n]. Then (r2 — »3)'/2 = rcos . We may apply
Proposition 3.9 to the preceding integral of g-r over 0 < 6 < %x. Similar
arguments apply to the other three quadrants. [J
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Exercises

1. Suppose 4 < R? is open and suppose g: A — C and h: 4 — C are of
class C*. Show that a necessary condition for the existence of f: A — C such
that

® Dif=g Duf=h

is that D,g = D,h.
2. In Exercise 1, suppose Aisadisc{(x, ¥) | (x — x0)? + (¥ — y0)® < R%.
Show that the condition Dyg = D, h is sufficient. (Hint: consider

s = [ ats,n)ds + [ hxo, 1) d)

§8. Some infinitely differentiable functions

In §4 it was shown that any power series with a positive radius of con-
vergence defines an infinitely differentiable function where it converges:

@ =3 ax — xo".

We know

tn = (@) W (xo).

In particular, if all derivatives of f are zero at x,, then fis identically zero.
There are infinitely differentiable functions which do not have this property.

Proposition 8.1. There is an infinitely differentiable function f: R — R
such that

fx) =0, x=<0,
f(x) >0, x>0.

Proof. We define f by

Jx) =0, x<0
fx) =exp(-1/x), x>0.

Near any point x # 0, f is the composition of two infinitely differentiable
functions. Repeated use of the chain rule shows that fis, therefore, infinitely
differentiable except possibly at zero.

Let us show that fis continuous at 0. If y > 0, then

e = ,.Zo @)Y > mH)~-y", m=0,1,....

Thus if x > 0,
0 <f(x) =exp(—1/x) =exp(1/x)"* < m!(1/x)~™ = m! x™,
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m =0, 1,....In particular, f(x) - 0 as x — 0.
It is easy to show by induction that for x > 0,

JOE) = pu(x~)fx),

where p,(x) is a polynomial of degree < k + 1. Of course, this equation also
holds for x < 0. Suppose we have shown that f® exists and is continuous at
0; then of course f*(0) = 0. We have

L)) |F*G) — FOOIxY = [fP0x)x~1

lx=pi(x = )f ()]

Since p, is of order <k + 1and
[fG)] < (k + 3)! x*+3,

it follows that the right side of (8.1) converges to zero at x — 0. Thus f**(0)
exists and is zero. Similarly, f**(x) = pr+1(x"1)f(x) -0 as x -0, so
F®*D s continuous. []

Note that all derivatives of the preceding function vanish at zero, but f'is
not identically zero. Therefore f does not have a convergent power series
expansion around zero.

Corollary 8.2. Suppose a < b. There is an infinitely differentiable function
g: R— R such that

g(x) = 0’ X ¢ (a’ b),
g(x) > 0, x €(a, b).

Proof. Let f be the function in Theorem 8.1 and let
g(x) = f(x — a)f(b — x).

This is positive where x — @ > 0 and where b — x > 0, and is zero else-
where. It is clearly of class C*. [J

Corollary 8.3. Suppose a < b. There is an infinitely differentiable function
h: R— R such that

h(x) =0, x < a,
O<hix)<1, a<x<hb,
hx)=1, x=b.

Proof. Let g be the function in Corollary 8.2 and let
h(x) = CI g(t) at,

where ¢ > 0 is chosen so that A(b) = 1. Then &’ = cg = 0, k is constant
outside (a, b), etc. [



Chapter 3

Periodic Functions and Periodic Distributions

§1. Continuous periodic functions

Suppose u is a complex-valued function defined on the real line R. The
function u is said to be periodic with period a # 0 if

u(x + a) = u(x)
for each x € R. If this is so, then also

u(x + 2a) = u((x + a) + a) = u(x + a) = u(x),
u(x — a) = u((x — a) + a) = u(x).

Thus u is also periodic with period 2a and with period —a. More generally,
u is periodic with period na for each integer n. If u is periodic with period
a # 0, then the function v,

v(x) = u(|a|x/2m)

is periodic with period 2=. It is convenient to choose a fixed period for our
study of periodic functions, and the period 2= is particularly convenient.
From now on the statement “u is periodic” will mean “u is periodic with
period 27.” In this section we are concerned with continuous periodic
functions. We denote the set of all continuous periodic functions from R
to C by %. This set includes, in particular, the functions

sin nx, cos nx, exp (inx) = cos nx + isin nx

for each integer n.
The set € can be considered a vector space in a natural way. We define the
operations of addition and scalar multiplication by

) U+ v)(x) = u(x) + v(x), wuve¥, xeR;

) (au)(x) = au(x), ueé, aeC, xeR.

it is easily checked that the functions # + v and au are periodic. By Proposi-
tion 1.1 of Chapter 2, they are also continuous. Thus 4 + v€ ¥, au€ . The

axioms V1-V8 for a vector space are easily verified. We note also that there
is a natural multiplication of elements of ¥,

(uv)(x) = u(x)o(x), u,ve%, xeR.

The set € may also be considered as a metric space. Since the interval
[0, 27] is a compact set in R and since # € € is continuous,
sup |u(x)| < oo.
xe[o.gnll ( )I
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We define the norm of u € € to be the real number |u| where

3 |u| = sup |u(x)| = sup |u(x)l.

The norm (3) has the following properties:

)] || =0, and |u| =0 onlyifu(x) =0, all x;
©)] lau| = |a| |4, acC, ue®;

6) lu + o <|ul + v, wuve®

The properties (4) and (5) are easily checked. As for (6), suppose x € R. Then
| + v)()| = |u(x) + v(x)| < |[ux)| + |o(x)] < 4] + [0].

Since this is true for every x € R, (6) is true.
To make % a metric space, we set

Q)] d(u,v) = [u — 0.

Theorem 1.1. The set € of continuous periodic functions is a vector
space with the operations defined by (1) and (2). The set € is also a metric
space with respect to the metric d defined by (7), and it is complete.

Proof. As we noted above, checking that € satisfies the axioms for a
vector space is straightforward. The axioms for a metric space are also
easily checked, using (4), (5), and (6). For example,

| — ) + (v — w)|
lu — | + |[v — w| =d(u,v) + d(v, w).

d(u, w) = |lu — w|

Al

Finally, suppose (¥,)2- is @ Cauchy sequence of functions in €. By Theorem
4.1 of Chapter 2, there is a continuous function u: R — C such that
|un — u| — 0. Clearly u is periodic, so # € € and € is complete. []

Sets which are simultaneously vector spaces and metric spaces of this
sort are common enough and important enough to have been named and
studied in the abstract. Suppose X is a real or complex vector space. A norm
on X is a function assigning to each u € X a real number |u], such that

[a| =0, and |u| =0 implies u = 0;
|au] = |a| |u|, ascalar, ueX;
[+ v <|u + v, wveX

A normed linear space is a vector space X together with a norm |u|. Associated
to the norm is the metric

d(u,v) = [u—v|.

If the normed linear space is complete with respect to this metric, it is said
to be a Banach space.

In this terminology, Theorem 1.1 has a very brief statement: € is a
Banach space.
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Suppose X is a complex normed linear space. A linear functional
F: X — C is said to be bounded if there is a constant ¢ > 0 such that

|[F(u)| < clu, allueX.

Proposition 1.2. A linear functional F on a normed linear space X is
continuous if and only if it is bounded.

Proof. Suppose F is bounded. Then
|F(u) — F(¥)| = |F(u — V)| < clu—v],

so [F(u) — F(v)| < eif j[u — v| < ¢7te.
Conversely, suppose F is continuous. There is a 8 > 0 such that
[a] = |u — 0] < 8 implies

|F(u)| = |F(u) — F(0)| < 1.
For any u # 0, u € X, the vector v = 8|u| ~'u has norm 8. Therefore
|[F(w)| = |F(3~*|ulv)| = &~ *|u| |[F(¥)| < 3 *|ul,
and Fis bounded. [I

It is important both in theory and practice to determine all the con-
tinuous linear functionals on a given space of functions. The reason is that
many problems, in theory and in practice, can be interpreted as problems
about existence or uniqueness of linear functionals satisfying given con-
ditions. The examples below show that it is not obvious that there is any
way to give a unified description of all the continuous linear functionals on
%. In fact one can give such a description (in terms of Riemann-Stieltjes
integrals, or integrals with respect to a bounded Borel measure), but we shall
not do this here. Instead we introduce a second useful space of periodic
functions and determine the continuous linear functionals on this second
space.

Exercises

1. Suppose (a,)p= -« is a (two sided) sequence of complex numbers
such that

0

z |an] < o0;

n= -

here we take the infinite sum to be

0

Z |au| = ’20 |an| + i |a-,,|.

n= - n=1

Show that the function u defined by

u(x) = z a, exp (inx)

n= =



72 Periodic functions and periodic distributions

is continuous and periodic
2. Suppose u: R — C is a continuous function and suppose there is a
constant M such that u(x) = 0 if |x| > M. Show that for any x the series

@

v(x) = 2 u(x + 2nm)

n= -

converges. Show that the function v is in %.
3. If u € %, define the real number |u|" by

2n
ju” = @)= [ ute)] .

Show that |#|’ is a norm on ¥ and that |u|’ < |u|.

4. Suppose d’ is the metric associated with the norm |u|" in Exercise 3.
Show that € is not complete with respect to this metric. (Hint: take a sequence
of functions (u,)?-, of functions in € such that

0<ux)<l, xeR,n=12,...,
u(x) = 0, x€e[0,n/2 — 1/n] Y [3#/2 + 1/n, 2],
u(x) =1, xeln/2,3n/2]).
Then |u, — up|'—0 as n,m—>oco. If ue®, there is an open interval
(w2 — 8, #/2 + 8) on which either |u(x)| > } or |u(x) — 1| > . Show that
|u, — u|’ > 8/6w for large values of n.)

5. Which of the following are bounded linear functionals on ¥, with
respect to the norm |u|?

(@) F(w) = u(n[2),

(b) F(u) = [ sin nx u(x) dx,
©) F@) = )" (u(x))* dx,

(d) F(u) = 17u(0) + [2" u(x) dx.
(e) F(u) = —3[u(0)|-

6. Suppose X is a normed linear space. Let X' be the set of all bounded
linear functionals on X. Then X' is a vector space. For F e X', let

|F| = sup {|F@)] | ueX, [u] < 1}.
Show that |F| is a norm on X'. Show that for any ue X and Fe X/,
|F(w)| < |F| |ul.

Show that X' is a Banach space with respect to this norm.

§2. Smooth periodic functions

Suppose u: R — C is a continuous periodic function, and suppose that
the derivative
Du(x) = u'(x)
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exists for each x € R. Then Du is also periodic:
Du(x + 2a) = Lin}, h=u(x + 2m + h) — u(x + 27)]

= }‘i_r.x% h=u(x + h) — u(x)] = Du(x).

In particular, if u is infinitely differentiable and periodic, then each deriv-
ative Du, D?u,..., D*u,... isin %.

We shall denote by & the subset of € which consists of all functions
u € € which are smooth, i.e., infinitely differentiable. Such a function will be
called a smooth periodic function. If u is in &, then the derivatives Du, D?u,. ..
are also in Z

The set 2 is a subspace of € in the sense of vector spaces, so it is itself a
vector space. The function [sin x| is in € but not in &, so # # €. We could
consider # as a metric space with respect to the metric on € given in the
previous section, but we shall see later that & is not complete with respect
to that metric. To be able to consider & as a complete space we shall intro-
duce a new notion of convergence for functions in £

A sequence of functions (#,)7=; < £ is said to converge to u€ 2 in the
sense of # if foreachk =0,1,2,...,

| D¥u, — D*u| -0 as n-—> co.
(Here D% = u.) We denote this by
u, —u (P).

Thus (1,)P-, converges to u in the sense of £ if and only if each derivative
of u, converges uniformly to the corresponding derivative of u as n — co.

A sequence of functions ()=, is said to be a Cauchy sequence in the
sense of # if for each k =0, 1,..., (D*u,)2-, is a Cauchy sequence in %.
Thus

| D*u, — D*u,| —0 as n,m-—>o
for each k.

When there is no danger of confusion we shall speak simply of *“con-
vergence” and of a “Cauchy sequence,” without referring to the *“the sense
of & The statement of the following theorem is to be understood in this
way.

Theorem 2.1. The set 2 of all smooth periodic functions is a vector space.
If (u)2-y < P is a Cauchy sequence, then it converges to a function u € &,

Proof. As noted above, £ is a subspace of the vector space €: if u,v € 2
then u -+ v € &, au € . Thus 2 is a vector space.

Suppose (#4,)-, is a Cauchy sequence. For each k the sequence of
derivatives (D*u,)?-, is a Cauchy sequence in ¥. Therefore it converges
uniformly to a function v, €¥. Fork =0, 1, 2,...,

D*u,(x) = D*u,(0) + Jx D*+y, () dt.
1]
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By Theorem 4.2 of Chapter 2,

x
v(x) = 'El.’l;lo D*u,(x) = lim D*u,(0) + '!ljll L D**+p. (1) dt

n-» o

x
= 1;(0) +J Ux+1(2) dt.
1]
Therefore Dv, = v, 4, all k. This means that if u = v,, then v, = D*u and
| D*u,, — D*u| — 0 as n — 0. Thus u, — u (in the sense of #). []

The remainder of this section is not necessary for the subsequent develop-
ment. We show that there is no way of choosing a norm on £ so that con-
vergence as defined above is equivalent to convergence in the sense of the
metric associated with the norm. However, there is a way of choosing a
metric on 2 (not associated with a norm) such that convergence in the sense
of Z is equivalent to convergence in the sense of the metric. Finally, we
introduce the abstract concept which is related to £ in the way that the
concept of “Banach space” is related to 4.

Suppose there were a norm |u|’ on £ such that a sequence (#,)7-; < 2
converges in the sense of 2 to u € 2 if and only if

|up — u|’ —0.
Then there would be a constant M and an integer N such that
) lu|'’ < M(Ju| + |Du| +---+ |D"u|), allue?

In fact, suppose (1) is false for every M, N. Then for each integer n there
would be a u, € 2 such that

lua)” > n(lua] + |Duy| + - - + | D™uy)).
Let
vn = (|tn]") .
Then
| D*v,| = (|un]) | D*uy| < n~*  ifn >k,

so v, — 0 in the sense of £ But |v,|’ = 1, all n. This shows that the norm |u|’
must satisfy (1) for some M, N. Now let

Wa(x) = n~¥-1sin nx, n=12,....
Then w, € 2 and
| D¥w,| = n¥~N-1 < n~1, k < N.
Thus by (1),
|wa|” —0,

But | D¥*!w,| = 1, all n, so (w,)7’=, does not converge to 0 in the sense of £
This contradicts our assumption about the norm |u|’.
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Although we cannot choose a metric on &, associated with a norm, which
gives the right notion of convergence, we can choose a metric as follows. Let

d'(u,v) = > 27%~!D*u — D*v|[l + |D*u — D*»|]-%.
k=0

The term of this sum indexed by k is non-negative and is smaller than
2-%-1 Thus

d'(uv) <1, u, veP.
It is clear that

d'(u,v) =0, d'(u,v) =0 implies u =y,
d'(u, v) = d'(v, u).

The triangle inequality is a little more difficult. Let
dw,v) = lu—v|, d*u,0) =du, )1 + d(u,v)]"*
The reader may verify that
d*(u, w) < d*(u,v) + fi*(v, w).
Then
[
d'(u, w) = > 27*-1d*(D*u, D*w)

k=0

<---<d'(uv) + d'(v, w).

Theorem 2.2. A sequence of functions (u,)7-1 < 2 is a Cauchy sequence
in the sense of 2 if and only if it is a Cauchy sequence in the sense of the metric
d’'. Thus (%, d') is a complete metric space.

Proof. Suppose (u,)7-1 is a Cauchy sequence in the sense of Z Suppose
e > 0 is given. Choose k so large that 2-* < &. Choose N so large that if
m > Nand n > N, then

|Duy — D'uy| <%e, j=0,1,... k.
Then if m,n > N,

d' (s ) = 2 271-1d*(D'u,, D'u,)
=0

L

< i 277 3(4e) + > 2770
i=0

I=k+1

<3e+27%1 < le+ de

Conversely, suppose (#,)7- ; is @ Cauchy sequence in the sense of the metric d’.
Given an integer k > 0 and an e > 0, choose N so large that if m,n > N
then

d'(Up,y uy) < 27%-2,
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Form,n > N,

| D¥u, — D¥uy| = 2+2.2-%-1.2-1| Dy, — Diy,|
< 2k+2.2-k=1.g4%(Dky,, D*u,)
< 2%+2d'(u,, u,) < e.

Thus (#,)7=, is a Cauchy sequence in the sense of #
The same argument shows that d’(u,, ¥) — 0 if and only if u, —u (&).
Thus (£, d’) is complete. [

There is an important generalization of the concept of a Banach space,
which includes spaces like 2. Let X be a vector space over the real or complex
numbers. A seminorm on X is a function u — |u| from X to R such that

lu| =0, |au| =|a|ul, |u+v]<|u+]v

(Thus a seminorm is a norm if and only if |u] = 0 implies u = 0.) Suppose
there is given a sequence of seminorms on X, |u|;, |u],, .. ., with the property

that
(3] |l =0, all k implies u = 0.
Then we may define a metric on X by
d'(m,v) = Z 2% u — v [1 + |u — v]]" L
k=1

If X is complete with respect to the metric d’, it is said to be a Frechet space.
Note that

d'@, vYV—>0 as n—>o
is equivalent to
[up — ¥|x—>0 as n— oo, for all k.
In particular, if we take X = £ and
|ule = | D*~ul,

then d' agrees with d’ as defined above. Thus Theorems 3.1 and 3.2 say that
2 is a Frechet space.

Exercises

1. Which of the following are Cauchy sequences in the sense of 2?

u,(x) = n=3 cos nx,
v.(x) = (n)~1sin nx,

wa(x) = il (m!)~?! sin mx.
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2. Suppose X is a complex vector space with a sequence of seminorms
|ul1; Julz, .. ., satisfying (2). Let d’ be the associated metric. Show that a
linear functional F: X — C is continuous if and only if there are a constant
M and an integer N such that

|[F(u)] < M(Ju|; + |u|g +---+ [u]y), allueX.

§3. Translation, convolution, and approximation

The aim of this section and the next is to show that the space £ of smooth
periodic functions is dense in the space € of continuous periodic functions;
in other words, any continuous periodic function u is the uniform limit of a
sequence (#,)2-, of smooth periodic functions. Even more important than
this theorem is the method of proof, because we develop a systematic
procedure for approximating functions by smooth functions.

The idea behind this procedure is that an average of translates of a
function u is smoother than u itself, while if the translated functions are
translated only slightly, the resulting functions are close to ». To illustrate
this the reader is invited to graph the following functions from R to R:

ul(x) = ley
uy(x) = 3|x — | + 3|x + ¢,
uy(x) = ¥|x — el + 3|x| + 4|x + |,

where ¢ > 0.
If ue € and ¢ € R, the translation of u by ¢ is the function T,

Ta(x) = u(x — t), xeR.

Then T,u € €. The graph of T, is the graph of u shifted ¢ units to the right
(i.e., shifted |¢| units to the left, if # < 0). In these terms the functions above
are

uy = +Tou, + 37T_u,, ug = 3T, + $Touy, + 3T - .uy.
More generally, one could consider weighted averages of the form
) w = aTyu + a,Tyu +---+ a,T,u,
where

a, >0, a+a +-+a =1,
and most of the ¢, are near 0. If
O0<to<th< ' <t=2m
and we set
b(t) = a(te — te-1)?

then (1) becomes

@ w = b(t)(To )t — te2)-
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The natural continuous analog of (2) is the symbolic integral

27

v = b(t)T.u dt,
[}
defining the function

©)] o(x) = ” b(t)u(x — t) dt.

]

We wish to study integrals of the form (3). If », v € %, the convolution of
u and v is the function u * v defined by

@ o) = o= [ utx = )
It follows readily from (4) that

® jsol < lul [ ool s < L Il
Proposition 3.1. If u, v €%, then u * v € €. Moreover

6) Uy =0*u,

) (au) * v = a(u * v), aeC,

® wW+v)*xw=urw+ovxw, weé,
©) Uxv)xw=ux@=*w),

(10) Tu»v) = (Ta) * v = u* (Ty).

Proof. We begin with part of (10).

A) T ) = weolx = 1) = 5 [ e = £ = o)y

= 5| Tt = () dy = (T w0,

Therefore,

(12) |Tiu*v) — u*v| = |(Taw — u) * 0|

< |Tw — u| |v|,

where we have assumed (7) and (8). Now u is uniformly continuous on [0, 2]
and is periodic; it follows easily that u is uniformly continuous on R. There-
fore |T.u — u| — 0 as ¢ — 0. Then (12) implies continuity of u * v. Also,

Tos(uv) = (Toatt) * v = u v,

so u * v is periodic.,

The equality of (6) follows from a change of variables in (4): let y’ =
x — y, and use the periodicity of  and v. Equalities (7), (8), and (9) are easy
computations. The last part of (10) follows from (11) and (6). [
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Note that
t=qu(t + x) — u(x)] = t~T_u — u)(x).
Lemma 3.2. Ifue, then
|t-X(T-u — u) — Dul -0 as t—0.
Proof. By the Mean Value Theorem,
t=T_u — u)(x) — Du(x) = Du(y) — Du(x)

where y = y(t, x) lies between x and x + ¢. Since Du is uniformly continuous,
t=Y(T-u — u) converges uniformly to Duast—0. [

Corollary 3.3. Ifue, then
t Y T-.u — u)—> Du(P)

ast—0.

Proof. 1t is easy to see that

D*(T_u) = T_{(D*u).
Then
D*[t-YT_u — u)] = t~¥(T-,D*u — D*u),

which converges uniformly to D(D*u) = D¥(Du). []

Proposition 3.4. Ifue? andve ¥ thenu*ve P and

(13) D*(u » v) = (D*u) * v, all k.
Proof. By Proposition 3.1,
(14) T (u*v) — (wev)] = [1~HT-u — w)] * .

By Lemma 3.2 and (5), the expression on the right in (14) converges uni-
formly to (Du) * v as t — 0. Thus

D(u*v) = (Du) * v,
and u * v has a continuous derivative. But, Du € & so we also have
D*(u * v) = D((Du) * v) = (D%u) * v.
By induction, (13) holds for all k. [

Corcllary 3.5. Suppose (v,) < ¥, ve¥, and |v, — v| — 0. Then for
eachue?,

uxv, >ux*v (P).
Proof. Foreachk,

D*¥(u* v, — u*v) = D*ux (v, — v).
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It follows from this and (5) that
| D*¥(u * v, — u * v)] =0,

allk. 0

Having established the general properties of convolution, let us return
to the question of approximation. Suppose u € €. If (p,)2-, is a sequence of
functions in £, then each function

U, =@, *U
is smooth. Thinking of u, as a weighted average of translates of u, we can
expect u, to be close to u if ¢, has average value 1 and is concentrated near

0 and 2= (as a function on [0, 2=]).
A sequence (p,)2-; < € is said to be an approximate identity if

() pu(x) = 0, all n, x;
@ii) 1/27 [J" @u(x) dx = 1, all n;
(iii) for each 0 < & < =,

2n=4
f eu(X)dx—0 as n—oo,
é

Theorem 3.6. Suppose (p,); < € is an approximate identity. Then for
each ue%,

|pn*u — u| -0 as n—>oco.
Moreover, if ue & then
pn*u—>u ($) as n—oo.

Proof. Since (2m)~! I:" ?.(»)dy = 1and ¢, * u = u * p,, we have

27 28
2elpn+ ) — )] = || st = Do) dy — ) [ mn(r)
2%
= [t = ) - st |

4 28-6 2z
AN
0 2::6

2%8-0
sup. | T — ul (f on + ) + 2|u|f P
28 =0

Isl <26

+ +

A

28 -4

< sup [T — u] + 2Jul f

Given e > 0, we first choose 8 > 0 so small that § < 7 and
|Tou — u| <7e  if|s| < 8.

Then choose N so large that

2% =6
2|u|f on <27, n= N
é
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If n > N, then
|pn*u — u| <e.
This proves the first assertion. Now suppose u € £, For each k,
D@y » u) = D(u * @,) = (D*u) * @, = g, * (D*u),
which converges uniformly to D*u. Thus
e *xu—>u (P). 0

In the next section we shall construct a sequence in £ which is an approxi-
mate identity. It will follow, using Proposition 3.4 and Theorem 3.6, that &
is dense in @.

Exercises

1. Let ei(x) = exp (ikx), k = 0, +1, +2,.... These functions are in &
(see §6 of Chapter 2). Suppose u € €. Show that

€ * U = ayey,

where

1 2 -iky
& = 5~ fo e~"u(y)dy.

2. Show that e, *e, = 1, and ¢; * ¢, = 0if j # k.

§4. The Weierstrass approximation theorems

A trigonometric polynomial is a function of the form
1) o(x) = D ayexp (ikx),
k==n

where the coefficients a, are in C. The reason for the terminology is that for
k>0,
exp (+ikx) = [exp (+ix)]* = (cos x % isin x)*.

Therefore any function of the form (1) can be written as a polynomial in the
trigonometric functions cos x and sin x. Conversely, recall that

cos x = }[exp (ix) + exp (—ix)],
sin x = -21-i[exp (ix) — exp (—ix)].

Therefore any polynomial in cos x and sin x can be written in the form (1).
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Lemma 4.1. There is a sequence (p,)Y° of trigonometric polynomials which
is an approximate identity.

Proof. We want to choose a non-negative trigonometric polynomial ¢
such that

#(0) = ¢(2m) = 1,
e(x) <1 for 0<x < 2m

Then successive powers of @ will take values at points near 0 and 2= which
are relatively much greater than those taken at points between 0 and 2.
We may take

@(x) = 3(1 + cos x)
and set
ea(®) = ¢, (1 + cos x)"

where ¢, is chosen so that

28

Pa(X) dx = 2m.
0

We need to show that for each0 < 8 < =,

2z~6
¥)) f Pu(X)dx—>0 as n—o

é
There is a number r, 0 < r < 1, such that
A3) 14 cosx < r(l + cosy)
if
@ x€[8, 2m — 8], y €[0, 33].
Then (3) and (4) imply

Pn(x) = ca(l + cos x)* < rrpu(),
S0
35
1009 < 1* [ 0u0) dy < 27,

or

Pu(X) < 4md~'r",  x€[8, 27 — 3]
Thus ¢, — 0 uniformly on [§, 27 — 8]. 0O

Lemma 4.2. If ¢ is a trigonometric polynomial and u €6, then p *u is a
trigonometric polynomial.

Proof. This follows from Exercise 1 of the preceding section. [

Theorem 4.3. The trigonometric polynomials are dense in the space € of
continuous periodic functions, and in the space P of smooth periodic functions.
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That is, if u € € and v € P, there are sequences (u,)y’ and (v,)5 of trigonometric
polynomials such that

|y — u] =0
and

v, =0 (2).

Proof. Let (p,)7 be a sequence of trigonometric polynomials which is
an approximate identity, as in Lemma 4.1. Let

Uy = Pp *U, Up = @p * 0.

By Lemma 4.2, the functions u, and v, are trigonometric polynomials. By
Theorem 3.6, u, — u uniformly and v, — v in the sense of Z ]

Note that if u, v are real-valued, then so are the sequences (#,)°, (0,)F
constructed here.

Corollary 4.4. 2 is dense in G.

Theorem 4.3 is due to Weierstrass. There is a better-known approxima-
tion theorem, also due to Weierstrass, which can be deduced from Theorem
4.3.

Theorem 4.5. (Weierstrass polynomial approximation theorem). Let u be
a complex-valued continuous function defined on a closed interval [a, b] < R.
Then there is a sequence (p,)Y of polynomials which converges uniformly to u
on the interval [a, b).

Proof. Suppose first that [a, b] = [0, ). We can extend u so that it is a
function in ¥; for example, let u(—x) = u(x), x € [0, 7] and take the unique
periodic extension of this function. Then there is a sequence (u,)§ of trigono-
metric polynomials converging uniformly to u. Now the partial sums of the
power series

> (m!)~Y(ikx)™ = exp (ikx)

converge to exp (ikx) uniformly on [0, w]. Therefore for each n, we may
replace the functions exp (ikx) in the expression of the form (1) for u, by
partial sums, so as to obtain a polynomial p, with

|Pn(x) — un(x)] < 0=, x€[0, 2a].

Then p, — u uniformly on [0, 2=].
In the case of an arbitrary interval [a, b], let

v(x) = u(@a + (b — a)x/n), x € [0, =].

Then v is continuous on [0, 7], so there is a sequence (g,);° of polynomials
with ¢, — v uniformly on [0, #]. Let

Pa(¥) = gu(=(y — a)|(b — a)), y€]a, bl
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Then p, is also a polynomial and p, — # uniformly on [a, b]. 0

Exercises

1. Suppose u € € and suppose that for each integer k,
2z
f u(x) exp (kx) dx = 0.
o

Show that u = 0.
2. Suppose u: [a, b] > C is continuous, and for each integer n > 0,

r u(x)x* dx = 0.

Show that u = 0.

§5. Periodic distributions

In general, a “distribution™ is a continuous linear functional on some
space of functions. A periodic distribution is a continuous linear functional
on the space Z Thus a periodic distribution is a mapping F: # — C such
that

F(au) = aF(u), aeC, ue?;
F(u + v) = F(u) + F(v), u,veP;
F(u,) = F(u) if uy—u ().

If v is a continuous periodic function defined on [0, 2], then we define a
linear functional F = F, by

2n
) =5 [ oua)ds,  ue.
T Jo
Then F,: € — C is linear, and

IFv(un) - Fv(u)l s IDI Iun - ul'

Therefore F, is continuous on %, Its restriction to the subspace £ is a periodic
distribution. We say that a periodic distribution F is a function if there is a
v € € such that F = F,,. If so, we may abuse notation and write F = v.

Note that different functions v, w e € define different distributions. In
fact, suppose F, = F,. Choose (u,)7 < &£ such that u, —w* — v* uni-
formly, where w*(x) = w(x)*, the complex conjugate. Then

0 = 2u(Fu(un) — Fiu) = [ " (Wx) — o)) dx — [ w0 - ooy a,

SOwW =0,
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Not every periodic distribution is a function. For example, let : C - C
be defined by

)] 8(u) = u(0), wuecé¥.

Then the restriction of 8 to £ is a periodic distribution. It is called the 8-
distribution, or Dirac 3-distribution. To see that it is not a function, let
u,(x) = & + 3 cos %)™,

Then &(u,) = 1, all n. But u,(x)—0 uniformly for x € [e, 27 — £], any
e > 0. Also 0 < u,(x) < 1, all x, n. It follows from this that for any v € %,
F(u,) — 0. Thus 8 # F,.

The set of all periodic distributions is denoted by #'. We consider &’
as a vector space in the usual way: if F, Ge ', ue %, aeC, then

(F + G)(w) = F(u) + G(u),
(aF)u) = aF(u).

Note that if v, w are continuous periodic functions, then
F, + F, = Fy,y, F,, = aF,.
A sequence (F,) < 2 is said to converge to Fe & in the sense of #' if
F(u)—F@u), alue?
We denote convergence in the sense of 2’ by
F,—F (9,
or simply by
F,—~F

when it is understood in what sense convergence is understood.

We want to define operations of complex conjugation, reversal, transla-
tion, and differentiation for periodic distributions. For any such operation
there is a standard procedure for extending the operation from functions to

distributions. For example, if v e %, the complex conjugate function v* is
defined by

v*(x) = v(x)*.
Then

Fu) = [ sty s = (o [ o) )" = Eany

o
Then we define F* for an arbitrary Fe ' by

A3) F*(uw) = F(u*)*, ue?
Similarly, if v € € we define the reversed function & by

#(x) = o(—x).
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Then

Fy(u) = zi‘” , ” (—x)u(x) dx = %r fo v(X)u(—x) dx = F,(@i).

We define F~, Fe &', by
@ F*(u) = F@@), ue#?
If ve® and ¢ € R, recall that the translate T, is defined by
Tw(x) = v(x — ?).
Then

zi" fo To(ou(x) dx = zl" fon o(x — 1)u(x) dx

1 2n
=5 J; o(X)u(x + t) dx = Fy(T_.u).

