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PREFACE

This book is intended as a textbook for a first course in the theory of
functions of one complex variable for students who are mathematically
mature enough to understand and execute ¢ - § arguments. The actual pre-
requisites for reading this book are quite minimal; not much more than a
stiff course in basic calculus and a few facts about partial derivatives. The
topics from advanced calculus that are used (e.g., Leibniz’s rule for differ-
entiating under the integral sign) are proved in detail.

Complex Variables is a subject which has something for all mathematicians.
In addition to having applications to other parts of analysis, it can rightly
claim to be an ancestor of many areas of mathematics (e.g., homotopy theory,
manifolds). This view of Complex Analysis as “An Introduction to Mathe-
matics” has influenced the writing and selection of subject matter for this book.
The other guiding principle followed is that all definitions, theorems, etc.
should be clearly and precisely stated. Proofs are given with the student in
mind. Most are presented in detail and when this is not the case the reader is
told precisely what is missing and asked to fill in the gap as an exercise. The
exercises are varied in their degree of difficulty. Some are meant to fix the
ideas of the section in the reader’s mind and some extend the theory or give
applications to other parts of mathematics. (Occasionally, terminology is used
in an exercise which is not defined—e.g., group, integral domain.)

Chapters I through V and Sections VI.1 and VI.2 are basic. It is possible
to cover this material in a single semester only if a number of proofs are
omitted. Except for the material at the beginning of Section VI.3 on convex
functions, the rest of the book is independent of V1.3 and VI1.4.

Chapter VII initiates the student in the consideration of functions as
points in a metric space. The results of the first three sections of this chapter
are used repeatedly in the remainder of the book. Sections four and five need
no defense; moreover, the Weierstrass Factorization Theorem is necessary
for Chapter XI. Section six is an application of the factorization theorem.
The last two sections of Chapter VII are not needed in the rest of the book
although they are a part of classical mathematics which no one should
completely disregard.

The remaining chapters are independent topics and may be covered in any
order desired.

Runge’s Theorem is the inspiration for much of the theory of Function
Algebras. The proof presented in section VIIL.1 is, however, the classical one
involving “‘pole pushing™. Scction two applies Runge's Theorem to obtain a
more general form of Cauchy's Theorem. The main results of sections three
and four should be read by everyone., even if the proofs are not.

Chapter IX studies analytic continuation and introduces the reader to
analysic mandolds and covering spaces. Sections one through three can
be considered as o unit and will give the reader a knowledge of analytic
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continuation without necessitating his going through all of Chapter 1X.

Chapter X studies harmonic functions including a solution of the Dirichlet
Problem and the introduction of Green’s Function. If this can be called
applied mathematics it is part of applied mathematics that everyone should
know.

Although they are independent, the last two chapters could have been
combined into one entitled “Entire Functions”. However, it is felt that
Hadamard’s Factorization Theorem and the Great Theorem of Picard are
sufficiently different that each merits its own chapter. Also, neither result
depends upon the other.

With regard to Picard’s Theorem it should be mentioned that another
proof is available. The proof presented here uses only elementary arguments
while the proof found in most other books uses the modular function.

There are other topics that could have been covered. Some consideration
was given to including chapters on some or all of the following: conformal
mapping, functions on the disk, elliptic functions, applications of Hilbert
space methods to complex functions. But the line had to be drawn somewhere
and these topics were the victims. For those readers who would like to explore
this material or to further investigate the topics covered in this book, the
bibliography contains a number of appropriate entries.

Most of the notation used is standard. The word “iff”” is used in place of
the phrase “if and only if”’, and the symbol [l is used to indicate the end of a
proof. When a function (other than a path) is being discussed, Latin letters
are used for the domain and Greek letters are used for the range.

This book evolved from classes taught at Indiana University. T would like
to thank the Department of Mathematics for making its resources available
to me during its preparation. I would especially like to thank the students
in my classes; it was actually their reaction to my course in Complex Variables
that made me decide to take the plunge and write a book. Particular thanks
should go to Marsha Meredith for pointing out several mistakes in an early
draft, to Stephen Berman for gathering the material for several exercises on
algebra, and to Larry Curnutt for assisting me with the final corrections of the
manuscript. I must also thank Ceil Sheehan for typing the final draft of the
manuscript under unusual circumstances.

Finally, I must thank my wife to whom this book is dedicated. Her
encouragement was the most valuable assistance I received.

John B. Conway

PREFACE FOR THE SECOND EDITION

I have been very pleased with the success of my book. When it was
apparent that the second printing was nearly sold out, Springer-Verlag
asked me to prepare a list of corrections for a third printing. When I
mentioned that I had some ideas for more substantial revisions, they
reacted with characteristic enthusiasm.

There are four major differences between the present edition and its
predecessor. First, John Dixon’s treatment of Cauchy’s Theorem has been
included. This has the advantage of providing a quick proof of the theorem
in its full generality. Nevertheless, I have a strong attachment to the
homotopic version that appeared in the first edition and have proved this
form of Cauchy’s Theorem as it was done there. This version is very
geometric and quite easy to apply. Moreover, the notion of homotopy is
needed for the later treatment of the monodromy theorem; hence, inclu-
sion of this version yields benefits far in excess of the time needed to
discuss it.

Second, the proof of Runge’s Theorem is new. The present proof is due
to Sandy Grabiner and does not use “pole pushing”. In a sense the “pole
pushing” is buried in the concept of uniform approximation and some
ideas from Banach algebras. Nevertheless, it should be emphasized that the
proof is entirely elementary in that it relies only on the material presented
in this text.

Next, an Appendix B has been added. This appendix contains some
bibliographical material and a guide for further reading.

Finally, several additional exercises have been added.

There are also minor changes that have been made. Several colleagues
in the mathematical community have helped me greatly by providing
constructive criticism and pointing out typographical errors. I wish to
thank publicly Earl Berkson, Louis Brickman, James Deddens, Gerard
Keough, G. K. Kristiansen, Andrew Lenard, John Mairhuber, Donald C.
Meyers, Jeffrey Nunemacher, Robert Olin, Donald Perlis, John Plaster,
Hans Sagan, Glenn Schober, David Stegenga, Richard Varga, James P.
Williams, and Max Zorn.

Finally, I wish to thank the staff at Springer-Verlag New York not only
for their treatment of my book, but also for the publication of so many
fine books on mathematics. In the present time of shrinking graduate
enrollments and the consequent reluctance of so many publishers to print
advanced texts and monographs, Springer-Verlag is making a contribution
to our discipline by increasing its efforts to disseminate the recent develop-
ments in mathematics.

John B. Conway



TABLE OF CONTENTS

Preface . . . . . . . . . . . . vii

I. The Complex Number System
§1. The real numbers .
§2. The field of complex numbers .
§3. The complex plane
§4. Polar representation and roots of complex numbers
§5. Lines and half planes in the complex plane
§6. The extended plane and its spherical representation

[o I R N

I. Metric Spaces and the Topology of C

§1. Definition and examples of metric spaces . . . . .1
§2. Connectedness . . . . . . . . 14
§3. Sequences and completenes> . . . . . . .17
§4. Compactness . . . . . . . . . 20
§5. Continuity . . . . . . . . . . 24
§6. Uniform convergence . . . . . . . . 28

1I.  Elementary Properties and Examples of Analytic Functions

§1. Power series . . . . . . . . . . 30
§2. Analytic functions . . . .33
§3. Analytic functions as mappmgs Mobrus transformatrons . . 44

Iv. Complex Integration

§1. Riemann-Stieltjes integrals . . . . 58
§2. Power series representation of analytlc functlons . . . 68
§3. Zeros of an analytic function . . . . . . . 76
§4. The index of a closed curve . . . . . . 80
§5. Cauchy’s Theorem and Integral Formula . . . . . 83
§6. The homotopic version of Cauchy’s Theorem and
simple connectivity . . . . . 87
§7. Counting zeros; the Open Mappmg Theorem . . . .97
§8. Goursat’s Theorem . . . . . . . . 100
V. Singularitics
§1. Classificanion of singularities . . . . . . . 103
82 Residues . ‘ . . . . . . 112

§3. The Argument l’rmupk . . . . , . 123



Xii

VI.

VIIL.

VIIL

IX.

XI.

Table of Contents

The Maximum Modulus Theorem
§1. The Maximum Principle
§2. Schwarz’s Lemma .

§3. Convex functions and Hadamard s Three CerleS Theorem

§4. Phragmen-Lindel6f Theorem .

Compactness and Convergence in the
Space of Analytic Functions

§1. The space of continuous functions C(G,Q)
§2. Spaces of analytic functions

§3. Spaces of meromorphic functions

§4. The Riemann Mapping Theorem

§5. Weierstrass Factorization Theorem .

§6. Factorization of the sine function

§7. The gamma function

§8. The Riemann zeta function

Runge’s Theorem

§1. Runge’s Theorem .

§2. Simple connectedness
§3. Mittag-Leffler’s Theorem

Analytic Continuation and Riemann Surfaces
§1. Schwarz Reflection Principle .

§2. Analytic Continuation Along A Path

§3. Mondromy Theorem

§4. Topological Spaces and Nelghborhood Systems

§5. The Sheaf of Germs of Analytic Functions on an Open Set

§6. Analytic Manifolds
§7. Covering spaces

Harmonic Functions

§1. Basic Properties of harmonic functions

§2. Harmonic functions on a disk .

§3. Subharmonic and superharmonic functions
§4. The Dirichlet Problem

§5. Green’s Functions .

Entire Functions

§1. Jensen's Formula

§2. The genus and arder of an entire funumn
§3. Hadamard lactorization Theorem

. 128
. 130
. 133
. 138

. 142
. 151
. 155
. 160
. 164
. 174
. 176
. 187

. 195
. 202
. 204

. 210
. 213
L 217
. 221
. 227
. 233
. 245

. 252
. 256
. 263
. 269
. 215

. 280
. 282
. 287

Table of Contents

XII. The Range of an Analytic Function
§1. Bloch’s Theorem
§2. The Little Picard Theorem
§3. Schottky’s Theorem
§4. The Great Picard Theorem

Appendix A: Calculus for Complex Valued Functions on .

an Interval

Appendix B: Suggestions for Further Study and
Bibliographical Notes .

References .
Index

List of Symbols

xiii

. 292
. 296
. 297
. 300

. 303

. 307

. 311

. 313

. 317



Chapter 1
The Complex Number System

§1. The real numbers

We denote the set of all real numbers by R. It is assumed that each
reader is acquainted with the real number system and all its properties. In
particular we assume a knowledge of the ordering of R, the definitions and
properties of the supremum and infimum (sup and inf), and the complete-
ness of R (every set in R which is bounded above has a supremum). It is
also assumed that every reader is familiar with sequential convergence in
R and with infinite series. Finally, no one should undertake a study of
Complex Variables unless he has a thorough grounding in functions of one
real variable. Although it has been traditional to study functions of several
real variables before studying analytic function theory, this is not an
essential prerequisite for this book. There will not be any occasion when
the deep results of this area are needed.

§2. The field of complex numbers

We define C, the complex numbers, to be the set of all ordered pairs
(a, b) where a and b are real numbers and where addition and multiplication
are defined by:

(@, b)+(c, d) = (a+c, b+d)
(a, b) (¢, d) = (ac—bd, bc+ad)

It is easily checked that with these definitions C satisfies all the axioms for
a field. That is, C satisfies the associative, commutative and distributive
laws for addition and multiplication; (0,0) and (1,0) are identities for
addition and multiplication respectively, and there are additive and multi-
plicative inverses for each nonzero element in C.

We wil] write a for the complex number (g, 0). This mapping a — (a, 0)
defines a field isomorphism of R into C so we may consider R as a subset of
C. If we put i = (0, 1) then (a, b) = a+bi. From this point on we abandon
the ordered pair notation for complex numbers.

Note that i2 = — 1, so that the equation z+1 = 0 has a root in C. In
fact, for each z in C, z2+1 -~ (z+1) (z—1i). More generally, if z and w are
complex numbers we obtain

2wt iw)(z—in)
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By letting z and w be real numbers a and b we can obtain (with both & and
b # 0)

1 a-ib  a ; b
a+ib  a+b*  a®+b? a*+b?
so that we have a formula for the reciprocal of a complex number.

When we write z = a-+ib (a, b € R) we call a and b the real and imaginary
parts of z and denote this by a = Re z, b = Imz. '

We conclude this section by introducing two operations on C whlch‘are
not field operations. If z = x+iy(x, y € R) then we define |z| = (x*+yH)* to
be the absolute value of z and Z = x—iy is the conjugate of z. Note that
21 lz]> = 2z
In particular, if z # 0 then
1 z
z  |zf?

The following are basic properties of absolute values and conjugates
whose verifications are left to the reader.

1
2.2 Rez = ¥(z+z) and Imz = z—i(z—i).
2.3 ‘ GEFw)=Z+% and Zw = Zw.
24 |zw] = |z] |w]|.
2.5 jzhw] = lz1/]wl-
2.6 Z] = |z].

The reader should try to avoid expanding z and w into their real and
imaginary parts when he tries to prove these last three. Rather, use 2.1,
(2.2), and (2.3).

Exercises
1. Find the real and imaginary parts of each of the following:

- 3451 (—1+i/3\%;
1; T8 @emy; 2 LI (—*—\/ )
z z+a 2

. A\ 6 N\ 1
SV (M s o <8,
2 V2

2. Find the absolute value and conjugate of cach of the following:
i 3 (2 1) (44 3): 3—i 0
—2+4i; =3 2+ (44 30); J24 3 Lias

(it

The complex plane 3

3. Show that z is a real number if and only if z = Z.
4. If z and w are complex numbers, prove the following equations:

|z+w|* = |z]>+2Re zWw +|w|%
|z—w]? = |z]*—2Re zw+|w|*.
24w + |z—w]? = 2(z]* +|w]?).

5. Use induction to prove that for z = z;+...+z,; W= wiWw,...w,:
W] = [wi|.oo Wl 2 =Z4. . 425 W =W ...W,
6. Let R(z) be a rational function of z. Show that R(z) = R(Z) if all the

coeflicients in R(z) are real.
§3. The complex plane

From the definition of complex numbers it is clear that each z in C can
be identified with the unique point (Re z, Im z) in the plane R?. The addition
of complex numbers is exactly the addition law of the vector space RZ.
If z and w are in C then draw the straight lines from z and w to 0 (=(0, 0)).
These form two sides of a parallelogram with 0, z and w as three vertices.
The fourth vertex turns out to be z+w.

Note also that |z—w| is exactly the distance between z and w. With this
in mind the last equation of Exercise 4 in the preceding section states the
parallelogram law: The sum of the squares of the lengths of the sides of a
parallelogram equals the sum of the squares of the lengths of its diagonals.

A fundamental property of a distance function is that it satisfies the
triangle inequality (see the next chapter). In this case this inequality becomes

[zi=25| < |zy~23] + |z3—2,]

for complex numbers z;, z,, z5. By using z; —z, = (z; —z3) +(z;—2z,), it is
easy to see that we need only show

31 |z+w| < |z| + |w]|(z, weC).

To show this first observe that for any z in C,

3.2 —[z] < Rez < [z]
~zl cImz < |7
Hence, Re (zw) < |zW| = |z| |w|. Thus,

|z+w|? = |z|*+2Re (z®) + |w|?
< |2? +2]z| [wl +|w]?
= (z[+ D7,

from which (3.1) follows. (This is called the triangle inequality because, if we
represent = and woin the plane, (3.1) says that the length of one side of the
triangle [0, z, z 4] is fess than the sum of the lengths of the other two sides.
Or, the shortest distance between twa points is a straight line.) On encounter-
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ing an inequality one should always ask for necessary and sufficient conditions
that equality obtains. From looking at a triangle and considering the geo-
metrical significance of (3.1) we are led to consider the condition z = tw
for some tcR, ¢ > 0. (or w =tz if w=0). It is clear that equality will
occur when the two points are colinear with the origin. In fact, if we look
at the proof of (3.1) we see that a necessary and sufficient condition for
|z-+w| = |z|+|w] is that |z%] = Re (zW). Equivalently, this is zw > 0(.e.,zw
is a real number and is non negative). Multiplying this by w/w we get
|w|*(z/w) = 0if w # 0. If

t=zlw= <ﬁ) lw|*(z/w)

thent > 0 and z = tw.
By induction we also get

33 |zi 4+ 2o+ . 42| < |z +lz|+. ]z
Also useful is the inequality
3.4 llzl—]ww < |z—w|

Now that we have given a geometric interpretation of the absolute value
let us see what taking a complex conjugate does to a point in the plane.
This is also easy; in fact, Z is the point obtained by reflecting z across the
x-axis (i.e., the real axis).

Exercises

1. Prove (3.4) and give necessary and sufficient conditions for equality.
2. Show that equality occurs in (3.3) if and only if z,/z, > O for any integers
kand!l 1 < k,1 < n, for which z; # 0.

3. Let acR and ¢ > O be fixed. Describe the set of points z satisfying

lz—a|—|z++a] = 2¢

for every possible choice of a and ¢. Now let a be any complex number
and, using a rotation of the plane, describe the locus of points satisfying the
above equation.

§4. Polar representation and roots of complex numbers

Consider the point z = x+iy in the complex plane C. This point has
polar coordinates (r, 6): x = r cos 8, y = r sin 6. Clearly r = |z| and 8 is
the angle between the positive real axis and the line segment from O to z.
Notice that @ plus any multiple of 27 can be substituted for @ in the above
cquations. The angle 0 is called the argument of = and is denoted by 8 = arg z.
Because of the ambiguity of 6, “arg™ is not a function. We introduce the
notation

4.1 cis ! cos O tisin

Polar representation and roots of complex numbers 5
Let z; = r, cis 0, z, = r, cis 0,. Then z,z, = ryr, cis 8, cis 8, = r,r,

[(cos 6; cos 6,—sin 0, sin 6,)+i (sin §; cos 0,+sin 8, cos §,)]. By the

formulas for the sine and cosine of the sum of two angles we get

4.2 2,2, = ryry cis (8, +6,)

Alternately, arg (z,z,) = arg z, +arg z,. (What function of a real variable
takes products into sums?) By induction we get forz, = r,cis 6,, 1 < k < n.

4.3 ZyZy .. Zy =TTy, .. . Fycis(0+...4+0)
In particular,
4.4 z" = 1" cis (nb),

for every integer n > 0. Moreover if z # 0, z-[r™! cis (—8)] = 1; so that
(4.4) also holds for all integers n, positive, negative, and zero, if z # 0. As a
special case of (4.4) we get de Moivre’s formula:

(cos 0+isin )" = cos nf+i sin 1o,

We are now in a position to consider the following problem: For a given
complex number a # O and an integer n > 2, can you find a number z
satisfying z" = a? How many such z can you find? In light of (4.4) the
solution is easy. Let a = |a]| cis «; by (4.4), z = |a]'/" cis («/n) fills the bill.

.. . 1
However this is not the only solution because z' = |a]'/" cis — (x+27) also
n

satisfies (z')" = a. In fact each of the numbers
1

4.5 la|'/* cis — («+27k), 0 < k < n—1,
n

in an nth root of a. By means of (4.4) we arrive at the following: for each
non zero number a in C there are n distinct nth roots of a; they are given by
formula (4.5).

Example

Calculate the nth roots of unity. Since 1 = cis 0, (4.5) gives these roots as
. 2 A4rm . 2n
1,cis —,cis—,...,cis — (n—1).
n n n

In particular, the cube roots of unity are

1 [ :
I - . / . .
. \/2(1 +i3) /2 (1-i/3).

Exercises

+

1. ind the sixth roots of unny.
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2. Calculate the following:

(a) the square roots of

(b) the cube roots of i

(c) the square roots of /3 +3i
3. A primitive nth root of unity is a complex number a such that
l.a,a%...,a"" " are distinct nth roots of unity. Show that if a and b are
primitive nth and mth roots of unity, respectively, then ab is a kth root of
unity for some integer k. What is the smallest value of k? What can be said
if @ and b are nonprimitive roots of unity?
4. Use the binomial equation

n
(a+b)n — z (Z) an—kbk’
k=0

where

(n) n!

k] kWn—=k)!’

and compare the real and imaginary parts of each side of de Moivre’s
formula to obtain the formulas:

cosnf = cos™ 0— (;) cos" 2 sin? 6+ (n

4) cos" 4 fsin* —. ..

sin 7 = (’17) cos" ! esine-(’;) cos" 3 Osind O+. ..

2 .
5. Let z = cis — for an integer n > 2. Show that 1+z+...+2""' = 0.
n

6. Show that @(f) = cis 7 is a group homomorphism of the additive group
R onto the multiplicative group T = {z: |z| = 1}.

7. If z e C and Re(z")= 0 for every positive integer n, show that z is a
positive real number.

§5. Lines and half planes in the complex plane

Let L denote a straight line in C. From elementary analytic geometry,
L is determined by a point in L and a direction vector. Thus if a is any point
in L and b is its direction vector then

L={z=atth: —o <t < 0}

Since b # O this gives, for zin L,

Im <Z%") = 0.
—Im (z;a)
()

In facf if z is such that

then

Lines and half planes in the complex plane 7
implies that z = a-+tbh, —o0 < t < co. That is

R R

What is the locus of each of the sets
{z: Im (5;;_“) > 0} .
{z: Im(z—;—a) < 0} ?

As a first step in answering this question, observe that since b is a direction
we may assume |b| = 1. For the moment, let us consider the case where
a=0, and put Hy = {z: Im (z/b) > 0}, b =cis B. If z = r cis 8 then
z/b = rcis (§—pB). Thus, z is in H, if and only if sin (6—pB) > 0; that is, when
B < 0 < m+pB. Hence H, is the half plane lying to the left of the line L if

,,\\\\\\\\\\\\\\ A

we are “walking along L in the direction of 5.” If we put

wen()-

then it i.s easy to see that H, = a+H, = {a+w: we Hy}; that is, H, is the
translation of H, by a. Hence, H, is the half plane lying to the left of L.

Similarly,
K, = {z: Im (%’) < 0}

is the half plane on the right of L.

Exercise

+

Lo Let € be the circle fz: |z-¢]  rir -0ileta - c+r¢s « and put
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= e ()

where b = cis B. Find necessary and sufficient conditions in terms of § that
L, be tangent to C at a.

§6. The extended plane and its spherical representation

Often in complex analysis we will be concerned with functions that be-
come infinite as the variable approaches a given point. To discuss this situa-
tion we introduce the extended plane which is CU {w} = C,. We also
wish to introduce a distance function on C, in order to discuss continuity
properties of functions assuming the value infinity. To accomplish this
and to give a concrete picture of C, we represent C, as the unit sphere
in R3,

S = {(xp, X2 X3) e RO x}+25+x5 = 1}

Let N = (0, 0, 1); that is, N is the north pole on S. Also, identify C with
{(x1, X2, 0): Xy, X3 € R} so that C cuts S along the equator. Now for each
point z in C consider the straght line in R* through z and N. This intersects

the sphere in exactly one point Z # N. If |z] > 1 then Z is in the northern
hemisphere and if |z| < 1 then Z is in the southern hemisphere; also, for
|z| = 1, Z = z. What happens to Z as |z| > o0? Clearly Z approaches N;
hence, we identify N and the point oo in C. Thus Cq is represented as
the sphere S.

Let us explore this representation. Put z = x+iy and let Z = (xy, X2, X3)
be the corresponding point on S. We will find equations expressing Xy, Xz,
and x, in terms of x and y. The line in R? through z and N is given by
{N+(1 =Nz —0 < I < w}, or by

6.1 (I —Dy (=0 ) = < 12 ol

Hence, we can find the coordinates of Zf we can find the value of £ at

The extended plane and its spherical representation 9
which this line intersects S. If ¢ is this value then

1 = (1=8)2x2+(1—t)%y* + 12
= (1-0)*|z]*+1*
From which we get
1-12 = (1-0)?%z)%
Since t # 1 (z # o0) we arrive at
_lP-1

T lzP+1

t
Thus

2x 2y 21

6.2 X, = ) Xy = 5o =
TP T R B T P

But this gives

6.3 X, = Z;"Z_ X,= —iz=2) x3=|£ﬁil,
|z]2+1 |22 +1 |z]2+1

If the poin.t Z is given (Z # N) and we wish to find z then by setting
t = x3 and using (6.1), we arrive at

6,4 2 = .—xl_""_i_Xg
1_x3

Now let us define a distance function between points in the extended
plane in the following manner: for z, z’ in C,, define the distance from z to 2’
d(z, z'), to be the distance between the corresponding points Z and Z' in R”‘,
If Z = (x;, x5, x3) and Z' = (x{, x3, x3) then .

6.5 d(z, 2') = [(x = x{)? + (xp = x3)* +(x3—x})*]
Using the fact that Z and Z’ are on S, (6.5) gives

6.6 [d(z, 2)]* = 2—2(x x|+ XX} + X 3X3)

By using equation (6.3) we get

2|z—2'|
[+ A+

6.7 d(z,z") = (z,z' € C)

In a similar manner we get for z in C

2
6.8 diz, o) - - - -
) (1+]z]H?

This cprrespondence between points of 8 and €, is called the stercographic
projection.
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Exercises

1. Give the details in the derivation of (6.7) and (6.8).

2. For each of the following points in C, give the corresponding point of
S:0, 1+, 3+2i.

3. Which subsets of S correspond to the real and imaginary axes in C.

4. Let A be a circle lying in S. Then there is a unique plane P in R® such
that P N S = A. Recall from analytic geometry that

P = {(xq, X3, X3): X1 By +x2B2+x3B3 = I}

where (8;, B, B3) is a vector orthogonal to P and / is some real number.
It can be assumed that f2+83+8% = 1. Use this information to show that
if A contains the point N then its projection on C is a straight line. Otherwise,
A projects onto a circle in C.

5. Let Z and Z’ be points on S corresponding to z and z’ respectively. Let
W be the point on S corresponding to z+2z'. Find the coordinates of W in
terms of the coordinates of Z and Z’.

Chapter 11
Metric Spaces and the Topology of C

§1. Definition and examples of metric spaces

A metric space is a pair (X, d) where X is a set and d is a function from
X x X into R, called a distance function or metric, which satisfies the following
conditions for x, y, and z in X:

d(x,y) = 0
dix,y) =0ifandonlyif x = y
d(x, y) = d(y, x) (symmetry)
d(x, z) < d(x,y)+d(p, ) (triangle inequality)
If x and r > O are fixed then define
CB(x;ry = {yeX: dix,y) < r}
B(x;ry = {yeX: d(x,y) <1}

B(x; r) and B(x; r) are called the open and closed balls, respectively, with
center x and radius r.

Examples

1.1 Let X = R or C and define d(z, w) = |z—w|. This makes both (R, d)
and (C, d) metric spaces. In fact, (C, d) will be the example of principal
interest to us. If the reader has never encountered the concept of a metric
space before this, he should continually keep (C, d) in mind during the study
of this chapter.

1.2 Let (X, d) be a metric space and let ¥ < X; then (Y, d) is also a metric
space.

1.3 Let X = C and define d(x+iy, a+ib) = |x—a|+|y—>b|. Then (C, d) is
a metric space.

1.4 Let X = C and define d(x+iy, a+ib) = max {{x—al, |y—>b[}.

1.5 Let X be any set and define d(x,y) = 0if x = yand d(x,y) = 1 if x # y.
To show that the function d satisfies the triangle inequality one merely
considers all possibilities of equality among x, y, and z. Notice here that
B(x; €) consists only of the point x if ¢ < 1 and B(x; ¢) = X if € > 1. This
metric space docs not appear in the study of analytic function theory.

1.6 Let X = R" and for x = (v ... ) ¥ = (V... ), in R" define

o !
: d(x, y) ) ("/*)’1)2]
-1
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1.7 Let S be any set and denote by B(S) the set of all functions f: S—C
such that

I flleo = sup {[f(s)]: s€S} < o0.

That is, B(S) consists of all complex valued functions whose range is con-
tained inside some disk of finite radius. For f and g in B(S) define af, g =
| f—gll.. We will show that d satisfies the triangle inequality. In fact if £,
g, and / are in B(S) and s is any point in S then [f(s)—g(s)| = [f(s)—h(s)+
h(s)—g(s)] < |f(5)—h(s)| + h(s)—g(s)| < [If=hll,+ h—gll. Thus, when the
supremum is taken over all sin S, [ f—gllo, < I f=hlle+11h—glle, Which is
the triangle inequality for d.

1.8 Definition. For a metric space (X, d) a set G < X is open if for each
x in G there is an € > 0 such that B(x; ¢) < G.

Thus, a set in C is open if it has no ‘“‘edge.” For example, G = {z e C:
a < Rez<b}is open; but {z: Rez < 0} U {0} is not because B(0; €) is not
contained in this set no matter how small we choose e.

We denote the empty set, the set consisting of no elements, by (.

1.9 Proposition. Let (X, d) be a metric space; then:
(a) The sets X and [] are open; n
(b) If Gy, . . ., G, are open sets in X then so is () G
K

-1
(¢) If {G;: jeJ} is a collection of open sets in X, J any indexing set,
then G = L {G;: jeJ} is also open.

Proof. The proof of (a) is a triviality. To prove (b) let xc G = ) Gy; then
k=1

xeG,fork =1,...,n Thus, by the definition, for each k there is an ¢, > 0
such that B(x; €) < G,. Butif e = min {e;, €3, ..., e, thenforl < k <n
B(x; €) < B(x; ¢) < G,. Thus B(x; €) = G and G is open.

The proof of (c) is left as an exercise for the reader. |l

There is another class of subsets of a metric space which are distinguished.
These are the sets which contain all their “‘edge”; alternately, the sets whose
complements have no “edge.”

1.10 Definition. A set F < X is closed if its complement, X' —F, is open.

The following proposition is the complement of Proposition 1.9. The
proof, whose execution is left to the reader, is accomplished by applying
de Morgan’s laws to the preceding proposition.

1.11 Proposition. Let (X, d) be a metric space. T hen:
(a) The sets X and [} are closed.

() If F\, ..., F,are closed sets in X then so is U Fa
K

() If {F;: jo J} is any collection of closed sets in X, J any indexing set,
then IF° 0 F cjo JYis also closed.

The most common error made upon learning of open and closed sets

is to interpret the definition of ¢losed set to mean that i1 i set s not open it is
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closed. This, of course, is false as can be seen by looking at {zeC: Rez > 0}
U {0}; it is neither open nor closed.

1.12 Definition. Let 4 be a subset of X. Then the interior of A, int A4, is the
set { ) {G: G is open and G <= A}. The closure of A, A”, is the set N {F:F
is closed and F = A}. Notice that int 4 may be empty and 4~ may be X.
If A = {a+bi: a and b are rational numbers} then simultaneously 4™ = C
and int 4 = []. By Propositions 1.9 and 1.11 we have that 4~ is closed and
int A is open. The boundary of A is denoted by 84 and defined by 64 = A~
NX—-A4)".

1.13 Proposition. Let A and B be subsets of a metric space (X, d). Then:
(@) A is open if and only if A = int A4;
(b) Aisclosed if and only if A = A~
(€ int A=X—(X—A4A)"; A~ = X—int (X—A); a4 = A~ —int 4,
dAUB)y =47 UB;
(€) xo €int A if and only if there is an € > 0 such that B(xo; €) < A,
(f) xo€ A~ if and only if for every € > 0, B(x,; € N A # [].

Proof. The proofs of (a)-(e) are left to the reader. To prove (f) assume
xoeA™ = X—int (X—4); thus, xo¢int (X—A4). By part (), for every
€ > 0 B(x,; €) is not contained in X — A. That is, there is a point y € B(x,; €)
which is not in X—A. Hence, y € B(xo; €) N A. Now suppose xg¢ A~ =
X—int (X—A). Then x4 eint (X—A4) and, by (e), there is an ¢ > 0 such
that B(xy; €) © X—A. That is, B(x,; ¢ N A =[] so that x, does not
satisfy the condition. [l
Finally, one last definition of a distinguished type of set.

1.14 Definition. A subset A4 of a metric space X is dense if 4~ = X.

The set of rational numbers Q is dense in R and {x+iy: x, yeQ} is
dense in C.

Exercises

1. Show that each of the examples of metric spaces given in (1.2)-(1.6) is,
indeed, a metric space. Example (1.6) is the only one likely to give any
difficulty. Also, describe B (x;r) for each of these examples.

2. Which of the following subsets of C are open and which are closed: (a)
{z:]z]<1}; (b) the real axis; (¢) {z:z"=1 for some integer n=>1}; (d)
{zeC:zisreal and 0<z<1};(e) {zeC:zisreal and 0<z<1}?

3. If (X, d) is any metric space show that every open ball is, in fact, an open
set. Also, show that every closed ball is a closed set.

4. Give the details of the proof of (1.9¢).

S. Prove Proposition 1.11.

6. Prove that a set & < X is open if and only if X—G is closed.

7. Show that (17, , d) where d is given by (1. 6.7y and (1. 6.8) is a metric space.
K. Let (X, d) be a metric space and ¥« Y. Suppose G« X is open; show
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that G N Y is open in (¥, d). Conversely, show that if G, < Y is open in
(Y, d), there is an open set G < X such that G, = G N Y.

9. Do Exercise 8 with “closed” in place of “open.”

10. Prove Proposition 1.13.

11. Show that {cisk:k =0} is dense in T={zeC:|z]=1}. For which
values of 8 is {cis(kf):k =0} dense in T?

§2. Connectedness

Let us start this section by giving an example. Let X = {zeC: |z < 1}
U {z: |z=3| < 1} and give X the metric it inherits from C. (Henceforward,
whenever we consider subsets X of R or C as metric spaces we will assume,
unless stated to the contrary, that X has the inherited metric d(z, w) = |z—w].)
Then the set A = {z: |z| < 1} is simultaneously open and closed. It is closed
because its complement in X, B = X—A = {z: |z—3| < 1} is open; A is
open because if ae A then B(a; 1) < A. (Notice that it may not happen
that {zeC: |z—a] < 1} is contained in A—for example, if a = 1. But the
definition of B(a; 1) is {zeX: |z—a| < 1} and this is contained in A.)
Similarly B is also both open and closed in X.

This is an example of a non-connected space.

2.1 Definition. A metric space (X, d) is connected if the only subsets of X
which are both open and closed are (J and X. If 4 < X'then 4isa connected
subset of X if the metric space (4, d) is connected.

An equivalent formulation of connectedness is to say that X is not
connected if there are disjoint open sets 4 and B in X, neither of which 1s
empty, such that X = 4 U B. In fact, if this condition holds then 4 = X—B
is also closed.

2.2 Proposition. 4 set X < R is connected iff’ X is an interval.

Proof. Suppose X = [a, b], a and b elements of R. Let A < X be an open
subset of X such that a € 4, and 4 # X. We will show that 4 cannot also be
closed—and hence, X must be connected. Since A is open and a € A4 there is
an ¢ > 0 such that [a, a+¢) < A. Let
r=sup {e:[a,ate) © A4}

Claim.[a,a+r) © A.Infact,ifa < x < a+rthen,puttingh = a+r—x > 0,
the definition of supremum implies there is an e with r—h < e <7 and
la, a+€¢) © A. But a < x = a+(r—h) < a+eimplies x e A and the claim is
established.

However, a+r ¢ A for if, on the contrary, a+r € A4 then, by the openness
of A, there is a 8 > 0 with [a+r, a+r+38) < A. But this gives [a, a+r+98)
< A, contradicting the definition of r. Now if A4 werc also closed thena+rc B
— X—A which is open. Hence we could find a 8 > 0 such that (a+r—3,
a+r] < B, contradicting the above claim.

The proof that other types of intervals are connected is similar and it will
be left as an exercise.

e proo o the converse is Excreise 1. IR
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If w and z are in C then we denote the straight line segment from z to w
by
[z, w] = {tw+(1—0z: 0 <t <1}

A polygon from a to b is a set P = | } [z, w,] where z; = a, w, = b and
k=1
w,=2.,,forl <k <n—1;or, P=]a, z,...2, b

2.3 Theorem. An open set G < C is connected iff for any two points a, b in
G there is a polygon from a to b lying entirely inside G.

Proof. Suppose that G satisfies this condition and let us assume that G is
not connected. We will obtain a contradiction. From the definition, G =
A U B where A and B are both open and closed, A N B = [J, and neither
A nor B is empty. Let a € 4 and b € B; by hypothesis there is a polygon P
from a to b such that P < G. Now a moment’s thought will show that one
of the segments making up P will have one point in 4 and another in B.
So we can assume that P = [a, b]. Define,

S = {se[0,1]: sh+(1—-5aecd}
T={tel0,1]: th+(1—fae B}

Then SNT=,SUT=][0,1],0e Sand 1 € T. However it can be shown
that both S and T are open (Exercise 2), contradicting the connectedness of
[0, 1]. Thus, G must be connected.

Now suppose that G is connected and fix a point a in G. To show how to
construct a polygon (lying in G!) from a to a point b in G would be difficult.
But we don’t have to perform such a construction; we merely show that one
exists. For a fixed a in G define

A = {beG: thereisapolygon P < Gfromatob}.

The plan is to show that A4 is simultaneously open and closed in G. Since
ae A and G is connected this will give that A = G and the theorem will be
proved.

To show that A is open let be A and let P=]a, z,,...,2,, b] be a
polygon from a to b with P <= G. Since G is open (this was not needed in the
first half), there is an € > 0 such that B(b; ¢) < G. But if z € B(b; ¢) then
[b, z] < B(b; €) = G. Hence the polygon @ = P U [b, 7] is inside G and goes
from a to z. This shows that B(b; €) < A, and so 4 is open.

To show that A4 is closed suppose there is a point zin G—A4 and let ¢ > 0
be such that B(z; €) = G. If there is a point b in A N B(z; ¢) then, as above,
we can construct a polygon from a to z, Thus we must have that B(z;e) N A
= [, or B(z; ) = G— A. That is, G— A is open so that A4 is closed. |l

2.4 Corollary. If G < C is open and connected and a and b are points in G
then there is a polygon P in G from a to b which is made up of line segments
parallel to cither the real or imaginary axis.

Proctf  here are two wav: of nroving th corolary O e ¢yl sbtiin a
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polygon in G from a to b and then modify each of its line segments SO that a
new polygon is obtained with the desired properties. However, this proof
is more easily executed using compactness (see Exercise 5.7). Another proof
can be obtained by modifying the proof of Theorem 2.3. Define the set 4 as
in the proof of (2.3) but add the restriction that the polygon’s segments are
all parallel to one of the axes. The remainder of the proof will be valid with
one exception. If z € B(b; €) then [b, z] may not be parallel to an axis. But it
is easy to see that if z = x+i, b = p+iq then the polygon [B, p+iy] Y
[p+iy, 21 < B(b; ¢ and has segments parallel to an axis. |l

It will now be shown that any set S in a metric space can be expressed,
in a canonical way, as the union of connected pieces.

2.5 Definition. A subset D of a metric space X is a component of X ifitis a
maximal connected subset of X. That is, D is connected and there is no
connected subset of X that properly contains D.

If the reader examines the example at the beginning of this section he
will notice that both 4 and B are components and, furthermore, these are
the only components of X. For another example let X = {0, 1, LS TP
Then clearly every component of X is a point and each point is a component.

1

Notice that while the components {—} are all open in X, the component {0}
n

is not.

2.6 Lemma. Let xo € X andlet {D;:jeJ} bea collection of connected subsels
of X such that xo € D; for each j in J. Then D = J{D;:je J} is connected.

Proof. Let A4 be a subset of the metric space (D, d) which is both open and
closed and suppose that 4 # (. Then A N D; is open in (D;, d) for each j
and it is also closed (Exercises 1.8 and 1.9). Since D; is connected we get that
either AN D; = (Jor AND; = D, Since A # [ there is at least one k
such that 4 N D, # (J; hence, 4 N Dy = D,. In particular x € A so that
xo €A N D; for every j. Thus AN D; = Dj, or D; < A, for each index j.

This gives that D = 4, so that D is connected. ll

2.7 Theorem. Let (X, d) be a metric space. Then:
(a) Each xo in X is contained in a component of X.
(b) Distinct components of X are disjoint.
Note that part (a) says that X'is the union of its components.

Proof. (a) Let 2 be the collection of connected subsets of X which contain
the given point x,. Notice that {x,} € 2 so that @ + . Also notice that
the hypotheses of the preceding lemma apply to the collection 2. Hence
C=\{D:Dc 21} is connected and x ¢ C. But C must be a component.
In fact, if D is connected and C < D then v, ¢ D so that D« & but then
D < C. sothat C = D. Thus Cis maximal and part (a) is proved.

(b) Suppose €, and C, are components, ¢, / Cy. and suppose there is
a point xo in ¢, NGy Again the lemma says that €, Cy iy connected.
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Since bf)th C, and C, are components, this gives C; = C; U C, = C;, a
contradiction. [Jj 2 2>

2.8 Proposit%on. (a) If A © X is connected and A < B < A™, then B is connected
(b) If Cis a component of X then C is closed. '
The proof is left as an exercise.

2.9 Theorem. Let G be open in C; then the components of G are open and
there are only a countable number of them.

Proof. Let C be a component of G and let x, € C. Since G is open there is an
e > 0 with B(x,; €) © G. By Lemma 2.6, B(x,; €) U C is connected and so
must be C. That is B(x,; ¢€) < C and C is, therefore, open.

To see that the number of components is countable let S = {a+ib:
a and b are rational and a+bie G}. Then S is countable and each com;

ponent of G contains a point of S, so that th
) e number of compo i
countable. |l ponents is

Exercises

.l. The purpose of this exercise is to show that a connected subset of R is an
interval.

(a) Show that a set 4 < R is an interval iff for i

( ) any two points ‘

in 4 with a < b, the interval [a, b] < A. P @and b
(b) Use part (a) to show that if a set 4 = R is connected then it is an
interval.

2. Sho.w that the sets S and T in the proof of Theorem 2.3 are open.

3. Which .of the following subsets X of C are connected; if X is not connected
what are its components: (a) X = {z: |z] < 1}V {z: [z=2] < 1}. (b)) X =’

1
[0, l)u{l+’-1: n = 1}. () X = C~(A U B) where A = [0, ) and B =

z=rcisb:r=60<60< w}?

4. Prove the following generalization of Lemma 2.6. If {D;: jeJ} is a
collection of connected subsets of X and if for each j and k in J we have
D, r\ D, # (] then D = U {D;: jeJ} is connected.

S. SlTow that if F < X is closed and connected then for every pair of points
a, b in F and each € > 0 there are points zy, 25, ..., 2, in F with zy = a
z, = band d(z,_ |, z;) < efor1 < k < n. Is the hypothesis that F be (c):lose(i
nceded? If Fis a set which satisfies this property then F is not necessaril

connected, even if F is closed. Give an example to illustrate this. ’

§3. Sequences and completeness

Onc of {llc most uscful concepts in a metric space is that of a convergent
sequence, Their central role in calealus is duplicated in the study of metric
spaces and complex analysis.

3.1 Definition, 1 {v,. as .. g sequence ina ometric space (Y, ) then
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{x,} converges to x—in symbols x = lim x, or x, — x—if for every ¢ > 0
there is an integer N such that d(x, x,) < ¢ whenever n > N.

Alternately, x = lim x, if 0 = lim d(x, x,).

If X = C then z = lim z, means that for each ¢ > 0 there is an N such
that [z—z,| < e whenn > N.

Many concepts in the theory of metric spaces can be phrased in terms
of sequences. The following is an example.

3.2 Proposition. 4 set F < X is closed iff for each sequence {x,} in F with
x = lim x, we have x € F.

Proof. Suppose Fis closed and x = lim x, where each x, is in F. So for every
€ > 0, there is a point x, in B(x; €); that is B(x; ¢) " F # [J,sothat x e F~
= F by Proposition 2.8.

Now suppose F is not closed; so there is a point x4 in F~ which is not
in F. By Proposition 1.13(f), for every ¢ > 0 we have B(xq; ¢ N F # [1.

. . . . . 1
In particular for every integer » there is a point x, in B(xo; ~> N F, Thus,-

n
1
d(xo, x,) < - which implies that x, — x,. Since x, ¢ F, this says the con-
n
dition fails. i

3.3 Definition. If 4 < X then a point x in X is a limit point of A if there
is a sequence {x,} of distinct points in A4 such that x = lim x,.

The reason for the word “distinct” in this definition can be illustrated
by the following example. Let X = C and let 4 = [0, 1]V {i}; each point
in [0, 1] is a limit point of 4 but i is not. We do not wish to call a point such
as i a limit point; but if “distinct” were dropped from the definition we
could taken x, = i for each i and have { = lim x,.

3.4 Proposition. (a) A set is closed iff it contains all its limit points.

(b) If A < X then A~ = AV {x: x is a limit point of A}.

The proof is left as an exercise.

From real analysis we know that a basic property of R is that any sequence
whose terms get closer together as n gets large, must be convergent. Such
sequences are called Cauchy sequences. One of their attributes is that you
know the limit will exist even though you can’t produce it.

3.5 Definition. A sequence {x,} is called a Cauchy sequence if for every
e > 0 there is an integer N such that d(x,, x,) < e for all n, m > N.

If (X, d) has the property that each Cauchy sequence has a limit in X
then (X, d) is complete.

3.6 Proposition. C is complete.
Proof. If {x,4iy,}is a Cauchy sequence in € then {v,} and {y,} are Cauchy
sequences in R, Since R is complete, v, »xand y, -y for points v, yin R.
It follows that x4y Lm (v, 4iy,), and so € is complete. i

Consider €, with its metric d (1. 6.7 and 1. 6.8). Let z,, 2 be points in C;
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it can be shown that d(z,, z) - 0 if and only if |z,—z| — 0. In spite of this,
any sequence {z,} with lim |z,| = co is Cauchy in C,,, but, of course, is not
Cauchy in C.

If A = X we define the diameter of A by diam 4 = sup {d(x, y): x and
y are in A}.

3.7 Cantor’s Theorem. 4 metric space (X, d) is complete iff for any sequence

{F,} of non-empty closed sets with F; = F, = ... and diam F, 0, () F,
consists of a single point. n=1

Proof. Suppose (X, d) is complete and let {F,} be a sequence of closed sets
having the properties: (i) F;, > F, > ... and (ii) im diam F, = 0. For each
n, let x, be an arbitrary point in F,; if n, m > N then x,, x,, are in Fy so that,
by definition, d(x,, x,) < diam Fy. By the hypothesis N can be chosen
sufficiently large that diam F < €; this shows that {x,} is a Cauchy sequence.
Since X is complete, x, = lim x, exists. Also, x, is in Fy for all n > N

since F, < Fy; hence, x, is in Fy for every N and this gives x, € () F, = F.
n=1

So F contains at least one point; if, also, y is in F then both x, and y are in

F, for each »n and this gives d(x,, y) < diam F, — 0. Therefore d(x,, y) = 0,

or x, = y.

Now let us show that X is complete if it satisfies the stated condition.
Let {x,} be a Cauchy sequence in X and put F, = {x,, X4+, ...} ; then
FioF,>....1If e >0, choose N such that d(x,, x,) < € for each n,
m = N; this gives that diam {x,, x,;1,...} < € for n > N and so diam
F, < efor n > N (Exercise 3). Thus diam F, — 0 and, by hypothesis, there
is a point xy in X with {xo} = F, N F, N ... . In particular xq is in F,,
and so d(xg, x,) < diam F, — 0. Therefore, x, = lim x,. [l

There is a standard exercise associated with this theorem. It is to find a
sequence of sets {F,} in R which satisfies two of the conditions:

(a) each F, is closed,

b)) FF>2F,>...,

(c) diam F, — 0;
but which has F = F; N F, N ... either empty or consisting of more than
one point. Everyone should get examples satisfying the possible combina-
tions.

3.8 Proposition. Let (X,d) be a complete metric space and let Y < X. Then
(Y.d) is a complete metric space iff Y is closed in X.

Proof. Tt is left as an exercise to show that (Y.d) is complete whenever Y is
a closed subset. Now assume ( Y.d) to be complete; let x, be a limit point
of Y. Then there is a sequence {1} of points in Y such that x,=limy,,.
Hence {»,} 18 a Cauchy sequence (Lxercise 5) and must converge to a
point v, 1 Y, since (Yod) s complete. Tt follows that v, = v, and so Y
contans all ats Timnt points, Tlence ¥ s closed by Proposition 3.4, [l
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Exercises

1. Prove Proposition 3.4.

2. Furnish the details of the proof of Proposition 3.8.

3. Show that diam 4 = diam 4~.

4. Let z,, z be points in C and let d be the metric on C,,. Show that |z,—z| -0
if and only if d(z,, z) — 0. Also show that if |z,| — oo then {z,} is Cauchy
in C,. (Must {z,} converge in C.?)

5. Show that every convergent sequence in (X, d) is a Cauchy sequence.
6. Give three examples of non complete metric spaces.

7. Put a metric d on R such that |x,—x| — 0 if and only if d(x,, x} 0,
but that {x,} is a Cauchy sequence in (R, d) when |x,| — oo. (Hint: Take
inspiration from C,,.)

8. Suppose {x,} is a Cauchy sequence and {x, } is a subsequence that is
convergent. Show that {x,} must be convergent.

§4. Compactness

The concept of compactness is an extension of the benefits of finiteness to
infinite sets. Most properties of compact sets are analogues of properties
of finite sets which are quite trivial. For example, every sequence in a finite
set has a convergent subsequence. This is quite trivial since there must be at
least one point which is repeated an infinite number of times. However the
same statement remains true if “finite” is replaced by ‘“compact.”

4.1 Definition. A subset K of a metric space X is compact if for every collec-
tion & of open sets in X with the property
4.2 K<) {G:Ge¥},

there is a finite number of sets Gy, . . ., G, in & such that K < G, YVG,,U
...UG,. A collection of sets & satisfying (4.2) is called a cover of K; if
each member of ¥ is an open set it is called an open cover of K.

Clearly the empty set and all finite sets are compact. An example of a

1

non compact set is D = {zeC: |z < 1} 1f G, = {z: lz) <1 - ’;} forn =
2,3,..., then {G,, Gs,...} is an open cover of D for which there is no
finite subcover.

4.3 Proposition. Let K be a compact subset of X; then:
(a) K is closed,;
(b) If Fis closed and F < K then F is compact.

Proof. To prove part (a) we will show that K = K. Let xy¢€ K~ ; by Pro-
1
position 1.13(f), B(vy: )N K # 1] for each e > 0. Let G, = X—B(.\'(,; n)

and suppose that v, ¢ K. Then cach G, is open and K« {J G, (because N
. n |\

n=1
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o1 . .
B(xo; n) = {x,}). Since K is compact there is an integer m such that

n=1

K<|JG,.ButG, <G,<...sothat K= G, = X—B(xo; -1>. But this
m

. 1
gives that B(xo; - N K = [, a contradiction. Thus K = K.

To prove part (b) let ¥ be an open cover of F. Then, since F is closed
% U {X—F}is an open cover of K. Let G,,..., G, be sets in ¢ such tha{
KcGiu... UG, UX~=F). Clearly, F< G, V...UG, and so F is
compact. i

If % is a collection of subsets of X we say that .# has the finite inter-
section property (f.i.p.) if whenever {F, F,, ..., F,} <, F,NF,Nn...N
F, # []. An example of such a collection is {D—G,, D—G5, ...} where
the sets G, are as in the example preceding Proposition 4.3.

4.4 Proposition. A set K < X is compact iff every collection F of closed
subsets of K with the f.i.p. has [ {F: Fe #} # [.

Pro?f. Suppos.e K is compact and % is a collection of closed subsets of K
having the fi.p. Assume that () {F: FeF} =[] and let ¥ = {X—F:
ng :
Fe#}. Then, U{X—F: FeF}=X-(\{F FeZF} =X by the
assumption; in particular, 4 is an open cover of K. Thus, there are Fy, ...,
F,e % such that K CkUI(X—F,() = X — () F.. But this gives that h F,
R =1 k=1 n k=
< X—K, and since each F, is a subset of K it must be that ﬂ F, =1 Tlhis
contradicts the f.i.p. k=1
The proof of the converse is left as an exercise. |l

4.5 Corollary. Every compact metric space is complete.

2’1‘7004 This follows easily by applying the above proposition and Theorem

4.6. Corollary. If X is compact then every infinite set has a limit point in X.

Proof. Let S be an infinite subset of X and suppose S has no limit points.
Let {a,, a,,...} be a sequence of distinct points in S; then F, = {a,
dy, 1, - - -1 also has no limit points. But if a set has no limit points it contair:s
all its limits points and must be closed! Thus, each F, is closed and {F,:

. . . . « 0
n = 1} has the f.i.p. However, since the points a,, a, . . . are distinct, () F,
I, contradicting the above proposition. i n=1

§.7 Peﬁnition. A metric space (X, d) is sequentially compact if every sequence
in A" has a convergent subsequence.
It will be shown that compact and sequentially compact metric spaces

are the same. To do this the following is needed.

4.8 Lebesgue's Covering Lemma. [/ (X, ) is sequentially  compact and
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G is an open cover of X then there is an € > 0 such that if x is in X, there is a
set G in % with B(x; ¢) < G.

Proof. The proof is by contradiction; suppose that ¢ is an open cover of X
and no such ¢ > O can be found. In particular, for every integer n there is a

1y . ) . . .
point x, in X such that B(x,,; —) is not contained in any set G in %. Since X
n

is sequentially compact there is a point xg in X and a subsequence {x,, }
such that x, = lim x,_. Let Gy ¢ @ such that xo € G, and choose ¢ > 0
such that B(xq; €) < Go. Now let N be such that d(x,, x,) < €2 for all
n, > N. Let n, be any integer larger than both N and 2/e, and let y € B(x,, ;
1/n,). Then d(x,, y) < d(xo, Xp) +d(X,, V) < €2+1/m < e That is, B(x,,;
1/n) < B(xo; € < Go, contradicting the choice of x,. Il

There are two common misinterpretations of Lebesgue’s Covering
Lemma; one implies that it says nothing and the other that it says too much.
Since % is an open covering of X it follows that each x in X is contained in
some G in %. Thus there is an € > 0 such that B(x; ¢) < G since G is open.
The lemma, however, gives one € > 0 such that for any x, B(x; €) is con-
tained in some member of &. The other misinterpretation is to believe that
for the ¢ > 0 obtained in the lemma, B(x; €) is contained in each G in
such that x € G.

4.9. Theorem. Let (X, d) be a metric space; then the following are equivalent
statements:
(a) X is compact;
(b) Every infinite set in X has a limit point;
(©) X is sequentially compact;
(d) X is complete and for every ¢ > 0 there are a finite number of points
Xy, - .., Xy in X such that

X ={J B(x; )
k=1
(The property mentioned in (d) is called total boundedness.)

Proof. That (a) implies (b) is the statement of Corollary 4.6.

(b) implies (¢): Let {x,} be a sequence in X and suppose, without loss of
generality, that the points x;, x5, ... are all distinct. By (b), the set {x,,
X,, ...} has a limit point xo. Thus there is a point x,, € B(x,; 1); similarly,
there is an integer n, > ny with x,, € B(xo; 1/2). Continuing we get integers
ny < ny <..., with x,, € B(xo; 1/k). Thus, xo = lim x,, and X is sequen-
tially compact.

(¢) implies (d): To sec that X is complete let {x,} be a Cauchy
sequence, apply the definition of sequential compactness, and appeal to
Exercise 3.8. )

Now let € - O and fix x, « X AF X By, ) then we are done; other-
wise choose v, « X = B(x ;). Again, if ¥ - B(x, 1)V B(x,:«) we are donc;
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if not, let x3 € X—[B(x,; €) U B(x,; ¢)]. If this process never stops we find a
sequence {x,} such that

Xp41€X — U B(x; €).
k=1

But this implies that for n # m, d(x,, x,,) = € > 0. Thus {x,} can have no
convergent subsequence, contradicting (c).

(d) implies (c): This part of the proof will use a variation of the “pigeon
hole principle.” This principle states that if you have more objects than you
haye receptacles then at least one receptacle must hold more than one
ob]_ect. Moreover, if you have an infinite number of points contained in a
finite number of balls then one ball contains infinitely many points. So
part (d) says that for every ¢ > 0 and any infinite set in X, there is a point
y e X such that B(y; €) contains infinitely many points of this set. Let {x,}
be a sequence of distinct points. There is a point y, in X and a subsequenge
{x(V} of {x,} such that {x{"} < B(y,; 1). Also, there is a point y, in X
and a subsequence {x@} of {x{} such that {x»} < B(y,; %). Continuing,
for each integer k > 2 there is a point y, in X and a subsequence {x®} of
{x%*~ DY such that {x®} < B(y,; 1/k). Let F, = {x%}~; then diam F, < 2/k

and F;, © F, @ ... . By Theorem 3{6,.(] F, = {x,}. We claim that x{ —
k=1

X, (and {x{1 is a subsequence of {x,}). In fact, x, € F, so that d(x,, x{) <
diam F, < 2/k, and x, = lim x{.

(c) implies (a): Let & be an open cover of X. The preceding lemma gives
an ¢ > 0 such that for every x € X there is a G in ¢ with B(x; ¢) < G. Now

(c) also implies (d); hence there are points x;,...,x, in X such that

X :kyl B(x,; €). Now for 1 < k < nthere is a set G, €  with B(x;; €) < G.
Hence X =kL_)1 G,; that is, {G, ..., G,} is a finite subcover of 4.

4.10 Heine-Borel Theorem. A subset K of R" (n = 1) is compact iff K is closed
and bounded.

Proof. ‘If K is compact then K is totally bounded by part (d) of the
preceding theorem. It follows that K must be closed (Proposition 4.3);
also, it is easy to show that a totally bounded set is also bounded. )

Now suppose that K is closed and bounded. Hence there are real
numbers ay,...,q, and b,,...,b, such that K < F=[a,b,]% ... X][a,,b,]. If
it can be shown that F is compact then, because K 1s closed, it follows that
A is compact (Proposition 4.3(b)). Since R” is complete and F 1s closed it
follows that F is complete. Hence, again using part (d) of the preceding
theorem we need only show that F is totally bounded. This is easy
although somewhat “messy” to write down. Let € >0; we now will write F
as the union of n-dimensional rectangles each of diameter less than e

After doing this we will have F+ {) B(y,:¢) where each x, belongs to
k=1
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one of the aforementioned rectangles. The execution of the details of this
strategy is left to the reader (Exercise 3). i

Exercises

1. Finish the proof of Proposition 4.4. -
2. Letp =(py,...,p,) and g = (g, - . . , g) be points in R" with p, < g,
for each k. Let R = [p,, ¢,]1%. . .%x[p,, g,] and show that

n E
dism R = dp, ) = [ 3, @-p?]
3. Let F = [ay, b,]x...x[a, b,] < R" and let ¢ > 0; use Exercise 2 to

m
show that there are rectangles Ry, ..., R, such that F = (J R, and diam
k=1

R, < e for each k. If x, € R, then it follows that R, < B(x,; €).

4. Show that the union of a finite number of compact sets is compact.

5. Let X be the set of all bounded sequences of complex numbers. That is,
{x,}eX iff sup {|x.: n =1} < co. If x = {x,} and y = {y,}, define
d(x, y) = sup {|x,—y,|: n > 1}. Show that for each x in X and € > 0, B(x; ¢
is not totally bounded although it is complete. (Hint: you might have an
easier time of it if you first show that you can assume x = (0, 0, ...).)

6. Show that the closure of a totally bounded set is totally bounded.

§5. Continuity

One of the most elementary properties of a function is continuity. The
presence of continuity guarantees a certain degree of regularity and smooth-
ness without which it is difficult to obtain any theory of functions on a metric
space. Since the main subject of this book is the theory of functions of a
complex variable which possess derivatives (and so are continuous), the study
of continuity is basic.

5.1 Definition. Let (X, d) and (Q, p) be metric spaces and let /2 X — Q be
a function. If g € X and w € Q, then lim f(x) = w if for every ¢ > 0 thereis a

8 > 0 such that p(f(x), w) < € whenever 0 < d(x, a) < 8. The function f is

continuous at the point a if lim f(x) = f(a). If f is continuous at each point of
xX—a

X then f is a continuous function from X to Q.

5.2 Proposition. Let f: (X, d) —(Q, p) be a function and ac X, o« = f(a).
The following are equivalent statements

(a) f is continuous at a;

(b) For every € > 0, f~'(B(x; €)) contains a ball with center at a;

(¢) « = lim f(x,) whenever a — lim x,.

The proof will be left as an excrcise for the reader.

That was the last proposition concerning continuity of a function at a
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point. From now on we will concern ourselves only with functions continuous
on all of X.

5.3 Proposition. Let f: (X, d)— (2, p) be a function. The following are
equivalent statements:

() f is continuous;

(b) If A is open in Q then f~'(A) is open in X;

(¢) If I is closed in Q then f~'(T) is closed in X.

Proof. (a) implies (b): Let A be open in Q and let x e f~'(A). If o = f(x)
then w is in A; by definition, there is an € > 0 with B(w; €) < A. Since f'is
continuous, part (b) of the preceding proposition gives a 6 > 0 with B(x; 9)
< f7Y(B(w; €)) < f'(A). Hence, f~'(4) is open.

(b) implies (¢): If I' < Q is closed then let A = Q—T. By (b), £~ }(4) =
X —f~XI') is open, so that f~'(I) is closed.

(c) implies (a): Suppose there is a point x in X at which f'is not continuous.
Then there is an ¢ > 0 and a sequence {x,} such that p(f(x,), f(x)) = «
for every n while x = lim x,. Let I' = Q— B(f(x); €); then T" is closed and
each x, is in £~ }(I"). Since (by (c)) f~'(T) is closed we have x < f ~'(I'). But
this implies p(f(x), f(x)) = ¢ > 0, a contradiction. i

The following type of result is probably well understood by the reader
and so the proof is left as an exercise.

5.4 Proposition. Let [ and g be continuous functions from X into € and let
o, Be C. Then of +Bg and fg are both continuous. Also, f|g is continuous
provided g(x) # 0 for every x in X.

5.5 Proposition. Let f: X — Y and g: Y —> Z be continuous functions. Then g o f
(where gof(x) = g(f(x))) is a continuous function from X into Z.

Proof. If U is open in Z then g~'(U) is open in Y; hence, f ~'(g"'(V)) =
(gof) " '(U)is open in X. W

5.6 Definition. A function f: (X, d) — (Q, p) is uniformly continuous if for
every € > Othereis a 8 > 0 (depending only on €) such that p(f(x), f())) < ¢
whenever d(x, y) < 8. We say that fis a Lipschitz function if there is a constant
M > 0 such that p(f(x), f(3)) < Md(x, y) for all x and y in X.

It is easy to see that every Lipschitz function is uniformly continuous.
In fact, if € is given, take 8 = ¢/M. It is even easier to see that every uniformly
continuous function is continuous. What are some examples of such func-
tions? If X = Q = R then f(x) = x? is continuous but not uniformly
continuous. 1f X = Q = [0, 1] then f(x) = x* is uniformly continuous but
is not a Lipschitz function. The following provides a wealthy supply of
Lipschitz functions. |

Let A © X and x « X define the distance from x to the set A, d(x, A), by

d(x, A inf {d(x, @):ac A}

5.7 Proposition. .t A < X then:
(a) d(x, A)  d(x. A ),
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by dix, A=0if xecd™;
(c) |d(x, A)—d(y, A)| < d(x, y) for all x, y in X.

Proof. (a) If A < B then it is clear from the definition that d(x, B) < d(x, A).
Hence, d(x, A7) < d(x, A). On the other hand, if ¢ > 0 there is a point
yin A~ such that d(x, 47) > d(x, y)—¢/2. Also, there is a point a in A with
d(y, a) < /2. But |d(x, y)—d(x, a)} < d(y, a) < /2 by the triangle inequality.
In particular, d(x, y) > d(x, a)—¢/2. This gives, dix, A7) = d(x, a)—e >
d(x, A)—e. Since € was arbitrary d(x, A7) > d(x, A), so that (a) is proved.

(b) If xe A~ then 0 = d(x, A7) = d(x, A). Now for any x in X there is
a minimizing sequence {a,} in 4 such that d(x, 4) = lim d(x, a,). So if
d(x, A) = 0, lim d(x, a,) = 0; that is, x = lim a, and so x € A~

(c) For a in 4 d(x, a) < d(x, y)+d(y, a). Hence, d(x, A) = inf {d(x, a):
ae A} <inf {d(x,y)+d(y,a):ae A} = d(x, y)+d(y, 4). This gives d(x, 4)—
d(y, 4) < d(x, y). Similarly d(y, 4)—d(x, 4) < d(x, y) so the desired in-
equality follows. i

Notice that part (c) of the proposition says that f: X — R defined by
f(x) = d(x, A) is a Lipschitz function. If we vary the set A we get a large
supply of these functions.

It is not true that the product of two uniformly continuous (Lipschitz)
functions is again uniformly continuous (Lipschitz). For example, f(x) = x
is Lipschitz but f-f is not even uniformly continuous. However if both f and
g are bounded then the conclusion is valid (see Exercise 3).

Two of the most important properties of continuous functions are
contained in the following result.

5.8 Theorem. Let f: (X, d) —(Q, p) be a continuous function.
(a) If X is compact then f(X) is a compact subset of €1.
(b) If X is connected then f(X) is a connected subset of Q.

Proof. To prove (a) and (b) it may be supposed, without loss of generality,
that f(X) = Q. (a) Let {w,} be a sequence in ; then there is, for each
n > 1, a point x, in X with w, = f(x,). Since X is compact there is a point
x in X and a subsequence {x, } such that x = lim x,, . But if = f(x), then
the continuity of f gives that w = lim w,,; hence Q is compact by Theorem
49. (b) Suppose = < Q is both open and closed in Q and that = # [].
Then, because f(X) = Q, [J # £~ Y(Z); also, f~1(Z) is both open and closed
because f'is continuous. By connectivity, £~ () = X and this gives Q = X.
Thus, Q is connected. [l

5.9 Corollary. If f: X — < is. continuous and K < X is either compact or
connected in X then f(K) is compact or connected, respectively, in 2.

5.10 Corollary. If f: X -> R is continuous and X is connected then f(X) is an
interrval.

This follows from the characterization of connected subsets of R as
intervals.
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5.11 Intermediate Value Theorem. If f: [a, b] — R is continuous and f(a) < ¢
< f(b) then there is a point x, a < x < b, with f(x) = £.

5.12 Corollary. If f: X — R is continuous and K < X is compact then there are

points x, and yo in K with f(xg) = sup {f(x): x € K} and f(y,) = inf {f(x):
xeK}.

Proof. If « = sup {f(x): x € K} then « is in f(K) because f(K) is closed and
bounded in R. Similarly 8 = inf {f(x): x e K} is in f(K). R

5.13 Corollary. If K < X is compact and f: X — C is continuous then there
are points x, and yq in K with

|f(xo)l = sup {|f(x)]: x € K} and [f(yo)| = inf {{f(x)]: x € K}.

Proof. This corollary follows from the preceding one because g(x) = | f(x)|
defines a continuous function from X into R.

5.14 Corollary. If K is a compact subset of X and x is in X then there is a
point y in K with d(x, y) = d(x, K).

Proof. Define - X — R by f(3») = d(x, y). Then f is continuous and, by
Corollary 5.12, assumes a minimum value on K. That is, there is a point
y in K with f(y) < f(2) for every z € K. This gives d(x, y) = d(x, K). i

The next two theorems are extremely important and will be used re-
peatedly throughout this book with no specific reference to the theorem
numbers.

5.15. Theorem. Suppose f: X — Q is continuous and X is compact; then f is
uniformly continuous.

Proof. Let € > 0; we wish to find a & > O such that d(x, y) < & implies
p(f(x), f(3)) < e. Suppose there is no such §; in particular, each 8 = 1/n
will fail to work. Then for every n > 1 there are points x, and y, in X with
d(x,, ¥,) < 1/n but p(f(x,), f(,)) = e Since X is compact there is a sub-
sequence {x, } and a point x € X with x = lim x,,_.

Claim. x = lim y,,. In fact, d(x, y,,) < d(x, x,,)+1/n and this tends to zero
as k goes to oo.
But if w = f(x), w = lim f(x, ) = lim f(y,,) so that

P (% )> S (V)
p(f(xn), @)+ p(w, f(¥)

and the right hand side of this inequality goes to zero. This is a contradiction
and completes the proof. i

A

€

IA

5.16. Definition. If A4 and B are subsets of X then define the distance from
A to B, d(A, B), by

d(A, B) = it {d(a, b):a« A, b B}.
Notice that if 8 is the single-point set {x) then d(A4, {x})  d(x, A). If
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A = {y} and B = {x} then d({x}, {y}) = d(x, ). Also, if AnB # []
then d(4, B) = 0, but we can have d(4, B) = 0 with 4 and B disjoint. The
most popular type of example is to take 4 = {(x, 0): x e R} < R* and
B = {(x, €): x €« R}. Notice that 4 and B are both closed and disjoint and
still d(A4, B) = 0.

5.17 Theorem. If A and B are disjoint sets in X with B closed and A compact
then d(A, B) > 0.

Proof. Define f: X — R by f(x) = d(x, B). Since A ©" B = ] and B is closed,
f(a) > 0 for each a in A4. But since A is compact there is a point a in 4 such
that 0 < f(a) = inf {f(x): xe A} = d(4, B). &

Exercises

1. Prove Proposition 5.2.

2. Show that if f and g are uniformly continuous (Lipschitz) functions from
X into C then so is f+g.

3. We say that f: X — C is bounded if there is a constant M > 0 with
[f(x)] < M for all x in X. Show that if f and g are bounded uniformly
continuous (Lipschitz) functions from X into C then so is fg.

4. Is the composition of two uniformly continuous (Lipschitz) functions
again uniformly continuous (Lipschitz)?

5. Suppose f: X — Q is uniformly continuous; show that if {x,} is a Cauchy
sequence in X then {f(x,)} is a Cauchy sequence in Q. Is this still true if we
only assume that f is continuous? (Prove or give a counterexample.)

6. Recall the definition of a dense set (1.14). Suppose that Q is a complete
metric space and that f (D, d) — (Q; p) is uniformly continuous, where D is
dense in (X, d). Use Exercise 5 to show that there is a uniformly continuous
function g: X — Q with g(x) = f(x) for every x in D.

7. Let G be an open subset of C and let P be a polygon in G from a to b.
Use Theorems 5.15 and 5.17 to show that there is a polygon Q < G from a
to b which is composed of line segments which are parallel to either the real
or imaginary axes.

8. Use Lebesgue’s Covering Lemma (4.8) to give another proof of Theorem
5.15.

9. Prove the following converse to Exercise 2.5. Suppose (X, d) is a compact
metric space having the property that for every ¢ > 0 and for any points a,
b in X, there are points zq, z(, ..., z, in X with zy = @, z, = b, and d(z, -,
z) < efor 1 < k < n. Then (X, d) is connected. (Hint: Use Theorem 5.17.)
10. Let £ and g be continuous functions from (X, d) to (X, p) and let D be
a dense subset of X. Prove that if f{x) = g(x) for x in D then f = g. Use
this to show that the function g obtained in Exercise 6 is unique.

§6. Uniform convergence

Let X be a set and (12, p) a metric space and suppose [, [y, [, ... are
functions from X into . The sequence {f,} converges uniformiy to f written
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f=u—-lim f,—if for every ¢ > 0 there is an integer N (depending on e
alone) such that p(f(x), f,(x)) < € for all x in X, whenever n > N. Hence,

sup {p(f(x),fu(x)): x e X} <€

whenever n > N.
The first problem is this: If X is not just a set but a metric space and each
f,, is continuous does it follow that f'is continuous? The answer is yes.

6.1 Theorem. Suppose f,: (X, d) — (Q, p) is continuous for each n and that
= u—lim f,; then f is continuous.

Proof. Fix x4 in X and ¢ > 0; we wish to find a 6 > 0 such that p(f(x,),
f(x)) < e when d(x,, x) < 8. Since f = u—lim f,, there is a function f, with
p(f(x), f.(x)) < ¢/3 for all x in X. Since f, is continuous there is a 6 > 0
such that p(f,(xo), fu(x)) < €¢/3 when d(x,, x) < 8. Therefore, if d(xg, x) <3,

p(f(x0), f(x) < p(f(x0), ful(Xo)) + p(fulX0), [ulX)) +p(f(x), f(x)) < . I
Let us consider the special case where Q = C. If u,: X — C, let f(x) =

u(x)+.. +u,,(x) We say f(x) = Z u,(x) iff f(x) = lim f,(x) for each x in X.
The series Z u, is uniformly convergent to fiff f=u—lim f,.

6.2 Weierstrass M-Test. Let u,: X — C be a function such that |u,(x)| < M,
o) o)
for every x in X and suppose the constants satisfy Y. M,, < oo. Then ), u, is
n=1 1
uniformly convergent.

Proof. Let f,(x) = u(x)+...+u,(x). Then for n > m,
1) =11 = e () +. . .+, (0] < i M, for each x. Since i M,
k=m+1 1

converges, {f,(x)} is a Cauchy sequence in C. Thus there is a number § e C
with ¢ = lim f,(x). Define f{x) = &; this gives a function f: X-> C. Now

-0 =1 X w®l < ¥ [w®l< Y Mg
k=n+1 k=n+1 k=n+1
since Z M, is convergent, for any ¢ > 0 there is an integer N such that )’

k=n+1
M, < e whenever n = N. This gives | f(x)—f(x)| < € for all x in X when

n=N R

Exercise

1. Let {f,} in a sequence of uniformly continuous functions from (X, d)
into (€2, p) and suppose that f = u—lim f, exists. Prove that fis uniformly
continuous. If each f, is a Lipschitz function with constant M, and sup
M, < oo, show that fis a Lipschitz function. If sup M, = oo, show that f
may fail to be Lipschitz,



Chapter 111

Flementary Properties and Examples of
Analytic Functions

§1. Power series

In this section the definition and basic properties of a power series will
be given. The power series will then be used to give examples of analytic
functions. Before doing this it is necessary to give some elementary facts on
infinite series in C whose statements for infinite series in R should be well

known to the reader. If a, is in C for every n > 0 then the series Z a,

converges to z iff for every € > 0 there is an integer N such that | Z a, —z] < €
n=0
whenever m > N. The series Y, a, converges absolutely if Y, |a,| converges.

1.1 Proposition. I )’ a, converges absolutely then Y a, converges.
Proof. Let € > 0 and put z, = ag+a,+...+a, Since Y |a,| converges
there is an integer N such that Y |a,| < e. Thus, if m > k > N,

n=N

m )
m kl = nS nl = n .
lZn—zl =1 2 al< ¥ laj< Y lal<e
1 +1 n=N

n=k+ n=k
That is, {z,} is a Cauchy sequence and so there is a z in C with z = lim z,.
Hence ) a, = z. Il
Also recall the definitions of limit inferior and superior of a sequence in
R. If {a,} is a sequence in R then define

liminfa, = lim [inf {a,, a,,,...}]
n-w

lim sup a, = lim [sup {a,, @,y --.}]
n-w

An alternate notation for lim inf a, and lim sup q, is lim g, and Iim a,. If
b, = inf {a,, a,,, . . .} then {b,} is an increasing sequence of real numbers
or {—oo}. Hence, lim inf a, always exists although it may be * co. Similarly
lim sup q, always exists although it may be + oco.

A number of properties of lim inf and lim sup are included in the exercises
of this section.

A power series about a is an infinite scries of the form Z a,(z—a)". One

of the casicst examples of a power series (and one of the mosl uscful) is the
o
geometric series Y, z". For which values of z does this series converge and
n-0 .

LYY
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when does it diverge? It is easy to see that 1 —z"*! = (1—-2) (1 +z+...+2"),
so that

l_Zn+1
1.2 l4+z+... 42" = ——
1—z

If |z] < 1 then 0 = lim z* and so the geometric series is convergent with

. 1
ZZ =1z

0

If |z| > 1 then lim |z|” = co and the series diverges. Not only is this result
an archetype for what happens to a general power series, but it can be used
to explore the convergence properties of power series.

1.3 Theorem. For a given power series Z a(z—a)" define the number R,
0<R< oo,by

1

— = lim sup |a,|!/",

R up |a,|
then:

(@) if |z—a} < R, the series converges absolutely:
(b) if |z—a| > R, the terms of the series become unbounded and so the
series diverges;

() if 0 < r < R then the series converges uniformly on {z: |z| < r}.
Moreover, the number R is the only number having properties (a) and (b).

Proof. We may suppose that a = 0. If |z] < R thereisan r with [z] < r < R.

. . 1 1
Thus, there is an integer N such that |a,|'/" < - for all n > N ( because - >
r r

1 1 "

ﬁ) But then |q,| < - and so la,z"| < <B) for all n > N. This says that
r

2]

o« z n
the tail end ) a,z" is dominated by the series Z LI) , and since — < 1
n=N r r

the power series converges absolutely for each |z| < R.
Now suppose r < R and choose p such that » < p < R. As above, let

1 n
N be such that |a,| < — for all n > N. Then if |z| < r, |a,z"| < <£) and
p P

<£) < 1. Hence the Weierstrass M-test gives that the power series converges
uﬁiformly on {z: [z] < r}. This proves parts (a) and (c).

To prove (b), let |z| > R and choose r with |z| > r > R. Hence —:‘ < 1 ;
from the definition of lim sup, this gives infinitely many integers n with
lr < |a,|'’. It follows that |a,="| > (|i|)” and, since (lil> > 1, these terms

become unbounded. I
The number R is called the radius of convergence of the power serics.
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1.4 Proposition. If Y a,(z—a)" is a given power series with radius of con-
vergence R, then

R = lim |a,/a, |
if this limit exists.

Proof. Again assume that @ = 0 and let « = lim |a,/a,.,|, which we suppose
to exist. Suppose that |z| < r < « and find an integer N such that r <

la,/a, | for all n > N Let B = ]aNIr ; then |0N+1]" = |ays " <

lay|r" = B; lay1alr¥ 2 = layalrr' ! < |ay. PVt < B; continuing we get

la,r"| < Bforalln > N. But then |a,z"| = larllz| < B[ Al for alln > N.
r"

Sinee |z| < r we get that Z la,z"| is dominated by a convergent series and

hence converges. Since r < o was arbitrary this gives that « < R.

On the other hand if |z| > r > «, then |a,| < rla,,,| for all n larger than
some integer N. As before, we get |a,"| = B = |ayr"| for n > N. This
|2I"
|r]"
and so R < «. Thus R = «. R

n

. . 4 .- . .
Consider the series ). prk by Proposition 1.4 we have that this series
n=07L.

gives |a,z"| = B which approaches oo as 7 does. Hence, Y. a,z" diverges

has radius of convergence co. Hence it converges at every complex number
and the convergence is uniform on each compact subset of C. Maintaining a
parallel with calculus, we designate this series by

o0
z __ — z"
e =expz = —,
n!

n=0
the exponential series or function.
Recall the following proposition from the theory of infinite series (the
proof will not be given).

1.5 Proposition. Let Y’ a, and Y’ b, be two absolutely convergent series and put
Cn = Z akb,,_ ke

k=0

Then Y’ ¢, is absolutely convergent with sum

X a) (X ).

1.6 Proposition. Let ) a,(z—a)" and Y. b,(z—a)" be power series with radius
of convergence >r > 0. Put

n

Cn = Z ab,
k-0

then both power series Z (a,+h,) (c—a)" and Z c(z—a)" hare radius of con-
rergence =r, and
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Y (an+b,) (z—a) = [ az—a)"+ Y b(z—a)"]
Y ez—a) = [ alz—a)] [} blz—a)"]
for |z—a] < r.

Proof. We only give an outline of the proof. If 0 < s < r then for |z] <

s,
we get Y la,+b,| 21" < ¥ lals"+ X [bls" < 05 3 ol 2" < (X lals”)
(X |b,ls") < co. From here the proof can easily be completed. ll

Exercises

1. Prove Proposition 1.5.

2. Give the details of the proof of Proposition 1.6.

3. Prove that lim sup (a,+5,) < lim sup a,+lim sup b, and lim inf (a,+b,)

> lim inf @,+lim inf b, for {a,} and {b,} sequences of real numbers.

4. Show that lim inf a, < lim sup a, for any sequence in R.

5. If {a,} is a convergent sequence in R and @ = lim a,, show that ¢ = lim

inf a, = lim sup a,.

6. Find the radius of convergence for each of the following power series:

(2) Z a'z", aeC; (b) Z a’z", aeC; (c) Z k'z", k an integer #0; (d) Z "
n=0

7. Show that the radlus of convergence of the power series

o0
Z (=" n(n+1)
n=1 n

is 1, and discuss convergence for z = 1, —1, and i. (Hint: The nth co-
efficient of this series is not (—1)"/n.)

§2. Analytic functions

In this section analytic functions are defined and some examples are
given. It is also shown that the Cauchy-Riemann equations hold for the real
and imaginary parts of an analytic function.

2.1 Definition. If G is an open set in C and f: G—C then f is differentiable
at a point ain G if i
i fla+ i) =@

-0 h

exists; the value of this limit is denoted by f'(a) and is called the derivative of
[ at a. If fis differentiable at each point of G we say that f is differentiable
on G. Notice that if f is differentiable on G then f'(a) defines a function
/"1 G ->C. If f" is continuous then we say that f'is continuously differentiable.
If /7 is differentiable then fis fwice differentiable; continuing, a differentiable
function such that cach successive derivative is again differentiable is called
infinitely differentiable.

(Menceforward, all functions will be assumed to take their values in €
unless it is stated to the contrary.)



34 Elementary Properties and Examples of Analytic Functions
The following was surely predicted by the reader.

2.2 Proposition. If f: G — C is differentiable at a point a in G then f is
continuous at a.

Proof. In fact,
lim | /)~ f(@)] = [lim 'f_(?%(“)l]  [lim |z ~al] = /@0 = 0.

z=—a | | z—a
2.3 Definition. A function f: G—C is analytic if f is continuously differen-
tiable on G.

It follows readily, as in calculus, that sums and products of functions
analytic on G are analytic. Also, if f and g are analytic on G and G, is the
set of points in G where g doesn’t vanish, then f/g is analytic on G,.

Since constant functions and the function z are clearly analytic it
follows that all rational functions are analytic on the complement .of the
set of zeros of the denominator.

Moreover, the usual laws for differentiating sums, products, and
quotients remain valid.

2.4 Chain Rule. Let f and g be analytic on G and § respectively and suppose
f(G)<R. Then gof is analytic on G and

(gof)(2)=g'(f(2))f(2)
for all z in G.

Proof. Fix zy in G and choose a positive number r such that B(zy;r)=G.
We must show that if 0<|k,|<r and limh,=0 then lim{A, [ g(f(zo+h,))
—g(f(zo))]} exists and equals g'(f(2))f'(zo). (Why will this suffice for a
proof?)

Case 1 Suppose f(z,)F f(zo+h,) for all n.
In this case

gof(zo+ k) —gof(z0)  8(f(z0+h,))—8(f(20) f(zo+h,)—f(20)
h, [t k)= f(20) h, '
Since Lim[f(z,+ A,)— f(2,)]=0 by (2.2) we have that
limh,'[ gof (z0+h,) — 8°f (20) ] =8 (f(20)) f'(20)

Case 2 f(zo)=f(zo+ h,) for infinitely many values of n.

Write {4,) as the union of two sequences {k,} and {/,} where f(z5)7
f(zo+k,) and f(zo)=f(z4+1,) for all n. Since f is differentiable, f'(z5)=
Hm L [ f(z+ 1) — f(z9]=0. Also lim},~'[gof(zo+1,)—g°f(2)]=0. By
Case 1, limk. '[gof(zo +k,) — g2/ (20)] = 8'(f(20)f(20) = 0. Therefore
limh\(gof (z0+ hy) — g°f (2] =0= & (f () [ (20)-

The general case easily follows from the preceding two. ll

In order to define the derivative, the function was assumed to be defined
on an open set. 1f we say fis analytic on a set 4 and A4 is not open, we mean
that fis analytic on an open set containing A.

N
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Perhaps the definition of analytic function has been anticlimatic to many
readers. After seeing books written on analytic functions and year-long
courses and seminars on the theory of analytic functions, one can excuse a
certain degree of disappointment in discovering that the definition has
already been encountered in calculus. Is this theory to be a simple generaliza-
tion of calculus? The answer is a resounding no. To show how vastly different
the two subjects are let us mention that we will show that a differentiable
Junction is analytic. This is truly a remarkable result and one for which there
is no analogue in the theory of functions of a real variable (e.g., consider

1
x? sin > . Another equally remarkable result is that every analytic function
x

is infinitely differentiable and, furthermore, has a power series expansion
about each point of its domain. How can such a humble hypothesis give
such far-reaching results? One can get come indication of what produces
this phenomenon if one considers the definition of derivative.

In the complex variable case there are an infinity of directions in which a
variable can approach a point a. In the real case, however, there are only two
avenues of approach. Continuity, for example, of a function defined on R
can be discussed in terms of right and left continuity; this is far from the
case for functions of a complex variable. So the statement that a function of
a complex variable has a derivative is stronger than the same statement about
a function of a real variable. Even more, if we consider a function f defined
on G < C as a function of two real variables by putting g(x, ) = f(x+1iy)
for (x, y) € G, then requiring that f be Frechet differentiable will not ensure
that f has a derivative in our sense.

In an exercise we ask the reader to show that f(z) = |z|? has a derivative
only at z = 0; but, g(x, y) = f(x+iy) = x*+y* is Frechet differentiable.

That differentiability implies analyticity is proved in Chapter 1V; but
right now we prove that power series are analytic functions.

w
2.5 Proposition. Let f(z) = ) afz—a)" have radius of convergence R > 0.
Then: n=0
(a) For each k = 1 the series

M8

2.6 nn—=1)...(n—k+Da(z—a)"*

n=k

has radius of convergence R;
(b) The function f is infinitely differentiable on B(a; R) and, furthermore,
S®(2) is given by the series (2.6) for all k > 1 and |z—a| < R;
(¢) Forn >0,

1
2.7 a, = — ).
n!

Proof. Again assume that @ = 0.

(a) We first remark thatif (a) is proved for k = | thenthecasesk = 2, ...
will follow. In fact, the case & 2 can be obtained by applying part (a) for
A Trothe series Y a0 @ o We have that R-' 0 Tim sup o, /"7 we

ni
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wish to show that R™! = lim sup |na,|'/"~ . Now it follows from I'Hopital’s

rule that lim log n = 0, so that lim n'/®~1 = 1. The result will follow from

n=o B n—+ o
Exercise 2 if it can be shown that lim sup |a,|'/" " P=R "
Let (R )‘ =1lim sup |a,|'/®"; then R’ is the radius of convergence of
Z Z a,. 2" Noticethatz ¥ a,,,z"+ao = Y. a,2"; henceif [z} < R’

then Y laz | laol +12) Y |a,+12" < 0. ThlS gives R" < R. If |z| < Rand
z # 0 then ) |a,z"| < o0 and ) |a,+,2"| < Zlazl+l Z]
that R < R’. This gives that R R’ and completes the proof of part (a)

(b) For|z| < Rputg(z) = Zlna,,z , 5.(2) = Zakz and R,(z) = Z

k=n+1
a,z*. Fix a point w in B(0; R) and fix r with [wl < r < R; we wish to show

that f”(w) exists and is equal to g(w). To do this let 8 > 0 be arbitrary except
for the restriction that B(w; 8) < B(0; r). (We will further restrict & later in
the proof.) Let z € B(w; 8); then

Y A A [sﬁz%fv@ - s,;(w)] + L5, (w)~g(W)]

zZ—w
+ [Rn(z) - Rn(w)]
Z—W

lag] < 0, so

Now
R"(Z)—R"(W) — 1 a (Zk_wk)
Z—W Z—W k=n+1
(=)
k=n+1 Z—w

But

k k

‘IZ —v || = | 2w o TR W T < R

zZ—w
Hence,

R,(2)—R,W)

Z—=Ww

< i |lalkr* 1

k=n+1

ko . .
Since ¥ < R, Y |akr* ™! converges and so for any € > 0 there is an integer
k=1

N, such that forn > N,

R = Rw)| _ <

Z—W

(z € B(w; 9)).

’ €
Also, lim si(w) = g(w) so there is an integer N, such that [sa(w)—g(n)] < 3

whenever n - N,. Let 1 the maximum of the two integers N, and N,.
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Then we can choose 8 > 0 such that

8u(2) = $,(W)

Z—Ww

— 5w <

whenever 0 < |z—w| < &. Putting these inequalities together with equation
(2.8) we have that

S@)—f(w)

—— —g(w)
Z—W

for 0 < |z—w| < 6. That is, f'(w) = g(w).
(c) By a straightforward evaluation we get f(0) = f(°(0) = g,. Using

(2.6) (for a = 0), we get f*)(0) = k!a, and this gives formula (2.7). I

< €

2.9 Corollary If the series Z (z—a)" has radius of convergence R > 0 then
f(z) = Z az—a)" z's analytzc in B(a; R).

=0
Hence expz= Z z"/n! is analytic in C. Before further examining the
n=0

exponential function and defining cosz and sinz, the following result must
be proved.

2.10 Proposition. If G is open and connected and f-G — C is differentiable
with f'(z) = 0 for all z in G, then f is constant.

Proof. Fix zo in G and let wy, = f(z,). Put 4 = {zeG: f(2) = we}; we will
show that 4 = G by showing that A4 is both open and closed in G. Let ze G
and let {z,} © A4 be such that z = lim z,. Since f(z,) = w, for each n > 1
and f'is continuous we get f(2) = wg, or z € A. Thus, 4 is closed in G. Now
fix a in A4, and let ¢ > 0 be such that B(a; €) = G. If z € B(a; ¢), set g(t)=
Stz+(1=0a), 0 < t < 1. Then

211 80)—gs) __ g)—gls) (-s)z+(s—Na
) t—s (t—s)z+(s—ta t—s )
Thus, if we let 1 —>s we get (A.4(b), Appendix A)
lim (’) g( ) _ s+ (1 —5)a)-(z—a) = 0.

ts

That is, g'(s}) = 0 for 0 < s < 1, implying that g is a constant. Hence,
f(@) = g(1)=g(0) = f(a) = w,. That is, B(a; €) = A and A is also open. |}

Now differentiate f(z) = ¢*; we do this by Proposition 2.5. This gives
that

a0

ro=3"t= > (,1_1)» Zni = /@),

Thus the complex cxponcnlul Iuncllon has the same property as its real
counterpart. That is
d
2.12 o
- dz
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Put g(z) = €*¢*~* for some fixed a in C; then g'(2) = e”e" ™" +e*(—e"™%) = 0.
Hence g(z) = o for all z in C and some constant w. In particular, using
e® = 1 we get w = g(0) = € Then ee®~* = ¢° for all z. Thus e**” = e%”
for all @ and b in C. This also gives 1 = e’¢”* which implies that ¢* # 0
for any z and e~ = 1/e°. Returning to the power series expansion of €7,
since all the coefficients of this series are real we have exp z = exp z. In
particular, for @ a real number we get |¢”’|* = ¢'%¢™"" = ¢® = 1. More
generally, |¢?|2 = e%¢® = ¢**% = exp (2 Re z). Thus,

2.13 lexp z] = exp (Re z).

We see, therefore, that e® has the same properties that the real function e
has. Again by analogy with the real power series we define the functions
cos z and sin z by the power series

22 Z4 zZn
S ISy Gu A
cosz =1 X + a0 +...+(=D 2n)!
23 25 2n+1
inze=z—2 4+ 4. 4(=1y +
sinz =z -3+ 5+ EDE

Each of the series has infinite radius of convergence and so cos z and sin z
are analytic in C. By using Proposition 2.5 we find that (cos z)’ = —s.in z
and (sin z)’ = cos z. By manipulating power series (which is justified since
these series converge absolutely)

i i : 1 iz —iz
2.14 cos z = e +e™") sin z = zfi(e‘—e )
This gives for z in C, cos® z+sin* z = 1 and
2.15 e = cos z+isin z.

In particular if we let z = a real number 8 in (2.15) we get e’ = cis 6.
Hence, for zin C

2.16 z = |z]e

where f=argz. Since e**¥=¢%” we have |e’|=exp(Rez) and arge®=
Im:z. .

A function f is periodic with period ¢ if f(z+c)=f(z) forallzinC. If
is a period of e” then e*=e¢*"“=¢’“ implies that e‘=1. Since}91=|e‘|=
expRe(c), Re(c)=0. Thus c=if for some # in R. But | =e“=e’ =cq80+
isinf gives that the periods of e* are the multiples of 2. Thus, if we
divide the plane into infinitely many horizontal strips by the lines lme
7(2k —1), k any integer, the exponential function behaves the same In
each of these strips. This property of periodicity is one which is not present
in the real exponential function. Notice that by cxamining complex func-
tions we have demonstrated a relationship (2.15) between the exponential
function and the tngonometric functions which was not expected from our

Yoo s seslince s € thhve Faeisl s inane
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Now let us define log z. We could adopt the same procedure as before
and let log z be the power series expansion of the real logarithm about some
point. But this only gives log z in some disk. The method of defining the
logarithm as the integral of ¢~! from 1 to x, x > 0, is a possibility, but
proves to be risky and unsatisfying in the complex case. Also, since €° is not
a one-one map as in the real case, log z cannot be defined as the inverse of &*.
We can, however, do something similar.

We want to define log w so that it satisfies w = ¢* when z = log w.
Now since e* # 0 for any z we cannot define log 0. Therefore, suppose e* = w

and w # 0; if z = x+iy then |w| = ¢* and y = arg w4 2=k, for some k.
Hence

2.17 {log |w| +i(arg w+2nk): k is any integer }
is the solution set for e* = w. (Note that log |w| is the usual real logarithm.)

2.18 Definition. If G is an open connected set in C and f: G — C is a con-

tinuous function such that z = exp f(2) for all z in G then f is a branch of
the logarithm.

Notice that 0 ¢ G.

Suppose f'is a given branch of the logarithm on the connected set G
and suppose k is an integer. Let g(z) = f(2)+2nki. Then exp g(z) = exp f(2)
= z, s0 g is also a branch of the logarithm. Conversely, if f and g are both
branches of log z then for each z in G, f(z) = g(z)+2nki for some integer k,
where k depends on z. Does the same k& work for each z in G? The answer is

1
yes. In fact, if A(z) = E—,[f(z)— g(2)] then h is continuous on G and A(G)
Tl

< Z, the integers. Since G is connected, A(G) must also be connected

(Theorem I1. 5.8). Hence there is a k in Z with f(z)+2nki = g(z) for all z in
G. This gives

2.19 Proposition. If G < C is open and connected and f is a branch of log z
on G then the totality of branches of log z are the functions f(z)+2nki, k € Z.

Now let us manufacture at least one branch of log z on some open
connected set. Let

G=C—-{z:z < 0};

that is, “slit” the plane along the negative real axis. Clearly G is connected
and each z in G can be uniquely represented by z = |z[e’® where —7 < 6 < 7.
For 8 in this range, define f(re'®) = log r+18. We leave the proof of con-
tinuity to the reader (Exercise 9). It follows that f'is a branch of the logarithm
on G.

Is fanalytic? To answer this we first prove a general fact.

2.20 Proposition. Let G and Q2 be open subsets of C. Suppose that f: G — C
and g: Q) — C are continuous functions such that f(G) = Q and g(f(2)) = z
Jor all z in G. If g is differentiable and g'(z) + 0, f is differentiable and

FEy -
i TR
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If g is analytic, f is analytic

Proof. Fix a in G and let he C such that 4 # 0 and a+he G. Hence a =
g(f(a)) and a+h = g(f(a-+h)) implies f(a) # fla+h). Also

| _ e+ —g(f(@)

h
_ gU(ath)—g(fla) fla+th—fa)
fla+h)—f(a) h '

Now the limit of the left hand side as & — 0 is, of course, 1; so the limit
of the right hand side exists. Since lim [f(a+#) —f(@] = 0,

h—0

- glflar) -sU@) _ .
i e —t@ SO

Hence we get that
i fla+h)—f(a)
im———
B0 h
exists since g'(f(@)) # 0, and 1 = g'(f(a))f"(@).
Thus, £'(z) = [¢'(f())]'. If g is analytic then g’ is continuous and this

gives that f'is analytic. ll

2.21 Corollary. A branch of the logarithm function is analytic and its derivative
-1

We designate the particular branch of the logarithm defined above
on C—{z: z < 0} to be the principal branch of the logarithm. If we write
log z as a function we will always take it to be the principal branch of the
logarithm unless otherwise stated.

If fis a branch of the logarithm on an open connected set & andif 5in C
is fixed then define g: G — C by g(z) = exp (5f(2)). If b is an integer, then
g(z) = 2% In this manner we define a branch of zb bin C, for an open con-
nected set on which there is a branch of log z. If we write g(z) = z% as a
function we will always understand that z* = exp (b log z) where log z is
the principal branch of the logarithm; z® is analytic since log z is.

As is evident from the considerations just concluded, connectedness
plays an important role in analytic function theory. For example, Proposition
2.10 is false unless G is connected. This is analogous to the role played by
intervals in calculus. Because of this it is convenient to introduce the term
“region.” A region is an open connected subset of the plane.

This section concludes with a discussion of the Cauchy-Riemann equa-
tions. Let /: G — C be analytic and let u(x, y) = Re fx+iy), v(x, ) = Im
f(x+iy) for x+iy in G. Let us evaluate the limit
1f (z+M) - /(2)

JAS ,!'ﬂ, h

in two different ways. First let 4 =0 through real valugs of b Tor it /0

VY B T Y

s z
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fe+h) @) _ fx+h+iy)—f(x+iy)

h h
_ulx+h, p)—ulx, y) | vlxt+h, p)—o(x, p)
= +i
h h
Letting & — 0 gives
ou ov

2.22 ’ = — j —

J@ =5 (%) +i—(xy)

Now let A — 0 through purely imaginary values; that is, for # # 0 and
h real,

fe+il)—f(z) L uCy+h)—ulx,y)  ox, y+h)—uv(x, y)
. = —i +
ih h h
Thus,

ou av
2.23 (2) = —i— i ;
(@ 1 P (x,») + P (x,»)

Equating the real and imaginary parts of (2.22) and (2.23) we get the
Cauchy-Riemann equations

8u_ av d 8u_ ov

2.24 M _®ond B
x oy 0 %y ox

Suppose that v and v have continuous second partial derivatives (we will
eventually show that they are infinitely differentiable). Differentiating the
Cauchy-Riemann equations again we get

u % &u &%
— = —— g e e
ax?  oxdy oy? ayox
Hence,
2 n2
225 LY
ox ay?

Any function with continuous second derivatives satisfying (2.25) is said to
be harmonic. In a similar fashion, v is also harmonic. We will study
harmonic functions in Chapter X.

Let G be a region in the plane and let ¥ and v be functions defined on
G with continuous partial derivatives. Furthermore, suppose that # and v
satisfy the Cauchy-Riemann equations. If f(z)=u(z)+ iv(z) then f can be
shown to be analytic in G. To see this, let z=x+iy € G and let B(z;r) c
G. If h=s+it € B(0;r) then

u(x+s, y+0)—u(x, y) = [u(x+s, y+ 1) —ulx, y+ D)+ [u(x, y+ 1) —u(x, )

Applying the mean value theorem for the derivative of a function of one
variable to each of these bracketed expressions, yields for each s+ir in
B(0; r) numbers s; and ¢, such that |s,| < |§] and |f,] < [¢] and

~

2.26 fulx bsoy v =u(v oy b ) u v s s

]u(,\'. Y1) - uin, ¥ wv, y )¢
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Letting
‘P(S9 t)' = [u(X+S, y+ t)_ M(X, .V)] —[ux(x5 .V)S+uy(X, y)t]
(2.26) gives that
q)(S, t) Ky t
s+it | stit [ux(x+s1,y+t)—ux(x,y)] + s+it [uy(x,y+tl)— “y(x’)’)]

But |s| < |s+it], [¢] < Js+itl, Isi] < Ish |1l < |#], and the fact that u, and u,
are continuous gives that

)
lim ——=20
2-27 s+lit-'0 s+ it

Hence

u(x+s, y+0—u(x, y) = ulx, Y)s+u,(x, Y+ els, 1)
where ¢ satisfies (2.27). Similarly

Wx+s, y+1)—v(x, p) = v(x, P)s+ v,(x, Y)t+(s, 1)

where i satisfies

(s, 1)
l —3
2.28 s+li?3 o S+it

0

Using the fact that » and v satisfy the Cauchy-Riemann equations it is easy to
see that

[EsHIDSC) oy iy () 4 BEDTHED
s+t s+ 1t

In light of (227) and (2.28), f is differentiable and f'(z) = u2)+iv(2).
Since u, and v, are continuous, f’ is continuous and f is analytic. These
results are summarized as follows.

2.29. Theorem. Let u and v be real-valued functions defined on a region G
and suppose that u and v have continuous partial derivatives. Then f: G — C
defined by f(z) = u(z)+iv(z) is analytic iff u and v satisfy the Cauchy-Riemann
equations.

Example. Is u(x, y) = log (x*+y*)* harmonic on G = C— {0}? The answer
is yes! This could be shown by differentiating u to see that it satisfies (2.25).
However, it can also be shown by observing that in a neighborhood of each
point of G, u is the real part of an analytic function defined in that neighbor-
hood. (Which function?)

Another problem concerning harmonic functions which will be taken
up in more detail in Section VIII. 3, is the following. Suppose G is a region
in the planc and u: G -> R is harmonic. Does there exist a harmonic function
»: G »Rsuch that f + w+ it is analytic in G? If such a function v cxists it is
called a harmonic conjugate of w. 1f ry and ry are two harmonic conjugates
of uthen i(r, - 1)) (uiry) -(utiry)is analytic on (¢ and only takes on

Analytic functions 43

purely imaginary values. It follows that two harmonic conjugates of a
harmonic function differ by a constant (see Exercise 14).

Returning to the question of the existence of a harmonic conjugate, the
above example u(z) = log |z| of a harmonic function on the region G = C—
{0} has no harmonic conjugate. Indeed, if it did then it would be possible to
define an analytic branch of the logarithm on G and this cannot be done.
(Exercise 21.) However, there are some regions for which every harmonic
function has a conjugate. In particular, it will now be shown that this is the
case when G is any disk or the whole plane.

2.30 Theorem. Let G be either the whole plane C or some open disk. If
u: G — R is a harmonic function then u has a harmonic conjugate.

Proof. To carry out the proof of this theorem, Leibniz’s rule for differentiating
under the integral sign is needed (this is stated and proved in Proposition 1V.
2.1). Let G = B(O; R),0 < R < o0, and let u: G — R be a harmonic function.
The proof will be accomplished by finding a harmonic function v such that
u and v satisfy the Cauchy-Riemann equations. So define

y

v(x, y) = f u,(x, )dt+ p(x)

0o

and determine ¢ so that v, = —u,. Differentiating both sides of this equation
with respect to x gives

y
0%, 9) = [ s, 1) di+9'(2)
0
y
; = —-f u,(x, t) dt+¢'(x)
0
= - uy(x5 y) + uy(x5 0) +‘Pl(x)
So it must be that ¢’(x) = —u,(x, 0). It is easily checked that « and

X

o(x, y) = f u(x, ydt — f u,(s, 0)ds
0 ]

do satisfy the Cauchy-Riemann equations. |l

Where was the fact that G is a disk or C used? Why can’t this method of
proof be doctored sufficiently that it holds for general regions G? Where
does the proof break down when G = C— {0} and u(z) = log |z|?

Exercises

1. Show that f(z) = |z|?> = x*+y? has a derivative only at the origin.

2. Prove that if b,, a, are real and positive and 0 < b = lim b,, a = lim
sup a, then ab = lim sup (a,b,). Does this remain true if the requirement of
positivity is dropped?

3. Show that lim n'/" = 1.
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4. Show that (cos z)’ = —sin z and (sin z)” = cos z.
5. Derive formulas (2.14).
6. Describe the following sets: {z: e* = i}, {z: & = —1}, {z: & = =i},

{z: cos z = 0}, {z: sin z = O}.
7. Prove formulas for cos (z+w) and sin (z+w).

sin z o . .
8. Define tan z = —— ; where is this function defined and analytic?
cos z

9. Suppose that z,, zeG =C—{z: z <0} and z, = r,e’, z = re'® where
—a < 8,0, < = Prove that if z, — z then 6, —~ 8 and r, > r.

10. Prove the following generalization of Proposition 2.20. Let G and { be
open in C and suppose f and h are functions defined on G, g:92—C and
suppose that f(G)<$2. Suppose that g and 4 are analytic, g'(w)70 for any
, that fis continuous, 4 is one-one, and that they satisfy /(z)=g(f(2)) for
z in G. Show that f is analytic. Give a formula for f'(z).

11. Suppose that f: G — C is a branch of the logarithm and that » is an
integer. Prove that z* = exp (nf(2)) for all z in G.

12. Show that the real part of the function z* is always positive.

13. Let G = C— {z: z < 0} and let n be a positive integer. Find all analytic
functions f: G — C such that z = (f(z))" for all zeG.

14. Suppose f: G — C is analytic and that G is connected. Show that if
f(2) is real for all z in G then f’is constant.

1 .
15. Forr > 0let 4 = {w: w = exp (—) where 0 < |z] < r} ; determine the
z

set A.

16. Find an open connected set G < C and two continuous functions f and
g defined on G such that f(z)? = g(z)> = 1—z* for all z in G. Can you make
G maximal? Are f and g analytic?

17. Give the principal branch of \/T1—z.

18. Let /2 G — C and g: G — C be branches of z* and zb respectively. Show
that fg is a branch of z**? and f/g is a branch of z°7%, Suppose that f(G) = G
and g(G) = G and prove that both fo g and g o fare branches of z°%.

19. Let G be a region and define G* = {z: Ze G}. If f: G — C is analytic
prove that f*: G* — C, defined by f*(z) = f(2), is also analytic.

20. Letz,,z,,. .., z, be complex numbers such that Re z, > 0 and Re(z ...
z) >0 for 1 < k < n. Show that log(z,...z,) =logz;+ ... + log z,,
where log z is the principal branch of the logarithm. If the restrictions on the
z, are removed, does the formula remain valid?

21. Prove that there is no branch of the logarithm defined on G = C—{0}.
(Hint: Suppose such a branch exists and compare this with the principal
branch.)

§3. Analytic functions as mappings. Mobius transformations

Consider the function defined by f(z) - 2. 1fz - x+iy and p+iv=f(z)
then i - ¥1 =y v - 2xp. Henee, the hyperbolas v p? - ¢ and 2xy = d

arc mapped by finto the straight lines ¢ ¢, v - d. One interesting fact is
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that for ¢ and d not zero, these hyperbolas intersect at right angles, just as
their images do. This is not an isolated phenomenon and this property will
be explored in general later in this section.

Now examine what happens to the lines x = ¢ and y = d. First consider
x = c(yarbitrary); f maps this line into ¢ = ¢*—y* andv = 2¢y. Eliminating
y we get that x = cis mapped onto the parabolav? = —4c¢*(u—c?). Similarly,
f takes the line y = d onto the parabola v* = 4d*(u+d?). These parabolas
intersect at (c2—d?, +2|cd|). It is relevant to point out that as ¢ — 0 the
parabola +* = —4c?(u—c?) gets closer and closer to the negative real axis.
This corresponds to the fact that the function z* maps G = C— {z: z < 0}
onto {z: Rez > 0}. Notice alsothatx = cand x = —c(and y = d,y = —d)
are mapped onto the same parabolas.

What happens to a circle centered at the origin? If z = re'® then f(2) =
r2e*i®; thus, the circle of radius r about the origin is mapped onto the circle
of radius r? in a two to one fashion.

Finally, what happens to the sector S(«, 8) = {z: « < arg z < B}, for
a < B? It is easily seen that the image of S(«, f) is the sector S(2«, 28). The
restriction of fto S(«, B) will be one-one exactly when f—a < .

The above discussion sheds some light on the nature of f(z) = z* and,
likewise, it is useful to study the mapping properties’ other analytic functions.
In the theory of analytic functions the following problem holds a paramount
position: given two open connected sets G and (, is there an analytic function
J defined on G such that f(G) = Q? Besides being intrinsically interesting,
the solution (or rather, the information about the existence of a solution)
of this problem is very useful.

3.1 Definition. A path in a region G < C is a continuous function v :[a,b]—
G for some interval [a,b] in R. If y'(¢) exists for each ¢ in [a,b] and
v :{a,b]—C is continuous then y is a smooth path. Also y is piecewise
smooth if there is a partition of [a,b], a=1,< ¢, < ... <1,=b, such that y is
smooth on each subinterval [7,_,7)], 1< j <n.

To say that a function vy :[a,b]—C has a derivative y'(¢) for each point ¢
in [a,b] means that

lim v(th)—v() _ 0
h—0 h Y
exists for a <t < b and that the right and left sided limits exist for =4 and
t=0b, respectively. This is, of course, equivalent to saying that Rey and
Im+y have a derivative (see Appendix A).

Suppose v:{a,b]->G is a smooth path and that for some #, in (a,b),
Y (ty)#0. Then y has a tangent line at the point zy=y(¢,). This line goes
through the point z, in the direction of (the vector) y'(#,); or, the slope of
the line is tan(argy'(,)). If v, and y, are two smooth paths with y,(¢/)=
Yi(t) =z, and v (1) # 0. yi(1,) # 0, then define the angle between the paths
v, and v, at z, to be

argys(r,)  argy ().



46 Elementary Properties and Examples of Analytic Functions

Suppose y is a smooth path in G and f: G—C is analytic. Then o6 =foy
is also a smooth path and o’(¢)= f'(y(£))Y'(?). Let z,= (), and suppose
that y'(1)#0 and f'(z5)#0; then o'(#))#0 and arga’(t))=argf'(zp)+
argy’(¢,). That is,

32 argo'(ty) —argy'(ty)=argf'(z,).

Now let v, and v, be smooth paths with y,(#,)= v,(¢,) =z, and y{(t;)#
0% v(1,); let o, = foy, and 0, = foy,. Also, suppose that the paths y, and v,
are not tangent to each other at z,; that is, suppose v)(¢,)7 v2(t,). Equa-
tion (3.2) gives

33 arg yy(1) —arg yi(t;) = arg oy(t;) —arg oi(1).

This says that given any two paths through z,, f maps these paths onto two
paths through w, = f(zo) and, when f7(z,) # 0, the angles between the curves
are preserved both in magnitude and direction. This summarizes as follows.

3.4 Theorem. If f: G — C is analytic then f preserves angles at each point
zo of G where f'(z5) # 0.
A function f: G — C which has the angle preserving property and also has

L @) =1@)

e |z—a]

existing is called a conformal map. If f is analytic and f'(z) # O for any z
then f'is conformal. The converse of this statement is also true.

If f(z) = €* then fis conformal throughout C; let us look at the expo-
nential function more closely. If z = c+iy where c is fixed then f(z) = re”
for r = ¢°. That is, f maps the line x = ¢ onto the circle with center at the
origin and of radius €. Also, f maps the line y = d onto the infinite ray
{re:0<r < o}

We have already seen that ¢ is onc-one on any horizontal strip of width
<2m LetG - {z: —m<Imz < w). Then f(G)  Q C—{z: 2 - 0} abo
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f maps the vertical segments {z = c+iy, —m < y < =} onto the part of the
circle {¢‘¢®: —= < 8 < =}, and the horizontal line y = d, —m < d < =,
goes onto the ray making an angle d with the positive real axis.

Notice that log z, the principal branch of the logarithm, does the opposite.
It maps Q onto the strip G, circles onto vertical segments in G, rays onto
horizontal lines in G.

The exploration of the mapping properties of cos z, sin z, and other
analytic functions will be done in the exercises. We now proceed to an
amazing class of mappings, the Mobius transformations.

b
3.5 Definition. A mapping of the form S(z) = ZZ: y is called a linear frac-
z

tional transformation. If a, b, ¢, and d also satisfy ad—bc # 0 then S(2) is
called a Mdbius transformation.

If S is a Mobius transformation then S™'(z) = satisfies

S(S™(2)) = STUS(2)) = z; that is, S™! is the inverse mapping of S. If
S and T are both linear fractional transformations then it follows that So T
is also. Hence, the set of Mébius maps forms a group under composition.
Unless otherwise stated, the only linear fractional transformations we will
consider are Mébius transformations.

b
Let S(2) = %Z—:E:l ; if Ais any non-zero complex number, then
A Ab
S = Q0D
(Ac)z+(Ad)

That is, the coefficients a, b, ¢, d are not unique (see Exercise 20).

We may also consider S as defined on C,, with S(o0) = a/c and S(—dJc)
= co. (Notice that we cannot have a = 0 = ¢ or d = 0 = ¢ since either
situation would contradict ad—bc # 0.) Since S has an inverse it maps C,
onto C,.

If S(z) = z+a then S is called a translation; if S(z) = az with a # 0
then S is a dilation; if S(z) = €'z then it is a rotation; finally, if S(z) = 1/z
it is the inversion.

3.6 Proposition. If' S is a Mibius transformation then S is the composition of
translations, dilations, and the inversion. (Of course, some of these may be
missing.)

Proof. First, suppose ¢ = 0. Hence S(2) = (a/d)z+(b/d) so if S,(2) = (a/d)z,
S,(2) = z+(b/d), then S, S; = S and we are done.
(bc—ad)
Now let ¢ # 0 and put S,(z) = z+d/c, S,(2) = 1)z, S3(2) = ——F—
S,(z) = z+ajc. Then S = S;08305,°5,. 1
What are the fixed points of S? That is, what are the points z satisfying
S(z) = z. If z satisfies this condition then

24 (d-a)z—b = 0.

b
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Hence, a M6bius transformation can have at most two fixed points unless
S(z) = zfor all z.

Now let S be a Mébius transformation and let @, b, ¢ be distinct points
in C,_, with « = S(a), B = S(b), y = S(c). Suppose that T is another map
with this property. Then 77! o S has a, b, and ¢ as fixed points and, there-
fore, T~'o S = I = the identity. That is, S = 7. Hence, a M&bius map is
uniquely determined by its action on any three given points in C,,.

Let z,, z3, z, be points in C_. Define S: C, - C,, by

S(2) = <2—23>/(22__Zj> if z,,24,2,€C;
z—2,)|\22—24

z—2 .

S(z) = > if z, = oo
Z—2Z4
Zs—2 .

S@) =2—"* if z; = o0;
Z—2Z4
Z—2 .

S =—=2 if z, = oo.
2,723

In any case S(z,) = 1, S(z3) = 0, S(z4) = co and S is the only transforma-
tion having this property.

3.7 Definition. If z, € C,, then (z,, z,, 23, z,). (The cross ratio of z;, z,, z3,
and z,) is the image of z, under the unique Mdbius transformation which
takes z,to 1, z3 to 0, and z, to co.

For example: (z,, z,, 23, 24) = 1 and (z, 1, 0, ) = z. Also, if M is any
Moébius map and w,, w;, w, are the points such that Mw, = 1, Mw; = 0,
Mw, = o then Mz = (z, wy, W3, Wy).

3.8 Proposition. If z,, z3, z, are distinct points and T is any Mdobius trans-
Sformation then

(ZI’ 22,23, Z4) = (Tzla TZZ’ TZ3, TZ4)
for any point z,.

Proof. Let Sz = (z, z,, 23, z4); then S is a Mdbius map. If M = ST™!
then M(Tz,) = 1, M(Tz;) = 0, M(Tz,) = o; hence, ST 'z = (z, Tz,,
Tz,, Tz,) for all z in C . In particular, if z = Tz, the desired result follows. ll

3.9 Proposition. If z,, z;, z4 are distinct points in C, and w,, w3, w4 are also
distinct points of C.,, then there is one and only one Mobius transformation S
such that Sz, = w,, Sz; = w3, Sz, = w,

Proof. Let Tz = (2, 23, 23, 24), Mz = (2, w,, wy, w,) and put S = M~ 'T.
Clearly S has the desired property. If R is another Mobius map with Rz; =
w;forj = 2,3, 4 then R~ ' o S has three fixed points (z,, =3, and £,). Hence
R'sS=1orS=RHN

It is well known from high school gecometry that three points in the planc
determine a circle, (Recalt that a circle in €, passing through 2 corresponds
to a straight tine in €. Hence there is no need to inject in the previous state-
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ment the word “non-colinear.) A straight line in the plane will be called a
circle.) The next result explains when four points lie on a circle.

3.10 Proposition. Let z,, z,, z3, 24 be four distinct points in C,. Then (z,, z,
z3, 24) is a real number iff all four points lie on a circle.

Proof. Let S: C, — C,, be defined by Sz = (z, z, 23, 2,); then S~ YR) = the
set of z such that (z, z,, z3, z,) is real. Hence, we will be finished if we can
show that the image of R, under a Mobius transformation is a circle.
Let Sz = az_+b (ifz = xeRand w = S 7!(x) then x = Sw implies that
cz+d
S(w) = S(w). That is,

Cross multiplying this gives
3.11 (aé = dc) |w|? + (ad—bc)w + (bé — dd)o +(bd— bd) = 0.

If a¢ is real then aé—dc = 0; putting « = 2(ad—bc), B = i(bd—bd) and
multiplying (3.11) by i gives

3.12 0 = Im (xw) - B = Im (e ~P)

since B is real. That is, w lies on the line determined by (3.12) for fixed « and
B. If aé is not real then (3.11) becomes

lw]* +y0+yd—8 =0
for some constants y in C, & in R. Hence,
3.13 oty =2

where
ad—bc

ac

A= (yP+8t = > 0.

Since y and A are independent of x and since (3.13) is the equation of a circle,
the proof is finished. |l

3.14 Theorem. A Mobius transformation takes circles onto circles.

Proof. Let T' be any circle in C,, and let S be any Mdbius transformation.
Let z,, z3, z4 be three distinct points on I’ and put w; = Sz; forj = 2, 3, 4.
Then w,, wj, w, determine a circle I'". We claim that S(I') = T'. In fact,
for any z in C
3.15 (29 23,23, 24) = (SZ’ Wy, W3, w4)
by Proposition 3.8. By the preceding proposition, if z is on T' then both
sides of (3.15) are real. But this says that Sz« 1. |l

Now et I'and I be twocircles in €O, and et 25, 25, 24 ¢ P w,y, w3, w4 €
PPl R - (20 290 240 2g) Sz (2w, wy, wy), Then T = S7 1o R maps
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I" onto I". In fact, Tz; = w; for j = 2, 3, 4 and, as in the above proof, it
follows that F(I') = I".

3.16 Proposition. For any given circles T' and T in C,, there is a Mébius
transformation T such that T(T) = T''. Furthermore we can specify that T
take any three points on " onto any three points of T". If we do specify Tz;
Sor j = 2,3, 4 (distinct z; in ') then T is unique.

Proof. The proof, except for the uniqueness statement, is given in the previous
paragraph. The uniqueness part is a trivial exercise for the reader. i

Now that we know that a Mdbius map takes circles to circles, the next
question is: What happens to the inside and the outside of these circles?
To answer this we introduce some new concepts.

3.17 Definition. Let T’ be a circle through points z,, z5, z,. The points z,
z*in C,, are said to be symmetric with respect to I if

3'18 (2*9 22’ 239 24) = (27 229 23, 24)'

As it stands, this definition not only depends on the circle but also on the
points z,, z3, z4. It is left as an exercise for the reader to show that symmetry
is independent of the points chosen (Exercise 11).

Also, by Proposition 3.10 z is symmetric to itself with respect to T' if
and only if ze I'.

Let us investigate what it means for z and z* to be symmetric. If T is a
straight line then our linguistic prejudices lead us to believe that z and z*
are symmetric with respect to I if the line through z and z* is perpendicular
to ' and z and z* are the same distance from I' but on opposite sides of T.
This is indeed the case.

If T is a straight line then, choosing z, = o, cquation (3.18) becomes

=

This gives [z* —z,| |z—=z,]: since =, was not specified, we have that z
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and z* are equidistant from each point on T'. Also

% _ -
z¥—2z, Z—Z4
Im——=Im——
Zy— 24 Z,—Z4

Z—Z3

= —Im ———

2323

Hence, we have (unless z € I') that z and z* lie in different half planes deter-
mined by I'. It now follows that [z, z*] is perpendicular to I'.

Now suppose that I' = {z: |z—a| = R} (0 < R < o). Let z;,, 23, z, be
points in I'; using (3.18) and Proposition 3.8 for a number of Mdbius trans-
formations gives

(Z*a 235235 24) = (Z’ 23,23, 24)

=(z—a,z,—a,23—0,24—a)

_ . R R PR
=\z—a, s »
22'—a Z3—a Zg—4a

R2
= (ﬁ, Z,=—-a, Z23—A, Z4—0a

R?
=|—+a, z;, 23, 24
zZ—a

Hence, z* = a+ R¥Z—a) ! or (z*—a) (z—ad) = R*. From this it follows that
z*—a R?

z—a  |z—af?

> 0,

s0 that z* lies on the ray {a+t(z—a): 0 < t < oo} from a through z. Using
the fact that |z—a]| |z*—a| = R? we can obtain z* from z (if z lies inside I')
as in the figure below. That is: Let L be the ray from a through z. Construct

a line P perpendicular to L at z and at the point where P intersects I' con-
struct the tangent to I. The point of intersection of this tangent with L is
the point z*, Thus, the points @ and co are symmetric with respect to I'.

3.19 Symmetry Principle. /f a Mdbius transformation T takes a circle T',
onto the circle V5 then any pair of points symmetric with respect to ¥y are
mapped by T onto a pair of points symmetric with respect to V.
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Proof. Let z,, z;3, z, € I'y; it follows that if z and z* are symmetric with
respect to I'; then

(TZ*’ TZZ’ TZ3: TZ4) = (Z*’ 23, 23, 24)
= (2, 22, 23, 24)

= (Tz, Tz;, 125, Tz,)

by Proposition 3.8. Hence Tz* and 77z are symmetric with respect to I';. Il

Now we will discuss orientation for circles in C; this will enable us to
distinguish between the “inside” and ‘“‘outside” of a circle in C,. Notice
that on C,, (the sphere) there is no obvious choice for the inside and outside
of a circle.

3.20 Definition. If T is a circle then an orientation for T' is an ordered triple
of points (z;, z,, z3) such that each z; is in I'.

Intuitively, these three points give a direction to I'. That is we “go”
from z, to z, to z5. If only two points were given, this would, of course, be
ambiguous.
az+b
cz+d’
Since T(R,)) = R, it follows that a, b, ¢, d can be chosen to be real numbers
(see Exercise 8). Hence,

Let I = R and let z,, z,, z; € R; also, put Tz = (2, 24, 2, 23) =

_az+b
= cz+d
az+b _
" ferat D
= r—ﬁl—z [ac|z|® + bd+ bcz + adz]
cz

Hence,
(ad—bc) I

Im (z, 24, 25, 23) = ez d]? mz.

Thus, {z: Im (z, z,, z,, 23) < O} is either the upper or lower half plane
depending on whether (ad—bc) > 0 or (ad—bc) < 0. (Note that ad—bc is
the “determinant” of T.)

Now let T be arbitrary, and suppose that z,, z,, z; are on I'; for any
Mobius transformation S we have (by Proposition 3.8)

{z:Im (z, z,, 25, 23) > 0} = {z: Im(Sz, Sz,, Sz,, Sz3) > 0}
=S 'z Im(z, Sz, Szl S7y) > O}

In particular, if S is chosen so that S maps ' onto R, . then (=2 Im (2. 2y,
2y, 23) > Obis equal to S ' of cither the upper or lower hall planc.

I (z,. z,. 7 is an orientation of 1" then we define the right side of i’

R
(with respect to (=, =, =) to be

1y (~ ~ ~. =3 -0
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Similarly, we define the left side of T' to be
{z:Im (z, 24, z;, z3) < O}.
The proof of the following theorem is left as an exercise.

3.21 Orientation Principle. Let Iy and T', be two circles in C, and let T be
a Mdbius transformation such that T(I')) = T'5. Let (z4, z,, z3) be an orienta-
tion for T'y. Then T takes the right side and the left side of T'; onto the right
side and left side of T, with respect to the orientation (Tz,, Tz,, Tz5).

Consider the orientation (1, 0, o) of R. By the definition of the cross
ratio, (z, 1, 0, o0) = z. Hence, the right side of R with respect to (1, 0, o0)
is the upper half plane. This fits our intuition that the right side lies on our
right as we walk along R from 1 to 0 to co.

As an example consider the following problem: Find an analytic function
J:G—C,where G = {z: Re z > 0}, such that f(G) = D = {z: |z] < 1}. We
solve this problem by finding a Mobius transformation which takes the
imaginary axis onto the unit circle and, by the Orientation Principle, takes
G onto D (that is, we must choose this map carefully in order that it does not
send G onto {z: |z| > 1}).

If we give the imaginary axis the orientation (—i, 0, i) then {z: Re z > 0}
is on the right of this axis. In fact,

2z

(Zs _i’ Oa i) =
Z—1

2z Z+4i

z—i z+1

2 .
= o (e
Hence, {z: Im (z, —i, 0, ) >0} = {z: Im (iz) > 0} = {z: Re z > 0}.
Giving T the orientation (—i, —1, i) we have that D lies on the right of T'.
Also,
2i z+1
=1 ) = — T
(@ =b=Ld=777"75

2 2i 1
Sz = - i and Rz = (l—> <i>
z—i i—1 z—1

then T = R™1S maps G onto D (and the imaginary axis onto I'). By algebraic
manipulations we have

If

Tz = z—1
z+1

e —_—
Combining this with previous results we have that g(z) = -
[
the infinite strip {z: Jtm =] < #/2} onto the open unit disk D, (It is worth

maps

L. ot — 1
mentioning that | iy tanh (2/2).)
(I' -
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Let G,, G, be open connected sets; to try to find an analytic function f
such that f(G,) = G, we try to map both G, and G, onto the open unit disk.
If this can be done, f can be obtained by taking the composition of one
function with the inverse of the other.

As an example, let G be the open set inside two circles I'y and T',, inter-
secting at points @ and b (a@ # b). Let L be the line passing through a and b

and give L the orientation (o, a, b). Then Tz = (z, ®©, a, b) = i-_i;)

maps L onto the real axis (Too = 1, Ta = 0, Tb = o0). Since T must map
circles onto circles, T maps T; and T'; onto circles through 0 and co. That is,
T(',) and T(T',) are straight lines. By the use of orientation we have that
T(G) = {w—a« < arg w < a} for some « > 0, or the complement of some
such closed sector. By the use of an appropriate power of z and possibly a
rotation we can map this wedge onto the right half plane. Now, composing
with the map (z—1) (z+1) ! givesamap of Gonto D = {z: |z < 1}.

Exercises

1. Find the image of {z: Re z < 0, |Im z| < =} under the exponential
function.
2. Do exercise 1 for the set {z: |[Im z| < =/2}.
3. Discuss the mapping properties of cos z and sin z.
4. Discuss the mapping properties of z" and z1/" for n = 2. (Hint: vse polar
coordinates.)
5. Find the fixed points of a dilation, a translation and the inversion on C.
6. Evaluate the following cross ratios: (a) (7+1, 1,0, ) (b) (2, I -4, 1, 1+14)
© O, 1, i =@ @E-1, o, 1+, 0).