We define T.F, Fe &', by
® T,F(u) = F(T-u), ue?

If ve 2 and u € &, then integration by parts gives

27 2%
2% fo Do(x)u(x) dx = —ziﬂ L o(x) Du(x) dx = — F,(Du).

We define DF, Fe &', by

©) (DF)Yu) = —F(Du), ue?
Then inductively,

o (D*F)u) = (—=1)*F(D*u), ue

Each of the linear functionals so defined is a periodic distribution. For
example, if u, — u (&) then Du, — Du (). It follows that

(DF)(u,) = —F(Du,) > — F(Du) = DF(u),

so the derivative DF is continuous. Similarly, F*, F, T,F, and D*F are in &',
In particular, let us take F = 3. Then

®) =5 =35
©) T,3(u) = u(?),
(10) D*8(u) = (—~1)*D*u(0), ue?

Proposition 5.1. The operations in #' defined by equations (3), (4), (5),
and (6) are continuous, in the sense that if F,— F (') then

F* > F* (),
F~—F" (#),
T,F, - T,F (%),
DF, —> DF (&).



Periodic distributions 87

Proof. Each of these assertions follows trivially from the definitions.
For example, if u € & then

(DF,)u) = —F,(Du) — — F(Du) = DF(u).
Thus DF, — DF (2'), etc. [l

Recall that if u e & then Du is the limit of the “difference quotient”
t_l(T_tu - u).

Proposition 5.2. If Fe &', then
(11) t~YT_..F — F)—> DF (%)
ast—0.
Proof. Suppose u € Z By definition,
(12) tYT-.F — F)u) =t"*F(Tw) — t~*F(u) = —F(t~*[u — Tw)).
Now
(13) t~u — Tu)(x) = ¢t~ u(x) — u(x — t)].

An argument like that proving Lemma 3.2 and Corollary 3.3 shows that the
expression in (13) converges to Du in the sense of & as t — 0. From this fact
and (12) we get (11). 0

As an example,
t~YT_-8 — &) = t~u(—1t) — u(0)] = — Du(0) = (D3)(u).
The real and imaginary parts of a function v € € can be defined by
Rev = (v + v¥),
= 1 %
Imov = Z.(v — v*).
Similarly, we define the real and imaginary parts of a periodic distribution F
by
Re F = {(F + F*),

_1 .
Im F = 5 (F — F¥).

F is said to be real if F = F*. A function v e € is said to be even if v(x) =
v(—Xx), all x; it is said to be odd if v(x) = —v(—x), all x. These conditions
may be written

v=7, v=—10.
Similarly, we say a periodic distribution F is even if
F=F";
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we say F is odd if
F= —F~,

Exercises

1. Which of the following define periodic distributions ?

(@) F(u) = Du(l) — 3u(2w).

(b) F(u) = [J" (u(x))? dx.

(©) Fw) = [" u(x) dx.

(d) F(u) = [; u(x)(1 + x)" dx.

(e) F(u) = -j:" D3u(x)|cos 2x]| dx.
() Fu) = 2}-0 a;Du(ty).

(® F(u) = 220 (G) =1 D'u(0).

2. Verify (8), (9), (10)

3. Express the distributions in parts (a) and (f) of Exercise 1 in terms of the
8-distribution and its translates and derivatives.

4. Compute DF when F is the distribution in part (c) or (d) of Exercise 1.

5. Show that Re F and Im F are real. Show that F = Re F + iIm F.

6. Show that F real and u real, u € %, imply F(u) is real.

7. Show that F even and u odd, u €%, imply F(u) = 0. Show that F odd
and u even, u € %, imply F(u) = 0.

8. Show that any Fe & can be written uniquely as F = G + H, where
G, He & and G is even, H is odd.

9. Suppose that v € ¥ is differentiable at each point of R and Dv = w is
in €. Show that

D(Fv =Fw;

in other words, if F = v, then DF = Dv.

10. Suppose v is a continuous complex-valued function defined on the
interval [0, 27] and that Dv = w is continuous on (0, 27) and bounded. Define
F,e # by

F,(u) = 21—" :x v(Xu(x)dx, ue?

Show that

2n
DFu) = (0(0) — o@m)u(0) + 5- fo wiu(x) d.
In other words,
DF, = F,, + [1(0) — v(2m)]8.
11. Let »(x) = |sin 3x|. Compute
(D*F)w), ue?
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§6. Determining the periodic distributions

We know that any continuous periodic function v may be considered as a
periodic distribution F,. The derivatives D*F, are also periodic distributions,
though in general they are not (defined by) functions. It is natural to ask
whether all periodic distributions are of the form D*F,, v € ¢. The answer is
nearly yes.

Theorem 6.1. Suppose F is a periodic distribution. Then there is an integer
k = 0, a continuous periodic function v, and a constant function f, such that

(0)] F = D*F, + F,.

The proof of this theorem will be given later in this section, after several
other lemmas and theorems. First we need the notion of the order of a
periodic distribution. A periodic distribution F is said to be of order k (k an
integer > 0) if there is a constant ¢ such that

|F@)| < c{|lu| + |Du| +---+ |D*u|}, alluef

For example, 8 is of order 0. If v € € then D*F, is of order k. It is true, but
not obvious, that any F e &’ is of order k for some integer k > 0.

Theorem 6.2. If Fe &, then there is an integer k > 0 such that F is of
order k.

Proof. If Fis not of order k, there is a function u, € £ such that
|F@)| = (k + Dflu| + | D] +--- + | D¥uy}.
Let
o = (k + 1)~ {ue| + |Duy| +- -+ + | D¥u[}~*uy.

Then we have

(2) IF(vk)l 2 1’
while
3) lo| + |Dvg| +---+ | D*v| < (k + 1)L

Suppose now that F were not of order k for any k > 0. Then we could find a
sequence (v,)2-1 < 2 satisfying (2) and (3) for each k. But (3) implies

v, — 0 (P).
Then (2) contradicts the continuity of F, Thus F must be of order k, some k. [J

Lemma 6.3. Suppose Fe &' is of order 0. Then there is a unique con-
tinuous linear functional F,: € — C such that

Fu) = F,(u), aluec?
Proof. By assumption there is a constant ¢ such that
|F@)| < clul, ue
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If u €%, there is a sequence (u,)7-; < £ such that u, — u uniformly. Then
|F(un) — F(un)| < clttn — tn| -0,

50 (F(u,))7-1 is a Cauchy sequence. Let

@ Fy(u) = lim F(u,).

We want to show that F;(u) is independent of the particular sequence used
to approximate u. If (v,)f < £ and v, — u uniformly, then

|un — va] =0
so
|F(un) — Foa)| < clun — v,] —0.
Thus
lim F(u,) = lim F(v,).

The functional F,: € — € defined by (4) is easily seen to be linear. It is
continuous (= bounded), because

|F(u)] = lim |F(u,)| < clim |u,| = c|u].

Conversely, suppose F,: € — € is continuous and suppose Fy(u) = F(u),
all ue 2 For any ue¥, let (u,)Y < £ be such that u, — u uniformly. Then

Fy(u) = lim Fy(u,) = lim F(u,) = Fi(u). 0
(The remainder of this section is not needed subsequently.)

Lemma 6.4. Suppose Fe P is of order 0, and suppose F(w) = 0 if w is
a constant function. Then there is a function v € € such that

D*F, = F.

Proof. Let us suppose first that F = F;, where fe €. We shall try to find
a periodic function v such that D?v = f. Then we must have

Duv(x) = Dv(0) + J;x f@)dt =a + J;x J(@) dt,

where a is to be chosen so that v is periodic. We may require »(0) = 0. Then
x X i
o(x) = f Dolt) dt = f [a + f £Gs) ds] dt
(4] . ot 4] 0
= ax +f f f(s) ds dt.
0o Yo
We use Theorem 7.3 of Chapter 2 to reverse the order of integration and get

v(x) = ax + fx S)(x — s) ds.
o
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Let
(x—s5)*=0 ifx<s, x—8)*=x—-—s5 ifxz>s
Then

2n
) v(x) =ax+ | f(s)(x — s)* ds.
(1]
By assumption on f,
2n
bf(s)ds = 0, beC.
(1]

Now we want to choose a in (5) so that v is periodic. This will be true if
v(27) =0, i.e.,

2n 2n
0 = 2ma +f Qm — 5)f(s) ds = 2ma —f sf(s) ds.
() 0

Thus
a=s f:u sf(s) ds
and
2z
© o) = 5, [ 6l + 2n(x - )"

Now suppose only that Fe 2’ is of order O and that F(w) = 0 if w is
constant. Let F, be the extension of F to a continuous linear functional on %.
Let

ul(s) = x5 + 2n(x — s)*, 0<s<2m

Then u,(0) = 27x = u,(2n). We can extend u, so that it is a continuous
periodic function of s. Then (6) suggests that we define a function v by

@) o(x) = Fy(uz).

We want to show that v € € and D?F, = F. It is easy to check that
|uy — uy| < 27|x — y|, Ugron = Usx.

Therefore

[o(x) — u(y)| < |[Fi(ue) — Fi(w,)| < clux — u,| < c27|x — y|,
o(x + 27) = Fi(Ux42:) = Fi(u) = v(x).
Thus v € €. Let us compute DF,. If w e &, then

2n

2t~ [T_,F, — F,J(w) =t~} [v(x + ) — v(x)Iw(x) dx.



92 Periodic functions and periodic distributions

Approximate the integral by Riemann sums. These give expressions of the
form

®) 1D [o(xs + 1) — o(x)IW(x)(xs — Xg1)
= Fl(z wx)(%; — X5-1)t 7t [y e — ux,])’

since F, is linear. As partitions (xo, X3, ..., X,) of (0, 27) are taken with
smaller mesh, the functions on which F; acts in (8) converge uniformly to
the function g;. Here

s = Ty 5) — )W) dx.

Now |t ~*u,4: — u,)| < 2. For fixed se (0, 2#), and 0 < x < s,
"YUy — u)—>s as t—0.
This convergence is uniform for x in any closed subinterval of (0, s). Similarly,
"YUyt — U)—>S + 27 as t—0,
uniformly for x in any closed subinterval of (s, 2«). It follows that
® 2nDF(w) = lim [T — v)(w) = Fy(g),

-0
where

2n

s©)=s[ woydx+ 20 [ Wi ds.
o (1]

Then

2w(D*F,)(w) = —2m(DF,)(Dw) = —F(h),
where

2% 2%
h(s) =s| Dwx)dx + 2= | Dw(x)dx = 4aw(2m) — 27w(s).
(1] 8
Since F, applied to a constant function gives zero, we have
2u0(D?F,)(w) = —F,(h) = 2aFy(w) = 2aF(w).
Thus D?F, = F. [

Lemma 6.5. Suppose Fe P’ and suppose F(w) = 0 if w is a constant
Jfunction. Then there is a unique G € ' such that DG = F and G(w) = 0 if
w is a constant function. If F is of order k > 1, then G is of order k — 1.

Proof. If ue 2, itis not necessarily the derivative of a periodic function.
We can get a periodic function by setting

su) = [ty dt - f u(e) dt = jo u(e) dt — xF,(u),
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where
e(x) =1, all x,
Then
D(Su) = u — F(u)e.
It follows that if DG = F and G(e) = 0, then
(10) Gu) = Gu — F,(u)e) = G(D(Su)) = — DG(Su) = — F(Su).

Thus G is unique. To prove existence, we use (10) to define G. Since S: #Z — P
is linear, G is linear. Also

|Su| < 4ar|ul,
| D(Sw)| < 2]u],
| D¥(Su)| = |D*~*u|, k= 2.

Then if u, — u (%) we have
G(u,) = —F(Su,) > —F(Su) = G(u).
Thus G € Z'. Also
DG(u) = —G(Du) = F(S(Du)) = F(u).
Finally, suppose F is of order k > 1. Then

IG(“)l = |F(Su)| < c{|Su| + |DSu| + -+ | D*Sul}
< Sxc{|u| + |Du| +---+ | D*"u|},

and Gisof order k — 1. [1
Corollary 6.6. If G e % and DG = 0, then G = F,, where f is constant.
Proof. Again let e(x) = 1, all x. Let f = (2n)~*G(e)e, and
H=G - F,.

Then DH = 0 and H(e) = 0. By Lemma 6.5 (uniqueness), H = 0. Thus
G = F,. I:I

Finally, we can prove Theorem 6.1. Suppose F e #'. Take an integer k
so large that F is of order k — 2 > 0. Again, let e(x) =1, all x, f=
(2w)~1F(e)e, and

F°=F—Ff.

Then F, is of order k — 2 and F(e) = 0. By repeated applications of Lemma
6.5wecanfind Fy, F,, ..., F,_;€ % so that

DFj = F]_l, F,(e) = 0,

and F, is of order k — 2 — j. Then F,_, is of order 0. By Lemma 6.4, there
is a v € € such that D®F, = F,_,. Then

D¥F, = D*-3F,_, = D*-1F,_, =...= F,
=F — F/. D
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Exercises
1. To what extent are the functions » and f in Theorem 6.1 uniquely
determined ?
2. Find v € € such that D?F, = F, where

F =38 — T,3,
ie.,
F(u) = u(0) — u(m).

3. Find v € % and a constant function f such that
8 = D%F, + F,.

§7. Convolution of distributions

Suppose v € € and u € 2. The convolution v * # can be written as

(v *u)(x) = (u*v)(x) = 711;_[

0

2

) u(x — y)o(y) dy

1 2%
=3, ), YO0 —x)dy = FT.A);
here again #(x) = u(—x). Because of this it is natural to define the convolu-
tion of a periodic distribution F and a smooth periodic function u by the
formula

) (F » u)(x) = F(T4).

Proposition 7.1. If F is a periodic distribution and u is a smooth periodic
Sfunction, then the function F * u defined by (1) is a smooth periodic function.
Moreover,

()] (aF) *» u = a(F * u) = F = (au), Fe?,ue?acC;
A3) F+G)*u=F*u+ G=*u, Fe?,ue?,

@ Fx(u+v)=F%u+ Fxuv, Fe?,uve?;
) T(F *u) = (T,F) *u = Fx(Tu), Fe? ue?;

©) D(Fxu) = (DF)*u=Fx(Du), Fe?,uec?

Proof. The identities (2)~(5) follow from the definition (1) by elementary
manipulations. For example,
T(F*u)(x) = (F*u)(x — t) = F(T,_f)
= F(T_,T.4) = (TF)T.4) = (T.F) * u)(x).
Also,
F(T,-u) = F(TATw)") = (F * (Ta))(x).
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This proves (5). It follows that
(F*u)(x + 2m) = (F % (Toa)))(x) = (F * u)(x).
We know that
t-[T_,F— F]— DF (#) as t—0.
Therefore

UF*uw)(x + t) — (F*u)(x)] = t~T-(F * u)(x) — (F * u)(x)]

= t~YT_,F — TF(T.#) - DF(T,#)
= ((DF) * u)(x).
This shows that F = u is differentiable at each point x € R, with derivative
(DF) * u(x). By induction, D*(F * u) = (D*F) * u. Thus F * u € Z Finally,
using (5) again,
tUY(F*u)(x + t) — (Fru)(x)] = F* [t ¥(T_-u — u)](x)
= F(T[t""(T-u — u)]") > F(T(Du)")
= (F * (Du))(x).
By induction, D*(F * u) = F * (D*u), all k. We leave the proofs of (2), (3),
(4) as an exercise. [J

As an example:
@) S*xu=u, (D*8)*u = Dtu.

In using (1) to define F * u, we departed from the procedure in §4, where
operations on distributions were defined in terms of their actions on functions.
Suppose ue €, ve P, we? Then

®)  Fous(W) = Fun#) = 2m)2 fo " f " ux — Yyo(y)wl) dy dx

= ot [ o) [ oty = wia) v
= F,(fi * w).

This suggests that we could have defined F * u as a distribution by letting it
assign to w e # the number F(ii » w). We shall see that this distribution
corresponds to the function defined by (1).

Lemma 7.2. Ifuec® and ve%, then w = u+ v is the uniform limit of
the functions w,, where

) w, = (27)"2 Zn: n~0Qrm[n)T agmnld.

m=1
Proof. Let x,, = 2mn/n. Then it is easy to see that

n

2000 = W) = > [ Dokl = F) = 00)uCx — )] b,

m=1
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Now u, v are uniformly continuous and over the range of integration of the
m-th summand,

|y = Xma| < 27/n.
Therefore |w, — w| >0asn—>o. [

Corollary 7.3. If ue? and ve¥, then the functions w, given by (9)
converge to w = u * v in the sense of ? as n — co.

Proof. Since D¥(Tu) = T.(D*u), D*w, is the corresponding sequence of
functions for (D*u) x u = D*(u * v). Therefore D*w, — D*w uniformly as
n— o, for each k. []

Proposition 74. If Fe %' and u,v € P, then

Fy(v) = F(@t » v),
where
f=Fxu.

Proof. Let w = fi » v and let w, be the corresponding function defined
by (9), with & replacing u. Then w, — i ¥ v (&), so

F(#i x v) = lim F(w,)
But

F(wy) = 2m)- 21 1= 0 2mm|)F(Taamf)

Zin- ni-l v(2rm/n) f(2mm|n) ﬁ

1 23
~5: ], 206 dx = o) 0

We shall now define the convolution of two periodic distributions F, G by
(10) (FxG)uw) = F(G"*u), ue?

If G = F,, f = F v, then Proposition 7.4 shows that F, = F x G. In general,
we must verify that (10) defines a periodic distribution. Clearly F* G: %' — C
is linear. If u, — u (%) and G is of order k, then

[(G™ * u)(x) — G™ * u(x)|
= |(G™ * (un — w))(x)|
= |G~(Tx(un - u)~)|
< |Toun — 4)| + | DTt — )| + - - + | D*T(un — )|}
= c{|tn — u| + |D(uy — 4)| +---+ | D¥(un — u)[}.

Thus G~ *u, — G~ *u uniformly. Similarly, for each j, D/(G~ *u,) =
G~ * Dju, — D’(G~ * u) uniformly. Thus

G~ *xu,— G~ xu (P,
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SO
(F * G)(un) — (F * G)(w).

This shows that F * G e #'. As an example,

(11) d*xF=Fx8=F.

In the course of showing that F* G is continuous, we have given an
argument which proves the following.

Lemma 7.5. If Fe?, ()Y < % and u,—u (#), then F=*u,—
Fxu ().

Corollary 7.6. Suppose (f,)i* < 2 (8,)F < %, and set
F, = F,, G,=F,.

Suppose
F,—F (#) and G,— G (#).
Then
F,+G—>Fx*xG (%)
and

FxG,—FxG (#).
Proof. Suppose u € Z Then
(Fa* G)u) = Fy(G™ *u) > F(G™ *u) = (F* G)(u)
Also, G," *u—G"~ *u (#) so
(F * G,)(u) = F(G,” *u) > F(G~ *u) = (F* G)(u). 0

We can now prove approximation theorems for periodic distributions
analogous to those for functions.

Theorem 7.7. Suppose (p,)i° < 2 is an approximate identity, and suppose
Fe?. Let F, = Fy,, where f, = F x ¢,. Then F, — F (#).

In particular, there is a sequence (f,)Y of trigonometric polynomials such
that F,, — F (#').

Proof. We have, by Proposition 7.4,
F(u) = F(p, * u), ue?
But ($,)2-1 is also an approximate identity, so
P *x U —>u (P).
Therefore
F,(¥) > F(u).
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If (p.)P-1 is an approximate identity consisting of trigonometric poly-
nomials, then the functions f, = F * ¢, are also trigonometric polynomials.
In fact, let

ex(x) = exp (2nikx).

Then
(F * &)(x) = F(T.e).
But
(T:2)(») = elx — y) = ex(x)é(y)
= ey(x)ex(y),
S0
(F * e)(x) = F(&)ex(x).

Thus

F (Z akek) = Z arF(ex)ex
is a trigonometric polynomial. [J
Finally, we prove the analog of Proposition 7.1 and Proposition 3.1.

Proposition 7.8. Suppose F, G, He #', ae C. Then

(12) FxG=GxF,

(13) (aF) * G = a(F * G) = F *(aG),
(14) (F+G)sH=F+«H+ G*H,

(15) (FxG)+»H = Fx(G=* H),

(16) T(F x G) = (T.F) * G = F*(T,G),
17 D*(F % G) = (D¥F) * G = F x (D*G).

Proof. All of these identities except (12) and (15) follow from the
definitions by a sequence of elementary manipulations. As an example, we
shall prove part of (16):

[T(F * G))(w) = F» G(T-u) = F(G™ * T_.u)
= F((T-.G™) * u)
= F((T:G)” * u) = (F * T,G)(1).

Here we used the identity
(18) (T:G)” = T_(G").

To prove (12) and (15) we use Theorem 7.7 and Corollary 7.6. First, suppose
G = F,, ge # Take (f,)¥ < £ such that

F, = F,,—F (#).
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Let

hy = fo*g, H, = F,,.
It follows from (8), (10), and Corollary 7.6 that

H,=F,*G—FxG (#).
But

hy = g * fa,

so also

H,=G*F,—G=*F ().
Thus (12) is true when G = F,, g€ £ In the general case, take (g,) < £
so that

G, =F, —»G.
Then, in the sense of &',
F«xG=1lmF+G,=1limG,*F=G=xF.
The proof of (15) is similar. In the first place, (15) is true when
F = F,, G=F, H=F,
since
Fx(G* H) = FxFyy = Frageny = Fyagyen = (F%G) x H.

We then approximate an arbitrary F by F; and get (15) when G = F,,

H = F,. Then approximate G, H successively to get (15) for all F, G, He #'.
The rest of the proof is left as an exercise.

Exercises

1. Prove the identities (2), (3), (4).

2. Prove the identities (7), (11).

3. Prove the identities (13), (14), (16), (17), (18) directly from the de-
finitions.

4. Prove the identities in Exercise 3 by approximating the distributions
F, G, H by smooth periodic functions.

§8. Summary of operations on periodic distributions

In this section we simply collect for reference the definitions and results
concerning #'. The space £ is the set of infinitely differentiable periodic
functions #: R — C. We say

uy—>u (#) if |D*u, — D*u| -0, all k.
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A periodic distribution is a mapping F: 2 — C with

F(u +v) =F@W) + F(v), F(au) = aF(u),
F(u,)— F@) if u,—u (%).

If v € %, the space of continuous periodic functions, then F, € 2 is defined by

1 2n
Fyu) = o fo (X)) dx.
The 8-distribution is defined by
8(u) = u(0).

The sum, scalar multiple, complex conjugate, reversal, and translation of
distributions are defined by

(F + G)() = F(u) + G(u),
(aF)(u) = aF(u),
F*u) = (F@)*  (u*(x) = u(x)*),
FFu)=F@ (#(x) = u(—x)),
(TiF)u) = F(T-@)  (Ta(x) = u(x — 1)).

Derivatives ate defined by

(D*F)) = (—1)*F(D"u).
We say

F,—F (#)

if

F,(u)—Fu), alue?
In particular,

t-(T..F— F)—»DF as t—0

Then
8§ = &* = §
(T28)(u) = u(2),
(D¥8)(u) = (—1)*D*u(0).
If ve? then
(F, v)* = Fp,
(F)” = F,
T(F,) = F,,, where w = Tw.
Ifve?

D*(F,) = F, where w = Dk,
The convolution F * u is the function
(Fxu)(x) = F(T.#), ue?
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Then F*ue 2 If v e €, then
Foxu=vx*u.

If (p,)?° < £ is an approximate identity, then

Fx¢,—F (#).
More precisely,

F, —F (%), where f, = F=xgq,.
In particular,
Sxu=u, ue?

The convolution F x G is the distribution
(F*G)u) = F(G™ * u), ue?
In particular if v € &, then
FxF,=F, where f= Fxuv.

Clearly
8xF=Fx8=F.
If
F,—F (%)
then

F,*G—F=*G (%)
The convolution of distributions satisfies

FxG=G+F,
(aF) * G = a(F * G) = F *(aG),
(F+ G +xH=FxH+ Gx*H,
(FxG)x H=F=x(G*H),
T(F * G) = (T,F) * G = F*(T;G),
D*(F x G) = (D¥F) * G = F x (D*G).
A periodic distribution F is real if F = F*. Any Fe &' can be written
uniquely as
F =G + iH, G, H real.
In fact
G = Re F = §(F + F*),

- =L p_p
H=ImF=5(F—F¥.

A periodic distribution F is even if F = F~ and odd if F = —F~. Any
Fe & can be written uniquely as
F=G+ H, G even, H odd.



102 Periodic functions and periodic distributions

In fact
G =4{F + F),
H = }(F - F~).

The 8-distribution is real and even.
A periodic distribution is of order k if there is a constant ¢ such that

|F(w)| < c(lu| + |Du| +---+ |D*¥u|), allue?

Any Fe 2’ is of order k for some k.
If ve € and fis constant,

D*F, + F,e &

Conversely, if Fe 2’ is of order k + 2, k > 0, then there are v € € and con-
stant function f such that

F = D*F, + F,.



Chapter 4
Hilbert Spaces and Fourier Series

§1. An inner product in %, and the space L?

Suppose u and v are in %, the space of continuous complex-valued periodic
functions. The inner product of u and v is the number (u, v) defined by

1 2n
) o) =5 fo u(X)p(x)* dx.
It is easy to verify the following properties of the inner product:
) (au, v) = a(u, v) = (u, a*v),
(3) (uy + ug, v) = (41, 0) + (ua, 0),
C)) (u, v + va) = (u,01) + (4, v),
©) (v, u) = (u, )*,
(6) (u, u) = 0, (u,u) = O only if u = 0.
We define |ju| for ue € by
1 (% 1/2
™ Il = G = (55 [ o ax)™
Lemma 1.1. Ifu,ve ¥, then
® |, 2)| < Jlul [o].

Proof. If v = 0 then
(u, v) = (4, 0v) = O, v) = 0,
and (8) is true. Suppose v # 0. Note that for any complex number a,

9 O0<u-—av,u— av) = u,u) — (av, u) — (¥, av) + (av, av)
= [ul* — a(u, 0)* — a*(u, v) + |a|?|v]*.

Let
a = (u, v)]o] =2

Then (9) becomes
0 < [ul® — 2| 0)|*[o] =2 + [, 0)2[0] =2,
and this implies (8). [

The inequality (8) is known as the Schwarz inequality. Note that only the
properties (2)-(6) were used in the proof, and no other features of the inner
product (1).

103
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Corollary 1.2. The function u — |u| is a norm on €.

Proof. Recall that this means that |u| satisfies

(10) l# =0, Jul =0 onlyifu=0,
an laul = la| Jul, a€C,
12 lu + ol < lul + |oI.

Property (10) follows from (6) and property (11) follows from (2). To prove
(12), we take the square and use the Schwarz inequality:

e+ o2 = (u+ v,u +v) = ul® + (u, ) + (v, u) + [o]?
< ul® + 2| ol + lolI?
= (full + ol

The new norm on ¥ is dominated by the preceding norm:
13 lull < lu| = sup {|u(x)[}.

It is important to note that € is not complete with respect to the metric
associated with this new norm. For example, let u,: R — R be the periodic
function whose graph contains the line segments joining the pairs of points

©0, (3m0);
ano)} G ea)
oot o)

Then

s0 (u,)y is a Cauchy sequence in the new metric. However, there isno u e ¢
such that

lun — u] — 0.

In order to get a complete space which contains € with this inner product,
we turn to the space of periodic distributions. Suppose (#,)f < € is a
Cauchy sequence with respect to the metric induced by the norm |u|, i.e.

lun — un| -0 as n,m—oco.
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Let (F,)? be the corresponding sequence of distributions:
F,=F,.
Thus ifveZ,

1 2z
F0) = 5 [ uodots) dx = (o,u2),

where again u; denotes the complex conjugate function. By the Schwarz
inequality,

IFu(0) — Fu®)| = |0, ut — u)] < lo] [tn — ta
< o] flun — unl.-
Therefore (F,(v))? has a limit. We define
(14) F(v) = lim F,(v).

The functional F: 2 — C defined by (14) is clearly linear, since each F, is
linear. In fact, F is a periodic distribution. To see this, we take N so large
that
lun — um] <1  ifn,m > N.
Let
M = max {|u], |ua, ..., Junl} + 1.

Then for any n < N,

lusl < M,
while if n > N,
lall = llun — uw + unl| < flun — unl|l + [lunll
<1+ [uy]| = M.
Therefore
|F@)] = @ u)] < o]l usll < MJo],
s0

|F(v)| = lim |F,(v)| < M|v|.
We have proved the following lemma.

Lemma 1.2. If (w,)¥ < € is a Cauchy sequence with respect to the
norm |u|, then the corresponding sequence of distributions

F,=F,,
converges in the sense of &' to a distribution F, which is of order 0.

It is important to know when two Cauchy sequences in ¥ give rise to the
same distribution.

Lemma 1.3. Suppose (u,)Y < € and (v,)Y < € are Cauchy sequences
with respect to the norm |u||. Let F, = F, and G, = F,_ be the corresponding
distributions, and let F, G be the limits:

F,—>F (#) and G,—G (#).
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Then F = G if and only if
|, — va]] =O.

Proof. Let w, = u, — v, and let H, = F, — G, = F,,,. We want to
show

H,—0 (#) if and only if [w,] —O.

Suppose
[wa] — O.

Then for any ue &,

|Ha@)| = | wa)| < Jull [wall —O.
Conversely, suppose
(15) H,—0 (#).
Given & > 0, take N so large that n, m > N implies
(16) IWa = Wl = [t — 1) + -0 — 2] <
Fix, m > N. Then if n = N we use (16) to get

"wm“2 = Wms Wn) = W, W — W) + (W, W)
= (Wn, Wn — W) + Hn(w:l)*
< e|wal + [Ha(Wi)*|.

Letting n — oo, from (15) we get

IWall® < elwal,
or

[Wn| <& m=N. 0

We define L2 to be the set consisting of all periodic distributions F with
the property that there is a sequence (#4,)Y < € such that

lun — un] -0 as n,m— oo,
F,,— F (#).

If (u,)f? < € is such a sequence, we say that it converges to F in the sense of
L2 and write

u, —F (L3).
Lemma 1.2 can be rephrased: if
uy—>F (L%, 0,—G (L?),
then
F=G ifandonly if |u, — v,]| = 0.
Clearly L2 is a subspace of 2’ in the sense of vector spaces. In fact, if
u,—F (L?) and v,— G (L?),
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then
au, — aF (L?), Uy, + v, - F + G (L?).
We may extend the inner product on € to L2 as follows. If
uy—>F (L?), 0v,—G (L3,
let
an (F, G) = lim (uy, vy,).

The existence of this limit is left as an exercise. Lemma 1.2 shows that the
limit is independent of the particular sequences (u,); and (v,)P. That is,
if also

u,—~F(@L?, v,—>G@L
then
(18) lim (u,, v,) = lim (4, v}).

Theorem 1.3. The inner product in L? defined by (17) satisfies the identities
(2 (3), @, (5), (6). If we define

19 IFI = (F, F)*?,
then this is @ norm on L2. The space L? is complete with respect to this norm.

Proof. The fact that (2)(6) hold is a consequence of (17) and (2)—(6)
for functions. We also have the Schwarz inequality in L2:

I(F, 6)| < |F| |GI-

It follows that |F|| is a norm.
Finally, suppose (F,)f < L2? is a Cauchy sequence with respect to this
norm. First, note that if

u,—F (L?)
and v €%, and if we take v, = v, all n, then
|F, = F|? = lim |o, — 4,]|2 = lim o — u,|2
It follows that
|F., — F|>?—>0 as n—oco,

i.e., F can be approximated in L? by functions. Therefore, for each n =
1,2,... we can find a function v, € € such that

1Fo = Fo|| < n72.
Then

"vn - Un" = "F"u —Fv.." = "Fo.. _Fn" + "Fn - Fn" + “Fm* Fv..ll
<|Fo—Fu|l +n°*+m*—>0 as n,m—oco.
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Thus there is an F € L2 such that
v,—F (L?).
But then

IFa = Fll < |Fa = Fyll + |Fo, — F|
<n+ |F, — F|—0.