R az+b .
7. U Tz = et d find z,, 2,, 24 (in terms of @, b, ¢, d) such that Tz = (z,

-
-

SN2
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az+b
8. If Tz = o show that T(R,) = R, iff we can choose a, b, ¢, d to be
real numbers.
az+b . ..
9, If Tz = otd’ find necessary and sufficient conditions that 7(I') = I’

where I is the unit circle {z: |z| = 1}.
10. Let D = {z: |z| < 1} and find all M&bius transformations 7 such that
T(D) =D.
11. Show that the definition of symmetry (3.17) does not depend on the
choice of points z,, z5, z,. That is, show that if w,, w3, w, are also in I" then
equation (3.18) is satisfied iff (z*, w,, ws, wy) = (2, w,, w3, w,). (Hint: Use
Exercise 8.)
12. Prove Theorem 3.4.
13. Give a discussion of the mapping f(z) = ¥(z+1/2).
14. Suppose that one circle is contained inside another and that they are
tangent at the point a. Let G be the region between the two circles and
map G conformally onto the open unit disk. (Hint: first try (z —a)~.)
15. Can you map the open unit disk conformally onto {z:0<|z|<1}?
16. Map G = C—{z: —1 < z < 1} onto the open unit disk oy an analytic
function f. Can f be one-one?
17. Let G be a region and suppose that f: G — C is analytic such that f(G)
is a subset of a circle. Show that f'is constant.

z—ia

18. Let —o0 <a < b < o0 and put Mz = . Define the lines L, =

z—1i

{z:.Im z=0b}, L, ={z: Im z=a} and L; = {z: Re z = 0}. Determine
which of the regions A, B, C, D, E, F in Figure 1, are mapped by M onto the
regions U, V, W, X, Y, Z in Figure 2.

A 4 D

ib U w

Vv
B E
0 v 1
X V4

ia

C F
Figure 1 ~ Figure 2

19. Let a, b, and M be as in Exercise 18 and let log be the principal branch of
the fogarithm.
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(a) Show that log (Mz) is defined for all z except z = ic, a < ¢ < b; and
if h(z) = Im [log Mz] then 0 < h(z) < = for Re z > 0.
(b) Show that log (z—ic) is defined for Re z > 0 and any real number c;

also prove that |[Im log (z—ic)| < gif Rez > 0.
(c) Let 4 be as in () and prove that A(z) = Im [log (z— ia)—log (z—ib)].
(d) Show that

b
J_d’—, = iflog (z— ib) —log (z—ia)]
z—1t
(Hint: Use the Fundamental Theorem of Calculus.)
(e) Combine (c) and (d) to get that

b
a y—b
x+iy) = J m dt = arctan (J—)x—) —arctan <T)

a

(f) Interpret part (¢) geometrically and show that for Re z > 0 A(2) is the
angle depicted in the figure.

20. Let Sz = z -tb and 7z = a?+/3 : show that S = T iff there is a non zero
czZ

+d yz+38
complex number A such that « = Ag, B = Ab, y = Ac, 8 = Ad.
21. Let T be a Mobius transformation with fixed points =, and z,. Il Sis a
Maébius transformation show that $ “' 7' has fixed points § 'z, and S 7'z,
22. (1) Show that a Mébius transformation has 0 and oo as its only fixed
noints ifT it s a dilation.
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(b) Show that a M&bius transformation has oo as its only fixed point iff
it is a translation.

23. Show that a M&bius transformation T satisfies 7(0) = oo and T(o0) = 0
iff Tz = az™! for some « in C.

24. Let T be a Mobius transformation, 7 # the identity. Show that a
Maobius transformation S commutes with 7' if S and 7 have the same fixed
points. (Hint: Use Exercises 21 and 22.)

25. Find all the abelian subgroups of the group of Mdbius transformations.
26. (a) Let GL,(C) = all invertible 2x 2 matrices with entries in C and
let # be the group of M&bius transformations. Define ¢: GL,(C) — 4 by

b +b ) .
<P(j d) = Z+ 7 Show that ¢ is a group homomorphism of GL,(C) onto 4.

Find the kernel of ¢.

(b) Let SL,(C) be the subgroup of GL,(C) consisting of all matrices of
determinant 1. Show that the image of SL,(C) under ¢ is all of .#. What
part of the kernel of ¢ is in SL,(C)?

27.1f % is a group and A" is a subgroup then A4 is said to be a normal subgroup
of @ if S"'TSe A whenever Te A and Se %. ¥ is a simple group if the
only normal subgroups of & are {I} (J = the identity of* %) and & itself.
Prove that the group .# of Mobius transformations is a simple group.

28. Discuss the mapping properties of (1 —z)'.

29. For complex numbers a and f with |a|*+|B*=1

az— B

“.1,3(2)= Br—a

andlet U={u, z:|al*+|B=1}.

(a) Show that U is a group under composition.

(b) If SU, is the set of all unitary matrices with determinant 1, show that
SU, is a group under matrix multiplication and that for each A4 in SU,
there are unique complex numbers a and 8 with |a*+|B]*=1 and

5

(c) Show that ( g l_g)}-»Umﬁ is an isomorphism of the group SU,
onto U. - @

(d) If 71 €{0,3,1,3,...} let H,=all the polynomials of degree <2/ For
U, g=u in U define T":HH, by (T"f)z)=(Bz+a)*f(u(z)). Show
that T is an invertible linear transformation on H, and ut->T/" is an
injective homomorphism of U into the group of invertible linear transfor-
mations of H, onto H,.

30. For |z| <1 define f(z) by

1/2
f(z)==exp{ - ilog[i( :__{—i)} ]

(a) Show that f maps D={z:|z|- 1} conformally onto an annulus G.
(b) Find alt Mobius transformations 8 (2) that map D onto D and such
that /(S(z)=/(:) when o] |




Chapter IV

Complex Integration

In this chapter results are derived which are fundamental in the study of
analytic functions. The theorems presented here constitute one of the pillars
of Mathematics and have far ranging applications.

§1. Riemann-Stieltjes integrals

We will begin by defining the Riemann-Stieltjes integral in order to
define the integral of a function along a path in C. The discussion of this
integral is by no means complete, but is limited to those results essential to
a cogent exposition of line integrals.

1.1 Definition. A function y: [a, b] — C, for [a, b] < R, is of bounded variation
if there is a constant M > 0 such that for any partition P = {a = o < I,
<...<t, = b} of [a, b]

m

uy; P) = Z (1) —v(ti=y)| < M.

k=1
The fotal variation of y, V(y), is defined by
V(y) = sup {v(y; P): P a partition of [a, b]}.

Clearly V(y) < M < oco.

It is easily shown that y is of bounded variation if and only if Re y
and Im y are of bounded variation. If y is real valued and is non-decreasing
then .y is of bounded variation and V(y) = y(b)—y(a). (Exercise 1) Other
examples will be given, but first let us give some easily deduced properties of
these functions.

1.2 Proposition. Let y: [a, b] = C be of bounded variation. T} hen:

(a) If P and Q are partitions of [a, b] and P < Q then v(y; P) < v(y; Q);

(b) If o: [a, b] — C is also of bounded variation and «, B € C then ay+Bo

is of bounded variation and V(ay+Bo) < |« V() +1B| V(o).

The proof is left to the reader.

The next proposition gives a wealthy collection of functions of bounded
variation. In actuality this is the set of functions which is of principal concern
to us.

1.3 Proposition. If y:[a.b]—>C is piecewise smooth then v is of bounded
variation and

b
Vi) = [ Iyl d

S8
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Pr'oof. Assume that y is smooth (the complete proof is easily deduced from
this). Recall that when we say that y 1s smooth this means y’ is continuous.
Let P={a=1,<t,<...<t,=b}. Then, from the definition,

Wi P)= 3 It =ty

k=

—

[ o

ti—1

]
Mas

k

1

IA

3 [ o

tre
tre-1

b
[ o dt

Hence V(y) < j’; l[y’(#)| dt, so that y is of bounded variation.

Since y’ is continuous it is uniformly continuous; so if e > 0 is given we
can choose 8, > 0 such that [s—¢| < &, implies that |y'(s)—y ()] < e. Also,
we may choose 8, > 0 such that if P = {a = ¢, < t;<...<t, = b} and
1P| = max {(tx—1t;-,): 1 < k < m} < 8, then

b
f ly' ()| dt — kzl [y (r)l (te—te-1)| < €
where 7, is any point in [z,_, 7}. Hence

b
[rola < e+ 3 el =t

i

=e+ 3| [ vyar
k=1 s
m e m tx
set 3| [ ed—verd + ¥ [ yod
T e =1,

If |P||<d=min(d,,8,) then |y'(r,)—y'(#)]<efor t in [#,_,, 1] and

A

b
[rld < eveb-a) + 3 )=o)

ft+(h—a)+r(y; P)
<ot (b—a)) + V(y).
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Letting e — 0+, gives
b
[rold < ve),

which yields equality. ll
1.4 Theorem. Let y: [a, b] — C be of bounded variation and suppose that
f: [a, b] — C is continuous. Then there is a complex number I such that for
every € > O there is a 8 > 0 such that when P= {ty < t; <...<t,}isa
partition of [a, b] with ||P|| = max {(t,—ts—1): 1 <k < m} < 8 then

I - kzl S@) byt — vl -1)]

< €

for whatever choice of points 7y, t_1 = Tk < I
This number I is called the integral of f with respect to y over [a, b] and
is designated by

b b
I={fdy =10 0.

Proof. Since f is continuous it is uniformly continuous; thus, we can find
(inductively) positive numbers 8; > 8, > 83 >... such that if [s—1| < 8,

1 ..
| f(5)=f()] < —. For each m > 1 let 2, = the collection of all partitions P

m
of [a, B] with |P]| < 8,; s0 £, @ #, o ---. Finally define F,, to be the
closure of the set:

1.5 k;f(‘fk)[)'(tk)—y(fk—l)li Pe?, and fiy <7 < ’k} .

The following are claimed to hold:
{Fl DFz D and

1.6 diam F, < 2 V()
m

If this is done then, by Cantor’s Theorem (II. 3.7), there is exactly one com-
plex number 7 such that /e F,, for every m = 1. Let us show that this will
complete the proof. If ¢ > 0 let m > (2/¢) V(y); then e > (2/m) V(y) 2
diam F,. Since I € F,,, F, < B(I;¢). Thus, if 8 = 8, the theorem is proved.

Now to prove (1.6). The fact that F; > F, ... follows trivially from

2
the fact that #, > &, ... . To show that diam F,, < - V(y) it suffices

2 .. .
to show that the diameter of the set in (1.5) is < m V(y). This is done in two

stages, cach of which is casy although the first s tedious, .
HP={t,« ... 1,} 15 aparition we will denote by S(P)a sum of the
form ‘\_:/(r‘)ly(l,\) y(1, ) where 7, 18 any pomt with ¢, |- 70 1.
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Fix m=1and let P € &, ; the first step1 will be to show that if P < Q (and
hence Q € #,) then |[S(P)—S(Q)|< - V (y). We only give the proof for

the case where Q is obtained by adding one extra partition point to P. Let
l<p<mandlets, ,<t*<t,; suppose that PU(t'}=Q. lf ¢,_ <o =<1*
t*< ¢’<t, and

5(Q)= 2 fle[ (@)= v(te_ )]+ f () v(9) = v(1,_))]

k#*p
+f(a)][v(5,)—v(t%)], »
then, using the fact that | f(r)—f(0)| < % for |7—0] <3,
IS(P)-S(Q)|= L;, U0 =f@]l It = Ate— D1 +1(rp) [y(t,) —y(tp- 1))
=J(0) () = (1, - D1 —f(e) [(t,) — (1)}

IA

1
- k§, A1) =7tk D] + L) = ()] [A1*) — (1, - )]
+[frp) —=feN] bAL) — y(t¥)]|

1 1
-~ k;p bt =t )] + — b =7t 1)]

IA

1
+ [t ,) = ¥(t*)]

1
<=V
m

For the second and final stage let P and R be any two partitions in 2,,. Then
Q = P U Ris a partition and contains both P and R. Using the first part
we get

IS(P)=S(R)|<IS(P)=S(Q)|+IS (@)= S (R <=V ().
It now follows that the diameter of (1.5) is < r% Viy). R

The next result follows from the definitions by a routine e—3$ argument.

1.7 Proposition. Let f and g be continuous functions on [a, b} and let v and o
be functions of bounded variation on [a, b). Then for any scalars « and B:

(@) o (f+Bg) dy = o |G fay+B [a gdy

(b) [ fday+Po) = «fi fdy+B [; fdo.

The following is a very useful result in calculating these integrals.

1.8 Proposition. Let y: [a, b} — C be of bounded variation and let f: [a, b] — C
be continuous. If a =ty < 8, <---<t,=b then

b n Mt
jm=;im.
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The proof is left as an exercise.

As was mentioned before, we will mainly be concerned with those y
which are piecewise smooth. The following theorem says that in this case
we can find [fdy by the methods of integration learned in calculus.

1.9 Theorem. If y is piecewise smooth and f:[a,b]—C is continuous then

[ sar=[ s

Proof. Again we only consider the case where y is smooth. Also, by
looking at the real and imaginary parts of y, we reduce the proof to the
case where y([a,b]) =R. Let €>0 and choose § >0 such that if P={a=1,
<...<t,=b} has ||P|| <98 then

b n
110 [ fay = ¥ Ao B0 =t ) < e
and
b n
L1 [ oy @d~ ¥ ey (== < 4

for any choice of 7, in [, ¢J. If we apply the Mean Value Theorem for
derivatives we get that there is a =, in [f,_ , %] With y'(7) = [¥(t) —¥(t- )]
(t,— )~ . (Note that the fact that y is real valued is needed to apply the
Mean Value Theorem.) Thus,

k; SE) )=yt )l = k; Fry'(m) ta—te-y)-

Combining this with inequalities (1.10) and (1.11) gives

< €.

b b
[rar = [ 10w @y a

Since ¢ > 0 was arbitrary, this completes the proof of the theorem. Il

We have already defined a path as a continuous function y: [a, 5] - C.
If y: [a, b] — C is a path then the set {y(1): a < ¢ < b}is called the trace of y
and is denoted it by {y}. Notice that the trace of a path is always a compact
set. y is a rectifiable path if y is a function of bounded variation. If P is a
partition of [a, b] then v(y; P) is exactly the sum of lengths of line segments
connecting points on the trace of y. To say that y is rectifiable is to say that
y has finite length and its length is V(y). In particular, if y is piecewise
smooth then y is rectifiable and its length is [5 || dr.

If y: [a. b} — C is a rectifiablc path with {y} < £ < C and f: E~»C
is a continuous function then £+ y is a continuous function on [a. b]). With
this in mind the following definition makes sensc.
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1.12 Definition. ‘If y: [a, b] = C is a rectifiable path and f is a function
defined and continuous on the trace of y then the (line) integral of f along y is

b
[ 702 o).

This line integral is also denoted by [, f = [, f(z) dz.
As an example let us take y: [0, 2n] — C to be y(t) = e and define

I
flz) = . for z # 0. Now y is differentiable so, by Theorem 1.9 we have

1 .
[ - dz = [3*e”"(ie") dt = 2mi.

Using the same definition of y and letting m be any integer > 0 gives
zz".‘dz=j(2,”e""’(ie”)dt=i_[(z,” exp (i(m+1)t) dr=if3" cos (m+1)t dt—
fo"sin(m+ 1)tdt=0.
Now let a,b C and put y(£)=1b+(1—t)a for 0=t <1. Then y()=b
—a, and using the Fundamental Theorem of Calculus we get that for

n=0, f, 2"z = (b—a) [} [b+(1—Da] dt = ~—i—l @+ —ar+ ).
n

There are more examples in the exercises, but now we will prove a certain
“invariance” result which, besides being useful in computations, forms the
basis for our definition of a curve.

If y: [a, b] — C is a rectifiable path and ¢: [¢, d] — [a, b] is a continuous
non-decreasing function whose image is all of [a, b} (ie., ¢(¢) = a and
o(d) = b) then y o ¢: [¢, d] — C is a path with the same trace as y. Moreover,
y o @ is rectifiable because if ¢ =54 < 5, <+ <5, =d then a = ¢(s,) <
o(s)) <+ < ¢(s,) = b is a partition of [a, b]. Hence

3 o)~ ) < V)

so that V(y o) < V(y) < oo. So if f is continuous on {y} = {
i yo @} then
§yoofis well defined. }

?.13 Proposition. If y: [a, b] — C is a rectifiable path and ¢: [c, d] — [a, b)
is a continuous non-decreasing function with ¢(c) = a, p(d) = b; then for any

Sunction f continuous on {y}
[r=1[7

Yoo

Proqf: Let ¢ > 0 and choose 8; > 0 such that for {sq <5, <---<35,} a
partition of [¢, d] with (s,—s;,-,) < 8, and s,_; < o, < 5, we have

1.14 < e

f S —k; S o e(o) [y o plsi) =y o (52 )]

Similarly choose 8, > 0 such that if {ty; < 1; <---<1,} is a partition of
[a, By with (1, —1, ) < by and 1, , - 7, = 1,, then
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115 [£= 3 fotm) [yak)—y(zk_o)\ < $e.

But ¢ is uniformly continuous on [c, d]; hence there isa 8 > 0, which can be
chosen with & < &,, such that |p(s)—e(s)|] < 8, whenever [s—s’| < 8. Soif
{s¢ < 8§, <**+< s,} is a partition of [c, d] with (s, —s;_) < 8 < 8, and
t, = o(s), then {tq < ¢, <-*-<1f,}isa partition of [a, b] with (x—#-1)
< 8,. If 5,y < o; < 5, and 7, = ¢(o;) then both (1.14) and (1.15) hold.

Moreover, the right hand parts of these two differences are equal! It follows

that
[r-]1

Yoo

< €

Since ¢ > 0 was arbitrary, equality is proved. [l

We wish to define an equivalence relation on the collection of rectifiable
paths so that each member of an equivalence class has the same trace and
so that the line integral of a function continuous on this trace is the same for
each path in the class. It would seem that we should define ¢ and y to be
equivalent if ¢ = y o ¢ for some function ¢ as above. However, this is not
an equivalence relation!

1.16 Definition. Let o [c, d] - C and y: [a, b] - C be rectifiable paths.
The path o is equivalent to y if there is a function ¢: [c, d] — [a, b] which is
continuous, strictly increasing, and with ¢(c) = a, ¢(d) = b; such that
o = y o . We call the function ¢ a change of parameter.

A curve is an equivalence class of paths. The trace of a curve is the trace
of any one of its members. If fis continuous on the trace of the curve then the
integral of f over the curve is the integral of f over any member of the curve.

A curve is smooth (piecewise smooth) if and only if some one of its
representatives is smooth (piecewise smooth).

Henceforward, we will not make this distinction between a curve and its
representative. In fact, expressions such as “let  be the unit circle tra-
versed once in the counter-clockwise direction” will be used to indicate a
curve. The reader is asked to trust that a result for curves which s, in fact,
a result only about paths will not be stated.

Let y: [a, b] - C be a rectifiable path and fora < ¢ < b, let |y| (¢) be
V{y; [a, t]). That is,

b1 (@) = sup {k; (6 —y(fe-DI: {tos - - - » 14} is a partition of [a, z]} :

Clearly |y (¢) is increasing and so |y}: [a, 6] > C is of bounded variation. If
fis continuous on {y} define

b
[ 1) = [ e divl (.

ff y is a rectifiable curve then denote by y the curve defined by () (1)
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y(—1) for —b < t < —a. Another notation for this is y~'. Also if ceC
let y+c¢ denote the curve defined by (y+c¢) (¢) = y(f)+c. The following
proposition gives many basic properties of the line integral.

1.17 Proposition. Let v be a rectifiable curve and suppose that f is a function
continuous on {y}. Then:

(a) ny: - _r—yf;

®) [,/ < §,1f11dzl < V) sup[If(2)]: z € {y}];
(c) If ce C then _fyf(z) dz = jy+cf(z—c) dz.

The proof is left as an exercise.

The next result is the analogue of the Fundamental Theorem of Calculus
for line integrals.

1.18 Theorem. Let G be open in C and let y be a rectifiable path in G with

initial and end points « and B respectively. If - G — C is a continuous function
with a primitive F. G — C, then

[7=F@-F@

¥

(Recall that Fis a primitive of f when F' = f.).

The following useful fact will be needed in the proof of this theorem.

1.19 Lemma. If G is an open set in C, y:|a,b]l—G is a rectifiable path, and
f:G—>C is continuous then for every € >0 there is a polygonal path T in G
such that T(a)=y(a), T(b)=xy(b), and |, f— |1 f]<e.

Proof. Case 1. Suppose G is an open disk. Since {y} is a compact set,
d=dist({y},dG)>0. It follows that if G = B(c;r) then {y} < B(c;p) where
p=r— %d. The reason for passing to this smaller disk is that f is uniformly
continuous in B(c;p)< (. Hence without loss of generality it can be
assumed that f is uniformly continuous on G. Choose § >0 such that
| f(z)—f(w)|<e whenever |z—w|<8. If y:[a,b]—C then y is uniformly
continuous so there is a partition {#,< ¢, < ... <t,} of [a,b] such that

1192 ly()— (D] <8

if 1, _<s,1<1; and such that for t,_ |, <7, <t we have

120 [1= 3 16Nyt~ 1] <e.

Y A=1

Define I':[a,b]—-C by

I(1)=-

i
—'[(’A Oyl D+—¢ I)Y(’A)]

v o

iy =76 80 on |1, . ) T(r) traces out the straight line segment
from y(s, 1o y(r,): that s, s a polygonal path m ¢ From (1.19a)
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1.21 T(H—y(r)} <8 fore, ,<t1=1,.

Since [y f= [5f (C(:)I'(1)dt it follows that
2o y() =) o
[ =3 BT [ D).
r k=1 be = le—y o
Using (1.20) we obtain

fyf—frf

Set i IY(tk)_Y(tk—l)l([k_tk~l)*1flk |S(T(0) = f(y(7))ldk.

L/

<e+

i f(Y(Tk))[Y(tk)_Y(tk~l)]_’/I.‘fl

Applying (1.21) to the integrand gives

s

The proof of Case I now follows.

Sete D () =yt <e(1+V(¥)).

Case 11. G is arbitrary. Since {y} is compact there is a number r with
0< r<dist({y},dG). Choose 6 >0 such that |y(s)— y(#)| <r when ls—1<
8. If P={1,<t,<...<t,} is a partition of [a,b] with [|P]j<é& then
|y ()= y(t,_ )| <r for 1, <1<y Thatisif y, :[t_,, 5]~ is defined by
Y. (1)=(?) then {y,} = B(y(f_,);r) for 1<k <n By Case I there is a
polygonal path T' :[t,_,,2)>B(y(t,_,);r) such that T, (#_D)=v(_))
T(t)=(t), and |f, f— [r,|<e/n. If T()=T,(¢) on [ _,,1] then T has
the required properties. i

Proof of Theorem 1.18. Case 1. vy :[a,b]—>C is piecewise smooth. Then =
Py dr = LPFG@yy(d = [(FeyY(Ddt = F(v(0)—
F(y(a))= F(B)— F(a) by the Fundamental Theorem of Calculus.

Case 11 The General Case. If ¢>0 then Lemma 1.19 implies there is a
polygonal path T' from a to 8 such that |/ f—[rf|<e. But I'is piecewise
smooth, so by Case I [, f=F(8)— F(a). Hence |/ f—[F(B)— F(a)]| <€
since € >0 is arbitrary, the desired equality follows. ll

The use of Lemma 1.19 in the proof of Theorem 1.18 to pass from the
piecewise smooth case to the rectifiable case is typical of many proofs of
results on line integrals. We shall see applications of Lemma 1.19 in the
future.

A curve v: [a, b] — C is said to be closed if y(a) = v(b).

1.22 Corollary. Let G, y, and f satisfy the same hypothesis as in Theorem
1.18. If v is a closed curve then

j f0

3
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The Fundamental Theorem of Calculus says that each continuous
function has a primitive. This is far from being true for functions of a
complex variable. For example let f(z) = |z]*> = x*+ )% If F is a primitive
of f then F is analytic. So if F = U+iV then x*+)* = F'(x+iy). Now,
using the Cauchy-Riemann equations,

ou ov ou ov

—=_—=x*+)> and — =
ox oy +Y " dy  Ox

oUu
But 5 = 0 implies that U(x, y) = u(x) for some differentjable function u.

. oU -
But this gives x2+)? = P u'(x), a clear contradiction. Another way to

see that |z|? does not have a primitive is to apply Theorem 1.18 (see Exercise
8).

Exercises

1. Let y: [a, ] — R be non decreasing. Show that y is of bounded variation
and V(y) = y(b)—v(a).

2. Prove Proposition 1.2.

3. Prove Proposition 1.7.

4. Prove Proposition 1.8 (Use induction).

5. Let y(f) = exp ((—1+i) ™Y for 0 < ¢t < 1 and ¢(0) = 0. Show that y is
a rectifiable path and find ¥V (y). Give a rough sketch of the trace of v.

6. Show that if y; [a, b] — C is a Lipschitz function then y is of bounded
variation.

1
7. Show that y: [0, 1] — C, defined by y(¢) = ¢+ it sin ; for + # 0 and

y(0) = 0, is a path but is not rectifiable. Sketch this path.
8. Let y and ¢ be the two polygons [1, i{] and [1, 1+, i]. Express y and ¢ as
paths and calculate [, f and [, f where f(2) = |2]°.

9. Define y: [0, 2] — C by y(¢) = exp (int) where n is some integer (positive,

I
negative, or zero). Show that | - dz = 2#in.
Y
10. Define y(r) = e'* for 0 < ¢ < 2= and find |, z" dz for every integer n.
11. Let y be the closed polygon [1—i, 1+i, —1+i, —1—i, 1—i]. Find

1
J—dz.
yZ

12. Let I(r) = j ¢ dz where y: [0, 7] — C is defined by y(¢) = re'’. Show
z
Y
that im /(r) = 0.

r »m

13. Find §, z7% d= where: (a) y is the upper half of the unit circle from
+ o —1:(b) v is the tower half of the unit circle from + 1 to - 1§,
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14. Prove that if ¢: [a, b] —[c, d] is continuous and ¢(@) = ¢, plb) =d
then ¢ is one-one iff ¢ is strictly increasing.

15. Show that the relation in Definition 1.16 is an equivalence relation.
16. Show that if y and ¢ are equivalent rectifiable paths then V(y) = V(o).
17. Show that if y: [a, b] = C is a path then there is an equivalent path
o [0, 1] - C.

18. Prove Proposition 1.17.

19. In the proof of Case I of Lemma 1.19, where was the assumption that y
lies in a disk used?

20. Let y(f) = 1+€" for 0 < t < 2 and find f, (2-1"1d=

21. Let y(f) = 2¢" for —m < t < = and find |,@-1)""dz.

22, Show that if F, and F, are primitives for f: G > C and G is connected
then there is a constant ¢ such that F(z) = ¢+ F,(z) for each z in G.

23. Let y be a closed rectifiable curve in G and a ¢ G. Show that for n > 2,
f,G—a)™"dz = 0. :

24. Prove the following integration by parts formula. Let and g be analytic
in G and let y be a rectifiable curve from a to b in G. Then _fy fg' = f(b)g(b)—

f@g@~§, /g

§2. Power series representation of analytic functions

In this section we will see that a function f; analytic in an open set G,
has a power series expansion about each point of G. In particular, an analytic
function is infinitely differentiable.

We begin by proving Leibniz’s rule from Advanced Calculus.

2.1 Proposition. Let ¢: [a, b]x [c, d] — C be a continuous function and define
g:le,dj—Cby

b
2.2 g(f) = f s, ?) ds.

a
. . L0 . . .
Then g is continuous. Moreover, if % exists and is a continuous function on

[a, b1 % [c, d] then g is continuously differentiable and

b

23 g = Jé—:p (s, 1) ds.

Proof. The proof that g is continuous is left as an exercise. Notice that if we
prove that g is differentiable with g’ given by formula (2.3) then it will follow

0
from the first part that g’ is continuous since —,);P is continuous. Hence, we
[%

need only verify formula (2.3).
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Fix a point ¢, in [c, d] and let € > 0. Denote i—q’ by @,; it follows
ot
that ¢, must be uniformly continuous on [a, b] x [c, d]. Thus, there isa 8 > 0

such that lpa(s’, t)—@a(s, 1] < € whenever (s—s)2+(t—1)? < 8% In
particular

24 |¢2(S9 t)—‘Pz(S, To)l <€
whenever |t—1,| < 8 and a < s < b. This gives that for |[t—¢,] < § and
a<s<hb,

25 [ [@als, D=gats, to)] d| < elt~t].

But for a fixed s in ‘[af bl O(1) = (s, 1) —te,(s, to) is a primitive of @,(s, £)—
pa(s, ‘to). By combining the Fundamental Theorem of Calculus with in-
equality (2.5), it follows that

(s, ) —@(s, to) —(t—to)pa(s, to)] < €|t~1,]

for any s when |t—¢,| < 8. But from the definition of g this gives

g(H)—g(ty)
t—t,

b
~ [ als, o) ds| < b~a)

when 0 < |t—14] < 6.
This result can be used to prove that

2n

eis
j ds=2m if |z] < 1.

e¥—z

0o

Actually, we will need this formula in the proof of the next proposition.

Let (s, 1) =

Stz for0 <t < 1,0 < s < 2m; (Note that ¢ is continuously

d%iferent?able because |z] < 1.) Hence g(t) = [" ¢fs, ) ds is continuously
differentiable. Also, g(0) = 2#; so if it can be shown that g is a constant,
then 27 = g(1) and the desired result is obtained.

Now
—12)* 7

2n
g = f s
(e
0

bult {or t_gixed, D(s) = zi(e"—12)"" has D'(s) = —zi(e" —1z)" (ie") =
ze™(e" —12)"*. Hence g'(+) = ®(2n)—-D(0) =~ 0, so g must be a constant.
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The next result, although very important, is transitory. We will see a
much more general result than this—Cauchy’s Integral Formula; a formula
which is one of the essential facts of the theory.

2.6 Proposition. Let f: G — C be analytic and suppose B(a; r) = G(r > 0).
If y(f) = a+re’, 0 < t < 2m, then

f()—— J) ,
w— z

b4

Sfor |z—a| < r.

1
Proof. By considering G, = {- (z—a): z € G} and the function g(z) = fla+
r

rz) we see that, without loss of generality, it may be assumed that a = 0
and r = 1. That is we may assume that B(0; 1) < G.

Fix z, |z| < 1; it must be shown that
f(Z) = -1_ _&W)_ aw

27w Jw—z
Y

f(els)els

211' e’ —z
V]

that is, we want to show that

ds —2xf(z)

J‘I:f(ets)ets 3 f( )]
e
0o

We will apply Leibniz’s rule by letting

2" N .
f(els)els
e —z

o(s, 1) = M - 1),

es—z

for 0<t<1and 0 <s <2 Since |z+1e"—2)] = |z(1-1)+1e"] < |,
¢ is well defined and is continuously differentiable. Let g(r) = [ ¢(s, 1) ds;
so g has a continuous derivative.

The proposition will be proved if it can be shown that g(1) = 0; this is
donc by showing that g(0) = 0 and that g is constant. To see that g(0) = 0
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compute:

2r

2(0) = | ¢(s,0) ds
0

ez
e

0

—2af(2)

2n
e
since we showed that j —;— ds = 2w prior to the statement of this pro-
]

position,
To show that g is constant compute g’. By Leibniz’s rule, g'(¢) = {3
@,(s, t) ds where

@.(s, £) = e5f'(z+ t(e" —2)).

However, for 0 < ¢ < 1 we have that ®(s) = —it"'f(z+#(e*~2)) is a
primitive of @,(s, #). So g'(f) = ®2m)—D(0) = 0 for 0 < ¢ < 1. Since g’ is
continuous we have g’ = 0 and g must be a constant. i

How is this result used to get the power series expansion? The answer is
that we use a geometric series. Let |z—a| < r and suppose that w is on the
circle [w—a| = r. Then

1 1 1 © g \n
w—z w-—a l_l:z—a] (w—a) ..Zo <w-—a>
w—a

since [z—a| < r = |w—a|. Now, multiplying both sides by [f(w)/2ni] and
integrating around the circle y: |w —a| = r, the left hand side yields f(z) by the
preceding proposition. The right hand side becomes—what? To find the
answer we must know that we can distribute the integral through the infinite
sum.

2.7 Lemma. Let y be a rectifiable curve in C and suppose that F, and F are
continuous functions on {y}. If F = u—lim F, on {y} then

[F=tim[F,
Y Y
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Proof. Let « > 0; then there is an integer N such that IF,,'(w) —FW)} < ¢/V(y)
for all won {y} and n > N. But this gives, by Proposition 1.17(b),

j#—F)

Jr=J]

[ 1EGo)— ()] ldw]

IA

< €
whenevern > N. I}

2.8 Theorem. Let f be analytic in B(a; R); then f(z) = S az—a)" for

n=0

1 o .
|z—a| < R where a, = 0 £a) and this series has radius of convergence = R.

Proof. Let 0 < r < R so that Ba; r) < B(a; R). If y(t) = a+ret,0<t<2m,
then by Proposition 2.6,

fl2) = LJ‘}—T—K) dw for |z—a|l <r.

But, since |z—a| < r and w is on the circle {y},
o) lz—al _ M (1z=alY"
lw—al"tt T r r

___al

]z
where M = max {|f(w)|; |w—a| = r}. Since p

< 1, the Weierstrass

M-test gives that Y. f(w) (z—a)"/(w—a)"*" converges uniformly for w on
{y}. By Lemma 2.7 and the discussion preceding it

o0 1 .
2.9 f=> [ﬁ j w—ff;f))—ﬁ dw] (z—a)

n=0
7

N
a"=2—7r—ij‘(w—a)"“du

then a, is independent of z, and so (2.9) is a power series which converges
for |z—al| < r.

If we set

1
It follows (Proposition 111. 2.5) that a, = ;—'f(")(a\, so that the value of a,

is independent of v; that is, it is independent of r. So

o

2.10 @ Y az-a"

n-0

for |z -a| = r. Since r was chosen arbitrarily, r < R, we have that (2.10)
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holds for |z—a| < R; giving that the radius of convergence of (2.10) must
be at least R. ||

2.11 Corollary. If f: G — C is analytic and a € G then f(z) = Y. a,(z—a)" for
|z—a| < R where R = d(a, 0G). 0

Proof. Since R = d(a, ¢G), B(a; R) = G so that f is analytic on B(a; R).
The result now follows from the theorem. Il

2.12 Corollary. If - G — C is analytic then f is infinitely differentiable.
2.13 Corollary. If f: G — C is analytic and B(a; r) < G then

!
7@ = [ L

where y(t) = a+re, 0 < t < 2m.

2.14 Cauchy’s Estimate, Let f be analytic in B(a; R) and suppose |f(2)| < M
Jor all z in B(a; R). Then
n'M

!
vl

R

I/ ®@)| <

Proof. Since Corollary 2.13 applies with r < R, Proposition 1.17 implies
that
nt\ M n'M
() i Wil =7
lf (a)] < <2ﬂ>r"+1 2nr -

Since r < R is arbitrary, the result follows by letting »r —~ R—. I}
We will conclude this section by proving a proposition which is a special
case of a more general result which will be presented later in this chapter.

2.15 Proposition. Let f be analytic in the disk B(a; R) and suppose that v is a
closed rectifiable curve in B(a; R). Then

ff=a

Proof. This is proved by showing that f has a primitive (Corollary 1.22).
Now, by Theorem 2.8, f(z) = Y a,(z—a)" for |z—a| < R. Let

F(z) = Z; <%) (z—ay"*' = (z—a) 2 (ni-ll-n—l) (z—a)"

Since lim (n+1)"/" = 1, it follows that this power series has the same radius
of convergence as Y, a,(z—a)". Hence, F is defined on B(a; R). Moreover,
F(z)=f(z) for |z—a] < R.

Exercises

1. Show that the function defined by (2.2) is continuous.
2. Prove the following analogue of lLeibniz’s rule (this exercise will be
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frequently used in the later sections.) Let G be an open set and let y be a
rectifiable curve in G. Suppose that : {y}x G — C is a continuous function
and define g: G — C by

gl = f p(w, z) dw

v

17
then g is continuous. If aﬁ’ exists for each (w, z) in {y}x G and is continuous
4

then g is analytic and
0
g = Jf (w, z) dw.
0z
Y

3. Suppose that y is a rectifiable curve in C and ¢ is defined and continuous
on {y}. Use Exercise 2 to show that

P(w)
()—J—j

Y
is analytic on C— {y} and

g"(z) = n!

v

P(w)

(W _Z)n+ 1

4. (a) Prove Abel’s Theorem: Let Y a, (z—a)" have radius of convergence 1
and suppose that 3 a, converges to 4. Prove that

lim ) a," = A.

r-1-
(Hint: Find a summation formula which is the analogue of integration by
parts.)
(b) Use Abel’s Theorem to prove that log 2 = 1—-3+3—
5. Give the power series expansion of log z about z = i and ﬁnd its radius of
convergence.
6. Give the power series expansion of \/ z about z = 1 and find its radius of
convergence.
7. Use the results of this section to evaluate the following integrals:

r iz

@ |5 (1) = €, 0<t<2m
; V4
(b) n'di, W) = a+re’, 0 <t<2m
; zZ—a
© S“msz’ dz, AN =€, 0<1t<2m
.; ¥4
() nlo.:-: dz, () - 1+des 00 2mand w0

~e
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8: Use a Mobuis transformation to show that Proposition 2.15 holds if the
disk B(a; R) is replaced by a half plane.

9. Use Corollary 2.13 to evaluate the following integrals:

-z

(a) [~ dz where n is a positive integer and y(7) = €, 0 < ¢t < 27;
¥
[ dz
(b) (z—f)" where n is a positive integer and (f) = e, 0 < t < 2m;
Y
f dz .
© | 2o where y(f) = 2¢”, 0 < t < 27. (Hint: expand (z241)"! by

Y
means of partial fractions);

IA

in
() f SI—Z—Z dz where (i) = ", 0

zl/m
(e j(l— 1);

241 .
10. Evaluate fz(zz—+4) dz where y(t) = re", 0 < t < 2m, for all possible

t < 2m;

1e, 0 < t < 2m.

Y
valuesof r,0 < r < 2and 2 < r < co.
11. Find the domain of analyticity of

1 1+iz
=1 :
16 =5 0g<1—iz>’
also, show that tan f(z) = z (i.e., f'is a branch of arctan z). Show that
1) = z -1,

(Hint: see Exercise III. 3.19.)
12. Show that

2k+1

for lz] < 1

secz =1+ z(f;;' 2k

for some constants E,, E,,---. These numbers are called Euler’s constants.

What is the radius of convergence of this series? Use the fact that 1 = cos z
sec z to show that

< 2 . 2n . 2
L (2”_2) 1‘271—2+(2”_4) Ly gt +(- l)"( ") Ly+(=1)"=0.

Evaluate £y, Iy, B, Ee (F,,  S0821 and I'.‘,: 2702765).
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e—1 .. .
about zero and determine its radius

13. Find the series expansion of

V4
of convergence. Consider f(z) = e and let

f=2

k=0

be its power series expansion about zero. What is the radius of convergence?

Show that
+1
0=ap+ ("J{l)a1+~-~+("n )a,.-

Using the fact that f(z)+%z is an even function show that @, = 0 for k odd
and k > 1. The numbers B,, = (—1)""'a,, are called the Bernoulli numbers
for n > 1. Calculate B,, By, "B,

14. Find the power series expansion of tan z about z = 0, expressing the
coefficients in terms of Bernoulli numbers. (Hint: use Exercise 13 and the

formula cot 2z = 4 cot z—% tan z.)
§3. Zeros of an analytic function

If p(z) and g(z) are two polynomials then it is well known that
p(2) = 5 (2)q(z) +r(z) where s(z) and r(z) are also polynomials and the degree
of r(z) is less than the degree of ¢(z). In particular, if a is such that p(a) = 0
then choose (z—a) for g(z). Hence, p(z) = (z—a)s(z)+r(z) and r(z) must
be a constant polynomial. But letting z = a gives 0 = p(a) = r(a). Thus,
p(z) = (z—a)s(z). If we also have that s(a) = 0 we can factor (z—a) from
s(z). Continuing we get p(z) = (z—a)" #(z) where 1 < m < degree of p(z),
and #(z) is a polynomial such that #(a) # 0. Also, degree 1(z) = degree
p(z)—m.

3.1 Definition. If f: G — C is analytic and a in G satisfies f(a) = 0 then a
is a zero of f of multiplicity m > 1 if there is an analytic function g: G —C
such that f(z) = (z—a)"g(z) where g(a) # 0. N

Returning to the discussion of polynomials, we have that the multiplicity
of a zero of a polynomial must be less than the degree of the polynomial.
If n = the degree of the polynomial p(z) and q,, . .., a, are all the distin'ct
zeros of p(z) then p(z) = (z—a, )™ - -(z—a)™s(z) where s(z) is a polynomial
with no zeros. Now the Fundamental Theorem of Algebra says that a
polynomial with no zeros is constant. Hence, if we can prove this result we
will have succeeded in completely factoring p(z) into the product of first
degree polynomials. The reader might be pleasantly surprised to know that
after many years of studying Mathematics he is right now on the threshold
of proving the Fundamental Theorem of Algebra. But first it s necessary to
prove a famous result about analytic functions. It is also convenient to
introduce some new terminology.
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3.2 Definition. An entire function is a function which is defined and analytic
in the whole complex plane C. (The term “‘integral function” is also used.)

The following result follows from Theorem 2.8 and the fact that C
contains B(0; R) for arbitrarily large R.

3.3 Proposition. If f is an entire function then f has a power series expansion
o
fe)= % az"
n=0

with infinite radius of convergence.

In light of the preceding proposition, entire functions can be considered
as polynomials of “infinite degree”. So the question arises: can the theory of
polynomials be generalized to entire functions? For example, can an entire
function be factored? The answer to this is difficult and is postponed to
Section VII. 5. Another property of polynomials is that no non constant
polynomial is bounded. Indeed, if p(z) = z"+a,_,z" "'+ - +a, then
lim p(z) = lim 2" [1+a,_,z" '+ - +ayz " = oo. The fact that this also

Z—> 00 Z— 0

holds for entire functions is an extremely useful result.

3.4 Liouville’s Theorem. If f is a bounded entire function then f is constant.
Proof. Suppose |f(z)] < M for all z in C. We will show that f'(z) = 0 for
all z in C. To do this use Cauchy’s Estimate (Corollary 2.14). Since f is
analytic in any disk B(z; R) we have that | f'(z)| < M/R. Since R was arbi-
trary, it follows that f'(z) = O for each z in C. |l

The reader should not be deceived into thinking that this theorem is
insignificant because it has such a short proof. We have expended a great
deal of effort building up machinery and increasing our knowledge of analytic
functions. We have plowed, planted, and fertilized; we shouldn’t be surprised
if, occasionally, something is available for easy picking.

Liouville’s Theorem will be better appreciated in the following applica-
tion.

3.5 Fundamental Theorem of Algebra. If p(z) is a non constant polynomial
then there is a complex number a with p(a) = 0.

Proof. Suppose p(z) # O for all z and let f(z) = [p(z)]”!; then f is an entire
function. If p is not constant then, as was shown above, lim p(z) = oo;

zZ —>®©

so lim f(z) = 0. In particular, there is a number R > 0 such that [f(z)| < 1

zZ—>0

if |z} > R. But f'is continuous on B(0; R) so there is a constant M such that
|f(2)| < Mfor |z] < R. Hence fis bounded and, therefore, must be constant
by Liouville’s theorem. It follows that p must be constant, contradicting our
assumption. |l

3.6 Corollary. If p(z) is a polynomial and a,, ..., a, are its zeros with a;
having multiplicity k ; then p(z) - c(z—a,)** - -(z~a,)“ for some constant c
and ky+ - +k,, is the degree of p. '

Returning to the analogy between entire functions and polynomials, the
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reader should be warned that this cannot be taken too far. For example, if p
is a polynomial and a e C then there is a number z with p(z) = a. In fact,
this follows from the Fundamental Theorem of Algebra by considering the
polynomial p(z)—a. However the exponential function fails to have this
property since it does not assume the value zero. (Nevertheless, we are able
to show that this is the worst that can happen. That is, a function analytic
in C omits at most one value. This is known as Picard’s Little Theorem and
will be proved later.) Moreover, no one should begin to make an analogy
between analytic functions in an open set G and a polynomial p defined on
C; rather, you should only think of the polynomials as defined on G.

For example, let
f(2) = cos (——i+z> , 2zl < L
—z

1
Notice that 1_+_z maps D = {z:]z] < 1}onto G = {z:Rez > 0}. The zeros
-z

. nis odd}; so f has infinitely many zeros.

nr—2
of f are the points
f p {n‘rr +2

However, as n — oo the zeros approach 1 which is not in the domain of
analyticity D. This is the story for the most general case.

3.7 Theorem. Let G be a connected open set and let f: G — C be an analytic
function. Then the following are equivalent statements:

(@ f=0;

(b) there is a point a in G such that [ ™(q) = 0 for each n = 0;

(¢) {z€G: f(z) = 0} has a limit point in G.

Proof. Clearly (a) implies both (b) and (c). (c) implies (b): Let ae G and a
limit point of Z = {z € G: f(z) = 0}, and let R > 0 be such that B(a; R) <
G. Since a is a limit point of Z and f is continuous it follows that f(a) = 0.
Suppose there is an integer 7 > 1 such that f(a) =f"(@) =--"= " Na)
— 0 and /™(a) # 0. Expanding f in power series about @ gives that

flo) = ’2 a(z—a)
for |z—a| < R. If

a(z—a)f ™"

t8

8(2) =

k

then g is analytic in B(a; R), f(z) = (z—a)"g(2), and g(a) = a, # 0. Since

g is analytic (and therefore continuous) in B(a; R) wecan findanr, 0 <r <

R, such that g(z) # O for |z—a| < r. But since a is a limit point of Z there

is a point b with f(b) = 0 and 0 < |b—a| < r. This gives 0 = (b—a)"g(b)

and so g(b) = 0, a contradiction. Hence no such integer n can be found;
this proves part (b). .

(b) implies (a): Let A = {z« G: f"(z) =0 for all n > 0} From the

hypothesis of (b) we have that A / { 1. We will show that A4 is both open

n
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and closed in G; by the connectedness of G it will follow that 4 must be G
and so f = 0. To see that A4 is closed let z € A~ and let z, be a sequence in
A such that z = lim a,. Since each f™ is continuous it follows that
() = lim f™(z,) = 0. So ze 4 and 4 is closed.

To see that 4 is open, let ae 4 and let R > 0 be such that B(a; R) < G.

Then f(z) = Z a,(z—a)" for |z—a| < R where a, = i'f("’(a) = 0 for each
n!

n=0. chce f(z) = 0 for all z in B(a; R) and, consequently, B(a; R) < A.
Thus A4 is open and this completes the proof of the theorem. I

3.8 Corollary. If f and g are analytic on a region G then f = g iff {zeG:
f(2) = g(2)} has a limit point in G.

; This follows by applying the preceding theorem to the analytic function

—~g.

3.9 Corollary. If f is analytic on an open connected set G and f is not identi-
cally zero then for each a in G with f(a) = O there is an integer n > 1 and an
analytic function g: G — C such that g(a) # 0 and f(2) = (z—a)"g(z) for all
z in G. That is, each zero of f has finite multiplicity.

Proof. Let n be the largest integer (= 1) such that f"~)(g) = 0 and define
. 1
g(z) = (z—a) "f(z) for z # a and g(a) = - f™(a). Then g is clearly analytic

%n G— {g}; to see that g is analytic in G it need only be shown to be analytic
in a neighborhood of a. This is accomplished by using the method of the
proof that (c) implies (b) in the theorem. ||

3.10 Corollary. If' f: G — C is analytic and not constant, a € G, and f(a) = 0
then there isan R > Osuch that B(a; R) < Gandf(z) # 0for0 < |z—a| < R.

Proof. By the above theorem the zeros of f are isolated. i}

Tbere is one instance where the analogy between polynomials and analytic
fuqctlons works in reverse. That is, there is a property of analytic functions
which is not so transparent for polynomials.

3.11 Maximum Modulus Theorem. If G is a region and . G — C is an analytic
function such that there is a point a in G with | f(a)| = |f(2)| for all z in G, then
[fis constant.

Proof. Let B(a; r) < G, ¥(f) = a+re* for 0 < t < 2m; according to Pro-
position 2.6

f@y = = { L2 g,
27i | w—a

n

- 21 Jf(a+re") dt
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Hence
2n

mmS;jmﬁwmmsmm
0
since |f(a+re")| < |f(a)] for all £. This gives that

2n

0 = [ /(@] ~|/(a+re dt;
0
but since the integrand is non-negative it follows that /(@) = |fla+re™)]

for all £. Moreover, since r was arbitrary, we have that f maps any disk
B(a; R) < G into the circle |z| = l«| where « = f(a). But this implies that f
is constant on B(a; R) (Exercise III. 3.17). In particular f(z) = « for |z—a]
< R. According to Corollary 3.8, f= o.

According to the Maximum Modulus Theorem, a non-constant analytic
function on a region cannot assume its maximum modulus; this fact is far
from obvious even in the case of polynomials. The consequences of this
theorem are far reaching; some of these, along with a closer examination of
the Maximum Modulus Theorem, are presented in Chapter VI. (Actually,
the reader at this point can proceed to Sections VL. 1 and VI. 2))

Exercises

1. Let £ be an entire function and suppose there is a constant M, an R > 0,
and an integer n > 1 such that |f(2)| < M|z|" for |z| > R. Show that fis a
polynomial of degree < n.

2. Give an example to show that G must be assumed to be connected in
Theorem 3.7.

3. Find all entire functions f such that f(x) = € for x in R.

4. Prove that &t = e”¢” by applying Corollary 3.8.

5. Prove that cos (a+b) = cosacos b—sin asinb by applying Corollary 3.8.
6. Let G be a region and suppose that f: G — C is analytic and a € G such
that |f(a)] < |f(2)| for all z in G. Show that either f(@) = 0 or f'is constant.
7. Give an elementary proof of the Maximum Modulus Theorem for
polynomials.

8. Let G be a region and let fand g be analytic functions on G such that
f(2)g(z) = 0 for all a in G. Show that either f=0org = 0.

9. Let U: C — R be a harmonic function such that U(z) = Oforallzin C;
prove that U is constant.

10. Show that if f and g are analytic functions on a region G such that fg is
analytic then either f is constant or g =0.

§4. The index of a closed curve

b
We have already shown that | (= «@) Vdz = 2mn af y(O)=a+e ™",

e et ik veesrre tar tis thee s B v
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4.1 Proposition. If v:[0, 1]—>C is a closed rectifiable curve and a ¢ {v} then
) dz

27i ) z—a
Y

is an integer.

Proof. This is only proved under the hypothesi 1 1
case define g 210 T1e b ypothesis that y 1s smooth. In this

_ [
s fOY(S)—ads

Hence, g(0)=0 and g(1)=/,(z~a)~'dz. We also have that
v'(1)
y(1)—a

g(t)= for 0<r<l.

But this gives

d _
¢ f(y—a)=eHy —ge E(y—a)

=e [y —v(y-a) (y-a)]
So e"#(y—a) is the constant function e ¢O(y(0)—a)=y(0)—a=

e ¢M(y(1)~ a). Since y(0)= -
- ¥(0)=v(1) we have that e 8= o
for some integer k. @ M ¢ Hhate Ior that g(1)=2mik

4.2 Definition. If v is a closed rectifiable curve in C then for a ¢ {y)
gy= ] -
n(y,a)—ﬁj;(z—a) Vdz

is called the index o i i i i
called the winding nufm}llye‘:ﬂg}f1 ;e:fcflfxtldtoa.the point a. It s also sometimes
Recall that if v: [0,. 11-Cis a curve, —y or y ' is the curve defined by
51 —fﬂ({)= v(I— t). (this is actually a repa_rametrization of the original
e 1mt10n)..Also if v and o are curves defined on [0, 1] with y(1)=6(0)
thex? yl+o 18 the curve (y+o)(1)=y(2¢) if 0<¢<7 and (y+ o)()=0(] —
2ty if ; <t <1. The proof of the following proposition is left to the reader.

:Ir;iin;ﬁs,Ltut)}:le.nlf Y and o are closed rectifiable curves having the same
(@) n(y;a)=—n(—v.a) forevery a ¢ {v};
(b) n(yfo;a)= n(y:a)+n(e:a) for every a ¢ {y}u{o}.

Why is n(y:a) called the winding number of y about a? As was said
before if y(1)=a+¢*™" for 0<1<1 then n(y:a)=n. In fact if (b—a)<1
lh‘cn. n(y:by=n ;lnd‘ if |h- a] -1 then n(y:h)=0. This can be shown
directly or one can invoke Theorem 4.4 below. So at least in this case
n(y:h) measures the number of times y wraps around b - \.vnlh the ‘mn‘mint

vttty arve e ontoenes Shein g Phece svonn rot im ot a1 1
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The following discussion is intuitive and mathematically imprecise.
Actually, with a little more sophistication this discussion can be corrected
and gives insight into the Argument Principle (V.3).

If v is smooth then

O ry'()
fy(z—-a) dz=f0 y(yt)—adt

Taking inspiration from calculus one is tempted to write [,(z—a)” Ydx =
log[y(r)—a]l'=}. Since y(1)=7(0), this would always give zero. The diffi-
culty lies in the fact that y(7)—a is complex valued and unless y(1)—a lies
in a region on which a branch of the logarithm can be defined, the above
inspiration turns out to be only so much hot air. In fact if y wraps around
the point a then we cannot define log(y(1) —a) since there is no analytic
branch of the logarithm defined on C— {a}.

Nevertheless there is a correct interpretation of the preceding discus-
sion. If we think of logz =log|z|+iargz as defined then

f(z—a)"dz=log[y(l)—a] —log[v(0)—a]=
{log|y(1) —a|~log|y(0)—al} + i {arg[ v(1)—a] —arg[ y(0) —a] }.

Since the difficulty in defining logz is in choosing the correct value of
argz, we can think of the real part of the last expression as equal to zero.
Since y(1)=v(0) it must be that even with the ambiguity in defining argz,
arg[y(1)—a]—arg[y(0)—a] must equal an integral multiple of 27, and
furthermore this integer counts the number of times y wraps around a.

Let v be a closed rectifiable curve and consider the open set G=C—
{y). Since {y} is compact {z:|z|>R}< G for some sufficiently large R.
This says that G has one, and only one, unbounded component.

4.4 Theorem. Let vy be a closed rectifiable curve in C. Then n(y;a) is
constant for a belonging to a component of G=C— {v). Also, n(y;a)=0 for
a belonging to the unbounded component of G.

Proof. Define f: G—C by f(a)=n(y;a). It will be shown that f is continu-
ous. If this is done then it follows that f(D) is connected for each
component D of G. But since f(G) is contained in the set of integers it
follows that f(D) reduces to a single point. That is, f is constant on D.
To show that f is continuous recall that the components of G are open
(Theorem I1. 2.9). Fix a in G and let r=d(a,{v}). If |a—b| <8< jr then

@)= fB) =5 | [[z=a) '~z =b) '] dz
f (a-b)
} (z-aXz M

dz|

g|u h|
T da |z ]|z b
T

T
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But for |a—b|<jir and z on {y} we have that [z—a|>r>3r and

2= b]>Lr. It follows that |f(a)—f(b)|< 22 ¥(y). So if €>0 is given
wr

then, by choosing § to be smaller than 1r and (7r%)/28V (), we see that f
must be continuous. (Also, see Exercise 2.3.)

Now let U be the unbounded component of G. As was mentioned
before the theorem there is an R >0 such that U>{z:|z|>R}. If €>0
choose a with |a|>R and |z—a|>Q27) '¥(y) uniformly for z on {y};
then |n(y;a)|<e. That is, n(y;@)—0 as a—o0. Since n(y;a) is constant on
U, it must be zero. B

Exercises

1. Prove Proposition 4.3.
2. Give an example of a closed rectifiable curve y in € such that for any
integer k there is a point @ ¢ {y} with a(y;a)=k.
3. Let p(z) be a polynomial of degree n and let R >0 be sufficiently large
so that p never vanishes in {z:|z]> R}. If y(#)= Re", 0 <t <27, show that

p'(2) :

f dz =2min.

y P(2)
4. Fix w=re+0 and let y be a rectifiable path in C— {0} from 1 to w.
Show that there is an integer k such that J z~'dz=logr+if+2mik.

§35. Cauchy’s Theorem and Integral Formula

We have already proved Cauchy’s Theorem for functions analytic 1n a
disk: if G is an open disk then [ f=0 for any analytic function f on G and
any closed rectifiable curve y in G (Proposition 2.15). For which regions G
does this result remain valid? There are regions for which the result is
false. For example, if G=C— {0} and f(z)=z ' then y(1)=¢" for 0= ¢ <
27 gives that [, f=27i. The difficulty with C— {0} is the presence of a hole
(namely {0}). In the next section it will be shown that [ f=0 for every
analytic function f and every closed rectifiable curve y in regions G that
have no “holes.”

In the present section we adopt a different approach. Fix a region G
and an analytic function f on G. Is there a condition on a closed rectifiable
curve y such that /. f=0? The answer is furnished by the index of y with
respect to points outside G. Before presenting this result we need the
following lemma. (This has already been seen in Exercise 2.3.)

5.1 Lemma. Let v be a rectifiable curve and suppose ¢ is a function defined
and continuous on {y}. For each m21 let F, (z)=[,@(w)w—2z)""dw for
z ¢ {v). Then each F, is analytic on C--{vy} and F,(2)=mF, , (2).

Proof. We first claim that each £, is continuous. In fact, this follows in the
same way that we showed that the mdex was continuous (see the proof of
Theorem 4.4). One need only observe that, since {y} s compact, g s
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bounded there; and use the factorization.

1 1 1_1]"’ 1 1
[W_Z W'_aZ

(w—z)m_(w—a)m_ k=1 (W—Z)"Pk (W_a)k_l

. =(z— 1 + l
> ( a)[ (w—2)"(w—a) (w—2)""'(w—a)’

(w—z)(w—a)
The details are left to the reader.
Now fix @ in G=C —{y} and let z € G, z#a. It follows from (5.2) that

53

FAEaa) g0 el
¥ (W—Z)m Y w—z

Since a ¢ {v}, p(W)(w — a)” ¥ is continuous on {y} for each k. By the first
part of this proof (the part left to the reader), each integral on the nght
hand side of (5.3) defines a continuous function of z,z in G. Hence letting
z—>a, (5.3) gives that the limit exists and

F,;,(a)=f——qﬂ)——dw+~-~+ _gi(_vl_dw

(w—a)'"H : (w—a)"'H

= mFm + l(a)' .
5.4 Cauchy’s Integral Formula (First Version). Let G be an open subset of
the plane and f: G— C an analytic function. If v is a closed rectifiable curve
in G such that n(y;w)=0 for all w in C— G, then for a in G~ {v}

n(y;a)f(a)= L Z(—;z;)dz.

2mi z—a
Y

Proof. Define ¢ : G X G—C by ¢(z,w)=[f(2)—f(W)]/(z—w) if z#w and
¢(z,2)=f(z). It follows that ¢ is continuous; and for each w in G,
z—@(z,w) is analytic (Exercise 1). Let H={we€ C:n'(y;w)=0}. Since
n(y;w) is a continuous integer-valued function of w, H is open. Moreover
Hu G=C by the hypothesis.

Define g:C—C by g(2)=/,p(z,w)dw if zeG and g(z)=/,(w—
)" 'f(w)aw if ze H. 1f ze GO H then

fn =1

fy?(z,w)dw=fy -

=f AL dw— f(zyn(y:z)2mi

w -2z

= [ :l(——“l) dw.

Iy -

z—a

Henee g s a well-defined function,
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By Lemma 5.1 g is analytic on C; that is, g is an entire function. But
Theorem 4.4 implies that H contains a neighborhood of co in C . Since f

is bounded on {vy} and zlir?o(w—z)"=0 uniformly for w in {v},
. . f(w)
55 zlLrgo g(2)= zlg& — dw=0.

v

In particular (5.5) implies there is an R >0 such that |g(z)| <! for
|z| = R. Since g is bounded on B(0; R) it follows that g is a bounded entire
function. Hence g is constant by Liouville’s Theorem. But then (5.5) says
that g=0. That is, if @ e G— {y} then

_(lo-f@

zZ—a

f(2) dz
=v[z—adz_f(a)fyz—a'

This proves the theorem. Il

Often there is a need for a more general version of Cauchy’s Integral
Formula that involves more than one curve. For example in dealing with
an annulus one needs a formula involving two curves.

0

5.6 Cauchy’s Integral Formula (Second Version). Ler G be an open subset of
the plane and f: G— C an analytic function. If v,,...,v,, are closed rectifiable
curves in G such that n(y;;w)+--- +n(y,,;w)=0 for all w in C— G, then

Jor ain G—{vy)
f(a)k§ n(y;a)= 2 %mff(Z) dz.
=1 k=1 Ya

zZ—a

Proof. The proof follows the lines of Theorem 5.4. Define g(z,w) as it was
done there and let H={w:n(y;;w)+ - - +n(y,;w)=0}. Now g(z) is
defined as in the proof of (5.4) except that the sum of the integrals over
Yy -+« Y 18 used. The remaining details of the proof are left to the reader.

Though an easy corollary of the preceding theorem, the next result is
very important in the development of the theory of analytic functions.

5.7 Cauchy’s Theorem (First Version). Let G be an open subset of the plane
and f: G—C an analytic function. If y,,...,v,, are closed rectifiable curves in
G such that n(y;;w)+ - -+ +n(y,,;w)=0 for all w in C— G then

éff=0.
A=) N

Proof. Substitute f(z)(z — a) for f in Theorem 5.6. A
Let G={z:R, <|z|<R,} and define curves v, and v, in G by v,(1)=
re's yty=re " for 01 2n, where R« ris 1y Ry If |w| <R,
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n(y;;wy=1=—n(y,; w); if |w| 2 R, then n(y;; w)=n(y,; w)=0. So n(y,;w)
+n(yy,;w)=0for all win C—G.

5.8 Theorem. Let G be an open subset of the plane and f: G—C an analytic
function. If vy,,...,v,, are closed rectifiable curves in G such that n(y;w)
- +n(y,,:w)=0 for all win C— G then for a in G—{y} and k= |

) ﬁ n(yj;a)=k!z 5 f(z (az))k+| dz.

J=1 j=1

Proof. This follows immediately by differentiating both sides of the for-
mula in Theorem 5.6 and applying Lemma 5.1. i

5.9 Corollary. Let G be an open set and f: G—C an analytic function. If v is
a closed rectifiable curve in G such that n(y,w)=0 for all w in C— G then

forain G—{vy}
S an(ra)= 5 2771 f( f(Z)k+l

Cauchy’s Theorem and Integral Formula is the basic result of
complex analysis. With a result that is so fundamental to an entire theory
it is usual in mathematics to seek the outer limits of the theorem’s validity.
Are there other functions that satisfy [ f=0 for all closed curves y? The
answer is no as the following converse to Cauchy’s Theorem shows.

A closed path T is said to be triangular if it is polygonal and has three
sides.

5.10 Morera’s Theorem. Let G be a region and let f: G— C be a continuous
function such that [f=0 for ecery triangular path T in G then f is analytic
in G.

Proof. First observe that f will be shown to be analytic if it can be proved
that f is analytic on each open disk contained in G. Hence, without loss of
generality, we may assume G to be an open disk; suppose G = B(a; R).

Use the hypothesis to prove that f has a primitive. For z in G define
F(2)= [, ,f Fix z, in G; then for any point z in G the hypothesis gives
that F(2)= [, .3/t /iz, /- Hence

PO 1
[

z—2z, z—2zy

20-2]

This gives

Z—2Z2p

F(z)— F(zo) ~ flzo) = J f=f(zo)
o)

j [/( "‘) __/l(:())] (IH'. M
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But by taking absolute values
TEOZIED )| <tro sl
which shows that
fim (ZZ _ ZFO(ZO) =f(z,). W

Exercises

1. Suppose f: G—C is analytic and define ¢:G X G—C by ¢(z,w)=[f(2)
—fW(z—w)~ " if z# w and ¢(z,z) = f'(z). Prove that ¢ is continuous and
for each fixed w, z—q(z,w) is analytic.