Exercises

1. Carry out the proof that ¥ is not complete with respect to the norm

llull.
2. Show that the limit in (17) exists.
3. Show that (18) is true.
4. Suppose f: [0, 2] — R is such that

f(x) =1, ’Fe[a, b),
fx) =0, x¢lab)
Define

25 o
F@o) = % L Fx0(x) dx = 2l" .[, o) dx, ved

Show that FeL?2,

S. Suppose f: [0, 27] — C is constant on each subinterval [x;_;, x;),
where

O=xp<x;, <:+-< X, = 2m.
Define

FO) = 5 [ foonto) .

Show that Fe L2

6. Show that &, the 8-distribution, is not in L2,

7. Show that if FeL? there is a sequence (u,) of smooth periodic
functions such that

u,— F (L?).
8. Let T, denote translation. Show that if u € € then
[Tt — Tou| -0 as t—s.
If Fe L2, show that
|T:F — T,F| -0 as t—s.
9. For any F e L2, show that
IF| = sup{|F@)| | u€Z u| < 1}
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§2. Hilbert space

In this section we consider an abstract version of the space L2 of §l.
This clarifies the nature of certain theorems. In addition, the abstract version
describes other spaces which are obtained in very different ways.

Suppose H is a vector space over the real or complex numbers. An
inner product in H is a function assigning to each ordered pair of elements
u, v€ H a real or complex number denoted by (u, v), such that

(au, v) = a(u, v), a a scalar,
(u; + u,,v) = (u, V) + (uz, v),
(v,u) = (u, v)* ((v, u) = (u, v) in the real case),
(w,uw>0 ifuz#0.

The argument of Lemma 1.1 shows that

)] |, V)| < [uf [v],
where
2 fall = (u, u)*2.

Then |u| is a norm on H. If H is complete with respect to the metric associ-
ated with this norm, then H is said to be a Hilbert space. In particular, L2
is a Hilbert space. Clearly any Hilbert space is a Banach space.
A more mundane example than L2 is the finite-dimensional vector space
CV¥ of N-tuples of complex numbers, with
N

(a,b) = z a,by

n=1
when
a=(a,as...,ay)y, b=(by,b,...,by.
In this case the Schwarz inequality is
N 2 N N
D abt| < X la Y (b2
n=1 n=1 n=1

Notice in particular that if we let
a' = (lalls Iaﬁla e ey |aN|), b' = (Iblla |b2|a e ey |bN|),

then
N 2 N N
(2 1aital) < 3 Ikt 3 1012
n=1 n=1 n=1
A still more mundane example is the plane R2, with
a-b= a1b1 + azbg

when a = (a,, a3), b = (b,, by); here we use the dot to avoid confusing the
inner product with ordered pairs. It is worth noting that the law of cosines
of trigonometry can be written

a-b = |a| |b| cos 6,
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where 0 is the angle between the line segments from 0 to a and the line
segment from 0 to b. Therefore [a-b| = |a| |b| if and only if the segments
lie on the same line. Similarly, a-b = 0 if and only if the segments form a

right angle.

Elements u and v of a Hilbert space H are said to be orthogonal if the
inner product (u, v) is zero. In R? this means that the corresponding line
segments are perpendicular. We write

ulyv

when u and v are orthogonal. More generally, u € H is said to be orthogonal
to the subset S < H if

ulv, allvesS.
If so we write
ul S
Ifu_ vthen

@ Ju+vlP=(@+vu+v)=wu)+ @v)+vu)+Hv)
= [u® + [v|*

In R? this is essentially the Pythagorean theorem, and we shall give the
identity (3) that name in any case. Another simple identity with a classical
geometric interpretation is the parallelogram law:

@ lu—v[® + Ju + v[* = 2]uf® + 2v]?.

This follows immediately from the properties of the inner product. In R2
it says that the sum of the squares of the lengths of the diagonals of the
parallelogram with vertices 0, u, v, u + v is equal to the sum of the lengths
of the squares of the (four) sides.

When speaking of convergence in a Hilbert space, we shall always mean
convergence with respect to the metric associated with the norm. Thus

u,—>u means [u, — u|—0.
The Schwarz inequality shows that the inner product is a continuous function.
Lemma 2.1. If (u)?, (v,)f < Hand
o, —>u, V=V,
then
(Wn, V) ~ (u, V).

Proof. Since the sequences converge, they are bounded. In particular,
there is a constant M such that ||v,| < M, all n. Then

I(ll,l, V,,) - (ll, V)I = |(un - u, V,,) + (ll, Vo — V)l
< us — uf [lvall + [u [va — v]|
< M|u, — u| + uf |v. — v| —o0. 0
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Corollary 2.2. IfucH, S < H, and u | S, then u is orthogonal to the
closure of S.

The general theory of Hilbert space essentially rests on the following
two geometric lemmas.

Lemma 2.3. Suppose H, is a closed subspace of the Hilbert space H,
and suppose u € H. Then there is a unique v € H, which is closest to u, in the
sense that

[@—v] <|u—-w|, alweH,.
Proof. The set
{lu — w| | weH,}

is bounded below by 0. Let d be the greatest lower bound of this set. For each
integer n > O there is an element v, € H, such that

lu=v,]| <d+n-2

If we can show that (v,){° is a Cauchy sequence, then it has a limit ve H.
Since H, is closed, we would have ve H, and |[u — v| = d as desired.

Geometrically the argument that (v,)y° is a Cauchy sequence is as follows.
The midpoint 4(v,, + v,) of the line segment joining v, and v,, has distance
> d from u, by the definition of d. Therefore the square of the length of
one diagonal of the parallelogram with vertices u, v,, v, v, + Vv, is nearly
equal to the sum of squares of the lengths of the sides. It follows that the
length ||v, — v,| of the other diagonal is small. Algebraically, we use (4)
to get

0 < [[vp — V|2 = 2|Vp — 0|2 + 2|V — u||2 = [|(Vp + V) — 2u]?
<2d+n7Y? + 2(d + m™Y)? — 4[4(v, + V) — uf?
S2d+n"Y) +2(d+ m ) — 44%2—0.

To show uniqueness, suppose that v and w both are closest to u in the above
sense. Then another application of the parallelogram law gives

=3¢+ wW[*=3u—v|*+ [u—w|[> -}y - w|
=d? — |v—w|?
Since the left side is > d2, we must havev = w. []
As an example, take H = R2, H, a line through the origin. The unique
point on this line closest to a given point u is obtained as the intersection of
H, and the line through u perpendicular to H,. This connection between

perpendicularity (orthogonality) and the closest point is also true in the
general case.

Lemma 2.4. Under the hypotheses of Lemma 2.3, the element ve H, is
closest to u if and only if

u—v| H,.
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Proof. First, suppose veH, is closest to u, and suppose we H;. We
want to show (u — v, w) = 0, and we may assume W # 0. Let u; = u —v.
For any ae C, v + aw € H,. Therefore

oy, — aw]? = Jlu = (v + aW)|* = fu — v|?* = Ju,|%,

or
lua® — (uy, aw) — (aw, w;) + |a*[w]® > [u, |
Let
® a = (u, w)|w| -2
Then (5) becomes

— | (uy, W)|2]lw] -2 = O.

Thus (uy, w) = 0.
Conversely, suppose u — v | H;, and suppose w e H,. Thenv — we H,,
S0

u—-v)1l(v—w).
The Pythagorean theorem gives

Jlu—wj2=(@—=v) +—wW|*=u-v]*+ |v-—w|?
2 u-—v|% 0

Corollary 2.5. Suppose H, is a closed subspace of a Hilbert space H.
Then either H, = H, or there is a nonzero element u € H such thatu | H,.

Proof. If H, # H, take u, € H, u, ¢ H,. Take v, € H; such that v, is
closest to u,. Then u = u, — v, is nonzero and orthogonal to H,. []

As a first application of these results, we determine all the bounded
linear functionals on H. The following theorem is one of several results
known as the Riesz Representation Theorem.

Theorem 2.6. Suppose H is a Hilbert space and suppose veH. The
mapping L,: H— C (or R) defined by

L,(u) = (u,v), ueH,

is a bounded linear functional on H. Moreover, if L is any bounded linear
Jfunctional on H, then there is a unique v € H such that L = L,.

Proof. Clearly L, is linear. By the Schwarz inequality
|Ly@)]| < [[v] [u].
Thus L, is bounded.

Suppose L is a bounded linear functional on H. If L = 0 we may take
v = 0. Otherwise, let

H, = {ueH|L(u) = 0}.
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Then H, is a subspace of H, since L is linear; H, is closed, since L is con-
tinuous. Since L # 0, H, is not H. Take a nonzero u € H which is orthog-
onal to H,, and let

v = |u|~2L(u)*u.
Then alsov | H,, so

L(w) =L(w), weH,.
Moreover,
Ly(u) = |ju|| ~2L(u)(u, u) = L(u).
If w is any element of H,
w — L(u)~‘L(w)ue H,.
Thus any element of H is of the form
au + w,

for some a € C (or R) and w, € H,. It follows that L, = L.
To show uniqueness, suppose Ly = L. Then

0 = Ly(v — W) — Ly(v — W) = v — w|*. 0

Exercises

1. Prove the law of cosines as stated above.
2. Suppose Fe &', Show that FeL? if and only if there is a constant ¢
such that
|[F)| < clu|, alluef

3. Let H be any Hilbert space and let H, be a closed subspace of H. Let
H3 = {“EHI u.LHl}-

Show that Hj is a closed subspace of H. Show that for any ue H there are
unique vectors u; € H; and u; € H; such that

u=u; + Us.

§3. Hilbert spaces of sequences

In this section we consider two infinite dimensional analogs of the finite
dimensional complex Hilbert space C¥. Recall that if

x = (a,,as,...,ay)eCY
then

N
Ix|2 = 2, lad|®
n=1
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Let /.2 denote the set of all sequences

x=() <C

such that
1) z |aq]? < 0.
n=1
If
X = (an);u El+3, y= (bn)? € l+3,
we set
()] x,y) Z Wb,

provided this series converges.

Theorem 3.1. The space 1.2 of complex sequences satisfying (1) is a
Hilbert space with respect to the inner product (2).

Proof. Suppose
x=(@)rel,? and y=(b,)F €l,2
If a € C, then clearly
ax = (aa,)? €l,2.

As for x + y, we have
D lan + bal? < D (|nl* + 2|auba| + 5]%)
<23 (a2 +23 |5 < .

Thus /.2 is a vector space. To show that the inner product (2) is defined for
all x, y €/,2, we use the inequality (1) from §2. For each N,

> bt < (3 1) (3 10e)

n=1 =1

< (2 Ianla) (Z nlz)
n=1 n=1
Therefore
i |a.b¥| <
n=1

and (2) converges. It is easy to check that (x, y) has the properties of an inner
product. The only remaining question is whether /.2 is complete.
Suppose

Xn = (@m.a)r=1€1.2 m=12,....
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Suppose (x,);" is a Cauchy sequence in the metric corresponding to the
norm

Il = (x, x)*=.
For each fixed »,
[@nn — Gpal® < [[Xm — X,[|2—0
as m, p — co. Thus (@, ,)m=1 is a Cauchy sequence in C, and
Gpn—>a, as m-—> oo,

Let x = (a,)". We want to show that xe/,? and |x, — x| = 0. Since
(x,,)? is a Cauchy sequence, it is bounded:

%] < K, all m.
Therefore for any N,
N N
D lan? = lim 3 |an.|? < K2
m-— n=1

n=1

Finally, given ¢ > 0 choose M so large that m, p > M implies

% — %]l < e
Then for any N and any m > M,
N N
Z Iam.u — an|2 = lim Z la,,,_n — a,,.,.l’ < €,
n=1 Land i =X |
Thus
[xm — x| <& ifm > M. 0

It is often convenient to work with sequences indexed by the integers,
rather than by the positive integers; such sequences are called two-sided
sequences. We use the notation

X =()% = (..., a-3,a_1, 09, a1, Ag, . . .).
Let /2 denote the space of two-sided sequences
X = (@,)% = C

such that

3

Ms

|a,|?® < oo.
n=-—w

Here a two-sided infinite sum is defined to be the limit

> = _lim %c,,

n=- M,N=+® ,-" p

if this limit exists.
If

X = (a,)% €12, y = (b,)2 €12,
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we let

(O xy) = 2 abl,
n= -
provided the series converges.

Theorem 3.2. The space I? of two-sided complex sequences satisfying (3) is
a Hilbert space with respect to the inner product (4).

The proof of this theorem is very similar to the proof of Theorem 3.1.

Exercises

1. Prove Theorem 3.2
2. Let e, € 1,2 be the sequence

em = (am.n)r-l .
with a,,, = 0if m # n, a,, = 1. Show that
@) leal =1;
(b) e, Leifms#p;
©) (x, en)— 0 as m—>co, for each xel,2;

(d) the set of linear combinations of the elements e,, is dense in /.%;
(e) if x 1,2 there is a unique sequence (b,);’ = C such that

X — i b,.e,_‘

n=1

-0 as N—oo.

3. Show that the unit ball in /.2, the set
B={xel?||x] <1}

is closed and bounded, but not compact.
4. Show that the set

C={xel,?|x=(a,)y, each |a,| < n~1}
is compact; C is called the Hilbert cube.

§4. Orthonormal bases

The Hilbert space C¥ is a finite dimensional vector space. Therefore any
element of C¥ can be written uniquely as a linear combination of a given
set of basis vectors. It follows that the inner product of two elements of C¥
can be computed if we know the expression of each element as such a linear
combination. Conversely, the inner product makes possible a very convenient
way of expressing a given vector as a linear combination of basis vectors.
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Specifically, let e, € C¥ be the N-tuple
e, =(0,0,...,0,1,0,...,0),

where the 1 is in the n-th place. Then {e,, e,, . . ., ey} is a basis for C¥, More-
over it is clear that

0y ensen) =1 ifn=m, (epe,) =0 ifn#m.

Ifx = (ay, a3, . . ., ay) € C" then the expression for x as a linear combination
of the basis vectors e, is

N
) X =D ae,
n=1
Because of (1),
(x, €n) = Q.
Thus we may rewrite (2) as
N
©)] X = z (x, e,)e,.
n=1
If x = (a1, a,...,ay) and y = (by, b,, . . ., by), then
N
(x, Y) = Z aﬂb:'
n=1

Using (3) and the corresponding expression for y, we have

N N
(4) (xs y) = z=1 (X, eu)(ya e)* = 21 (X, en)(em Y)°
In particular,
N
® Il = >, I el

The aim of this section and the next is to carry this development over
to a class of Hilbert spaces which are not finite dimensional. We look for
infinite subsets (e,) with the properties (1), and try to write elements as
convergent infinite sums analogous to (3).

A subset S of a Hilbert space H is said to be orthonormal if each ue S
has norm 1, while

(u,v) =0 ifu,veS,ua#v.

The following procedure for producing orthonormal sets is called the Gram-
Schmidt method.

Lemma 4.1. Suppose {uy, u,, ...} is a finite or countable set of elements of
a Hilbert space H. Then there is a finite or countable set S = {e,, e;,...} of
elements of H such that S is orthonormal and such that each w, is in the sub-
space spanned by {e,, €, . . ., €,}.
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(If S has m elements, m < oo, we interpret the statement as saying that
u, €span{e,, ..., &} whenn = m.)

Proof. The proof is by induction. If each u; = 0, we may take S to be
the empty set. Otherwise let v, be the first nonzero u,, and let

e = ||v1||-1V1.

Then {e,} is orthonormal and wu, €span {e;}. Suppose we have chosen
€,..., €, such that {e,,...,e,} is orthonormal and w,...,u,€
span{e;, ..., e,}. If each w,espan{e,,...,e,} we may stop. Otherwise
choose the first j such that u, is not in this subspace. Let

M
Vm+1 = Uy — z (u;, eq)e,.

n=1
Since {ey, .. ., e,} is orthonormal, it follows that
(Vm+n€) =0, 1<n<m
Since u, ¢ span {e,, . . ., €n}, Vn+1 # 0. Let
en+1 = [Vmsr] " Vs

Then {e,,..., €,4.} is orthonormal and u,,, is in the span. Continuing,
we get the desired set S. []

Note that completeness of H was not used. Thus Lemma 4.1 is valid in
any space with an inner product.

An orthonormal basis for a Hilbert space H is an orthonormal set S < H
such that span (S) is dense in H. This means that for any ue H and any
e > 0, there is a v, which is a linear combination of elements of S, such that
[u—v| <e

A Hilbert space H is said to be separable if there is a sequence (u,)? < H
which is dense in H. This means that for any u € H and any e > 0, there is
an n such that ju — u,|| < e.

Theorem 4.2. Suppose H is a separable Hilbert space. Then H has an
orthonormal basis S, which is finite or countable.

Conversely, if H is a Hilbert space which has a finite or countable ortho-
normal basis, then H is separable.

Proof. Suppose (u,)? is dense in H. By Lemma 4.1, there is a finite or
countable orthonormal set S = {e,, €,,...} such that each u, is a linear
combination of elements of S. Thus S is an orthonormal basis.

Conversely, suppose S is a finite or countable orthonormal basis for H.
Suppose H is a complex vector space. Let T be the set of all elements of H
of the form
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where N is arbitrary, the e, are in S, and the a, are complex numbers whose
real and imaginary parts are rational. It is not difficult to show that T is
countable, so the elements of T may be arranged in a sequence (u,). Any
complex number is the limit of a sequence of complex numbers with rational
real and imaginary parts. It follows that any linear combination of elements
of S is a limit of a sequence of elements in T. Since S is assumed to be an
orthonormal basis, this implies that (u,) is dense in H. []

To complete Theorem 4.2, we want to know whether two orthonormal
bases in a separable Hilbert space have the same number of elements.

Theorem 4.3. Suppose H is a separable Hilbert space. If dimH =
N < oo, then any orthonormal basis for H is a basis for H as a vector space,
and therefore has N elements.

IfH is not finite dimensional, then any orthonormal basis for H is countable.

Proof. Suppose dimH = N < oo, and suppose S < H is an ortho-
normal basis. If e,, . .., e, are distinct elements of .S and

N
Z ae, =0,

n=1

then
0=(Za,,e,.,e,,.)=a,,., m=1,...,M.

Thus the elements of S are linearly independent, so S has < N elements.
Let S = {e,, eg, .. ., €y}. We want to show that S is a basis. Let H; be the
subspace spanned by S. Given u € H, let

u = i (u, ey)e,.

n=1
Then
uw—-u,e)=0, m=1,...,M.

It follows that u — u, is orthogonal to the subspace H,. The argument used
to prove Lemma 2.4 shows that u, is the element of H, closest to u. But by
assumption on S, there are elements of H, arbitrarily close to u. Therefore
u = u, € H;, and S is a basis.

The argument just given shows that if H has a finite orthonormal basis S,
then S is a basis in the vector space sense. Therefore if H is not finite di-
mensional, any orthonormal basis is infinite. We want to show, therefore,
that if H is separable and not finite dimensional then any orthonormal basis
is at most countable. Let (u,);° be dense in H, and let S be an orthonormal
basis. For each element e € S, there is an integer n = n(e) such that

le —w,|| <2-2,
Suppose e, fe S and e # f. Let n = n(e), p = n(f). Then

le — £l = [le|® + (e, ) + (£ ) + [f]*
=1+0+0+1=2,
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SO
Jus — u,|| = lus —e+e—f+f—u
2le—f] — Ju,—e+f—u
2 e —f] — fJlus —e] — If — u,

> 21/2 — 2-1[2 —_ 2—1/2 =0

Thus u, # u,. We have shown that n(e) # n(f) if e # f, so the mapping
e — n(e) is a 1-1 function from S to a subset of the integers. It follows that S
is finite or countable. (1

Exercises

1. Let X, be the vector space of continuous complex-valued functions
defined on the'interval [—1, 1]. If u, v € X,, let an inner product (u, v), be
defined by

(0, 0); = j u(Rp()* dx.

Let u,(x) = x*~!, n=1,2,.... Carry out the Gram-Schmidt process of
Lemma 4.1 to find polynomials p,, n = 1, 2, 3, 4 such that p, is of degree
n — 1, p, has real coefficients, the leading coefficient is positive, and

(pmpm)l =1 ifn= m, (pn,p,,.)l =0 ifn # m.

These are the first four Legendre polynomials.
2. Let X, be the set of all continuous functions u: R — C such that

-]
J [te(x)|2e=* dx < 0.
—®
Show that X, is a vector space. If u, v € X,, show that the integral
(]
(u,v); = f u(x)v(x)e=* dx

exists as an improper integral, and that this defines an inner product on X,.
Show that there are polynomials p,, n = 1, 2, 3,... such that p, is of degree
n—1and

(Prs Pm)e =1 ifn=m, (Pns Pm)a =0 ifn # m.

Determine the first few polynomials of such a sequence. Except for constant
factors these are the Laguerre polynomials.

3. Show that there is a sequence (p,)f of polynomials such that p, is
of degree n — 1 and

J |pn(x)|2e-(ll2)x’ dx =1,

f PiX)pu(X)e~ D= dx = 0 if n # m.
Except for constant factors these are the Hermite polynomials.
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4. Suppose H is a finite dimensional complex Hilbert space, of dimension
N. Show that there is a linear transformation U from H onto C¥ such that

(Uu, Uv) = (u, V), allu,ve H.

(Hint: choose an orthonormal basis for H.)

5. Suppose H and H' are two complex Hilbert spaces of dimension
N < 0. Show that there is a linear transformation U from H onto H'
such that

(Uu, Uv) = (u, V), all u,ve H.

6. In the space /2 of two-sided complex sequences, let e, be the sequence
with entry 1 in the nth place and all other entries 0. Show that (e,)%,, is an
orthonormal basis for /2,

7. Show that there is a linear transformation U from /2 onto /,2 such
that

(Ux, Uy) = (x,y), allx,yel?

§5. Orthogonal expansions

Suppose H is a Hilbert space of dimension N < co. We know that H
has an orthonormal basis {e,, €,, ..., ey}. Any element ue H is a linear
combination

) u= i a,e,,

n=1

and as in §4 we see that
()] a, = (u, e,).
It follows that if u, ve H then

3 V) = D (@ e V).

n=1
In particular,

N,
@) lol? = 2, I, el?.
n=
The expression (1) for ue H with coefficients given by (2) is called the
orthogonal expansion of u with respect to the orthonormal basis {ey, . . ., ey}.
We are now in a position to carry (1)~(4) over to an infinite-dimensional
separable Hilbert space.

Theorem 5.1. Suppose H is a Hilbert space with an orthonormal basis
(e,)?. If u e H, there is a unique sequence (a,)y of scalars such that

%) u= i ase,,

n=1
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in the sense that
N

u — a,e,
n=1

—0 as N—oo.

©

The coefficients are given by

) a, = (u, e,),
and they satisfy
® 3, las = Iule.
More generally, if
&) u= il ae, and v= il b,e,
then
(10) @Y= 3 abt = 3 @ eden ).
Conversely, suppose (a,)s is a sequence of scalars with the property
(11 il |an]? < 0.

Then there is a unique element u € H such that (5) is true.

Proof. First let us prove uniqueness. Suppose (a,)f is a sequence of
scalars such that (6) is true. Let

N
(12) Uy = D e
n=1

Since the sequence (e,)? is orthonormal,

(uy, e,) = ay, if N > n.
Using Lemma 2.1 we get

@, = lim (uy, e,) = (u, e,).
Thus (a,)7 is unique.

To prove existence, set a, = (u, e,). Define uy by (12). Then
(uy,e) = (we), 1<n<N.

This implies that w — uy is orthogonal to the subspace Hy spanned by
{es, ..., ey}. Now given ¢ > 0, there is a linear combination v of the e,
such that

lu—v| <e
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Then there is an N, such that ve Hy when N > N,. As in the proof of
Lemma 2.3, the facts that uy € Hy and that u — uy | Hy imply

u = uyl < fu—v].

Thus uy — u. Since the e, are orthonormal,

N
[un]® = (ay, uy) = Zl |a,)2.

Thus

Ld
luf? = lim Juy|* = 21 |aa]?.
n=

More generally, suppose u and v are given by (9). Let uy be defined by (12),
and let vy be defined in a similar way. Then by Lemma 2.1,

N ©
(u, v) = lim (uy, vy) = lim Z a,b} = z a,bt.
n=1 n=1
Finally, suppose (a,)y is any sequence of scalars satisfying (11). Define
uy by (12). All we need do is show that (uy)y is a Cauchy sequence, since we
can then let u be its limit. But if N > M,

N
13) fuy — uy|® = (uy — uy,uy — uy) = Z . |a@,]2.
n=M+

Since (12) is true, the right side of (13) converges to zero as M, N—oo. []

It is convenient to have the corresponding statement for a Hilbert space
with an orthonormal basis indexed by all integers. The proof is essentially
unchanged.

Theorem 5.2. Suppose H is a Hilbert space with an orthonormal basis
(€)% w. If ueH, there is a unique two-sided sequence (a,)2 » of scalars such
that

(14) u= > a.e,
in the sense that
N
(15) u — z aeld -0 as N— 0.
n=-N

The coefficients are given by

(16) a, = (u, ),
and they satisfy
a7 > ladl? = u]?

ne -
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More generally, if

u= ia,.e,, and v = ib,,e,‘,
then
a18) @Y = D abl = 5 @ eden ).

Conversely, suppose (a,)2  is a sequence of scalars with the property

z |a,|? < oo.
Then there is a unique u € H such that (15) is true.

The equations (5), (6), or (14), (15) give the orthogonal expansion of u
with respect to the respective orthonormal bases. The identity (8) or (17) is
called Bessel’s equality. It implies Bessel’s inequality:

(19) 2, 1@ el < Jul?
or

N
(20) ,Z_,,'I(“’ e)f? < [uf2.

The identity (10) or (18) is called Parseval’s identity. The coefficients a,
given by (6) or (14) are often called the Fourier coefficients of u with respect to
the respective orthonormal basis.

Exercises

1. Suppose H and H, are two infinite-dimensional separable complex
Hilbert spaces. Use Theorems 4.2, 4.3, and 5.1 to show that there is a linear
transformation U from H onto H; such that

(Un, Uy) = (u,v), allu,veH.
Show that U is invertible and that
(Utu, U tvy) = (uy, vy), all uy, v, eH,.

Such a transformation U is called a unmitary transformation, or a unitary
equivalence.
2. Let U:1,2— 1,2 be defined by

U((ay, ag, as, . ..)) = (0, ay, ag, as, . . .).
Show that Uis a 1-1 linear transformation such that
Ux, Uy) = (x,Y), allx,yel, 2
Show that U is not onto.
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§6. Fourier series

Let L2 be the Hilbert space introduced in §1. Thus L2 consists of each
periodic distribution F which is the limit, in the sense of L2, of a sequence
W)Y < %, ie.,

"uﬂ - um" —0,
F,,—F (#).

We can identify the space € of continuous periodic functions with a subspace
of L2 by identifying the function u with the distribution F,. Then
1 2z
2 2 . 3
IEI? = Jul? = 5 [ Gl .

In particular, we may consider the two-sided sequence of functions e,,
e,(x) = exp (inx), n=0,+1, +2,...
as elements of L2,

Lemma 6.1. The sequence of functions (e,)*«, considered as elements
of L2, is an orthonormal basis for L2.

Proof. Clearly |le,| = 1. If m # n, then

2n 2n
I e (X)en(x)* dx = f exp (inx — imx) dx

0

= [i(n — m)]~*exp (i(n — m)x)|3* =

Thus (e,)%. is an orthonormal set. Now suppose FeL2 Given ¢ > 0,
there is a function u € ¥ such that

|F, - F <.
There is a linear combination v = 3 a,e, such that
[v — 4| <e.
Then

"Fv—F" < "Fv—Fu" + "Fu—F"
= |u—o| + |F. - F|
<|v—u|+e<23. 0

Since (e,)®» is an orthonormal basis, we may apply Theorem 5.2 and
obtain orthogonal expansions for distributions in L2.

Theorem 6.2. Suppose Fe L2 There is a unique two-sided sequence
(@,)2» < C such that

0)) F= i a, exp (inx)

n=—w
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in the sense that the functions
N

) > aen—>FQ@? as N—> .
n=-—0o

The coefficients are given by

A3) a, = F(e-,),

and they satisfy

@ 2. laif* = |F|*.

More generally, if
F = Z a,exp(inx) and G = Z b, exp (inx)
in the sense of (2), then

® (F, G) = 2 anbt = 2 Fle_)G*(ex).

Conversely, suppose (a,)2» < C and
D |an)? < co.
-

Then there is a unique F € L? such that (1) is true, in the sense of (2).

Proof. In view of Lemma 6.1 and Theorem 5.2, we only need to verify
that
(F,F,)=Fle-), Gle-)* = G*e.).

The second identity follows from the first and the definition of G*. To prove
the first, take (u,)? < %,

u, — F (L3).
Then
(F, F,,) = lim (uy, e,) = lim F, (e_,) = F(e_,). 0
The a, 1n (3) are called the Fourier coefficients of the distribution F. The

formal series on the right in (1) is called the Fourier series of F.
Suppose F = F, where u € €. Then (2) is equivalent to
25 N
©) f W) = > aqexp (@nx)]® dx—0,
o ne =N
where

()] a, = 2—1’; Jm u(x) exp (— inx) dx.

0
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In fact, (6) and (7) remain valid when u is simply assumed to be an integrable
function on [0, 27]. In this case the a, are called the Fourier coefficients of
the function u, and the formal series

Z a, exp (inx)

is called the Fourier series of the function u. The fact that (6) and (7) remain
valid in this case is easily established, as follows. If u: [0, 27#] — C is integ-
rable, then again it defines a distribution F, by

Fi(o) = zi” f " u(e(x) d.

0

Then an extension of the Schwarz inequality gives

22 1
RO < (5 [, 1)l dx) Jol = ful 1ol

By Exercise 2 of §2, F, e L2,
When u €%, it is tempting to interpret (1) for F, as

u(x) = i a, exp (inx).

In general, however, the series on the right may diverge for some values of
x, and it will certainly not converge uniformly without further restrictions
on u. It is sufficient to assume that u has a continuous derivative.

Lemma 6.3. If (a,)2» < C has the property

L
®) 2. laa] < oo,
-
then the functions
N
Uy = z Qnén

a=-N

converge uniformly to a function u € €, and (a,)® ., is the sequence of Fourier
coefficients of u.

Proof. Since |ex(x)| = |exp (inx)| = 1 for all x € C, it follows from (8)
that the sequence of functions (uy)f° is a uniform Cauchy sequence. Therefore
it converges uniformly to a function u € €. For N > m we have

(uNs en) = ap.
Thus
ap = lim (uy, en) = (u, en)

is the mth Fourier coefficient of u. [
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Theorem 64. If ue¥ and u is continuously differentiable, then the
partial sums of the Fourier series of u converge uniformly to u. Thus

u(x) = i (u, e,) exp (inx), all xe R,

Moreover, if u € 2, then the partial sums converge to u in the sense of 2.

Proof. Let v = Du. There is a relation between the Fourier coefficients
of v and those of u. In fact integration by parts gives
2z

® by =@, e) = 71- Du(x) exp (—inx) dx
T Jo

= ;—:’r f > u(x) exp (—inx) dx

= in(u, e,) = ina,.

We can apply the Schwartz inequality for sequences to show 3 |a,| < co.
In fact

Slaal = laol + 3 |l = lao] + 3 7l
<tad +( 35" (S le)
= |ao| + (2 > n”’) | Dul| < o.

n=1
By Lemma 6.3, the partial sums of the Fourier series of u converge uniformly
to u.
Now suppose u € &, and let

N
Uy = z Qpen.
n=<=N

Then (9) shows that

N N
Duy = z ina,e, = Z b,e,
n=-N n=-N
is the Nth partial sum of the Fourier series of Du. Similarly, D*u, is the Nth
partial sum of D*u. Each D*u is continuously differentiable, so each D*uy —
D¥y uniformly. [J

Fourier series expansions are very commonly written in terms of sine
and cosine functions, rather than the exponential function. This is partic-
ularly natural when the function u or distribution F is real. Suppose F e L2,
Let

(10) a, = F(e-,), b, = 2F(cos nx), ¢, = 2F(sin nx).