2. Give the details of the proof of Theorem 5.6.

3. Let B,=B(*1;3), G=B(0; 3)~(B,UB_). Let y,,7,,v; be curves
whose traces are [z—1|=1, |z+1|=1, and |z|=2, respectively. Give v,,v,,
and vy; orientations such that n(y;: w)+ n(y,; w)+ n(y;;w)=0 for all w in
C—-G.

4. Show that the Integral Formula follows from Cauchy’s Theorem.

5. Let y be a closed rectifiable curve in C and a & {y)}. Show that for n>2
[,(z—a) "dz=0.

6. Let f be analytic on D= B(0; 1) and suppose | f(z)| <1 for |z| <1. Show
|f ) =1

7. Let y(t)=1+¢€" for 0<¢<27. Find | ( ) dz for all positive in-
tegers n.

8. Let G be a region and suppose f,: G—C is analytic for each n> 1.
Suppose that { f,} converges uniformly to a function f: G—>C Show that f
is analytic.

9. Show that if f:C—C is a continuous function such that f is analytic off
[—1,1] then f is an entire function.

10. Use Cauchy’s Integral Formula to prove the Cayley—Hamilton Theo-
rem: If 4 is an n X n matrix over C and f(z)=det(z — 4) is the characteris-
tic polynomial of A then f(A4)=0. (This exercise was taken from a paper
by C'. A. McCarthy, Amer. Math. Monthly, 82 (1975), 390-391).

§6 The homotopic version of Cauchy’s Theorem and simple connectivity

This section presents a condition on a closed curve y such that [ f=0
for an analytic function. This condition is less general but more geometric
than the winding number condition of Theorem 5.7. This condition is also
used to introduce the concept of a simply connected region: in a simply
connected region Cauchy's Theorem is valid for every analytic function
and every closed rectifiable curve. Let us illustrate this condition by
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considering a closed rectifiable curve in a disk, a region where Cauchy’s
Theorem is always valid (Proposition 2.15).

Let G=B(a; R) and let y:[0, 1]->G be a closed rectifiable curve. If
0<t<1and 0<s<1, and we put z=ta+(1—£)y(s); then z lies on the
straight line segment from a to y(s). Hence, z must lie in G. Let v,(s)=ta
+(1=0)y(s) for 0<s<1 and 0=r=<1. So, yo=y and y, is the curve
constantly equal to a; the curves vy, are somewhere in between. We were
able to draw y down to a because there were no holes. If a point inside y
were missing from G (imagine a stick protruding up from the disk with its
base inside y), then as y shrinks it would get caught on the hole and could
not go to the constant curve.

6.1 Definition. Let y,,v,:[0, 1]->G be two closed rectifiable curves ir} a
region G; then vy, is homotopic to v, in G if there is a continuous function
I':[0, 11X[0, 1] G such that

I'(s5,0)=y4(s) and T(s,I)=y,(s) (0<s=<1)
r'0,0)=T(l,r) (0<t=<1)

So if we define v,:[0, 1]>G by v,(s)=T(s,r) then each y, is a closed
curve and they form a continuous family of curves which start at y, and go
to y,. Notice however that there is no requirement that each y, be
rectifiable. In practice when y, and y, are rectifiable (or smooth) each of
the y, will also be rectifiable (or smooth).

If y, is homotopic to vy, in G write y,~7¥,. Actually a notation suph as
Yo~7,(G) should be used because of the role of G. If the range of I' is not
required to be in G then, as we shall see shortly, all curves would t?e
homotopic. However, unless there is the possibility of confusion, we will
only write yo~7v,.

It is easy to show that “~” is an equivalence relation. Clearly any
curve is homotopic to itself. If yy~y, and I': [0, 1]X[0, 1]—G satisfies (6.2)
then define A(s,#)=T(s,1—1) to see that y,~7, Finally, if y,~y, and
y,~7, with T satisfying (6.2) and A:[0, 1]X[0, 1]>G satisfying A(s,0)=

6.2

p————VY0

4 I (%)
0

(72
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v1(s), A(s,1)=7v,(s), and A(0,/)=A(l,7) for all s and ¢; define ®[0, 1] X
[0, 1]l->G by

A(s,2t-1) if s

—

I'(s,2¢ ifo<r<!
@(s,t)={ (5:20) ?

Then @ is continuous and shows that yo~7v,.

6.3 Definition. A set G is convex if given any two points @ and b in G the
line segment joining a and b, [a,b], lies entirely in G. The set G is star
shaped if there is a point @ in G such that for each z in G, the line segment
[a,z] lies entirely in G. Clearly each convex set is star shaped but the
converse is just as clearly false.

We will say that G is a— star shaped if [@,z] < G whenever z € G. If G is
a- star shaped and z and w are points in G then [z,a,w] is a polygon in G
connecting z and w. Hence, each star shaped set is connected.

6.4 Proposition. Let G be an open set which is a— star shaped. If y, is the

curve which is constantly equal to a then every closed rectifiable curve in G is
homotopic to ¥,

Proof. Let v, be a closed rectifiable curve in G and put I'(s, )=ty (s)+
(1 —1)a. Because G is a- star shaped, I'(s,t) e G for 0 < s,z < 1. It is easy to
see that T satisfies (6.2). H

The situation in which a curve is homotopic to a constant curve is one

that we will often encounter. Hence it is convenient to introduce some new
terminology.

6.5 Definition. If y is a closed rectifiable curve in G then y is homotopic to
zero (y~0) if y is homotopic to a constant curve.

6.6 Cauchy’s Theorem (Second Version). If f: G C is an analytic function
and vy is a closed rectifiable curve in G such that y~0, then

Lf=0

This version of Cauchy’s Theorem would follow immediately from the
first version if it could be shown that n(y;w)=0 for all w in C— G
whenever y~0. This can be done. A plausible argument proceeds as
follows.

Let y, =7y and let y, be a constant curve such that y, ~y,. Let I satisfy
(6.2) and define h(r)= n(y,;w), where vy,(s)=T(s,t) for 0<s,¢ <1 and w is
fixed in C— G. Now show that 4 is continuous on [0, 1]. Since 4 is integer
valued and #(0)=0 it must be that 2(r)=0. In particular, n(y; w)=0 for all
winC-¢G.

The only point of difficulty with this argument is that for 0<s <1 it
may be that y, is not rectifiable.

As was stated after Definition 6.1, in practice each of the curves vy, will
not only be rectifrable but also smooth. So there v justification in making
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this assumption and providing the details to transform the preceding
paragraph into a legitimate proof (Exercise 9). Indeed, in a course de-
signed for physicists and engineers this is probably preferable. But this is
not desirable for the training of mathematicians.

The statement of a theorem is not as important as its proof. Proofs are
important in mathematics for several reasons, not the least of which is that
a proof deepens our insight into the meaning of the theorems and gives a
natural delineation of the extent of the theorem’s validity. Most important
for the education of a mathematician, it is essential to examine other
proofs because they reveal methods.

A good method is worth a thousand theorems. Not only is this
statement valid as a value judgement, but also in a literal sense. An
important method can be reused in other situations to obtain further
results.

With this in mind a complete proof of Theorem 6.6 will be presented.
In fact, we will prove a somewhat more general fact since the proof of this
new result necessitates only a little more effort than the proof that
n(y;w)=0 for w in C — G whenever y~0. In fact, the proof of the next
result more clearly reveals the usefulness of the method.

6.7 Cauchy’s Theorem (Third Version). If v, and vy, are two closed rectifiable
curves in G and yy~, then
[r=]7

Yo Al

for every function f analytic on G.

Before proceeding let us consider a special case. Suppose I satisfies (6.2)
and also suppose T has continuous second partial derivatives. Hence

o’ &’T
asot  otos

throughout the square 72 = [0, 1]x [0, 1]. Define

1

8() = jf(F(s, 0 s, ds

0

then g(0) = [,, f and g(1) = f,, f- By Leibniz’s rule g has a continuous
derivative,

¢

gr) = “f’(l‘(s, Ty e, & F] ds
s cte's

But
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hence

g'(t) = A0, 1)) 3;; (1, ) —f(TQ, 1) %I; ©, 1.

Since I'(1, 1) = T(0, ¢) for all ¢t we get g’(r) = O for all ¢. So g is a constant;
in particular [, /= [,, /-
Proof of Theorem 6.7. Let T': 1 G satisfy (6.2). Since I is continuous

and I? is compact, I' is uniformly continuous and T'(/?) is a compact
subset of G. Thus

r = dL(I%), C—G) > 0
and there is an integer n such that if (s—s")? +(¢—t")* < 4/n” then

T, =T )] < r.

ij=I’<j,k>,O <jk<n

Let

n n

S [ ]k ke
i n n n’ n

for 0 < j, k < n—1. Since the diameter of the square J is V2 , it follows
n

that T'(J;,) < B(Z;, r). So if we let P;, be the closed polygon [Z, Zs 1,15

Zii 1.k Zjk+ 10 Zii]; then, because disks are convex, Py < B(Z, r). But

from Proposition 2.15 it is known that

6.8 f =0

Py

and put

for any function f analytic in G.

It can now be shown that [, /= [, f by going up the ladder we have
constructed, one rung at a time. That is, let Q, be the closed polygon {Z, ;,

ZiiorZyl- We will show that [, f= [o f=fo.f =" = [o. /=], ]
(one rung at a time!). To see that [, f'= [, f observe that if o;(¢) = () for

J—sts—
n n

then cr,+[Z j+1,00 Zjo] (the + indicating that o; is to be followed by the
polygon) is a closed rectifiable curve in the disk B(Z;q; r) < G. Hence

fr=- ] r= [ r
a4 [Zs41.0. Z50) [Z40,2Z541.0]

Adding both sides of this equation for 0 < j < nyields {,, f = [o,/. Similarly
jrlf:: ."QI-/:
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= ion (6.8); this gives
To see that [ 0, f=1 Ot f use equation (6.8); g

69 0=n_i: | s

J= Pjx

Z,41,k+1

\\‘ Zj+2'k+1
4

Zﬁhk\\
z

Z; i

it2,k

Zy

F

However, notice that the integral fpjk f includes the integral over [Z;, s,
Z ;.1 +1), which is the negative of the integral over [Z; 1 k41, Zjr1,4)s
which is part of the integral fp,,,, f. Also,

ZO,k = F<O, If) = F(Lk) = Zl,k
n n

so that [Zo 4+ 1, Zo.ld = —[Z1 Zy,x+1]- Hence, taking these cancellations
into consideration, equation (6.9) becomes
o=fr- [ s
Qx Qr +1

This completes the proof of the theorem. Il

The second version of Cauchy’s Theorem immediately follows by
letting y, be a constant path in (6.7).

6.10 Corollary. If v is a closed rectifiable curve in G such that y~0 then
n(y;w)=0 for all w in C—G.

The converse of the above corollary is not valid. That is, there is a
closed rectifiable curve y in a region G such that n(y;w)=0 for all w in
€ — G but vy is not homotopic to a constant curve (Exercise 8).

If G is an open set and y, and y, are closed rectifiable curves in G then
n(yq; @)= n(y,; a) for each a in C— G provided y,~7v,(G). Let yo(t)=e*™
and y,(f)=e 2™ for 0<7=< 1. Then n(y,:0)=1 and n(y,:0)= —1 so that
Yo and y, are not homotopic in C - {0}.

6.11 Definition. If v,.v,:]0, 1]+ are two rectifiable curves in  such that
YolO) = y,(0)y=a and y,()=y,(1)=b then vy, and y, are fixed-end-point
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homotopic (FEP homotopic) if there is a continuous map I':/2>G such
that

6.12 I'(5,0) = yols)  T'(s, 1) = y,(s)
I'O,t)=a I'(l,f)=0>

forO0<s, ¢t <1,

Again the relation of FEP homotopic is an equivalence relationship on
curves from one given point to another (Exercise 3).

Notice that if y, and y, are rectifiable curves from a to b then y,—y;
is a closed rectifiable curve. Suppose I' satisfies (6.12) and define y: [0, 1] > G
by v(s) = y(3s) for 0 < s <4; y(s) =b for } <s < %; and y(s) = v,
(3—-3s)for % < s < 1. We will show that y ~ 0. In fact, define A: I* — G by

I'Gs(1-1),1) if 0<s<i
A(s, ) = (I'(1—1,3s—14+2t-3s1) if L <s<3%
y((3=3)(1—-1) if $<s<1.
Although this formula may appear mysterious it can easily be understood
by seeing that for a given value of ¢, A is the restriction of I" to the boundary

of the square [0, 1 —#] x [t, 1] (see the figure). It is left to the reader to check
that A shows y ~ 0,

0 + |
l—t

Hence, for f analytic on G the second version of Cauchy’s Theorem gives
o=fr={r-Jr
b4 Yo 71

This is summarized in the following.

6.13 Independence of Path Theorem. If vy, and y, are two rectifiable curves
in G from a to b and vy, and y, are FEP homotopic then
f=17
'[Y() ./;I
Jor any function f analytic in G.

Those regions G for which the integral of an analytic function around a
closed curve is always zero can be characterized.

6.14 Definition. An open set ¢ is simply connected if G 1s connected and
every closed curve in G s homotopie to zero.
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6.15 Cauchy’s Theorem (Fourth Version). If G is simply connected then
[,f=0 for every closed rectifiable curve and every analytic function f.

Let us now take a few moments to digest the concept of simple connected-
ness. Clearly every star shaped region is simply connected. Also, examine the
complement of the spiral r = 6. That is, let G = C—{6e®: 0 < 6 < w};
then G is simply connected. In fact, it is easily seen that G is open and
connected. If one argues in an intuitive way it is not difficult to become
convinced that every curve in G is homotopic to zero. A rigorous proof will
be postponed until we have proved the following: A region G is simply
connected iff C, — G, its complement in the extended plane, is connected in C.,,.
This will not be proved until Chapter VIII. If this criterion is applied to the
region G above then G is simply connected since C,—G consists of the
spiral r = # and the point at infinity.

Notice that for G = C—-{0}, C—G = {0} is connected but C,—G =
{0, o0} is not. Also, the domain of the principal branch of the logarithm is
simply connected.

It was shown earlier in this chapter (Corollary 1.22) that if an analytic
function f has a primitive in a region G then the integral of f around every
closed rectifiable curve in G is zero. The next result should not be too sur-
prising in light of this.

6.16 Corollary. If G is simply connected and f: G— C is analytic in G then f
has a primitive in G.

Proof. Fix a point a in G and let y,, ¥, be any two rectifiable curves in G
from a to a point z in G. (Since G is open and connected there is always a
path from a to any other point of G.) Then, by Theorem 6.15, 0 = |,, _,,
=1, f—j'n f (where y; —v, is the curve which goes from a to z along y,
and then back to a along —+v,). Hence we can get a well defined function
F: G — C by setting F(z) = [,f where y is any rectifiable curve from a to z.
We claim that F is a primitive of f.

If z,eGand r > 0 is such that B(z,; r) < G, then let y be a path from
ato zy. Forzin B(zy; r) lety, = y+[z,, z]; that is, y, is the path y followed
by the straight line segment from z, to z. Hence

F@)—F(zg) _ 1 f[ 1

z—2, (z-2z0)

Now proceed as in the proof of Morera’s Theorem to show that

F'(z)=f(z,). A

Perhaps a somewhat less expected consequence of simple connectedness
is the fact that a branch of log f(z) where f is analytic and never vanishes,
can be defined on a simply connected region. Nevertheless this is a dircct
consequence of the preceding corollary.

6.17 Corollary. Lcr G be simpl connected and let [:¢G » C be an unalytic
function such that {(z) # O for amy = in . Then there s an analvuie function
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8:G—C such that f(z)=expg(z). If zy € G and e™°=f(z,), we may choose g
such that g(zg)= wy.

’

Proof. Since f never vanishes,7 is analytic on G; so, by the preceding
corollary, it must have a primitive g,. If A(z) = exp g,(z) then A is analytic

and never vanishes. So, " is analytic and its derivative is

h(2)f"(z) = h'(z) f(2)
h(z)?

But 4" = gih so that Af' —fh' = 0. Hence f/h is a constant ¢ for all z in G.
That is f(z) = c exp g,(z) = exp [g,(z) +¢’] for some ¢’. By letting g(z) =
g:(z)+c'+2=ik for an appropriate k, g(zo) = w, and the theorem is
proved. @l

Let us emphasize that the hypothesis of simple connectedness is a topo-
logical one and this was used to obtain some basic results of analysis. Not
only are these last three theorems (6.15, 6.16, and 6.17) consequences of
simple connectivity, but they are equivalent to it. It will be shown in
Chapter VIII that if a region G has the conclusion of each of these
theorems satisfied for every function analytic on G, then G must be simply
connected.

We close this section with a definition.

6.18 Definition. If G is an open set then y is homologous to zero, in symbols
vy=0, if n(y;w)=0for allwin C—G.

Using this notation, Corollary 6.10 says that y~0 implies y~0. This
result appears in Algebraic Topology when it is shown that the first
homology group of a space is isomorphic to the abelianization of the
fundamental group. In fact, those familiar with homology theory will
recognize in the proof of Theorem 6.7 the elements of simplicial approxi-
mation,

Exercises

1. Let G be a region and let o, 0,: [0, 1] > G be the constant curves
o,(f) = a, 0,(f) = b. Show that if y is closed rectifiable curve in G and y ~ o,
then y ~ o,. (Hint: connect @ and b by a curve.)

2. Show that if we remove the requirement “I'(0, {) = I'(1, ) for all £’
from Definition 6.1 then the curve yo(f) = €**, 0 < ¢ < 1, is homotopic to
the constant curve y,(¢) = 1 in the region G = C—{0}.

3. Let € = all rectifiable curves in G joining a to b and show that Definition
6.11 gives an equivalence relation on €.

4. Let G = C— {0} and show that cvery closed curve in G is homotopic
to a closed curve whose trace is contained in {z: |z] = 1}.
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d i
5. Evaluate the integral J 2 ®_ where ¥(6) = 2|cos 28] e” for 0 < 8 < 2m.

z¢+1

¥
6. Let y(6) = 6 for 0 <6 <2m and y(6) = 47—0 for 2w < 0 < 4m.
valuate 22+11'2 .

7. Let f(2) = [(z—3—i) (=1 —3)-z—1—2)-(z=3—0]"* and let y be the
polygon [0, 2, 2+2i, 2, 0]. Find {, f.
8. Let G = C—{a, b}, a # b, and let y be the curve in the figure below.

(a) Show that n(y; a) = n(y; b) = 0.

(b) Convince yourself that y is not homotopic to zero. (Notice that the
word is “convince” and not “prove”. Can you prove it?) Notice that this
example shows that it is possible to have a closed curve y in a region such
that n(y; z) = O for all z not in G without y being homotopic to zero. That
is, the converse to Corollary 6.10 is false.

9. Let G be a region and let y, and v, be two closed smooth curves n G
Suppose y,~7y, and T satisfies (6.2). Also suppose that y,(s)=I(s,?) is
smooth for each 7. If we C— G define h(t)=n(y,;w) and show that &:
[0, 1]>Z is continuous. 4

z

10. Find all possible values of f 1.2
v

curve in C not passing_Ehrough *1.

11. Evaluate f —ez—_f——dz where y is one of the curves depicted below.

Y V4
(Justify your answer.)

where y is any closed rectifiable
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§7. Counting zeros; the Open Mapping Theorem

In this section some applications of Cauchy’s Integral Theorem are
given. It is shown how to count the number of zeros inside a curve; also,
using some information on the existence of roots of an analytic equation,
it will be proved that a non-constant analytic function on a region maps
open sets onto open sets.

In section 3 it was shown that if an analytic function fhad a zeroat z = a
we could write f(z) = (z—a)"g(z) where g is analytic and g(@) # 0. Suppose
G is a region and let f be analytic in G with zeros ata,, . . ., a,,. (Where some
of the q, may be repeated according to the multiplicity of the zero.) So we
can write f(z) = (z—a;) (z—a,) . . . (z—a,,)g(z) where g is analytic on G and
g(z) # 0 for any z in G. Applying the formula for differentiating a product
gives
'@ _ 1 + 1 1 g'(2)

o ——+
@ z-a, z-a, z-a, g@)

7.1

for z # a,,...,a, Now that this is done, the proof of the following
theorem is straightforward.

7.2 Theorem. Let G be a region and let f be an analytic function on G with
zeros ay, . . . , ay, (repeated according to multiplicity). If v is a closed rectifiable
curve in G which does not pass through any point a, and if v = 0 then

1 {f@, _ < i
~ 21”.'[ 70 dz k; nly; a)

Proof. If g(z) # O for any z in G then g'(z)/g(z) is analytic in G; since y = 0,

Cauchy’s Theorem gives J‘&((—z)) dz = 0. So, using (7.1) and the definition of
gz

b
the index, the proof of the theorem is finished. [l

7.3 Corollary. Let f, G, and vy be as in the preceding theorem except that
a,,...,a, are the points in G that satisfy the equation f(z)=a; then
11 r@
27 | f(2)—
Y

dz =Y n(y;a)
k=1

. . 2z+1
As an illustration, let us calculate f @ dz where y is the circle
z°+z41

v
|z| = 2. Since the denominator of the integrand factors into (z — w,) (z — w,),
where w,; and w, are the non-real cubic roots of 1, Theorem 7.2 gives

2z+1
3 +h 2 == Qi
41

Y
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As another illustration, let y:[0, 1] G be a closed rectifiable curve in
C, y=0. Suppose that f is analytic in G. Then fey=g is a closed rectifiable
curve in C (Exercise 1). Suppose that «a is some complex number with
a¢ {o}=f({y}), and let us calculate n(o;a). We get

o «) = —IJ dw

2mi | w—a
_ 1 (S,
2mi ) f(2)—«

I
[Nk

n(y; a)

1

where g, are the points in G with f(a,)= «. (To show the second equality
above takes a little effort, although for ¥ smooth it is easy. The details are
left to the reader.)

Note. It may be that there are infinitely many points in G that satisfy the
equation f(z)=a. However, from what we have proved, this sequence
must converge to the boundary of G. It follows that n(y;z)0 for at most
a finite number of solutions of f(z)=a. (See Exercise 2.)

Now if B in C— {0} belongs to the same component of C— {¢} as does
a, then n(o;a)=n(o; B); or,

Y nly; zl@)) = Y nly; z4B)

k J

where z; (@) and z;( B) are the points in G that satisfy f(z)=a and f(z)=§
respectively. If we had chosen y so that n(y;z (a))=1 for each k, we
would have that f(G) contains the component of C— f({y}) that contains
a. We would also have some information about the number of solutions of
f(z)=B. This procedure is used to prove the following result which, in
addition to being of interest in itself, will yield the Open Mapping
Theorem as a consequence.

7.4 Theorem. Suppose f is analytic in B(a; R) and let « = f(a). If f(2) — o has
a zero of order m at z = a then there is an € > 0 and 8 > 0 such that for
[ —~a| < 8, the equation f(2) = L has exactly m simple roots in B(a; €).

A simple root of f(z) = (s a zero of f(2) —  of multiplicity 1. Notice that
this thecorem says that f(B(a: <)) > B(x; o). Also, the condition that f(z) —«
have a zero of finite multiplicity guarantees that /s not constant, -

————— - T
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Proof of Theorem. Since the zeros of an analytic function are isolated we
can choose € > 0 such that € < R, f(z) = « has no solutions with 0 <
|z—a| < 2¢ and f'(z) # 0 if 0 < |z—a] < 2¢. (If m = 2 then f'(a) = 0.)
Let v(¢) = a+eexp (2nit), 0 <t < 1, and put o = foy. Now « ¢ {5}; so
there is a 8 > 0 such that B(x; 8) N {o} = []. Thus, B(«; 8) is contained in
the same component of C— {¢}; that is, |« —{| < § implies n(o; «) = n(o;
H = Zp: n(y; z(£)). But since n(y; z) must be either zero or one, we have that
k=1

there are exactly m solutions to the equation f(z) = { inside B(a; ¢). Since
S(2) # 0for 0 < |z—a| < ¢, each of these roots (for { # «) must be simple
(Exercise 3). H

7.5 Open Mapping Theorem. Let G be a region and suppose that f is a non
constant analytic function on G. Then for any open set U in G, f(U) is open.

Proof. If U < G is open, then we will have shown that f(U) is open if we
can show that for each a in U there is a 8 > 0 such that B(x; §) < f(U),
where « = f(4). But only part of the strength of the preceding theorem is
needed to find an € > 0 and a 8 > 0 such that B(u; ¢) = U and f(B(a; ¢)) ©
B(x;5). B

If X and Q are metric spaces and f: X — Q has the property that f(U)
is open in £ whenever U is open in X, then fis called an open map. If fis a
one-one and onto map then we can define the inverse map f~': Q - X
by f~'(w) = x where f(x) = w. It follows that £~ ! is continuous exactly
when f is open; in fact, for U < X, (f ") }(U) = f(U).

7.6 Corollary. Suppose f: G — C is one-one, analytic and f(G) = Q. Then
7 Q> Cis anaiytic and (f~1)'(w) = [f'(2)]"" where w = f(2).

Proof. By the Open Mapping Theorem, f~! is continuous and Q is open.
Since z = f7!(f(2)) for each z € Q, the result follows from Proposition III.
220.1

Exercises

1. Show that if f: G—C is analytic and y is a rectifiable curve in G then Sfoy
is also a rectifiable curve. (First assume G is a disk.)

2. Let G be open and suppose that vy is a closed rectifiable curve in G such
that y~0. Set r=d({y}.9G) and H={z ¢ C:n(y;z)=0}. (a) Show that
{z:d(z2,dG)< ; r}< H. (b) Use part (a) to show that if f: G—C is analytic
then f(z)=a has at most a finite number of solutions z such that
n(y:z)y#0.

3. Let f be analytic in B(a; R) and suppose that f(a) = 0. Show that a is a
zero of multiplicity m iff £/ D(a) .. = f(@) = 0 and f™(a) # 0.
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4. Suppose that f: G — C is analytic and one-one; show that f'(z) # 0 for
any zin G.

5. Let X and Q be metric spaces and suppose that f/: X — Q is one-one and
onto. Show that f is an open map iff f is a closed map. (A function f'is a
closed map if it takes closed sets onto closed sets.)

6. Let P: C — R be defined by P(z) = Re z; show that P is an open map
but is not a closed map. (Hint: Consider the set F = {z: Im z = (Re z) ™"
and Re z # 0}.)

7. Use Theorem 7.2 to give another proof of the Fundamental Theorem of
Algebra.

§8. Goursat’s Theorem

Most modern books define an analytic function as one which is differen-
tiable on an open set (not assuming the continuity of the derivative). In this
section it is shown that this definition is the same as ours.

Goursat’s Theorem. Let G be an open set and let f: G — C be a differentiable
Sfunction; then f'is analytic on G.

Proof. We need only show that f” is continuous on each open disk contained
in G; so, we may assume that G is itself an open disk. It will be shown that
£ is analytic by an application of Morera’s Theorem (5.7). That is, we must
show that [ f = O for each triangular path T in G.

Let T = [a, b, ¢, a] and let A be the closed set formed by T and its inside.
Notice that T = 8A. Now using the midpoints of the sides of A form four
triangles A, A,, A;, A, inside A and, by giving the boundaries appropriate

¢

e

N

> - b

a

directions, we have that each T; = 9A; is a triangle path and

4
8.1 [r=% [r
T =14
Among these four paths there is one, call it 7", such that |fr, f] = |fr,/]
forj = 1,2, 3, 4. Note that the length of each T, (perimeter of A ) —denoted
by AT)—is 4/(T). Also diam T, = } diam T finally, using (8.1)

=] [ A

[EB]
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Now perform the same process on T, getting a triangle T with the
analogous properties. By induction we get a sequence {T™?} of closed tri-
angular paths such that if A® is the inside of T™ along with T™ then;

8.2 AD > AP 5

8.3 fl=4 fl;
[ s=4] | /I

8.4 AT™+V) = 3AT™);

8.5 diam A®*D = 1 diam A™,

These equations imply:

=1 ] 1

T Tem
8.7 AT™) = 3¢ where ¢ = AT);
8.8 diam A® = (3)"d where d = diam A.

Since each A™ is closed, (8.2) and (8.8) allow us to apply Cantor’s
Theorem (I1. 46), and get that () A®™ consists of a single point z,,.
n=|

Let ¢ > O; since f has a derivative at z, we can find a § > 0 such that
B(zy; 8) < G and

[(2)—f(z0)

Z2—2Zg

= f(zo)| < ¢

whenever 0 < |z—z,| < 8. Alternately,

8.9 ) —fzo)=F(20) (= 20)] < € |22

whenever |z—zo] < 8. Choose n such that diam A®™ = (3)"d < 8. Since

zo € A™ this gives A™ < B(z,; 8). Now Cauchy’s Theorem implies that
0 = frwm dz = [7m z dz. Hence

| [ 7] =| [ r@-fz)-1@o @-zo 2

T T

A

¢ [ lz=zol ldz|
(™

A

e [diam A™) [A(T™)]
«d(})

]
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But using (8.6) this gives

| l 1| < #reaiiy = cat.

Since ¢ was arbitrary and d and ¢ are fixed, [r f=0.H

Complex Integration

Chapter 'V

Singularities

In this chapter functions which are analytic in a punctured disk (an open
disk with the center removed) are examined. From information about the
behavior of the function near the center of the disk, a number of interesting
and useful results will be derived. In particular, we will use these results to
evaluate certain definite integrals over the real line which cannot be evaluated
by the methods of calculus.

§1. Classification of singularities

This section begins by studying the best behaved singularity—the
removable kind.

1.1 Definition. A function f has an isolated singularity at z=a if there is an
R >0 such that f is defined and analytic in B(a;R)—{a} but not in
B (a; R). The point a is called a removable singularity if there is an analytic
function g: B(a; R)—C such that g(z)=f(z) for 0<|z—a|<R.

} sinz 1 1 . . .\
The functions —— , —, and exp — all have isolated singularities at z = 0.
z 'z z

sin z . . . .
However, only —— has a removable singularity (see Exercise 1). It is left to
z

the reader to see that the other two functions do not have removable
singularities.

How can we determine when a singularity is removable ? Since the function
has an analytic extension to B(a; R), {,f = 0 for any closed curve in the
punctured disk; but this may be difficult to apply. Also it must happen that
lim f(z) exists. This is easier to verify, but a much weaker criterion is

Z—=a

available.

1.2 Theorem. If f has an isolated singularity at a then the point z = a is a
removable singularity iff

lim@z—-a)f(z) =0
Proof. Suppose f is analytic in {z: 0 < |z—a] < R}, and define g(z) =
(z—a)f(z) for z # a and g(a) = 0. Suppose lim (z—a)f(z) = 0; then g is

z—a

clearly a continuous function. If we can show that g is analytic then it follows
that a is a removable singularity. In fact, if g is analytic we have g(z) =
(z—a)h(z) for some analytic function detined on B(a: R) because g(a) = 0
(1V. 3.9). But then /i(z) and f(z) must agree for 0 < |z—a] < R, so that a is,
by dcefinition, a removable singularity.

101
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To show that g is analytic we apply Morera’s Theorem. Let T be a
triangle in B(a; R) and let A be the inside of T together with 7. If a ¢ A then
T~0in {z: 0 < |z—a| < R} and so, f{rg = 0 by Cauchy’s Theorem. If a
is a vertex of T then we have T = [a, b, ¢, a]. Let xe[a, b] and y €[c, d] and

[4

b

a X

form the triangle T, = [a, x, y, a]. If P is the polygon [x, .b, ¢ ¥, x] the.n
frg=Jr.g+frg = Jr, g since P~0 in the punctured disk. Since g is
continuous and g(a) = 0, for any € > 0 x and y can be chosen such that
|g(z)] < ¢/ for any z on T,, where ¢ is the length of T. Hence |frg| =
fr, gl < e; since e was arbitrary we have frg= O..

IfaeAand T = [x, y, z, x] then consider the triangles T; = [x, v, a, ],
T, =y, z, a, yl, T3 = [z, x, a, z]. From the preceding paragraph fr, g = 0

Z

X ¥

forj=1,2 3and so, frg = fr,g+fr.e+[r,g =0 Since this exhausts all
possibilities, g must be analytic by Morera’s Theorem. Since the converse is
obvious, the proof of the theorem is complete. ll

The preceding theorem points out another stark difference betwc.ten
functions of a real variable and functions of a complex variable. The function
F(x) = |x|, xe R, is not differentiable because it has a “corner’? at x = 0.
Such a situation does not occur in the complex case. For a function to have
an honest singularity (i.e., a non-removable one) the function must behave
badly in the vicinity of the point. That is, either L2 bclcomcs infinite as .:
ncars the point (and does so at lcast as quickly as (z —a) )., or 1 f(2)| doesn’t
have any limit as = »a.
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1.3 Definition. If z = a is an isolated singularity of f then a is a pole of f
if lim | f(z)| = co. That is, for any M > 0 there is a number ¢ > 0 such that

[f(2)] = M whenever 0 < |z—a| < e If an isolated singularity is neither a
pole nor a removable singularity it is called an essential singularity.

It is easy to see that (z—a)™™ has a pole at z = a for m > 1. Also, it is
not difficult to see that although z = 0 is an isolated singularity of exp (z 1),
it is neither a pole nor a removable singularity; hence it is an essential singu-
larity.

Suppose that fhas a pole at z = a; it follows that [ f(z)] ! has a removable
singularity at z = a. Hence, h(z) = [f(z)]"! for z # a and h(a) = 0 is
analytic in B(a; R) for some R > 0. However, since h(a) = 0 it follows by
Corollary IV. 3.9 that h(z) = (z—a)™h,(z) for some analytic function 4, with
hi(a) # 0 and some integer m > 1. But this gives that (z— a)"f(z) = [h,(2)] "}
has a removable singularity at z = a. This is summarized as follows.

1.4 Proposition. If G is a region with a in G and if f is analytic on G— {a}
with a pole at z = a then there is a positive integer m and an analytic function
g: G — C such that

8(2)

(z—=a)"”

1.5 ) =

1.6 Definition. If f has a pole at z = a and m is the smallest positive integer
such that f(z) (z—a)™ has a removable singularity at z = q then f has a pole
of order m at z = a.

Notice tl}%t if m is the order of the pole at z = @ and g is chosen to
satisfy (1.5) then g(a) # 0. (Why?)

Let f'have a pole of order m at z = a and put f(z) = g(z) (z—a)~™. Since
g is analytic in a disk B(a; R) it has a power series expansion about a. Let

g82) = A+ A4, z—a)+ -+ A z—a)" " ' +(z—a)" Zo az—-a).

k=

Hence

Am . Al
1.7 f) = oar b g T8O

where g, is analytic in B(a; R) and 4,, # 0.

1.8 Definition. If f has a pole of order m at z = a and f satisfies (1.7) then
An(z—a)™"+ -+ A (z—a)" " is called the singular part of f at z = a.

As an example consider a rational function r(z) = p(z)/q(z), where
p(z) and g(c) are polynomials without common factors. That is, they have
no common zeros; and conscquently the poles of r(z) are exactly the zeros of
q(z). The order of each pole of r(z) is the order of the zero of ¢(z). Suppose
q(a) = 0 and let S(z) be the singular part of r(z) at «. Then r(z)—S(z) =
Fi(2) and ry(2) is a rational function whose poles are also poles of r(z). More-
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over, it is not difficult to see that the singular part of r,(z) at any of its poles
is also the smgular part of r(z) at that pole. Using induction we arrive at the
following: if a;," - -, a, are the poles of r(z) and S;(z) is the singular part of
r(z) atz = q; then

1.9 r(z) = Z S(2)+ P(2)

where P(2) is a rational function without poles. But, by the Fundamental
Theorem of Algebra, a rational function without poles is a polynomial! So
P(z) is a polynomial and (1.9) is nothing else but the expansion of a rational
function by partial fractions.

Is this expansion by partial fractions (1.9) peculiar only to rational
functions? Certainly it is if we require P(z) in (1.9) to be a polynomial. But
if we allow P(z) to be any analytic function in a region G, then (1.9) is valid
for any function r(z) analytic in G except for a finite number of poles.
Suppose we have a function f analytic in G except for infinitely many poles
(e.g., f(z) = (cos z)'); can we get an analogue of (1.9) where we replace the
finite sum by an infinite sum? The answer to this is yes and is contained in
Mittag-Leffler’s Theorem which will be proved in Chapter VII..

There is an analogue of the singular part which is valid for essential
singularities. Actually we will do more than this as we will investigate
functions which are analytic in an annulus. But first, a few definitions.

1.10 Definition. If {z n=20, +1, +2,...} is a doubly inﬁnite sequence of

complex numbers, Z z, is absolutely convergent if both Z z, and Z zZ_,

n= n0 n=1

are absolutely convergent. In this case Z Z, = Zz_,,+ Z z,. If u, is a

function on a set S forn = 0, +1,... and Z u,(s) is absolutely convergent

for each s e S, then the convergence is umform over S if both Z u, and Z
n=0 =
u_, converge uniformly on S.

The reason we are limiting ourselves to absolute convergence is that this
is the type of convergence we will be most concerned with, One can define

convergence of Z z,, but the definition is not that the partial sums Z z,
n=-m
. . e .
converge. In fact, the series ) - satisfies this criterion but it is clearly not a
n#®0 N
series we wish to have convergent. On the other hand, if Z z, is absolutely

- 0

m
convergent with sum z then it readily follows that z = lim Y z.

If0 < R, < R, < o and a is any complex number, define ann (a; R,
R,) = {z: R, < |z—a] < R,}. Notice that ann (a; 0, R;) is a punctured
disk.
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1.11 Laurent Series Development. Let f be analytic in the annulus ann (a; R,,
R,). Then

00

A= ¥ az-ar

n=-—a

where the convergence is absolute and uniform over ann (a; ry, r;)” if Ry <
ry < ry, < R,. Also the coefficients a, are given by the farmula

1.12 f fle)
“ mi ) - ay i ¥

where vy is the circle |z—a| = r for any r, R, < r < R,. Moreover, this series
is unique.

Proof If Ry < ry < ry, < Ryand y,, y, are the circles |z—a| = ry, [z—a] =
r, respectively, then y, ~ v, in ann (a; R;, R;). By Cauchy’s Theorem we
have that for any function g analytic in ann (a; R;, R,), ,, g ={,,& In
particular the integral appearing in (1.12) is independent of r so that for each
integer n, a, is a constant. Moreover, f,: B(a; R,) — C given by the formula

1
113 £ =5 £ (_'f)z d
|w—al=r2

s

where |z —.a| <ry, Ry <ry<R,, is a well defined function. Also, by Lemma
1V.5.1 f, is analytic in B(a;R,). Similarly, if G={z:|z—a|>R,} then
fi:6>C defir@ by

114 &) = - o o)

w—2

L

|w—al=ry

where [z—a| > r, and R; < r; < R,, is analytic in G.

If R, < |z—a| < R, let r; and r, be chosen so that R, < r; < |z—q| <
r, < Ry. Let y,(¢) = a+re*and y,(t) = a+r,e”, 0 < t < 2m. Also choose
a straight line segment A going from a point on y, radially to v, which
misses z. Since y; ~ y, in ann (a; R,, R,) we have that the closed curve
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y = y,—A—y;+ A is homotopic to zero. Also n(y,, z) = 1 and n(y,,2) =0
gives, by Cauchy’s Integral Formula, that

16) = 5 [ £

27i | w—2z

_—_iJ\f(W) dw—ij@dw
27 | w—2z 27 f w—2z

= f:(2D)+/1(2).

The plan now is to expand f; and f; in power series (f; having negative
powers of (z—a)); then adding them together will give the Laurent series
development of f(z). Since f, is analytic in the disk B(a; R,) it has a power
series expansion about a. Using Lemma IV. 5.1 to calculate i (a),

K

L15 f2) = Zo a,(z—a)

where the coefficients q, are given by (1.12).
Now define g(z) for

1 1
0 —b = + -1,
<l < 5 oye® f,(a )

so z = 0 is an isolated singularity. We claim that z = 0 is a removable
singularity. In fact, if r > R, then let p(z) = d(z, C) where C is the circle
{w: |w—a| = r}; also put M = max {|f(w)|: we C}. Then for |z—a| > r

Mr
|fi(2)] < ;(7) .

But lim p(z) = oo; so that

Z—»

1
lim g(z) = limf,(a + ;) =0.
z—0

z—+0

Hence, if we define g(0) = O then g is analytic in B(0; 1/R,). Let
1.16 g(z) = ) Bz"
n=1

be its power series expansion about 0. It is easy to show that this gives
]

1.17 i)=Y a_,z—a)™"

n=1

where a_, is defined by (1.12) (the details are to be furnished by the reader
in Exercise 3). Also, by the convergence properties of (1.15) and (1.17), Y

-
a,(z — a)" converges absolutely and uniformly on properly smaller annuli.
The uniqueness of this expansion can be demonstrated by showing that

0

if f(z)= 2 a,(z-a) converges absolutely and uniformly on proper

annuli then the coefficients @, must be given by the formula (1.12). B
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We now use the Laurent Expansion to classify isolated singularities.

o0
1.18 Corollary. Let z = a be an isolated singularity of f and let f(z) = ).
a,(z—a)" be its Laurent Expansion in ann (a; 0, R). Then: -
(a) z = a is a removable singularity iff a, = 0 for n < —1;
(b) z = ais a pole of order miffa_,, # 0 and a, = 0 for n < —(m+1);
(c) z = a is an essential singularity iff a, # 0O for infinitely many negative
integers n.

Proof. (a) If a, = 0 for n < —1 then let g(z) be defined in B(a; R) by

g(2) = Y a(z—a)"; thus, g must be analytic and agrees with f in the punc-
n=0

tured disk. The converse is equally as easy.

(b) Suppose a, = 0 for n < —(m+1); then (z—a)"f(z) has a Laurent
Expansion which has no negative powers of (z—a). By part (a), (z—a)"f(2)
has a removable singularity at z—a. Thus f has a pole of order m at z = a.
The converse follows by retracing the steps in the preceding argument.

(c) Since f has an essential singularity at z = @ when it has neither a
removable singularity nor a pole, part (c) follows from parts (a) and (b). Il

One can also classify isolated singularities by examining the equations
1.19 lim|z—a|*|f(z)] = O

z-a
1.20 lim|z—a]’ |f(2)] = o

z—ra
where s is some real number. This is outlined in Exercises 7, 8, and 9; the
reader is strongly encouraged to work through these exercises.

The following gives the best information which can be proved at this time

concerning essential singularities. We know that f has an essential singularity
at z = a when lim | f(2)| fails to exist (“‘existing” includes the possibility that

zZ—a
the limit is infinity). This means that as z approaches a the values of f(z)
must wander through C. The next theorem says that not only do they wander,
but, as z approaches a, f(z) comes arbitrarily close to every complex number.
Actually, there is a result due to Picard that says that f(z) assumes each
complex value with at most one exception. However, this is not proved until
Chapter XII.

1.21 Casorati-Weierstrass Theorem. If [ has an essential singularity at z = a
then for every 8 > 0, {f[ann (a; 0, 8)]}” = C.

Proof. Suppose that f is analytic in ann (a; 0, R); it must be shown that if
c and € > 0 are given then for each 8 > 0 we can find a z with |z—a]| < &
and |f(z)—c| < e. Assume this to be false; that is, assume there isa cin C
and € > 0 such that |f(z)—c| = € for all z in G = ann (a; 0, 8). Thus lim

|z—a| '|f(z)— c|=o0. which implies that (z—a) '(f(z)—c¢) has a pole
at z=a. If m is the order of this pole then lim |z —a|™*'|f(2)— c|=0.

Hence |z —al™*'|f(2)| <

oAty o4z alm™t el gives that
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11_rg|z—a]'"*'|f(z)|=0 since m =1. But, according to Theorem 1.2, this

gives that f(z)(z—a)™ has a removable singularity at z=a. This con-
tradicts the hypothesis and completes the proof of the theorem. Il

Exercises

1. Each of the following functions f has an isolated singularity at z = 0.
Determine its nature; if it is a removable singularity define f(0) so that f is
analytic at z = 0; if it is a pole find the singular part; if it is an essential
singularity determine f({z: 0 < |z] < 8}) for arbitrarily small values of 8.

@ fe =% ® fe) =7

© flay = =21 @ f2) = exp (e ;
© s = EEED, ® =282,
@70 =21 0 /() = (=)
0) /) = zsin >~ B /) = #sin.

z2+1
(Z+z+1) (z-1*
3. Give the details of the derivation of (1.17) from (1.16).
1
4. Let = -
/) 2(z—=1)(z=-2)

the following annuli; (a) ann (0; 0, 1); (b) ann (0; 1, 2); (c) ann (0; 2, «©).
5. Show that f(z) = tan z is analytic in C except for simple poles at

2. Give the partial fraction expansion of r(z) =

; give the Laurent Expansion of f(z) in each of

T
z= 3 + nm, for each integer n. Determine the singular part of f at each of

these poles.

6. If f: G — C is analytic except for poles show that the poles of f cannot
have a limit point in G.

7. Let f have an isolated singularity at z = a and suppose f# 0. Show that
if either (1.19) or (1.20) holds for some s in R then there is an integer m such
that (1.19) holds if s > m and (1.20) holds if s < m.

8. Let f, a, and m be as in Exercise 7. Show: (a) m = 0iff z = a is a remov-
able singularity and f(a) # 0; (b) m < 0 iff z = a is a removable singularity
and fhas a zero at z = g of order —m; (¢) m > 0 iff z = « is a pole of f of
order m. .

9. A function f has an essential singularity at = - a ifT ncither (1.19) nor
(1.20) holds for any real number s.
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10. Suppose that f has an essential singularity at z = a. Prove the following
strengthened version of the Casorati-Weierstrass Theorem. If ¢e C and
€ > 0 are given then for each 8 > 0 there is a number «, |[c—«| < ¢, such
that f(z) = « has infinitely many solutions in B(a; 9).

1
11. Give the Laurent series development of f(z) = exp (—) Can you
z

generalize this result?
12. (a) Let A e C and show that

nfor(e D oo s S 1)

for 0 < |z| < oo, where for n 2 0

n

a, = 1Je"m“cos nt dt

T
0

(b) Similarly, show

exp {%)\ (z - %)} = by + ; b, (z" + (_z:)n)

for 0 < |z] < oo, where

n

Vs b, = 1J\cos (nt—Asin ) dt.
T

0

13. Let R > 0 and G = {z: |z| > R}; a function f: G — C has a removable
singularity, a pole, or an essential singularity at infinity if f(z~ 1) has, respec-
tively, a removable singularity, a pole, or an essential singularity at z = 0.
If £ has a pole at oo then the order of the pole is the order of the pole of
fz"Hatz=0.

(a) Prove that an entire function has a removable singularity at infinity
iff it is a constant.

(b) Prove that an entire function has a pole at infinity of order m iff it is a
polynomial of degree m.

(c) Characterize those rational functions which have a removable singularity
at infinity.

(d) Characterize those rational functions which have a pole of order m at
infinity.

14. Let G = {z: 0 < |z| < 1} and let f: G — C be analytic. Suppose that
y is a closed rectifiable curve in G such that n(y; @) = 0 for all a in C—-G.
What is {,/? Why?

15. Let f be analytic in G = {z: 0 < |z—aj < r} cxcept that there is a
sequence of poles {a,} in G with @, »a. Show that for any w in C there is
a sequence {z,} in G with a - lim z, and w - hm f(z,).
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16. Determine the regions in which the functions f(z)=(sin%)‘l and

1

g(2)= f (t—2)~'dt are analytic. Do they have any isolated singularities?
Do they have any singularities that are not isolated?
17. Let f be analytic in the region G=ann(a;0, R). Show that if f f |f(x+

iv)?dxdy < oo then f has a removable singularity at z=a. Suppose that
p>0and ff | f(x+ iy)|P dxdv < co; what can be said about the nature of
G

the singularity at z = q?
§ 2. Residues

The inspiration behind this section is the desire for an answer to the
following question: If f has an isolated singularity at z=a what are the
possible values for [ f when y is a closed curve homologous to zero and
not passing through a? If the singularity is removable then clearly the
integral will be zero. If z=a is a pole or an essential singularity the answer
is not always zero but can be found with little difficulty. In fact, for some
curves vy, the answer is given by equation (1.12) with n=—1.

2.1 Definition. Let f have an isolated singularity at z = a and let

&= Y a-ay
be its Laurent Expansion about z = a. Then the residue of f at z = a is the

coefficienta_ ;. Denote this by Res (f;a) = a_,. The following is a generaliza-
tion of formula (1.12) for n = —1.

2.2 Residue Theorem. Let f be analytic in the region G except for the isolated
singularities a,, a,, . . ., a,. If v is a closed rectifiable curve in G which does not
pass through any of the points a, and if vy = 0 in G then

1 n
i;ijf= Y n(y; a) Res (f; a).
k=1

Proof. Let m,=n(y;a,) for 1=k <m, and choose positive numbers
ris...,I,, such that no two disks B (a,;r,) intersect, none of them intersects
{7}, and each disk is contained in G. (This can be done by induction and
by using the fact that y does not pass through any of the singularities.) Let
V(N =a,+r.exp(—2mim, ) for 0<t <1 Thenfor 1< ;< m
m
n(y;a)+ 2 n(y,;a)=0.
k=1
Since y~0(G) and E(a,‘;r,‘)c G,

n(y.a)+ 2 n(y,;a)=0
k=1
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for all @ not in G—{ay,....a,}. Since f is analytic in G- {a,,...,a,}
Theorem IV.5.7 gives

23 off+ f

k=1 Tk

If f(z)= 2 b,(z—a,)" is the Laurent expansion about z=g, then this

series converges uniformly on B(ak,rk) Hence ff 2 b f(z—ak)"

But f (z—a,y'=0 if n+ —1 since (z— a,)" has a primitive. Also f (z—
a)” —Zmn(yk,ak)Res(f a,). Hence (2.3) implies the desired result. .

Remark. The condition in the Residue Theorem that f have only a finite
number of isolated singularities was made to simplify the statement of the
theorem and not because the theorem is invalid when f has infinitely many
isolated singularities. In fact, if f has infinitely many singularities they can
only accumulate on dG. (Why?) If r=d({y},dG) then the fact that y~0
gives that n(y;a)=0 whenever d(a; dG)< 3 r. (See Exercise 1V.7.2.)

The Residue Theorem is a two edged sword; if you can calculate the
residues of a function you can calculate certain line integrals and vice versa.
Most often, however, it is used as a medns to calculate line integrals. To use
it in this way we will need a method of computing the residue of a function at
a pole.

Suppose f has a pole of order m > 1 at z = a. Then g(2) = (z—a)"f(2)
has a removable singularity at z = aand g(a) # 0. Letg(z) = bo+b,(z—a)+

- be the power series expansion of g about z = a. It follows that for z near
but not equal to a,

f@) = P g

by
(z—a)" (z—a)
This equation gives the Laurent Expansion of fin a punctured disk about
z = a. But then Res (f; a) = b,,_,; in particular, if z = g is a simple pole
Res (f; a) = g(a) = lim (z—a)f(z). This is summarized as follows.

Z->Q

m+k(Z_a)k'
k=0

2.4 Proposition. Suppose f has a pole of order m at z = a and put g(z) =
(z—a)"f(2); then

Res(f;a) = (mi D1 g™ V().

The remainder of this section will be devoted to calculating certain integrals
by means of the Residue Theorem

2.5 Example. Show
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If f(2) = liz“ then f has as its poles the fourth roots of —1. These are
exactly the numbers e’ where
m 3w 5w T
g =- = =7 id
2 4 40 4y

Let

a, = exp (1[7—; +(n-1 7—2r]>

for n = 1, 2, 3, 4; then it is easily seen that each a, is a simple pole of f.
Consequently,

Res (f; @) = lim (z—a,)f(2) = aj(a; —a,) (@ ~a3) " '(@;—ay) ™"

IR Y .

—-1-—i —3mi
Res (f; a,) = -175— = lexp (T) .

Now let R > 1 and let y be the closed path which is the boundary of
the upper half of the disk of radius R with center zero, traversed in the
counter-clockwise direction. The Residue Theorem gives

Similarly

-R -1 0 1 R

1
—_J\f= Res (f; a;)+ Res (f; az)
2mi
7
_ i
272
But, applying the definition of line integral,

R b

l 1 x2 1 R3e3it
R (VI S A
271 )7 = 2mi j e 27_[1+R4e4"
k4 -R 0
This gives
R \'2 . n ‘..‘“
.6 Todx - — iR*® dr.
2 ,[ RN J It R
*r )
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For0<:<s, 1+ R%* lies on the circle centered at 1 of radius R*; hence
|14 R%* |2 R*— 1. Therefore

™ 3it 3
R3f e’ al< 7R
1+ R% | TR
2

and since T—JE;“ > 0 for all x in R, it follows from (2.6) that

o] x2 . R x2
JW”’“;L“; fﬁ“"’
~ @ -R
_ T
V2
2.7 Example. Show

sin x T
—dx = —.
f x T2

0
iz

. e .
The function f(z) = - has a simple pole at z = 0. If 0 < r < R let y be the

closed curve that is depicted in the adjoining figure. Itfollows from Cauchy’s

Theorem that 0 = jy /. Breaking y into its pieces,

R oy
2.8 0=f‘f—dx+fe—dz+ff—dx+fe—dz
X z X z
r YR —-R ’r

where yx and y, are the semicircles from R to — R and —r to r respectively.

But
R R X X
sin x 1 [e¥—e™™
fine. 1 femct,
X 2i X

r
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Also

n

jidz = ifexp (iRe®) do
z
YR

0

< [ lexp i Re™)| a0
]

= f exp (— Rsin 6) do
0
By the methods of calculus we see that, for 6 > 0 sufﬁcientl)( small, the
largest possible value of exp (— R sin 0), with 8 < 6 < 7 —3, is exp (—R
sin 8). (Note that 8 does not depend on R if R is larger than 1.) This gives that

-8
je—dz <25+ jexp(—-Rsinﬁ)de
YR z &

< 28+ exp (— Rsin 8).
If € > O is given then, choosing 8 < } ¢, there is an R, such that exp (=R

sin 8) < 3i for all R > R,. Hence
™

R-w

lim fe— dz = 0.
z
YR

iz

Since

! has a removable singularity at z = 0, there is a constant
z
iz

M > 0 such that ¢

! < M for |z| < 1. Hence,

J’e —ldz
z

Yr

iz_l
0=1imje dz.
z

r—+0
Yr

But jl dz = —i for each r so that
z

Z

< wrM;

that is,

¥ el'z
—mi=1lim | —dz
r—0 z
Yr

So, if we let r — 0 and R — o0 in (2.8)

an

sin x ”
j X dv = 2

0
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Notice that this example did not use the Residue Theorem. In fact, it could
have been presented after Cauchy’s Theorem. It was saved until now because
the methods used to evaluate this integral are the same as the methods used
in applying the Residue Theorem.

2.9 Example. Show that fora > 1,

n

do o
a+cos®  Jg2_1
0

If z = €% thenz = 1and $O
z
2 1
atcos = a+i(z+2) = a+%(z + 1) = Z_igﬂ_ i
z 2z

Hence

T 2x

o 3 d9
a+cosf a+cos 8
] 0
- 22 +2az+1
k4

where y is the circle |z| = 1. But z2+2az+1 = (z—a) (z—pB) where a =
—a+(@ -1} B = —a—(a*-1)*. Since a > 1 it follows that |«| < 1 and

|8] > 1. By the Residue Theorem

dz _ kd) .
24+2az+1  Ji2—1’

7
by combining this with the above equation we arrive at

n

=
atcos 0 Ji2_1
0

2.10 Example. Show that

0

log x
dx = 0.
\[H—x’ *

0

To solve this problem we do not use the principal branch of the logarithm.
Instead define log z for z belonging 1o the region

G = {ch::#Ozmd —; <argzs< 32"};
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if z = |z| €° # 0 with —5 <6< 5 ,let Az) = log|z|+i0. Let 0 < r < R

and let y be the same curve as in Example 2.7. Notice that #(x) = log x for
x > 0, and Ax) = log |x|+=i for x < 0. Hence,

R n
Az) log x . ([og R+i0] ,, &0
211 .[l-i-zz dz = _[l+x2 dx+iR TLRE® e
? r 0

-r 0
log |x|+ =i . [Nogr+i0] .,
—_—— ————=¢'%h

+j 122 dx+zrj T3 r2c20 e
-R .4

Now the only pole of #Az) (1+2z*)~! inside y is at z = i; furthermore, this

PR |
is a simple pole. By Proposition 2.4 the residue of #(z) (1+z%)' is 5

[og Ji| +3i] = ’74'. So,

j Az) dr = i

1422 2
7
Also,
R -r R R d
log x log [x|+=i log x © dx X
J1+x2dx+f el Fie L Fvw
r -R r r

Letting r -0+ and R — oo, and using the fact that

dx _m
1+x2 2

0
(Exercise 2(f)), it follows from (2.11) that

logr+if] ;
fl()g—xxdx=% lim lr.[[—g—"1 edo

1+ 2 -0+ 1+ 2,2i0
llog R+i6) ,,
— 1 Lim iR | 2 g,
7111_?:0 IRJ\ 1+R2e210 €
0

We now show that both of these limits are zero. If p > O then

[log p+] ;. _ pllog plj ; Zlfedg

1+p%" ==
_ mp|log p| p
=p? T 2-p

letting p »0+ or p -» oo, the limit of this expression is sero.
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2.12 Example. Show that j X gx = ," if0<ec< 1.
14x sin ¢
0

To evaluate this integral we must consider a branch of the function z <.
The point z = 0 is called a branch point of z7¢, and the process used to

evaluate this integral is sometimes called integration around a branch point.

LetG = {z:z # 0and 0 < argz < 2w }; define a branch of the logarithm
on G by putting /(re’®) = log r+if where 0 < 6 < 2w. For z in G put
f(2) = exp [—c/2)]; so fis a branch of z™¢. We now select an appropriate
curve yin G. Let 0 < r <1 < Rand let 8 > 0. Let L, be the line segment
[r+0i, R+3i]; yg the part of the circle |z] = R from R+ 8i counterclockwise
to R—0i; L, the line segment [R—§i, r —38i]; and y, the part of the circle
|z| = r from r—8i clockwise to r+8i. Put y = L, +yg+L,+7,.

Since y ~0 in G and Res (f(z) (1+2)"!; —1) = f(—1) = e, the
Residue Theorem gives

2.13 @ dZ — 2_n,le—mc

142
Y

Using the definition of a line integral

/) _fRf(t+i8)

TR 4T ) e

l.et g(#,8) be defined on the compact set [r, R]X]0, ! ;7] by

f(r+i8) e

8(1.8)= l+74+i8  T1+1

when 8>0 and g(2.0) - 0. Then g is continuous and hence uniformly
contimuous. 1f € -0 then there s a 8, such that iff (1 'Y +(8 8') < 8y
then [g(2.8) (.6 ¢/R. In particular, g(r.8)- ¢/R when r- 1+ R
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and 6 <&, Thus

R
f g(1.8)d1 <e

r

for § < §;. This implies that

R y-c . f(z )
2.14 [ = Jim [ Tvz 4
Similarly, using the fact that 1(z')=1(z)+27n
(R - z
2.15 —e-sz L _dr= lim U
. 1+t 5—0+ J, 1+:z
2

Now the value of the integral in (2.13) does not depend on §. There-
fore, letting 50+ and using (2.14) and (2.15) gives
f(z) N f(2)
1+z 1+z |
Yr

TR

216 2mie "™ —(1—e™ 2"

m
-0+

Now if p>0 and p#1 and if y, is the part of the circle [z|=p from

Vo> —8% +i8 to \Jp?— &% —id then

1)
: 1+z

-C

dz<p

<-——27p.
T—p] °™°

Since this estimate is independent of §, (2.16) implies

A R e
27rie“”‘—(1—e‘2”")f v di

But as r—0+ and R—oco the right-hand side of this last inequality
converges to zero. Hence

SLF_ _R™°
|l_r|2wr+ |l—R|2WR’

141

t~° 2mi e ime
dt T e
1+¢ 1—e "¢

¢

. . t=°¢
2mie” """ = (l—e_z'"c)jw dt;
0

or,

It
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Exercises

1. Calculate the following integrals:

(b) J’cos x2—1 I
X
]

n

cos 20d0
1-2acosf+a

a9
———————— where @® < 1 (d)j(m wherea > 1.

jx +x2+1
6[

2. Verify the following equations:

AN
F ax o (logx)3
(@ mz=47,a>0; (b)j
) )
" cos ax mla+1)e™® .
(C)um—zdx=“——4——— if a>0;
0
n/2
do T .
@ ja-{—sinz 0~ Aaainp T 470
0

E ]

log x B wdx _m,
()J(1+ 2)2 - = (f)_[l+x2_2’
0

)Jliexdx= T_if 0<a<l;

sinam

2n n
(h) f log sin? 20d6 = 4 f log sin 0df = —4n log 2.
0 0

3. Find all possible values of /[ expz”~ 'dz where vy is any closed curve not
passing through z=0.

4. Suppose that f has a simple pole at z = @ and let g be analytic in an open
set containing a. Show that Res (fg; @) = g(a) Res (f; a).

5. Use Exercise 4 to show that if G is a region and f'is analytic in G except
for simple poles at a,,...,a,; and if g is analytic in G then

i n
i j & = Y ny:a) gla) Res (f; @)

k=1

14
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for any closed rectifiable curve y not passing through ay, ..., a, such that
y~ 0inG.

6. Let y be the rectangular path [n+%+ni, —n—%+ni, —n—%—ni, n-+3-ni,
n+3%+ni] and evaluate the integral {,m(z+a)~? cot nzdz for a # an integer.
Show that lim {, #(z+a) ™2 cot #nzdz = 0 and, by using the first part, deduce
that n®

sin® 7a nz (a-i—n)2

(Hint: Use the fact that for z=x+iy, |cosz|’ =cos’ x+sinh®> y and
|sinz|>=sin?> x+sinh? y to show that [cotwz|<2 for z on y if n is
sufficiently large.)

7. Use Exercise 6 to deduce that

? < 1
8 Z(2n+1)2

8. Lety be the polygonal pathdefined in Exercise 6and evaluate |, m(z2 —a%) ™"
cot mzdz for a # an integer, Show that lim [, m(z>—a?)™! cot nzdz = 0, and
consequently e

<«

[y

mCotma = -

Q

for a # an integer.
9. Use methods similar to those of Exercises 6 and 8 to show that

m 1 ~=2(—1Ya
sinn-a_t—1+ 'Zl a*—n?

for a # an integer.
10. Let o be the circle |z| =1 and let m and n be non-negative integers.
Show that

(£ 1)?(n+2p)!

. -9 ,
Slinipt if m N 0p+n
1 ((2xl)dz p =
2—7”- gmtnt1 -
Y
0 otherwise

11. In Exercise 1.12, consider a, and b, as functions of the parameter A and

use Exercise 10 to compute power series expansions for a,(A) and b,(A).

(b,(}) is called a Bessel function.)

12. Let f be analytic in the plane except for isolated singularitics at a,, a,,
, a,,. Show that

Res (f; o) =2 = :—21 Res (f: ay).
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(Res(f; o0) is defined as the residue of —z f(z~!) at z=0. Equivalently,
Res(f; o0)=— pP [f when y()=Re", 0 <t <2, for sufficiently large R.)
What can you say if f has infinitely many isolated singularities?

13. Let f'be an entire function and let a, b € C such that [a| < Rand |b| < R.

If y(f) = Re”,0 < t < 2m, evaluate |, [(z—a) (z—b)] " 'f(z)dz. Use this result
to give another proof of Liouville’s Theorem.

§3 The Argument Principle

Suppose that fis analytic and has a zero of order m at z = a. So f(z) =
(z—a)"g(z) where g(a) # 0. Hence “

31 f@_m 8@
&) z—a g
and g’/g is analytic near z = a since g(a) # 0. Now suppose that f has a

pole of order m at z = a; that is, f(z) = (z—a) ™g(z) where g is analytic
and g(a) # 0. This gives

32 f@_-m, £6
@  z—a g
and again g’/g is analytic near z = a.

Also, to avoid the phrase ‘“analytic except for poles” which may have
already been used too frequently, we make the following standard definition.

3.3 Definition. If G is open and fis a function defined and analytic in G except
for poles, then f is a meromorphic function on G.

Suppose that f is a meromorphic function on G and define f: G — C_,
by setting f(z) = co whenever z is a pole of f. It easily follows that f is
continuous from G into C,, (Exercise 4). This fact allows us to think of
meromorphic functions as analytic functions with singularities for which
we can remove the discontinuity of f, although we cannot remove the non-
differentiability of f.

3.4 Argument Principle. Let f be meromorphic in G with poles py, P2y« .+ » P
and zeros z;, z,, ..., z, counted according to multiplicity. If y is a closed
rectifiable curve in G with y~ 0 and not passing through p,,...,pn;
Zy, ..., 2,; then

33 2"” .;((ZZ)) - kil nlr; 2 = jijl ny; Py

Proof. By a repeated application of (3.1) and (3.2)

J() 3' I \ 1 £'(2)
. = - s ’ +
S mrma sty 802
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where g is analytic and never vanishes in G. Since this gives that g'/g is
analytic, Cauchy’s Theorem gives the result. [l

Why is this called the “Argument Principle”? The answer to this is not
completely obvious, but it is suggested by the fact that if we could define
log f(z) then it would be a primitive for f’/f. Thus Theorem 3.4 would give
that as z goes around y, log f(z) would change by 2#iK where K is the integer
on the right hand side of (3.5). Since 2#iK is purely imaginary this would
give that Im log f(z) = arg f(z) changes by 2=K.

Of course we can’t define log f(z) (indeed, if we could then |, f'/f = 0
since f7/f has a primitive). However, we can put the discussion in the above
paragraph on a solid logical basis. Since no zero or pole of flies on y there
is a disk B(a; r), for each a in{y}, such that a branch of log f(z) can be defined
on B(a; r) (simply select r sufficiently small that f(2) # 0 or o in B(a; r)).
The balls form an open cover of {y}; and so, by Lebesgue’s Covering Lemma,
there is a positive number € > O such that for each a in {y} we can define a
branch of log f(z) on B(a; ¢). Using the uniform continuity of (suppose
that y is defined on [0, 1]), there is a partition 0 = to < t; <* "< = 1
such that ¥(r) € B(y(t;-,); €) for t;_; <t <t;and 1 <j < k. Let £; be a
branch of log f defined on B(y(t;-,); ¢) for 1 < j < k. Also, since the j-th

and (j+1)-st sphere both contain y(¢;) we can choose £iyeooy?y 80 that i

£iAt)) = L((1)); L0(1)) = £3(12))s - - - 5 G a (V- 1)) = G- 1))
If y; is the path y restricted to [£;-,, ;] then, since £} = i,

_[ff = Lyt )= £ v(t;- )

Y5 .

for 1 < j < k. Summing both sides of this equation the right hand side
“telescopes” and we arrive at

£
f 7= 4@
v
where a = y(0) = y(1). That is, £(a)— £,(a) = 27iK. Because 2xiK is purely
imaginary we get Im £ (a)—Im ¢,(a) = 2=K. This makes precise our con-
tention that as z traces out v, arg f{(z) changes by 27K.
The proof of the following generalization is left to the reader (Exercise 1).

3.6 Theorem. Let f be meromorphic in the region G with zeros zy, 2z, . - - 5 Zy
and poles p, . . . , p,, counted according to multiplicity. If g is analytic in G
and y is a closed rectifiable curve in G with y ~ 0 and not passing through
any z; or p; then

1 .f’ n m

. = oy z) — oy, pi).

i j 2 gdny; 2) ,; g(pnty; p;)
Y

We already know that a onc-one analytic function f has an analytic

inverse (1V. 7.6). 1t is a remarkable fact that Theorem 3.6 can be used 10 give
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a formula for cal_culating this inverse. Suppose R > 0 and that f is analytic
and one-one on B(a; R); let Q = f[B(a; R)]. If [z—a| < Rand € = f(z) eQ
then f(w)— £ has one, and only one, zero in B(a; R). If we choose g(w) = w,
Theorem 3.6 gives

L[ wf'(w)

= 2w ) fomy =
b4

where v is the circle |w—a| = R. But z = £ ~(§); this gives the following

3.7 Proposition. Let f be analytic on an open set-containing B(a; R) and
suppose that f is one-one on B(a; R). If Q = f[B(a; R)] and vy is the circle
|z—a| = R then f~Y(w) is defined for each w in Q by the formula

1 [ 2/'(2)

f—l(w)=7ﬂ f(z)_wdz.

This section closes with Rouché’s Theorem.

3.8 Rouché’s Theorem. Suppose f and g are meromorphic in a neighborhood
of B(a; R) with no zeros or poles on the circle y={z:|z—a|=R}.If Z,Z,
(P, P,) are the number of zeros (poles) of f and g inside y counted according
to their multiplicities and if

|f(2)+g()|<|f(2)|+]g(2)]
on vy, then
Z—-P=2Z,—P,
Proof. From the hypothesis
f(2) N f(z)
g(z) g(2)

on y. If A\=f(2)/g(z) and if A is a positive real number then this inequality
becomes A+1<A+1, a contradiction. Hence the meromorphic function
f/g maps y onto =C—[0, 0). If / is a branch of the logarithm on £ then

1(f(2)/g(z)) is a well-defined primitive for (f/g)(f/g)”' in a neighbor-
hood of y. Thus

1< +1

0= 5 [ /2 (/)"

_1 (L Z
2mi f g]

=(Z-P)-(Z,-P) M
This statement of Rouché’s Theorem was discovered by Irving Glicks-

berg (Amer. Math. Monthly, 83 (1976), 186 187). In the more classical
statements of the theorem, f and g are assumed to satisfy the inequality



126 Singularities

|f+g|<|g| on y. This weaker version often suffices in the applications as
can be seen in the next paragraph.
Rouché’s Theorem can be used to give another proof of the Fundamental
Theorem of Algebra. If p(z) = z"+a,z"~ '+ +a, then
Dy g
z z z
and this approaches 1 as z goes to infinity. So there is a sufficiently large
number R with

<1

for |z| = R; that is, |p(z)—2z"| < |z|" for |z| = R. Rouché’s Theorem says
that p(z) must have n zeros inside |z| = R.

We also mention that the use of a circle in Rouché’s Theorem was a
convenience and not a necessity. Any closed rectifiable curve y with y ~ 0 in
G could have been used, although the conclusion would have been modified
by the introduction of winding numbers.

Exercises

1. Prove Theorem 3.6. _

2. Suppose f is analytic on B(0; 1) and satisfies | f(z)| <1 for |z|=1. Find
the number of solutions (counting multiplicities) of the equation f(z)=2z"
where n is an integer larger than or equal to 1.

3. Let f be analytic in B(0; R) with f(0)=0, f/(0)#0 and f(z)*0 for
0<|z| < R. Put p=min{|f(z)|:|z] = R} >0. Define g: B(0; p)—C by

1 zf'(2)
g(w)=5— f———f(z)—w

where y is the circle |z|=R. Show that g is analytic and discuss the
properties of g.
4. If f is meromorphic on G and f: G—>C, is defined by f(z)= o0 when z is
a pole of f and f(z)=f(z) otherwise, show that f is continuous.
5. Let f be meromorphic on G; show that neither the poles nor the zeros of f
have a limit point in G.
6. Let G be a region and let H(G) denote the set of all analytic functions on
G. (The letter “H” stands for holomorphic. Some authors call a differentiable
function holomorphic and call functions analytic if they have a power series
expansion about each point of their domain. Others reserve the term
“analytic” for what many call the complete analytic function, which we will
not describe here.) Show that H(G) is an integral domain; that is, H(G) is a
commutative ring with no zero divisors. Show that M(G), the meromorphic
functions on G, is a field. )

We have said that analytic functions are like polynomials; similarly,
meromorphic functions are analogues of rational functions. The guestion
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arises, is every meromorphic function on G the quotient of two analytic
functions on G? Alternately, is M(G) the quotient field of H(G)? The answer
is yes but some additional theory will be required before this answer can be
proved.

7. State and prove a more general version of Rouché’s Theorem for curves
other than circles in G.

8. Is a non-constant meromorphic function on a region G an open mapping
of G into C? Is it an open mapping of G into C_?

9. Let A > | and show that the equation A—z—¢™* = 0 has exactly one
solution in the half plane {z: Re z > 0}. Show that-this solution must be
real. What happens to the solution as A — 1?

10. Let f be analytic in a neighborhood of D= B(0; 1). If [ f(2)| <1 for
|z|=1, show that there is a unique z with |z|<1 and f(z)=z. If |f(z)| <1
for |z]=1, what can you say?



Chapter VI

The Maximum Modulus Theorem

This chapter continues the study of a property of analytic functions first
seen in Theorem IV, 3.11. In the first section this theorem is presented again
with a second proof, and other versions of it are also given. The remainder
of the chapter is devoted to various extensions and applications of this
maximum principle.

§1. The Maximum Principle

Let Q be any subset of C and suppose « is in the interior of Q. We can,
therefore, choose a positive number p such that B(«; p) < Q; it readily
follows that there is a point £ in Q with [£] > |«|. To state this another way,
if « is a point in Q with [«| > [£] for each £ in the set Q then « belongs to 2.

1.1 Maximum Modulus Theorem—First Version. If f is analytic in a region G

and a is a point in G with | f(a)| = | f(2)| for all z in G then f must be a constant

JSunction.

Proof. Let @ = f(G) and put « = f(a). From the hypothesis we have that
|| = |£] for each ¢ in Q; as in the discussion preceding the theorem « is in
Q2 N Q. In particular, the set Q cannot be open (because then Q N 9Q = ).
Hence the Open Mapping Theorem (IV. 7.5) says that f must be constant. i}

1.2 Maximum Modulus Theorem—Second Version. Let G be a bounded open
set in C and suppose f is a continuous function on G~ which is analytic in G.
Then

max {|f(z)|: 2 G"} = max {|f(2)|: z€ 4G }.

Proof. Since G is bounded there is a point a € G~ such that [f(a)] = |f(2)]
for all zin G™. If fis a constant function the conclusion is trivial; if f'is not
constant then the result follows from Theorem 1.1. I}

Note that in Theorem 1.2 we did not assume that G is connected as in
Theorem 1.1. Do you understand how Theorem 1.1 puts the finishing touches
on the proof of 1.2? Or, could the assumption of connectedness in Theorem
1.1 be dropped?

Let G = {z = x+iy: —47 < y < 3=} and put f(z) = exp [exp z]. Then
f is continuous on G~ and analytic on G. If ze @G then z = x + 3mi so
1f(2)| = lexp (£ ie")| = 1. However, as x goes to infinity through the real
numbers, f(x) - oo. This does not contradict the Maximum Modulus
Theorem because G is not bounded.

In light of the above example it is impossible to drop the assumption of
the boundedness of G in Theorem 1.2; however, it can be replaced. The
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substitute is a growth condition on |f(z)| as z approaches infinity. In fact,
it is also possible to omit the condition that f be defined and continuous on
G ™. To do this, the following definitions are needed.

1.3 Definition. If /: G — R and a € G~ or a = oo, then the limit superior of
f(2) as z approaches a, denoted by lim sup f(z), is defined by

z—a

lim sup f(z) = lim sup {f(z): z€ G N B(a; r)}
z—va r—0+

(If a = oo, B(a; r) is the ball in the metric of C_.) Similarly, the limit.inferior

of f(z) as z approaches a, denoted by lim inf f(z), is defined by

z=a

liminf f(z) = lim inf{f(z): z € G N B(a; r)}.
ro0+

It is easy to see that lim f(z) exists and equals « iff « = lim sup f(z) =

lim inff(z). Z—a Z—a

Z—a

If G < C then let 9,G denote the boundary of G in C_, and call it the
extended boundary of G. Clearly 9,,G = &G if G is bounded and 0,G =
oG U {o0} if G is unbounded.

After these preliminaries the final version of the Maximum Modulus
Theorem can be stated.

1.4 Maximum Modulus Theorem—Third Version. Let G be a region in
C and f an analytic function on G. Suppose there is a constant M such that
lim sup | f(2)] < M for all ain 8,,G. Then | f(z)| < M forall z in G.
Proof. Let & > O be arbitrary and put H = {zeG: |f(z)] > M+8}. The
theorem will be demonstrated if H is proved to be empty.

Since |f| is continuous, H is open. Since lim sup |f(z)] < M for each

z—a

a in 0.,G, there is a ball B(a; r) such that | f(z)] < M+ 3§ forall zin G N B(a;
r). Hence H™ < G. Since this condition also holds if G is unbounded and
a = o, H must be bounded. Thus, H ~ is compact. So the second version of
the Maximum Modulus Theorem applies. But for z in oH, |f(z)] = M+3
since H™ < {z: |f(z)] = M+8}; therefore, H = ] or f is a constant. But
the hypothesis implies that H = ] if f is a constant. ||§

Notice that in the example G = {z: |Im z| < 4=}, f(2) = exp (&), [
satisfies the condition lim sup [f(z)| < 1 for all ¢ in éG but not for a = .

z—a

Exercises

1. Prove the following Minimum Principle. If f is a non-constant analytic
function on a bounded open set G and is continuous on G, then either f
has a zero in G or |f] assumes its minimum value on ¢G. (See Exercise 1V.
3.6) :

2. Let G be a bounded region and suppose f is continuous on G and
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analytic on G. Show that if there is a constant ¢ > 0 such that |f(z)| = ¢
for all z on the boundary of G then either f is a constant function or f has a
zero in G.

3. (a) Let f'be entire and non-constant. For any positive real number ¢ show
that the closure of {z: [f(2)| < c} is the set {z: [f(2)] < ¢} ‘

(b) Let p be a polynomial and show that each component of {z:|p(z)| < ¢}
contains a zero of p. (Hint: Use Exercise 2.)

(c) If p is a polynomial and ¢ > 0 show that {z: |p(z)| = c} is the union
of a finite number of closed paths. Discuss the behavior of these paths as
¢ — o,

4, Let 0 <r< R and put 4 = {z: r < |z| < R}. Show that there is a
positive number e > 0 such that for each polynomial p,

sup {|p(2)—z"!:ze A} > €

This says that z~! is not the uniform limit of polynomials on A.
5. Let f be analytic on B(0; R) with |f(z)] < M for |z] < R and |f(0)| =
a > 0. Show that the number of zeros of fin B(0; {R) is less than or equal to

log (;) . Hint: If z, ..., z, are the zeros of fin B(0; 4R), consider

log 2
the function

n -1
8@ = /) [H(l - f)] :
k=1 k

and note that g(0) = f(0). (Notation: Il a =aa,.. .a,,.)
k=1

6. Suppose that both £ and g are analytic on B(0; R) with | f(z)| = |g(z)| for

lz| = R. Show that if neither f nor g vanishes in B(0; R) then there is a
constant A, [A| = 1, such that /' = Ag.

7. Let f be analytic in the disk B(0; R) and for 0 < r < R define A(r) =
max {Re f(z): |z] = r}. Show that unless f is a constant, A(r) is a strictly
increasing function of r.

8. Suppose G is a region, f: G — C is analytic, and M is a constant such that
whenever z is on 9,G and {z,} is a sequence in G with z = lim z, we have
lim sup |f(z,)] < M. Show that |f(z)] < M, for each z in G.

§2. Schwarz’s Lemma

2.1 Schwarz’s Lemma. Let D = {z: |z| < 1} and 4ppose f is analytic on D
with

() |f(2) < 1 forzinD,

(b) f(0) = 0.
Then |f'(0)] < Vand|f(2)] < |z| for all z in the disk D. Morcover if [f'(0)] = |
or if | f(2)| = |z| for some = # O then there is a constant ¢, |¢} - |, such that

SO = ew for all win D.
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f(z

Proof. Define g: D-—C by g(z2)= ) for z#0 and g(0)= f’(0); then g is
analytic in D. Using the Maximum Modulus Theorem, |g(z)|<r~! for
|z|<r and 0<r<1. Letting r approach 1 gives |g(z)| <1 for all z in D.
That is, | f(2)| <|z] and | f'(0)|=]g(0)| < 1. If | f(z)|=|z| for some z in D,
z#0, or |f'(0)]=1 then |g| assumes its maximum value inside D. Thus,
again applying the Maximum Modulus Theorem, g(z)=c¢ for some con-
stant ¢ with |¢|=1. This yields f(z)=cz and completes the proof of the
theorem. Il

We will apply Schwarz’s Lemma to characterize the conformal maps of
the open unit disk onto itself. First we introduce a class of such maps. If
|a] < 1 define the Mobius transformation:

z—a

Pa(2) =

1—az

Notice that ¢, is analytic for |z| < |a| ™! so that it is analytic in an open disk
containing the closure of D = {z: |z| < 1}. Also, it is an easy matter to
check that

PuP-4(2)) = z = @_ (@,(2)).

for |z] < 1. Hence ¢, maps D onto itself in a one-one fashion.
Let 8 be a real number; then

ig
io . e " —a
I(Pa(e )I - l_a.eig
_ eio_a
|é—a
=1

This says that ¢,(éD) = éD.

These facts, and other pertinent information which can be easily checked,
are summarized as follows.

2.2 Proposition. If |a| < 1 then ¢, is a one-one map of D = {z: |z| < 1}
onto itself; the inverse of g, is ¢_,. Furthermore, g, maps 2D onto 2D, ¢ (a)
= 0, 9,0) = 1~|al?, and 9(a) = (1—|a]2)~".

Let us see how these functions ¢, can be used in applying Schwarz’s
Lemma. Suppose f is analytic on D with |f(z)| < 1. Also, suppose |a| < 1
and f(a) = « (so |«| < 1 unless f'is constant). Among all functions f having
these properties what is the maximum possible value of |f’(a)]? To solve
this problem let g = ¢, o fop_,. Then g maps D into D and also satisfies
8(0) = 9,(f(@)) = @,(«) = 0. Thus we can apply Schwarz's Lemma to obtain
that [¢'(0)] < 1. Now obtain an explicit formula for g'(0). Applying the chain
rule
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£'0) = (p, ) (9 0)9-u(0)
= (g o) (@ (1-]a)
= gu)f"(@) (1= a*)

_ 1—[a]2 '
= l_sz (@).
Thus,
2.3 @) < =L
’ T 1-14?

Moreover equality will occur exactly when |g’(0)] = I, or, by virtue of
Schwarz’s Lemma, when there is a constant ¢ with |¢[ = 1 and

24 f(2)=9_a(c,(2))

for |z| < 1.

\lVle are now ready to state and prove one of the main consequences of
Schwarz’s Lemma. Note that if |c| = 1 and |a| < 1 then f = cg, defines a
one-one analytic map of the open unit disk D onto itself. The next result
says that the converse is also true.

2.5 Theorem. Let f: D — D be a one-one analytic map of D onto itself and
suppose f(a) = 0. Then there is a complex number ¢ with le| = 1 such that

S = co.

Proof. Since f is one-one and onto there is an analytic function g: D — D
such that g( f(z)) = z for |z| < 1. Applying inequality (2.3) to both fand g
gives |f'(@)| < (1—1]a|®)™" and [g'(0)] < 1—|a)?® (since g(0) = a). But since
1 =g'0O)fa), |f'(@) = (1—|a|2)“1 Applying formula (2.4) we have that
f = cp, for some ¢, |c| = 1. W

Exercises

1. Suppose |f(z)] < 1 for |z| < 1 and f is analytic. By considering the
function g: D — D defined by

where a = f(0), prove that

1/0)]| = Iz| < 1f(z)] < |£(0)]+ 2]

=10 2| ~ I +1/(0)] |2|
for |z|] < 1. .
2. Does there exist an analytic function f: D~ D with f(}) Jand /() -
{”
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3. Suppose f: D — C satisfies Re f(z) > 0 for all z in D and suppose that
fis analytic.

(a) Show that Re f(z) > 0 for all z in D.

(b) By using an appropriate Mobius transformation, apply Schwarz’s
Lemma to prove that if f(0) = 1 then

14z
/@) < I—|z]

for |z| < 1. What can be said if /(0) # 1?
(c) Show that f also satisfies

l—|z] —
/@] = Tl

(Hint: Use part (a)).

4. Prove Caratheodory’s Inequality whose statement is as follows: Let f be
analytic on B(0; R) and let M(r)=max{|f(2)|: |z|=r}, A(r)=
max{Ref(z):|z|=r}; then for 0<r <R, if A(r)=0,

M()< R+r

—, AR+ 7O

(Hint: First consider the case where f(0) = 0 and examine the function
8(2) = f(Rz) [2A(R) +f(R2)]"* for || < 1)

5. Let f be analytic in D = {z: |z| < 1} and suppose that |f(z)| < M for
all zin D. () If f(z,) = O for 1 < k < n show that

@) < MI'I l2=2|

|1—Zz]|

for |z| < 1. (b) If f(z,) = O for 1 < k < n, each z; # 0, and f(0) = Me"
(z4z; ... z,), find a formula for f.

6. Suppose f is analytic in some region containing B(0; 1) and [f(z)| = 1
where |z] = 1. Find a formula for /. (Hint: First consider the case where f
has no zeros in B(0; 1).)

7. Suppose f is analytic in a region containing B(0; 1) and |f(z)| = 1 when
|z] = 1. Suppose that f has a simple zero at z = 3(1+¢) and a double zero
at z=13. Can f(0)=1?

8. Is there an analytic function f'on B(0; 1) such that |f(z)] < 1 for |z < 1,
S(0) = 4, and f'(0) = 3? If so, find such an f. Is it unique?

§3. Convex functions and Hadamard’s Three Circles Theorem
In this section we will study convex functions and logarithmically convex

functions and show that such functions appear in connection with the study
of analytic functions.
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3.1 Definition. If [a, 4] is an interval in the real line, a function f: [a, b)] — R
is convex if for any two points x, and x, in [a, 5]

Sex,+(1=0x1) < 1f(x)+(1=0f(x)

whenever 0 < ¢ < 1. A subset A < C is convex if whenever z and w are in
A, tz+(1=twis in A4 for 0 < ¢ < 1; that is, 4 is convex when for any two
points in A the line segment joining the two points is also in A. (See 1V. 4.3
and 1V. 4.4)

What is the reiation between convex functions and convex sets? The
answer is that a function is convex if and only if the portion of the plane
lying above the graph of the function is a convex set.

3.2 Proposition. A function f: [a, b] — R is convex iff the set

A= {(x,y):a<x < bandf(x) <y} '
is convex.

Proof. Suppose f- [a, b] — R is a convex function and let (x,, y,) and (x,, y,)
be points in 4. If 0 < ¢ < 1 then, by the definition of convex function,
Sx+(1=0x,) < tf(x)+(A=Df(x,) < ty,+(1 =0y, Thus 1(xz, yo)+
(1—=9) (x;, y) = (tx,+(1=Dxy, ty,+(1—1)y,) is in A; so A is convex.

Suppose A4 is a convex set and let x,, x, be two points in [a, b]. Then
(x4 =0)x,, tflx)+(1—=Hf(x)) is in 4 if 0 <7< 1 by virtue of its
convexity. But the definition of A4 gives that f(zx,+(1—12)x,) < #f(x;)+
(1—=10)f(x,); that is, f is convex. |}

The proof of the next proposition is left to the reader.

3.3 Proposition. (a) A function f: [a, b] — R is convex iff for any points

Xys e, Xy in [a, b] and real numbers t,, ..., t, > 0 with ) 1, =1,
K=1

S (kil thk> =< k‘; LS (%)

(b) A set A < C is convex iff for any points z,,...,z, in A and real
numbers t,, ..., 1, = O with Z 4= 1, Z t,2, belongs to A.

What are the virtues of convex functlons and sets? We have already seen
the convex sets used in connection with complex integration. Also, the fact
that disks are convex sets has played a definite role, although this may not
have been apparent since this fact is taken for granted. The use of convex
functions may not be so familiar to the reader; however it should be. In the
first course of calculus the fact (proved below) that f is convex when f” is
non-negative is used to obtain a local minimum at a point ¢, whenever
f'(to) = 0. Moreover, convex functions (and concave functions) are used to
obtain inequalitics. If /7 [a, b] - » R is convex then it follows from Proposition
3.2 that f(x) = max | f(a), (M} for all x in [, b]. We now give a iccessary
condition for the convexity of a function.
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3.4 Proposition. 4 differentiable function f on [a, b] is convex iff f' is increasing.
Proof. First assume that f is convex; to show that f’ is increasing let

a<x<y<band suppose that 0 < ¢z < 1. Since 0 < (1 —=Nx+ty—x =
t(y~x), the definition of convexity gives that

SA=Dx+1) =) _ [ fX)
1(y—x) T oy—x

Letting ¢ — 0 gives that
15 Foy <L)
y—x

Similarly, using the fact that 0 > (1-H)x+ty—y = (1—1) (x—y) and letting
t — 1 gives that
26 Fi 2 IO
y—x
So, combining (3.5) and (3.6), we have that f” is increasing.
Now supposing that f” is increasing and that x < u < y, apply the Mean

Value Theorem for differentiation to find r and swithx < r<u <s <y
such that

fl(r) — f(u) _f@
Uu—Xx
and

P OEC)
y—u
Since f7(r) < f'(s) this gives that
fO~1C) _ f)-1w)

U—x y—u

whenever x < u < y. In particular by letting u = (1—£)x+¢y where
0<1<1,

W) _ fO)-/C) |
ty=x) A==’

and hence
(- [f@—f(] < Lf»W)—fW]

This shows that f must be convex. Il

In actuality we will mostly be concerned with functions which are not
only convex, but which are logarithmically convex; that is, log f(x) is convex.
Of course this assumes that f(x) > 0 for each x. It is easy to see that a
logarithmically convex function is convex, but not conversely.

3.7 Theorem. Let a < b and let 6 be the vertical strip {v iy a < v < b},
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Suppose f: G~ — C is continuous and f is analytic in G. If we define M:
[a, 5] ~ R by
M(x) = sup {|f(x+iy)|: —0 <y < o0},

and |f(z)| < B for all z in G, then log M (x) is a convex function. .
Before proving this theorem, note that to say that log M(x) is convex
means (Exercise 3) that fora < x <u <y < b,

(y—x) log M(u) < (y—u) log M(x)+(u—x) log M(»)
Taking the exponential of both sides gives
3.8 M(u)(’"") < M(x)(’"")M(y)("_")

whenever a < x < u < y < b. Also, since log M(x) is convex we have that
log M(x) is bounded by max {log M(a), log M(b)}. That is, fora < x < b

M(x) < max {M(a), M(b)}.
This gives the following.
3.9 Corollary. If f and G are as in Theorem 3.7 and f is not constant then

|/@)] < sup {|f(W)|: we oG}
for all z in G.
To prove Theorem 3.7 the following lemma is used.

3.10 Lemma. Let f and G be as in Theorem 3.7 and further suppose that
|f(2)| < 1for z on 2G. Then |f(z)| < 1 for all z in G.

Proof. For each e > 0 let g(2) = [1 +e(z—a)] ™" for each z in G™. Then for
z =x+iyin G~ .

|g42)] < |Re [l +e(z—a)]| ™"
[1+e(x—a)] ™"

< 1.

So for z in @G | f(z)g/z)| < 1. Also, since f is bounded by B in G,
1/(2g2)| < Bll+e(z—a)|™"
< Ble |Imz]}™!

So if R = {x+iy: a < x < b, |y| < Ble}, inequality (3.11) gives | f(2)gd2)]
< 1 for z in @R. It follows from the Maximum Modulus Theorem that
|f(2)g(2)] < 1 for zin R. Butif [Im z| > Bfe then (3.11) gives that | f(2)g.(2)|
< 1. Thus for all z in G. ‘

.

/)] < |[1+e(z—a)].
Letting € approach zero the desired result follows. Il

Proof of Theorem 3.7. First observe that to prove the theorem we n‘éed only

establish
M@ ® < M@)'® “Mb)
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for a < u < b (see (3.8)). To do this recall that for a constant 4 > O,
A® = exp (zlog A) is an entire function of z with no zeros. So g(z) defined by

g(2) = M(a)(b—z)/(b—a)M(b)(z-a)/(b-a)
is entire, never vanishes, and (because |4%] = AR*?) forz = x+iy
3.12 lg(z)] = M(@)®~®1C-a p(p)=—alb-a),

(It is assumed here that M (a) and M (b) # 0. However, if either M(a) or
M(b) is zero then f = 0.) Since the expression on the right hand side of
(3.12) is continuous for x in [a, b] and never vanishes, |g| ~! must be bounded
in G™. Also, |g(a+iy)| = M(a) and [g(b+iy)] = M(b) so that | f(z)/g(z)] < 1
for z in éG; and f]g satisfies the hypothesis of Lemma 3.10. Thus

If@) < |g(2)], z € G.
Using (3.12) this gives fora <u < b

M(u) < M(a)(b~u)/(b—a)M(b)(u—a)/(b—a)

which is the desired conclusion. [}

Hadamard’s Three Circles Theorem is an analogue of the preceding
theorem for an annulus. Consider ann (0; R,, R,) = A where 0 < R, < R,
< oo. If G is the strip {x+iy: log R, < x < log R,} then the exponential
function maps G onto 4 and ¢G onto 24. Using this fact one can prove the
following from Theorem 3.7 (the details are left to the reader).

3.13 Hadamard’s Three Circles Theorem. Let 0 < R, < R, < 00 and suppose
[ is analytic on ann (0; R;, R,). If R, < r < R,, define M(r) = max
{1f(re’®|: 0 < 8 < 2n}. Then for R, <r, <r <r, < R,

logr—logr,

log M(r) < ——=—*——"—log M(r,) + “© 7L log M(r,).
log r,~logr; logr,—logr,

Another way of expressing Hadamard’s Theorem is to say that log M(r)
is a convex function of log r.

Exercises

I. Let f: [a, b] - R and suppose that f(x) > O for all x and that f has a
continuous second derivative. Show that f is logarithmically convex iff
S =L (X)]* = O for all x.

2. Show that if 2 (a, b) — R is convex then f'is continuous. Does this remain
true if /'is defined on the closed interval [a, b]?

3. Show that a function f: [a, ] — R is convex iff any of the following
cquivalent conditions is satisfied:

Sy ul
(@) a - v<su<y- bgivesdet| f(v)y v 1] - 0;
[y ]
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S —f(x) _ fW-fx) .

u—x  y—=x
S@)=f(x) _ f0) =)

u—x  y-u

b)a<x<u<y=bgives

(©)a<sx<u<y<bgives

Interpret these conditions geometrically.

4. Supply the details in the proof of Hadamard’s Three Circle Theorem.
5. Give necessary and sufficient conditions on the function f such that
equality occurs in the conclusion of Hadamard’s Three Circle Theorem.
6. Prove Hardy’s Theorem: If fis analytic on B(0; R) and not constant then

2n
0= f (re®)\db
0

is strictly increasing and log I(r) is a convex function of log r. Hint: If
0<r, <r<r, find a continuous function ¢: [0, 2#] — C such that
@(0)f(re'®) = | f(re'®)| and consider the function F(z) = [3* f(ze'®)p(6)df.
(Note that r is fixed, so ¢ may depend on r.)

7. Let f be analytic in ann (0; R,, R,) and define

2r
I(r) = ZI;J | f(re'®)|*db.
0

Show that log 1,(r) is a convex function of logr, R, < r < R,.

§4. The Phragmen-Lindelof Theorem

This section presents some results of E. Phragmen and E. Lindel6f (pub-
lished in 1908) which extend the Maximum Principle by easing the require-
ment of boundedness on the boundary.

The Phragmen-Lindelsf Theorem bears a relation to the Maximum
Modulus Theorem which is analogous to the relationship of the following
result to Liouville’s theorem. If f is entire and |f(z)] < 1+[z|* then fis a
constant function. (Prove it!) So it is not necessary to assume that an entire
function is bounded in order to prove that it is constant; it is sufficient to
assume that its growth as z — oo is restricted by 1+ |z|*. The Phragmen-
Lindelsf Theorem places a growth restriction on an analytic function
f: G —C as z nears a point on the extended boundary. Nevertheless, the
conclusion, like that of the Maximum Modulus Theorem, is that f'is bounded.

4.1 Phragmen-Lindelof Theorem. Let G be a simply connected region and let
f be an analytic function on G. Suppose there is an analytic function 9. G — C
which never vanishes and is bounded on G. If M is a constant and ¢ ,G = AU B
such that:

(@) for eren a in A, limsup|f(2)] = M

S
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(b) for every b in B, and n > 0, lim sup |f(2)| |p(2)[" < M;
z—b
then |f(2)|< MforallzinG.

Proof. Let |p(z)] < « for all z in G. Also because G is simply connected there
is an analytic branch of log ¢(z) on G (Corollary IV. 4.16). Hence g(z) = exp
(7 log ¢(2)) is an analytic branch of @(z)" for > 0; and |g(z)] = |p(2)]".
Define F: G—C by F(z) = f(z)g(z)x"; then F is analytic on G and
|F(2)] < |f(2)] since |p(z)| < « for all z in G. But then, by conditions (a)
and (b) on ¢,G, F satisfies the hypothesis of Theorem 1.4. Thus
|F(2)] < max (M, «"M) for all z in G. This gives

/@) < lp(2)] ™" max (M, «™"M)

for all z in G and for all y > 0. Letting n — 0+ gives that | f(z)] < M for
allzin G. 1

—

4.2 Corollary. Let a > 1 and put

G= {z: larg z] < 2—’;}

Suppose that f is analytic on G and there is a constant M such that lim sup
Z->W

|f(2)| < M for all win eG. If there are positive constants P and b < a such that

43 /@) < Pexp (|2/*)
Sfor all z with |z| sufficiently large, then |f(2)| < M for all z in G.

Proof. Let b < ¢ < a and put ¢(z) = exp (—z°) for z in G. If z = re®,
|6] < m/2a, then Re z° = r° cos ¢f. So for zin G

|(2)| = exp (—r° cos cb)

when z = re. Since ¢ < a, cos ¢ > p > 0 for all z in G. This gives that ¢ is
bounded on G. Also, if y > 0 and z = re'? is sufficiently large,

@) |e(@)" < Pexp (r’—7re cos cb)
< Pexp (r®—rp)

But r’—nrép = r(r® °—np). Since b < ¢, r*"°—>0+ as r — o so that
r®—qrép — — o0 as r — co. Thus

lim sup |/(2)] |p(2)" = 0

Hence, f and ¢ satisfy the hypothesis of the Phragmen-Lindelsf Theorem
so that | f(z)| < M foreachzin G. |}

Note that the size of the angle of the sector G is the only relevant fact
in this corollary; its position is inconsequentiak. So if G is any sector of angle
m/a the conclusion remains valid.
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4.4 Corollary. Let a > 1,

G = {z: larg z| < 1},
2a

and suppose that for every w in 9G, lim sup | f(z)| < M. Moreover, assume that

for every 8 > 0 there is a constant P (which may depend on 8) such that
4.5 I/(2)| < Pexp (8]z])

for z in G and |z| sufficiently large. Then | f(z)| < M for all z in G.

Proof. Define F: G — C by F(z) = f(z) exp (—«z%) where ¢ > 0 is arbitrary.
If x > 0 and 8 is chosen with 0 < 8 < e then there is a constant P with

|[F(x)| < Pexp [(8 —e)x“].

But then [F(x)| — 0 as x — oo in R; so M, = sup {{F()|: 0 < x < oo}
< o0, Define M, = max {M;, M} and

H, = {zeG:0 < argz < =n/2a},
H_ = {zeG:0 > argz > —nf2a};
then lim sup |f(z)] < M, forall zin 9H, and ¢H_. Using hypothesis (4.5),

Corollary 4.2 gives |F(z)] < M, forall zin H, and H_ hence, |[F(2)| < M,
for all zin G.

We claim that M, = M. In fact, if M, = M, > M then |F| assumes its
maximum value in G at some point x, 0 < x < oo (because |F(x)| =0 as
x — o0 and lim sup [f(x)| = lim sup |F(x)| < M < M,). This would give

x>0 x—0

that F is a constant by the Maximum Principle and so M = M,. Thus,
M, = M and |F(z)| < M for all z in G; that is,

|f(2)] < M exp (e Re z%)

for all z in G; since M is independent of e, we can lete — 0 and get | f(2)] < M
forallzin G. I

Let G = {z: z # 0 and |arg z| < =/2a} and let f(z) = exp (z°) for ze G.
Then |f(z)| = exp (|z|* cos af) where 6 = arg z. So for z in 2G |f(2)| = 1;
but f(z) is clearly unbounded in G. In fact, on any ray in G we have that
| f(2)| = 0. This shows that the growth condition (4.8) is very delicate and
can’t be improved.

Exercises

1. In the statement of the Phragmen-Lindeldf Theorem, the requirement
that G be simply connected is not necessary. Extend Theorem 4.1 to
regions G with the property that for each z in d,G there is a sphere V in
C. centered at z such that ¥'NG is simply connected. Give some
examples of regions that are not simply connected but have this ‘property
and some which don’t
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2. In Theorem 4.1 suppose there are bounded analytic functions ¢, ¢,,...
¢, on G that never vanish and d,G=A4 U B,u ...u B, such that condition
(a) is satisfied and condition (b) is also satisfied for each ¢, and B,. Prove
that | f(z)|< M for all z in G.

3. Let G = {z: |Im z| < 4=} and suppose f: G — C is analytic and lim sup

| f(2)] < M for win 9G. Also, suppose 4 < o and a < 1 can be found such
that

|f(2)] < exp [4 exp (a |Re z|)]

for all z in G. Show that |f(z)] < M for all z in G. Examine exp (exp z) to
see that this is the best possible growth condition. Can we take a = 1 above?
4. Let f: G — C be analytic and suppose M is a constant such that lim sup
| f(z)| < M for each sequence {z,} in G which converges to a point in ¢,G.
Show that |f(z)] < M. (See Exercise 1.8). N

5. Let f: G — C be analytic and suppose that G is bounded. Fix z, in oG
and suppose that lim sup |f(z)| < M for w in 2G, w # z,. Show that if

zZ->w

lim |z—z4|° |f(z)] = O for every ¢ > O then |f(z)] < M for every z in oG.

zZ>Zg

(Hint: If a ¢ G, consider ¢(z) = (z—z,) (z—a)™ 1)

Q. Let G = {z: Re z > 0} and let /: G — C be an analytic function with
lim sup |f(z)] < M for w in &G, and also suppose that for every 8 > 0,

Z W

lirr; sup {exp (—¢/r |f(re'®]: |6] < 4=} = 0.

Show that |f(z)] < M for all zin G.
7. Let G = {z: Re z > 0} and let /* G — C be analytic such that f(1) = 0
and such that lim sup | f(z)] < M for w in éG. Also, suppose that for every

Z—>w

8, 0 < & < 1, there is a constant P such that

@) = Pexp (219,
)] < M[“"‘)WT

(1+x)%+y
. ) 142
(Hmt: Consider f(2) (1:> )

Prove that




Chapter VII

Compactness and Convergence in the
Space of Analytic Functions

In this chapter a metric is put on the set of all analytic functions on a
fixed region G, and compactness and convergence in this metric space is -
discussed. Among the applications obtained is a proof of the Riemann
Mapping Theorem.

Actually some more general results are obtained which enable us to also
study spaces of meromorphic functions.

§1. The space of continuous functions C(G,S2)

In this chapter (Q, d) will always denote a complete metric space.
Although much of what is said does not need the completeness of Q, those
results which hold the most interest are not true if (Q, d) is not assumed to
be complete.

1.1 Definition. If G is an open set in C and (€, d) is a complete metric space
then designate by C(G, Q) the set of all continuous functions from G to Q.

The set C(G, Q) is never empty since it always contains the constant
functions. However, it is possible that C(G, Q) contains only the constant
functions. For example, suppose that G is connected and Q =N = {1,
2,...5. If fis in C(G, Q) then f(G) must be connected in £ and, hence, must
reduce to a point.

However, our principal concern will be when Q is either C or C,. For
these two choices of Q, C(G, Q) has many non constant elements. In fact,
each analytic function on G is in C(G, C) and each meromorphic function
on Gisin C(G, C,) (see Exercise V. 3.4).

To put a metric on C(G, Q) we must first prove a fact about open subsets
of C. The third part of the next proposition will not be used until Chapter
VIIL

1.2 Proposition. If G is open in C then there is a sequence {K,} of compact
subsets of G such that G = \J K,. Moreover, the sets K, can be chosen to
n=1

satisfy the following conditions:

(a) Kn < int Kn+1;
(b) K = G and K compact implies K < K, for some n;
(c) Every component of C, — K, contains a component of C,—0.

142
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Proof. For each positive integer # let

K,= {z:|z] <u}n {z: d(z, C—G) = 1} ;
n

since K, is clearly bounded and it is the intersection of two closed subsets
of C, K, is compact. Also, the set

{z:]z] < n+1} ﬁ{z:d(z, C-G) > —1—}
n+1

is open, contains K,, and is contained in K, , ;. This gives that (a) is satisfied.

Since it easily follows that G = () K, we also get that G = O int K,; so if
n=1 n=1

K is a compact subset of G the sets {int K,} form an open cover of K. This
gives part (b).

To see part (¢) note that the unbounded component of C, — K, (2 C_, ~G)
must contain o0 and must therefore contain the component of C —G
which contains co. Also the unbounded component contains {z: |z| > n}.
So if D is a bounded component of C; —K, it contains a point z with

1
d(z, C-G) < e But by definition this gives a point w in C—G with

1 1
lw—z| < e But then z € B(w; n) < C, —K,; since disks are connected and

z is in the component D of C_—K,, B(w; 1) < D.If D, is the component
n

of C, — G that contains w it follows that D, < D. I}
If G = | ) K, where each K, is compact and K, < int K, ,, define
n=1

1.3 P/, 8) = sup {d(f(2), g(2)): z € K, }

for all functions f and g'in C(G, Q). Also define

1.4 (f,g) = 3 LnLn(Jf’ﬁ;
D= L O e

since #(1+7)~" < 1for all £ > 0, the series in (1.4) is dominated by Y (4)" and
must converge. It will be shown that p is a metric for C(G, Q). To do this the
following lemma, whose proof is left as an exercise, is needed.

1.5 Lemma. [f (S, d) is a metric space then

_ d(s, t)
s 1) 14d(s, 1)

is also a metric on 8. A set is open in (S, dY iff it is open in (S, p1); a sequence
is a Cauchy sequence in (S, d) iff it is a Cauchy sequence in (S, p).

1.6 Proposition. (C'((, L2), p) is a metric space,
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Proof. It is clear that p(f; g) = p(g,f ). Also, since each p, satisfies thc.a triangle
inequality, the preceding lemma can be used to show that p satisfies the

triangle inequality. Finally, the fact that G = | K, gives that f = g whenever
n=1
p(f,8) =01

The next lemma concerns subsets of C(G, €2) x C(Q, Q) and is very useful
because it gives insight into the behavior of the metric p. Those who know
the appropriate definitions will recognize that this lemma says that two

uniformities are equivalent.

1.7 Lemma. Let the metric p be defined as in (1.4). If ¢ > 0 -is given then there
is a & > 0 and a compact set K < G such that for f and g in C(G, Q),

1.8 sup {d(f(2),g(z):ze K} < 3= p(f,8) < e

Conversely, if 8 > 0 and a compact set K are given, there is an € > 0 such
that for f and g in C(G, ),

1.9 o(f, g) < e = sup {d(f(2),8(2)): z€ K} < 3. .

Proof. If € > 0 is fixed let p be a positive integer such that Y D" < e

n=p+l

. t
and put K = K,. Choose 8 > 0such that 0<t<3$ gives 1 < }e. Suppose

f and g are functions in C(G, Q) that satisfy sup {d(f(z), g(2)): z eK 3 < 3.
Since K, < K, = K for 1 <n < p, p.(f, g) < 8 for 1 < n < p. This gives

Pl 8)

14p,(/5 8) <

for 1 < n < p. Therefore

W) < 3 @ra)+ 3 o

n=p+1
<€

That is, (1.8) is satisfied. ® o .
Now suppose K and & are given. Since G = Ul K, = szl int K, and K is

compact there is an integer p > 1 such that K < K,,; this gives

p, ([, 8 = sup {d(f(2), 8(z)): 2 K}
implies -~ < 8 then —— < 2
Lete>0bechosensothat0$s<2pelmp11esm< 3t en1+t

impli i pelf8). ? ¢ and this gives p,(f &
implies ¢ < 8. So if p(f; g) < € then L+p,0f, 8) < 2? ¢ and this gives p,(f, &)

< 8. But this is exactly the statement contained in (1.9). B

1.10 Proposition. (a) A4 set 0 < (C(G. L2), p) is open iff for each [ in O there
is a compact set K and a 8 > 0 such that

O > (g d(f(2). &) < B 20 K}
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(b) A4 sequence {f,} in (C(G, Q), p) converges to f iff {f,} converges to f
uniformly on all compact subsets of G.

Proof. If O is open and fe O then for some € > 0, 0 > {g: p(f. g) < €}.
But now the first part of the preceding lemma says that there is a § > 0
and a compact set K with the desired properties. Conversely, if ¢ has the
stated property and f e O then the second part of the lemma gives an ¢ > 0
such that ¢ > {g: p(f, g) < €}; this means that @ is open.

The proof of part (b) will be left to the reader. I}

1.11 Corollary. The collection of open sets is independent of the choice of the

sets {K,}. That is, if G = | | K;, where each K} is compact and K}, < int K/, ,
n=1

and if w is the metric defined by the sets {K,} then a set is open in (C(G, Q), u)
iff it is open in (C(G, L), p).

Proof. This is a direct consequence of part (a) of the preceding proposition
since the characterization of open sets does not depend on the choice of the
sets {K,}. IR

Henceforward, whenever we consider C(G, Q) as a metric space it will
be assumed that the metric p is given by formula (1.4) for some sequence

{ K.} of compact sets such that K, < int K,,, and G = |} K,,. Actually, the
n=1

requirement that K, < int K, , can be dropped and the above results will
remain valid. However, to show this requires some extra effort (e.g., the
Baire Category Theorem) which, though interesting, would be a detour.

Nothing done so far has used the assumption that Q is complete. How-
ever, if L is not complete then C(G, ) is not complete. In fact, if {w,} is
a non-convergent Cauchy sequence in €2 and f,(z) = w, for all z in G, then
{/.} 1s a non-convergent Cauchy sequence in C(G, Q). However, we are
assuming that Q is complete and this gives the following.

1.12 Proposition. C(G, Q) is a complete metric space.

Proof. Again utilize Lemma 1.7. Suppose{f, } is a Cauchy sequence in C(G, Q).
Then for each compact set K < G the restrictions of the functions f, to K
gives a Cauchy sequence in C(K, Q). That is, for every § > 0 there is an
integer N such that

1.13 sup {d(f2), f(2)):ze K} < §

for n, m > N. In particular {f,(z)} is a Cauchy sequence in Q: so there is a
point f(z) in L such that f(z) = lim f,(z). This gives a function f: G — Q;
it must be shown that fis continuous and p(f,. ) -> 0.

Let A be compact and fix 8 ~ 0: choose N so that (1.13) holds for »,
m = N_If zis arbitrary in K but fixed then there is an integer m > N so that
d(f(. 1,2 < 8 But then

AN SN - 20
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for all n > N. Since N does not depend on z this gives

sup {d(f(2), f(2)): ze K} =0

as n — o. That is, {f,} converges to f uniformly on every compact set in G.
In particular, the convergence is uniform on all closed balls contained in G.
This gives (Theorem II. 6.1) that f is continuous at each point of G. Also,
Proposition 1.10 (b) gives that p(f,, /) — 0. I}

The next definition is derived from the classical origins of this subject.
Actually it could have been omitted without interfering with the development
of the chapter. However, even though there is virtue in maintaining a low
ratio of definitions to theorems, the classical term is widely used and should
be known by the reader.

1.14 Definition. A set F < C(G, Q) is normal if each sequence in & has a
subsequence which converges to a function fin C(G, ().

This of course looks like the definition of sequentially compact subsets,
but the limit of the subsequence is not required to be in the set % The next
proof is left to the reader.

1.15 Proposition. 4 ser F < C(G, Q) is normal iff its closure is compact.

1.16 Proposition. 4 set F < C(G, Q) is normal iff for every compact set
K < G and 8 > O there are functions fi, ....f, in F such that for fin F
there is at least one k, 1 < k < n, with

sup {d(f(2), fi(e)): ze K} < 8.

Proof. Suppose % is normal and let K and 8 > 0 be given. By Lemma 1.7
there is an « > O such that (1.9) holds. But since &~ is compact, & is
totally bounded (actually there are a few details to fill in here). So there
are fy, ...,/ , in & such that

Fe U iUaf<d
But from the choice of e this gives
F = () [ dSE ) < 3.2 <K);

that is, & satisfies the condition of the proposition.

For the converse, suppose # has the stated property. Since it readily
follows that % ~ also satisfies this condition, assume that % is closed. But
since C(G, Q) is complete % must be complete. And, again using Lemma 1.7,
it readily follows that % is totally bounded. From Theorem II. 4.9 % is
compact and therefore normal. i

This section concludes by presenting the Arzela-Ascoli Theorem. Al-
though its proof is not overly complicated it is a deep result which has
proved extremely useful in many arcas of analysis. Before stating the theorem
a few results of a more general nature are needed.
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Let (X,, d,) be a metric space for each n > 1 and let X = ﬁ X, be their
n=1

cartesian product. That is, X = {£ = {x,}: x,< X, for each n > 1}. For
¢ = {x,} and » = {y,} in X define

1.18 Proposition. ( [T X, d), where d is defined by (1.17), is a metric space.
n=1

If & = (3, isin X =[] X, then & — ¢ = {x,} iff xX — x, for each n.
n=1
Also, if each (X,, d,) is compact then X is compact.

}?roof. The proof that d is a metric is left to the reader. Suppose d(¢*, & —0;
since

Ay, %)

n k
L, x) = 2 D

we have that
4, x,)

ko 1 +d (X5 x,)

This gives that x; — x, for each n > 1. The proof of the converse is left to
the reader.

Now suppose that each (X, d,) is compact. To show that (X, d) is com-
pact it suffices to show that every sequence in X hasa convergent subsequence ;
this is accomplished by the Cantor diagonalization process. Let ¢k — ey
for each k > 1 and consider the sequence of the first entries of the £*; that
is, consider {x}}Z_, < X,. Since X, is compact there is a point x, in X,
and a subsequence of {x}} which converges to it. We are now faced with a
problem in notation. If this subsequence of {x¥}?_, is denoted by {x*1} =,
there is little confusion at this stage. However, the next step in the proof i; to
consider the corresponding subsequence of second entries { x%’ 72, and take
a subsequence of this. Furthermore, it is necessary to continue this process
for all the entries. It is easy to see that this is opening up a notational
Pandora’s Box. However, there is an alternative. Denote the convergent
subsequence of {x{} by {x¥:keN,}, where N, is an infinite subset of the
positive integers N. Consider the sequence of second entries of {€: keN,}.
Then there is a point x, in X, and an infinite subset N, < N, such that
lim {x5: keN,} = x,. (Notice that we still have lim {x¥: keN,} = x,)
Continuing this process gives a decreasing sequence of infinite subsets of
N, Ny © N,...; and points x, in X, such that

1.19 lim (& kcN,} = x,

Let 4, b'c the jth integer in N, and consider {£}; we claim that & » ¢ =
{v.} as & - oo, To show this it suflices to show that

: Lk
1.20 X lim )’

ky oo
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for each n > 1. But since N; © N, forj = n, {x¥:j = n} is a subsequence
of {x!: keN,}. So (1.20) follows from (1.19). B
The following definition plays a central role in the Arzela-Ascoli Theorem.

1.21 Definition. A set & < C(G, Q) is equicontinuous at a point z, in G iff
for every e > O there is a 8 > 0 such that for |z—2z4| < 8§,

d(f(2),f(z0)) < €

for every fin F. F is equicontinuous over a set E < G if for every e > 0 there
isa & > Osuch that for zand z' in Eand [z—2"| < §,

d(f(2), f(z") < e
for all fin &

Notice that if Z consists of a single function f then the statement that F
is equicontinuous at z,, is only the statement that f'is continuous at z,. The
important thing about equicontinuity is that the same & will work for all
the functions in &. Also, for & = {f} to be equicontinuous over E is to
require that f is uniformly continuous on E. For a larger family & to be
equicontinuous there must be uniform uniform continuity.

Because of this analogy with continuity and uniform continuity the
following proposition should not come as a surprise.

1.22 Proposition. Suppose F < C(G, Q) is equicontinuous at each point of G;
then F is equicontinuous over each compact subset of G.

Proof. Let K = G be compact and fix € > 0. Then for each w in K there is
a 8, > Osuch that

d(f(w"), f(W)) < 3¢

for all fin & whenever [w—w'| < 8,. Now {B(w; 3,):we K} forms an open
cover of K; by Lebesgue’s Covering Lemma (IL. 4.8) there is a 8 > Osuch
that for each z in K, B(z; &) is contained in one of the sets of this cover.
So if z and 2’ are in K and |z—2’| < & there is a w in K with z" e B(z; 8) <
B(w; 8,). That is, [z—w| < 8, and |z—z'| < 8,,. This gives d(f(2), f(w)) < }e
and d(f(z"), f(w)) < }e; so that d(f(2), f(z") < € and & is equicontinuous
over K.

1.23 Arzela-Ascoli Theorem. A set F < C(G, Q) is normal iff the following
two conditions are satisfied:

(a) for each z in G, {f(2): fe F} has compact closure in Q;
(b) F is equicontinuous at each point of G.

Proof. First assume that & is normal. Notice that for cach z in G the map
of C(G, ) — Q defined by f ~ f(2) is continuous; since 7 is compact its
image is compact in 2 and (a) follows. To show (b) fix a point =, in ¢ and
lete > 0. 1f B -+ 0is chosen so that K B(z; R) ¢+ G then K is compact
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and Proposition 1.16 implies there are functions fi, ..., f, in & such that
for each fin & there is at least one f; with

1.24 sup {d(f(2), fu(2): z € K} < ; .

But since each f; is continuous there isa 8, 0 < 8 < R, such that |z—z,] < 8
implies that

d(fl2), filz0)) < §

for 1 < k < n. Therefore, if |z—z4| < 8, fe &, and k is chosen so that
(1.24) holds, then

d(f(2), f(zo)) < d(f(2), Sul2)) +d(fu(2), iz o)) +d(1il20), f(20))

< €

That is, & is equicontinuous at z,.

Now suppose & satisfies conditions (a) and (b); it must be shown that &
is normal. Let {z,} be the sequence of all points in G with rational real and
imaginary parts (so for z in G and 8 > O there is a z, with |z—z,] < 8). For
eachn > 1 let

X, = {fz):fe F}~ = Q;
from part (a), (X,, d) is a compact metric space. Thus, by Proposition 1.18,
X = n]j X, is a compact metric space. For fin & define f in X by
f = {fz), f(z2), . . .}.

Let {f;} be a sequence in & ; so {f,} is a sequence in the compact metric
space X. Thus there is a £ in X and a subsequence of {f,} which converges
to £ For the sake of convenient notation, assume that £ = lim fk. Again
from Proposition 1.18,

1.25 lim fi(z,) = {w,}

where £ = {w,}.

It will be shown that {f;} converges to a function fin C(G, ). By (1.25)
this function f will have to satisfy f(z,) = w,. The importance of (1.25) is
that it imposes control over the behavior of {f;,} on a dense subset of G. We
wfilé;use the fact that {f;} is equicontinuous to spread this control to the rest
of G.

To find the function fand show that {f,} converges to f it suffices to show
that {/;} is a Cauchy sequence. So let K be compact set in G and let € > 0;
by Lemma 1.7 it suffices to find an integer J such that for &k, j > J,

1.26 sup {d(fil2). =)z K} < e

Since K is compact R d(K, iG) - 0. Let K, {z:d(z, K) - }IR}; then
K, iscompactand K« int K, « K, « (. Since /# is equicontinuous at cach
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point of G it is equicontinuous on K, by Proposition 1.22. So choose 3,
0 < & < IR, such that

127 d(f@. S <

for all fin & whenever z and z’ are in K, with |z—2'| < 4. Noyv let D be
the collection of points in {z,} which are also points in K ; that is

D= {z,:z,¢K,}

If z € K then there is a z, with |z—z,| < 8; but 8 < LR gives that d(z,, K)
< 3R, or that z, € K,. Hence {B(w; 8): we D} is an open cover of K. Let
Wi, . .-, W, €D such that

k< U) Bw:; 9).
i1

Since lim f,(w;) exists for 1 < i < n (by (1.25)) there is an integer J such that
R—»>o

forj,k=J
128 dUw), f9) <

fori=1,...,n.
Let z be an arbitrary point in K and let w; be such that |w;—z| < 8. If
k and j are larger than J then (1.27) and (1.28) give

d(fil2), @) < dfil2), flwd) + d(filwd, f(wi) + d(f;(w), £(2))
< €.

Since z was arbitrary this establishes (1.26). Il

Exercises
t
1. Prove Lemma 1.5 (Hint: Study the function f(f) = T+t for t > —1)

2. Find the sets K, obtained in Proposition 1.2 for each of the following
choices of G: (a) G is an open disk; (b) G is an open annulus; (¢} G is t.he
plane with n pairwise disjoint closed disks removed; (d) G is an infinite strip;
(e)G =C-1Z.

3. Supply the omitted details in the proof of Proposition 1.18.

4. Let F be a subset of a metric space (X, d) such that F~ is compact. Show
that Fis totally bounded. .

5. Suppose {f,} is a sequence in C(G, €2) which converges to fand {z,}is a
sequence in G which converges to a point z in G. Show lim f,,(;,,) = f(2).
6. (Dini's Theorem) Consider C(G, R) and suppose that { .} is a sequence
in C(G, R) which is monotonicalty increasing (i.c., f(2) < fusa(2) for all
zin G) and lim f,(z) = f(z) for all = in G where f« C(G, R). Show that f, - f.
7. Let{f,} < C(G, ) and suppose that {£.) is equicontinuous. If /'« C(G, )
and f(z) = lim £,(z) for cach = then show that f, »/.
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8. (a) Let f be analytic on B(0; R) and let f(z) = ) a,z" for [z| < R. If
n n=0
f{(2) =Y az* show that f, > fin C(G; C).
k=0
(b) Let G = ann (0; 0, R) and let f be analytic on G with Laurent series

development f(z) = Y a,z2". Put f,(z) = ) az* and show that f, —f in
C(G; C). et e

§2. Spaces of analytic functions

Let G be an open subset of the complex plane. If H(G) is the
collection of analytic functions on G, we can consider H (G) as a subset of
C(G,C). We use H(G) to denote the analytic functions on G rather than
A(G) because it is a universal practice to let 4(G) denote the collection of
continuous functions f:G ~—C that are analytic in .G. Thus 4(G)#
H(G). The letter H is used in reference to “analytic” because the word
holomorphic is commonly used for analytic. Another term used in place of
analytic is regular.

The first question to ask about H(G) is: Is H(G) closed in C(G,C)?
The next result answers this question positively and also says that the
function f—f" is continuous from H (G) into H(G).

2.1 Theorem. If {{,} is a sequence in H(G) and f belongs to C(G, C) such that
f, = f then f is analytic and f® — f® for each integer k > 1.

Proof. We will show that f is analytic by applying Morera’s Theorem (IV.
5.10). So let T be a triangle contained inside a disk D =G. Since T is
compact, {f,} converges to f uniformly over 7. Hence [ f=lim{,f,=0
since each f, is analytic. Thus f must be analytic in every disk D = G; but
this gives that f is analytic in G.

To show that £{® — f® let D = B(a; r) < G; then there is a number
R > r such that B(a; R) < G. If y is the circle [z—a| = R then Cauchy’s
Integral Formula gives

kU [ fiw)—f(w)
K — £} = AL AL W
@ =0 = o |
v
for z in D. Using Cauchy’s Estimate,

®)(7)— FO) < KMaR
2.2 lfn (Z) f (Z)l < (R__r)k+1

where M, = sup {|f,(w)—f(W)|: [w—a| = R}. But since f, —f, lim M, = 0.
Hence, it follows from (2.2) that f® — f® uniformly on B(a; r). Now if K
is an arbitrary compact subset of G and 0 < r < d(K, 8G) then there are

for |z—a| < r,

ay,...,a,in K such that K < | ) B(a;; r). Since f{¥ — f® uniformly on
51

cach B(a,; r), the convergence is uniform on K. |l
We will always assume that the metric on #(G) is the metric which it
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inherits as a subset of C(G, C). The next result follows because C(G, C) is
complete.

2.3 Corollary. H(G) is a complete metric space.

2.4 Corollary. If f,: G — C is analytic and Y. f,(z) converges uniformly on
’ n=1

compact sets to f(z) then

0

9@ = Y £90).
n=1

It should be pointed out that the above theorem has no analogue in the
theory of functions of a real variable. For example it is easy to convince
oneself by drawing pictures that the absolute value function can be obtained
as the uniform limit of a sequence of differentiable functions. Also, it can
be shown (using a Theorem of Weierstrass) that a continuous nowhere
differentiable function on [0, 1] is the limit of a sequence of polynomials.
Surely this is the most emphatic contradiction of the corresponding theorem
for Real Variables. A contradiction in another direction is furnished by the

1
following. Let £,(x) = = x"for 0 < x < 1. Then 0 = u—lim f,; however the
n

sequence of derivatives {f,} does not converge uniformly on [0, 1].

To further illustrate how special analytic functions are, let us examine a
result of A. Hurwitz. As a consequence it follows that if f, — f and each f,
never vanishes then either f = O or f never vanishes.

2.5 Hurwitz’s Theorem. Let G be a region and suppose the sequence {f,} in
H(G) converges to f. If f#0, Bla; R) = G, and f(z) + 0 for |z—a] = R
then there is an integer N such that for n > N, f and f, have the same number
of zeros in B(a; R).

Proof. Since f(z) # O for [z—a] = R,
8 = inf {|f(2)|: |z—a| = R} > 0.

But f,—f uniformly on {z:]z —a|= R} so there is an integer N such that if
n>= N and |z—a|= R then

1)~ £, (<3< <l @I+ (2l

Hence Rouché’s Theorem (V.3.8) implies that f and f, have the same
number of zeros in B(a; R). B

2.6 Corollary. If {f,} = H(G) converges to f in H(G) and each f, never
vanishes on G then either = O or f never vanishes.

In order to discuss normal families in H(G) the following terminology is
needed.
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2.7 Definition. A set F < H(G) is locally bounded if for each point a in G
there are constants M and r > 0 such that for all fin &,

[f@Dl < M, for |z—a| < r.
Alternately, % is locally bounded if there is an r > 0 such that
sup {|f(@)]: [z—a| < r,fe F} < co.

Thgt is, # is locally bounded if about each point a in G there is a disk on
which & is uniformly bounded. This immediately extends to the requirement
that & be uniformly bounded on compact sets in G.

28 Lemma. 4 ser F in H(G) is locally bounded iff for each compact set
K < G there is a constant M such that

/@ < M

forall fin F and z in K.
The proof is left to the reader.

2.9 Montel’s Theorem. A family F in H(G) is normal iff F is locally bounded.

Proof. Suppose .# is normal but fails to be locally bounded; then there is a
compact set K < G such that sup {|f(z)|: ze K, fe F} = oo. That is, there
is a sequence {f,} in & such that sup {|f,(z)]: ze K} = n. Since % is normal
there is a function f in H(G) and a subsequence {f,,} such that f,, —f. But
this gives that sup {|f,(z2)—/(2)|: ze K} =0 as k — oo. If |f(z)| < M for
zin K,

n < sup {| /. (2)—f(2)|: ze K} + M;

since the right hand side converges to M, this is a contradiction.