Since
e_n(x) = cosnx — isinnx
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we have

ap = ‘}(bn - icn).

Also
b-n = bm Cop = —Cy.

Thus for n > 0,

anen(X) + a_ne_n(x) = a(cos nx + isinnx) + a_,(cos nx — isin nx)
= b, cos nx + ¢, sin nx.

Then

N N
Z a, exp (inx) = b, + Z b, cos nx + ¢, sin nx.
N

ne - n=1

The formal series

(11) 1b, + Z b, cos nx + ¢, sin nx

n=1
is also called the Fourier series of F, and the coefficients b,, ¢, given by (10)
are also called the Fourier coefficients of F. If F is real, then b,, c, are real,
and (11) is a series of real-valued functions of x. Theorems 6.2 and 6.4 may
be restated using the series (11).

Exercises

1. Find the Fourier coefficients of the following integrable functions on
[0, 2x]:

@) u(x) =0,x€e[0, #), u(x) = 1, x e (m, 27).

®) u(x) =0, x € [0, #], u(x) = x — =, x € (m, 27].

©) u(x) = |x — =|.

@) u(x) = (x — =)

() u(x) =x

(f) u(x) = |cos x|.

2. Suppose u € € and suppose b,, ¢, are as in (10). Show that if u is even

then ¢, = O, all n. Show that if u is odd, then b, = O, all n. (It is convenient
to integrate over [—, =] instead of [0, 2=].) Show that if u is real then

jor 13

n=1

1 2n
2 - 2
(bu + an) - fo u(X) dx.

3. Suppose ue ¥,
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Show that

) = o [ Dl = ) b,
where
Dy(x) = sin (N + 3)x/sin 3x.
The function Dy, is called the Dirichlet kernel. Thus
uy = Dy *u.

4. Extend the result of Exercise 3 to the partial sums of the Fourier
series of a distribution F e L2,
5. For Fe %', define

a, = F(e_,), n=0,+1, +2,....
Show that FeL? if and only if

L

z |aa|? < co.

-

6. Suppose F e 2 and DF e L2, Show that F = F, for some continuous
function u. (Hint: find the Fourier coefficients of u.)



Chapter 5

Applications of Fourier Series

§1. Fourier series of smooth periodic functions
and of periodic distributions

If u is a smooth periodic function with Fourier coefficients (a,)® ., then
we know that the sequence (a,)%. uniquely determines the function u; in
fact, the partial sums

(1) uy(x) = i a, exp (inx)

of the Fourier series converge to u in the sense of & Therefore it makes sense
to ask: what are necessary and sufficient conditions on a two sided sequence
(a,)2«» < C that it be the sequence of Fourier coefficients of a function
u € 27 The question is not hard to answer.

A sequence (a,)2, < C is said to be of rapid decrease if for every r > 0
there is a constant ¢ = ¢(r) such that

()] |a,| < ¢c|n|=7, alln #0.

Theorem 1.1. A sequence (a,)=. < C is the sequence of Fourier coeffi-
cients of a function u € P if and only if it is of rapid decrease.

Proof. Suppose first that u € 2 has (a,)2., as its sequence of Fourier
coefficients. Given r > 0, take an integer k > r. In proving Theorem 6.4 of
Chapter 4 we noted that (ina,)2 », is the sequence of Fourier coefficients of Du.
It follows that

((in)*an)2 o
is the sequence of Fourier coefficients of D*u. But then
|n[*|an| < | Dul,

which gives (2) with ¢ = | D*u|.
Conversely, suppose (a,)2., < C is a sequence which is of rapid decrease.
Define functions uy by (1). From (2) with r = 2 we deduce

L
Z las| < oo.
-

By Lemma 6.3 of Chapter 4, the functions (1) converge uniformly to u € €,
and (a,)% . are the Fourier coefficients of u. Also
N

D¥yy, = Z (in)a,e,,

N
131
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and (2) with r = k + 2 implies

2, Inl¥ai] < oo.

Thus each derivative D*uy also converges uniformly as N — co. Therefore
ue? [0

If F is a periodic distribution which is in L?, then we have defined its
Fourier coefficients by

3 a, = F(e_,), e_y(x) = exp (—inx).

Since e., € &, the expression in (3) makes sense for any periodic distribution
F, whether or not it is in L2. Thus given any Fe &', we define its Fourier
coefficients to be the sequence (a,)2 ., defined by (3). We know that if all the
a, are zero, then F = 0 (see Chapter 3, Theorem 4.3). Therefore, Fe #'
is uniquely determined by its Fourier coefficients, and we may ask: what are
necessary and sufficient conditions on a sequence (a,)2, < C that it be the
sequence of Fourier coefficients of a periodic distribution F? Again, the
answer is not difficult.

A sequence (a,)2., < C is said to be of slow growth if there are some
positive constants ¢ and r such that

@ |a| < c|nlr,  alln #0.

Theorem 1.2, A sequence (a,)%. < C is the sequence of Fourier co-
efficients of a distribution F € &' if and only if it is of slow growth.

Proof. Suppose first that Fe &' has (a,)2« as its sequence of Foutier
coefficients. Recall that for some integer k, F is of order k. Thus for ue 2,

|F@)| < c(lu] + |Du| +-- - + | D*ul).
With u = e_, this means
[aa] = |F@)| < c(I1 + |n] +---+ |n|*) < 2¢|n|**2.

Thus (a,)2 . is of slow growth.
Conversely, suppose (@,)2, < C is a sequence which is of slow growth.
Then there is an integer k > 0 such that

) las| < c|n|*=2, n#0.
Let by = 0 and
b, = (in)~*a,, n#0.

Let

N

Uy = z b,,e,,.

=N

From (5) we get

i [Ba] < oo.
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Therefore vy converges uniformly to v € €. Let
F = DkF‘, + Ff, f= Qp€o.

This is a distribution; we claim that its Fourier coefficients are the (a,)* .
In fact, for n # 0,

F(e-,) = D*Fye_,) = F((—D)*e_,)
= (in)*Fy(e-,) = (in)*b, = a,.

Also
F(eo) = D*F,(e) + Fi(eo) =0 + aq. 0

In the course of the preceding proof we gave a second proof of the
characterization theorem for periodic distributions, Theorem 6.1 of Chapter 3.
In fact, the whole theory of £ and 2’ in Chapter 3 can be derived from the
point of view of Fourier series. We shall do much of such a derivation in this
section and the next. An important feature of such a program is to express
the action of Fe 2’ on u € 2 in terms of the respective sequences of Fourier
coefficients.

Theorem 1.3. Suppose F € &' has (a,)2« as its sequence of coefficients,
and suppose u € P has (b,)2 » as its sequence of Fourier coefficients. Then

sMs

©) F)= D ab_n= D a_,b,
Proof. Let

un(x) = EN: b, exp (inx).
-N

We know
uy —u (2).
Therefore
F(u) = lim F(uy).
But

Fu) = 3 bFe) = 3 a-dbo = D aibes i
-N -N -

Implicit in the proof of Theorem 1.3 is the proof that the series in (6)
converges. A more direct proof uses the criteria in Theorem 1.1 and 1.2.
In fact,

|aa] < cl|nl", n#0,
|b.] < ¢'In|~"™"2, n#0

and convergence follows.
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Corollary 1.4. If Fe % has Fourier coefficients (a,)2, and if Fy is
the distribution defined by the function

N
Z a, exp (inx),
-N
then
Fy— F(#).
Proof. With u, uy as in Theorem 1.3,
Fy(u) = F(uy) — F(u). 0
Exercises

1. Compute the Fourier coefficients of 8 and D*8.
2. If Fe & has Fourier coefficients (a,)2 », compute the Fourier coeffi-
cients of
T.,F, F* F~.

3. Give necessary and sufficient conditions on the Fourier coefficient
(a,)2» of a distribution F that F be real; or even; or odd.
4. Suppose (pn)T < € is an approximate identity. Let

(am.n);o= -
be the sequence of Fourier coefficients of ¢,,. Show that

|Gmal <1, m21, n=0,4+1,1+2,...;
lim a,, =1, all n.

m-= o

§2. Fourier series, convolutions, and approximation

Recall that if F, G € 2’ and u € #, the convolutions F * u and F * G are
defined by
F x u(x) = F(T,4),
(Fx G)(u) = F(G™ * u).

We want to compute the Fourier coefficients of the convolutions in terms of
the Fourier coefficients of F, G, and u.

Theorem 2.1. Suppose F e P’ has Fourier coefficients (a,)2.; suppose
G € &' has Fourier coefficients (b,)2 »; and suppose u € P has Fourier coeffi-
cients (¢,)2w. Then F % u has Fourier coefficients (a,c,)*« and F x* G has
Fourier coefficients (a,b,)% «.

Proof. Note that
(Tx2)(¥) = e_o(y — %) = ex(x)e_n(»).
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Therefore

(F * e)(x) = en(x)F(e-n) = aqen(x),
and

N N
F x (Z c,,e,,) = Z Ay Cpa.
-N -N

Taking the limit as N — oo, we find that F+u has Fourier coefficients

(@nn)2 -
Now
(G~ * en)(x) = G~(T xéu) = en(x)G~(én)
= e,(x)G(e,) = b_nen(x).
Therefore

(F* G)e-n) = F(G" x e_,) = bFle_z) = aubn. 0

Using Theorem 2.1 and Theorems 1.1 and 1.2, we may easily give a
second proof that F * u € #. Similarly, if ue # and G = F,, then

FxG=F, where v=F=*u;

in fact F * G and F * u have the same Fourier coefficients.
The approximation theorems of Chapter 3 may be proved using Theorem
2.1 and the following two general approximation theorems.

Theorem 2.2. Suppose (u,)Y < & Suppose the Fourier coefficients of
u, are

(@m,n)2= - -
Suppose that for each r > 0 there is a constant ¢ = c(r) such that
|amal < cln|”",  allm,alln # 0.
Suppose, finally, that for each n,

un—>a, aS m—> o0,

Then (a,)2 . is the sequence of Fourier coefficients of a function u € . More-
over,

Uy — u (2P).
Proof. The conditions imply that also
la,| <¢|n|~", n#0.

Thus (a,)®. is the sequence of Fourier coefficients of a function ue £
Given & > 0, choose N so large that

«(2) i n~2?<e
a=N
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Choose M so large that m > M implies

N
2 |ans — ai| < e
-N

It follows that if m > M then

shV18

|Gm,n — an| < Se.
Since
U=D Oifns  Un =D Gnmun
this implies
|g — u| < 5e  ifm > M.
Thus u,, — u uniformly. A similar argument shows each D*u,, — D*u. [J

Theorem 2.3. Suppose (F,)? < &'. Suppose the Fourier coefficients of
F, are

(@mn)n= - -
Suppose that for some r > 0 there is a constant ¢ such that
|@m.al < cl|n|’,  allm,alln # 0.
Suppose, finally, that for each n,

Ann—>a, and m—>co.

Then (a,)2 is the sequence of Fourier coefficients of a distribution F e &',
Moreover,
F,—F (#).

Proof. The conditions imply that also
la.| <c|n|, allmn #0.

Thus (a,)2 . is the sequence of Fourier coefficients of a distribution Fe &',
Take an integer £ > r + 2, and let

bm.o = bO = 0,
bm.n = (in)-kam.m n#0
b, = (in)"*a,, n #0.

As in the proof of Theorem 1.2, (b, .) - - is the sequence of Fourier
coefficients of a function v,, € %, with

Fm=DkFﬂm+ng’ fm=am.oeo-
Similarly, (b,)2 . is the sequence of Fourier coefficients of v € € with
F = DkFu + F,, f= QopCo.
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The hypotheses of the theorem imply

|bm,a|l < c|n| -3, n#0,
bpn—>b, as m—oo.

As in the proof of Theorem 2.1, these conditions imply that
vm — v uniformly as m — co.

Also,

am.o —>Aayp.

It follows that F,, — F (#). 0

Exercises

1. Suppose (p)f° < € is an approximate identity. Use the theorems of
this section and Exercise 4 of §1 to prove that:

@m*u—>u (P) ifue?;
Fxg,—F (#) ifFe®.

2. State and prove a theorem for L? which is analogous to Theorem 2.2
for # and Theorem 2.3 for .

3. Use the result of Exercise 2 to show that if (p,) < ¥ is an approxi-
mate identity and Fe L2, then

Fx g, —F (L3.

4. Prove the converse of Theorem 2.2: if u, — u (#) then the Fourier
coefficients satisfy the hypotheses of Theorem 2.2.

§3. The heat equation: distribution solutions

Many physical processes are approximately described by a function y,
depending on time and on position in space, which satisfies a type of partial
differential equation called a heat equation or diffusion equation. The simplest
case is the following. Find u(x, t), a continuous function defined for x € [0, =]
and for ¢ > 0, satisfying the equation

) a%u(x, 1) = x(a—ax)’u(x, 0, xe©m), t>0,

the initial condition

@ u(x,0) = g(x), x€[0,n],
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and one of the following two sets of boundary conditions:

3) u(0, t) = u(m, 1) =0, t>0;
Gy %u(o, £ = a—iu(w, =0, >0,

The function u describes the temperature distribution in a thin homo-
geneous metal rod of length . The number x represents the distance of the
point P on the rod from one end of the rod, the number ¢ represents the time,
and the number u(x, ) the temperature at the point P at time ¢. Equation (1)
expresses the assumption that the rod is in an insulating medium, with no
heat gained or lost except possibly at the ends. The constant « > 0 is pro-
portional to the thermal conductivity of the metal, and we may assume units
are chosen so that « = 1. Equation (2) expresses the assumption that the
temperature distribution is known at time ¢ = 0. Equation (3) expresses the
assumption that the ends of the rod are kept at the constant temperature 0,
while the alternative equation (3)’ applies if the ends are assumed insulated.
Later we shall sketch the derivation of Equation (1) and indicate some other
physical processes it describes.

Let us convert the two problems (1), (2), (3) and (1), (2), (3)’ into a single
problem for a function periodic in x. Note that if (2) and (3) are both to hold,
we should have

@ g(0) = g() = 0.

Let g(—x) = —g(x), xe(—m,0). Then g has a unique extension to all of
R which is odd and periodic (period 2). Because of (4) the resulting function
is still continuous. Suppose u were a function defined for all xe Rand ¢ > 0,
periodic in x, and satisfying (1) for all x e R, ¢ > 0. Then u(x, 0) = g(x) is
odd. If g is smooth, then also

(%) *u(x, 0) = D?g(x)

is odd, and we might expect that u is odd as a function of x for each ¢ > 0.
If this is so, then necessarily (3) is true.

Similarly, if (2) and (3)’ are both to hold, we would expect that if g is
smooth then

Dg(0) = Dg(x) = O.

In this case, let g(—x) = g(x), x € (—=, 0). Then g has a unique extension
to all of R which is even and periodic. If g is of class C* on [0, 2#], the ex-
tension is of class C! on R. Again, if u were a solution of (1), (2) which is
periodic in x for all ¢, we might expect u to be even for all . Then (3)’ is
necessarily true.

The above considerations suggest that we replace the two problems
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above by the single problem: find u defined for x e R, ¢ > 0, such that u is
periodic in x,

®) a%u(x, 1) = (%)au(x, 1), xeR, t >0,
(6) u(x,0) = g(x), xeR,

where g € € is given.

It is convenient and useful to ask for solutions of an analogous problem
for periodic distributions. We formulate this more general problem as follows.
Suppose that to each 7 in some interval (a, b) € R we have assigned a distri-
bution F,e #'. If s€ (a, b), Ge %, and

(t = 8)"YF - F)—>G (#)

as ¢t — s, it is natural to consider G as the derivative of F, with respect to ¢
at t = 5. We do so, and write

d
G—-‘-{;F,

t=s

Our formulation of the problem for distribution is as follows: given G € &,
find distributions F, € ' for each ¢t > 0, such that

) %F, =D, alls>0,

® F,—-~G (%) as t—>0.

Theorem 3.1. For each G e there is a unique family (F)),»o, < &'
such that (T) and (8) hold. For each t > 0, F, is a function u(x) = u(x, t)
which is infinitely differentiable in both variables and satisfies (5).

Proof. Let us prove uniqueness first. Suppose (F.);»o is a solution of
(7), (8). Each F, has Fourier coefficients (a,(?))2 «,

a,(t) = F(e-,), t>0,n=0, x1,....
Then
(t - S)_llan(t) - an(s)]—> DzF:(e-n) = Fa(Dae—n) = "'nan(e-n)

as ¢t — 5. In other words,

) Da,(t) = —n2a,(t), t>0.
As t — 0 we have
10) an(t) = Fe-,)— G(e-,) = b,.

The unique function a(z), t > 0 which satisfies (9) and (10) is
(11 a,(t) = b, exp (—nt).
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This shows that a,(t) are uniquely determined, so the distributions F, are
uniquely determined.

To show existence, we want to show that the a,(¢) defined by (11) are the
Fourier coefficients of a smooth function for ¢z > 0. Recall that if y > 0
then

eV = > (n) "}y > (m)~Yym

$O
e"V<mly-"™,
Therefore
|a ®)| < |bajm!n~2".t~™  m=0,1,2....
But

|ba] < c|n|¥,  alln,
for some ¢ and k. Therefore
|a. ()| < em! |n|*-2m.t="  m =0,1,2,....

It follows that for each ¢ > 0, (a,(t))2., is the sequence of Fourier coeffi-
cients of a function , € # Then w, is the uniform limit of the functions

N

uy(x, 1) = 2, a(?) exp (inx)

N
= z b, exp (inx — n?t).
-N

Then
( a% )1 ( a_g; )'u,,(x, 1) = _ZN b,(—n?)(iny exp (inx — nf)
= _ZN @n,1(t) €Xp (inx).
As above,

|@n,1.(t)] < cm! |p|e¥Atr=2m.q-m  p;=0,1,2,....

It follows that each partial derivative of uy converges as N — co, uniformly
forxeRand ¢t > 8 > 0. Thus

u(x, t) = u(x)
is smooth for x e R, # > 0. For each N, uy, satisfies (5). Therefore u satisfies
5).
Let F, be the distribution determined by %, ¢ > 0. Thus the Fourier
coefficients of F, are the same as those of u,.
It follows from (11) that

|ax(®)| < |bal,  an(t) >b, as t—0.
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By Theorem 2.3, therefore, (8) is satisfied. Finally, each partial derivative
of u is bounded on the region xe R, t > § > 0. It follows from this and the
mean value theorem that

= s)"Y(w - “s)"’azt“l

uniformly as ¢ — s > 0. Therefore (7) also holds. [

Exercises

1. In Theorem 3.1, suppose G is even or odd. Show that each F, is re-
spectively even or odd. Show that if G is real, then each F, is real.

2. Discuss the behavior of F, as ¢t — co.

3. Formulate the correct conditions on the function u if it represents the
temperature in a rod with one end insulated and the other held at constant
temperature.

4. In Theorem 3.1, suppose G = F,,, the distribution defined by a
function w € 2 Show that the functions u, —w (%) as t — 0.

5. Let

g(x) = Z exp (—n?t + inx), t>0, xeR.

Show that g, € £ In Theorem 3.1, show that
u=Gxg,.
6. With g, as in Exercise 5, show that
8t *8s = Bt+s:
7. The backwards heat equation is the equation (1) considered for ¢ < 0,
with initial (or “final’") condition (2). Is it reasonable to expect that solutions

for this problem will exist? Specifically, given G € &', will there always be a
family of distributions (F,);<o = £’ such that

d —_ 2
ZFl_ =DF, alls<o,

F—-G (%) as t—0?
8. The Schridinger equation (simplest form) is the equation
w_ Pu
ot ox?
Consider the corresponding problem for periodic distributions: given
G e, find a family (F,),», of periodic distributions such that

d — . 2
FtF'L-.—lD F,, alls > 0,
F,F—-~G (%) as t—0.

Discuss the existence and uniqueness of solutions to this problem.
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§4. The heat equation: classical solutions; derivation

Let us return to the problem given at the beginning of the last section:
find u(x, t), continuous for x € [0, 2«] and ¢ > 0, and satisfying

m g;u(x, ) = (%)2u(x, ), xe€@0m), >0
(03] u(x, 0) = g(x), where ge C[0, ) is given;
3 u(0,7) = u(m, 1) =0, t>0

or

oY %u(o, £) = %u(ﬂ, =0, t>0.

Such a function u is called a classical solution of the problem (1), (2), (3)
or (1), (2), (3)', in contrast to the distribution solution for the periodic
problem given by Theorem 3.1. In this section we complete the discussion
by showing that a classical solution exists and is unique, and that it is given
by the distribution solution. We consider the problem (1), (2), (3), and leave
the problem (1), (2), (3)’ as an exercise.

Given ge C[0,n] with g(0) = g(») = 0 (so that (3) is reasonable),
extend g to be an odd periodic function in %, and let G = F,. By Theorem 3.1,
there is a function u(x, t) = u,(x) which is smooth in x, ¢ for xeR, 7 > 0,
satisfies (1) for all such x, ¢, and which converges to G in the sense of &' as
t — 0. By Exercise 1 of §3, u is odd as a function of x for each ¢ > 0. Since
is also periodic as a function of x, this implies that (3) holds when ¢ > 0.
If we knew that u, — g uniformly as t — 0, it would follow that the restriction
of uto 0 < x < w is a classical solution of (1), (2), (3). Note that this is true
when (the extension of) g is smooth: see Exercise 4 of §3. Everything else we
need to know follows from the maximum principle stated in the following
theorem.

Theorem 4.1. Suppose u is a real-valued classical solution of (1), (2).
Then for each T > 0, the maximum value of u(x, t) in the rectangle
0<x<m, 0<t<sT
is attained on one of the three edgest = 0, x = 0, or x = .
Proof. Given e > 0, let
v(x, 1) = u(x,t) — et.

It is easy to see that the maximum value of v is attained on one of the edges
in question. Otherwise, it would be attained at (x,, ¢,), where

Xo € (0, 11'), ty > 0.
For v to be maximal here, we must have

]
a v(xo, to) = 0.
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But then

(%)al’(xo, L) = (%)au(xo, to) = aitu(x“ fo) = a%v(xo, fo) + ¢

>e>0,

80 x, cannot be a maximum for v(x, t,) on [0, 27].
Now u and v differ by at most T on the rectangle. Therefore for any
(x, t) in the rectangle,

u(x,t) < M + 2¢T,

where M is the maximum of  for t = 0, x = 0, or x = =. Since this is true
for every ¢ > 0, the conclusion follows. []

Theorem 4.2. For each continuous g with g(0) = g(n) = 0, there is a
unique classical solution of problem (1), (2), (3).

Proof. Note that u is a classical solution with initial values given by g
if and only if the real and imaginary parts of u are classical solutions with
initial values given by the real and imaginary parts of g, respectively. There-
fore we may assume that g and u are real-valued. Applying Theorem 4.1
we see that

u(x,t) < |g|, allxe[0,n], ¢=0.

Applying Theorem 4.1 to —u, which is a solution with initial values given
by —g, we get

—u(x,t) < |g|, allxz¢
Thus

lu(x, )| < |g]|, allxt

This proves uniqueness.
To prove existence, let g be extended so as to be odd and periodic. Let
(pm)Y < 2 be an approximate identity. Let

gn =Pn*gEL

We can choose ¢, to be even, so that g, is odd. Let u,, be the distribution
solution given by Theorem 3.1 for g, as initial value, and let u be the distri-
bution solution with g as initial value. Then we know wu,(x, t) — gn(x)
uniformly with respect to x as ¢ — 0, so we may consider u,, as continuous
for t > 0, x e R. Moreover, since g, — g uniformly as m — oo, it follows
that u,(x, t) — u(x, t), at least in the sense of &', for each ¢ > 0. On the
other hand, since |g, — g| — 0 we find that for x € [0, =]

Ium(x’ t) - up(x’ t)l -0

as m, p— oo, uniformly in x and ¢, ¢ > 0. Thus we must have u, —>u
uniformly. It follows that ¥ has a continuous extension to ¢ = 0, and there-
fore that u (restricted to x € [0, =]) is a classical solution. ]

A second proof of the uniform convergence of u to g as 7 — 0 is sketched
in the exercises below.
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The heat equation, (1), may be derived as follows. Again we consider a
homogeneous thin metal rod in an insulating medium. Imagine the rod
divided into sections of length e, and suppose x is the coordinate of the
midpoint of one section. We consider only this and the two adjacent sections,
and approximate the temperature distribution at time ¢ by assuming u to be
constant in each section. The rate of flow of heat from the section centered
at x + e to that centered at x is proportional to the temperature difference
u(x + e, t) — u(x,t), and inversely proportional to the distance e. The
temperature in each section is the amount of heat divided by the volume, and
the volume is proportional to e. Considering also the heat flow from the
section centered at x — e to that centered at x, we get an approximate ex-
pression for the rate of change of temperature at (x, #):

g, 1) & e ulx + 6, ) = u) + s = 1) = U]
or
a%u(x, 1) % ke~fulx + e, 1) — u(x — &, £) — 2u(X)].

Consider the expression on the right as a function of £ and let £ — 0. Two
applications of L’'Hopital’s rule give

) 6% u(x, t) = x(%) 2u(x, t).

Note that essentially the same reasoning applies to the following general
situation. A (relatively) narrow cylinder contains a large number of individual
objects which move rather randomly about. The random motion of each
object is assumed symmetric in direction (left or right is equally likely) and
essentially independent of position in the cylinder, past motion, or the
presence of the other objects. As examples one can picture diffusion of
molecules or dye in a tube of water kicked about by thermal motion of the
water molecules, or the late stages of a large cocktail party in a very long
narrow room. If u(x, ¢) represents the density of the objects near the point x
at time ¢, then equation (4) arises again. Boundary conditions like (3)’
correspond to the ends of the cylinder being closed, while those like (3)
correspond to having one way doors at the ends, to allow egress but not
ingress.

Exercises
1. Suppose G = F,,, w € %, and suppose (#,);>¢ is the family of functions

in Theorem 3.1. Show that if w > 0, then each u, is = 0.
2. As in Exercise 5 of §3, let

L
g(x) = z exp (—n?t + inx), t>0.



The wave equation 145

Show that
2n

1
), g(x)dx = 1.

Show thatif we 2 and w > 0, then g, * w > 0. Show, by using any approxi-
mate identity in &, that g, > 0.
3. Show that (g,);>o is an approximate identity as ¢ — 0, i.e., (in addition
to the conclusions of Exercise 2) for each 0 < & < =,
2n-6
lim g(x)dx =0.
t—0 Js
(Hint: choose w € # such that w > 0, w(0) = 0, and w(x) = 1 for 8§ < x <
27w — 8. Then consider g, * w(0).)
4. Use Exercise 3 to show that if we €, G = F,, and (), is the family
of functions given in Theorem 3.1, then », — w uniformly as ¢ — 0.
5. In a situation in which heat is being supplied to or drawn from a rod
with ends at a fixed temperature, one is led to the problem

a%u(x, t) = (%)%(x, 1) + f(x, 1), x € (0, ), t>0,

u(x, 0) = g(x), u(0,t) = u(=, t) = 0.

Formulate and solve the corresponding problem for periodic distributions,
and discuss existence and uniqueness of classical solutions.

§5. The wave equation

Another type of equation which is satisfied by the functions describing
many physical processes is the wave equation. The simplest example occurs
in connection with a vibrating string. Consider a taut string of length =
with endpoints fixed at the same height, and let u(x, t) denote the vertical
displacement of the string at the point with coordinate x, at time z. If there
are no external forces, the function u is (approximately) a solution of the
equation

o (a%)’u(x, /) = cZ(%)’u(x, 6, xe@©m), t>0.

Here ¢ is a constant depending on the tension and properties of the string.
The condition that the endpoints be fixed is

(2) u©,7) = u(m,t)=0, 20

To complete the determination of u it is enough to know the position and
velocity of each point of the string at time ¢ = 0:

@) ux0) = g0),  pu(c0) =), xel0,al

We shall discuss the derivation of (1) later in this section.
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As in the case of the heat equation we begin by formulating a corre-
sponding problem for periodic distributions and solving it. The conditions
(2) suggest that we extend g, h to be odd and periodic and look for a solution
periodic in x. The procedure is essentially the same as in §3.

Theorem 5.1. For each G, H € #' there is a unique family (F);»o < &'
with the following properties:

d

7 F, exists for each s > 0,
s
@ (%)217,' = DF, alls>0,
) F,—~ 2? (@) as t—0,
) dit F| - H (#) as s—0.

Proof. Let (b,)2. be the sequence of Fourier coefficients of G, and let
(cn)= » be the sequence of Fourier coefficients of *H. If (F);> , is such a family
of distributions, let the Fourier coefficients of F; be

(@ (1)2 .

As in the proof of Theorem 3.1, conditions (4), (5), (6) imply that a, is
twice continuously differentiable for ¢ > 0, @, and Da, have limits at t = 0,
and

D2ay(t) = —n*a,t),
an(o) = by, Dan(o) = Cn.

The unique function satisfying these conditions (see §6 of Chapter 2) is
@) a,(t) = b,cosnt + n~'c,sinnt, n#0,
® ao(t) = bo + cot.

Thus we have proved uniqueness. On the other hand, the functions (7), (8)
satisfy

© lan(®)] < |ba| + |n|*|eal, 7 #0,
(10) a,(t)—b, as t—0, all n;
(11) | Da,(t)| < |nb,| + |ca|,  all m,
(12) Da,(t)—c, as t—0, all n.

It follows from (9) and Theorem 1.2 that (a,(¢))2 » is the sequence of Fourier
coefficients of a distribution F;. It follows from (10) and Theorem 2.3 that

(5) is true. It follows from (11), the mean value theorem, and Theorem 1.2
that
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exists for s > 0 and has Fourier coefficients (Da,(s))Z . Then (12) gives (6).
Finally,

| D%ay(t)| < |n%ba| + |nc,|, alln.

(@) ~

t=g

exists, s > 0. The choice of a,(¢) implies that (4) holds. [

Let us look more closely at the distribution F; in the case when G and H
are the distributions defined by functions g and h in £ First, suppose A = 0.
The Fourier series for g converges:

gx) = i a, exp (inx).

Inequality (9) implies that the Fourier series for F; also converges; then F,
is the distribution defined by the function 4, € &, where

It follows that

ulx, t) = u(x) = Z a, cos nt-exp (inx)

= % Z a,[exp (int) + exp (—int)] exp (inx)

= % 2, anexp (in(x + 1) + % > ayexp (in(x — 1)),
or
(13) u(x, 1) = 3g(x + 1) + 3g(x — 1).
It is easily checked that u is a solution of

aa 32 ou
a_t'.; = a—xl;, u(x, 0) = g(x), a7 (x,0) = 0.

Next, consider the case g = 0. Again (a,(f))2  is the sequence of Fourier
coefficients of a function u, € P,

u(x,t) = u(x) = Z n~Yc, sin nt-exp (inx) + cot.
n#0

To get rid of the n~! factor, we differentiate:

% u(x, t) = D icy sin nt exp (inx)

NI —

g8

cqlexp (int) — exp (—int)] exp (inx)

i ¢, exp (in(x — 1))

Dl -

= % i ¢, exp (in(x + t)) —

= 3h(x + 1) — Ih(x — 1).
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Integrating with respect to x gives

a3y ww ) =5 [ Ky +at)

x—=t

X+

where a(t) is a constant to be determined so that u is periodic as a function
of x. But the periodicity of h implies that a(t) should be taken to be zero.
Then u so defined is a solution of

Pu _ Pu

ot~ ax®

Equation (1) for the vibrating string may be derived as follows. Approxi-

mate the curve #, representing the displacement at time ¢ by a polygonal line

joining the points . ..(x — &, u(x — &, 1)), (x,u(x, 1)), (x + &, u(x + ¢, 1)), ....

The force on the string at the point x is due to the tension of the string. In

this approximation the force due to tension is directed along the line seg-

ments from (x, u(x, 2)) to (x + &, u(x + e, t)). The net vertical component
of force is then proportional to

ur 0 =0,  2(x,0) = h(x).