Now suppose # is locally bounded; the Ascoli-Arzela Theorem (1.23)
will be used to show that & is normal. Since condition (a) of Theorem 1.23
is clearly satisfied, we must show that % in equicontinuous at each point
of G. Fix a point ¢ in G and ¢ > 0; from the hypothesis there is an r > 0
and M > 0 such that B(a; r) © G and |f(z)| < M for all z in B(a; r) and
for all fin F. Let |z—a| < 4r and fe & ; then using Cauchy’s Formula
with y(t) = a+re”, 0 < t < 2a,

o < L[ 00 @=2)
@@ = o |[ L2849

v

< am la—z|
r

Letting 8 < min {Qr, ny e} it follows that ja—z| < 8 gives | f(a)—/f(2)]

Ccforaltfin AR



154 Compactness and Convergence

2.10 Corollary. A set F < H(G) is compact iff it is closed and locally
bounded. :

Exercises

1. Let £, f1, f2, - - - be elements of H(G) and show that f, — f iff for each
closed rectifiable curve y in G, f,(z) — f(z) uniformly for z in {y}.

2. Let G be a region, let ae R, and suppose that f: [a, 0]xG—C is a
continuous function. Define the integral F(z) = [ f(t, z)dt to be uniformly
convergent on compact subsets of G if lim { f(¢, z)dt exists uniformly for z

b—w
in any compact subset of G. Suppose that this integral does converge uni-
formly on compact subsets of G and that for each ¢ in (a, ), f(t, -) is
analytic on G. Prove that F is analytic and

wipy — [ 8 2)
FP(2) J pan dt

3. The proof of Montel’s Theorem can be broken up into the following
sequence of definitions and propositions: (a) Definition. A set # < C(G, C)
is locally Lipschitz if for each a in G there are constants M and r > 0 such
that |f(z)—f(a)| < M|z—a|forall fin & and [z—a| < r. (b) If F = C(G,
C) is locally Lipschitz then .# is equicontinuous at each point of G. (c) If
F < H(G) is locally bounded then # is locally Lipschitz.
4. Prove Vitali’s Theorem: If G is a region and {f,} < H(G) is locally
bounded and f € H(G) that has the property that A={z € G:limf,(z)=
f(2)} has a limit point in G then f,—f.
5. Show that for a set & < H(G) the following are equivalent conditions:

(a) & is normal;

(b) For every e > O there is a number ¢ > 0 such that {¢f: fe F} <
B(0; €) (here B(O; «) is the ball in H(G) with center at 0 and radius e).
6. Show that if # < H(G)is normal then &' = {f': fe Z} is also normal.
Is the converse true? Can you add something to the hypothesis that &' is
normal to insure that % is normal?
7. Suppose.# is normal in H(G) and Q is open in C such that F(G) < Qfor
every fin#. Show that if g is analytic on  and is bounded on bounded sets
then {g o f: fe% } is normal.
8. Let D = {z: |z| < 1} and show that & < H(D) is normal iff there is a
sequence {M,} of positive constants such that lim sup M, <1 and if

fz) =Y az"isin F then|a,| < M, for all n.
4]

9. Let D=B(0; 1) and for 0<r<1 let v,(1)=e*", 0<t<1. Show that a
sequence { f,} in H (D) converges to f iff [ [f(:)—f,(2)| |dz|—0as n—o0
Y.

foreach r, 0<r<1.

10. Let {f,} < H(G) be a sequence of onc-one functions which converge
to £. Show that cither fis onc-one or fis a constant function.

/J).
§
i
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11. Suppose that {f,} is a sequence in H(G), f is a.non-constant function,
and f, - fin H(G). Let a € G and « = f(a); show that there is a sequence
{a,} in G such that: (i) a = lim a,; (ii) f,(a,) = « for sufficiently large n.
12. Show that lim tan nz = —i uniformly for z in any compact subset of
G={z:Imz > 0}.

13. (a) Show that if £ is analytic on an open set containing the disk B(a; R)
then

2n R

[f(@) < ;Iiifflf(a+rei°)|2 rdrd®.
50

(b) Let G be a region and let M be a fixed positive constant. Let # be
the family of all functions f in H (G) such that [ [|f(z)]? dxdy < M. Show
that % is normal. ¢

§3. Spaces of meromorphic functions

If G is a region and f is a meromorphic function on G, and if f(z) = o
whenever z is a pole of G then f: G — C, is a continuous function (Exercise
V. 3.4). If M(G) is the set of all meromorphic functions on G then consider
M(G) as a subset of C(G, C,) and endow it with the metric of C(G, C,).
In this section this metric space will be discussed as H(G) was discussed in
the previous section.

Recall from Chapter I that the metric d is defined on C,, as follows:
for z, and z, in C

2|z, —2z,]
d(zy, z;) = 2 ;
U A D) (U |
and for zin C
2
d(z, ©) = ———— .
) = ey
Notice that for non zero complex numbers z, and z,,
31 A1, 2) = d(i, l) :
Zy 2z
and forz # 0
32 d(z, 0) = d(l, oo>.
z

Also recall that if {z,} 1s a sequence in C and :zeC that satisfies
d(z,z,)—0 then |z — z,| 0.

Some facts about the relationship between the metric spaces € and €,
are summarized in the next proposition. In order to avoid confusion B(a; r)
will be used 1o designate a ball in C and B, (¢ r) to designate a balt in €
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3.3 Proposition. (a) If a is in C and r > 0 then there is a number p > 0 such
that B, (a; p) < B(a; r).

(b) Conversely, if p > 0 is given and a € C then there is a number r > 0
such that B(a; r) < B,(a; p).

(©) If p > O is given then there is a compact set K = C such that C,—K
< B (; p).

(d) Conversely, if a compact set K < C is given, there is a number p > 0
such that B (c0; p) = C,—K.

The proof is left to the reader.

The first observation is that M (G) is not complete. In fact if f,(z) = n
then {f,} is a Cauchy sequence in M(G). But {f,} converges to the function
which is identically oo in C(G, C,) and this is not meromorphic.

However this is the worst that can happen.

3.4 Theorem. Let {f,} be a sequence in M(G) and suppose f, — fin C(G, C,).
Then either f is meromorphic or f = oo. If each f, is analytic then either f is
analytic or f = .

Proof. Suppose there is a point a in G with f(a) # o and put M = |f(a)|.
Using part (a) of Proposition 3.3 we can find a number p > 0 such that
B_(f(a); p) = B(f(a); M). But since f, — f there is an integer n, such that
d(f.(a), f(a)) < 4p foralln > ny. Also {f, £}, f», - - -} is compact in C(G, C,)
so that it is equicontinuous. That is, there is an r > 0 such that |z—a| < r
implies d(f,(2), f.(a@)) < 4p. That gives that d(f,(z), f(a)) < p for |z—a| < r
and for n > n,. But by the choice of p, |£,(2)]| < |f(2)—f(@)|+]|f(a)| < 2M
for all z in B(a; r) and n = n,. But then (from the formula for the metric d)
2
(1+437%) [fl2)—=f(D)] < d(fi(2), f(2))

for z in B(a; r) and n = n,. Since d(f,(z), f(z)) = 0 uniformly for z in
B(a; r), this gives that |f,(z) —f(z)] — O uniformly for z in B(a; r). Since the
tail end of the sequence {f,} is bounded on B(a; r), £, has no poles and must
be analytic near z = aforn > n,. It follows that fis analytic in a disk about a.

Now suppose there is a point a in G with f(a) = co. For a function g in

C(G, C,) define ! by <1> (z) = 1 if g(z) # 0 or oo; <~1> (z) =0ifg(z) =
g " \& g2 g

1 1
o0; and (g) (z) = oo if g(z) = 0. It follows that ;’e C(G, C,). Also, since

. . 1 1
f.—fin C(G, C,) it follows from formulas (3.1) and (3.2) that — —» - in

n

1
C(G, C,). Now each function _ is meromorphic on G; so the preceding

n

: . ! 1
paragraph gives a number » > 0 and an integer #n, such that P and  arc

Jn

. . ! ! . .
analytic on B(a: r) for n - ny and -~ uniformly on B(a; r). I'rom
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1 1 .
Hurwitz’s Theorem (2.5) either j? =0 orj; has isolated zeros in B(a; ). So
1
f

with the first part of the proof we have that fis meromorphic in G if f'is not
identically infinite.

if f# co then — # 0 and f must be meromorphic in B(a; r). Combining this

1
If each f, is analytic then — has no zeros in B(a; r). It follows from

n

1 1 )
Corollary 2.6 to Hurwitz’s Theorem that either — = 0 or /; never vanishes.

. 1 . .
But since f(a) = o we have that ] has at least one zero; thus f= o in

B(a; r). Combining this with the first part of the proof we see that f = ooor f
is analytic. Il

3.5 Corollary. M(G) U {0} is a complete metric space.

3.6 Corollary. H(G) U {0} is closed in C(G, C).
To discuss normality in M(G) one must introduce the quantity

211@
1+|f(2)]*°

for each meromorphic function . However if z is a pole of f then the above
expression is meaningless since f'(z) has no meaning. To rectify this take the
limit of the above expression as z approaches the pole. To show that the
Jimit exists let a be a pole of f of order m > 1; then

An A,
f(2) = g(2) + (_zta)”' + ...+ (z—a)

for z in some disk about a and g analytic in that disk. For z # a

f'(2)=g'(z)——[4_'_n_4zn+“'+ A, ]

(z_a)m+1 (Z_a)z

Thus
5 mA,, . + A, ( )’
- - - 5, =gz
210 _ Je—am! (z—ap? ¢
I+f@)|? m A, N
I+ (z—a)" + .+ —a) + g(2)

2z=al" mAL A - () (@t
lz=al™ ¢ A, ... b A= P he(z)(z @)
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Soifmz= 2

i 277G
s L+ /()2

If m = 1 then
2f@a 2

im .
a1+ f@)* |44

3.7 Definition. If f is a meromorphic function on the region G then define
w(f): G—>Rby
2/

w(f) @) = L+ Q)P

whenever z is not a pole of f, and

2@l
=i —
W @ = lim T
if a is a pole of f.

It follows that u{f) e C(G, C).

The reason for introducing u(f) is as follows: If f: G — C_ is mero-
morphic then for z close to z* we have that d(f(z), f(z")) is approximated by
p() (2) |z—z'|. So if a bound can be obtained for u(f) then fis a Lipschitz
function. If f belongs to a family of functions and p(f) is uniformly bounded
for fin this family, then the family is a uniformly Lipschitz set of functions.
This is made precise in the following proof.

3.8 Theorem. A family & < M(G) is normal in C(G, C,) iff i(F) = {u(f):
fe F}is locally bounded.

2 :
Note. If £(z) = nz for n = 1 then u(f)) (z) = H-—n’;l’z? Thus & = (£} is

normal in C(G, C,) and u(%) is locally bounded. However, & is not
normal in M(G) since the sequence {f,} converges to the constantly infinite
function which does not belong to M(G).

Proof of Theorem 3.8. We will assume that u(#) is locally bounded and
prove that % is normal by applying the Arzela-Ascoli Theorem. Since C,,
is compact it suffices to show that % is equicontinuous at each point of G.
So let K be an arbitrary closed disk contained in G and let M be a constant
with u(f) (z) < M for all z in K and all fin . Let z and z’ be arbitrary

points in K.
Suppose neither z nor z’ are poles of a fixed function f in # and let
a > 0 be an arbitrary number. Choose points wy = z, w,, ..., w, =z’ in

K which satisfy the following conditions:

3.9 win [, . w] implics w is not a pole of f;
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310 Y |[we—wi_y| < 2z—2');
k=1
1+ lf(Wk)|2

e — 1 <, 1<k <n

[T+ LOnP) (L | DT
3z [fS0=0 ey 5w 1<k

W —Wr—y

IA

n.

To see that such points can be found select a polygonal path P in X satisfying
(3.9) and (3.10). Cover P by small disks in which conditions similar to (3.11)
and (3.12) hold, choose a finite subcover, and then pick points wy, ..., w,
on P such that each segment [w,_,, w,] lies in one of these disks. Then
{wo, ..., w,} will satisfy all of these conditions. If B, = [(1+]|f(ws_1)|?)
(1+[f(wy)]H)* then

df @D SEN < D dlfWe-y), f9)
k=1

n

Z 5, o =f0n-)

<2l

f(Wk) = f(wy— 1)

—Wg-1

=S W D| W —wi—y

n

+ Elf’(Wk—x)l [y~ wy |
k=1Fk

Using the fact that 2|f'(w)] < M(1+|f(w)|®) and the conditions on
Wg, . « . , W, this becomes

n

’ _1 —w < 1+'f(wk—1)|2
WELSED 5 22 3 o D) <~T—) T

< (Ba+2aM) |z—2| + z M |wo—wy_ |
< (4a+2aM+2M)z—2'|

Since « > 0 was arbitrary this gives that if z and z’ are not poles of f then
3.13 d(f(2),f(z)) < 2M|z-z'|.
Now suppose z° is a pole off but = is not. If wis in K and is not a pole
then it follows from (3.13) that
d(f(2), o) < dOf) SO +d(f(w), o)
Mz —w| Hd(f(w), o),
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Since it is possible to let w approach z’ without w ever being a pole of f
(poles are isolated!), this gives that f(w) — f(z') = o and [z—w|— |z—z'].
Thus (3.13) holds if at most one of z and z’ is a pole. But a similar procedure
gives that (3.13) holds for all zand z" in K. Soif K = B(a; r) and € > 0 are
given then for 8§ < min {r, ¢/2M} we have that |[z—a| < & implies d(f(2),
/(@) < €, and § is independent of f'in . This gives that & is equicontinuous
at each point a in G.
The proof of the converse is left to the reader. Il

Exercises

1. Prove Proposition 3.3.
2. Show that if & < M(G) is a normal family in C(G, C,) then w(¥) is
locally bounded.

§4. The Riemann Mapping Theorem

We wish to define an equivalence relation between regions in C. After
doing this it will be shown that all proper simply connected regions in C
are equivalent to the open disk D = {z: |z| < 1}, and hence are equivalent
to one another.

4.1 Definition. A region G, is conformally equivalent to G, if there is analytic
function f: G, — C such that f is one-one and f(G,) = G,. Clearly, this is
an equivalence relation.

It is immediate that C is not equivalent to any bounded region by
Liouville’s Theorem. Also it is easy to show from the definitions that if G,
is simply connected and G, is equivalent to G, then G, must be simply
connected. If 1 is the principal branch of the square root then f is one-one
and shows that C— {z: z < 0} is equivalent to the right half plane.

4.2 Riemann Mapping Theorem. Let G be a simply connected region which is
not the whole plane and let a G. Then there is a unique analytic function
f: G — C having the properties:

(a) fla) = 0 and f'(a) > O;

(b) fis one-one;
(©) (G) = {z:]z] < 1}.

The proof that the function f is unique is rather easy. In fact, if g also
has the properties of fand D = {z: |z| < 1} thenfog™': D — D is analytic,
one-one, and onto. Also fog~(0) = f(a) = 0 so Theorem VI. 2.5 implies
there is a constant ¢ with |¢] = 1 and fog~'(z) = cz for all z. But then
f(z) = cg(z) gives that 0 < f'(a) = cg’(a); since g'(a) > O it follows that
c=1l,orf=g

To motivate the proof of the existence of f, consider the family F of all
analytic functions f having properties (a) and (b) and satisfying |f(2)] < |
for zin G. The idea is to choose a member of .# having property (¢). Suppose
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{K.,} is a sequence of compact subsets of G such that | ] K, = G and ae K,
n=1

for each n. Then {f(K,)} is a sequence of compact subsets of D = {z: |z]
< 1}. Also, as n becomes larger f(K,) becomes larger and larger and tries to
fill out the disk D. By choosing a function f in & with the largest possible
derivative at a, we choose the function which “‘starts out the fastest” atz = a.
It thus has the best possible chance of finishing first; that is, of having

G f(K) = D.

Before carrying out this proof, it is necessary for future developments
to point out that the only property of a simply connected region which will
be used is the fact that every non-vanishing analytic function has an analytic
square root. (Actually it will be proved in Theorem VIII. 2.2 that this property
is equivalent to simple connectedness.) So the Riemann Mapping Theorem
will be completely proved by proving the following.

4.3 Lemma. Let G be a region which is not the whole plane and such that
every non-vanishing analytic function on G has an analytic square root. If a e G
then there is an analytic function f on G such that:

(a) f(a) = O and f"(a) > O;
(b) fis one-one;

© f(G=D= {z:|z] < 1}.
Proof. Define & by letting
F = {fe H(G):fis one-one, f(a) = 0, f'(a) > 0, f(G) < D}

Singe f(G) < D, sup {|f(z)|: ze G} < 1 for fin #; by Montel’s Theorem
& is normal if it is non-empty. So the first fact to be proved is

4.4 F # 0O
It will be shown that
4.5 F~=F U o).

Once these facts are known the proof can be completed. Indeed, suppose (4.4)
and (4.5) hold and consider the function f— f’(a) of H(G) — C. This is a
continuous function (Theorem 2.1) and, since % ~ is compact, there is an
fin F~ with f'(a) = g'(e) for all g in F. Because . # [, (4.5) implies
that fe #. It remains to show that f(G) = D. Suppose w e D such that
w ¢ f(G). Then the function

f@)~w

1-af(2)
is analytic in G and never vanishes. By hypothesis there is an analytic function
h: G — C such that

4.6 ey = T
] I @f(z)
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Since the Mobius transformation T{ = ll%;ig maps D onto D, H{G) < D.
Define g: G — C by

|h'(@)| h(z)—h(a)
h(a@) 1-h@h(z)

Then g(G) < D, g(a) == 0, and g is one-one (why?). Also
_ @] k(@) [1-|h@)’)

g(z) =

O v -haP
_ _Ir@)|
1-|h(a)|?
But |A(a)|* = | —w| = |w| and differentiating (4.6) gives (since f(a) = 0) that
2h(@)h'(@) = f'(@) (1= o).
Therefore 1 , 1
, (@) (1 —|w
£@ =" e
o [ L1]
=@ (3 i)
> f(@
This gives that g is in % and contradicts the choice of f. Thus it must be
that f(G) = D.

Now to establish (4.4) and (4.5). Since G # C, let be C—G and let g
be a function analytic on G such that [g(z)}* = z—b. If z; and z, are points
in G and g(z,) = +g(z,) then it follows that z, = z,. In particular, g is
one-one. By the Open Mapping Theorem there is a number r > 0 such that

4.7 , 8(G) = B(g(a); n

So if there is a point z in G such that g(z) € B(—g(a); r) then r > |g(z)+g(a)]
= |—g(z)—g(a)|. According to (4.7) there is a w in G with g(w) = —g(z);
but the remarks preceding (4.7) show that w = z which gives g(z) = 0. But
then z—b = [g(z)}* = O implies 4 is in G, a contradiction. Hence

4.8 g@) N {L:[t+g(@)] < r} =1

Let U be the disk {{: [{+g(a)] < r} = B(—g(a); r). There is a Mobius
transformation 7 such that T(C,—~U~) = D. Let g, = Tog; then g, is
analytic and g,(G) < D. If « = g,(a) then let g,(z) = ¢,  g,(2); so we still
have that g,(G) = D and g, is analytic, but we also have that g,(a) = 0.
Now it is a simple matter to find a complex number ¢, |¢] = 1, such that
21(2) = cg,(z) has positive derivative at z = a and is, thercfore, in #.
This establishes (4.4).
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Suppose {f,} is a sequence in & and f, —f in H(G). Clearly f(a) = 0
and since f,(a) — f(a) it follows that

4.9 f(a > 0.

Let z; be an arbitrary element of G and put { = f(z,); let {, = f,(z,). Let
2,€G, z; # z, and let K be a closed disk centered at z, such that z, ¢ K.
Then f,(z) - {, never vanishes on K since £, is one-one. But f,(z)— £, — f(z)— ¢
uniformly on K, so Hurwitz’'s Theorem gives that f(z) —{ never vanishes on
Kor f(z) = {. If f(z) = { on K then f'is the constant function { throughout
G; since f(a) = 0 we have that f(z) = 0. Otherwise we get that f(z,) # f(z,)
for z, # z;; that is, fis one-one. But if fis one-one then f” can never vanish;
so (4.9) implies that f’(a) > 0 and f'is in % . This proves (4.5) and the proof
of the lemma is complete. [l

4.10 Corollary. Among the simply connected regions there are only two
equivalence classes; one consisting of C alone and the other containing all the
proper simply connected regions.

Exercises

1. Let G and Q be open sets in the plane and let f: G — Q be a continuous
function which is one-one, onto, and such that £ ~!: Q — G is also continuous
(a homeomorphism). Suppose {z,} is a sequence in G which converges to a
point z in @G; also suppose that w = lim f(z,) exists. Prove that w e 8Q.
2. (a) Let G be a region, let a e G and suppose that f: (G— {a}) — C is an
analytic function such that /(G- {a}) = Q is bounded. Show that f has a
removable singularity at z = a. If £ is one-one, show that f(a) € 8Q.

(b) Show that there is no one-one analytic function which maps G =
{z: 0 < |z| < 1} onto an annulus Q = {z: r < |z] < R} where r > 0.
3. Let G be a simply connected region which is not the whole plane and
suppose that z € G whenever zeG. Let a e GN R and suppose that f:
G — D = {z: |z} < 1} is a one-one analytic function with f(a) = 0, f"(a)>0
and f(G) = D. Let G, ={zeG: Im z > 0}. Show that f(G,) must lie
entirely above or entirely below the real axis.
4. Find an analytic function f which maps {z: |z] < 1, Re z > 0} onto
B(0; 1) in a one-one fashion.
5. Let f be analytic on G = {z: Re z > 0}, one-one, with Re f(2) > 0 for
all zin G, and f(a) = a for some real number a. Show that [f"(a)| < 1.
6. Let G, and G, be simply connected regions neither of which is the whole
plane. Let f'be a one-one analytic mapping of G, onto G,. Let ae G, and
put « = f{a). Prove that for any one-one analytic map 4 of G, into G, with
a) = « it follows that |A'(a)] < |f'(a)|. Suppose A is not assumed to be
one-one; what can be said?
7. Let G be a simply connected region and suppose that G is not the whole
planc. Let A = {£: |£] < 1} and suppose that fis an analytic, onc-onc map
of G onto A with f(a) —- 0 and f"(¢) - O for some point @ in G. Let g be
any other analytic, onc-one map of  onto .\ and express g in terms of f.
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8. Let r, ry, R;, R,, be positive numbers such that R,/r; = R,/r,; show
that ann (0; r;, R,) and ann (0; r,, R,) are conformally equivalent. (The
converse of this is presented in Exercise X. 4.)

9. Show that there is an analytic function f defined on g=ann(0;0, 1) such
that f* never vanishes and f(G)= B(0; 1).

§5. The Weierstrass Factorization Theorem

The notion of convergence in H(G) can be used to solve the following
problem. Given a sequence {g,} in G which has no limit point in G and a
sequence of integers {m,}, is there a function f which is analytic on G and
such that the only zeros of fare at the points @, with the multiplicity of the
zero at @, equal to m,? The answer to the question is yes and the result is due
to Weierstrass.

If there were only a finite number of points, ay,...,a, then f(z) =
(z—a)™...(z—a,)™ would be the desired function. What happens if there
are infinitely many points in this sequence? To answer this we must discuss
the convergence of infinite products of numbers and functions.

Clearly one should define an infinite product of numbers z, (denoted

by [] z,) as the limit of the finite products. Observe, however, that if one of

n=1
the numbers z, is zero, then the limit is zero, regardless of the behavior of
the remaining terms of the sequence. This does not present a difficulty, but
it shows that when zeros appear, the existence of an infinite product is
trivial.

5.1 Definition, If {z,} is a sequence of complex numbers and if z = lim [] z,
k=1

exists, then z is the infinite product of the numbers z, and it is denoted by

s}
z= ][] z.
n=1

s}
Suppose that no one of the numbers z, is zero, and that z = [] z, exists

n=1

n
and is also not zero. Let p, =[]z, for n > 1; then no p, is zero and”
k=1

Pn
Dn-1
for the cases where zero appears, a necessary condition for the convergence
of an infinite product is that the n-th term must go to 1. On the other hand,
note that for z, = a for all n and |a| < 1, []z, = O although lim z, = a # 0.

Because of the fact that the exponential of a sum is the product of the
exponentials of the individual terms, it is possible to discuss the convergence
of an infinite product (when zero is not involved) by discussing the con-
vergence of the series ). log z,, where log is the principal branch of the
logarithm. However, before this can be made meaningful the =, must be

= z,. Since z # 0 and p, — z we have that lim z, = 1. So that except
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restricted so that log z, is meaningful. If the product is to be non-zero, then
z, — 1. So it is no restriction to suppose that Re z, > 0 for all n. Now

n
suppose that the series Y. log z, converges. If 5, = > log z, and s, — s then
n © k-1
exp s, —exp 5. Butexp s, = [] z; so that [] z, is convergent to z = € # 0.
k=1 n=1

5.2 Proposition. Let Re z, > O for all n > 1. Then || z, converges to a non

n=1

o0
zero number iff the series Y log z, converges.

n=1
Proof. Let p, = (z,"**2,), z = ré”, —= < 0 < =, and #(p,) = log |p,|+i0,
where 0—7 < 0, < 0+7. If 5, = log z; + - - - +log z, then exp (s,) = p, so
that s, = #p,)+2=ik, for some integer k,. Now suppose that p, —> z. Then
Sy—S,—; = log z, — 0; also #p,)~Ap,-,) = 0, Hence, (k,—k,_,) >0 as
n — oo, Since each k,, is an integer this gives that there is an n, and a & such
that k, = k, = k for m, n > ny. So s, — £(z)+2xik; that is, the series
Y log z, converges. Since the converse was proved above, this completes the
proof.
Consider the power series expansion of log (1+2z) about z = 0:

et n 2
log(1+2) = —ytE =y
g(1+2) Z( yoe S
which has radius of convergence 1. If {z| < 1 then

_log(1+2)
V4

= [4z—%z%+.. |

’1

If we further require |z| < % then

\l_lo_g(iz) <1

z

This gives that for |z| < %
5.3 z| < flog (1+2)] < 3z].
This will be used to prove the following result.

5.4 Proposition. Let Re z, > —1; then the series Y log (1+2z,) converges
absolutely iff the series Y. z, converges absolutely.

Proof. If ¥ |z,| converges then z, —0; so eventually |z,] < 4. By (5.3)
Y llog (1 +2z,)] is dominated by a convergent series, and it must converge
also. If, conversely, Y. |log (1+:z,)] converges, then it follows that |z,] < 4
for sufficiently large n (why?). Again (5.3) allows us to conclude that Y |z,|
converges. li '
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We wish to define the absolute convergence of an infinite product. The
first temptation should be avoided. That is, we do not want to say that
IT |z converges. Why? If [] |z,| converges it does not follow that [] z,
converges. In fact, let z, = —1 for all n; then |z,| = 1 for all n so that
I |z.] converges to 1. However [T z is +1 depending on whether 7 is even

k=1
or odd, so that [] z, does not converge. Thus, if absolute convergence is to
imply convergence, we must seek a different definition.

On the basis of Proposition 5.2 the following definition is justified.

5.5 Definition. If Re z, > O for all n then the infinite product I] z. is said to
converge absolutely if the series Y log z, converges absolutely.

According to Proposition 5.2 and the fact that absolute convergence of
a series implies convergence, we have that absolute convergence of a product
implies the convergence of the product. Similarly, if a product converges
absolutely then any rearrangement of the terms of the product results in a
product which is still absolutely convergent. If we combine Propositions 5.2
and 5.4 with the definition, the following fundamental criterion for con-
vergence of a infinite product is obtained.

5.6 Corollary. If Re z, > O then the product [] z, converges absolutely iff
the series Y. (z,— 1) converges absolutely.

Although the preceding corollary gives a necessary and sufficient con-
dition for the absolute convergence of an infinite product phrased in terms
with which we are familiar, it does not give a method for evaluating infinite
products in terms of the corresponding infinite series. To evaluate a particular
product one must often resort to trickery.

We now apply these results to the convergence of products of functions.
A fundamental question to be answered is the following. Suppose { 1.} is a
sequence of functions on a set X and f,(x) — f(x) uniformly for x in X;
when will exp (f,(x)) — exp (f(x)) uniformly for x in X? Below is a partial
answer which is sufficient to meet our needs.

5.7 Lemma. Let X be a set and let f, fi, fa» - - . be functions from X into C
such that f,(x) — f(x) uniformly for x in X. If there is a constant a such that
Re f(x) < afor all x in X then exp f,(x) — exp f(x) uniformly for x in X.

Proof. If € > 0is given then choose 8 > 0 such that [¢*—1| < e ™ whenever
|z} < 8. Now choose n, such that |f,(x)—f(x)| < 8 for all x in X whenever
n > ny. Thus

ce™® > |exp [f,(x) —f(N]-1]
expful®) _
exp f(x)

It follows that for any x in X and for n = n,,

lexp fu(x)—exp f(x)| < ee™ lexpf(¥)] < « I

5.8 Lemma. Let (X, d) be a compact metric space and let {g,} he a sequence
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of continuous functions from X into C such that ) g,(x) converges absolutely
and uniformly. for x in X. Then the product

1@ = IT a+8,69)

converges absolutely and uniformly for x in X. Also there is an integer n, such
that f(x) = 0iff g(x) = —1 for some n, 1 < n < n,.

Proof. Since Y g,(x) converges uniformly for x in X there is an integer n,
such that |g,(x)| < 4 forall xin X and n > .n,. This implies that Re [1+g,(x)]
> 0 and also, according to inequality (5.3), |log (1+g,(x))] < 3 |g.(x)| for
all n > ng and x in X. Thus

<«

h(x) = 3 log(l+g,(x))
n=no+1
converges uniformly for x in X. Since # is continuous and X is compact it
follows that 2 must be bounded; in particular, there is a constant a such that
Re A(x) < afor all x in X. Thus, Lemma 5.7 applies and gives that

exp h(x) = ) (1+,(x))
n=no+
converges uniformly for x in X.
Finally,

J&) = [1+g,()] " -[1 +g,,(x)] exp A(x)

and exp A(x) # 0 for any x in X. So if f(x) = O it must be that g,(x) = —1
for some nwithl <n <n, B

We now leave this general situation to discuss analytic functions.

5.9 Theorem. Let G be a region in C and let {f,} be a sequence in H(G) such
that no f, is identically zero. If Y [f,(z)— 1] converges absolutely and uniformly
@K

on compact subsets of G then [ | f,(z) converges in H(G) to an analytic function

n=1

J(2). If ais a zero of f then a is a zero of only a finite number of the functions
[ and the multiplicity of the zero of f at a is the sum of the multiplicities of the
zeros of the functions f, at a.

Proof. Since Y [f,(z)—1] converges uniformly and absolutely on compact
subsets of G, it follows from the preceding theorem that f(z) = []fi(2)
converges uniformly and absolutely on compact subsets of G. That is, the
infinite product converges in H(G).

Suppose f(a) = 0 and let r > 0 be chosen such that B(a; r) < G. By
hypothesis, 3 [f,(z) — 1] converges uniformly on B(a; r). According to Lemma
5.8 there is an integer n such that f(z) = f1(z). .. f,(2)g(z) where g does not
vanish in B(a; r). The proof of the remainder of the theorem now follows. |}

Let us now return to a discussion of the original problem. If {a,} is a
sequence in a region G with no limit point in ¢ (but possibly some point
may be repeated in the sequence a finite number of times), consider the
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functions (z — a,). According to Theorem 5.9 if we can find functions g,(z)
which are analytic on G, have no zeros in G, and are such that
=|(z —a,)g,(z)— 1| converges uniformly on compact subsets of G; then f(z)=
II(z — a,)g,(2) is analytic and has its zeros only at the points z = a,,. The saf-
est way to guarantee that g,(z) never vanishes is to express it as g, (z)=exp
h,(z) for some analytic function A,(2). In fact, if G is simply connected it
follows that g,(z) must be of this form. The functions we are looking for
were introduced by Weierstrass.

5.10 Definition. An elementary factor is one of the following functions E,(z)
forp=0,1,...:
EO(Z) = 1_2’
2 Zp

z
Ef(2) = (1—z)exp(z+3 + ... +;>,p > L.

The function E,(z/a) has a simple zero at z = a and no other zero. Also
-b . .
if b is a point in C—G then E} g——l—)> has a simple zero at z = a and is
Z —

analytic in G. These functions will be used to manufacture analytic functions
with prescribed zeros of prescribed multiplicity, but first an inequality must
be proved which will enable us to apply Theorem 5.9 and obtain a con-
vergent infinite product.

511 Lemma. If |z| < 1 and p 2 0 then |1-E/2)] < [z]P* 1.

Proof. We may restrict our attention to the case where p = 1. For a fixed
plet

E() =1+ ) a7
K=1

be its power series expansion about z = 0. By differentiating the power
series as well as the original expression for E,(z) we obtain

Efz) = k_lkakz"'1

ZP
= —z”exp(z + ... +—>
p

Comparing the two expressions gives two pieces of information about the
coefficients a,. First, a; = a, = ... = a, = 0; second, since the coefficients

p
of the expansion of exp (Z +ooF Z—) are all positive, @, < 0 fork > p+1.
P
Thus, |a| = —a, for k = p+1; this gives
0=EM =1+ Y 4.
k

=p+1
or

o g

Y olal - —AZ a, - 1.

A=pol —-pl
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Hence, for |z] < 1,

E@-1=] T a

l
k=p+

o0
= lz|p+1 |k=;+1 akzk—p—1l

joe)

S|Z|p+1 Z lal

k=p+1

= |z

which is the desired inequality. |l

Before solving the general problem of finding a function with prescribed
zeros, the problem for the case where G = C will be solved. This is done for
several reasons. In a later chapter on entire functions the specific information
obtained when G is the whole plane is needed. Moreover, the proof of the

general case, although similar to the proof for C, tends to obscure the rather
simple idea behind the proof.

5.12 Theorem. Let {a,} be a sequence in C such that lim |a,| = w0 and a, # 0
Jor all n = 1. (This is not a sequence of distinct points; but, by hypothesis, no

point is repeated an infinite number of times.) If {p,} is any sequence of integers
such that

@ -+ 1
5.13 Z (iar ),, < o

Sfor all r > 0 then

f@) = ﬁ; E, (z/a,)

converges in‘ H(C). The function f is an entire function with zeros only at the
points a,. If z, occurs in the sequence {a,} exactly m times then f has a zero
at z = zy of multiplicity m. Furthermore, if p, = n—1 then (5.13) will be
satisfied.

Proof. Suppose there are integers p, such that (5.13) is satisfied. Then,
according to Lemma 5.11,

l 1 - EPn(Z/an)I <

z pntl r pntl

J— S —

a, (I%I)

whenever |z] < r and r < |a,|. For a fixed r > 0 there is an integer N such
tha} la,| = rforall n = N (because lim |a,| = c0). Thus for each r > 0 the
series Yl —Ep"(.z/a,.,) | - is dominated by the convergent series (5.13) on the
disk B(0; r). This gives that Z [1-E, (z/a,)] converges absolutely in H(C).

By Theorem 5.9, the infinite product || £, (z/a,) converges in H(C).
n 1

To show that {p, ) can be found so that (5,13 holds for all r is a trivial
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matter. For any r there is an integer N such that la,] > 2r for all n > N.

This gives that <—r|> < for all n > N; so if p, = n—1 for all n, the tail

I n

end of the series (5.13) is dominated by Y. (3)". Thus, (5.13) converges. W

There is, of course, a great latitude in picking the integers p,. If p, were
bigger than n—1 we would have the same conclusion. However, there is an
advantage in choosing the p, as small as possible. After all, the smaller the
integer p, the more elementary the elementary factor E, (z/a,). As is evident
in considering the series (5.13), the size of the integers p, depends on the rate
at which {|a,|} converges to infinity. This will be explored later in Chapter
XI.

5.14 The Weierstrass Factorization Theorem. Let f be an entire function and
let {a,} be the non-zero zeros of f repeated according to multiplicity; suppose
f has a zero at z=0 of order m>0 (a zero of order m=0 at z=0 means
f(0)50). Then there is an entire function g and a sequence of integers {p,}

such that
= z
— smu9(z) E i
f@) = zme H o <>

Proof. According to the preceding theorem integers {p,} can be chosen such
that

hz) =" ]_—[ E,, <ai>
n=1 "

has the same zeros as f with the same multiplicities. It follows that f(z)/h(z)
has removable singularities at z = 0, a;, a,,... . Thus f/h is an entire
function and, furthermore, has no zeros. Since C is simply connected there
is an entire function g such that

@
IKZ—)_e()

The result now follows. i

5.15 Theorem. Let G be a region and let {a;} be a sequence of distinct points
in g with no limit point in G; and let {m;} be a sequence of integers. Then there
is an analytic function f defined on G whose only zeros are at the points a;;
furthermore, a; is a zero of f of multiplicity m;.

Proof. We begin by showing that it suffices to prove this theorem for the
special case where there is a number R > 0 such that

5.16 {z:|z] > R} = Gand|a;| < Rforallj > L.

It must be shown that with this hypothesis there is a function fin H(G)

with the ¢,'s as its only zeros and m,  the multiplicity of the seroat z - aj;

Weierstrass Factorization Theorem 1M
and with the further property that

517 lim f(z) = 1.
In fact, if such an f can always be found for a set satisfying (5.16), let G, be
an arbitrary open set in C with {«;} a sequence of distinct points in G, with
no limit point, and let {m;} be a sequence of integers. Now if Ba;risa
disk in G, such that «; ¢ B(a; r) for all j = 1, consider the Mobius trans-
formation 7z = (z—a) L. Put G = T(G,); it is easy to see that G satisfies
condition (5.16) where a; = Ta; = (x;—a)~". If there is a function f in
H(G) with a zero at each a; of multiplicity m;, with no other zeros, and such
that f satisfies (5.17); then g(z) = f(T7) is analytic in G, — {a} with a remov-
able singularity at z = a. Furthermore, g has the prescribed zero at each «;
of multiplicity »z;.

So assume that G satisfies (5.16). Define a second sequence {z,} consisting
of the points in {a;}, but such that each a; is repeated according to its multi-
plicity m;. Now, for each n > 1 there is a point w, in C— G such that

IW,,—‘Z,.I = d(Z", C_G)

Notice that the hypothesis (5.16) excludes the possibility that G = C unless
the sequence {a;} were finite. In fact, if {a;} were finite the theorem could
be easily proved so it suffices to assume that {a;} is infinite. Since |a;] < R
for all j and {a;} has no limit point in G it follows that C—G is non-empty as
well as compact. Also,

lim |z,—w,| = 0.

En <Zn_wn> :
zZ—w,

each has a simple zero at z = z,. It must be shown that the infinite product
of these functions converges in H(G).

To do this let X be a compact subset of G so that d(C—G, K) > 0. For
any point z in K

Consider the functions

Zp— W,
S |zn_wn| [d(wm K)]_l

zZ—w,
< |Zn_wn] [d(C_G, K)]—l
It follows that for any 8, 0 < § < 1, there is an integer N such that

Z,—W,
o

z—w,

for all zin K'and n > N. But then Lemma 5.11 gives that

5.18 E, ("~‘ “'~> 1
=W,

< 8u+l
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for all z in K and n > N. But this gives that the series
o
Zp— W,
>
fos Z—w,
converges uniformly and absolutely on K. According to Theorem 5.9

= Zp— W,
f(z>=1_[En(Z__wn)

n=1

converges in H(G), so that fis an analytic function on G. Also, Theorem 5.9
implies that the points {a;} are the only zeros of f and m; is the order of the
zero at z = a; (because a; occurs m; times in the sequence {z,}). To show
that lim f(z) = 1, let ¢ > 0 be an arbitrary number and let R, > R (R, will

Z—>0

be further specified shortly). If |z] = R, then, because |z,| < R and w,e C—
G < B(0; R),

2R
< R—R

|2, —w,

|z—w,l
So, if we choose R; > R so that 2R < 8(R, —R) for some 8, 0 <8 < 1,
(5.18) holds for |z] = R, andforall n = 1. In particular, Re En<z,.—wn> 50

Z—W

n

for all »n and |z] > R,; so that

exp (Z log E, <ZZ"::">> - 1;
n=1 n

is a meaningful equation. On the other hand (5.3) and (5.18) give that

& zZ,—W
E logE,,("—") <
= zZ—-w,

5.19 1f(2)—1] =

A
[\t

IA
M
N W

for |z| = Ry. If we further restrict § so that |¢*—1| < € whenever

3/ &?
[w] < ],
2\1-8
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then equation (5.19) gives that |f(z)—1| < e whenever [z] = R,. That is,
limf(z)=11

Z=—>» 00

One of the more interesting results that follows from the above theorem
says (in algebraic terms) that M(G) is the quotient field of the integral
domain H(G). Avoiding this language the result is as follows.

5.20 Corollary. If f is a meromorphic function on an open set G then there are
analytic functions g and h on G such that f = g/h.
-

Proof. Let {a;} be the poles of fand let m; be the order of the pole at a;.
According to the preceding theorem there is an analytic function 4 with a
zero of multiplicity m; at each z = a; and with no other zeros. Thus 4f has
removable singularities at each point a;. It follows that g = hf is analytic in

4

Exercises

1. Show that [] (1+z,) converges absolutely iff [T (1+]z,]) converges.

log(1+:z
2. Prove that lim -L) = 1.
z—0

3. Let fand g be analytic functions on a region G and show that there are
analytic functions f;, g, and 4 on G such that f(z) = h(z)f,(2) and g(z) =
h(z)g{z) for all z in G; and f; and g; have no common zeros.

4. (a) Let 0 < |a| < 1 and |z] < r < I; show that

1+r
T i-r

la+]a| z
\(1-az)a

(b) Let {a,} be a sequence of complex numbers with 0 < |a,| < 1 and
> (1—|a,]) < oo. Show that the infinite product

= 1anl a,—2
B(z) = STl
@ g a, \1—-a,z
converges in H(B(0; 1)) and that |B(zj| < 1. What are the zeros of B?
(B(z) is called a Blaschke Product.)
(c) Find a sequence {a,} in B(0; 1) such that ) (1—|a,]) < oo and every
number €% is a limit point of {a,}.

5. Discuss the convergence of the infinite product 1—[ 1 for p > 0.
n=1 n?

6. Discuss the convergence of the infinite products [ | [1 + lf] and Hll + -l).
n n

= 1 I
. Show thatH(l - ”2> =,
n 2

8. For which values of = do the products ﬂ (1-z")and n (142" converge?
Is there an open set G such that the product converges uniformly on cach
compict subset of G 1f so, give the fargest such open set.

~J
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9. Use Theorem 5.15 to show there is an analytic function fon D = {z: |z|
< 1} which is not analytic on any open set G which properly contains D.
10. Suppose G is an open set and {f,} is a sequence in H(G) such that
Sf(2) =[] /.2) converges in H(G). (a) Show that

5 o [ a0
k=1 n¥k

converges in H(G) and equals f7(z). (b) Assume that fis not the identically
zero function and let K be a compact subset of G such that f(z) # 0 for all
z in K. Show that

r@_ 31
@) &= )

and the convergence is uniform over K.
11. A subset £ of H(G), G a region, is an ideal iff: (i) f and g in £ implies
af+bgisin f for all complex numbers @ and b; (i) fin .# and g any function in
H(G) implies fg is in £. . is called a proper ideal if # # (0) and # # H(G);
F is a maximal ideal if .# is a proper ideal and whenever £ is an ideal with
J < F then either £ = £ or # = H(G); . is a prime ideal if whenever
fand ge H(G) and fg € £ then either fe £ or ge £. If fe H(G) let Z(f)
be the set of zeros of f counted according to their multiplicity. So Z((z—a)?)
= {a,a,a}. If ¥ < H(G) then Z(F) = N {Z(f): feF}, where the zeros
are again counted according to their multiplicity. So if & = {(z—a)* (z—b),
(z—a)?*} then Z(¥) = {q, a}.

(a) If fand g € H(G) then f divides g (in symbols, f|g) if there is an A in
H(G) such that g = fh. Show that fg iff Z(f) < Z(g).

(b) If & < H(G) and & # [] then f is a greatest common divisor of
& if: (i) f|g for each g in H(G) and (ii) whenever A|g for each g in H(G),
hlf. In symbols, f = g.c.d&. Prove that f = g.cd¥. iff Z(f) =2Z(¥)
and show that each non-empty subset of H(G) has a g.c.d.

© If A< G let F(A) = {fe HG): Z(f) > A}. Show that F(4) is a
closed ideal in H(G) and #(4) = (0) iff 4 has a limit point in G.

(d) Let ae G and # = SF({a}). Show that .# is a maximal ideal.

(e) Show that every maximal ideal in H(G) is a prime ideal.

(f) Give an example of an ideal which is not a prime ideal.
12. Find an entire function f such that f(n+in) = 0 for every integer n

(positive, negative or zero). Give the most elementary example possible (i.e.,

choose the p, to be as small as possible).
13. Find an entire function f such that f(m+in) = 0 for all possible integers
m, n. Find the most elementary solution possible.

§6. Factorization of the sine function

In this section an application of the Weierstrass Factorization Theorem
to sin =z is given. If an infinite sum or product is followed by a prime
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(apostrophe) (i.e., )" or 1), then the sum or product is to be taken over all
the indicated indices n except n = 0. For example,

o0 o0 0
Y ay=Y a.,+ Y a,
n=1 n=1

n=—ow

. | y . .
The zeros of sin 7z = 2 (e'™* —e ™ '™*) are precisely the integers; moreover,
I

S () <o

n=-—oo

each zero is simple. Since

for all » > 0, one can (5.13) choose p, = 1 for all n in the Weierstrass
Factorization Theorem. Thus

sin 7z = [exp g(2)] z I_I' (1 - g) en;

n=—ow

or, because the terms of the infinite product can be rearranged,

@ 2
6.1 sinnz = [expg(@) = | | ( 1 - %)
n=1

for some entire function g(z). If f(z) = sin =z then, according to Theorem 2.1,
1@
1@

, 1 X 2z
=g(z)+;+ ;zz—nz

and the convergence is uniform over compact subsets of the plane that
contain no integers (actually, a small additional argument is necessary to
justify this—see Exercise 5.10). But according to Exercise V. 2.8,

+ i 2z
z2—n?
n=1

for z not an integer. So it must be that g is a constant, say g(z) = a for all z.
It follows from (6.1) that for 0 < |z| < 1

. [+ o]
sinmz  e* H . z?
wZ m n2
n=1

Letting z approach zero gives that e* = «. This gives the following:

o0 ‘.2
6.2 . sinwz = 7z | l (l — b'2>
rei n

and the convergence is uniform over compact subsets of €.

T COtwz =

T COtmz =

ST
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Exercises

2 4z*
1. Show that cos =z = 1—[[1 - (-2’1—_—1)7] .

n=1

2. Find a factorization for sinh z and cosh z.

mz . [7z 2 (1+(=1)"2
3. Show that cos (2> — sin (?) = D( 71 > .

1

2n)?

4. Prove Wallis’s formula 1_[ @n—1) @n+ D

§7. The gamma function

Let G be an open set in the plane and let {f,} be a sequence of analytic
functions on G. If {f,} converges in H(G) to f and fis not identically zero,
then it easily follows that {f,} converges to f in M(G). Since d(z,, z;) =

1 1
d(~ ) Z—) , where d is the spherical metric on C,, (see (3.1)), it follows that
2

Zy

1
{—1} converges to 1 in M(G). It is an easy exercise to show that {w} con-
A f I
verges uniformly to ;on any compact set K on which no f, vanishes. (What

does Hurwitz’s Theorem have to say about this situation). Since, according
to Theorem 5.12, the infinite product

T4 ) e
(-2

n=1

converges in H(C) to an entire function which only has simple zeros at
z = —1, =2, ..., the above discussion yields that

® -1
7.1 I (1 + Z) &im
n

n=1

converges on compact subsets of C—{—1, —2,...} to a function with’

simple poles at z = —1, —2,....

7.2 Definition. The gamma function, T'(z), is the meromorphic function on C
with simple poles at z = 0, —1, ... defined by

eV = 2\ 7!
7.3 (z) = l+ i,
@=TI(r+3)

n ol

where y is a constant chosen so that (1) - L.
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The first thing that must be done is to show that the constant y exists;
this is an easy matter. Substituting z = 1 in (7.1) yields a finite number

o] 1 -1 .
= - n
c U(l +n> e

which is clearly positive. Let y = log c; it follows that with this choice of v,

equation (7.3) for z = 1 gives I'(1) = 1. This constant y is called Euler’s
constant and it satisfies

© -1
7.4 e’ = I I (1 + 1) el/n
n
n=1

Since both sides of (7.4) involve only real positive numbers and the real
logarithm is continuous, we may apply the logarithm function to both sides

of (7.4) and obtain
1 -1
og [(l + k) el/"]

[t

z[ - Iog(k+1)+logk:|

=Lk *

= hm z [— - 10g(k+1)+logk:|

, 1 1

lim [(1 i R & —> - log(n+1):|.
n—x 2 h

Adding and subtracting log n to each term of this sequence and using the
fact that lim log ("i 1) ~ 0 yields
h

. 1 1
75 Y=llm[<1+A+...+—>-—logn:|.
n— oo 2 h

This last formula can be used to approximate y. Equation (7.5) is also

used to derive another expression for I'(z). From the definition of I'(z) it
follows that

e n -1
I(z) = tim [ ] (1 + ;) ek
=1

-
R -l

e V3 " k e/t
= Iim
z HZ+/(

bd noee oy

lim o ((l | '
i pf -
,,.,.'(,'Il)..,(:'on)ul Pibd n))

1
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However

1 1
e Zexpl| 1+3+ ... +- = n* exp z—y+1+%+...+;—logn .
n

So that the following is obtained

7.6 Gauss’s Formula. For z # 0, —1, ...

nln?

P@ = lim N Gn

The formula of Gauss yields a simple derivation of the functional equation
satisfied by the gamma function.

7.7 Functional Equation. For z # 0, — 1, ...
I'z+1) = zI'(2)
To obtain this important equation substitute z+1 for z in (7.6); this

gives
z+1

Tz 1) = Ii nln
@+ D) = lm s et D)

i ntn* n
B P e | e

= 2I'(2)

sincelim( " >=1
Z+n+1

Now consider I'(z+2); we have I'(z+2) = I'((z+ 1)+ 1) = + D) T(z+1)
by the functional equation. A second application of (7.7) gives I'(z+2) =
z(z+ DI'(2). In fact, by reiterating this procedure

7.8 I'z+ny = z(z+ 1) ... (z4+n-1I(2)

for n a non negative integer and z # 0, —1,.... In particular setting z = 1
gives that

7.9 F(n+1) = n!

That is, the T function is analytic in the right half plane and agrees with the
factorial function at the integers. We may therefore consider the gamma
function as an extension of the factorial to the complex plane; alternately,
ifz# —1, —2,... then letting z! = T'(z-+1) is a justifiable definition of z!.

As has been pointed out, I has simple polesat z = 0, —1, ... ; we wish
to find the residue of I at each of its poles. To do this recall from Proposition
V. 2.4 that

Res(I'; =) = lim (z4+m1'(2)

2 *-n
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for each non-negative integer n. But from (7.8)

IFz4+n+1)
2z+1D)...(z+n=1"
So letting z approach —n gives that

E+mI() =

(="

n!

7.10 Res(I'; —n) = , n=0.

According to Exercise 5.10 we can calculate I''/T" by

'z 1 < =z
i riz) T + Z n(n+z)

for z # 0, —1,... and convergence is uniform on every compact subset
of C—{0, —1,...}. Tt follows from Theorem 2.1 that to calculate the
derivative of I'"/T' we may differentiate the series (7.11) term by term. Thus
when z is not a negative integer

'@\ 1 1
7.12 (‘F(:)) =+ Z T

n=1

At this time the reader may well be asking whep this process will stop.
Will we calculate the second derivative of I'’/T'? The answer to this question
is no. The answer to the implied question of why anyone would want to
derive formulas (7.11) and (7.12) is that they allow us to characterize the
gamma function in a particularly beautiful way.

Notice that the definition of T'(z) gives that I'(x) > 0 if x > 0. Thus,
log I'(x) is well defined for x > 0 and, according to formula (7.12), the
second derivative of log I'(x) is always positive. According to Proposition
VI. 3.4 this implies that the gamma function is logarithmically convex on
(0, o0); that is, log I'(x) is convex there. It turns out that this property

" together with the functional equation and the fact that T'(1) = 1 completely

characterize the gamma function.
7.13 Bohr-Mollerup Theorem. Let f be a function defined on (0, o) such that
S(x) > 0 for all x > 0. Suppose that f has the following properties:

(a) log f(x) is a convex function;
(b) fix+1) = x f(x) for all x;
© f(H=1

Then f(x) = T'(x) for all x.

Proof. Begin by noting that since /" has properties (b) and (c), the function
also satisfies

7.14 '/t.\' tn) (e D)L (v =D

for every non-negative integer n So it f(x)  I'(x) for 0 < « - 1, this
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equation will give that f and I' are everywhere identical. Let 0 < x < 1 and
let n be an integer larger than 2. From Exercise VI. 3.3
log f(n—1) ~log f(n) _logf(x+m—logf(n) _ log f(n+ 1)—log f(n)
(n—N—n - (x+n)—n - (n+1)—n

Since (7.14) holds we have that f(m) = (m—1)! for every integer m = 1.
Thus the above inequalities become
log f(x-+n)—log (n—1)!

~log (n—-2)!+log(n—1)! < . < lognt—log(n—1!;

or
xlog (n—1) < log f(x+n)—log (n—1)! < xlogn.

Adding log (n—1)! to each side of this inequality and applying the
exponential (exp is a monotone increasing function and therefore preserves
inequalities) gives

(n—=-1y (=D < f(x+n) < n*(n—1)!

Applying (7.14) to calculate f(x-+n) yields

(n—1)"(n—1)! n*(n—1!
x(x+1)...(x+n=1) </ = x(x+1...(x+n—-1)

_ nn! X+n
T x(x+D .. x| on |

Since the term in the middle of this sandwich, f(x), does not involve the
integer n and since the inequality holds for all integers n > 2, we may vary
the integers on the left and right hand side independently of one another
and preserve the inequality. In particular, n+1 may be substituted for n on
the left while allowing the right hand side to remain unchanged. This gives

n*n! < < n“n! |:x+n:|
ot D) i ST G e |

. xX+n
for all n > 2 and x in [0, 1). Now take the limit as n — co. Since lim <T>

= 1, Gauss’s formula implies that I'(x) = f(x) for 0 < x < 1. The result
now follows by applying (7.14) and the Functional Equation. ll

7.15 Theorem. If Re z > 0 then
oo
@) = [ et
0
The integrand in 7.15 behaves badly at t = 0 and ¢ = oo, so that the
meaning of the above equation must be explicitly stated. Rather than give
a formal definition of the convergence of an improper integral, the properties
of this particular integral are derived in Lemma 7.16 below (see also Exercise

2.2).
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7.16 Lemma. Let S = {z: a<Rez < 4} where 0 <a < A < .

(a) For everye > O thereisad > 0 such that forallzin S

8
fe"t"1 dt

@

< €

whenever 0 < o < B < 8.
(b) For every € > O there is a number « such that for all z in S

B
fe"t"1 dt

@

< €

whenever B > « > k.

Proof. To prove (a) note that if 0 < ¢t < 1 and z is in .S then (Re z—1) log
t <(a—1)log ¢; since e”* < 1,

le—ttz—ll < tRe z—1 < ta—l‘
Soif 0 < « < 8 < 1 then
B B
fe"tz“dt < ft"“dt
1
Gy

forallzin S. If e > O then we can choose §,0 < § < 1, such that a~ (8% — %)
< e for |«—B| < 8. This proves part (a).

To prove part (b) note that for zin S and ¢ > 1, [¥*7!] < t4~1. Since
t471 exp (—341) is continuous on [1, o) and converges to zero as f — o,
there is a constant ¢ such that 147! exp (—1f) < ¢ for all ¢+ > 1. This gives
that

le™'F 7Y < ce™¥
forallzin Sand ¢ > 1. If B > « > 1 then

B
f e 'l dt

@

B

¢ f e ¥t

@

= 2c(e ¥ -7 %),

IA

Again, for any € > 0 there is a number « > 1 such that [2c(e™**—e )| < ¢
whenever «, B > «, giving part (b). li

The results of the preceding lemma embody exactly the concept of a
uniformly convergent integral. In fact, if we consider the integrals

1
fv'”l‘" Vi
[
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for 0 < « < 1, then part (a) of Lemma 7.16 says that these integrals satisfy
a Cauchy criterion as « — 0. That is, the difference between any two will be
arbitrarily small if « and B are taken sufficiently close to zero. A similar
interpretation is available for the integrals

a
fe“t"1 dt
1

for « > 1. The next proposition formalizes this discussion.

7.17 Proposition. If G = {z: Rez > 0} and

n

£i@) = fe"‘t”‘ dt

1/n

for n = 1 and z in G, then each f, is analytic on G and the sequence is con-
vergent in H(G).

Proof. Think of f(z) as the integral of g(#, z) = e~ '#*~! along the straight line
1

segment [— , n:| and apply Exercise IV. 2.2 to conclude that f, is analytic.
h

Now if K is a compact subset of G there are positive real numbers a and 4
such that K < {z: @ < Re z < 4}. Since

ijn

Iu@)~fi@) = [ et adr + fe-'f—l dt

1/m

for m > n, Lemma 7.16 and Lemma 1.7 imply that {f,} is a Cauchy sequence
in H(G). But H(G) is complete (Corollary 2.3) so that {f,} must converge. ll

If £ is the limit of the functions {f,} from the above proposition then
define the integral to be this function. That is,

7.18 1(2) = f e '*"1d Rez > 0.

0

To show that this function f(z) is indeed the gamma function for Rez > 0
we only have to show that f(x) = I'(x) for x = 1. Since [1, o0) has limit
points in the right half plane and both f and T are analytic then it follows
that f must be ' (Corollary 1V. 3.8). Now observe that successive performing
of integration by parts on (1—¢/n)"r*~! yields

: AN nln*
f(l n) e = x(x+1)...(x+n)
0

which converges to I'(x) as n - » oo by Gauss's formula. If we can show that
the integral in this equation converges to fg" e 't* "tdi - f(x)asn > w then
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Theorem 7.15 is proved. This is indeed the case and it follows from the
following lemma.

7.19 Lemma. (a) {(1 + g) } converges to e in H(C).

t n
M) Ift = 0then<1 ——> <efforalln >t

n

Proof. (a) Let K be a compact subset of the plane. Then |z] < nforall z in
K and n sufficiently large. It suffices to show that

lim nlog(l + f) -
n—w n

uniformly for z in K by Lemma 5.7. Recall that

k

oD w,
1 N — 2 k-1 __
og(1+w) = 2 (=D p

for [w]| < 1. Let n > |z for all z in K; if z is any point in K then

So

7.20 nlog<1+5>_2=2[_1<5>+
n 2\n

taking absolute values gives that

nlog(l +E> -z
n

wh~crc R > |z| for all z in K. If n—> oo then this difference goes to zero
uniformly for z in K. .-

(b) Now letr > 0and substitute — 1 for = in (7.20) where ¢ < n. This gives

! '~ |
nlog(l - > e S bt <0
n — Ak \n '
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for n sufficiently large. That is

Thus
t
l—-)< —1;
nlog( n>

and since exp is a monotone function part (b) is proved. Il

0 = lim I:f,,(x) - f(l - %)nﬁ-' dt]
0

. nin”
= lim [f,.(x) T ox(x+1)... (x+n):|

= f(x)—T().
This completes the proof of Theorem 7.15. Il

As an application of Theorem 7.15 and the fact that I'(}) = J = (Exercise
3) notice that

Proof of Theorem7.15. Fix x > 1and let e > 0. According to Lemma 7.16 (b)
we can choose x > 0 such that

r

7.21 je”t"'1 dt < Z

K

whenever r > k. Let n be any integer larger than « and let f, be the function
defined in Proposition 7.17. Then

0

Jr=[ettar

1/n A

Sx) = J(l - %)" rldt = — j(l - :—1> Fldr +
0 [}
[[- (14] e a
n

1/n

Now by Lemma 7.19 (b) and Lemma 7.16 (2)

1/n 1/n
7.22 J(l - t—) Fidr < je“t"'l di < =
n 4
0 s}

for sufficiently large n. Also, if n is sufficiently large, part (a) of the preceding
lemma gives

Performing a change of variables by putting ¢ = s gives

J7 = J. e s (2s) ds

[0}

|

=2|eds
J
That is,

e ds = \/7_7

2

CL__)S

€

4Mk

o)

Using Lemma 7.19 (b) and (7.21)

Jler= (-2

for n > . If we combine this inequality with (7.22) and (7.23), we get

[ tnnl
f,,(x)—!(l —-n)l di

- This integral is often used in probability theory.

Exercises

1. Show that 0 < y < 1. (An approximation to y is .57722. It is unknown

whether v is rational or irrational.)

2. Show that I'(z) I'(1 —z) = = csc =z for z not an integer. Deduce from this

that I'(}) = /.

3. Show: /7 I'(2z) = 22*7'T'(z) I'(z+14). (Hint: Consider the function I'(z)
- T(z+3) T2z 1)

4. Show that log I'(2) is defined for z in € —(— o0, 0] and that

log I'(z) = —logz—yz — } [log(l + f) - f}.
1 n

n= n

n

< zje"t"" dt <

Nl

5. Let f be analytic on the right half planc Re =z '> 0 and satisfy: f(I) = I,
fz+1) = 2f(z), and lim ﬂ,”") = 1 for all z. Show that f = I,
new N f(N)

< €
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6. Show that

o0

r@ =3 Iy +Je"tz'1dt

n=onlz+n)

for z #0, —1, —2,... (not for Re z > 0 alone).
7. Show that

o0 o0

f sin (t¥) dt = f cos (t%) dt = }\/1=.

]
8. Let v > 0 and v > 0 and express I'(#) I'(v) as a double integral over the
first quadrant of the plane. By changing to polar coordinates show that

nf2

@) D(v) = 2I'(u+v) f (cos 8)**~ 1 (sin 6)2° ! db.
1]

The function
'@ I
B(u,v) = Tt wto)

is called the beta function. By changes of variables show that

1
B(u, v) = f{z"-l (1—ty~ 't
0

3 tu -1
= |7——dt
f(l + t)u +v
0
Can this be generalized to the case when u and v are complex numbers with
positive real part?

9. Let o, be the volume of the ball of radius one in R" (n = 1). Prove by
induction and iterated integrals that

1
%, = 2o _, f(l—tz)f"-”/2 dt
0

10. Show that

77,n/2

T (T
where o, is defined in problem 9. Show that if n = 2k, k > 1, then a, = #*/k!
11. The Gaussian psi function is defined by
T
I'(z)

Y(z)

(a) Show that ¥ is meromorphic in C with simple poles at z = 0, —1,. ..
and Res (W'; —n) = —1forn = 0.
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(b) Show that ¥'(1) = —~.
1
(c) Show that ¥(z+1)-¥(2) = -.
z
(d) Show that ¥'(z)—W¥(1—-z) = —= cot =z.

(e) State and prove a characterization of ¥ analogous to the Bohr-
Molierup Theorem.

§8. The Riemann zeta function

Let z be a complex number and » a positive integer. Then |n*| = |exp
(z log n)| = exp (Re z log n). Thus

Y |k7F = 3 exp(—Rezlogk)
k=1 k=1

n

So if Re z > 1+¢ then

that is, the series

converges uniformly and absolutely on {z: Re z > 1+¢}. In particular, this
series converges in H({z: Re z > 1}) to an analytic function (z).

8.1 Definition. The Riemann zeta function is defined for Re z > 1 by the
equation

() = 2 n,

The zeta function, as well as the gamma function, has been the subject
of an enormous amount of mathematical research since their introduction.
The analysis of the zeta function has had a profound effect on number
theory and this has, in turn, inspired more work on {. In fact, one of the
most famous unsolved problems in Mathematics is the location of the zeros
of the zeta function.