(a%)zu(x, 1) X e 2[u(x + &) + u(x — &) — 2u(x)]

where ¢ is constant. We take the limit as «e—0. Two applications of
L’Hopital’s rule to the right side considered as a function of e give (1).
The constant ¢? can be seen to be equal to

KkTr=2,

where r is the diameter of the string or wire, 7 is the tension, and « is pro-
portional to the density of the material. Let us suppose also that the length
of the string is =/ instead of #. The solution of the problem corresponding
to (1), (2), (3) when g is real and & = 0 can be shown to be of the form

(14) u(x, t) = i b, cos (cnt/l) sin (nx/l).
A single term
b, cos (cnt/l) sin (nx/l)

represents a “standing wave”, a sine curve with » maxima and minima in
the interval [0, #/] and with height varying with time according to the term
cos (cnt/l). Thus the maximum height is b,, and the original wave is repeated
after a time interval of length

2xl/cn.
Thus the frequency for this term is
cnf2nl = n(kr)?[2xlr,
an integral multiple of the lowest frequency
(15) (k7)*2[2xlr.
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In hearing the response of a plucked string the ear performs a Fourier
analysis on the air vibrations corresponding to u(x, ¢). Only finitely many
terms of (14) represent frequencies low enough to be heard, so the series
(14) is heard as though it were a finite sum

(16) i b, cos (cnt/l) sin (nx/l).

n=1

In general, if the basic frequency (15) is not too low (or high) it is heard as
the pitch of the string, and the coefficients b,, b, ..., by determine the
purity: a pure tone corresponds to all but one b, being zero. Formula (15)
shows that the pitch varies inversely with length and radius, and directly
with the square root of the tension.

Exercises

1. In Theorem 5.1, suppose DG and H are in L2. Show that

d
DF‘ and E I:t

are in L2 for each ¢, and
d |2
1oFI + |55~ 1061 + 112

2. In the problem (1), (2), (3) with ¢ = 1 suppose g, h, and u are smooth
functions. Show, by computing the derivative with respect to ¢, that

f: |%u(x, 0l ax + f: Ia%u(x, £

is constant. (This expresses conservation of energy: the first term represents
potential energy, from the tension, while the second term represents kinetic
energy.)
3. Use Exercise 2 and the results of this section to prove a theorem about
existence and uniqueness of classical solutions of the problem (1), (2), (3).
4. Show that if H(f) = 0 when fis constant, then the solution (F);»o
in Theorem 5.1 can be written in the form

F, = ¥T,G + T_,G) + ¥T_,SH — T,SH).

Here again T, denotes translation, while S is the operator from ' to &'
defined by

2
dx

SH@W) = H@), ue?,

where

2n 25
v(x) =f o(t) dt + %L o(t) dt.
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This is the analog for distributions of formulas (13) and (13)".

§6. Laplace’s equation and the Dirichlet problem

A third equation of mathematical and physical importance is Laplace’s
equation. In two variables this is the equation

2y o
1) §+5‘;=o.

A function u satisfying this equation is said to be harmonic. A typical
problem connected with this equation is the Dirichlet problem for the disc:
find a function continuous on the closed unit disc

)| x®+y*< 1}

and equal on the boundary to a given function g:
(2) u(x, y) = g(x9 .V), x* + yﬂ =1

A physical situation leading to this problem is the following. Let u(x, y, ?)
denote the temperature at time ¢ at the point with coordinates (x, y) on a
metal disc of radius 1. Suppose the temperature at the edge of the disc is
fixed, though varying from point to point, while the interior of the disc is
insulated. Eventually thermal equilibrium will be reached: » will be inde-
pendent of time. The resulting temperature distribution u is approximately a
solution of (1), (2).

To solve this equation we express # and g by polar coordinates:

u=urb, g=gb
where
x=rcosf, y=rsind; r=@2+y)"¥3, 0 =tan"!(yx"?).
Then
g.u—-a_uzﬁ a_ua_o—cosoa_u_iin_oa_u
ax  orox " d0ox or r 90
and similarly for du/dy. An elementary but tedious calculation gives
Pu Py Pu 10ou 1
preial o Rl Rl s P

Thus we want to solve

32
3) r’#+r§—?+z%=0, 0<r<l]l, feR,

(4) u(l, 0) = g(o), feR,
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where # and g are periodic in §. We proceed formally. Suppose g has Fourier
coefficients (,)2 », and #,(6) = u(r, 6) has Fourier coefficients

(@.(r)2 », O0<r<l.

Then (3) leads to the equation

(5) r2D%q, + rDa, — n%a, = 0, O0<r<l.
From (4) we get

© an(1) = by,

and since uo(f) is constant we want

@) a,(0)=0, n#0.

We look for a solution a,(r) of the form b,r¢, where ¢ = c(n) is a constant,
for each n. This will be a solution if and only if

ce—=1D)+c—-—n=0,

or ¢ = n2. Then (7) gives ¢ = |n|. We are led to the formal solution

u(r, 0) = i b,r'™ exp (inf).

Formally, this should be the convolution of g with the distribution whose
Fourier coefficients are

(rish=,.

For r < 1 these are the Fourier coefficients of a function P, € £. In fact,
(8) P6) = D rinleh

=1+ i (re')" + i (re=to)"
1 1
=010 =r3[1 —re®|~2 = (1 - r2)(1 — 2rcos 0 + r?)-%,

Note that P,(0) is an approximate identity as r — 1: the first expression on
the right in (8) shows

1 25
fv-rfo P.6)do = 1

and the last expression shows that P,(f) > 0 and

22-6

lin} P(0)do =0
T= é
for each 0 < 8 < #. The function

P(r, 6) = P(6)

is called the Poisson kernel for the Dirichlet problem in the unit disc.
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Theorem 6.1. Suppose F is a periodic distribution. There is a unique
Sunction u(r, 6) defined and smooth in the open unit disc, satisfying (3), and
such that the distributions defined by the functions u 60) = u(r, 6) converge
to F in the sense of #' as r — 1. Moreover, if F = F, where g € ¥, then u, — g
uniformly as r — 1. The functions u, are given by convolution with the Poisson
kernel:

u, = FxP,,
Proof. Uniqueness was proved in the derivation above. Let u, = F* P,
Since P, is an approximate identity, we do have ¥, — F (%) as r— 1, and

u,— g uniformly if F = F,, g€%. We must show that # is smooth and
satisfies (3). Note that when F = F,, g € %, then explicitly

ur,0) = 5 [ PG, 0 - @) do

and we may differentiate under the integral sign to prove that u is smooth.
Moreover, since P(r, 6) satisfies (3), so does u.

Finally, suppose u has merely a distribution F as its value on the boundary.
Note thatif 0 < r,s < 1 then (by computing Fourier coefficients, for example)

P %P, =P,

In particular, choose any R > 0, R < 1. It suffices to show that u is smooth
in the disc r < R and satisfies (3) there. But when r < R,

s=rRt<l1

and
U, =FxPp = Fx(P,xP) = (FxPg) % P, = up x P,.
Since P € & uy is a smooth function of 6. Then
1 2z
u(r’ 0) = 2_,” P(rR-19 0— 9’)“&(9’) d¢,

o
0 < r < R. Again, differentiation under the integral sign shows that u is
smooth and satisfies (3). [

The preceding theorem leads to the remarkable result that a real-valued
harmonic function is (locally) the real part of a function defined by a con-
vergent power series in z = x + iy.

Theorem 6.2. Suppose u is a harmonic real-valued function of class C2
defined in an open subset of R? containing the point (xo, y,). Then there is a
Sfunction f defined by a convergent power series:

0
fl2) = Zan(z = z)% |z = 2| <& 2o = Xo + iyo,
[)

such that
u(x, y) = Ref(x + iy)
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when
|x + iy — 2| < e.

Proof. Suppose first that (x,, yo) = (0, 0) and that the set in which u is
defined contains the closed disc x2 + y2 < 1. Let

8(0) = u(cos 6, sin 0), feR.

Then u is the unique solution of the Dirichlet problem in the unit disc with
g as value on the boundary. If (b,)2, are the Fourier coefficients of g,
then we know that in polar coordinates u is given by

Z r'™lb, exp (inb).

Since u is real, g is real. Therefore b, = b*, and the series is

by + 2 Re (z: r*b, exp (ine)).
Let f be defined by
10 = 3
where

a, = by; a, = 2b,, n>0.
Then

ux,) = Re (3 aure") = Re (1re)
=Re(f(x + ), *x*+y’<L

In the general case, assume that u is defined on a set containing the closed
disc of radius e centered at (x,, y,), and let

uy(x, y) = u(xo + &x, yo + &y).
Then u, is harmonic in a set containing the unit disc, so
u, = Refy,
f1 defined by a power series in the unit disc. Then

u=Ref, (x—x)+ @ —y)<e
where

f(x,y) = file7*x — x0), &7y — y0))

is defined by a power series in the disc of radius  around z, = xp + iy,. [
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Exercises

1. Prove the converse of Theorem 6.2: if

[ =S e -z  lz-z| <R

and we let
u(x,y) =Ref(x +1iy), |x+iy—z| <R,

then u is harmonic.
2. There is a maximum principle for harmonic functions analogous to
the maximum principle for solutions of the heat equation discussed in §4.
(a) Show that if u is of class C2 on an open set 4 in R? and

%u . 2%u
Fre] + gg >0
at each point of 4, then # does not have a local maximum at any point of 4.

(b) Suppose u is of class C2 and harmonic in an open disc in R? and
continuous on the closure of this disc. Show, by considering the functions

us(x, y) = u(x, y) + ex? + ey*

that u attains its maximum on the boundary of the disc.

3. Use the result of Exercise 2 to give a second proof of the uniqueness
of the solution of the Dirichlet problem for a continuous boundary function g.

4. Suppose u is continuous on the closed disc x2 + y2 < R and harmonic
in the open disc x2 + y2 < R. Give a formula for u(x, y) (or u(r, 8)) for
x2 4+ y2 < R in terms of the values of u for x> + y2 = R. Give formulas
for the derivatives du/or and du/o0 also.

5. Suppose u is defined on all of R2? and is harmonic. Use the result of
Exercise 4 to show that if # is bounded, then it is constant.
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Complex Analysis

§1. Complex differentiation

Suppose Q is an open subset of the complex plane C. Recall that this
means that for each z, € Q there is a 8 > 0 so that Q contains the disc of
radius & around z,:

zeQ  if|z — z| < 8.
A function f: Q — C is said to be differentiable at z € Q if the limit
i £09) = 1)

w2z Ww-—2z

exists. If so, the limit is called the derivative of f at z and denoted f'(2).

These definitions are formally the same as those given for functions
defined on open subsets of R, and the proofs of the three propositions below
are also identical to the proofs for functions of a real variable.

Proposition 1.1, If f: Q — C is differentiable at z € Q, then it is con-
tinuous at z.

Proposition 1.2. Suppose f: Q—C, g: Q—C andacC. If fand g are
differentiable at z = Q, then so are the functions af, f + g, and fg:

@) (2) = af'(2)
F+8)V@=r()+2g@
(8)(2) = f'(2)g(2) + f(2)g'(2).

If also g(z) +# O, then f|g is differentiable at z and
(f18)' (@) = [f'(2)g(2) — f(2)g'(2))g(2) >

Proposition 1.3 (Chain rule). Suppose f is differentiable at ze C and g
is differentiable at f(z). Then the compositive function g o f is differentiable
at z and

(g21) @) = g’ (VNS ).

The proof of the following theorem is also identical to the proof of the
corresponding Theorem 4.4 of Chapter 2.

Theorem 1.4. Suppose f is defined by a convergent power series:

f@) = i az — z)", |z —2z| <R

n=0

155
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Then f is differentiable at each point z with |z — z,| < R, and

[
'@ = D naz — zo)*"*
n=1

In particular, the exponential and the sine and cosine functions are
differentiable as functions defined on C, and (exp z)’ = exp z, (cosz)’ =
—sin z, (sin z)’ = cos z.

A remarkable fact about complex differentiation is that a converse of
Theorem 2.4 is true: if fis defined in the disc |z — zo| < R and differentiable
at each point of this disc, then f can be expressed as the sum of a power
series which converges in the disc. We shall sketch one proof of this fact in
the Exercises at the end of this section, and give a second proof in §3 and a
third in §7 (under the additional hypothesis that the derivative is continuous).
Here we want to give some indication why the hypothesis of differentiability
is so much more powerful in the complex case than in the real case. Consider
the function

f@)=z* or fix+iy)=x—iy.
Take t e R, t # 0. Then

tfz+ 1) - f2)] =1,
@)'fz + it) — f2)] = —1,
so the ratio

w=H (W) — f(2)]

depends on the direction of the line through w and z, even in the limit as
w — 2. Therefore this function fis not differentiable at any point.
Given f: Q — C, define functions u, v by

u(x,y) = Re f(x + i) = 1f(x + iy) + $(f(x + )*,
v(6) = Imflx + i) = 5 (G + B)* — 5/(x + ).
Thus
S(x + i) = ulx, y) + iv(x, y).
We shall speak of u and v as the real and imaginary parts of f and write
f=u+iv

(This is slightly incorrect, since f is being considered as a function of ze
Q < C, while » and v are considered as functions of two real variables x, y.)

Theorem 1.5. Suppose Q < C is open, f: Q—C, f = u + iv. Then if f
is differentiable at z = x + iy € Q, the partial derivatives
O woow W w
ax oy o oy
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all exist at (x, y) and satisfy

@ 510, ) = 75 05 7)

) 7515, 7) = = oY)

Conversely, suppose that the partial derivatives (1) all exist and are con-
tinuous in an open set containing (x, y) and satisfy (2), (3) at (x, y). Then f is
differentiable at z = x + iy.

The equations (2) and (3) are called the Cauchy-Riemann equations.
They provide a precise analytical version of the requirement that the limit
defining f'(z) be independent of the direction of approach. Note that in the
example f(z) = z* we have

Proof. Suppose fis differentiable at z = x + iy. Then
@ lim ez + 1) — f)] = () = lim ()~ + i) — f(2)

The left side of (4) is clearly

] . 0
a_xu(x’y) + lav(x,."),

while the right side is
, 0 0
-1 a—y u(x, y) + 5 v(x, y)'

Equating the real and imaginary parts of these two expressions, we get (2)
and (3).

Conversely, suppose the first partial derivatives of # and v exist and are
continuous near (x, y), and suppose (2) and (3) are true. Let

=a+ib

where a and b are real and near zero, A # 0. We apply the Mean Value
Theorem to # and v to get

G+ B —f@)=fz+a+id)-flz+a)+fz+a) - f(2)

0 .0
=5u(x+a,y+t1b)b+ 150(x+a,y+tgb)b

2 , 0
+ % u(x + tza, y)a + i X v(x + tqa, y)a,
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where 0 < t; < 1,j = 1, 2, 3, 4. Because of (2) and (3),

|2 ) + 15 ot y)]

= 554 b + i 00 )b + Y + 1ol Y.

Therefore
B + 1) = 10)] = |25 0) + 15 06w )
is a sum of four terms similar in size to
/] ]
a_y“(" +a,y + t,b) — a—yu(x, »)

\
Since the partial derivatives were assumed continuous, these terms — 0 as
h—0. 0

A function f: Q — C, Q open in C, is said to be holomorphic in Q if it is
differentiable at each point of Q and the derivative f* is a continuous function.
(Actually, the derivative is necessarily continuous if it exists at each point;
later we shall indicate how this may be proved.) Theorem 1.5 has the following
immediate consequence.

Corollary 1.6. f: Q— C is holomorphic in Q if and only if its real and
imaginary parts, u and v, are of class C* and satisfy the Cauchy-Riemann
equations (2) and (3) at each point (x, y) such that x + iy € Q.

Locally, at least, a holomorphic function can be integrated.

Corollary 1.7. Suppose g is holomorphic in a disc |z — zo| < R. Then
there is a function f, holomorphic for |z — z,| < R, such that f' = g.

Proof. Let u, v be the real and imaginary parts of g. We want to deter-
mine real functions g, r such that

f=q+ir
has derivative g. Because of Theorem 1.5 we can see that this will be true

if and only if
oq _or og _  or

x oy = dy ox
The condition that u, —v be the partial derivatives of a function ¢ is (by
Exercises 1 and 2 of §7, Chapter 2)
u_ _ o
oy ox
The condition that » and u be the partial derivatives of a function r is

w_
dy ox
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Thus there are functions g, r with the desired properties. []

Exercises

1. Let f(x + iy) = x> + y2 Show that fis differentiable only at z = 0.

2. Suppose f: C — R. Show that f'is differentiable at every point if and
only if fis constant.

3. Let f(0) = 0 and

S +iy)=2xy(x2+y®»~Y, x+iy#0.

Show that the first partial derivatives of f exist at each point and are both
zero at x = y = 0. Show that f is not differentiable (in fact not continuous)
at z = 0. Why does this not contradict Theorem 1.5?

4. Suppose f is holomorphic in Q and suppose the real and imaginary
parts u, v are of class C2 in Q. Show that ¥ and v are harmonic.

5. Suppose f is as in Exercise 4, and suppose the disc |z — z,| < R is
contained in Q. Use Exercise 4 together with Theorem 6.2 of Chapter 5 to
show that there is a power series > a,(z — z,)" converging to f(z) for
|z — zo] < R.

6. Suppose g is holomorphic in Q, and suppose Q contains the disc
|z — z] < R. Let f be such that f'(z) = g(z) for |z — z,|] < R (using
Corollary 1.7). Show that the real and imaginary parts of fare of class C2.

7. Use the results of Exercises 5 and 6, together with Theorem 1.4, to
prove the following theorem.

If g is holomorphic in Q and z, € Q, then there is a power series such that

g@@) = z a,(z — zp)", |z — zo] < R,

n=0

for any R such that Q contains the disc of radius R with center z,,.

§2. Complex integration

Suppose Q = C is open. A curve in Q is, by definition, a continuous
function y from a closed interval [a, b] = R into Q. The curve y is said to be
smooth if it is a function of class C* on the open interval (a, b) and if the
one-sided derivatives exist at the endpoints:

(t — a)~*[y(t) — v(a)] convergesas t—>a,t > a;
(t — b)~[y(t) — y(b)] convergesas t—>b,t <b.

The curve y is said to be piecewise smooth if there are points ay, ay, . . ., a,
with
a=ag,<a <---<a,=b



160 Complex Analysis

such that the restriction of y to [a,-,, a;] is a smooth curve, 1 < j < r. An
example is

M) = zo + e exp (it), te [0, 27];
then the image
{(@) | te o, 2]}
is the circle of radius e around z,. This is a smooth curve. A second example is

y1) =1, te[0,1],
y@)=1+iCt-1), te(1,2],
i)y=1+i—-(0-2), te(2,3],
wt) =i-(t— 3), te(3, 4]

Here y is piecewise smooth and the image is a unit square,
Suppose y: [a, b] — Q is a curve and f: Q — C. The integral of f over y,

L 5

is defined to be the limit, as the mesh of the partition P = (t, t;, ..., t,) of
[a, b] goes to zero, of

2, J6NAr) — -

Proposition 2.1. If y is a piecewise smooth curve in Q and f: Q — C is
continuous, then the integral of f over y exists and

M [7-] " frow @) .

Proof. The integral on the right exists, since the integrand is bounded
and is continuous except possibly at finitely many points of [a, b]. To prove
that (1) holds we assume first that y is smooth. Let P = (to, t,..., ;) be a
partition of [a, b]. Then
@ 2 — y(t-] = 2SN @ — il + R,

where
IR < sup |f()]-D, Int) — Ati-2) — Y1)t — =)

Applying the Mean Value Theorem to the real and imaginary parts of y on
[t;-1, t;] and using the continuity of y’, we see that

R—0 asthe mesh |P|—0.

On the other hand, the sum on the right side of (2) is a Riemann sum for
the integral on the right side of (1). Thus we have shown that the limit exists
and (1) is true.
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If y is only piecewise smooth, then the argument above breaks down on
intervals containing points of discontinuity of y’. However, the total contri-
bution to the sums in (2) from such intervals is easily seen to be bounded in
modulus by a constant times the mesh of P. Thus again the limit exists as
|P] =0 and (1) is true. [

Note that the integral J’y Jf depends not only on the set of points
) | te(a, b]}
but also on the “sense,” or ordering, of them. For example, if
‘)’1(1) = €Xp (it)a 72(’) = €xp (_it)’ te [0’ 2"];
then the point sets are the same but

f=-|r

Furthermore, it matters how many times the point set is traced out by y: if

‘Ya(’ ) = exp (int )s

J=rl.s

A curve y: [a, b] — Q is said to be constant if y is a constant function.
If so, then

then

Lf=0, all .

A curve y: [a, b] — Q is said to be closed if y(a) = y(b). (All the examples
given so far have been examples of closed curves.) Two closed curves
Yo, ¥1: [@, b] = Q are said to be homotopic in Q if there is a continuous

function
I':[a,b] x [0,1]>Q

such that

P(t9 0) = ‘)‘o(t), F(t9 1) = 71(’)’ allte [as b],
I'(a, s) = I'(b, ), all se[0, 1].

The function I' is called a homotopy from y, to y,. If I is such a homotopy,
let

7!(‘) = F(t, S), SE (0’ l)'
Then each v, is a closed curve, and we think of these as being a family of
curves varying continuously from y, to y;, within Q.

Theorem 2.2 (Cauchy’s Theorem). Suppose Q@ < C is open and suppose
[ is holomorphic in Q. Suppose y, and y, are two piecewise smooth closed
curves in Q which are homotopic in Q. Then

Jr=ls
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The importance of this theorem can scarcely be overestimated. We
shall first cite a special case of the theorem as a Corollary, and prove the
special case.

Corollary 2.3. Suppose Q is either a disc
{z| |z — 2| < R}
or a rectangle
x+iy|x1<x< x50 <y <ya}

Suppose f is holomorphic in Q and vy is any piecewise smooth closed curve

in Q. Then
ff=Q
k4

Proof. 1t is easy to see that in this case y is homotopic to a constant
curve vy,, so that the conclusion follows from Cauchy’s Theorem. However,
let us give a different proof. By Corollary 1.7, or by the analogous result
for a rectangle in place of a disc, there is a function A, holomorphic in Q,
such that &' = f. But then

[r=] " PO @) dt = [ KOO () di

= [ Ber1@ at = ho) ~ hoa) =0,

since y(a) = y(b). [
Proof of Cauchy’s Theorem. Let I' be a homotopy from vy, to y; and let
ys(t) = I'(s, 5), tela,b], se(0,1).

Assume for the moment that each curve y, is piecewise smooth. We would like
to show that the integral of f over y, is independent of 5,0 < s < 1.

Assume first that I is of class C? on the square [a, b] x (0, 1), that the
first partial derivatives are uniformly bounded, and that

Ye—>7v0 as s—0,
Ye—>y1 as s—1

uniformly on each interval (¢, d) < [a, b] on which y; or y}, respectively, is
continuous. These assumptions clearly imply that

o) = [ r=[ e G a
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is a continuous function of s, s € [0, 1]. Furthermore under these assumptions
we may apply results of §7 of Chapter 2 and differentiate under the integral
sign when s € (0, 1) to get

PO = [ & (706 516 9) d
- [ raes Zren g res a

+ f” AT 5) % I, s) dt

- [ 2[rwe.sn g v a

= fX, ) 2. TG, ) — T@ 5)) = T(a, 5)
=0

(since I'(b, s) = I'(a, 5)). Thus F(0) = F(1).

Finally; do not assume I' is differentiable. We may extend I in a unique
way so as to be periodic in the first variable with period & — a, and even and
periodic in the second variable with period 2; then I': R x R— Q. Let
¢: R— R be a smooth function such that

o(x) = 0, all x,
j P dx =1
o) =0 if|x| = 1.

Let gu(x) = np(nx), n = 1,2, 3,.... Then

J%(x) dx=1, ) =0if|x| >n-L
Let
Tu(t ) = [ T = 3,5 = Ypdpalr) dx dy,

(¢, s) e R x R. Then (see the arguments in §3 of Chapter 3) I', is also periodic
with the same periods as I', and I', —I' uniformly as n — co. It follows
from this (and the fact that I'(R x R) is a compact subset of Q) that
(R x R) = Q if n is sufficiently large. Furthermore, the argument above

shows that
[ r=] ¢

Yo,n Y1,n

where
Yen(?) = Ta(t,s), tela, b, s€el0,1].
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All we need do to complete the proof is show that
3) f f—>ff as n—>ow, s=0orl
Ys,n Ys

Note that we may choose the homotopy I' so that y, =y, for 0 < s <}
and y, = ¥, for 4 < s < 1; to see this, let ', be any homotopy from vy, to
¥, in Q, and let

L'(t, s) = yo(2), 0<s=<i,
I'(t,s) = To(t,3s — 1), P<s<y
L@, 5) = 7, $<s<L

If T" has these properties, then when n > 3 we have
T, s) = j T(t — x e x)dx, s=0orl.
It follows that y, , — ¥, uniformly, s = 0 or 1. It also follows, by differen-
tiating with respect to ¢, that y; , is uniformly bounded and
7;.1; - 7;

on each interval of [0, 1] where y; is continuous, s = 0 or 1. Therefore (3)
is true. [J

Exercises

1. Suppose y,: [a, b] = Q and y;: [¢, d] = Q are two piecewise smooth
curves with the same image:

C ={n(t) | tela,b]} = {rs(t) | t€[c, d]}.
Suppose these curves trace out the image in the same direction, i.e., if

s, t€la, b), s', t' e[c, d]

and
71(5) = ya(s") # v1(t) = va(t)
and
s<t
then
s’ <t

Show that for any continuous f: Q — C (not necessarily holomorphic),

Jr=1
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This justifies writing the integral as an integral over the point set C:
| =] r@d,
71 (+]
where we tacitly assume a direction chosen on C.

2. Suppose Cin Exercise 1 is a circle of radius R and suppose | f(2)| < M,
all ze C. Show that

\ L f(z)dz| < M-2aR.

3. Let 9(t) = zo + ee, t € [0, 27], where ¢ > 0. Show that
f (z — 25)~! = 2qi.
Y
4, Let y,(t) = exp(int), te[0,2x),n =0, 1, £2,.... Show that

f z~! = 2nmi.
?;

5. Let Q = {ze C | z # 0}. Use the result of Exercise 4 to show that the
curves y, and y,, are not homotopic in Q if n # m. Show that each v, is
homotopic to y, in C, however.

6. Use Exercise 4 to show that there is no function £, defined for all z # 0,
such that f(z) = z7%, all z # 0. Compare this to Corollary 1.7.
7. Let Q be a disc with a point removed:

Q={z||z— 20| <R,z # z,},
where |z — z,| < R. Let y, and y, be two circles in Q enclosing z,, say

yo(t) = z, + e€*,  te[0,2n],
yi(t) = z + re®, te [0, 2x).

Here |z — z;] < r < R and & > 0 is chosen so that |y,(1) — z;| > e, all #.
Construct a homotopy from vy, to y;.
8. Suppose Q contains the square

{x+iy|0<x,y<1}

Suppose fis differentiable at each point of Q; here we do not assume that f*
is continuous. Let C be the boundary of the square, with the counterclockwise
direction. Show that

L f(2)dz = 0.

This extension of Corollary 2.3 is due to Goursat. (Hint: for each integer
k > 0, divide the square into 4% smaller squares with edges of length 2-*,
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Let Cy,y,-- -, Ci, o be the boundaries of these smaller squares, with the
counterclockwise direction. Then show that

L fyd =3[ fed

Crk,g

It follows that if

=M>0,

Jc 1) dz

then for each k there is a j = j(k) such that

f /(z)dzl > 4-k,
Ck

where C,, = C, ;. Let z), be the center of the square with boundary C;.
There is a subsequence z, of the sequence z, which converges to a point
z of the unit square. Now derive a contradiction as follows. Since f is
differentiable at z,
JW) =f(2) + f @)W — 2) + r(w)
where
[r(wW)w — 2)"Y -0 as w—z

Therefore for each ¢ > O there is a 8 > 0 such that if C, is the boundary
of a square with sides of length 4 lying in the disc |[w — z| < §, then

< &h?,

f(2) dz

§3. The Cauchy integral formula

There are many approaches to the principal results of the theory of
holomorphic functions. The most elegant approach is through Cauchy’s
Theorem and its chief consequence, the Cauchy integral formula. We begin
with a special case, which itself is adequate for most purposes.

Theorem 3.1. Suppose f is holomorphic in an open set Q. Suppose C is a
circleor rectangle contained in Q and such that all points enclosed by C are
in Q. Then if w is enclosed by C,

1) fw) = 2Lm fcf(z)(z - w)"1dz.

(Here the integral is taken in the counterclockwise direction on C.)

Proof. Let y,: [a, b]] - Q be a piecewise smooth closed curve whose
image is C, traced once in the counterclockwise direction. Given any positive
& which is so small that C encloses the closed disk of radius and center w,
let C, be the circle of radius ¢ centered at w.
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We can find a piecewise smooth curve y, : [a, b] — Q which traces out C,
once in the counterclockwise direction and is homotopic to y, in the region
Q with the point w removed. Granting this for the moment, let us derive (1).
By Exercise 1 of §2, and Cauchy’s Theorem applied to g(z) = f(z)(z — w)~},
we have

Lﬂm?—wdh=ig=ﬁg=Lf®&—w”h,
SO
a)LﬂmrﬂwwhaLﬂmc—m*a+L[ﬂw—ﬂmc—m*a.

By Exercise 2 of §2, the first integral on the right in (2) equals 2if(w). Since
fis differentiable, the integrand in the second integral on the right is bounded
as e — 0. But the integration takes place over a curve of length 2e, so this
integral converges to zero as ¢ — 0. Therefore (1) is true.

Finally, let us construct the curve y, and the homotopy. For ¢ € [a, b),
let y,(¢) be the point at which C, and the line segment joining w to y.(¢)
intersect. Then for 0 < s < 1, let

L@t s) = (1 = s)yo(t) + sya(2).
It is easily checked that y, and I" have the desired properties. []

The preceding proof applies to any situation in which a given curve y, is
homotopic to all small circles around w € Q. Let us make this more precise.
A closed curve y in an open set Q is said to enclose the point w € Q within Q
if the following is true: there is a 8 > 0 such that if 0 < ¢ < 8 then y is
homotopic, in Q with w removed, to a piecewise smooth curve which traces
out once, in a counterclockwise direction, the circle with radius ¢ and center
w. We have the following generalization of Theorem 3.1.

Theorem 3.2. Suppose f is holomorphic in an open set Q. Suppose vy is a
Dpiecewise smooth closed curve in Q which encloses a point w within Q. Then

©) ) = 5 [ 1) - W s

Equation (3) is the Cauchy integral formula, and equation (1) is essentially
a special case of (3). (In section 7 we shall give another proof of (1) when C
is a circle.)

The Cauchy integral formula makes possible a second proof of the result
of Exercise 5, §1: any holomorphic function can be represented locally as a
power series.

Corollary 3.3. Suppose f is holomorphic in Q, and suppose Q contains
the disc
{z| |z — z| < R}.
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Then there is a unique power series such that

(O] fw) = i a,(w — z)",  all wwith |w — z5| < R.

n=0

Proof. Suppose 0 < r < R, and let C be the circle of radius r centered
at z,, with the counterclockwise direction. If |w — z,| < r and z € C then

|w = zofz — 20)"}| =85 < 1.
We expand (z — w)~' in a power series:
z—w=2z—2o—(W—2) =(z— 2)[l = (w— z)(z— z)"?),

so

(z—wt=(z—12z)"? i (u)”.

n=0 Z=2

The sequence of functions

N
gn(@) = f(2) Zo W — zp)X(z — zo)~™1

converges uniformly for z € C to the function

fie)(z — w)~L.
Therefore we may substitute in equation (1) to get (4) with
=L — gy-n-1
©) @y = 5y | Fee = 2 .

This argument shows that the series exists and converges for [w — z,| < r.
The series is unique, since repeated differentiation shows that

(6) n! a, = f™(z,).

Since r < R was arbitrary, and since the series is unique, it follows that it
converges for all |[w — z| < R. []

Note that our two expressions for a, can be combined to give
!
™ ) = g | f@Ne = z0n = da.
i J o

This is a special case of the following generalization of the Cauchy integral
formula.

Corollary 3.4. Suppose f is holomorphic in an open set containing a circle
or rectangle C and all the points enclosed by C. If w is enclosed by C then the
nth derivative of f at w is given by

® 1o = 50 [ e = w2 de.
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Proof. Let C, be a circle centered at w and enclosed by C. Then by the
Cauchy integral theorem, and the argument given in the proof of Theorem
3.1, we may replace C by C, in (8). But in this case the formula reduces to
the case given in (7). [

A function f defined and holomorphic on the whole plane C is said to be
entire. The following result is known as Liouville’s Theorem.

Corollary 3.5. Iffis an entire function which is bounded, then f is constant.

Proof. We are assuming that there is a constant M such that | f(z)| < M,
all ze C. It is sufficient to show that /' = 0. Given we C and R > 0, let C
be the circle with radius R centered at w. Then

100 = 5 [ 10~ w2 s
SO
'] =< zi‘”-M-R‘2~21rR = MR-1,

Letting R— 0 we get f'(w) = 0. [

A surprising consequence of Liouville’s Theorem is the “Fundamental
Theorem of Algebra.”

Corollary 3.6. Any nonconstant polynomial with complex coefficients has
a complex root.

Proof. Suppose p is such a polynomial. We may assume the leading
coefficient is 1:

p(z) =2z" + a,._lz“‘l 4+ 4 al(z) + a,.
It is easy to show that there is an R > 0 such that
@) |p(2)| = 3z|*  if|z| = R.

Now suppose p has no roots: p(z) # 0, all ze C. Then f(z) = p(z)~! would
be an entire function. Then f would be bounded on the disc |z| < R, and
(8) shows that it would be bounded by 2R~" for |z] > R. But then fwould be
constant, a contradiction. []

Exercises

1. Verify the Cauchy Integral Formula in the form (1) by direct com-
putation when f(z) = e® and C is a circle.

2. Compute the power series expansion (4) in the following cases. (Hint:
(6) is not always the simplest way to obtain the a,.)

(@) f(2) = sin z, z, = ¥m.

(b) €3, z, arbitrary.
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©ER=22-22+z+i,2zy= —i.

@DfE@)=0C—-1DE+ D72z =2.

3. Derive equation (8) directly from (1) by differentiating.

4. Suppose f is an entire function, and suppose there are constants M
and » such that

|f@)] < M(1 + |2]), allzeC.

Show that f is a polynomial of degree <n. Show that, conversely, any
polynomial of degree <n satisfies such an inequality.

5. The Cauchy integral formula can be extended to more general situa-
tions, such as the case of a region bounded by more than one curve. For
example, suppose Q contains the annulus

A={z|r<|z—-2| <R},
and also the two circles
Ci={z|lz— 2| =r}, Co={z||z—-2z| =R}

which bound 4. Give C; and C, the counterclockwise direction. Then if
w e A, and fis holomorphic in Q, show that

O S0 =5 [ e - - o [ S -t

(Hint: choose a€ C, |a] =1 so that w does not lie on the line segment
L={z, + ta|r <t < R} joining C, to C,. There is a curve y tracing out
L, then C; in the counterclockwise direction, then L in the reverse direction,
then C, in the clockwise direction. This curve is homotopic in Q to any
small circle about w. Moreover, the integral of f(z)(z — w)~! over y equals
the right side of (*¥), since the two integrations over L are in the opposite
directions and cancel each other.)

6. Extend the result of Exercise 5 to the following situation: Q contains
a circle or rectangle C, together with all points enclosed by C except
21, 29y ..., 2. Let Cy, C,, ..., C, be circles around these points which do
not intersect each other or C. If fis holomorphic in Q and w € Q is enclosed
by C, then

1 1
1) = g [ SO =Wt = 5 o [ e~ w2
again, all integrals are taken in the counterclockwise direction.

7. Suppose f: Q — C is merely assumed to be differentiable at each
point of the open set Q, and suppose Q contains a rectangle C and all points
enclosed by C. Suppose w is enclosed by C. Modify the argument of Exercise
8, §2, to show that the integral in (1) remains unchanged if we replace C by
any rectangle enclosed by C and enclosing w. Therefore show that (1) holds
in this case also.

8. Use the result of Exercise 7 to show that if fis differentiable at each
point of an open set Q, the derivative is necessarily a continuous function.
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§4. The local behavior of a holomorphic function

In this section we investigate the qualitative behavior near a point z, € C
of a function which is holomorphic in a disc around z,. If fis not constant,
then its qualitative behavior near z, is the same as that of a function of the
form

f(2) = ao + an(z — zo)"
where a, and q,, are constants, a,, # 0, and m > 1.

Lemma 4.1. Suppose f is holomorphic in an open set Q and z,€ Q. If
fis not constant near z,, then

m S(2) = a0 + an(z — zo)"h(2)

where a, and a, are constants, m > 1, and h is holomorphic in Q with h(z,) = 1.
Proof. Near z,, fis given by a power series expansion

@ f@) =ao + axz — 20) ++ -+ aulz — zo)* +---.

Let m be the first integer >1 such that a,, # 0. Then (2) gives (1) with

h(z) = i 4,8,z — zo)"™™

This function is holomorphic near z,, and A(z,) = 1. On the other hand,
(1) defines a function % in Q except at z,, and the function so defined is
holomorphic. Thus there is a single such function holomorphic through-
out Q. []

Our first theorem here is the Inverse Function Theorem for holomorphic
functions.

Theorem 4.2. Suppose f is holomorphic in an open set Q, and suppose
20€Q, f'(zo) # 0. Let wy = f(2,). Then there is an &; > 0 and a holomorphic
Junction g defined on the disc |w — wo| < &, such that

g{w| |w — wo| < &}) is open,
flgw) =w  if [w— wp| < &;.

In other words, f takes an open set containing z, in a 1-1 way onto a disc
about w,, and the inverse function g is holomorphic.

Proof. We begin by asking: Suppose the theorem were true. Can we
derive a formula for g in terms of f? The idea is to use the Cauchy integral
formula for g, using a curve y around w, which is the image by f of a curve
around z,, because then we may take advantage of the fact that g(f(2)) = z.
To carry this out, let 8 > 0 be small enough that Q contains the closed disc
|z — zo| < 8; later we shall further restrict 8. Let

YO(t) = 2z, + de*, te [0, 2x],
1) = flyo(1)),
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and let C be the circle of radius 8 around z,. Assuming the truth of the
theorem and assuming that y enclosed w;, we should have

glm) = 2—15‘[ gw)(w — wy)~?
271_[ g(‘)'(t))y (t)[y(t) - wll-l dt

= 2—11'-1 fo Yo(£).Sf (vo(t WL o(?)) — wil~ 14t

or
©) 800) = 5 [ @U@ - wl

Our aim now is to use (3) to define g and show that it has the desired prop-
erties. First, note that (1) holds with m = 1. We may restrict 8 still further,
so that |h(z)| = 4 for z e C. This implies that f(z) # w, if z€ C. Then we
may choose ¢ > 0 so that

f@#w, if|lw,—wy| <e and zeC.

With this choice of & and e, (3) defines a function g on the disc |w; — wo| < e.
This function is holomorphic; in fact it may be differentiated under the
integral sign.

Suppose

|21 — 20l <8  flz1) =w,, and |w; — wo| <e.

We can, and shall, assume that 8 is chosen so small that f'(z) # 0 when
|z = 25| < 8. Then

@) = w1 = f(2) = flzz) = (z — 2)k(2)

where k is holomorphic in Q and k(z,) = f'(z,) # 0. Therefore k is nonzero
in Q. We have

1 ’
80) = 5 | @z — 2
But the right side is the Cauchy integral formula for

21 f'(z1)k(zy) "t = z,.
Thus g(f(z,)) = z, for z, near z,, and we have shown that f'is 1-1 near z,.

Also
1 = (g°f)(z0) = g'(Wo)f"(20),

50 g'(wo) # 0. Therefore g is 1-1 near w,. We may take e, > 0 so small that
& < &, and so that g is 1-1 on the disc |w — wy| < e,. We may also assume
e, < &g so small that

[w — wo| < & implies [g(w) — zo| < &
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and
| /(gW)) — wo| < 2.

But then for |w — w,| < &, we have

g(f(g(W))) = g(w),

and since g is 1-1 on |w — wp| < e, this implies

flgw)) = w. 0

As an example, consider the logarithm. Suppose wo € C, w, # 0. We
know by results of §6 of Chapter 2 that there is a zp, € C such that e% = w,.
The derivative of e* at z, is €0 = wy % 0. Therefore there is a unique way of
choosing the logarithm

z = logw,

z near z,, in such a way that it is a holomorphic function of w near w.
(In fact, we know that any two determinations of log w differ by an integral
multiple of 2#i; therefore the choice of log w will be holomorphic in an
open set Q if and only if it is continuous there.) By definition a branch of
the logarithm function in Q is a choice z = logw, we Q, such that z is a
holomorphic function of w in Q.

As a second example, consider the nth root, n a positive integer. If wy # 0,
choose a branch of log w holomorphic in a disc about w,. Then if we set

1
1n 2
wl* = exp (n log w),
this is a holomorphic function of w near w, and

(W) = exp (n% log w) = exp (logw) = w.

We refer to w'/™ as a branch of the nth root.
There are exactly n branches of the nth root holomorphic near w,. In
fact, suppose
Zo" = Wy = zl".

Then for any choice of log z, and log z,,

exp (nlog z,) = exp (nlog z,),
$O
nlog zo = nlog z; + 2mmi,

some integer m. This implies
4) Zo = exp (log zp) = - - = z, exp 2mmin~?).

Since
exp (2mmin~') = exp 2m'min~1)

if and only if (m — m’)n—1 is an integer, we get all n distinct nth roots of wy
by letting z, be a fixed root and takingm = 0,1,...,n — 1 in (4).
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We can now describe the behavior of a nonconstant holomorphic function
near a point where the derivative vanishes.

Theorem 4.3. Suppose f is holomorphic in an open set Q, and suppose
2o € Q. Suppose f is not constant near z,, and let m be the first integer >1 such
that f™(z,) # 0. Let wy = f(2o). There are e > 0 and & > O such that if

O<|w—w| <e
there are exactly m distinct points z such that
|z—20| <& and f(z) = w.
Proof. By Lemma 4.1,
S2) = wo + (z — z))"h(2),

where h is holomorphic in Q and /(z,) % 0. Choose a branch g of the mth
root function which is holomorphic near h(z,). Then near z,,

(@) = wo + [z — z)(gh(2)I" = wo + k(2)",

where k is holomorphic near z,. Then k(z,) = 0, k'(z,) = g'(h(zo)) # 0. For
z near z,, Z # 2z,, we have

f() =w if and only if k(z) = (W — wo)*™

for some determination of the mth root of w — w,. We can apply Theorem
4.2 to k: there are e, 3 so that

k(z) =1t

has a unique solution z in the disc |z — z,| < 8 for each ¢ in the disc
[t| < &m. But if

O<|w—wy| <e
then w — w, has exactly m mth roots ¢, all with |¢| < /™. []

The following corollary is called the open mapping property of holo-
morphic functions.

Corollary 4.4. If Q is open and f: Q — C is holomorphic and not constant
near any point, then f(Q) is open.

Proof. Suppose w, € f(Q). Then wy = f(z,), some z, € Q. We want to
show that there is an ¢ > 0 such that the disc |w — wy| < eis contained in
S(Q). But this follows from Theorem 4.3. []

Exercises

1. Use Corollary 4.4 to prove the Maximum Modulus Theorem: if f is
holomorphic and not constant in a disc |z — zo| < R, then g(z) = | f(2)|
does not have a local maximum at z,,.
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2. With fas in Exercise 1, show that g(z) = | f(z)| does not have a local
minimum at z, unless f(z,) = 0.

3. Use Exercise 2 to give another proof of the Fundamental Theorem of
Algebra.

4. Suppose z = log w. Show that Re z = log |w|.

5. Suppose f is holomorphic near z, and f(z,) # 0. Show that log | f(2)|
is harmonic near z,,.

6. Use Exercise 5 and the maximum principle for harmonic functions to
give another proof of the Maximum Modulus Theorem.

7. Use the Cauchy integral formula (for a circle with center z,) to give
still another proof of the Maximum Modulus Theorem.

8. Use the Maximum Modulus Theorem to prove Corollary 4.4. (Hint:
let wo = f(z,) and let C be a small circle around z, such that f(z) # w, if
z€ C. Choose & > 0 so that | f(z) — wo| = 2eif ze C. If [w — wy| < ¢, can
(f(z) — w)~* be holomorphic inside C?

9. A set Q < C is connected if for any points z,, z;, € Q there is a (con-
tinuous) curve y: [a, b] - Q with y(a) = zo, ¥(b) = z,. Suppose Q is open
and connected, and suppose f'is holomorphic in Q. Show that if fis identically
zero in any nonempty open subset Q; < Q, then f = 0in Q.

10. Let Q be the union of two disjoint open discs. Show that Q is not
connected.

§5. Isolated singularities

Suppose f'is a function holomorphic in an open set Q. A point z, is said
to be an isolated singularity of fif z, ¢ Q but if every point sufficiently close
to z, is in Q. Precisely, there is a 8 > 0 such that

zeQ if0<|z— 2| <38.

For example, 0 is an isolated singularity for f(z) = z~*, n a positive integer,
and for g(z) = exp (1/z). On the other hand, according to the definition, 0
is also an isolated singularity for the function f which is defined by f(z) = 1,
z # 0 and is not defined at 0. This example shows that a singularity may
occur through oversight: not assigning values to enough points. An isolated
singularity z, for f'is said to be a removable singularity if f can be defined at z,
in such a way as to remain holomorphic.

Theorem 5.1. Suppose z, is an isolated singularity for the holomorphic
function f. It is a removable singularity if and only if f is bounded near z,,
i.e., there are constants M, 8 > 0 such that

¢y /@l =M if0<|z-2z| <8

Proof. Suppose z, is a removable singularity. Then f has a limit at z,,
and it follows easily that (1) is true.
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Conversely, suppose (1) is true. Choose r with 0 < r < 8 and let e > 0
be such that 0 < e < r. Let C be the circle with center z, and radius r. Given
w with 0 < |w — z,| < r, choose & so small that 0 < e < |w — 2|, and let
C, be the circle with center z, and radius e. By Exercise 5 of §3,

1o = 5 [ 16 =Wt~ o [ S0 — i

Since f'is bounded on C independent of &, the second integral goes to zero as
& — 0. Thus

(¢)) Jfw) = %ﬁfcf(z)(z — w)~1dz, O<|w—2z|<nr

We may define f(z,) by (2) with w = z,, and then (2) will hold for all w,
|w — zo| < r. The resulting function is then holomorphic. [J

An isolated singularity z, for a function fis said to be a pole of order n
for f, where n is an integer >1, if fis of the form

(©) @) = (z — 20)7"2(?)

where g is defined at z, and holomorphic near z,, while g(z,) # 0. A pole of
order 1 is often called a simple pole.

Theorem 5.2. Suppose z, is an isolated singularity for the holomorphic
Sunction f. It is a pole of order n if and only if the function

(z = 20)(2)
is bounded near z,, while the function

(z = z)*"*f(2)

is not.

Proof. It follows easily from the definition that if z, is a pole of order »
the asserted consequences are true.

Conversely, suppose (z — 2,)"/(z) = g(z) is bounded near z,. Then z, is
an isolated singularity, so we may extend g to be defined at z, and holo-
morphic. We want to show that g(z,) # 0 if (z — z,)*~f(z) is not bounded
near z,. But if g(z,) = O then by Lemma 4.1,

8() = (z — z)"h(2)

for some m > 1 and some h holomorphic near z,. But then (z — z,)"~f(2) =
(z — zo)™*h(z) is bounded near z,. []

An isolated singularity which is neither removable nor a pole (of any
order) is called an essential singularity. Note that if z, is a pole or a removable
singularity, then for some aeC or a = ©

f(Z)—>a as z—z

This is most emphatically not true near an essential singularity.
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Theorem 5.3 (Casorati-Weierstrass). Suppose z, is an isolated singularity
Jor the holomorphic function f. If z, is an essential singularity for f, then for
any ¢ > 0 and any a € C there is a z such that

|z —2)| <&, |f(2) —a| <e.
Proof. Suppose the conclusion is not true. Then for some ¢ > 0 and
some a € C we have
|f(2) —al = ¢ where 0 < |z— 2| <e.

Therefore h(z) = (f(z) — a)~?! is bounded near z,. It follows that # can be

extended so as to be defined at z, and holomorphic near z,. Then for some

=0 h(2) = (z — zo)™k(2)

where k is holomorphic near z, and k(z,) # 0. We have
f@)=a+h@)*=a+ (z—2)""E)"" 0<]|z—2z|<e

Therefore z, is either a removable singularity or a pole for £. [

Actually, much more is true. Picard proved that if z, is an isolated essen-
tial singularity for f, then for any «¢ > 0 and any a € C, with at most one
exception, there is a z such that 0 < |z — zp| < £ and f(z) = a. An example
is f(z) = exp (1/z), z # 0, which takes any value except zero in any disc
around zero.

Isolated singularities occur naturally in operations with holomorphic
functions. Suppose, for example, that f is holomorphic in Q and z, € Q.
If f(z,) # 0, then we know that f(z)~! is holomorphic near z,. The function
fis said to have a zero of order n (or multiplicity n) at z,, n an integer > 0, if

f%)(zo) = 0, 0<k<n
F™(z0) # 0.

(In particular, f has a zero of order zero at z, if f(z,) # 0.) A zero of order
one is called a simple zero.

Lemma 5.4. If f is holomorphic near z, and has a zero of order n at z,,
then f(z)~* has a pole of order n at z,.

Proof. By Lemma 4.1,
C) f(2) = (z — 20)"h(2),

where A is holomorphic near z, and h(z,) ¢ 0. The desired conclusion
follows. 01

For example, the function
sec z = (cos z)~?!

is holomorphic except at the zeros of cos z, where it has poles (of order 1).
The same is then true of

tan z = sin z(cos z)~! = sin z sec z.
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It is convenient to assign the ““value” oo at z, to a holomorphic function
with a pole at z,. Similarly, if z, is a removable singularity for f we shall
consider f as being extended to take the appropriate value at z,. With these
conventions we may work with the following extension of the notion of
holomorphic function.

Suppose Q < C is an open set. A function f: Q — C U {oo} is said to
be meromorphic in Q if for each point z, € Q, either z, is a pole of f, or fis
holomorphic in the disc |z — 2z,| < & for some & > 0.

Theorem 5.5. Suppose Q is open and f, g are meromorphic in Q. Suppose
a € C. Then the functions

o, f+sg fg

are meromorphic in Q. If Q is connected and g # 0 in Q, then f|g is mero-
morphic in Q.

Proof. We leave all but the last statement as an exercise. Suppose Q is
connected, i.e. for each z,, z; € Q there is a continuous curve y: [0, 1] - Q
with y(0) = z,, ¥(1) = z,. Given any z, € Q, either g(z)~* is meromorphic
near z, or g vanishes in a disc around z,. We want to show that the second
alternative implies g = 0 in all of Q.

Suppose g vanishes identically near z, € Q and suppose z; is any other
point of Q. Let y be a curve joining z, to z;: (0) = 2o, ¥(1) = z;. Let 4 be
the subset of the interval [0, 1] consisting of all those ¢ such that g vanishes
identically near y(¢). Let ¢ = lub A. There is a sequence (#,)T < A4 such that
t, —c¢. If g did not vanish identically near y(c) then either g(y(c)) # 0, or
y(c) is a zero of order n for some n, or y(c) is a pole of order » for some n.
But then (see (3) and (4)) we could not have g identically zero near y(z,) for
those n so large that y(t,) is very close to y(c). Thus g vanishes identically
near ¢. This means that ¢ = 1, since otherwise g vanishes identically near
y(c + &) for small e > 0. Therefore g(z,) = g(¥(1)) = g(¥(c)) = 0.

We know now that given z, € Q, either g(z,) # O or z, is either a zero or
pole of order n for g. It follows that either g(z)~? is holomorphic near z,,
or, by (4), that z, is a pole of order n, or, by (3), that z, is a zero of order n.
Thus g(z) ! is meromorphic in Q, and so f]g is also. []

Exercises

1. Prove the rest of the assertions of Theorem 5.5.

2. Show that tan z is meromorphic on all of C, with only simple poles.
What about (tan z)2?

3. Determine all the functions f, meromorphic in all of C, such that

|f(z) — tanz| < 2

at each point z which is not a pole either of f or of tan z.
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4. Suppose f has a pole of order n at z,. Show that there are an R > 0
and a 3 > O such that if |w| > R then there are exactly n points z such that
(@) =w, |z — zo| < 8.

(Hint: recall Theorem 4.3.)
5. A function f'is said to be defined near o if there is an R > 0 such that
{z|lz| > R}

is in the domain of definition of f. The function f is said to be holomorphic
at oo if 0 is a removable singularity for the function g defined by

g2 = f(1/2),

1/z in the domain of f. Similarly, co is said to be a zero or pole of order n
for fif 0 is a zero or pole of order n for g. Discuss the status of co for the
following functions:

(@) f(2) = z", n an integer.
(®) f(2) = e

(©) f(z) = sin z.

(d) f(2) = tan z.

6. Suppose z, is an essential singularity for £, while g is meromorphic near
zo and not identically zero near z,. Is z, an essential singularity for fg? What
if, in addition, z, is not an essential singularity of g?

§6. Rational functions; Laurent expansions; residues

A rational function is the quotient of two polynomials:

f(@) = p(2)/q(2)

where p and g are polynomials, g # 0. By Theorem 5.4, a rational function is
meromorphic in the whole plane C. (In fact it is also meromorphic at co;
see Exercise 5 of §5.)

It is easy to see that sums, scalar multiples, and products of rational
functions are rational functions. If fand g are rational functions and g # 0,
then f]g is a rational function. In particular, any function of the form

M f@) =az — 20)™* + ay(z — z)™2 +- - + axz — z)™"
is a rational function with a pole at z,. We can write
@ fz) = p((z — z0)™Y)

where p is a polynomial with p(0) = 0. It turns out that any rational function
is the sum of a polynomial and rational functions of the form (1).

Theorem 6.1. Suppose f is a rational function with poles at the distinct
points zy, zg, . .., 2, and no other poles. There are unigue polynomials p,,
Dis - - -» Pm Such that p(0) = 0 if j # 0 and
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€) @) = po(2) + p((z — 2)7Y) + - + Pul(z — zw)™7).

Proof. Weinduce on m. If m = 0, then fhas no poles. Thus fis an entire
function. We have f = p/q where p and g are polynomials and g # 0. Suppose
p is of degree r and g is of degree s. It is not hard to show that there is a
constant a such that

2*°'f(z) >a as z— oo,

This and Exercise 4 of §3 imply that fis a polynomial.

Now suppose the assertion of the theorem is true for rational functions
with m — 1 distinct poles, and suppose f has m poles. Let z, be a pole of f,
of order r. Then

@) = (z — z0)7"h(2),

where h is holomorphic near z,. Near z,,

W) = 3, ae = =
Therefore
f@) = ao(z — 2))™" + ax(z — 2o)* "+ + @y _1(z — 20)” + K(2),

where k is holomorphic near z,. Now k is the difference of two rational
functions, hence is rational. The function g = f — k has no poles except at
2o, SO the poles of k are the poles of f which differ from z,. By the induction
assumption, k has a unique expression of the desired form. Therefore f has
an expression of the desired form.

Finally, we want to show that the expression (3) is unique. Suppose p,
is of degree k. The coefficient b, of z* in p, can be computed by taking limits
on both sides in (3):

lim z7*¥f(z) = lim z7%*py(z) = b.
2= 2= X0
Therefore the coefficient of z*~* can be computed:

lim z*~*[f(z) — b,z*] = b,-,, etc.

Continuing in this way, we determine all coefficients of p,. Similarly, if p,
is of order r then the coefficient of the highest power of (z — z;)~*in (3) is
lim (z - zl)'f(z) =G

2-'31
the coefficient of the next power is

lim (z — 2 /@) — oz = 2)™)

All coefficients may be computed successively in this way. []

The expression (3) is called the partial fractions decomposition of the
rational function f.
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Let us note explicitly a point implicit in the preceding proof. If f has a
pole of order r at z,, then

fi@ = z bu(z — zp)~", 0<|z—12z| <38,

ns -y

some 8 > 0. This generalization of the power series expansion of a holo-
morphic function is called a Laurent expansion. It is one case of a general
result valid, in particular, near any isolated singularity.

Theorem 6.2. Suppose f is holomorphic in the annulus
A={z|r<|z-2z| <R}

Then there is a unique two sided sequence (a,)= » < C such that

@ D=3 az—z), r<lz—z| <R

Proof. Suppose r < |z — z5| < R. Choose ry, R, such that
r<r1<|z—z°| <R1<R.

Let C, be the circle of radius r, and C, the circle of radius R, centered at z,.
By Exercise 5 of §3,

1@ = g | SO0 = 27w = 5 [ fonw = z0)

= fa(2) + £i(2).

Here f; and f; are defined by the respective integrals. We consider f; as
being defined for |z — z,| < R, and f; as being defined for |z — z,| > r;.
Then f; is holomorphic and has the power series expansion

® fa2) = Z an(z — 2o)", |z = zo| < Ry

n=0
Moreover, by the Cauchy integral theorem we may increase R, without
changing the values of f; on |z — zo| < R,; thus the series (5) converges
for |z — z5| < R.

The function f; is holomorphic for |z — z,| > r,. Again, by moving the
circle C;, we may extend f; to be holomorphic for |z — z,| > r. To get an
appropriate series expansion we proceed as in the proof of Corollary 3.3.
When |z — z,| > ryand |w — zo| =1y,

W—2)t=(w—2)—(z—2))" = —(z—2)7[1 — (W= 2z)(z — z0)"*]*

= - z (W —z)* Yz — zo)™™
n=1
The series converges uniformly for w € C,, so

© A= a ez -z

n=1
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where

a_, = 2—i‘_-iLlf(w)(w — zo)" "t aw.

Equations (5) and (6) together give (4).
Finally, we want to prove uniqueness. Suppose (4) is valid. Then the
power series

i an(z - zo)"

n= =0

converges for r < |z — zo| < R, so it converges uniformly on any smaller
annulus. It follows that if C is any circle with center z,, contained in A4, then
(3) may be integrated term by term over C. Since

fc (z — zo)* dz

is zero for n # 1 and 2ai for n = —1, this gives

0] 4oy = 2lm L 1) d=.

More generally we may multiply /by (z — z,) "™~! and integrate to get

® On = 3 | SO =~ 20"

all m. Thus the coefficients are uniquely determined. []

In particular, Theorem 6.2 applies when f has an isolated singularity at
2Z,. In this case the Laurent expansion (3) is valid for

0<|z—2| <R,

some R > 0. The coefficient a_, is called the residue of f at z,. Equation (7)
determines the residue by evaluating an integral; reversing the viewpoint
we may evaluate the integral if we can determine the residue. These observa-
tions are the basis for the “calculus of residues.” The following theorem is
sufficient for many applications.

Theorem 6.3. Suppose C is a circle or rectangle. Suppose f is holomorphic
in an open set Q containing C and all points enclosed by C, except for isolated
singularities at the points zy, z,, . . ., z,, enclosed by C. Suppose the residue of
fatz;is by Then

©) L f(@) dz = 2mi(by + bg +-- - + bu).

Proof. Let Cy,..., C, be nonoverlapping circles centered at z,,..., z,
and enclosed by C. Then

2mib, = | f(2) dz.
Cy



Rational functions; Laurent expansions; residues 183

Applying Exercise 6 of §3, we get (9). [

If f has a pole at z,, the residue may be computed as follows. If n is the
order of the pole,

£2) = (2 — 20)~"h(z) = (z — z)~ z balz — z)",

so the residue at z, is
bu-1 = [(m — DA™~ (z,).
In particular, at a simple pole m = 1 and the residue is 4(z,).

Let us illustrate the use of the calculus of residues by an example. Suppose
we want to compute

I =f (1 + 131 dr
0
and have forgotten that (1 + #2)~! is the derivative of tan—* z. Now
I= %f ( + -1 dr.

Let Cg, R > 0, be the square with vertices + R and + R + Ri. Let f(2) =
(1 + z%)~. The integral of f over the three sides of C; which do not lie on
the real axis is easily seen to approach zero as R — 0o, Therefore

) R
f A+ rdi=tim [ A+ rar
© reoJ_p

= lim f(2) dz.
R=> Cr

For R > 1, fis holomorphic inside C; except at z = i, where it has a simple

pole. Since

f@=c-Dz+D7

the residue at i is (2i)~*. Therefore when R > 1,

f(2) dz = 27i(2i)~ = =
Cr
We get I = 4= (which is tan—! (4+-00) — tan~! 0, as it should be).

We conclude with some further remarks on evaluating integrals by this
method. Theorem 6.3 is easily shown to be valid for other curves C, such as
a semicircular arc together with the line segment joining its endpoints, or a
rectangle with a portion or portions replaced by semicircular arcs. The
method is of great utility, depending on the experience and ingenuity of the
user.
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Exercises

1. Compute the partial fractions decomposition of
(2 - 3z+2)Y, (B4 222 +2)°L

2. Find the Laurent expansion of exp (1/z) and sin (1/z) at 0.
3. Compute the definite integrals

f t + 1)F® — 203 + 1 — 20)-1 dt

f 1954 + 1)1 db.
o

4. Show that : t~1sin t dt = 4n. (Hint: this is an even function, and
it is the imaginary part of f(z) = z~'e'*. Integrate f over rectangles lying in
the half-plane Im z > 0, but with the segment —z < ¢ < & replaced by a
semicircle of radius e in the same half-plane, and let the rectangles grow long
in proportion to their height.)

5. Show that a rational function is holomorphic at co or has a pole at co.

6. Show that any function which is meromorphic in the whole plane and
is holomorphic at oo, or has a pole there, is a rational function.

7. Show that if Re z > 0, the integral

ma=jt”%4w
(1]

exists and is a holomorphic function of z for Re z > 0. This is called the
Gamma function.
8. Integrate by parts to show that

I'z+ 1) =2I'(z), Rez>0.
9. Define I'(z) for —1 < Rez < 0, z # 0, by
I'(z) = z7I'(z + 1).

Show that I' is meromorphic for Re z > —1, with a simple pole at zero.

10. Use the procedure of Exercise 9 to extend I' so as to be meromorphic
in the whole plane, with simple poles at 0, —1, —2,....

11. Show inductively that the residue of I' at —n is (—1)*(n!) 2.

12. Is T a rational function?

§7. Holomorphic functions in the unit disc

In this section we discuss functions holomorphic in the unit disc D =
{z | |z| < 1} from the point of view of periodic functions and distributions.
This point of view gives another way of deriving the basic facts about the
local theory of holomorphic functions. It also serves to introduce certain
spaces of holomorphic functions and of periodic distributions.
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Note that if fis defined and holomorphic for |z — z,| < R, then setting
fiw) = f(zo + Rw)

we get a function f; holomorphic for |w| < 1. Similarly, if £ has an isolated
singularity at z,, we may transform it to a function with an isolated singu-
larity at zero and holomorphic elsewhere in the unit disc. Since f can be
recovered from f; by

f(@) = ARz - z0)),

all the information about local behavior can be deduced from study of f;
instead.
Suppose fis holomorphic in D. Then the function

g(r, 0) = f(re®)

is periodic as a function of @ for 0 < r < 1 and constant for r = 0. It is also
differentiable, and the assumption that f'is holomorphic imposes a condition
on the derivatives of g. In fact

h=g(r + b ) = g(r, O)] = K- Lf(re® + he'®) — f(re)]
= e'%he'®) " [f(re'® + he'®) — f(re*)].

Letting A — 0 we get
2 £(r, 6) = &1 (re)

Similarly,

h'[g(r, 8 + k) — g(r, )] = h~2[f(re!**P) — f(re®)]
~ f'(re')-h=1[re"®*® — pe'f]

SO
2 .
a—ag(r, 60) = ire'f"(re').
Combining these equations we get
28 _ 2%
® o5 = 26
Now let g,(f) = g(r, 8), 0 < r < 1. Since g, is continuous, periodic, and
continuously differentiable as a function of 4, it is the sum of its Fourier
series:
2 &(0) = z a,(r)e'™.