We wish to demonstrate a relationship between the zeta function and
the gamma function. To do this we appeal to Theorem 7.15 and write

.

I'¢z) e 'tV di
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for Re z > 0. Performing a change of variable in this integral by letting
t = nu gives

Iz =n® f e "¢l dr,
(]

that is
n~ () = f e "l dy.,
o

If Re z > 1 and we sum this equation over all positive n, then

If
M8

n *T(z)
1

8.2 {(DT()

n

[ea]

f e "M dy,

0o

]
M8

n=1

We wish to show that this infinite sum can be taken inside the integral sign.
But first, an analogue of Lemma 7.16.

8.3 Lemma. (2) Let S = {z: Re z > a} where a > 1. If € > O then there is

a number 8,0 < 8 < 1, such that for all z in S

< €

B
f(e'—l)-lf"l dt

whenever 8 > B > a.
(b) Let S = {z: Re z < A} where —o0 < A < 0. If ¢ > O then there is

a number « > 1 such that for all z in S

B

f(e'——l)“tz“l dt

o

< €

whenever B > o > k.
Proof. (a) Since e~ 1 > tforallt > 0 we have thatfor0 < ¢z <1 andzin S
I(et_l)—lzz—ll < ta—2.

Since a > 1 the integral [} #~2 dt is finite so that & can be found to satisfy (a).
(b) If > 1 and zis any point in S then, as in the proof of Lemma 7. 16 (b),
there is a constant ¢ such that -

=D~ 'F Y < (@ =)t < cett (e =D

Since et'(e'=1)""! is integrable on [1, a0) the required number « can be
found. @

e
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8.4 Corollary. (a) If S={z:a<Rez < A} where | <a < A < © then
the integral

f (et_l)—ltz—l dt
0

converges uniformly on S.
(b) If S = {z: Re z < A} where —o0 < A < o0 then the integral

f(e'—l)‘ltz‘1 dt
1
converges uniformly on S.

8.5 Proposition. For Re z > 1
UATE) = [ (=11t dr
]

'Proof. According to the above corollary this integral is an analytic function
in the region {z: Re z > 1}. Thus, it suffices to show that {(z)I'(z) equals this
integral for z = x > 1.

From Lemma 8.3 there are numbers « and 8,0 < « < B < o0, such that:

- ldr < S
[ —
o

=) dr < S
J( ) <3
Since
Z e—kt < Z e-—kt — (et__l)—l
k=1 k=1

foralln > 1,

o
ZJ Tmpxslgp o 5
n=10 4
0
J -nttx—l dt(f,
4
ﬂ

L) = [ (=D
0
2
et

!

Using equation (8.2) vields

Ss-}-}ifc mypx =y

&
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But Y e " converges to (¢'— 1)~ uniformly on [«, B], so that the right hand
side is exactly . [l

We wish to use Proposition 8.5 to extend the domain of definition of { to
{z: Re z > —1} (and eventually to all C). To do this, consider the Laurent
expansion of (¢*— 1) *; this is

1 1 1 -
8.6 =- — - "
e—1 =z 2+;a,,z

for some constants a,, a,, ... . Thus [(e'— 1)~!—¢"'] remains bounded in a
neighborhood of ¢ = 0. But this implies that the integral

1
1 1
— ) tar
j(e‘—l t)
0

converges uniformly on compact subsets of the right half plane {z: Rez > 0}
and therefore represents an analytic function there. Hence

1 w
1 1 =1
8.7 {T(2) = j(gr_'l - ;) Fldt+ (-7 + Je'—l dr,
(V] 1

and (using Corollary 8.4(b)) each of these summands, except =D is
analytic in the right half plane. Thus one may define {(z) for Re z > 0 by
setting it equal to [['(z)] ! times the right hand side of (8.7). In this manner
{ is meromorphic in the right half plane with a simple pole at z =1 & n!
diverges) whose residue is 1.

Now suppose 0 < Re z < 1; then

(z=D)"'=— | 2ar.
!
Applying this to equation (8.7) gives

8.8 {(T(2) = J( P o_ ;) #71dt,0 <Rez < 1.
0

e—1

Again considering the Laurent expansion of (e#—1)"! (8.6) we see that
[(et=1)"'—¢"'414] < ct for some constant ¢ and all ¢ in the unit interval

[0, 1]. Thus the integral
1
1 1 1
— -+ ) tar
f(e'—l t + 2)
(]

is uniformly convergent on compact subsets of {z: Re z > —1}. Also, since

lim ¢ ! l 1
) —— =
(-or?. l"'— l !
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there is a constant ¢’ such that

1 1<c’ -
e—1 ) t’ b=z 1

This gives that the integral

(2]

| A
-1 1 et

1

converges uniformly on compact subsets of {z: Re z < 1}. Using these last
two integrals with equation (8.8) gives

1 (e
1 1 1 1
9 wore = [(hy = p o) emra- g [ -1) e
Y i

for 0 < Re z < 1. But since both integrals converge in the strip —1 < Re z
< 1(8.9) can be used to define {(z) in {z: —1 < Re z < 1}. What happens
at z = 07 Since the term (2z) ! appears on the right hand side of (8.9) will
{ have a pole at z = 0? The answer is no. To define {(z) we must divide (8.9)
by I'(z). When this happens the term in question becomes [2zI'(z)]! =
[2I'(z+1)]~* which is analytic at z = 0. Thus, if { is so defined in the strip
{z: —1 <Re z < 1} it is analytic there. If this is combined with (8.7),
{(2) is defined for Re z > —1 with a simple pole at z = 1.
Now if —1 < Re z < 0 then

Jtz_ldt=—1;
1

R U A
_l—t“+—tz dt, —1 <Rez < 0.

N

inserting this in (8.9) gives

810  ((T(z) = f(e, 5
(V]

But

-17273

1 1 1/e+1 i .
1 —Ecot(%zt).

A straightforward computation with Exercise V. 2.8 gives

[+

. 2 1
t =2 _ 4 z _
cot (%ir) p 4ztn=1 i

for t # 0. Thus
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Applying this to (8.10) gives

8.11 {(2)(z) =2 J(

0

N\

n=1

1
- | ¥ dt
2+4"l27T2)

® 2
= ]
2 "Zl ft2+4n2ﬁ2 !

0o

_ < - z~1 tz
_2;(2 ") ?+1
0
— ”z 1 —_—
= 2(2my* " {1 Z)L 777

for —1 < Re z < 0. (It is left to the reader to justify the interchanging of
the sum and the integral.) Now for x a real number with —1 < x < 0, the
change of variable s = t* gives (by Example V. 2.12)

F G-
8.12 f J ds
s+1
o

= - cosec [{m(1 —x)]

NI |

1
=57 sec (3mx).

But Exercise 7.3 gives

1 T(l-x) Sin o = F(l x)
F(x) m

Combining this with (8.11) and (8.12) yields the following.

[2 sin (37x) cos (3mx)]

8.13 Riemann’s Functional Equation.
U2) = 2Q2n)* D1 —z2)¢(1 —z) sin (3n2)

for -1 < Rez < 0.

Actually this was shown for x real and in (—1, 0); but since both sides
of (8.13) are analytic in the strip —1 < Re z < 0, (8.13) follows. The same
type of reasoning gives that (8.13) holds for —1 < Re z < 1 (what happens
at z-= 07). But we wish to do more than this. We notice that the right hand
side of (8.13) is analytic in the left hand plane Re z < 0. Thus, use (8.13) to
extend the definition of {(z) to Re = < 0. We summarize what was done as
follows.
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8.14 Theorem. The zeta function can be defined to be meromorphic in the
plane with only a simple pole at z = 1 and Res ({; 1) = 1. For z # 1 { satisfies
Riemann’s functional equation.

Since I'(1—-z) has a pole at z = 1, 2, ... and since { is analytic at z =
2, 3,... we know, from Riemann’s functional equation, that

8.15 {(1-2)sin(3mz) =0

for z = 2, 3,... . Furthermore, since the pole of I'(I—z) at z = 2, 3,..
is simple, each of the zeros of (8.15) must be simple. Since sin (3nz) = 0
whenever z is an even integer, {(1—z) = Oforz = 3, 5,.... That is {(z) =
0 for z = -2, —4, —6,.... Similar reasoning gives that { has no other
zeros outside the closed strip {z: 0 < Re z < 1}.

8.16 Definition. The points z = —2, —4, ... are called the trivial zeros of {
and the strip {z: 0 < Re z < 1} is called the critical strip.

We now are in a position to state one of the most celebrated open questions
in all of Mathematics. Is the following true?

The Riemann Hypothesis. If z is a zero of the zeta function in the critical
strip then Re z = 1,

It is known that there are no zeros of { on the line Re z = 1 (and hence
none on Re z = 0 by the functional equation) and there are an infinite
number of zeros on the line Re z = 4. But no one has been able to show that
{ has any zeros off the line Re z = 4 and no one has been able to show that
all zeros must lie on the line.

A positive resolution of the Riemann Hypothesis will have numerous
beneficial effects on number theory. Perhaps the best way to realize the
connection between the zeta function and number theory is to prove the
following theorem.

8.17 Euler’s Theorem. If Re z > 1 then

o -T]()

n=1

where {p,} is the sequence of prime numbers.

Proof. First use the geometric series to find

@
é -mz

8.18

_pn

foralln > 1. Now if n > 1 and we take the product of the terms (1 —p;*)™?
for 1 < k < n, then by the distributive law of multiplication and by (8.18),

" , -
8.19 R H(l—p;'> =D

=1
when the integers n,, n,, ... arc all the integers which can be factored as a
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product of powers of the prime numbers py, ..., P, alone. (The reason that !
no number ;" * has a coefficient in this expansion other than 1 is that the
factorization of n; into the product of primes is unique.) By letting n— o0

the result is achleved B

Chapter VIII

Runge’s Theorem

Exercises

1. Let &(z) = z(z— )=~ ¥*{(z)['(3z) and show that ¢ is an entire function
which satisfies the functional equation ¢(z) = §(1-2).

2. Use Theorem 8.17 to prove that } p, ' = co. Notice that this implies
that there are an inﬁnite number of primes.

In this chapter we will prove Runge’s Theorem and investigate simple
connectedness. Also proved is a Theorem of Mittag-Leffler on the ex-
istence of meromorphic functions with prescribed poles and singular parts.

3. Prove that {3(z) = z ) for Re z > 1, where d(n) is the number of
divisors of n.

4. Prove that {(2){(z—1) = Z ’(1 ) for Re z > 1, where a(n) is the sum of
the divisors of n.
5. Prove that ————=
integers less than n and whnch are relatively prime to a.

6. Prove that — i ”’E’:) for Re z > 1, where u(n) is defined as follows.
Let n = pf'ps® " b
., Pm and suppose that these primes are distinct. Let u(1) = 1; if

. =k, = 1 then let u(n) = (—1); otherwise let u(n) = 0.

7. Prove that gﬁ - Z Aw) for Re z > 1, where A(n) = logpif n =

p™ for some prime p and m > 1; and A(n) = 0 otherwise.
8. (a) Let 7(z) = {'(2)/(z) for Re z > 1 and show that lim (z—z¢)n(2) is

always an integer for Re z, > 1. Characterize the point z,, (in its relation to {)
in terms of the sign of this integer.
(b) Show that fore > 0

where A(n) is defined in Exercise 7.
(c) Show that for all € > 0,

(d) Show that £(z) # 0 if Re z = 1 (or 0).

n=1 {

n=1 4

{z— z #() for Re z > 1, where g(n) is the number of

C()

-

C()

pkm be the factorization of » into a product of primes

g( ) n=1 l’l

Z—=>Z0

Ren(I+e+i)y= — Y A(mn~ "9 cos (¢t logn)
n=1

3Ren(1+e)+4Ren (1 +e+it)+Ren (1 +e+2it) < 0.

§1. Runge’s Theorem

In Chapter IV we saw that an analytic function in an open disk is given
by a power series. Furthermore, on proper subdisks the power series con-
verges uniformly to the function. As a corollary to this result, an analytic
function on a disk D is the limit in H(D) of a sequence of polynomials. We
ask the question: Can this be generalized to arbitrary regions G? The answer
is no. As one might expect the counter-example is furnished by G = {z:
0 < |z| <2} If {p,(2)} is a sequence of polynomials which converges to an
analytic function f on G, and y is the circle |z| = 1 then [,f = lim {,p, = 0.
But z7'isin H(G) and f,z7! £ 0.

The fact that functions analytic on a disk are limits of polynomials is due
to the fact that disks are simply connected. If G is a punctured disk then the
Laurent series development shows that each analytic function on G is the
uniform limit of rational functions whose poles lie outside G (in fact at the
center of G). That is, each f in H(G) is the limit of a sequence of rational
functions which also belong to H(G). This is what can be generalized to
arbitrary regions, and it is part of the content of Runge’s Theorem.

We begin by proving a version of the Cauchy Integral Formula. Unlike
the former version, however, the next proposition says that there exists
curves such that the formula holds; not that the formula holds for every
curve.

1.1 Proposition. Let K be a compact subset of the region G, then there are
straight line segments vy,,...,y, in G— K such that for every function f in
H(G),

n

NN PACO I
£) = Z = o

for all z in K. The line segments form a finite number of closed polygons.

Proof. Observe that by enlarging K a little we may assume that K=
(intK) . Let 0<8< }d(K.C—G) and place a “grid” of horizontal and
vertical lines in the plane such that consecutive lines are less than a
distance 8 apart. Let R,.... R, be the resulung rectangles that intersect K

19%
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(there are only a finite number of them because K is compact). Also let IR;
be the boundary of R, 1<, <m, considered as a polygon with the
counter-clockwise direction.

IfzeR;, 1 <j < m, then d(z, K) < /28 so that R; < G by the choice
of 8. Also, many of the sides of the rectangles R,, ..., R, will intersect.
Suppose R; and R; have a common side and let o; and o; be the line segments
in @R;, and @R, respectively, such that R, N R; = {o;} = {o; }. From the
direction given éR; and ¢R,, o; and o, are dxrected in the opposite sense. So
if ¢ is any continuous function on {crj b

ftp-}-Jntp:O.

Let v,,...,y, be those directed line segments that constitute a side of
exactly one of the R, 1 <j <m. Thus

1.2 Yo f i

IIM§

m

for every continuous function ¢ on { J 8R;.
i1

We claim that each y, isin G—IK. In fact, if one of the y, intersects K, it
is easy to see that there are two rectangles in the grid with y; as a side and
so both meet K. That is, y, is the common side of two of the rectangles
R,,..., R, and this contradicts the choice of y,.

If z belongs to K and is not on the boundary of any R; then

Sw)
#(w) = 2mi <w z
is continuous on | J 2R, for f in H(G). It follows from (1.2) that
i=t
SB f(w) < 1 [fw
M I - il d
13 z 2mi w—-zdw Z 2@ | w—2z v
i=1 oR; k=1 v
But z belongs to the interior of exactly one R;. If z ¢ R},
L_ So) dw = 0;
27i | w—z
IRy

and if z is in R;, this integral equals f(z) by Cauchy’s Formula. Thus (1.3)
becomes

n

1
14 f@=> o ;f;(fw); d
k=1

m
whenever ze K — { ) R;. But both sides of (1.4) are continuous functions
i=1
on K (because cach y, misses K) and they agrec on a dense subset of K.
Thus, (1.4) holds for all z in K. The remainder of the proof follows. [l
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This next lemma provides the first step in obtaining approximation by
rational functions.

1.5 Lemma. Let y be a rectifiable curve and let K be a compact set such that
Ky} = 0. If f is a continuous function on {y} and ¢ > 0 then there is a
rational function R(z) having all its poles on {y} and such that

Jﬁ(—:v)z dw— R(2)

< €

for all z in K.

Proof. Since K and {y} are disjoint there is a number r with 0 < r < d(X,
{y}. If v is defined on [O Ijthenfor0 < s,t < landzin K

|76(®) f(}’(s))|
-z ys)— Zl

f D)y () STy (N = 2L f (D)) = ()]

y(s) — ()| + 12 y(8)

l l

S(s)

< 7 SO(D)
.

—SO) + = | S —f((1))

There is a constant ¢ > 0 such that |z] < ¢ for all z in K, |y(f)] < ¢ and
|fG/(#)] < cforall 2in [0, 1]. This gives that for all sand ¢ in [0, 1] and zin K,

SO (t)
o) - SEO < < =0+ 210090

Since both y and fo y are uniformly continuous on [0, 1], there is a partition
{0=1t,<t <... <t,=1} such that
L6 @) _ o)) _ e

M-z Ht)—z] V()

for t;_, <t<t;, 1 <j<n and z in K. Define R(z) to be the rational
function

RE@) = % f00;- ) 1le) = )] Bty )=

The poles of R(z) are ¥(0), y(t,), . . ., y(t,_,). Using (1.6) yields that

' ) Z Mf(y@ ~ f(y(tf_l))] d’(’)l

2 dw—R
v kG s JLv—z At-)-z

ti—1

fi

forallzin K. |
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Before stating Runge’s Theorem let us agree to say that a polynomial is
a rational function with a pole at co. It is easy to see that a rational
function whose only pole is at co is a polynomal.

1.7 Runge’s Theorem. Let K be a compact subset of C and let E be a subset
of C,, — K that meets each component of C_— K. If f is analytic in an open
set containing K and € >0 then there is a rational function R (z) whose only
poles lie in E and such that

|f(z)-R(2)|<e
for all z in K.
The proof that will be given here was obtained by S. Grabiner (Amer.
Math. Monthly, 83 (1976), 807-808). For this proof we place the result in a
different setting. On the space C (K, C) we define a distance function p by

p(f.g)=sup{|f(z)—g(2)l:ze K}

for fand g in C(K,C). It is easy to see that p(f,.f)—0 iff f=u—limf, on
K. Hence C(K,C) is a complete metric space.

So Runge’s Theorem says that if f is analytic on a neighborhood of K
and €>0 then there is a rational function R(z) with poles in E such that
p(f,R)<e. By taking e=1/n it is seen that we want to find a sequence of
rational functions {R,(z)} with poles in E such that p(f,R,)—0; that is,
such that f=u—1imR, on K.

Let B(E)=all functions f in C(K,C) such that there is a sequence
{R,} of rational functions with poles in E such that f=u«—limR, on K.
Runge’s Theorem states that if f is analytic in a neighborhood of K then
f|K, the restriction of f to K is in B(E).

1.8 Lemma. B(E) is a closed subalgebra of C(K,C) that contains every
rational function with a pole in E.

To say that B(E) is an algebra is to say that if fand g are in B(E) and
a € C then of, f+g, and fg are in B(E). The proof of Lemma 1.8 is left to
the reader.

1.9 Lemma. Let V and U be open subsets of C with V < U and 3V mU=[j.
If H is a component of U and HNV#[] then H< V.

Proof. Let ae H NV and let G be the component of V' such that a e G.
Then HuG is connected (I1.2.6) and contained in U. Since H is a
component of U, G < H. But 3G < dV and so the hypothesis of the lemma
says that G N H =[]. This implies that

H-G=Hn[(C—-G )uiG]
=Hn(C-G7)
so that H— G is open in H. But G is open implies that H - G=HN(C-

G) is closed in H. Since H is connected and G #[]. H ~ =[] That s,
H=GcV. B

Runge’s Theorem
1.10 Lemma. If a e C— K then (z —a) ™' € B(E).
Proof. Case 1. w0 ¢ E.
Let U=C—Kand let V={aeC:(z—a) ' e B(E)}; so EcV c U.
111 IfaeVand|b—a|<d(a,K)thenbicv.
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The condition on b gives the existence of a number r, 0<r< 1, such that
|b—a|<rlz—a| for all z in K. But

L12 (z—b)*'=(z—a)*1[1—b‘”}_’.

zZz—a

Hence |b—al|z—a|"'<r<1for all z in K gives that

R =

zZ—a z—a

converges unifo'r‘mly on K by the Weierstrass M-test.
— k

If Q,,(z)=k20(lz’_;’) then (z—a)~'Q,(z) € B(E) since a ¢ V' and
B(E) 1s an algebra. Since B(E) is closed (1.12) and the uniform conver-
gence of (1.13) imply that (z—b)""' € B(E). Thatis, b e V.

Note that (1.11) implies that ¥ is open.

If b e 3V then let {a,} be a sequence in ¥ with b=lim a,. Since b ¢ Vit
follows from (1.11) that |b—a,|> d(a,,K). Letting n— oo gives (by I1.5.7)
that 0=d(b,K), or b € K. Thus 9V NU=[]

If H is a component of U=C— K then HnN E+#[], so Hn V+#[]. By
Lemma 19, H < V. But H was arbitrary so Uc V,or V=U

Case 2. w0 ¢ E.

Let d=the metric on C . Choose a, in the unbounded component of
€~ K such that d(ay,0)<3d(0,K) and |ag|>2max(|z|:z e K}. Let
Ey=(E—{w0})u{a,}; so E, meets each component of Co—K lfaeC—
K then Case 1 gives that (z—a) ' € B(E,). If we can show that (z — a,)~"
€ B(E) then it follows that B(Ej)= B(E) and so (z—a) 'e B(E)Ofor
eachainC-K.

Now |z /ag| <1 for all z in K so

1 1 K u
e T ali ey a5

aO n=0

converges unilformly on K. So Q,(z2)=—ay '2; _o(z/ay)* is a polynomial
and (:—ay) '=u—limQ, on K. Since Q, has its only pole at oo, Q, €
B(E). Thus(:~qay) '« B(F). B

The Proof of Runge’s Lheorem. If s analytic on an open set G and K < ¢
then for cach € >0 Proposition 1.1 and Lemma 1.5 imply. the existence of a
rattonal function R(2) with poles in € A such that [/(2)  R(z)| ¢ for
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all z in K. But Lemma 1.10 and the fact that B(E) is an algebra gives that
ReB(E). R

1.14 Corollary. Let G be an open subset of the plane and let E be a subset of
C.. — G such that E meets every component of C ,—G. Let R(G,E) be the
set of rational functions with poles in E and consider R(G,E ) as a subspace
of H(G). If f € H(G) then there is a sequence {R,} in R (G, E) such that
f=limR,. That is, R (G,E) is dense in H(G).

Proof. Let K be a compact subset of G and €>0; 1t must be shown that
there is an R in R(G,E) such that |f(z)—R(z)|<e for all z in K.
According to Proposition VIIL.1.2 there is a compact set K, such that
K <K, G and each component of C_ — K; contains a component of
C.. —G. Hence, E meets each component of C ,— K. The corollary now
follows from Runge’s Theorem. @l

The next corollary follows by letting E={co} and using the fact that a
rational function whose only pole is at co is a polynomial.

1.15 Corollary. If G is an open subset of C such that C,— G is connected
then for each analytic function f on G then is a sequence of polynomials { p,}
such that f=limp, in H(G).

Corollary 1.14 can be strengthened a little by requiring only that £~
meets each component of C* — G. The reader is asked to do this (Exercise
D.

) The condition that £~ meet every component of C,—G cannot be
relaxed. This can be seen by considering the punctured plane C—{0} = G.
So C,—G = {0, oo}. Suppose that for this case we could weaken Runge’s
Theorem by assuming that E consisted of oo alone. Then for each integer
n > 1 we could find a polynomial p,(z) such that

1 1
1.16 la — p2) < =
iz n

1 .
for1 < |z] < n. Then |1 -2zp,(2)| < lin] < 1 for S |z| < n. Butif |zj = n
n

then

l

1
P = L Epa)l 5 lap@ =11 + 1 <

2 .
By the Maximum Modulus Theorem, |p,(z)| < . for |z| < n. In particular,

p,(z) = 0 uniformly on |z] < 1. This clearly contradicts (1.16) and shows
that E must be the set {0, co}.

Of course, the point in the above paragraph could have been made by
appealing to what was said about this same example at the beginning of
this section. However, this further exposition gives an introduction to a
concept whose connection with Runge’s Theorem is quite intimate.

1.21 Definition. Let K be a compact subset of the plane; the polynomially
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convex hull of K, denoted by K, is defined to be the set of all points w such
that for every polynomial p

[p(W)| < max {|p(z)|: ze K}.

That is, if the right hand side of this inequality is denoted by ||p|lk, then
R = {w:|p(w)] < ||plix for all polynomials p}.

If Kis an annulus then K 1s the disk obtained by filling in the interior hole.
In fact, if K is any compact set the Maximum Modulus Theorem gives that
K is obtained by filling in any “holes” that may exist in K.

Exercises

1. Prove Corollary 1.14 if it is only assumed that £~ meets each compo-
nent of C — G.

2. Let G be the open unit disk B(0; 1) and let K = {z: 1 < |z| < 1}. Show
that there is a function f analytic on some open subset G, containing K
which cannot be approximated on K by functions in H(G).

Remarks. The next two problems are concerned with the following question.
Given a compact set K contained in an open set G, < G, can functions in
H(G,) be approximated on K by functions in H(G)? Exercise 2 says that
for an arbitrary choice of K, G, and G, this is not true. Exercise 4 below
gives criteria for a fixed K and G such that this can be done for any G,.
Exercise 3 is a lemma which is useful in proving Exercise 4.

3. Let K'be a compact subset of the open set G and suppose that any bounded
component D of G— K has D™ N 8G # []. Then every component of C, — K
contains a component of C_—G.
4. Let K be a compact subset of the open set G; then the folowing are
equivalent:

(a) If fis analytic in a neighborhood of K and ¢ > 0 then there is a g
in H(G) with | f(z)—g(2)] < eforall z in K;

(b) If D is a bounded component of G—K then D™ N oG # [7;

(c) If z is any point in G— K then there is a function fin H(G) with

|| > sup {|f(w)|: win K}

5. Can you interpret part (c) of Exercise 4 in terms of K?
6. Let K be a compact subset of the region G and define K; = {z¢ G:
If@I < IIflik for all £ in H(G)}.

(a) Show that if C, —G is connccted then K; = K.

(b) Show that d(K, C—G) = d(Rgy, C—G).

(c) Show that R < the convex hull of K = the intersection of all convex
subscts of C which contain-K. \
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(d) If K¢ © G, = G and G, is open then for every g in H(G)) gnd e>0
there is a function fin H(G) such that | f(z) —g(2)| < e for all z in K. (Hint:
see Exercise 4.)

(¢) R = the union of K and all bounded components of G—K whose
closure does not intersect 2G.

§2. Simple connectedness

Recall that an open connected set G is simply connected if and only ff
every closed rectifiable curve in G is homotopic to zero. The purpose of this
section is to prove some equivalent formulations of simple connectedness.

2.1 Definition. Let X and Q be metric spaces; a homeomorphism between
X and Q is a continuous map f: X — Q which is one-one, onto, and such
that f~': Q — X is also continuous.

Notice that if /: X — Q is one-one, onto, and continuous then f is a
homeomorphism if and only if f is open (or, equivalently, f is closed).

If there is a homeomorphism between X and Q then the metric spaces
X and Q are homeomorphic. '

We claim that C and D = {z: |z] < 1} are homeomorphic. In fact
f(z) = z(1+]z))”" maps C onto D in a one-one fashion and its inversg,
Y w) = w(1—|w])~", is clearly continuous. Also, if fis a one-one analytilc
function on an open set G and @ = f(G) then G and € are homeomorphic.
Finally, all annuli are homeomorphic to the punctured plane.

2.2 Theorem. Ler G be an open connected subset of C. Then the following are
equivalent:

(@) G is simply connected,;

(b) n(y; a) = O for every closed rectifiable curve y in G and every point
ainC—G;

(c) C,—G is connected;

(d) For any f in H(G) there is a sequence of polynomials that converges
to fin H(G);

(€) For any f in H(G) and any closed rectifiable curve y in G, [,f=0;

(f) Every function f in H(G) has a primitive;

(g) For any fin H(G) such that f(z) # 0 for all z in G there is a function g
in H(G) such that f(z) = exp g(z);

(h) For any f in H(G) such that f(z) # O for all z in G there is a Sfunction
gin H(G) such that f(z) = [g(2)}?;

(i) G is homeomorphic to the unit disk ;

(i) If u: G — R is harmonic then there is a harmonic function v: G — R
such that f = u+iv is analytic on G.

Proof. The plan is to show that (a) = (b) = ... = (1) = () and (h) = ()
= (g). Many of these implications have already been done.
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(@) = (b) If y is a closed rectifiable curve in G and g is a point in the
complement of G then (z—a)™! is analytic in G, and part (b) follows by
Cauchy’s Theorem.

(b) = (c) Suppose C,—G is not connected; then C,,—G = 4 U B where
A and B are disjoint, non-empty, closed subsets of C,. Since oo must be
either in 4 or in B, suppose that co is in B; thus, 4 must be a compact subset
of C (A4 is compact in C,, and doesn’t contain o). But then G, = GU 4 =
C,—B is an open set in C and contains 4. According to Proposition 1.1
there are a finite number of polygons y,, ..., ¥, in G;—A = G such that
for every analytic function f on G,

f() = z 1 J'f(w) dw

= 2mi f w—z

Tk

for all z in A. In particular, if f(z) = 1 then

1 = Z n(yy; z)
k=1

for all z in 4. Thus for any z in A4 there is at least one polygon y, in G such
that n(y,; z) # 0. This contradicts (b).

(¢) = (d) See Corollary 1.15.

(d) = (e) Let y be a closed rectifiable curve in G, let £ be an analytic
function on G, and let {p,} be a sequence of polynomials such that f = lim p,
in H(G). Since each polynomial is analytic in C and y ~0in C, [, p, =0
§0r every n. But {p,} converges to f uniformly on {y} so that j.y f=lim

y Pn = 0.

(e) = (f) Fix a in G. From condition (e) it follows that there is a function
F: G — C defined by letting F(z) = [, f where y is any rectifiable curve in G
from a to z. It follows that F’ = f (see the proof of Corollary 1V. 6.16).

(f) = (g) If f(z) # Oforall z in G then f”/f is analytic on G. Part (f) implies
there is a function Fsuch that F' = f’/f. It follows (see the proof of Corollary
IV. 6.17) that there is an appropriate constant ¢ such that g = F+ ¢ satisfies
f(z2) = exp g(z) for all zin G.

(g) = (h) This is trivial.

(h) = (i) If G = C then the function z(1 + [z|) ! was shown to be a homeo-
morphism immediately prior to this theorem. If G # C then Lemma VII. 4.3
implies that there is an analytic mapping f of G onto D which is one-one.
Such a map is a homeomorphism.

(i)=(a) Let i: G — D = {z: |z| < 1} be a homeomorphism and let y
be a closed curve in G (note that y is not assumed to be rectifiable). Then
o(s) = h(y(s)) is a closed curve in D. Thus, there is a continuous function
A:1? > Dsuch that A(s,0) = o(s)for0 < s < 1, A(s, 1) = Ofor0 < 5 < 1
and A, 1) : A(L, 1) for 0 < ¢ < 1. 1t follows that I' -- 27"+ A is a con-
tinuous map of 7* into G and demonstrates that y is homotopic to the curve
which is constantly equal to & '(0). The detals arc left to the reader.
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(h) = (j) Suppose that G # C; then the Riemann Mapping Theorem
implies there is an analytic function # on G such that 4 is one-one and h(G)
— D.Ifu: G — Ris harmonic then u; = u o h~! is a harmonic function on D.
By Theorem III. 2.30 there is a harmonic function vy: D — R such that
fi = u;+iv, is analytic on D. Let f = fy o h. Then fis analytic on G and
u is the real part of £. Thus v = Im f = v, o k is the sought after harmonic
conjugate. Since Theorem III. 2.30 also applies to C, (j) follows from (h).
(i) = (g) Suppose f: G — C is analytic and never vanishes, and let u =
Re f, v = Im £, If U: G — R is defined by U(x, y) = log |f(x+iy)| = log
[u(x, y)*+iv(x, y)*]* then a computation shows that U is harmonic. Let V
be a harmonic function on G such that g = U+iV is analytic on G and

U = ] for all

h(z)
z in G. That is, /A is an analytic function whose range is not open. It follows
that there is a constant ¢ such that f(z) = ¢ h(z) = c exp g(z) = exp [g(2)+
¢,]. Thus, g(z)+¢, is a branch of log f(2).

This completes the proof of the theorem. i}

This theorem constitutes an aesthetic peak in Mathematics. Notice that it
says that a topological condition (simple connectedness) is equivalent to
analytical conditions (e.g., the existence of harmonic conjugates and Cauchy’s
Theorem) as well as an algebraic @ ndition (the existence of a square root)
and other topological conditions. This certainly was not expected when
simple connectedness was first defined. Nevertheless, the value of the theorem
is somewhat limited to the fact that simple connectedness implies these nine
properties. Although it is satisfying to have the converse of these implica-
tions, it is only the fact that the connectedness of C,, —G implies that G is
simply connected which finds wide application. No one ever verifies one of
the other properties in order to prove that G is simply connected.

For an example consider the set G = C—{z = re™: 0 < r < oo}; that
is, G is the complement of the infinite spiral r =96, 0 < 6 < oo, Then
C,, —G is the spiral together with the point at infinity. Since this is connected,
G is simply connected.

let 4(z) = exp g(z). Then A is analytic, never vanishes, and

Exercise

1. The set G={re": —o0<t<0 and l+e'<r<l+2e'} is called a
cornucopia. Show that G is simply connected. Let K=G "} is intK con-
nected?

§3 Mittag-Leffler’s Theorem

Consider the following problem: Let G be an open subset of C and let
{a,} be a sequence of distinct points in G such that {a,} has no limit point
in G. For each integer k > 1 consider the rational function

3.1 Si(@) = Z z=a)’
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where my, is some positive integer and Ay, ..., 4,,, are arbitrary complex
coeflicients. [s there a meromorphic function £ on G whose poles are exactly
the points {q,} and such that the singular part of fat z = q, is Si(z)? The
answer is yes and this is the content of Mittag-Leffler’s Theorem.

3.2 Mittag-Leffler’s Theorem. Let G be an open set, {a,} a sequence of
distinct points in G without a limit point in G, and let {S(z)} be the sequence
of rational functions given by equation (3.1). Then there is a meromorphic
Sfunction f on G whose poles are exactly the points {a,} and such that the
singular part of f at a; is Si(2).

.Proof. A}though the details of this proof are somewhat cumbersome, the
idea is simple. We use Runge’s Theorem to find rational functions {R.(z)}

with poles in C,, —G such that { )’ Sk(z)—Rk(z)} is a Cauchy sequence in
k=1

M (G). The resulting limit is the sought after meromorphic function. (Actually
we must do a little more than this.)

Use Proposition VII. 1.2 to find compact subsets of G such that
G = U Km Kn < int Kn+1a
n=1

and each component of C_,—K, contains a component of C_—G. Since
each K, is compact and {a,} has no limit point in G, there are only a finite
number of points g, in each K,. Define the sets of integers I, as follows:

Iy = {k:a e K},
In = {k ag € Kn_Kn—l}
for n = 2. Define functions f, by

Sl@) = :;1: $i(2)

for n> 1. Then f, is rational and its poles are the points {a, :k e [,} <K —
K,_, (If 1, is empty let f,=0.) Since f, has no poles in K,_; (for n=2) itis
analytic in a neighborhood of X, . According to Runge’s Theorem there
is a rational function R,(z) with its poles in C_ — G and that satisfies

|/(2) = R(2)| < ()

for all z in K,_.,. We claim that
33 S = fi@) + L )= R(2)

is the desired meromorphic—function. 1t must be shown that S is a mero-
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morphic function and that it has the desired properties. Start by showing
that the series in (3.3) converges uniformly on every compact subset qf
G~ {a,: k > 1}. This will give that f is analytic on G.— {a,: k <1} and it
will only remain to show that each & is a pole with §1ngular part S,(z). So
let K be a compact subset of G—{a;: k = 1}; then K is a compact subset of
G and, therefore, there is an integer N such that K < KN. If n > N then
|£u(2) = Ri2)] < (B)" for all z in K. That is, the series (3.3) is dominated on K
by a convergent series of numbers; by the Wenerstra§s M-test (IL. 6.2) the
series (3.3) converges uniformly on K. Thus f is analytic on G— {aq,: k = 1}.

Now consider a fixed integer & = 1; there is a number R > 0 such that
la;—a > Rforj # k. Thus f(2) = Sk(;)+g(z) for 0 < ]z—ak! < R,. where
g is analytic in B(a,; R). Hence, z = 4, 15 a pole of fand Si(z) is its singular
part. This completes the proof of the theorem. -. . ,

Just as there is merit in choosing the integers p, In Wenerstr.ass s Theo.rem
(VIL. 5.2) as small as possible, there is merit in choosing the rational functions
R,(z) in (3.3) to be as simple as possible. As an example let us calcfulate the
simplest meromorphic function in the plane with a pole at every integer n.

The simplest singular part is (z—n)~! but ¥ (z—n)~! does not converge in

M(C). However (z—n)‘1+(z+n)—1 = 22(z*—n?)"" and

1 + i 2z
. 2 2
z &yz°-n
. . . — 1
does converge in M (C). The singular part of this functionatz = n1s (z—n)"".
In fact, from Exercise V. 2.8 we have that this function is 7 cot =z.

Exercises

1. Let G be a region and let {a,} and {b,.} be two sequences of distinct points
in G such that a, # b,, for all n, m. Let S,(z) be a singular. part at. a, and let
P, be a positive integer. Show that there is a merorn(?rphlc func.tlon fonG
whose only poles and zeros are {a,} and {b,} r_espef:tlvely, the singular part
at z = a, is S,(z), and z = by, is a zero of multiplicity p,,-

2. Let {a,} be a sequence of points in the plane such that |a,] — oo, and let
{b,} be an arbitrary sequence of complex numbers.

(a) Show that if integers {k,} can be chosen such that

SN
34 > (o) 2

converges absolutely for all r > 0 then

= z\ b,
>() 2

converges in M(C) to a function f with polcs at cach point = = a,.

’
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(b) Show that if lim sup |b,| < oo then (3.4) converges absolutely if
k, = n for all n.

(c) Show that if there is an integer k£ such that the series

a0 b"
3.6 > p
n=1""n

converges absolutely, then (3.4) converges absolutely if k, = k for all n.

(d) Suppose there is an r > 0 such that |a,—a,| > r for all n # m. Show
that ) la,| ™% < oo. In particular, if the sequence {b,} is bounded then the
series (3.6) with k = 2 converges absolutely. (This is somewhat involved and
the reader may prefer to prove part (f) directly since this is the only applica-
tion.)

(e) Show that if the series (3.5) converges in M(C) to a meromorphic
function fthen

< b, b, z z\knt
e e (I R G |

(f) Let w and ' be two complex numbers such that Im (w'/w) # O.
Using the previous parts of this exercise show that the series

1 1 1
{(Z)=}+Z’<:v+—+_zi),

w w

where the sum is over all w = 2nw+2n'w for n, n’ =0, +1, +2,... but
not w = 0, is convergent in M(C) to a meromorphic function { with simple
poles at the points 2nw +2n'w’. This function is called the Weierstrass zeta
function.

(8) Let p(z) = —{'(2); @ is called the Weierstrass pe function. Show that

1 1 1
00 =5+ 3 ()

where the sum is over the same w as in part (f). Also show that
@) = p+2n0+2n'w’

for all integers nand »’. That is, @ is doubly periodic with periods 2w and 2w’.
3. This exercise shows how to deduce Weierstrass’s Theorem for the plane
(Theorem VII. 5.12) from Mittag-Leffler’s Theorem.

(a) Deduce from Exercises 2(a) and 2(b) that for any sequence {a,} in C
with lim a, = oo and a, # 0 there is a sequence of integers {k,} such that

< 1 1 1z 1 [ z\kn"?
) = 'Zl l:z—a,, + 'a" + a, ((1,,) + ...+ a, (a") ]

is a meromorphic function on € with simple poles at a,, a,. ... .
The remainder of the proof consists of showing that there is a function f
such that A /'/f. This function f/ will then have the appropriate zeros,
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(b) Let z be an arbitrary but fixed point in C— {a,, ay, . . . }. Show that if
y, and y, are any rectifiable curves in C—{a,, a,...} from O to zand A is
the function obtained in part (a), then there is an integer m such that

[ 1= | h=2mim.
71 Y2
(c) Again let & be the meromorphic function from part (a). Prove that
for z # a,, as, . . . and v any rectifiable curve in C— {ay, az, ...},

) = exp ( | h)
Y
defines an analytic function on C— {ay, a, . . .} With f'/f = h. (That is, the
value of f(z) is independent of the curve y and the resulting function f is
analytic.

(d) Suppose that z € {a,, a,, .. .}; show that z is a removable singularity
of the function f defined in part (c). Furthermore, show that f(z) =0 and
that the multiplicity of this zero equals the number of times that z appears
in the sequence {a,, a3, ...}

(e) Show that

= 1 1 kn
37 SO = [’[(1 —%)exp[;—n+ 2(§)+ - 1?(5) ]

Remark. We could have skipped parts (b), (c), and (d) and gone directly
from (a) to (¢). However this would have meant that we must show that (3.7)
converges in H(C) and it could hardly be classified as a new proof. The steps
outlined in parts (a) through (d) give a proof of Weierstrass’s Theorem
without introducing infinite products.

4. This exercise assumes a knowledge of the terminology and results of
Exercise VII. 5.11.

(a) Define two functions fand g in H(G) to be relatively prime (in symbols,
(f, & = 1) if the only common divisors of fand g are non-vanishing functions
in H(G). Show that (f, g) = 1 iff Z(/) nZ(g) = 0.

(b) If (f, g = 1, show that there are functions f,, g, in H(G) such that
ffi+gg, = 1. (Hint: Show that there is a meromorphic function ¢ on G
such that f; = g € H(G) and g|(1 —£,).)

(© Let fy,...,f,€ HG) and g = g.cd {f,... ,f,}. Show that there
are functions @y, ..., ®, in H(G) such that g = ¢, f1+ .. +¢,f, (Hint:
Use (b) and induction.)

(d) If {7, } is a collection of ideals in H(G), show that J = N A is

also an ideal. If & < H(G) then let £ = N {7 F is an ideal of H(G) and
& < #). Prove that J is the smallest ideal in H(G) that contains &
and F = {p,fi+ ... +@. S e H(G), fe L for 1 < k < n}. S is called
the ideal generated by & and is denoted by J = (&). If & is finite then
(&) is called a finitely generated ideal. If & = {f} for a single function
f then (f) is called a principal ideal.
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(e) Show that every finitely generated ideal in H(G) is a principal ideal.

(f) Anideal £ is called a fixed ideal if Z(F) # [1; otherwise it is called
a free ideal, Prove that if & = (&) then Z(F) = Z(¥) and that a principal
ideal is fixed.

(g) Let f(z) = sin (27 "z) forall » > 0 and let £ = ({f}, f2 . . .})- Show
that .# is a fixed ideal in H(C) which is not a principal ideal.

(h) Let # be a fixed ideal and prove that there is an f in H(G) with
PZ((];) = Z(F) and F < (f). Also show that # = (f) if £ is finitely gener-
ated.

(i) Let .# be a maximal ideal that is fixed. Show that there is a point
a in G such that 4 = ((z—a)).

(j) Let {a,} be a sequence of distinct points in G with no limit point in G.
Let J = {fe H(G): f(a,) = 0 for all but a finite number of the a,}. Show
that £ is a proper free ideal in H(G).

(k) If £ is a free ideal show that for any finite subset & of £, Z(¥)
# [J. Use this to show that .# can contain no polynomials.

(1) Let # be a free ideal; then .# is a maximal ideal iff whenever g ¢ H(G)
and Z(g) N Z(f) # ] for all fin # then ge £,

5. Lgt G be a region and let {a,} be a sequence of distinct points in G with
no limit point in G. For each integer » > 1 choose integers k, = 0 and
constants A®, 0 < k < k,. Show that there is an analytic function f on G
such that f®)(a,) = k!4%¥. (Hint: Let g be an analytic function on G with a
zero at a, of multiplicity k,. Let 2 be a meromorphic function on G with
poles at each a, of order k, and with singular part S,(z). Choose the S, so
that f = gh has the desired property.)

6. Find a meromorphic function with poles of order 2 at 1, /2, \/3,...
such that the residue at each pole is 0 and lim (z—/n)?f(z) = 1 for all .

z—++/n
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Analytic Continuation and Riemann Surfaces

Consider the following problem. Let f be an analytic function on a region
G; when can f be extended to an analytic function f; on an open set G,
which properly contains G? If G, is obtained by adjoining to G a disjoint
open set so that G becomes a component of Gy, f can be extended to G, by
defining it in any way we wish on G, —G so long as the result is analytic.
So to eliminate such trivial cases it is required that G, also be a region.

Actually, this process has already been encountered. Recall that in the
discussion of the Riemann zeta function (Section VIL. 8) {(z) was initially
defined for Re z > 1. Using various identities, principal among which was
Riemann’s functional equation, { was extended so that it was defined and
analytic in C— {1} with a simple pole at z = 1. That is, { was analytically
continued from a smaller region to a larger one.

Another example was in the discussion that followed the proof of the
Argument Principle (V.3.4). There a meromorphic function f and a closed
rectifiable curve y not passing through any zero or pole of f was given.
If z = a is the initial point of y (and the final point), we put a disk D, about
a on which it was possible to define a branch ¢, of log f. Continuing, we
covered y by a finite number of disks D,, D,, ..., D,, where consecutive
disks intersect and such that there is a branch Z; of log f on D ;. Furthermore,
the functions ¢; were chosen so that £(z) = £;_,(z) for zin D;_, N D,
2 < j < n. The process analytically continues £; to D; U D,, then D; U D,
U D3, and so on. However, an unfortunate thing (for this continuation)
happened when the last disk D, was reached. According to the Argument
Principle it is distinctly possible that Z,(z) # £,(z) for z in D, n D,. In fact,
£(z)—£1(z) = 2miK for some (possibly zero) integer K.

This last example is a particularly fruitful one. This process of continuing
a function along a path will be examined and a criterion will be derived
which ensures that continuation around a closed curve results in the same
function that begins the continuation. Also, the fact that continuation around
a closed path can lead to a different function than the one started with, will
introduce us to the concept of a Riemann Surface.

This chapter begins with the Schwarz Reflection Principle which is more
like the process used to continue the zeta function than the process of
continuing along an arc.

§1. Schwarz Reflection Principle

If G is a region and G* = {z: Z ¢ G} and if fis an analytic function on G,
then f*: G* »C defined by f*(z) — f(Z) is also analytic. Now supposc that
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G = G*; thatis, G is symmetric with respect to the real axis. Then g(z) = f(2)
—f(Z) is analytic on G. Since G is connected it must be that G contains an
open interval of the real line. Suppose f(x) is real for all x in G N R; then
g(x) = 0forxin G N R. But G N R has a limit point in G so that f(z) = f(Z)
for all z in G.

The fact that f must satisfy this equation is used to extend a function
definedon G {z: Im z = 0} to all of G.

If G is a symmetric region (i.e., G = G*) thenletG, = {ze G:Imz > 0},
G_={z¢eG:Imz <0}, and Gy = {zeG: Im z = 0}.

1.1 Schwarz Reflection Principle. Let G be a region such that G = G*. If
f: G.UG,—C is a continuous function which is analytic on G, and if
f(x) is real for x in G, then there is an analytic function g: G — C such that
g2y =f() for z in G, VG,

Proof. For z in G_ define g(z) = f(Z) and for z in G, U G, let g(2) = f(2).
It is easy to see that g: G — C is continuous; it must be shown that g is
analytic. It is trivial that g is analytic on G, U G_ so fix a point x, in G,
and let R > 0 with B(xq; R) < G. It suffices to show that g is analytic on
B(xq; R); to do this apply Morera’s Theorem. Let T = [a, b, ¢, a] be a triangle
in B(x,y; R). To show that {rf= 0 it is sufficient to show that [pf = 0

da

whenever P is a triangle or a quadrilateral lying entirely in G, U G, or
G_ U G,. In fact, this is easily seen by considering various pictures such as
the one above. Therefore assume that T < G, U G, and [a, b] = G,. The
proof of the other cases is similar and will be left to the reader. (See Exercise
1 for a general proposition which proves all these cases at once.)

Let A designate T together with its inside; then g(z) = f(2) for all z in A.

- By hypothesis f'is continuous on G, U G, and so fis uniformly continuous

on A. Soife > 0 thereisad > Osuch that whenzandz’ e Aand [z—z'| < &
then | f(z)~f(z')] < e. Now choose « and 8 on the line segments [c, a] and
[, ] respectively, so that |a—a| < & and |[B—b] < 8. Let T, = [«, 8, ¢, «]
and Q = [a, b, B, «, a). Then [.f = f; f+[of. but T, and its inside are
contained in ¢/, and f is analytic there; hence

1.2 [1- .[_/:

— 1 0
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Combining these last two inequalities with (1.2) and (1.3) gives that

| Tf f] < el+4MsS.

Since it is possible to choose 8§ < € and since e is arbitrary, it follows that
frf = 0; thus f must be analytic. l

Can the reflection principle be generalized? For example, instead of
requiring that G be a region which is symmetric with respect to the real axis,
suppose that ¢ is symmetric with respect to a circle. (Definition HI 307).
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Can the reflection principle be formulated and proved in this setting? The
answer is provided in the exercises below.

Exercises

1. Let y be a simple closed rectifiable curve with the property that thereis a
point a such that for all z on y the line segment [q, z] intersects {y} only at z;
ie. [a, z] N {y} = {z}. Define a point w to be inside y if [a, w] N {y} = [
and let G be the collection of all points that are inside y.

(a) Show that G is a region and G~ = G U {y}.

(b) Let f: G~ — C be a continuous function such that f is analytic on G.
Show that |, f = 0.

(c) Show that n(y; z) = +1if zis inside y and n(y; z2) = 0if z ¢ G™.

Remarks. It is not necessary to assume that y has such a point a as above;
each part of this exercise remains true if y is only assumed to be a simple
closed rectifiable curve. Of course, we must define what is meant by the
inside of y. This is difficult to obtain. The fact that a simple closed curve
divides the plane into two pieces (an inside and an outside) is the content of
the Jordan Curve Theorem. This is a very deep result of topology.

2. Let G be a region in the plane that does not contain zero and let G* be
the set of all points z such that there is a point w in G where z and w are
symmetric with respect to the circle |§|=1. (See III. 3.17.)

(a) Show that G* = {z: (1/2) e G}.

(b) If f: G — C is analytic, define f*: G* — C by f*(z) = f(1/Z). Show
that f* is analytic.

(c) Suppose that G = G* and f is an analytic function defined on G
such that f(z) is real for z in G with [z] = 1. Show that f = f*,

(d) Formulate and prove a version of the Schwarz Reflection Principle
where the circle |£] = 1 replaces R. Do the same thing for an arbitrary circle.
3. Let G, G,, G_, G, be as in the statement of the Schwarz Reflection
Principle and let /1 G, U Gy — C,, be a continuous function such that f is
meromorphic on G, . Also suppose that for x in G, f(x) € R. Show that there
is a meromorphic function g: G ->C_, such that g(z) = f(z) for zin G+ U G,,.
[s it possible to allow f to assume the value co on G,?

§2. Analytic Continuation Along a Path

Let us begin this section by recalling the definition of a function. We use
the somewhat imprecise statement that a function is a triple (f, G, Q) where
G and Q are sets and f'is a “rule” which assigns to each element of G a unique
clement of L. Thus, for two functions to be the same not only must the rule
be the same but the domains and the ranges must coincide. If we enlarge the
range £ to a set ) then (f, G, Q) is a different function. However, this
point should not be emphasized here; we do wish to emphasize that a change
in the domain results in o new function. Indeed, the purpose of analytic
continuation is to enlarge the domaim, Thus, let ¢ - {zi Rez - ~1} and
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f(2) = log(1+2z) for z in G, where log is the principal branch of the logarithm.
Let D = B(0; 1) and let

K z"
— _ 1 n—17%
g = 2 (=177
for zin D. Then (f, G, €) # (g, D, C) even though f(z) = g(z) for all zin D.
Nevertheless, it is desirable to recognize the relationship between f and g.
This leads, therefore, to the concept of a germ of analytic functions.

2.1 Definition. A function element is a pair (f, G) where G is a region and
fis an analytic function on G. For a given function element (f, G) define the
germ of f at a to be the collection of all function elements (g, D) such that
ae D and f(z) = g(z) for all z in a neighborhood of a. Denote the germ
by [f 1.

Notice that [ f], is a collection of function elements and it is not a function
element itself. Also (g, D) e[f], if and only if (f, G) €[g],. (Verify!). It should
also be emphasized that it makes no sense to talk of the equality of two
germs [f], and [g], unless the points a and b are the same. For example, if
(f, G) is a function element then it makes no sense to say that [f], = [f],
for two distinct points a and b in G.

2.2 Definition. Let y: [0, 1] — C be a path and suppose that for each ¢ in
[0, 1] there is a function element (f,, D,) such that:

(a) A e Dy; ‘
(b) for each ¢ in [0, 1] there is a § > O such that [s—¢] < & implies
¥(s) € D, and

2.3 [f.;] 0s) — [.ft]v(s)'

Then (f,, D,) is the analytic continuation of (f,, D,) along the path v; or,
(f1, D,) is obtained from (fo, D,) by analytic continuation along .

Before proceeding, examine part (b) of this definition. Since y is a
continuous function and y(¢) is in the open set D,, it follows that there is a
8 > 0 such that y(s) e D, for |s—¢| < 8. The important content of part (b)
is that (2.3) is satisfied whenever |s—¢| < 8. That is,

/(2 =f(2), ze D; N D,
whenever [s—¢| < 8.

Whether for a given curve and a given function element there is an
analytic continuation along the curve can be a difficult question. Since no
degree of generality can be achieved which justifies the effort, no existence
theorems for analytic continuations will be proved. Each individual case
will be considered by itself. Instead uniqueness theorems for continuations
are proved. One such theorem is the Monodromy Theorem of the next
section. This theorem gives a criterion by which one can tell when a con-
tinuation along two different curves connecting the same points results in the
same function clement.
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The next proposition fixes a curve and shows that two different con-
tinuations along this curve of the same function element result in the same
function element. Alternately, this result can be considered as an affirmative
answer to the following question: Is it possible to define the concept of
“the continuation of a germ along a curve?”

2.4 Proposition. Let y: [0, 1] — C be a path from a to b and let {(f,, D,):
0 <t=<1}and {(g, B): 0 <t < 1} be analytic continuations along v such
that [fO]a = [gO]a' Then [.fl]b = [gllb'

Proof. This proposition will be proved by showing that the set
T={te[0,1): [fillyny = [gdyiny}

is both open and closed in [0, 1]; since T is non-empty (0 € T) it will follow
that T = [0, 1] so that, in particular, 1 € T.

The easiest part of the proof is to show that T is open. So fix ¢ in T and
assume ¢ # 0 or 1. (If t = 1 the proof is complete; if + = O then the argu-
ment about to be given will also show that [a,a+8) = T for some § > 0.)
By the definition of analytic continuation there is a § > 0 such that for
|s—t] < 8, y(s)e D, " B, and

[f;]y(s) = [.ft]y(s)'
25
{[gs]v(s) = [gt])'(s)'

But since 1€ T, fi(z) = g(2) for all zin D, n B,. Hence [f], = 8], for
all y(s) in D, N B,. So it follows from (2.5) that [f],., = [g,,, Whenever
|s—t| < & That is, (t—38, t+8) < T and so T is open.

To show that T is closed let ¢ be a limit point of T, and again choose
8 > 0 so that y(s) e D, n B, and (2.5) is satisfied whenever |s—¢| < 8. Since
t is a limit point of T there is a point s in T with |s—¢| < §;s0 G = D, N B,
N D; N B, contains y(s) and, therefore, is a non-empty open set. Thus,
fiz) = g{2) for all z in G by the definition of 7. But, according to (2.5),
J{2) = fi(z) and g((z) = g(2) for all z in G. So f(z) = g(z) for all zin G
and, because G has a limit point in D, N B,, this gives that [£]],,, = [g/]

¥y
That is, e T and so T is closed. |}

2.6 Definition. If y: [0, 1] — Cis a path fromatoband {(f,, D):0 <t < 1}
is an analytic continuation along y then the germ [f,], is the analytic con-
tinuation of [f,l, along .

The preceding proposition implies that Definition 2.6 is unambiguous.
As stated this definition seems to depend on the choice of the continuation
{(f;» D,)}. However, Proposition 2.4 says that if {(g,, B,)} is another con-
tinuation along y with [ fy], = [go). then[f,], = [g,],- So in fact the definition
does not depend on the choice of continuation.

2.7 Definition. If (f, G) is a function clement then the complete analytic

Sunction obtained from (f, (5) is the collection /# of all germs [g], for which

there is a4 pomt « in ¢ and a path y from « to b such that [g], is the analytic
continuation of [ f], along »—
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A collection of germs & is called a complete analytic function if there is a
function element (f, G) such that & is the complete analytic function ob-
tained from (f; G).

Notice that the point a in the definition is immaterial; any point in G
can be chosen since G is an open connected subset of C (see II. 2.3). Also,
if F is the complete analytic function associated with (f, G) then [f], € #
for all z in G.

Although there is no ambiguity in the definition of a complete analytic
function there is an incompleteness about it. Is it a function? We should
refrain from calling an object a function unless it is indeed a function. To
make F a function one must manufacture a domain (the range will be C)
and show that % gives a “rule”. This is easy. In a sense we let # be its own
domain; more precisely, let

A ={z/1):fl.e F}.

Define # : Z — C by F(z, [f],) = f(2). In this way & becomes an “honest”
function. Nevertheless there is still a lingering dissatisfaction. To have a
satisfying solution a structure will be imposed on # which will make it
possible to discuss the concept of analyticity for functions defined on Z.
In this setting, the function & defined above becomes analytic; moreover, it
reflects the behavior of each function element belonging to a germ that is in
% . The introduction of this structure is postponed until Section 5.

Exercises

1. The collection {D,, D,, ..., D,} of open disks is called a chain of disks
ifD;_y,nD;+# []forl <] < n If {(f;, D;): 0 < j < n}is a collection of
function elements such that {D,, Dy, ..., D,} is a chain of disks and f;_,(z)
=fe)forzinD;_ ;N D;1<j<n; then {(fj, D)): 0 < j < n}iscalled
an analytic continuation along a chain of disks. We say that (f,, D,) is obtained
by an analytic continuation of (f,, D) along a chain of disks.

(a) Let {(f};, D;): 0 < j < n} be an analytic continuation along a chain
of disks and let a and b be the centers of the disks D, and D, respectively.
Show that there is a path y from @ to b and an analytic continuation {(g,, B,)}

along y such that {y} < U D;, [fola = [8ola and [fily = [81],-

(b) Conversely, let {( f,, D): 0 <t <1} be an analytic continuation
along a path y: [0, 1] — C and let a = ¥(0), b = y(1). Show that there is an
analytic continuation along a chain of disks {(g;, B;): 0 < j < n} such that

{r} = U Bj, [fola = [gols and [£i], = [8ule-

2. Let D0 = B(1; 1) and let f, be the restriction of the principal branch of
JZ to Dy. Let y(f) = exp (2mir) and o(t) = exp (4nir) for 0 < 1 < 1.

(a) Find an analytic continuation {(f,, D,): 0 < 1 < 1} of (f,, D,) along
y and show that [f1}; = [-/oli-

Monodromy Theorem 217

(b) Find an analytic continuation {(g,, B,): 0 < t < 1} of (f,, D,) along
o and show that [g,], = [g,];-
3. Let fbe an entire function, D, = B(0; 1), and let ¥ be a path from 0 to b.
Show that if {(f,, D,): 0 < ¢t < 1} is a continuation of (f, D,) along y then
f1(z) = f(z) for all z in D,. (This exercise is rather easy; it is actually an
exercise in the use of the terminology.)
4. Lfet y: [0, 1] — C be a path and let {(f;, D,): 0 <t < 1} be an analytic
continuation along y. Show that {(f;, D,): 0 < ¢ < 1} is also a continuation
along y.
5. Suppose y: [0, 1] - C is a closed path with 4(0) = (1) = a and let
{(/t» D): 0 < t < 1} be an analytic continuation along y such that [ fil. =
[fola and f, # 0. What can be said about (f,, Dy)?
6. Let Dy = B(1; 1) and let f, be the restriction to D, of the principal
branch of the logarithm. For an integer 7 let y(f) = exp (2n=ins), 0 < t < 1.
Find a continuation {(f;, D,): 0 < ¢ < 1} along y of (f,, D,) and show that
Uil = [fo+2min],.
7. Let y: [0, 1] - C be a path and let {(f;, D,): 0 < ¢ < 1} be an analytic
continuation along y. Suppose G is a region such that f(D,) < G for all ¢,
and suppose there is an analytic function A: G —> C such that A(fy(2)) = z
for all z in D,. Show that 4(f,(z)) = z for all z in D, and for all ¢.

Hint: Show that T = {¢: i(f,(z)) = z for all z in D,} is both open and
closed in [0, 1].
8. Let y: [0, 1] — C be a path with »(0) = 1 and y(r) # 0 for any 7. Suppose
that {(f,, D,): 0 < ¢t < 1} is an analytic continuation of f,(z) = log z. Show
that each f, is a branch of the logarithm.

§3. Monodromy Theorem

Let a and b be two complex numbers and suppose y and ¢ are two
paths from a to b. Suppose {(f,D,)} and {(g, B,)} are analytic continua-
tions along y and o respectively, and also suppose that [ f,], =[ g,],. Does it
fqllow that [ f,],=[g,],? If vy and ¢ are the same path then Proposition 2.4
gives an affirmative answer. However, if ¥y and o are distinct then the
answer can be no. In fact, Exercises 2.2 and 2.6 furnish examples that
@llustrate the possibility that [f],#[ g,],. Since both of these examples
involve curves that wind around the origin, the reader might believe that a
sufficient condition for [f,], and [g,], to be equal can be couched in the
language of homotopy. However, since all curves in the plane are homo-
topic the result would have to be phrased in terms of homotopy in a
proper subregion of C. For the examples in Exercises 2.2 and 2.6, this
sought after criterion must involve the homotopy of the curves in the
punctured plane. This is indeed the case. The origin is discarded in the
above examples because there is no germ [4], centered at zero that belongs
to the complete analytic function obtained from ( foo Dyy).

11 (/. Dyis a function element and a« 1 then fhas a power series expan-
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sion at z = a. The first step in proving the Monodromy Theorem is to
investigate the behavior of the radius of convergence for an analytic continua-
tion along a curve.

3.1 Lemma. Let y: [0, 1] — C be a path and let {(f,, D,): 0 < t < 1} be an
analytic continuation along . For 0 < t < 1 let R(f) be the radius of con-
vergence of the power series expansion of f, about z = (t). Then either R(f)
= oo or R: [0, 1] — (0, o) is continuous.

Proof. If R(f) = oo for some value of ¢ then it is possible to extend f, to an
entire function. It follows that f(z) = f,(z) for all z in D, so that R(s) =
for each s in [0, 1]; that is R(s) = oo. So suppose that R(f) < oo for all ¢.
Fix ¢t in [0, 1] and let 7 = (7); let

1@ = 3 niz=y

be the power series expansion of f, about 7. Now let 8; > 0 be such that
|s—t| < 8, implies that y(s)e D, N B(r; R(?)) and [f,s, = [/, Fix s
with |[s—¢] < 8, and let o = y(s). Now f, can be extended to an analytic
function on B(r; R(¢)). Since f; agrees with f, on a neighborhood of ¢, f; can
be extended so that it is also analytic on B(r; R(t)) U D,. If f, has power
series expansion

1@ = ¥ o=y

about z = o, then the radius of convergence R(s) must be at least as big as
the distance from o to the circle |z—7| = R(f): that is, R(s) > d(o, {z: |z—7]
= R(1)}) = R()—|r—o|. But this gives that R(f)—R(s) < [y(t)—»(s)|. A
similar argument gives that R(s)— R(¢) < |y(t)—¥(s)|; hence

|R()—~R(O)| < ) =)

for [s—t| < 8,. Since y: [0, 1] - C is continuous it follows that R must be
continuous at ¢. |l

3.2 Lemma. Let y: [0, 11 — C be a path from a to b and let {(f,, D;): 0 < ¢
< 1} be an analytic continuation along y. There is a number ¢ > 0 such that
if o: [0, 1] — C is any path from a to b with |y(t)—o(t)| < € for all t, and if
{(g, B): 0 <t < 1} is any continuation along o with [g,], = [fol,; then

[g.]s = [/1)s-

Proof. For 0 < ¢t < 1 let R(t) be the radius of convergence of the power
series expansion of f, about z = y(¢). It is left to the reader to show that if
R(f) = oo then any value of e will suffice. So suppose R(f) < oo for all 7.
Since, by the preceding lemma, R is a continuous function and since R(f) > 0
for all #, R has a positive minimum value. Let

33 O<e<imn{R(#):0=<r1<1}

and suppose that o and {(g,, B,)} arc as in the statement of this lemma.
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Furthermore, suppose that D, is a disk of radius R(7) about y(¢). The truth of
the conclusion will not be affected by this assumption (Why?), and the
exposition will be greatly simplified by it.