The coefficients a,(r) are given by

l 2n
anr) = 5 L 2(r, B)e-1 db.
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It follows that a,(r) is continuous for 0 < r < 1 and differentiable for
0 < r < 1, with derivative

ar) = A f 2 (r, g)e=1 a.

Using (1) and integrating by parts we get
3) a,(r) = r~'nay(r), n#0,

and ap(r) = 0. Thus a, is constant. The equation (3) may be solved for a,
as follows, n # 0. The real and imaginary parts of a, are each real solutions of

u'(r) = r-tnu(r).

On any interval where u(r) # 0 this is equivalent to
d d n
e log |u(r)| = pr log r

so on such an interval u(r) = c¢r®, ¢ constant. Since a, is continuous on [0, 1)
and vanishes at 0if n # 0 (because g, is constant), we must have a,(r) = a,r",
with a, constant and a, = 0ifn < 0.

We have proved the following: if fis holomorphic in D, then

@ fre®) = > arme™, O0<r<l
=0
Thus

f2) = z a.z", |z|] < L
n=0

Suppose f is holomorphic in D and defined and continuous on the
closure: {z | |z] < 1}. Then the functions a,(r) = a,r™ are also continuous
atr = 1, and a, = a,(1) is the nth Fourier coefficient of g,. It follows that g,
is a convolution:

(5) & = Qr*gl’

where Q, is the periodic distribution with Fourier coefficients b, = r*,n > 0
and b, = 0, n < 0. Then

0,(6) = i rrein® — i (re')"

n=0 n=0
or
©6) 0,(6) = (1 — re®)-1,
Equation (5) can be written
f(re®®) = o (1 — re!@=9)=1f(e*) dt

= 2 (e“ — re'®)~1f(e)ie* dt.
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Setting w = re*’ and z = e*, we recover the Cauchy integral formula

™ Sy = 5 | feXe - w2 s

where C is the unit circle. Thus (5) may be regarded as a version of the Cauchy
integral formula.

Note that Q, is a smooth periodic function when 0 < r < 1. Therefore
(5) defines a function in the disc if g; is only assumed to be a periodic distri-
bution. In terms of the Fourier coefficients, if g, has Fourier coefficients
(a,)2» then those of g, are (a,(r))=, Where a,(r) = 0, n < 0, a,(r) = a,r*,
n > 0. These observations and the results of §§1 and 2 of Chapter 5 leads
to the following theorem.

Theorem 7.1. Suppose F is a periodic distribution with Fourier coefficients
(a,)2 », where a, = 0 for n < 0. Let f be the function defined in the unit disc by

® f(re®®) = (F* Q,)(6),
with Q, given by (6). Then f is holomorphic in the unit disc and

()] f@@ = io a,z*, |z] < 1.

Moreover, F is the boundary value of f, in the sense that the distributions
F, defined by the functions f,(0) = f(re'°) converge to F in the sense of & as
r—1.

Conversely, suppose f is holomorphic in the unit disc. Then f is given by a
convergent power series (9). If the sequence (a,)s is of slow growth, i.e., if
there are constants c, r such that

(10) |a,| < en’, n>0,

then there is a distribution F such that (8) holds. If we require that the Fourier
coefficients of F with negative indices vanish, then F is unique and is the boundary
value of f in the sense above.

Condition (10) is not necessarily satisfied by the coefficients of a power
series (9) converging in the disc. An example is

a, = n‘/", n>0.

Thus the condition (10) specifies a subset of the set of all holomorphic
functions in the disc. This set of holomorphic functions is a vector space.
Theorem 7.1 shows that this space corresponds naturally to the subspace of
Z consisting of distributions whose negative Fourier coefficients all vanish.

Recall that Fe 2 is in the Hilbert space £2 if and only if its Fourier
coefficients (a,)2 ,, satisfy

an D las® < oo.

For such distributions there is a result exactly like the preceding theorem.
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Theorem 7.2. Suppose F is a periodic distribution with Fourier coefficients
a, = 0 for n < 0. If FeL?, then F is the boundary value of a function f,

(12) f2) = i a,z", lz] <1
n=0

with

(13) Z |@n]|? < oo,
n=0

The functions f,(0) = f(re*®) converge to F in the sense of L? as r — 1, and

1 2n

2 — —_— 10)|2 40

IFI? = sup 5 |~ Iftee)? db.
Conversely, suppose f is defined in the unit disc by (12). Suppose either that

(13) is true or that

(149) sup,

0<srs1.

27
‘ | f(re')|2 df < 0.
0

Then both (13) and (14) hold, and the boundary value of f is a distribution
Fel?

Proof. The first part of the theorem follows from Theorem 7.1 and the
fact that (11) is a necessary condition for F to be in L2, The second part of
the theorem is based on the identity

2z )
as) 2| eedrds = 3 latrm, 0sr<y,
T Jo n=0

which is true because the Fourier coefficients of f; are a,r" for n > 0 and
zero for n < 0. If (13) is true then (14) follows. Conversely, if (13) is false,
then (15) shows that the integrals in (14) will increase to co as r — 1. Thus
(13) and (14) are equivalent. By Theorem 7.1, if (13) holds then f has a
distribution F as boundary value. The a, are the Fourier coefficients of F,
so (13) implies Fe L2, []

The set of holomorphic functions in the disc which satisfy (14) is a vector
space which can be identified with the closed subspace of L2 consisting of
distributions whose negative Fourier coefficients are all zero. Looked at
either way this is a Hilbert space, usually denoted by

H? or H?*D).

Exercises
1. Verify that
2 = Z n'mzn

n=1

converges for |z| < 1 but that the coefficients do not satisfy (10).
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2. Suppose f is holomorphic in the punctured disc 0 < |z| < 1. Carry
out the analysis of this section for

g&(r, 0) = f(re")
to deduce:
@) f(@) =3p-wa,z",0<|z| <1,
(b) If | f(z)| < M|z|~™ for some M, m, then

fle = Z a,z".



Chapter 7

The Laplace Transform

§1. Introduction

It is useful to be able to express a given function as a sum of functions
of some specified type, for example as a sum of exponential functions. We
have done this for smooth periodic functions: if u € %, then

0)) ux) = D a,e™,
where

1 2n .
) @ =5~ \ u(x)e dx.

Of course the particular exponential functions which occur here are precisely
those which are periodic (period 27). If u: R — C is a function which is not
periodic, then there is no such natural way to single out a sequence of
exponential functions for a representation like (1). One might suspect that
(1) would be replaced by a continuous sum, i.e., an integral. This suspicion
is correct. To derive an appropriate formula we start with the analogue of
(2). Let

® 8@ = [ e,

when the integral exists. (Of course it may not exist for any z € C unless
restrictions are placed on u.)

If we are interested in functions u defined only on the half-line [0, c0),
we may extend such a function to be zero on (—oo, 0]. Then (3) for the
extended function is equivalent to

C)) g(z) = f: u(t)e=2t dt.

If u is bounded and continuous, then the integral (4) will exist for each
z € C which has positive real part. More generally, if ae R and e~ *u(t) is
continuous and bounded for ¢ > 0, then the integral (4) exists for Re z > a.
Moreover, the function

©) g =Lu
is holomorphic in this half plane:

g'(@= —[ tu(t)e=* dt, Rez > a.

Jo
190
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In particular, let

u,(t) = e, t>0;
=0, t<0, weC.

Then for Rez > Re w,
Lu,(2) =f ew-Atdt = (z — w)~L,
[1]

The operator L defined by (3) or (4) and (5) assigns, to certain functions
on R, functions holomorphic in half-planes in C. This operator is clearly
linear. We would like to invert it: given g = Lu, find u. Let us proceed
formally, with no attention to convergence. Since Lu is holomorphic in some
half-plane Re z > a, it is natural to invoke the Cauchy integral formula.
Given z with Re z > a, choose b such that

a<b<Rez

Let C be the vertical line Re w = b, traced in the upward direction. We
consider C as “enclosing” the half-plane Re w > b, though traced in the
wrong direction. A purely formal application of the Cauchy integral formula
then gives

8) = Lu() = —5 [ fon)w = ) dv

= Zim L JS(W)Lu,(2) dw.

If L has an inverse, then L~ is also linear. Then we might expect to be able
to interchange L~! and integration in the preceding expression, to get

© ue) = 57 | g)eam,
or
u(t) = 2—1-7 J: g(a + is)e*1* ds,

Thus (3) or (4) and (6) are our analogues of (2) and (1) for periodic functions.

It is convenient for applications to interpret (3) and (6) for an appropriate
class of distributions F. Thus if F is a continuous linear functional on a suitable
space -Z of functions, we interpret (3) as

LF(z) = F(e,)), eft) =e .

The space .Z will be chosen in such a way that each such continuous linear
functional F can be extended to act on all the functions e, for z in some
half-plane Re z > a. Then the function LF will be holomorphic in this half-
plane. We shall characterize those functions g such that g = LF for some F,
and give an appropriate version of the inversion formula (6).



192 The Laplace Transform

The operator L is called the Laplace transform. It is particularly useful
in connection with ordinary differential equations. To see why this might be
so, let ' = Du be the derivative of a function u. Substitution of «’ for u in
(3) and integration by parts (formally) yield

)] [Lu')(z) = zLu(2).
More generally, suppose p is a polynomial
(@) = apz™ + ap_12"" ' +-- -+ a1z + a,.

Let p(D) denote the corresponding operator

p(D) = anD™ + ap_ D™ +:--+ a,D + ay,
i.e.,

P(D)u(z) = auu™(x) + -+ - + au'(x) + agu(x).
Then formally

@® [Lp(D)u)(2) = p(2)Lu(2).
Thus to solve the differential equation

p(Du=v
we want

p(2)Lu(z) = Lw(z).
From (6), this becomes
©) u(t) = sz L e?p(z)~Lo(z) db.

As we shall see, all these purely formal manipulations can be justified.

Exercises
1. Show that the inversion formula (6) is valid for the functions u,, i.e.,
ifa> Rewand C = {z| Re z = a} then
1

2mi

f (z — w)tetdz = e, t>0;
(]

=0, t<O.

2. Suppose u: [0, 0) - C is bounded and continuous and suppose the
derivative «’ exists and is bounded and continuous on (0, o). Show that

j " ety dt = z f " e~#u(t) dt — u0),
0 1]

Re z > 0. Does this conflict with (7)?
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§2. The space &

Recall that a function u: R — C is said to be smooth if each derivative
D*u exists and is continuous at each point of R, k = 0,1,2,.... In this
section we shall be concerned with smooth functions u which have the
property that each derivative of u approaches 0 very rapidly to the right.
To be precise, let £ be the set of all smooth functions u: R — C such that
for every integer k > 0 and every ae R,

)] ‘lim e*Dku(t) = 0.

- 4 0
This is equivalent to the requirement that for each integer k > 0, each a e R,
and each M € R the function

) e D*u(t)
is bounded on the interval [M, co). In fact (1) implies that (2) is bounded on
every such interval. Conversely if (2) is bounded on [M, ) then (1) holds

when a is replaced by any smaller number @' < a.
It follows that if u € &, then for each k, a, M we have that

3 |#],a,n = sup {e*| Du(r)| | ¢ € [M, o)}

is finite. Conversely, if (3) is finite for every integer kK > 0 and every a e R,
MeR, then ue’.

The set of functions & is a vector space: it is easily checked that if u, v € &£
and b € C then bu and u + v are in %, Moreover,

@ |buli,an = |B] |uk,a,m5
(5) lu + vllc.a.M < lulk.a.M + lvlk.a,M-

A sequence of functions (¥,)? < £ is said to converge to u € % in the
sense of & if for each k, a, M,

|ty — t|iau—>0 as n—>oo.
If so, we write
u, —u (2).

The sequence (u4,)7 < £ is said to be a Cauchy sequence in the sense of ¥
if for each k, a, M,

|tn — Um|iae—>0 as m, n—oco.

As usual, a convergent sequence in this sense is a Cauchy sequence in this
sense. The converse is also true.

Theorem 2.1. & is a vector space. It is complete with respect to conver-
gence as defined by the expressions (3); i.e., if (u,)¥ < & is a Cauchy sequence
in the sense of £, then there is a unique u € £ such that u, — u (£).
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Proof. Let (u,)? be a Cauchy sequence in the sense of %, Taking (3)
with a = 0, we see that each sequence of derivatives (D*u,)y is a uniform
Cauchy sequence on each interval [M, ). It follows, by Theorem 4.1 of
Chapter 2, that there is a unique smooth function u such that D*u, — D*u
uniformly on each [M, o). Now let a be arbitrary. Since (e*D*u,)y is also
a uniform Cauchy sequence on [M, o) it follows that this sequence converges
uniformly to e®*D*y. Thus ue £ and u, > u (£). 0l

It follows immediately from the definition of % that certain operations
on functions in % give functions in ., In particular, this is true of differen-
tiation:

Dye? ifueX;

translation:

Tue¥ ifue?
where

(Tau)(t) = u(t — s);
and complex conjugation:

u*e? fue?
where
u*(t) = u(t)*.

It follows that if u € &, so are the real and imaginary parts:
Re u = ¥(u + u*),

Imu = %(u* - u).
Moreover, if u € %, so is the integral of u taken from the right:

S.ut) = — f u(s) ds.
t
In fact, DS,u = u so

(6) [S+ulicam = |ulk—l.a,M, k=1

For k = 0, note that for t > M, a > 0,

1S.u)] < [ [u)] ds < [ulo,e [ eo*ds
t t
= a_llulo_a'ue-“.
Thus
@) |S+utlo,am < a=*u|o,a.ue™ %, a>0.
The finiteness of
|S+u|o.a.u

for a < 0 follows from finiteness for any @ > 0. Thus S,ue %,
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Lemma 2.2. The operations of differentiation, translation, complex con-
Jjugation, and integration are continuous from £ to £ with respect to conver-
gence in the sense of £. Moreover, if u € £ then the difference quotient

s YT-su — u)—> Du (%)
ass—0.

Proof. These statements chiefly involve routine verifications. We shall
prove the final statement. Given an integer k > 0, let v = D*u. Suppose
t 2 Mand 0 < |s| < 1. The Mean Value Theorem implies

sTHT_(t) — v(t)] = Do(r)
where |t — r| < |s|. Then

D*{s=[T_u(t) — u(®)]} — D*Du(t) = Dv(r) — Do(t)
= Dk+1u(r) - D"“u(t).

But
® | D**lu(r) — D**u(t)| < c(a, M)e*, t=> —-M.

The left side of (8) converges to zero as s — 0, uniformly on bounded inter-
vals. It follows that

|s=T_su — u] — Duly,q,0 — 0
ass—0,foranya’ <a. []
The functions e,,
©) e(t) = e *, teR, zeC

are not in . for any z € C. However, they may be approximated by functions
from .Z in a suitable sense.

Lemma 2.3. Suppose Re z > a. There is a sequence (u,)TY < £ such that

| — €:lkam—>0 as n—oo
for each integer k > 0 and each M € R.

Proof. Choose a smooth function ¢ such that ¢(t) =1 if # < 1 and
o(t) = 0if t = 2. (The existence of such a function is proved in §8 of Chapter
2.) Let

Pa(t) = ¢(t/n)’ Up = Pne.

Then u, is smooth and vanishes for ¢ > 2n, so u, € £. We shall consider in
detail only the (typical) case k = 1.

e(Du(t) — Det) = e(pn(t)Det) + ex(t)Den(t) — Det))
= (1 = gu(1))ze®~* + Dey(t)ete~
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Now both 1 — ¢,(t) and Dg,(t) are bounded independent of ¢ and n, and
vanish except on the interval [n, 2n]. Therefore

|e*(Du,(t) — De,(t))| < cexp(na — nRe z),
¢ independent of n and ¢. Thus
|ty — €:]1,0.4—0 as n—>o0,
all M. The argument for other values of k is similar. []

The following lemma relates the |u|,,, » for different values of the indices
k,a, M.

Lemma 2.4. Suppose k, k' are integers, and
0<k<k, a=<d, M=>=M'.

Suppose also either that k = k' or that @’ > 0. Then there is a constant ¢ such
that

(10) Iulk.a.M < cl“lk',a',u', al ue %

Proof. 1t is sufficient to prove (10) in all cases when two of the three
indices are the same. The case k = k', a = a’ is trivial. The case k = k',
M = M’ is straightforward. Thus, suppose a = a’ > 0 and M = M’. Let
k' = k + j and set v = D*¥u. We may obtain D*u from v by repeated inte-
grations:

D'y = (S, )v.

We use (7) repeatedly to get

| D*ulo,0, < @~?|0]0,0.m
a~|D*¥ulq 4,u
a~|ule,a,u- 0

|u|k,a.M

If u e Z, we set
[ule = |ulix,-x = sup {|e**D*u(t)| | t = —k)}.
Then the following is an easy consequence of Lemma 2.4.
Corollary 2.5. Suppose (u,)? < <. Then
up,—>u (2)
if and only if for each integer k = 0,

|uy — ule =0 as n—oco.

Exercises

1. Show that u(t) = exp (—?2?)isin £
2. Show that if u, v € & then the product uv is in &
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3. Show that u e %, z € C implies e,u € £,
4. Complete the proof of Lemma 2.2.

§3. The space £’

A linear functional on the vector space £ is a function F: £ — C such
that
F(au) = aF(u),  F(u + v) = F(u) + F(v).

A linear functional F on .Z is said to be continuous if
Uy —>u (£)
implies
F(u,) - F(u).

The set of all continuous linear functionals on £ will be denoted £’. An
element F e Z’ will be called a distribution of type %', or simply a distribution.
An example is the 8-distribution defined by

1) 8(u) = u(0).

A second class of examples is given by

) F(i) = f " etu(t) dt,
[1]

zeC.

Suppose f: R— C is a continuous function such that for some a € R,
MeR,

(€)) f)=0, t<M,
C)) e~%f(t) is bounded.
We may define

F,:L—>C
by
®) Fw = _fou) dr

In fact the integrand is continuous and vanishes for ¢t < M. If a’ > a then
on [M, o) we have

[f(O)u(@)| = le=2f ()] |e@~2¢| |e*tu(t)|

clulo,ar,me® %™,

Al

where c is a bound for |e~%(¢)|. Therefore the integral (5) exists and

(6) |Ff(u)| < C|ulo_ac'M fM e(a-a’)t dt.
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It follows from (6) that F; is continuous on % i.e., F, € ¥".

We say that F e %’ is a function, or is defined by a function, if there is a
continuous function f satisfying (3) and (4), such that F = F;,

Suppose Fe %’ is defined by f. The translates T,f and the complex
conjugate function f* also define distributions. It is easy to check that if
g =T, ie., g(t) = f(t — ), teR, then

Fy(u) = F(T_q), ues
Similarly,
Fyx(w) = F,w*)*, ueX

We shall define the translates and the complex conjugate of any arbitrary
Fe %' by

Q) (T/F)u) = F(T-), wue.

®) F*(u) = F(u*)*, ueX.

Similarly, the real and imaginary parts of Fe £’ are defined by
)} Re F = ¥(F + F¥),

(10) ImF = %(F* - P,

We say that Fis real if F = F*,
Suppose Fe #’ is defined by f and suppose the derivative Df exists, is
continuous, and satisfies (3) and (4). Integration by parts gives

Fp(u) = —F(Du), ueX,
Therefore we shall define the derivative D{" of an arbitrary Fe %’ by
(11) DF(u) = —F(Du), ue%
Generally, for any integer k£ > 0 we define
(12) D*F(u) = (—1)*F(D*u).

Proposition 3.1. The set £’ is avector space. If F € &', then the translates
T,F, the complex conjugate F*, and the derivatives D*F are in &".

Proof. All these statements follow easily from the definitions and the
continuity of the operations in £ ; see Lemma 2.2. For example, D*F: ¥ — C
is certainly linear. If u, —u (%), then

D*u, - D*u (&),
1)

D*F(u,) = (= 1)*F(D*u,) — (— 1)*F(D*u) = D*F(i).

Thus D*F is continuous. []
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A sequence (F,)T < £’ is said to converge to Fe &' in the sense of &z
if for each ue &

F,(u)—F(u) as n— oo.
We denote this by
F, - F (£).

The operations defined above are continuous with respect to this notion of
convergence.

Proposition 3.2, Suppose
F,—~F (Z), G,—~G(Z),
and suppose a€ C, s € R. Then

aF, —» aF (&),
F, + G,—~F + G (&),
T,F,—T.F (£),
D¥F, — D¥F (£').

Moreover, the difference quotient
s~MNT_,F — F1—F (&)
as s —0.

Proof. All except the last statement follow immediately from the defi-
nitions. To prove the last statement we use Lemma 2.2:

S™UT_F — F)u) = F(s~[Tu — u))
—> F(— Du) = (DF)(u). 0

The following theorem gives a very useful necessary and sufficient con-
dition for a linear functional on Z to be continuous.

Theorem 3.3. Suppose F: & — C is linear. Then F is continuous if and
only if there are an integer k > 0 and constants a, M, K < R such that

(13) |F@)| < Kl|u|e,au» allue.
Proof. Suppose (13) is true. If u, > u (£) then
IF(un) - F(u)l < Klun - ulk.a.M—>0-

Thus F is continuous.
To prove the converse, suppose that (13) is not true for any k, a, M, K.
In particular, for each positive integer kK we may find a v, € £ such that

|F(i)| = k|oilic = k|0]icye, -1 # O.
]-ﬁt uke-? be

U = k-llvklk_lvk.
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Then
lule = k7, |Fu)| 2 1.
But Corollary 2.5 implies that
u,— 0 (2).
Since F(u,) does not converge to 0, F is not continuous. []

The support of a function u: R — C is defined as the smallest closed subset
A of R such that u(¢t) = O for every ¢ ¢ A. Another way of phrasing this is
that ¢ is not in the support of u if and only if there is an e > 0 such that u is
zero on the interval (f — e, ¢ + ¢). The support of u is denoted
supp ().
Condition (3) on a function f can be written

supp (f) < [M, ).

The support of a distribution F e &' can be defined similarly. A point
t € Ris not in the support of F if and only if there is an ¢ > 0 such that

Fu)=0
whenever u € & and supp (u) < (t — e, t + €). We denote the support of F
also by

supp (F).

Theorem 3.3 implies that any F € £’ has support in a half line.
Corollary 3.4. If Fe %', there is M € R such that
supp (F) < [M, ).
Proof. Choose k, a, M such that (13) is true for some K. If u € & and
supp (u) < (—o0, M),

then
|#|k,0;0 = O

s0 F(u) = 0. Therefore each ¢t < M is not in the support of F. [J

Exercises

1. Compute the following in the case F = §:
T.F(u), F*(u), Re F, Im F, D*F(u).
2. Show that if Fis given by (2), then
DF = 8§ + zF.
3. Suppose F = D?8. For what constants k, a, M, K is (13) true?
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4. Find supp (D*5).
5. Prove that if F is defined by a function f, then

supp (F) = supp (f).

§4. Characterization of distributions of type £’

If /: R — C is a function satisfying the two conditions (3) and (4) of §3
and if k is an integer >0, then

M D*F;

is a distribution of type #’. In this section we shall prove that, conversely,
any Fe & is of the form (1) for some k and some function f. The proof
depends on two notions: the order of a distribution and the integral (from
the left) of a distribution.

A distribution Fe 2’ is said to be of order k if (13) of §4 is true, i.e., if
for some real constants a, M, and X,

) |F@)| < Klulk,om» allueZ

By Theorem 3.3, each Fe %’ is of order k for some k > 0.
Suppose Fe L’ is defined by a function f. Let g be the integral of f from
the left:

s =[ soa=[ s,

where supp (f) < [M, ). If ue & and v = S, u, then Dv = u. Integration
by parts gives

R = stw@ydi= [ g@un = ~F(s.0.

For an arbitrary Fe £’ we define the integral of F (from the left), denoted
S_F, by
S_F(u) = —F(S.,u).

Proposition 4.1. If Fe %' then the integral S_F is in &' and
3) D(S_F) = F = S_(DF).
IfFis of order k > 1, then S_F is of order k — 1.

Proof. Clearly S_F is linear. The continuity follows from the definition
and the fact that S, is continuous in % The identity (3) is a matter of
manipulation:

D(S_F)(u) = —S_F(Du) = F(S,Du) = F(u), ue&,

and similarly for the other part. []
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To prove that every Fe £’ is of the form (1), we want to integrate F
enough times to get a distribution defined by a function. To motivate this,
we consider first a function f: R — C such that the first and derivatives are
continuous and such that

supp (f) < [M, ),

some M. Then by integrating twice and changing the order of integration
(see §7 of Chapter 2) we get

w={ pws=[ [ proyaa
=fa fD‘*‘f(r)dsdr

= f "t - N dr.
Let °

@ k) =1t[, =<0,
=0, t>0.

Then our equation is

=] W=Dy dr
or

® 10 = [ DpeITAG) .

We would like to interpret (5) as the action of the distribution defined
by D?f on the function T;h; however Tk is not in & Nevertheless, h can be
approximated by elements of .

Lemma 4.2. Let h be defined by (4). There is a sequence (h,)Y < £ such
that

6) |hy — hlo,au—>0 as n—o0
for eachac R, M eR.

Proof. There is a smooth function ¢: R — R such that 0 < ¢(¢) < 1 for
alltand o(t) = 1,1 < —2, ¢(t) = 0,7 > —1; see §8 of Chapter 2. Let

ha(t) = (t/n)h(t) = @n()h(?).

Then h, is smooth, since ¢, is zero in an interval around 0 and 4 is smooth
except at 0. Also h,(t) = h(t) except in the interval (—2/n, 0), and

|Aa(2) — h(2)| < 2/n, te(—2/n,0).
Thus h, € £ and (6) is true. [
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Theorem 4.3. Suppose Fe %’ is of order k — 2, where k is an integer
>2. Then there is a unique function f such that
F = Dk(F f).

Proof. Suppose first that k = 2, F is of order 0. Let h be the function
defined by (4) and let (h,)7 < £ be as in Lemma 4.2. Choose a, M, Ke R
such that

Q)] |F(u)| < K|ulo,a.m» alluelL.
We may suppose a > 0. For each s € R the translates T4, also converge to h:
(8) |T‘h” - T,hlo_a_M - 0 as n-— oo,

It follows from (7) and (8) that for each se R
F(Th,) converges as n—»> oo,
Let f(s) be the limit of this sequence. Then

® I/ ()| < lim K|Tohalo,0 = K|Tetlo,0,um-
But

(10 |Tshlo.om = O ifs < M,
(11) |Thloam < (s — M)e®  if s > M.
Thus

supp (f) < [M, )
and for any @' > a there is a constant ¢ such that
|f(5)| < ce*®, allseR.

If f is continuous, it follows that f defines a disiribution F; € £’. Suppose
s < t. Taking limits we get

|f(®) = /()| < K|Tth — Tihlo,o,u
< Ke®(t — s).

Thus fis continuous.
Let f,(s) = F(T,h,). Then f,(s) = 0if s < M. For s > M,
[fa(s) — f()| < K|Tshy — Tihlo,a,u
< 2Ke*(s — M)/n.
Therefore if u € %,
F@ =] flows)ds = lim G,)
where G, is the distribution defined by f,. Then

D3G,(4) = G(D%) = f * F(Th)Du(s) ds.



204 The Laplace Transform
Let v, be the function defined by

va(t) = f_ ° Toh,(t) D?u(s) ds

= j " bt — 5)D(s) ds.

Since D%u € %, and h,(t — s) = 0if s < ¢, the integral converges. Moreover,
it is not difficult to see that the integral is the limit of its Riemann sums
N2

ooat) =3 D, halt = mIN)D3u(m|N),

m= - N3
in the sense that
|oa.y — nloamy—>0 as N—oo.

In fact, for t > M,

m/n

$ [ e = mim) DumiN) = ot = 5)D%u(s)) ds

m=-1)/n

Ivn.N(t) - vn(t)l =

4 ’

4 4
< — t—sle=%ds = —e~ %
NJ: It = sl Ne

where ¢ and ¢’ are independent of ¢ and N. Therefore
F(v,) = lilfln F (vn.h')

- liprln% S fimIN)YDu(mIN)

m= N3

- f " f.(5)D%u(s) ds = D*G(u).
Now let
of) = f h(t — s)D%(s) ds.
Then

|vn — v]o,a.u—>0 as n—>oco.

In fact,fort > M
0) = o] S [ Ve = 5) = bt = )] | D) ds
t

2/n
< f | D?u(s + t)| ds < ce=*n.
(1]

Therefore

D?F,(u) = F(D?u) = lim G,(D%u)
= lim F(v,) = F(v).
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But
zm=f@—mm@m
t

= - f " Du(s) ds = u(t).

Thus D?F, = F.
Now suppose F is of order k — 2 > 0. Let G = (S_)*~2F. Then G is of
order 0, and by what we have just shown, there is an f such that
D*F, = G.
But then
D*F, = D*-3G = F.

Finally, we must prove uniqueness. This is equivalent to showing that
DF = 0 implies F = 0. But F = S_(DF), so this is the case. []

Exercises

1. Show that D8 is of order k but not of order k — 1.
2. Find the function fof Theorem 4.3 when F = 8. Compute DF, = S_3.
3. Show that if supp (F) < [M, o), then supp (S-F) < [M, o), and
conversely.
4. Suppose Fe &' and the support of F consists of the single point 0.
Show that F is of the form
> a.D*3,

k=0

where the a,’s are constants.

§5. Laplace transforms of functions

Suppose that f'is a function which defines a distribution of type %, i.e.,
f: R— C is continuous, and

) supp (f) < [M, ),
@ [f@)] < Ke®t, allt.
If zeC, let e, be as before:

ez(t) = e-“, te R.
IfRez = b > athen
|f(D)ex(t)] < Ke@—d",
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Since f(¢) = 0 for ¢t < M, the integral

® " roeya= [ e a

-

exists when Re z > a. The Laplace transform of the function fis the function
Lf defined by (3):

e~#f(¢) dt, Rez > a.

%) ye - |

Theorem S5.1. Suppose f: R— C is continuous and satisfies (1) and (2).
Then the Laplace transform Lf is holomorphic in the half plane

{z|Rez > a}.
The derivative is

® W@ =~ ewa.

The Laplace transform satisfies the estimate
(6) |Lf2)| < KRez —a)~*exp(M(a — Rez)), Rez>a.
Proof

(v = 27 - 21 = [ gnz 700) o

where
gw,z,t) = (W — 2)" e~ — e~*].
Suppose Re z and Re w are > b > a. Let
h(s) =exp[—(1 —s)z—sw]t, O0<s<l
Then
gw, z,t) = (w — 2)7*[h(1) — h(0)].

An application of the Mean Value Theorem to the real and imaginary parts
of h shows that

|h(1) — KO)| < c|lw — z|e™®*, ¢t=0
where b’ = bif b > 0, b’ = max {Re w, Re z} otherwise. Thus as w — z,
|gw, z, )f(2)| < c,e™*, where &> 0.
Moreover,
gw, z, )f(1) - —te=*f (1)

as w— z, uniformly on each interval [M, N]. It follows that Lfis differen-
tiable and that (5) is true.
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The estimate (6) follows easily from (1) and (2):
L@ = [ 1= ds
M
< K[ exp t(a — Re 2) dt
M

= K(Rez — a)~texp (M(a — Re 2)). 0
We want next to invert the process: determine f, given Lf.

Theorem 5.2. Suppose f satisfies the conditions of Theorem 5.1, and let
g = Lf. Given b > max {a, 0}, let C be the line

{z | Re z = b}.
Then f is the second derivative of the function F defined by

™ F() = 5 L e2-%g(2) dz.

Proof. By (6), g is bounded on the line C. Therefore the integral (7)
exists. Moreover, if

N
8@ = [ e fwyan

-N

then the gy are bounded uniformly on the line C and converge uniformly to
g. Thus F(t) is the limit as N — oo of Fy, where

1
F,(t) = i fc e*z-2g\(2) dz

N
R f e-=f(s) ds dz
-N

ﬂlc

Yol
- Az fce““"z"dz}f(s)ds.

Let us consider the integral in braces. When s > ¢ the integrand is holo-
morphic to the right of C and has modulus < k|z|~2 for some constant k.
Let C; be the curve consisting of the segment {Re z = b | |z — b] < N} and
the semicircle {Re z > b | |z — b] = N}. Then the integral of

ez(t-s)z-ﬂ
over Cj in the counterclockwise direction is zero, and the limit as R — oo is

-—f et=8z-2 d;
Cc
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Thus the integral in braces vanishes for s > ¢. When s < t, let C}; be the
reflection of Cj about the line C. Then for R > b,

1

2mi

J‘Ck e*t=85=3 g — % eXt=9

2=0
=t-23:
Taking the limit as R — co we get

il;ifce’“"’z" dz=1¢t-s, s <t
Thus
F() = j (t - 5)f(s) ds.

It follows that D2F = f. [
We can get a partial converse of Theorem 5.1.
Theorem 5.3. Suppose g is holomorphic in the half plane
{z|Rez > a}
and satisfies the inequality

@® |g(2)] < K(1 + |z])~2 exp (—M Re z).

Then there is a unique continuous function f. R — C with the properties
&) suppf < [M’, ), some M',

(10) |f(?)| < Ke®,  all t, for some b,

(1) Lf(z) = g(z) for Rez > b.

Moreover, we may take M' = M in (9) and any b > a in (10) and (11).
Proof. Choose b > a and let C(b) be the line {z | Re z = b}. Let

(12) f0) = o s CL

It follows from (8) that the integral exists and defines a continuous function.
It follows from (8) and an elementary contour integration argument that (12)
is independent of b, provided b > a. Moreover, (8) gives the estimate

13) |f(t)] < Ceb¢=2, b > g,
where C is independent of b and ¢. This implies (10). If # < M we may take
b— 400 in (13) and get

N =0,t< M.

Thus the Laplace transform of f can be defined for Re z > a. If Rew > g,
choose
a<b<Rew.
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Then

Lfw) = f ) e-w*{L e*e(2) dz} .

M 271 ) oy
Since
le=****g(z)| < (1 + |z])~2exp [-Mb + t(b — Re w)]

for te R and z € C, we may interchange the order of integration. This gives

Lfw) = zlm Lm g(z){ f : gte- % dt} dz

= 2)e~"M(z — w)~1 dz.
27 ) E@ETME ~ W)

In the half plane Re z > b we have
|g()e®=M| < (1 + |2])~2.

Therefore a contour integration argument and the Cauchy integral formula
give
Lf(w) = g(z)e®~|;ay
= g(w).

Finally, we must show that f'is unique. This is equivalent to showing that
Lf = 0 implies f = 0. But this follows from Theorem 5.2. [

Exercises

1. Let f(t) = 0, ¢t < 0; f(t) = te®, t > 0. Compute Lf and verify that

10 = 2 [ et as

where C is an appropriate line.
2. Show that the Laplace transform of the translate of a function f
satisfies

L(T.f N2) = e*Lf(2).
3. Suppose both fand Df are functions satisfying (1) and (2). Show that
L(Df)(z) = zLf(2).
4. Compute Lf when
f=0, t<0; f@)=1t, >0,

where n is a positive integer.
5. Suppose f satisfies (1) and (2), and let g = e, f. Show that

Lg(z) = Lf(z — w).
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6. Compute Lf when

fA =0, t<0; f(t)=e"t", t>0.
7. Compute Lf when f(t) = 0,¢ < 0;

t
0 =J sinsds, t>0.
0

§6. Laplace transforms of distributions

Suppose Fe.#’. Theorem 3.3 states that there are constants k, a, M, K
such that

1) |F@)| < Klulxop allue

If Re z > a, then Lemma 2.3 states that there is a sequence (¥,)f < & such
that

()] |tn — €lx,am—0 as n—>o0,

where e.(t) = e~2 Now (1) and (2) imply that (F(u,))7-, is a Cauchy
sequence in C. We shall define the Laplace transform LF by

3) LF(z) = li-{ll F(uy,).

In view of (2) we shall write, symbolically,
@ LF(z) = F(e,)
even though e, ¢ Z. Note that if (v,); < &£ and

|on — €xlk.ay—>0 as n—>c0
then

|F(vn) - F(un)l < Klvn - unlk.a.M'—>0

as n—o0. Thus LF(z) is independent of the particular sequence used to
approximate e,.

Proposition 6.1. Suppose F,Ge %' and be C. Then on the common
domain of definition

4 L(bF) = bLF;

) L(F + G) = LF + LG;

M L(T,F)(z) = e"*LF(2);

® L(D*F)(z) = zLF(2);

) L(S_F)(z) = z7'LF(2), z#0.
Moreover,

(10) L(e,F)z) = LF(z + w),
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where e, F is the distribution defined by

1) e,F(u) = Fle,u), uel
If F is defined by a function f, then
(12) LF = Lf.

Proof. The identities (5) and (6) follow immediately from the definitions.
If ()Y < & satisfies (2) then the sequence (7-u,);° approximates T_.e, in
the same sense. But

T_se, = e e,
so

L(T,F)(z) = lim T,F(u,) = lim F(T_.u,)
= e~#lim F(u,) = e~ *LF(z).

This proves (7), and the proofs of (8), (9) and (10) are similar. Note that
u € & implies e, u € £ and

u, >u (%)
implies
e i, — e u (2).

Therefore (11) does define a distribution.
Finally, (12) follows from the definitions. []

We can now generalize Theorems 5.1 and 5.2 to distributions,

Theorem 6.2. Suppose Fe &' and suppose F satisfies (1). Then the
Laplace transform LF is holomorphic in the half plane

{z|Rez > a}.
Moreover,
(13) F = D¥+2F,,
where f is the function defined by

(14) f@) = Zme ez *"3LF(z) dz.

Here C is the line {z | Re z = b}, where b > max {a, 0}.
Proof. We know by Theorem 4.3 that there is a function f such that
F = Dk +2Ff‘

It was shown in the proof of Theorem 4.3 that for any b > max {a, 0} there
is a constant ¢ such that

I/@)] < ce, allt.
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Therefore Lf is holomorphic for Re z > max {a, 0}. By Proposition 6.1,
(15) LF(z) = z¢+2Lf(2), Re z > max {q, 0}.

Therefore LF is holomorphic in this half plane. This completes the proof
of the first statement in the case @ > 0. When a < 0, let G = e, F. Then (1)
implies

|G(u)| < Klulk'o’u.

Thus by the argument just given, LG is holomorphic for Re z > 0. Since
LF(z) = LG(z — a), LF is holomorphic for Re z > a.

Now let C be the line {z | Re z = b}, where b > max {a, 0}. Let f be the
function such that (13) is true. Then by Theorem 5.2 and equation (15), f is
the second derivative of the function

(16) g(t) = % L etz -ALF(7) dz.

From the definition of LF it follows that on C
a7 |LF(2)| < K|exx,om = K|z|*e*™ oM,

Using (17) we may justify differentiating (16) twice under the integral sign
to get (14). 0O

Theorem 6.2 implies, in particular, that if LF = 0 then F = 0.
Given a holomorphic function g, how can one tell whether it is the
Laplace transform of a distribution?

Theorem 6.3. Suppose g is holomorphic in a half plane
{z|Rez > a}.

Then g is the Laplace transform of a distribution F € &' if and only if there
are constants k, a, M, K, such that

(18) |g(@)| < Ki(1 + |z|)¥exp(—M Rez), Rez> a.

Proof. Suppose g = LF, where Fe %', Then there are k, a, M, K such
that (1) is true. Then Re z > a implies

|ILF(2)| < K|ez|k,am < Ki(1 + |z])* exp (— M Re 2),

where K; = Ke*M,
Conversely, suppose (18) is true. Take b > max {a, 0}. We may apply
Theorem 5.3 to

h(z) = z7*2g(2)
to conclude that
h = Lf,
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where f is continuous,

supp f < [M, ),
1/ < ce.

Let F = D**2f, Then
LF(z) = z**2h(z) = g(2), Rez > b.

Since this is true whenever b > max {a, 0}, the proof is complete in the case
az=0.
When a < 0, let

21(z) = g(z + a).
Then g, is holomorphic for Re z > 0 and satisfies
|81(2)| < Kx(1 + |2])* exp (— M Re z).
It follows that g, = LF; for Re z > 0, some F; € £’. Then
g=LF, F=e_F. 0

Exercises

1. Compute the Laplace transforms of D*8, k = 0, 1, 2,... and of T3,
seR.
2. Compute the Laplace transform of F when

F(i) = f: e*tu(t) dt.

§7. Differential equations

In §§5, 6 of Chapter 2 we discussed differential equations of the form
u'(x) + au(x) = f(x),
and of the form
u'(x) + bu'(x) + cu(x) = f(x).

In this section we turn to the theory and practice of solving general nth order
linear differential equations with constant coefficients:

() a ™ + a,_ ™=V +...oaqu’ + agu = f,
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where the a; are complex constants. Using D to denote differentiation, and
understanding D° to be the identity operator, D = u, we may write (1) in
the form
n
Qy > a.D*u = f.
k=0

Let p be the polynomial

p2) = i az".

k=0
Then it is natural to denote by p(D) the operator

n
@ pD) = > a.D.
k=0
Equation (1) becomes
0y p(D)u = f.
We shall assume that the polynomial is actually of degree n, that is
a, # 0.

Before discussing (1)” for functions, let us look at the corresponding
problem for distributions: given H e %', find F e £’ such that

D(D)F = H.

Theorem 7.1. Suppose p is a polynomial of degree n > 0, and suppose
He %'. Then there is a unique distribution F € &' such that

©) p(D)F = H.

Proof. Distributions in £’ are uniquely determined by their Laplace
transforms. Therefore (3) is equivalent to

O} L(p(D)F)(z) =LH(z), Rez>a
for some a € R. But
L(p(D)F)(2) = p(2)LF(2).

We may choose a so large that p(z) # 0if Re z > a, and so that LH is holo-
morphic for Re z > a and satisfies the estimate given in Theorem 6.3. Then
we may define

2(2) = p(2)*LH(2), Rez > a.
Then g is holomorphic, and it too satisfies estimates
|g(z)] = K(1 + |z|)* exp (—M Re z), Rez > a.

Theorem 6.3 assures us that there is a unique Fe £’ such that LF = g, and
then (4) holds. [
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The proof just given provides us, in principle, with a way to calculate F,
given H. Let us carry out the calculation formally, treating F and H as
though they were functions:

L g
F@t) = 2o ce LF(z) dz

= _l-_ tz -1
=5 Le p(z)-*LH(z) dz

— L t2 -1,-82
=57 L Le *p(z)~le~*H(s) ds dz

= L G(t — s)H(s) ds.
where
© G() = 55 | ep(e) ™t az

and Cisaline Rez = b > a.

We emphasize that the calculation was purely formal. Nevertheless the
integral (5) makes sense if p has degree >2, and defines a function G.
Equivalently,

’ P H L tz -1
®) m-mwhwwa,

where Cp is the directed line segment from b — iR to b + iR, R > 0. We
shall show that the limit (5)' also exists when p has degree 1, except when
t = 0. The function defined by (5)' is called the Green’s function for the
operator p(D) defined by the polynomial p. Our formal calculation suggests
that G plays a central role in solving differential equations. The following two
theorems provide some information about it.

Theorem 7.2. Suppose p is a polynomial of degree n > 1; suppose
231, 23, - . ., 2 are the distinct roots of p, and suppose that z; has multiplicity m;.
Then (5)' defines a function G for all t # 0. This function is a linear combination
of the functions gy, 1 < j < r,0 < k < my, where

g/k(t) =0, t<0;
gnlt) = t*exp(zt), t>0.

Proof. Suppose t < 0. Let Dy denote the rectangle with vertices b + iR,
(b + RY?) + iR. When Rez > b,

(6) le*p(2)~2| < e(r)(1 + |z])~" exp t(Re z — b),
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where ¢(¢) is independent of z. Now the line segment Cj, is one side of the
rectangle Dy, and the estimates (6) show that the integral of e*p(z)~* over
the other sides converges to 0 as R —oco. On the other hand, the integral
over all of Dy vanishes, because the integrand is holomorphic inside Dj.
Thus the limit in (5)’ exists and is 0 when ¢ < 0 (and also when ¢ = 0, if
n>1).

Suppose ¢ > 0. Let Dp now be the rectangle with vertices b + iR,
(b — RY2) + iR, with the counterclockwise direction, and suppose R is so
large that Dj contains all roots of p(z). Then the integral of e*p(z)~* over
Dy is independent of R, and the integral over the sides other than Cj tends
to 0 as R — 0. Thus again the limit in (5)’ exists, and

) G(t) = 2%1 L ep(z)td;, t> 0.

Now we may apply Theorem 6.3 of Chapter 6: G(¢) is the sum of the residues
of the meromorphic function e*p(z)~*. The point z, is a pole of order m,,
so near z; we have a Laurent expansion
PR = D bulz —z)"

m2-my

Combining this with
e = e%t z (m)~Yz — z)™m™,
mz20

we see that the residue (the coefficient of (z — z,)~? in the Laurent expansion)
at z, is a linear combination of

tkexp(zg), O0<k<my
moreover, it is the same linear combination whatever the value of 2. []

Suppose f is a complex-valued function defined on an interval (a, b).
We write

fla+) = lim fla)

when the limit on the right exists as ¢ approaches from the right.
We take the Green’s function for p(D) to be 0 at ¢ = 0; when # > 1 this
agrees with (5)'.

Theorem 7.3. Let p be a polynomial of degree n > 0, with leading co-
efficient a, # 0. Let G be the Green’s function for p(D). Then G is the unique
Sfunction from R to C having the following properties:

@] all derivatives D*G exist and are continuous whent # 0;

(8) the derivatives D*G exist and are continuous at 0 whenk < n — 2;
©) G(t)=0, t<0;

(10) pD)GE#)=0, t>0;

(11) a,D*-G(0+) = 1.



Differential equations 217

Proof. We know that G is a linear combination of functions satisfying
(7) and (9), so G does also. When ¢ > 0 we may differentiate (5)" and get

(12) D*G(t) = 2Lm L Zetp(z)1 da.
Thus
D*G(0+) = ZLm L Z*p(z)~1 dz.
R

We may replace Dy, by a very large circle centered at the origin and conclude
that
D¥G(0+) = 0, k<n-2

Therefore (8) is true. Let us apply the same argument when k = n — 1.
Over the large circle the integrand is close to

2" Hanza) ™t = a7z,
so
D*-G(0+) = a,~ %
Finally, (12) gives

p(D)G(t)=2iﬁ etdz=0, 1>0
R

Now we must show that G is uniquely determined by the properties
(7)~(11). Suppose G, also satisfies (7)-(11), and let f = G — G,. Then f
satisfies (7)—(10); moreover D"~ 1f(0) = 0. We may factor

P(2) =az — 2:)(z — 23) -+ - (z — z,),
where we do not assume that the z; are distinct. Let f, = £, and let
Je = Dfie-1 — Zify-1, k > 0.
Then each f; is a linear combination of D’f, 0 < j < k, so
fil(0) =0, k=<n-1.

Moreover,
Jo=(D = z)(D = z4-1)-+- (D — z))f
= a,”'p(D)f = 0.
Thus
Sa-100)=0, Dfyy — zofoer1 =fa =0,
S0
f;l-l = 0.
Then

fn-?(o) = 0, Df;.-a - zn-lj;l-z = 0’
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80 fn—2 = 0. (We are using Theorem 5.1 of Chapter 2). Inductively, each
Si=0,k<nsof=0and G=G, [

Now let us return to differential equations for functions.

Theorem 7.4. Suppose p is a polynomial of degree n > 0, and suppose
f:[0,0) — C is a continuous function. Then there is a unique solution
u: [0, o) = C to the problem

(13) p(Dyu(t) =f(t), t>0;
(149) D'u(0+) = 0, 0<j<n-1
This solution u is given by

15) u(t) = jo G(t — 5)f(s) ds,

where G is the Green’s function for the operator p(D).

Proof. We use properties (7)-(11) of G. Let u be given by (15) for ¢ = 0.
Then successive differentiations yield

(16) Du(t) = G(0+)f(¢) + J: DG(t — s5)f(s) ds

=f‘ DG(t — $)f(s) ds, .. .,
0

an Du(t) = f " DAG — s)f(s)ds, k<n—1,
(18) Du(t) = au-Yf(t) + f " DGt — s)f(s) ds.
Thus

pDY(t) = f(e) + f PD)G(t — 5)f(s) ds
= 1.

Moreover, (17) implies (14). Thus u is a solution. The uniqueness of u is
proved in the same way as uniqueness of G. [

We conclude with a number of remarks.

1. The problem (13)-(14) as a problem for distributions: Let us define
J(® = 0for ¢t < 0. If f does not grow too fast, i.e., if for some ae R

e~ %f(¢t) is bounded,
then we may define a distribution H e £’ by

H() = f few@d, ve2.
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Suppose u is the solution of (13)-(14). Then it can be shown that u defines a
distribution F, and

19 p(D)F = H,
Thus we have returned to the case of Theorem 7.1.

2. If the problem (13)-(14) is reduced to (19), then the proof of Theorem
7.1 shows that the solution may be found by determining its Laplace trans-
form. Since there are extensive tables of Laplace transforms, this is of
practical as well as theoretical interest. It should be noted that Laplace
transform tables list functions which are considered to be defined only for
t > 0; then the Laplace transform of such a function fis taken to be

@

L&) = f e=#1(t) dt.

0

In the context of this chapter, this amounts to setting f(¢) = 0 for # < 0 and
considering the distribution determined by f, exactly as in Remark 1.

3. Let us consider an example of the situation described in Remark 2.
A table of Laplace transforms may read, in part,

f Lf
sin ¢ (z2+ N1
sinh ¢ (-t

(As noted in Remark 2, the function sin ¢ in the table is considered only for
t 2 0, or is extended to vanish for 7 < 0.)
Now suppose we wish to solve:

20) u'(t) — u(t) —sint =0, t>0;
1) u(0) = u’'(0) = 0.
Let p(z) = z2 — 1. Our problem is

p(D)u = sint, t>0;
u(0) = Du(0) = 0.

The solution u is the function whose Laplace transform is
p(@) " ULGint)(z) = (22 — 1)7(z2 + 1)~
But
E-DY 2+ D =32 -1)" - 322+ D~
Therefore the solution to (20)-(21) is
u(t) = 4sinh ¢ — %sin¢, t=0.
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4. In cases where the above method fails, either because the given
function f'grows too fast to have a Laplace transform or because the function
Lu cannot be located in a table, one may wish to compute the Green’s
function G and use (15). The Green’s function may be computed explicitly
if the roots of the polynomial p are known (of course (5)" gives us G in
principle). In fact, suppose the roots are z, z, ..., z, with multiplicities
my, my, ..., m,. We know that G for ¢ > 0, is a linear combination of the n
functions

t* exp (z;t), k < m,.
Thus
G(t) = z cut® exp (z;t), t>0,

where we must determine the constants ¢,,. The conditions (8) and (11) give
n independent linear equations for these n constants. In fact,

GO+) = 2 ¢por
DG(0+) = Z 24650 + z Chs

etc.

5. The more general problem
(22 p(Dyu(t) = f(r), t>0;
(23) D*u(0+) = by, 0<k<n

may be reduced to (13)-(14). Two ways of doing this are given in the exercises.
6. The formal calculation after Theorem 7.1 led to a formula

F(t) = j G(t — s)H(s) ds

which it is natural to interpret as a convolution (see Chapter 3). A brief
sketch of such a development is given in the exercises.

Exercises

1. Compute the Green’s function for the operator p(D) in each of the
following cases:

p(z)=22—-4z-5
p(z2)=22—4z+4
p2)=22+22—-2-2
p() =23 -3z + 2.
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2. Solve for u:

u'(t) — 4'(t) + 4u(t) = ¢, t>0,
u(0+) = u'(0+) = 0.

3. Solve for u:

u"(t) — 3u'(t) + 2u(t) = t2 — cost, t>0,
u(0+) = w(0+) = u"(0+) = 0

4. Let uy: (0, c0) — C be given by
n-1

u(t) = > (k)= tbyt*.
k=0

Show that
D*uy(0+) = b,, O<k=<n-1
5. Suppose u,: (0, ) — R is such that
D*uy(0+) = b,, 0<k=<n-1.

Show that u is a solution of (22)-(23) if and only if ¥ = 4, + u;, where u, is
the solution of

p(Duy(t) = f(t) — p(Dug(t), t>0,
D*u,(0+) = 0, 0<k<n-1

6. Show that problem (22)—(23) has a unique solution.
7. Show that the solution of

p(D)u(t) = 0, t>0,
D*u(0+) = 0, 0<k<j and j<k<n-1,
Du(0+) =1

is a linear combination of functions ¢* exp zt.
8. Show that any solution of

p(D)u(t) = 0, t>0

is a linear combination of the functions ¢* exp z¢, where z is a root of p(D)
with multiplicity greater than k, and conversely.

9. Suppose u: (0, 0) — C is smooth and suppose D*u(0+) exists for
each k. Suppose also that each D*u defines a distribution F; by

Fyv) = L " Dru(ey(e) dt.

Show that
DFo = F1 + u(0+)8,
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and in general

k=1

D*F, = F, + Zs D'u(0+)D*-1-75,
i=
10. In Exercise 9 let u(t) = G(t), t > 0, where G is the Green’s function
for p(D). Show that
p(D)F, = 3.

11. Use Exercise 9 to interpret the problem (22)-(23) as a problem of
finding a distribution (when the function f defines a distribution in #”).
Discuss the solution of the problem.

12. Use Exercise 11 to give another derivation of the result of Exercise 5.

13. Again let

#(t) = u(—1), Tut) = ut — s).
If Fe % and ue %, set
Fxu(t) = F(T_ ).
(a) Suppose F = F,, where v: R — Cis continuous, »(t) = Oforz < — M,

and e~ “v(t) is bounded. Show that for each ¥ € £’ the convolution integral

Fxult) = f (it — s)u(s) ds

exists and equals
Fxu@).

(b) Show that for each Fe %’ and u € &, the function F* uis in £,
14. If F, He &', set

(FxH)u)=F(H*u), uec%

Show that F+ He &',
15. Compute (D¥8)~ * u, u € £ Compute (D*8) » F, Fe &".
16. Show that

L(F + H) = L(F)L(H).

17. Let G be the distribution determined by the Green’s function for
p(D). Show that

LG = p(z)~*.
18. Show that the solution of
p(D)F = H
is
F=G=*H,

where G is as in Exercise 17.



NOTES AND BIBLIOGRAPHY

Chapters 1 and 2. The book by Kaplansky [9] is a very readable source of
further material on set theory and metric spaces. The classical book by Whittaker
and Watson [25] and the more modern one by Rudin [18] treat the real and
complex number systems, compactness and continuity, and the topics of Chapter
2. Vector spaces, linear functionals, and linear transformations are the subject of
any linear algebra text, such as Halmos [7]. Infinite sequences and series may be
pursued further in the books of Knopp [10], [11]. More problems (and theorems)
in analysis are to be found in the classic by Polya and Szegé [15].

Chapters 3,4,and 5. The Weierstrass theorems (and the technique of approx-
imation by convolution with an approximate identity) are classical. A direct proof
of the polynomial approximation theorem and a statement and proof of Stone’s
generalization may be found in Rudin [18].

The general theory of distributions (or *generalized functions™) is due to
Laurent Schwartz, and is expounded in his book [20]. The little book by Lighthill
[12] discusses periodic distributions and Fourier series. Other references for dis-
tribution theory and applications are the books of Bremermann [2], Liverman [13],
Schwartz [21], and Zemanian [27].

Banach spaces, Frechet spaces, and generalizations are treated in books on
functional analysis: that by Yosida [26] is comprehensive; the treatise by Dunford
and Schwartz [4] is exhaustive; the sprightly text by Reed and Simon [16] is
oriented toward mathematical physics. Good sources for Hilbert space theory in
particular are the books by Halmos [6], [8] and by Riesz and Sz.-Nagy [17].

The classical L3-theory of Fourier series treats L2 (0, 2x) as a space of functions
rather than as a space of distributions, and requires Lebesgue integration. Chap-
ters 11 through 13 of Titchmarsh [24] contain a concise development of Lebesgue
integration and the L2-theory. A more leisurely account is in Sz.-Nagy [14]. The
treatise by Zygmund [28] is comprehensive.

Chapter 6. The material in §1-§6 is standard. The classic text by Titchmarsh
[24] and that by Ahlfors [1] are good general sources. The book by Rudin [19]
also treats the boundary behavior of functions in the disc, related to the material
in §7.

Chapter 7. The Laplace transform is the principal subject of most books on
‘‘ operational mathematics’’ and ‘transform methods.’’ Doetsch [3] is a compre-
hensive classical treatise. Distribution-theoretic points of view are presented in
the books of Bremermann [2], Erdelyi [5], Liverman [13], and Schwartz [21].
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NOTATION INDEX

complex numbers, 8

rational numbers, 4

real numbers, 5

integers, 1

positive integers, 1

Hilbert space of periodic distributions, 106
continuous periodic functions, 69

smooth functions of fast decrease at + oo, 193
distributions acting on L, 197

smooth periodic functions, 73

periodic distributions, 84

differentiation operator, 72, 86, 198
Laplace transform operator, 192, 206, 210
convolution, 78, 94, 96, 100, 101, 222

193

73

106

199

85, 100






SUBJECT INDEX

approximate identity, 80

ball, in metric space, 20

Banach space, 70

basis, 30

Bessel’s equality, inequality, 124
Bolzano-Weierstrass theorem, 26
bounded function, 36

— linear functional, 71

— sequence, 11

— set, 7, 24

branch of logarithm, 173

Casorati-Weierstrass theorem, 177

Cauchy integral formula, 166, 187

Cauchy-Riemann equations, 157

Cauchy sequence, in a metric space, 22

—in &, 193

—in?, 73

— of numbers, 12

— uniform, 47

Cauchy’s theorem, 161

chain rule, 45, 155

change of variables in integration, 45

characterization of distributionsin %",
203

— of periodic distributions, 89, 102

class C¥, C>, 46

closed set, 21

closure, 22

compact set, 23

—inR", C, 24

comparison test, 15

complement, of set, 2

complementary subspace, 33

complete metric space, 22

completeness axiom for real numbers,
7

completeness of €, 70

— of L3, 107

—of R, C, 12

— of R, 23

complex conjugate of complex num-
ber, 9

227

— of distribution in #’, 198

— of function, 38

— of periodic distribution, 85, 100

composition of functions, 3

connected set, 175

continuous function, 35

continuity, at a point, 34

— uniform, 35

convergence, in a metric space, 22

— in Hilbert space, 110

—in &', 199

— in L3, 106

—in 2,73

—in £, 85, 100

— of numerical sequences, 10

— of series, 14

convolution, in #’, 222

—in £, 96, 101

— of functions, 78

— of functions with periodic distri-
butions, 94, 100

coordinates of vector, 32

countable set, 3

curve, 159

— smooth, piecewise smooth, 159

8- distribution, 85, 197

dense set, 22

derivative, of distribution in Z’, 198

— of function, 42, 155

— of periodic distribution, 86, 100

differentiable function, 42, 155

differential equations, first order and
second order, 51-56

— higher order, 213-222

diffusion equation, 137

— derivation, 144

dimension, of vector space, 31

Dirac §- distribution, 85, 197

Dirichlet kernel, 130

Dirichlet problem, 150

distribution, of type £, 197

—, periodic, 84, 100

divergence of series, 14
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essential singularity, 176
even function, 87
even periodic distribution, 87, 101

finite dimensional vector space, 30
Fourier coefficients, 124

— in L3, 126, 129

— of a convolution, 134

— of periodic distributions, 132
Fourier series, 126, 129

Frechet space, 76

function, 2

— bounded, 36

— class C¥, C, 46

— complex-valued, 3

— continuous, 35

— differentiable, 42, 155

— holomorphic, 158

— injective, 3

— infinitely differentiable, 46

— integrable, 38

— meromorphic, 178

—1-1,3

— onto, 3

— periodic, 69

— rational, 179

— real-valued, 3

— smooth, 73

— surjective, 3

— uniformly continuous, 35
fundamental theorem of algebra, 169
fundamental theorem of calculus, 44

gamma function, 184
geometric series, 15

glb, 7

Goursat’s theorem, 165
Gram-Schmidt method, 117
greatest lower bound, 7
Green’s function, 215

H? 188

harmonic function, 150
heat equation, 137

— derivation, 144
Heine-Borel theorem, 24
Hermite polynomials, 120
Hilbert cube, 116

Subject Index

Hilbert space, 109
holomorphic function, 158
homotopy, 161

imaginary part, of complex number, 9

— of distribution in #”, 198

— of function, 38

— of periodic distribution, 87, 101

improper integral, 41

independence, linear, 30

inf, infimum, 11

infinite dimensional vector space, 30

infinitely differentiable function, 46

inner product, 103, 109

integrable function, 38

integral, 38

— improper, 41

— of distribution in &, 201

intermediate value theorem, 37

intersection, 2

interval, S

inverse function, 3

inverse function theorem, for holo-
morphic functions, 171

isolated singularity, 175

kernel, of linear transformation, 33

Laguerre polynomials, 120

Laplace transform, of distribution,
210

— of function, 192, 206

Laplace’s equation, 150

Laurent expansion, 181

least upper bound, 7

Legendre polynomials, 120

L’Hépital’s rule, 47

lim inf, lim sup, 12

limit of sequence, 10, 22

limit point, 21

linear combination, 29

— nontrivial, 30

linear functional, 32

— bounded, 71

linear independence, 30

linear operator, linear transformation,
32



Subject Index

Liouville’s theorem, 169
logarithm, 61, 173
lower bound, 7

lower limit, 12

lub, 7

maximum modulus theorem, 174

maximum principle, for harmonic
functions, 154

— for heat equation, 142

mean value theorem, 43

meromorphic function, 178

mesh, of partition, 38

metric, metric space, 19

modulus, 9

neighborhood, 20
norm, normed linear space, 70
null space, 33

odd function, 87

odd periodic distribution, 88, 101

open mapping property, 174

open set, 20

order, of distribution in #’, 201

— of periodic distribution, 89, 102

— of pole, 177

— of zero, 177

orthogonal expansion, 121, 124

orthogonal vectors, 110

orthonormal set, orthonormal basis,
117

parallelogram law, 110

Parseval’s identity, 124

partial fractions decomposition, 180

partial sum, of series, 14

partition, 38

period, 69

periodic distribution, 84, 100

periodic function, 69

Poisson kernel, 151

polar coordinates, 66

pole, simple pole, 176

power series, 17

product, of sets, 2

Pythagorean theorem, in Hilbert
space, 110

229

radius of convergence, 17

rapid decrease, 131

ratio test, 16

rational function, 179

rational number, 4

real part, of complex number, 9
— of distribution in £, 198

— of function, 38

— of periodic distribution, 87, 101
real distribution in £, 198

real periodic distribution, 87, 101
removable singularity, 175
residue, 182

Riemann sum, 38

Riesz representation theorem, 112
root test, 16

scalar, 28

scalar multiplication, 27
Schrédinger equation, 141
Schwarz inequality, 103, 109
seminorm, 76

separable, 27

sequence, 4

sequentially compact set, 26
series, 14

simple pole, simple zero, 177
singularity, essential, 176
— isolated, 175

— removable, 175

slow growth, 132

smooth function, 73

span, 30

standard basis, 30

subset, 2

subsequence, 24

subspace, 29

sup, 11

support, 200

supremum, 11

translate, of distribution in £, 198
— of periodic distribution, 86, 100
— of function, 77

triangle inequality, 19
trigonometric polynomial, 81
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uniform Cauchy sequence of func- wave equation, 145

tions, 47 — derivation, 148
uniform continuity, 35 Weierstrass approximation theorem,
uniform convergence, 47 82
union, 2 Weierstrass polynomial approxima-
unitary transformation, 124 tion theorem, 83

upper bound, 7
upper limit, 12

vector, vector space, 28 zero, of holomorphic function, 177