Since |o()—¥(£)] < € < R(?), o(t)e B, D, for all ¢t. Thus, it makes
sense to ask whether g(z) = f(2) for all z in B, N D,. Indeed, to complete
the proof we must show that this is precisely the case for + = 1. Define the
set T= {re[0, 1]: f(z) = g(2) for z in B, N D,}; and show that 1eT.
This is done by showing that T is a non-empty open and closed subset of
[0, 1].

From the hypothesis of the lemma, 0 € 7 so that 7 % []. To show T is
open fix ¢ in 7 and choose § > 0 such that

|'y(S)—‘y(t)| <e [f:s]y(s) = [.ft]y(s),
34 |U(S)—U(t)] < [gs]a(s) = [gt]a(s)’ and
o(s) < B,

whenever |s—1| < 8. We will now show that B,n B, " D, N D, # [] for
ls—1t| < &, in fact, we will show that o(s) is in this intersection. If |s—¢| < &
then

lo(s)~¥(s)] < € < R(s)
so that o(s) € D,. Also

lo(8) =¥()| < lo(8)=¥()]|+1v(5) —¥()] < 2¢ < R(2)
by (3.3); so o(s) € D,. Since we already have that o(s) € B; N B, by (3.4),
a(syeB,nB,ND,ND, =G.

Since t e T it follows that f,(z) = g(2) for all z in G. Also, from (3.4) f(2) =
fA2) and gz) = g(z) for all z in G. Thus f(z) = g{z) for z in G; but since
G has a limit point in B, N D, it must be that s € 7. That is, (t—38, t+8) = T
and T is open. The proof that T is closed is similar and will be left to the
reader. I

3.5 Definition. Let (f, D) be a function element and let G be a region which
contains D; then (f, D) admits unrestricted analytic continuation in G if for
any path y in G with initial point in D there is an analytic continuation of
(f, D) along y.

If D = {z:|z—1] < 1} and fis the principal branch of \/E or log z then
(f, D) admits unrestricted continuation in the punctured plane but not in

. the whole plane (see Exercise 2.7).

It has been stated before that an existence theorem for analytic con-
tinuations will not be proved. In particular, if (f, D) is a function element
and G is a region containing D, no criterion will be given which implies that
(f, D) admits unrestricted continuation in G. The Monodromy Theorem
assumes that G has this property and states a uniquencss criterion.

3.6 Monodromy Theorem. l.¢t (f. D) be a function element and let G be a
region containing D such that (f, D) admits unrestricted continuation in @,
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Let ac D, beG and let yo and y, be paths in G from a to b; let {(f,, D):
0 <1< 1}and {(g, D,):0 <t < 1} beanalytic continuations of (f, D) along
yo and y, respectively. If v, and v, are FEP homotopic in G then

[fils = [g1]s

Proof. Since y, and y, are fixed-end-point homotopic in G there is a con-
tinuous function I': [0, 1]1x[0, 1] — G such that

0, 0) =y T 1) =)
F0,u) =a (l,u)=0»

for all ¢ and u in [0, 1]. Fix #, 0 < u < 1 and consider the path y,, defined
by 7.(t) = I'(t, u), from a to b. By hypothesis there is an analytic continuation

{(hyp» D ): 0 <t < 1}

of (f, D) along y,. It follows from Proposition 2.4 that gy = [hy, 4], and
[fils = [, ols- So it suffices to show that

[hl,o]b = [hl,l]b'
To do this introduce the set
U= {uel0, 11: [ .y = [h,ols},

and show that U is a non-empty open and closed subset of [0, 1]. Since
Oe U, U # (. To show that U is both open and closed we will establish the
following.

3.7 Claim. For u in[0, 1] there is a8 > 0 such that if lu—v| < & then [
[hy . o)s- For a fixed u in [0, 1] apply Lemma 3.2 to find an ¢ > O such that if
o is any path from a to & with |y,(1)—o(?)| < e for all ¢, and if {(k,, E))} is
any continuation of (f, D) along o, then

38 [hy, o = [k1le

Now T is a uniformly continuous function, so there is a 8 > 0 such that
if [u—0] < 8 then |y,(f) — v0)] = |T(t, W) =Tz, v)| < e for all 2. Claim 3.7
now follows by applying (3.8).

Suppose u € U and let 8 > 0 be the number given by Claim 3.7. By the
definition of U, (u—3$, u+8) < U; so U is open. If ue U~ and § is again
chosen as in (3.7) then there is a » in U such that [u—v| < 8. But by 3.7
[y, Jo = Uiy, 0]s; and since ve U [hy,.]s = U, ols. Therefore [y, s =
[y ols so that u € U; that is, U is closed. Il

"The following corollary is the most important consequence of the
Monodromy Theorem.

3.9 Corollary. Let (f, D) be a function element which admits unrestricted
continuation in the simply connected region G. Then there is an analytic
function F: G - > C such that F(z) = f(2) Sfor all =z in D.

Proof. Fix a in D and let z be any pointin G. I yis a path in G fromato :
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and {(f,, D,): 0 < t < 1} is an analytic continuation of (f, D) along y then
let F(z, y) = fi(2). Since G is simply connected F(z, y) = F(z, o) for any
two paths y and o in G from a to z. Thus, F(z) = F(z, y) gives a well defined
function F: G — C. To show that F is analytic let z¢ G and let y and
{(f:» D,)} be as above. A simple argument gives that F(w) = f,(w) for wina
neighborhood of z (Verify!); so F must be analytic. |l

Exercises

1. Prove that the set 7 defined in the proof of Lemma 3.2 is closed.

2. Let (f, D) be a function element and let ae D. If y: [0, 1] — C is a path
with 9(0) = a and y(1) = b and {(f,, D,): 0 <t < 1} is an analytic con-
tinuation of (f, D) along y, let R(f) be the radius of convergence of the power
series expansion of f, at z = (¢).

(a) Show that R(¢) is independent of the choice of continuation. That is,
if a second continuation {(g,, B,)} along y is given with [g,], = [f]. and r(¢)
is the radius of convergence of the power series expansion of g, about
z = y(t) then r(¢) = R(¢) for all ¢.

(b) Suppose that D = B(1; 1), fis the restriction of the principal branch
of the logarithm to D, and y(t) = 1+at for 0 <t <1 and a > 0. Find
R(D).

(c) Let (f, D) be as in part (b), let 0 < a < 1 and let y(f) =(1—at)
exp (2#it) for 0 < ¢ < 1. Find R(?).

(d) For each of the functions R(#) obtained in parts (b) and (c), find
min {R(#): 0 < t < 1} as a function of @ and examine the behavior of this
function as @ — o0 or a — 0.

3. Let I': [0, 1]x[0, 1] — G be a continuous function such that 10, u) = a,
(1, u) = b for all u. Let y¢) = I'(t, u) and suppose that {(f, . D,.):
0 < ¢ < l}isananalytic continuation along y, such that [/, ], = [fo..], for
all ¥ and v in [0, 1]. Let R(t, u) be the radius of convergence of the power
series expansion of f, , about z = I'(¢, u). Show that either R(1, u) = oo or
R: [0, 1]x[0, 11— (0, o) is a continuous function.

4. Use Exercise 3 to give a second proof of the Monodromy Theorem.

§4. Topological Spaces and Neighborhood Systems

The notion of a topological space arises by abstracting one of the most
important concepts in the theory of metric spaces—that of an open set.
~ Recall that in Chapter II we were given a metric or distance function on a
set X and this metric was used to define what is meant by an open set. In a
topological space we are given a collection of subsets of a set X which are
called open sets, but there is no metric available. After axiomatizing the
properties of open sets, it will be our purpose to recreate as much of the
theory of metric spaces as is possible, :

4.1 Definition, A topological space is a pair (X, .77) where Vs a set and 7
is a collection of subsets of =¥ having the following properties.
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(a) JeJ and X e.J;
() if Uy, ..., Uyarein 7 then () U; e ;
(¢) if {U;:iel}is any co]lectic;;lof sets in 7 then | ) U, is in 7.

iel

The collection of sets 7 is called a ropology on X, and each member of 7~
is called an open set.

Notice that properties (a), (b), and (c) of this definition are th.e
properties of open subsets of a metric space that were proved in Proposi-
tion I1. 1.9. So if (X, d) is a metric space and 7 is the collection of all open
subsets of X then (X,) is a topological space.

When it is said that a topological space is an abstraction of a metric
space, the reader should not get the impression that he is merely playing a
game by discarding the metric. That is, no one should believe that there is a
distance function in the background, but the reader is now required to prove
theorems without resorting to it. This is quite false. There are topological
spaces (X, ) such that for no metric d on X is 7 the collection of open
sets obtained via d. We will see such an example shortly, but it is first neces-
sary to further explore this concept of a topology.

The statement “Let X be a topological space” is, of course, meaningless;
a topological space consists of a topology T as well as a set X. However,
this phase will be used when there is no possibility of confusion.

4.2 Definition. A subset F of a topological space X is closed if X—F 1s
open. A point a in X is a limit point of a set 4 if for every open set U that
contains a there is a point x in AN U such that x#a.

Many of the proofs of propositions in this section follow along the same
lines as corresponding propositions in Chapter 1I. When this is the case the
proof will be left to the reader. Such is the case with the following two
propositions.

4.3 Proposition. Let (X, ) be a topological space. Then:

(a) O and X are closed sets;

(b) if Fy, - . ., F, are closed sets then F, U ...\ F, is closed;

() if {F;: ieI} is a collection of closed sets then ﬂz F, is a closed set.

i€

4.4 Proposition. A subset of a topological space is closed iff it contains all its
limit points.

Now for an example of a topological space that is not a metric space.
Let X=[0,1]={7:0<¢<1)} and let J consist of all sets U such that:

(i) if 0 € U then X — U is either empty or a sequence of points in X;
(i) if 0 ¢ U then U can be any set.

It is left to the reader to prove that (X, ) is a topological space. Spme
of the examples of open sets in this topology are: the set of all irrational
numbers in X: the set of all irrational numbers together with zero. To see
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that no metric can give the collection of open sets .7, suppose that there is
such a metric and obtain a contradiction. Suppose that d is a metric on X
such that Ue .7 iff for each x in U there is an € > 0 such that B(x; ¢) =
{y:d(x,y) <e} < U Nowlet 4 =(0,1);if U7 and 0 e U thenthereisa
point a in U N 4, a # 0 (in fact there is an infinity of such points). Hence,
0 is a limit point of A4. It follows that there is a sequence {t,} in 4 such that
d(t,, 0) —>0. But if U = {xeX: x 5 ¢, for any n} = X—{¢,, 1,,...} then
0 e U and U is open. So it must follow that ¢, € U for » sufficiently large;
this is an obvious contradiction. Hence, no metric can be found.

This example illustrates a technique that, although available for metric
spaces, is of little use for general topological spaces: the convergence of
sequences. It is possible to define “convergent sequence” in a topological
space (Do it!), but this concept is not as intimately connected with the
structure of a topological space as it is with a metric space. For example, it
was shown above that a point can be a limit point of a set 4 but there is no
sequence in A that converges to it.

If a topological space (X, .7) is such that a metric 4 on X can be found
with the property that a set is in 7 iff it is open in (X, d), then (X, .7) is
said to be metrisable. There are many non-metrisable spaces. In addition to
inventing non-metrisable topologies as was done above, it is possible to
define processes for obtaining new topological spaces from old ones which
will put metrisable spaces together to obtain non-metrisable ones. For
example, the arbitrary cartesian product of topological spaces can be defined;
in this case the product space is not metrisable unless there are only a count-
able number of coordinates and each coordinate space is itself metrisable.
(See VII. 1.18.)

Another example may be obtained as follows. Consider the unit interval
I = [0, 1]. Stick one copy of I onto another and we have a topological space
which still “looks like” I. For example, [1, 2] is a copy of I and if we stick
it onto I we obtain [0, 2]. In fact, if we “stick™ a finite number of closed
intervals together another closed interval is obtained. What happens if a
countable number of closed intervals are stuck together? The answer is that
we obtain the infinite interval [0, co). (If the intervals are stuck together on
both sides then R is obtained.) What happens if we put together an uncount-
able number of copies of I? The resulting space is called the long line. Locally
(i.e., near each point) it looks like the real line. However, the long line is not
metrisable. As a general rule of thumb, it may be said that if a process is used

_to obtain new spaces from old ones, a non-metrisable space will result if

the process is used an uncountable number of times.

For another example of a space that is non-metrisable let X be a set
consisting of three points—say X = {a, b, ¢}. Let 7 = {1}, X, {a}, {b},
{a, b} }, it is easy to check that .7 is a topology for X. To see that (X, .7)
is not metrisable notice that the only open set containing ¢ is the set X itself.
There do not exist disjoint open sets U and V such that ¢« U and ¢« V.
On the other hand if there was a metric d on X such that .7 is the collection
of open sets relative to this—metric then it would be possible to find such
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open sets (e.g., let U = B(a; ¢) and V = B(c; €) where ¢ < d(a, ¢)). In other
words, (X, ") fails to be metrisable because 7~ does not have enough open
sets to separate points. (Does the first example of a non-metrisable space also
fail because of this deficiency?) The next definition hypothesizes enough open
sets to eliminate this difficulty.

4.5 Definition. A topological space (X, J) is said to be a Hausdorff space
if for any two distinct points a and b in X there are disjoint open sets U and
V such that ae U and be V.

Every metric space is a Hausdorff space. As we have already seen there
are examples of topological spaces which are not Hausdorff spaces. Many
authors include in the definition of a topological space the property of a
Hausdorff space. This policy is easily defended since most of the examples of
topological spaces which one encounters are, indeed, Hausdorfl spaces.
However there are also some fairly good arguments against this combining
of concepts. The first argument is that mathematical pedagogy dictates
that ideas should be separated so that they may be more fully understood.
The second, and perhaps more substantial reason for not assuming all spaces
to be Hausdorff, is that more examples of non-Hausdorff spaces are arising
in a natural context. Even though there will be no non-Hausdorff space
which will appear in this book, this separation of the two concepts will be
maintained for a while longer.

The next step in this development is the definition, in the setting of
topological spaces, of certain concepts encountered in the theory of metric
spaces and the stating of analogous propositions.

4.6 Definition. A topological space (X, .7) is connected if the only non-
empty subset of X which is both open and closed is the set X itself.

4.7 Proposition. Let (X, ) be a topological space; then X = J{Ciel}
where each C, is a component of X (a maximal connected subset of X). Further-
more, distinct components of X are disjoint and each component is closed.

4.8 Definition. Let (X, 7)) and (£, f) be topological spaces. A function
f: X - Q is continuous if f~'(A) e J whenever Ae S

4.9 Proposition. Let (X, ) and (Q, &) be topological spaces and let f: X — Q
be a function. Then the following are equivalent:

(a) fis continuous;

(b) if A is a closed subset of Q then f “Y(A) is a closed subset of X

(©) ifac X and if f(a) € Ae & then there is a set U in I such that ae U
and f(U) < A,

4.10 Proposition. Let (X, 7)) and (Q, &) be topological spaces and suppose
that X is connected. If f: X — Q is a continuous function such that f(X) = £,
then Q is connected.

4.11 Definition. A sct K < X is compact if for cvery sub-collection " of .7
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such that K < | ) {U: U e O} there are a finite number of sets U,, ..., U,

in @ such that K < | } U,.
k=1

4.12 Proposition. Let (X, ) and (Q, &) be topological spaces and suppose
K 1s a compact subset of X. If f: X — Q is a continuous function then f(K) is
compact in Q.

If (X, d) is a metric space and Y < X then (Y, d) is also a metric space.
Is there a way of making a subset of a topological space into a topological
space? We could, of course, declare every subset of Y to be open and this
would make Y into a topological space. But what is desired is a topology on
Y which has some relationship to the topology on X; a natural topology on a
subset of a topological space.

If (X, 9) is a topological space and ¥ < X then define

Ty={UnY: UeT}.
It is easy to check that Jy is a topology on Y.

4.13 Definition. If Y is a subset of a topological space (X, .7 ) then Jy is
called the relative topology on Y. A subset W of Y is relatively open in Y
if WeJy; Wis relatively closed in Y if Y—W e

Whenever we speak of a subset of a topological space as a topological

space it will be assumed that it has the relative topology unless the contrary
is explicitly stated.

4.14 Proposition. Let (X, ) be a topological space and let Y be a subset of X.

(@) If X'is compact and Y is a closed subset of X then (Y, T y) is compact.
(b) Y is a compact subset of X iff (Y, T y) is a compact topological space.
(© If (X, 9) is a Hausdorff space then (Y, T y) is a Hausdorff space.

(d) If (X, F) is a Hausdorff space and (Y, T y) is compact then Y is a closed
subset of X.

Proof. The proofs of (a), (b), and (c) are left as exercises. To prove part (d)
it suffices to show that for each point a in X — Y there is an open set U such
thatae Uand UN Y = [J. So fix a point a in X—Y; for each point y in ¥
there are open sets U, and ¥, in X such that ae U,, ye V,, and U, N ¥V, =
(] (because (X ") is a Hausdorff space). Then {V,nY:yeY}isa collec-
tion of sets in .7y which covers Y. So there are points y,, ..., y, in ¥ such
thatYCU(V NnNY)c UV V. Since ae U, for each i, ae U = ﬂ

U,,; also Ue T . 1t is easxly verified that UN ¥V = U Uunv,)= [] so
that UNY = [. A

The proof of this proposition yields a stronger result.

4.15 Corollary. Let (X, .7) be a Hausdorff space and let 'Y be a compact
subset of X then for cach point a in X =Y there are open sets U and V in X
such thata« U Y« Vo ogud U |

H we return to the considesation of metric spaces we can discover a new
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way to define a topology. The sequence of steps by which open sets are
obtained in a metric space are as follows: the metric is given, then open balls
are defined, then open sets are defined as those sets which contain a ball
about each of their points. What we wish to mimic now is the introduction
of balls; this is done by defining a neighborhood system on a set.

4.16 Definition. Let X be a set and suppose that for each point x in X there
is a collection .#,, of subsets of X having the following properties:

(a) for each U in A, xe U;

(b) if U and VeV, there is a W in A such that W < UNn V;

(c) if Ue A, and V€4, then for each z in U N V there is a W-ifi A,
such that W< Un V.

Then the collection {A4: x e X} is called a neighborhood system on X.

If (X, d) is a metric space and if x € X then A4 = {B(x; ¢): ¢ > 0} gives
a collection {4#7.: x € X} which is a neighborhood system. In fact, this was
the prototype of the above definitions.

Notice that condition (c) relates the neighborhood systems of different
points. If only conditions (a) and (b) were satisfied, it would not follow that
these neighborhoods would be open sets in the topology to be defined. For
example, if X is a metric space and 4 is the collection of closed balls about
x then {A4,: x € X} satisfies conditions (a) and (b) but not (c). Moreover, it
is easy to verify that by letting x = y = z condition (b) can be deduced from
(¢) (Verify?!).

The next proposition relates neighborhood systems and topological
spaces.

4.17 Proposition. (a) If (X, ) is a topological space and N, = {UeJ :
x e U} then {N,: x € X} is a neighborhood system on X.

(b) If {AN.: x € X} is a neighborhood system on a set X then let 7 = {U:
x in U implies there is a V in N, such that V < U}. Then  is a topology on
Xand N, < T for each x.

© If (X, T) is a topological space and {N: x € X} is defined as in part
(a), then the topology obtained as in part (b) is again 7 .

(d) If {N.: x € X} is a given neighborhood system and J is the topology
defined in part (b), then the neighborhood system obtained from J contains
{AN.:xeX}. That is, if V is one of the neighborhoods of x obtained from I~
then there is a U in N, such that U < V.

Proof. The proof of parts (a), (c), and (d) are left to the reader. To prove part
(b), first observe that both X and [ are in J((Je J since the conditions

are vacuously satisfied). Let Uy, ..., U,e.7 and put U = (\ U;. If xc U
it
then for each j there is a V; in .4, such that ¥, < U,. It follows by induction

on part (b) of Definition 4.16 that there is a ¥ in. 1 such that V' < NV,
[

Thus ¥V« U/ and U must belong to .77, Since the union of a collection of

-
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sets in 7 is clearly in .77,  is a topology. Finally, fix x in and let U e 4.
If y e U it follows from part (c) of Definition 4.16 that there is a ¥ in N
such that V< U. Thus Ue 9. R

4.18 Definition. If {4, x e X} is a neighborhood system on X and .7 is the
topology defined in part (b) of Proposition 4.17, then . is called the topology
induced by the neighborhood system.

4.19 Corollary. If {A,: x € X} is a neighborhood system on X and  is the
induced topology then (X, ) is a Hausdorff space iff for any two distinct
points x and y in X there is a set Uin N, and a set V in N, such that
UnV=r]

Exercises

1. Prove the propositions which were stated in this section without proof.
2. Let (X, 7) and (Q, &) be topological spaces and let ¥ < X. Show that
if f+ X - Q is a continuous function then the restriction of fto Y is a con-
tinuous function of (¥, J7,) into (Q, &).
3. Let X and Q be sets and let {A: xe X} and {#,: weQ} be neigh-
borhood systems and let .7 and & be the induced topologies on X and Q
respectively.

(a) Show that a function f X — Q is continuous iff when x ¢ X and
w = f(x), for each A in .# , there is a U in ¥, such that f(U) < A.

(b) Let X=Q=Candlet /., = .#, = {B(z;¢): e > 0} for each z in C.
Interpret part (a) of this exercise for this particular situation.
4. Adopt the notation of Exercise 3. Show that a function f: X — Q is open
iff for each x in X and U in A/ there is a set A in .#, (where w = f(x)) such
that A < f(U).
5. Adopt the notation of Exercise 3. Let ¥ < X and define %, = {Y N U:
U e} for each y in Y. Show that {%,: y € Y} is a neighborhood system
for Y and the topology it induces on Y is .7 y.
6. Adopt the notation of Exercise 3. For each point (x, w) in X x Q let

%(x,w) = {UXAI Ue%’ Aeﬂw}

(a) Show that {#, ,: (x, w)e XxQ} is a neighborhood system on
X xQ and let Z be the induced topology on X x Q.

(b) If Ue T and A e &, call the set Ux A an open rectangle. Prove that
a set is in 2 iff it is the union of open rectangles.

(c) Define p;: AxQ —>X and p,: XxQ—Q by p,(x, w) =x and
pa(x, w) = w. Show that p, and p, are open continuous maps. Furthermore
if (Z, #) is a topological space show that a function f: (Z, #) — (X xQ, P)
is continuous iff p, o/ Z > X and p, « f: Z —» Q are continuous.

§5. The Sheaf of Germs of Analytic Functions on an Open Set

This section introduces a topological space which plays a vital role in
complex analysis. In addition to the topological structure, an analytical
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structure is also imposed on this space (in the next section). This will furnish
the setting in which to study the complete analytic function as an analytic
function.

If (f, D) is a function element, recall that the germ of (f, D) at a point
2 = ain D is the collection of all function elements (g, B) such that ac B
and g(z) = f(z) for all zin BN D. This germ is denoted by [f],.

5.1 Definition. For an open set G in C let p
F(G) = {(z,[fl,): z€ G, fis analytic at z}.

Define a map p: F(G) —>C by p(z, [f],) = z. Then the pair (£(G), p) is
called the sheaf of germs of analytic functions on G. The map p is called the
projection map; and for each z in G, p~'(2) = p~ '({z}) is called the stalk or
fiber over z. The set G is called the base space of the sheaf.

Notice that for a point (z, [f],) to be in F(G), it is not necessary that f be
defined on all of G; it is only required that / be analytic in a neighborhood
of z.

How do we picture this sheaf? (There are, of course, too many dimensions
to form an accurate geometrical picture.) One way is to follow the agri-
cultural terminology used in the definition. On top of each stalk there is a
collection of germs; the stalks are tied together into a sheaf. A better feeling for
&(G) can be obtained by examining the notation for points in F(G). When we
consider a point (z, [ f1,) in #(G), think of a function element (f, D) in the germ
[f], instead of the germ itself. For every point w in D there is a point (w, [f],)
in #(G). Thus about (z, [f],) there is a sheet or surface {(w;[f1,):weD}.
In fact, S(G) is entirely made up of such sheets and they overlap in various
ways. Alternately, we can think of &(G) as the union of graphs; each point
(z, [f],) in &(G) corresponding to the point (z, f(2)) on the graph of (f, D).
(The graph of (f, D) is a subset of C? or R*) Two function elements are
equivalent at a point z if their graphs coincide near z.

A topology will be defined on &(G) by defining a neighborhood system.
For an open set D contained in G and a function f: D — C analytic on D
define

5.2 N(f, D) = {(z,[fl):z¢ D}.
That is, N(f, D) is defined for each function element (f, D). If we think of
F(G) as a collection of sheets lying above G which are indexed by the germs,
then N(f, D) is the part of that sheet indexed by f and which lies above D.
5.3 Theorem. For each point (a, [f1,) in F(G) let

Nt = (N, B):acBand[gl, = [fl)-

then {N 11, (@, [f))  L(G)} is a neighborhood system on A(G) and the
induced topology is Hausdorff. Furthermore. the induced topology makes the
map p: S(G) > G continnous.

Proof. Fix (a. [ []) in Y(G): since 1t is clear that condition (a) of Definition
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4.16 holds, it remains to verify that condition (c) holds. (Condition (b) is a
consequence of (c).) Let N(g,, B,) and N(g,, B,) e ¥, /1., and let

5.4 (b, [h]s) € N(g1, B,) N N(g;, By).

It is necessary to find a function element (k, W) such that N (k, W)e N, 14y,
and N(k, W) < N(g,, B,) N N(g,, B,). It follows from (5.4) that b ¢ B, 1 B,
and [A), =[g,], = [g2]s- f be W < B, N B, and h is defined on W then
N(h, W) < N(g,, B,) N N(g,, B,).

To show that the induced topology is Hausdorff, use Corollary 4.19. So
let (a, [f],) and (b, [g],) be distinct points of F(G). We must find a neighbor-
hood N(f, A4) of (a, [f],) and a neighborhood N(g, B) of (b, [g],) such that
N(f, 4) " N(g, B) = [J. How can it happen that (a, [f],) # (b, [g],)? There
are two possibilities. Either a # b or a = b and [f], # [g],. If @ # b then
let A and B be disjoint disks about @ and b respectively; it follows immediately
that N(f, ) " N(g, B) = (1. If a = b but [f], # [g),, we must work a little
harder (but not much). Since [f], # [g], there is a disk D = B(a; r) such that
both f and g are defined on D and f(z) # g(z) for 0 < [z—a| < r. (It may
happen that f(a) = g(a) but this is inconsequential.)

Claim. N(f, D)~ N(g, D) = [O.
In fact, if (z, [A],) e N(f, D) N N(g, D) then z € D, |hl, = [f],, and [4], =
[g],. It follows that fand g agree on a neighborhood of z, and this is a contra-
diction. Hence the induced topology is Hausdorf.

Let U be an open subset of G; begin the proof that p: #(G) - G is
continuous by calculating p~ (V). Since p(z, [f],) = z,

p i (U) = {(z,[f)): 2 U}

So if (z, [f],) € p~ "(U) and D is a disk about z on which fis defined and such
that D <= U, N(f, D) < p~}(U). It follows that p must be continuous
(Exercise 4.3). B

Consider what was done when we showed that the induced topology was
H_ausdorff. If a # b then (a, {f],) and (b, [g],) were on different stalks
p~'(a) and p~!(b); so these distinct stalks were separated. In fact, if a € 4,
beBand AN B = ] then p"(4) N p~'(B) = . If a = b then (a, |f],)
and (a, [gl,) lie on the same stalk p~'(a). Since [f], # [g], we were able to
divide the stalk. That is, one germ was “higher up” on the stalk than the
other.

In the remainder of this section some of the properties of F(G) as a
topological space are investigated. In particular, it will be of interest to
characterize the components of #(G). However, we must first digress to
study some additional topological concepts.

5.5 Definition. Let (X, .7") be a topological space. If x, and x, € X then an
arc (or path) in X from x, to x, is a continuous function y: [0, 1] X such
that (0) = xo and (1) == x,. The point x,, is called the initial point of y and
x, is called the final point or terminal point. The trace of y is the set {y} =
{H{):0 <1< 1) —- '
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A subset 4 of X is said to be arcwise or pathwise connected if for any two
points x, and x, in A there is a path from x, to x, whose trace lies in 4. The
topological space (X, J) is called locally arcwise or pathwise connected if
for each point x in X and each open set U which contains x there is an open
arcwise connected set ¥ such that xe ¥V and V' < U.

For each x in X let A, be the collection of all open arcwise connected
subsets of X which contain x. Then X is locally arcwise connected iff
{A,: xe X} is a neighborhood system which induces the original topology
on X. (Verify!)

The proof of the following proposition is left to the reader.

5.6 Proposition. Let (X, J) be a topological space.

(@) If A is an arcwise connected subset of X then A is connected.
(b) If X is locally arcwise connected then each component of X is an open
set.

The converse to part (a) of the preceding proposition is not true. For
example let

1
X={t+isin; > O}U {si:r=1<s< 1}

Since X is the closure of a connected set it is itself connected. However,
there is no arc from the point 1/= to i which lies in X. X is also an example of
a topological space which is connected but not locally arcwise connected.
Suppose X is connected and locally arcwise connected ; does it follow
that X is arcwise connected? The answer is yes. In fact, this is an abstract
version of a theorem which was proved about open connected subsets of the
plane. Since disks in the plane are connected, it follows that open subsets of
C are locally arcwise connected. Recall that in Theorem II. 2.3 it was proved
that for an open connected subset G of the plane, any two points in G can
be joined by a polygon which lies in G. Hence, a partial generalization of this
(the concept of a polygon in an abstract metric space is meaningless) is the
following proposition whose proof is virtually identical to the proof of 1. 2.3.

5.7 Proposition. If X is locally arcwise connected then an open connected

subset of X is arcwise connected.
We now return to the sheaf of germs of analytic functions on an open

set G.

5.8 Proposition. Let G be an open subset of the plane and let U be an open
connected subset of G such that there is an analytic function f defined on U.
Then N(f, U) is arcwise connected in F(G).

Proof. Let (a, [f],) and (b, [f];) be two generic points in N(f, U); then
a, be U. Since U is a region there is a path y: [0, 1] - U from a to b. Define
a: [0, 1] > N(f, U) by

o(t) = (Y(O. [fy0)-
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Clearly o(0) = (a, [f],) and o(1) = (b, [f],); if it can be shown that ¢ is
continuous then o is the desired arc.

Fix ¢ in [0, 1] and let N(g, V) be a neighborhood of o(¢). Then y(H) e V
and [f],,y = [g],(,)- So there is a number r > 0 such that B(»(t);r) <« UN V
and f(z) = g(z) for |z—y(f)] < r. Also, since y is continuous there is a
8 > 0 such that |y(s)—(f)] < r whenever |s—¢| < §. Combining these last
two facts gives that

(=38, t+8) < o Y(N(g, V).

It follows from Exercise 4.3 that o is continuous. [}

5.9 Corollary. £(G) is locally arcwise connected and the components of F(G)
are open arcwise connected sets.

Proof. "I‘.he first part of this corollary is a direct consequence of the preceding
proposition. The second half follows from Proposition 5.6(b) and Pro-
position 5.7. B

In light of this last corollary, it is possible to gain insight into the nature
of the components of #(G) by studying the curves in #(G).

5.10 T!leorem. There is a path in FL(G) from (a, [f],) to (b, [g],) iff thereis a
path y in G from a to b such that [gl, is the analytic continuation of [ f1, along .

Proof. Suppose that o: [0, 1] > .#(G) is a path with o(0) = (a, [f]), o(1) =
(b, [g],). Then y = p oo is a path in G from a to b. Since o(f) € F(G) for
each ¢, there is a germ [f],(,, such that

U(t) = (Y(t)’ [ft]y(t))'

We claim that {[f}],,: 0 < ¢ <1} is the required continuation of [f],
along y. Since [f], = [fol. and [g], = [f1],, it is only necessary to show that
{[fJ,»} is a continuation. For each ¢ let D, be a disk about z = y(¢) such
that D, < G and f, is defined on D,. Fix ¢ in [0, 1]; since N(f,, D,) is a neigh-
borhood of o(f) and ¢ is continuous, there is a 8 > 0 such that

(t=38, t+8) < o~ Y (N (f,, D).

That i‘s, if [s—1| < 8 then (¥(s), [fl,s)) = o(s) € N(f,, D,). But, by definition,
tl'.ll‘S gives that y(s) e D, and [f],, = [fil,(s); and this is precisely the con-
dition needed to insure that {(f,, D,): 0 < ¢t < 1} is a continuation along y
(Definition 2.2).

_ Now suppose that y is a curve in G from a to b and {[f]],,: 0 <t < 1}
i1s a continuation along y such that [f;], = [f], and [f,], = [g],. Define o:
[0, 1] - F(G) by o(t) = (A1), [fi],); it is claimed that o is a path from
ga, [f1.) to (b, [g]s)- Since the initial and final points of o are the correct ones
it is only necessary to show that ¢ is continuous. Because the details of this
argument consist in retracing the steps of the first half of this proof, their
exccution 1s left to the reader. i ’

5.!] Theorem. l.et ‘6« (G and Jet (a, | [],)+ 6 then 6 is a component of
LGy iy — ‘ |
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€ = {(b,[gly): [g], is the continuation of | f], along some curve in G}

Proof. Suppose % is a component of F(G); by Corollary 5.9 € is an open
arcwise connected subset of F(G). So by the preceding theorem, for each
point (b, [gl,) in €, [g], is the continuation of [f], along some curve in G.
Conversely, if [g], is the continuation of [f], along some curve in G then
(b, [g],) belongs to the component of &(G) which contains (a, [f]); that
is, (b, [gly) € €. ‘

Now suppose that € consists of all points (b, [g],) such that [¢l, is a
continuation of [f],. Then ¥ is arcwise connected and hence is connecteq.
If €, is the component of #(G) containing % then by the first half of this
proof it follows that € = ¢,. W .

Notice that the point (a, [f],) in the statement of the preceding theorem
has a transitory role; any point in the component will do. _

Fix a function element (f, D) and recall that the complete analytic
function F associated with (f, D) is the collection of all germs [g], which
are analytic continuations of [f], for any a in D (see Definition 2.7). Let

5.12 G = {z:thereis a germ [g], in & §;

it follows that G is open. In fact, if z € G then there is a germ [g]z. in % and a
disk B about z on which g is defined. Clearly B < G so that G is open.
It follows from Theorem 5.11 that

5.13 R = {zgl):[g). e ZF}
is a component of #(C) and that p(#) = G. (It is also true that R < F(G).)

5.14 Definition. Let & be a complete analytic function. If Z is the set
defined in (5.13) and p is the projection map of the sheaf F(C) then tt.le
pair (&, p) is called the Riemann Surface of . The open set G defined in
(5.12) is called the base space of F.

5.15 Theorem. Let F be a complete analytic function with base space G and
let (R, p) be its Riemann Surface. Then p: # — G is an open continuous map.
Also, if (a,[f1,) is a point in X then there is a neighborhood N(f, D) of (a, [ f].)
such that p maps N(f, D) homeomorphically onto an open disk in the plane.

Proof. Consider # as a component of S(C). Since p: L (0) ?C is con-
tinuous it follows that p: # — G is continuous. To show that p is open it 1s
sufficient to show that p(N(f, U)) is open for each (f, U) (Exercise 4.4). But
N(f, U)) = U which is open.

8 I(ff(a, )[)f],,) e % let D be an open disk such that (f, D) E[f:],,. Then p:
N(f, D) — D is an open, continuous, onto map. To show that pisa homeq-
morphism it only remains to show that p is one-one on N(f, D?. Bu.t if
(b, [f1,) and (c, [f).) are distinct points of N(f, D) then b # ¢ which gives
that p is one-one. Ml

Remarks. 1n its standard usage the Riemann surface of a complete analytic
function consists not only of what is here called a Riemann Surface but also
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some extra points—the branch points. These branch points correspond to
singularities and permit a deeper analysis of the complete analytic function.

Exercises

1. Define F: #(C) — C by F(z, [f],) = f(2) and show that F is continuous.
2. Let # be the complete analytic function obtained from the principal
branch of the logarithm and let G = C— {0}. If D is an open subset of G
and f: D — C is a branch of the logarithm show that [f], € # for all 4 in D.
Conversely, if (f, D) is a function element such that [f], ¢ & for some a in
D, show that f: D — C is a branch of the logarithm. (Hint: Use Exercise 2.8.)
3. Let G = C— {0}, let & be the complete analytic function obtained from
the principal branch of the logarithm, and let (£, p) be the Riemann surface
of Z (so that G is the base of #). Show that Z is homeomorphic to the graph
I' = {(z, e"): z € G} considered as a subset of Cx C. (Use the map h: # — I'
defined by A(z, [f],) = (f(2), z) and use Exercise 2.) State and prove an
analogous result for branches of z!/",

4. Consider the sheaf #(C), let B = {z: |z—1] < 1}, let £ be the principal
branch of the logarithm defined on B, and let £,(z) = 4z)+ 2mi for all z in B.
(a) Let D = {z: |z < 1} and show that (4, [#],) and (4, [£,],) belong to the
same component of p~'(D). (b) Find two disjoint open subsets of #(C)
each of which contains one of the points (4, [/],) and (4, [£11).

§6. Analytic Manifolds

In this section a structure will be defined on a topological space which,
when it exists, enables us to define an analytic function on the space. Before
making the necessary definitions it is instructive to consider a previously
encountered example of such a structure. The extended plane C_, can be
endowed with an analytic structure in a neighborhood of each of its points.
If ae C, and a # oo then a finite neighborhood U of a is an open subset of
the plane. If ¢: U — C is the identity map, ¢(z) = z, then ¢ gives a *“‘co-
ordinatization” of the neighborhood U. (Do not become confused over the
preceding triviality. The introduction of the identity function ¢ seems an
unnecessary nuisance. After all, U is an open subset of C so we know what it
means to have a function analytic on U. Why bring up ¢? The answer is that
for the general definition it is necessary to consider pairs such as (U, ¢);
trivialities appear here because this is a trivial example.) If @ = oo then let
Uy = {z: |z] > 1} U {00} and define ¢,: Uy —+C by ¢ (z) = z7! for
z # 0, ¢, (0) = 0. So ¢, is a homeomorphism of U_ onto the open disk
B(0; 1). Hence to cach point a in C, a pair (U,, ¢,) is attached such that U,
is a neighborhood of @ and ¢, is « homeomorphism of U, onto an open sub-
sct of the planc. What happens if two of the sets U, and U, intersect ? Suppose
for example that a # o and U,n U, /| 1. Let G, — BO; 1) = ¢, (U,)
and let G, ¢ (02 ( U). Then ¢,'(z) =z ' for all = in ., thus
Py (2 2 Morall cang (U, N L) Since ¢ UL Oy e (U, O U
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so that g, o @y ' is analytic on its domain. Similarly, if botb a and b are
finite then @, o @, * is analytic on its domain. This is the crucial property.

—

6.1 Definition. Let X be a topological space; a coordinate patch on X is a
pair (U, ¢) where U is an open subset of Xand pis a hom.eomorphism of U
onto an open subset of the plane. If a € U then the coordinate patch (U, ¢)
is said to contain a.

6.2 Definition. An analytic manifold is a pair (X, ®) where X is a Hausdorff
connected topological space and @ is a collection of coordinate patches on
X such that: (i) each point of X is contained in at least onelmember of CI.),
and (ii) if (U, @), (Uy, @) €@ with U, N U, =[] then g,°@, " 1s an analytic
function of g,(U, N U,) onto ¢,(U, N U,). The set ¢ of coordinate patches
is called an analytic structure on X.

An analytic manifold is also called an analytic surface.

Note immediately that g, o @, ' is one-one since both ¢, and Py are.
Henceforward, for the sake of brevity, care will not be taken in mentioning
the appropriate domain of a function such as @, ° @, 1 . .

Next, it must be emphasized that the definition of an analytic mamf(?ld
is tied to its analytic structure. It is possible to give the open .dis.k two in-
compatible analytic structures (one of them the natural one). ThlS is also the
case with the torus which can be made into an analytic manifold in an un-
countable number of incompatible ways. (Exercise 4.) But this investigation
must be postponed until we have the notion of an isomorphism between
analytic surfaces. ‘ N

With the collection of coordinate patches introduced prior to Deﬁnltlop
6.1, C_, becomes an analytic manifold. However, a closed disk is not a mam’-
fold since the points on the boundary cannot be surrounded by a coordmat.e
patch. Similarly, the union of two intersecting planes in R is not an analytic
manifold.

A number of examples of analytic surfaces will be available after. s.ub-
stantiating the following observations which are gathered into a proposition.

6.3 Proposition. (a) Suppose (X,®) is an analytic surface and V' is an open
connected subset of X. If

o, ={(UnV.,p):(U,p)e ¢}

then (V,®,) is an analytic surface. (b) If (X, ®) is an analytic surface and
is a topological space such that there is a homeomorphism h of X onto 1, then
with

V={(h(U).goh '):(U.g)ed},

(2, %) is an analvtic surface.
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Proof. (a) This is a triviality.

(b) It is clear that @ is connected, that ¥ is a collection of coordinate
patches for {2, and that each point of € is contained in at least one member
of ¥. So let (U,p) and (V,p)e ® such that A(U)Nh(V)#[]. But then
UnVv=#0 sincc h(Uynh(V)=h(U N V). So, (peh YHe(poh )=
(poh Yeo(hop ")=g@opu ! which is analytic by the condition on ®. Thus
(£2,%¥) is an analytic manifold. W

In virtue of part (a) of the preceding proposition the following assump-
tion is made on all analytic structures @ that will be discussed:

If (U,@) € ® and V is an open subset of U then (V,p) € ®.

Of course, when an analytic structure is defined one does not bother to
give all the coordinate patches, but only those that generate ® in the above
manner.

Proposition 6.3 also implies that any space that is homeomorphic to a
region in the plane is an analytic surface. Hence a piece of paper with a
crease in it is an analytic surface. Is this a shock to you? If the reader has
ever seen an introduction to differentiable manifolds, he may be surprised
at this.

If X is a subset of R’ then X is a differentiable 2-manifold if each point
in X is contained in a coordinate patch (U, o) such that ¢ "' : g(U)>U <
R? has coordinate functions with continuous partial derivatives. That is, let
G=¢(U) and @ '(s,0)=(&s.1), n(s,1), ¢(s.0)) for all (s,6) in G. It is
required that £ 7, and { be functions from G into R with continuous
partial derivatives. A folded piece of paper is not a differentiable 2-mani-
fold. In fact, if (U, @) is a patch that contains a point on the crease then
@ ! has at least one non-differentiable coordinate function. Since analytic-
ity is a stronger notion than differentiability this seems confusing, but the
explanation is simple. If 4 is a homeomorphism of X onto the region G in
the plane then an analytic structure is imposed on X via A. In fact, by
considering X with this structure we are only considering G under a
different guise. In the definition of a differentiable 2-manifold there is no
differentiable structure “imposed” on X; the structure is restricted by
conditions that it inherits as a subset of R’? (where there is already a
differentiable structure).

In a similar fashion the surface of a cube in R’ is an analytic surface
since it is homeomorphic to C_,.

Suppose now that G is a region and f: G—C is an analytic function
such that f(z)#0 for any = in G. We wish to give the graph

l‘={(:.{/’(:)):: ¢ (i}

an analytic structure. Wop: 7 - G is defined by p(=. /(7)) = then pisa
homeomorphism of 1 outo G consequently 1 anherits the analy te structure
of G as m 6.30). But this Joes not use the ady ety of £ et alone the fact
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that f’ doesn’t vanish. This is surely an uninteresting structure. So, to
rephrase the problem: put an analytic structure on I' that is ‘“‘connected”
to the analytic properties of f.

Fix « = (a, f(a)) in I". Since /"(a) # O there is a disk D, about a such that
D, < G and f is one-one on D,. Let

6'4 Ua: {(Z,f(Z)):ZgDa}
and define ¢,: U, — C by

6.5 Pz, f(2)) = f(2)
for each (z, f(2)) in U,.

6.6 Proposition. Let G be a region in the plane and let f be an analytic
Sfunction on G with non-vanishing derivative. If U is the graph of f and

O = {(U, ) «el', U, and ¢, as in (6.4) and (6.5)}

then (I', ®) is an analytic manifold.

Proof. Since T' is homeomorphic to G it must be connected. Fix « = (a, f(a))
in I'; it is left to the reader to show that ¢, is a homeomorphism of U, onto
f(D,). Suppose .that 8 = (b, f(b))e I' with U, n Uy # [] and compute
®q © @ ' Since f: D, — C is one-one there is an analytic function g: Q2 — D,
where Q = f(D,), such that f(g(w)) = w for all @ in Q. Since @x(Uy) =
it follows that ¢g Nw) = (g(w), w); thus ¢, o Ps Hw) = plg(w), w) = w for
each w in gy(U, N Up). In particular @, o g ! is analytic. ll

Henceforward, whenever the graph of an analytic function with non-
vanishing derivative is considered as an analytic manifold, it will be assumed
that it has the analytic structure given in the preceding proposition.

6.7 Theorem. If (%, p) is the Riemann surface of a complete analytic function
and® = {(U, p): Uis open in R, p is one-one on U}, then (#, ®) is an analytic
manifold.

Proof. It follows from Theorem 5.15 that each point of # is contained in an
open set on which p is one-one and that p is a homeomorphism there.
Furthermore, if (U, p) and (V, p)e® and UN V # [ [ then peo (p|U)™!
the identity map. (The notation p|U is used to denote the restriction of p to
U.) Since Z is connected it is an analytic surface. Il

6.8 Definition. Let (X, @) and (€2, V) be analytic manifolds and fet /2 X - » €
be a continuous function; let a ¢ X and « = f(a). The function f'is analytic at
a if for any patch (A, ¢) in 1" which contains « there is a patch (U, ¢) in b
which contains @ such that:

(i) f(U)y = A

(i) ¢ £ ¢ isanalytic on g (U) « O
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The function is analytic on X if it is analytic at each point of X.

The condjtion that (U, ¢) can be found such that ae U and f(U) = A
is a consequence of the continuity of f (Proposition 4.9(c)). The heart of the
definition is the requirement that o fo @~ ! be an analytic function from
@(U) < Cinto C.

For two given analytic surfaces there may be many analytic functions
from one to the other or there may be very few. Clearly every constant
function is analytic; but there may be no other analytic functions. For
example, if X = C and Q is a bounded region in the plane then Liouville’s
Theorem implies there are no non-constant analytic functions from X into
Q. Also, suppose that f: C_, — C is an analytic function; then f(C,) is com-
pact so that the restriction of fto C is a bounded analytic function on C.
Again, Liouville’s Theorem says that each such fis a constant function. On

1
the other hand, if p is a polynomial and a € C then both p(z) and p(——-)
z—a

are analytic functions from C_ to C,,. In fact, these are practically the only
analytic functions from C_ to C, (Exercise 7).

If (X, ®) is an analytic surface then there are many analytic functions
defined on open subsets of X. For example, if (U, ¢) e ® then ¢: U —>C is
analytic. It follows (Proposition 6.10 below) that fop: U — C is analytic
for any analytic function f: ¢(U) — C.

Before proving some of the basic properties of analytic functions on
manifolds, one further example will be given. This example is stated as a
theorem and justifies the terminology ‘“‘complete analytic function”.

6.9 Theorem. Let & be a complete analytic function with Riemann Surface
(Z, p). If F: R — C is defined by

F(z1f) = f(2)
then-% is an analytic function.

Proof. Fix « = (a,[f],) in Z and let D be a disk about a on which f'is defined
and analytic. Let U be the component of p~'(D) which contains «; so (U, p)
is a coordinate patch. Let p~! denote the inverse of p: U — p(U). We must
show that % - p~! is analytic on p(U) < C. But for z in p(U),

F o p () = F(z, [(2) = (2);

that is, & o p~' = f which is analytic. i
The next several results are generalizations of theorems about analytic
functions defined on regions in the plane.

6.10 Proposition. Suppose (X, 1), (Y, "), and (Z, ) are analytic manifolds
and f+ X ~Yand g: Y -7 are analytic functions; then g o f: X - > Z is an
analytic finction.

The proof is left to the reader,

6.11 Theorem. [ ¢t (N, () and (A2, ) be analytic manifolds and let [ and g be
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analytic functions from X into Q. If {x € X: f(x) = g(x)} has a limit point in X
thenf=g.

Proof. Define the subset 4 of X by
A = {x:fand g agree on a neighborhood of x}.

This set A4 will be shown to be non-empty and the reader will be required to
prove that 4 is both open and closed in X. By hypothesis there is a point
a in X such that for every neighborhood U of a there is a point x in U with
x # a and f(x) = g(x). It is easy to conclude that f(a) = g(a) = « If
(A, ¢) e ¥ and « € A then there is a patch (U, ¢) in @ such that f(U) and g(U)
are contained in A with both o fo @~ ! and ¢ o g o @~ ! analytic in a disk D
about z, = ¢(«). But the hypothesis gives that z is a limit point of {ze D:
fofop l(2) =¢ogoe !(2)} = F. In fact, if f(x) = g(x) then p(f(x)) € F.
Thus $ofop™l(z) = fogop '(2) for all z in D; or f(x) = g(x) for all x
in UNng }(D). Hence ae A and 4 # (1. A

6.12 Maximum Modulus Theorem. Let (X, ®) be an analytic manifold and
let f: X — C be an analytic function. If there is a point a € X and a neighborhood
U of a such that | f(a)| = | f(x)| for all x in U then f is a constant function.
The proof is left to the reader.
The Maximum Modulus Theorem allows us to generalize Liouville’s
Theorem in the following way.

6.13 Liouville’s Theorem. If (X, @) is a compact analytic manifold then there
is no non-constant analytic function from X into C.

6.14 Open Mapping Theorem. Let (X, D) and (Q, ¥) be analytic manifolds
and let f- X — Q be a non-constant analytic function. If U is an open subset of
X then f(U) is open in Q.

Proof. Let U be an open subset of X and let a € f(U). If ae U such that
o = f(a) and (A, ¢) € ¥ which contains «, then let (¥, ¢) € ® such that f(})
< A and ¢ofop ! is analytic. Let W = UnN Vi then W is open and so
(W) is an open subset of the plane. Since f is not a constant function it
follows from Theorem 6.11 that ¢ o fo ! is not constant. Hence, the Open
Mapping Theorem for functions of a complex variable implies that $( /(W))
= ofoqg  Yp(W)) is open in C. But then f(W) = ¢~ '((f(W)) is open
and « € f(W) < f(U). So f(U) must be open. Il

6.15 Definition. If (X, ®) and (Q, ¥) are analytic manifolds, an isomorphism
of X onto Q is an analytic function f: X — Q which is one-one and onto. If
an isomorphism exists then (X, @) is said to be isomorphic to (2, ¥).

If f: X —Q is an isomorphism then f is an open mapping by (6.14). It
follows that f~': Q — X is a homeomorphism. Is f~! also analytic? The
answer is yes and the reader is asked to prove the next proposition.

6.16 Proposition. If f: X » 2 is an isomorphism then f ™' Q - X is also an
isomorphism.

1

Analytic Manifolds 239

Recall that the Riemann Mapping Theorem states that if G is a simply
connected region in the plane and G # C, then G is isomorphic to the open
unit disk if both are considered as analytic surfaces. Also recall that Proposi-
tion 6.3(c) states that if (X, ®) is an analytic manifold and A: X - Qs a
homeomorphism of X onto the topological space Q, then 4 induces an
analytic structure on Q; denote this structure by ® - 4™, Suppose Q already
has an analytic structure W' It is easy to see that ® o A~ = W iff  is analytic;
that is, iff / is an isomorphism from (X, ®) onto (Q, ¥). _

As an example let X = Cand Q = {z: |z| < 1}, and define /: X — Q by

z
1+]z|

Then 4 is a homeomorphism of C onto Q, but it is clearly not analytic.
So using # and the analytic structure on C, a structure can be induced on Q
which is completely unrelated to its natural structure. For example, with this
induced structure Q will have no bounded non-constant analytic functions.

Consider the following situation: let G be a region in the plane and let
J+ G - C be an analytic function with non-vanishing derivative. Let (g, D)
be a function element such that g(D) < G and f(g(z)) = z for all z in D.
(That is, g is a “local” inverse of f.) If Z is the complete analytic function
obtained from (g, D) and (%, p) is its Riemann surface, let us examine
whether # and the graph of f are isomorphic analytic manifolds. (The
analytic structure for the graph of f was introduced in Proposition 6.6.)
The answer to this question is yes provided that the domain of f is not
restricted. To illustrate what can go wrong let G = {z: |z| < 1} and let f be
the exponential function e®. There % consists of all germs of branches of the
logarithm (Exercise 5.3); so Z is rather large and complicated. However,
{(z, €"): z € G} is a simple copy of the disk G. The difficulty arises because
the domain of e* has been artificially restricted. If instead G is the whole
complex plane then & and the graph of G are indeed isomorphic analytic
surfaces (see Exercise 5.3).

h(z) =

6.17 Definition. Let f: G — C be an analytic function with non-vanishing
derivative. If a e G and « = f(a), let (g, D) be a function element such that
a € D and f(g(z)) = z for all z in D. If & is the complete analytic function
obtained from (g, D) then & is called the complete analytic function of local
inverses for f.

There are two questions that arise in connection with this definition.
First, does the definition of the complete analytic function of local inverses
for f depend on the choice of the function element? Could we have started
with another local inverse and still have obtained the same complete analytic
function? Second, does .# contain the germ of every local inverse of f? The
answer to each of these questions is given in the following proposition; it
1s “‘yes”, )

6.18 Proposition. l.ct [ be an analvtic function with non-ranishing derivative
onaregon G letaand b G, o fla), B (b and et Ny and N, be disks
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about « and B respectively such that there are analytic functions gq: Ay — C
and g,: A, — C with go() = a, g,(B) = b, f(go(D)) = £ for all { in A,
fg(0) = L for all L in A,. Then there is a path o in f(G) from « to B such
that (g,, A,) is the continuation of (g,, A,) along o.

Proof. Since G is connected there is a path yin Gfromato b. For0 <t <1
let D, be a disk about y(r) such that D, < G and on which fis one-one. Let
o = foy and let A, be a disk about o(f) such that A, < f(D,). Finally, let
g.: A, — C be an analytic function such that

f(g(D) = Lforin A,
gt(a(t)) = y(t)

Claim. {(g,, A,)} is an analytic continuation along o. To show this fix ¢ and
let 8 be chosen so that y{s) e f~'(A,) N D, whenever |s—¢| < 8. Now fix s

with [s—#] < 8 and let B be a disk about y(s) such that B < f~'(A) N D
N D,. So f(B) is an open set containing o(s) = f(y(s)) and f(B) < f(D,).
By definition g f(z)) = z for z in B; thus f(g({)) = { for all £ in f(B). But
f(B) = A, which gives that f(g()) = ¢ for all { in f(B). But for { in f(B)
both g({) and g,{) are in f~'(A) N D, N D, and f is one-one here. Hence
g(0) = g0 for all L in f(B); alternately, [g.},s) = [gos) Whenever [s—1| < 8.
This substantiates the claim. |l

Recall that if (2, p) is the Riemann surface of a complete analytic func-
tion Z, the symbol & is also used to denote the analytic function F:
R — C defined by Z(z, [f],) = f(2) (Theorem 6.9).

6.19 Proposition. Let f be an analytic function on a region G which has a non-
vanishing derivative, let F be the complete analytic function of local inrerses
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of f, and let (R, p) be the Riemann surface of F . If F(#) = G and p(R) =
f(G) then

(z, [g).) = (g(2), 2)

defines an isomorphism between the analytic manifold # and graph (f).

Before proving this proposition we must show that under the same
hypothesis each member of # is a local inverse of f. This provides a partial
converse to Proposition 6.18.

6.20 Lemma. Let f, G, F and (&, p) be as in the preceding proposition.
If [gl, € F then there is a disk D about a on which g is defined and such that
f(g(@) =z forall zin D.

Proof. Fix [g], in # (so (a, [gl,) € #); then, by hypothesis, g(a) = F(q, [g],) €
G. If b = f(g(a)) then there is a disk B about b and an analytic function
h: B — C such that i(b) = g(a) and f(#(z)) = z for all z in B. From Propo-
sition 6.18, [A], € # . Also a = p(a,[gl,) € p(#) = f(G). According to Theorem
5.11 there is a path y in f(G) from a to b such that [A], is the continuation
along y of [g],. Let {(g,, D,)} be a continuation along y such that [g,], = [g],
and [g,], = [A],. Define a subset T of [0, 1] by

T = {t:f(gfz)) = zforallzin D,}.

We want to show that T = [0, 1]. In fact, once this is proved it follows that
0 ¢ T so that (g, D) must be a local inverse of f.

Since T contains 1 it is non-empty; it must be shown that 7 is both open
and closed in [0, 1]. For any number 7 in [0, 1] let 8 > O such that [g], ., =
[g),s) whenever |s—t| < 8. If te T then f(g(2)) = f(g(2)) = z for all z
in D; N D, and [s—t| < 8. It follows that (r—38, t+8) < T and so T is open.
If e T~ then there is an s in T such that |s—¢| < 8. For z in Dy N D, we
have that f(g,(2)) = f(g,(2)) = ¢ so that t T. That is, T is closed. i

Proof of Proposition 6.19. 1t follows from the preceding lemma that (g(a), a) €
graph (f) if (a, [gl,) € Z. Thus, = does indeed map Z into graph (f).

Suppose («, f(«)) € graph (f) and a = f(«). If (g, D) is a function element
such that a e D, g(a) = «, and f(g(z)) = z for all z in D, then [g], % and
7(a, [gl.) = (=, f(«)). That is 7(#) = graph (f). To show that r is one-one
let (a, [g],) and (b, [A],) € Z such that =(a, [g],) = =(b, [h],); that is, (g(a), a) =
(h(b), b). Thus, a = b and g(a) = h(b) = «. Moreover, Lemma 6.20 implies
that

6.21 flg(2) = f(h(2))

for z in a neighborhood of a. But f'(«) # 0, so that fis one-one in a neigh-
borhood of { = «. It follows from (6.21) that [g], = [#], and therefore, 7 is
one-one.

It remains to show that = is analytic. This is actually an casy argument
once the question to be answered is made exphicit. So fix (a, [g],) in .2 and
put o - g(a@). Let A be a disk about « on which f1s one-one and let D be a
‘disk about @ on which un\s defined and such that D« /(N). Let U (L
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f(0): e A} and define : U—>C by oL, f({) = f({); so (U, ¢) is a co-
ordinate patch on graph (f) (Proposition 6.6). Also N(f, D) = {(z, [gl.):
ze D} gives that (N(g, D), p) is a coordinate patch on Z# (Theorem 6.7)
containing (a, [g],), and satisfying #(N(g, D)) = U. Hence to complete the
proof it must be shown that g o 7o p~! is an analytic function on D. This is
trivial. In fact, if z € D then

portop (2) = por(z,[gl)
= ¢(g(2), 2)

= Z.
<

that is, @ o 7o p~ ! is the identity function on D. [l

If G is the punctured plane and f(z) = z" for some n or if G = C and
f(2) = € then the hypothesis of Proposition 6.19 is satisfied. Let us examine
this a little more closely for the case where f(z) = z%, ze G = C—{0}. So
2 is isomorphic to the graph of z2; let I' = {(z,z%):z # 0}. Now r: A - T’
is defined by 7(a, [g],) = (g(a), a). Recall that F: # — C is defined by
F(a,[gl,) = gla). For this case F acts like the square root function. In other
words, we have found a natural domain of definition of z*. The corresponding
function on T would project (z, z%) to its first coordinate.

Even though we have shown that :# (a very abstract object) is qulIVd]Cnl
to a less abstract object (the graph 17), this is still somewhat dissatisfying.
After all, the graph is a subsct of C? which is beyond our geometric intuition.
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Plane 1 Plane 2

Therefore, we would like to have a more geometric picture of the Riemann
surface. Consider two copies of the plane that have been slit along the
negative real axis. So imagine the planes as having two negative real axes
and label them * and ~ as shown in the figure. The space X we will describe
will be the union of the two planes but where the two *-axes are identified
and the two ~-axes are identified. So if a curve in Plane 1 approaches the
*-axis and hits it at —x then it exits in Plane 2 at —x on the *-axis. For the
point —1 on the *-axis a typical neighborhood would consist of a half
disk about —1 above the *-axis in Plane 1 and half a disk about —1 below
the *-axis in Plane 2. This is a representation of the Riemann surface of local
inverses for z* (the Riemann surface of J/z for short). To see this define a
map k: X —> % as follows. If z is in Plane 1, z not on the negative real axis,
let h(z) = (z, [g],) where g is the principal branch of the square root. If z
is in Plane 2 but not on the negative real axis let #(z) = (z, [g],) where —g
is the principal branch of the square root. It remains to define 4(z) for z on
the *-axis and the ~-axis. This we leave to the reader along with the proof
that the resulting function 4 is an isomorphism (the space X has a natural
analytic structure).

In the case f(z) = z" we can carry out the same construction, but here n
copies of the plane are required. If f(z) = e the same ideas are again em-
ployed but now it is necessary to use an infinite number of planes indexed by
all the integers. In the case of the surface for z'/", a curve which passes
through the negative real axis of one plane exits through the negative real
axis of the next one. If it is in the »#-th plane, then it exits through the negative
axis of the first plane. For the surface of log z, a curve can continue hopping
from one plane to the next and will never return to the plane where it started
unless it *‘retraces its steps”.

Exercises

1. Show that an analytic manifold is locally compact. That is, prove that if
a Xand Uis an open neighborhood of @ then there is an open neighborhood

Volfasuchthat b+ L and boas compact.,
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2. Which of the following are analytic manifolds? What is its analytic
structure if it is a manifold? (a) A cone in R>. (b) {(x,, X2, X;3) € R3: x2+x3
+x3=1lorx*+x% > land x; =0}
3. The following is a generalization of Proposition 6.3(b). Let (X, ®) be an
analytic manifold, let  be a topological space, and suppose there is a con-
tinuous function # of X onto € that is locally one-one (that is, if x e X
there is an open set U such that x e U and h is one-one on U). If (U, pecd
and £ is one-one on U let A = A(U) and let s: A — C be defined by J(w) =
@ o (h/U)™}(w). Let ¥ be the collection of all such pairs (A, ). Prove that
(Q, ¥) is an analytic manifold and 4 is an analytic function from X to Q.
4. Let T = {z: |z| = 1}x {z: |z} = 1}; then T is a torus. (This torus is
homeomorphic to the usual hollow doughnut in R3) If w and »” are complex
numbers such that Im (wfw’) # 0 then » and w’, considered as elements of
the vector space C over R, are linearly independent. So each z in C can be
uniquely represented as z = tfw+1'w’; t, t" in R. Define h: C T by hA(tw +
tw') = (e¥™, €¥"'*). Show that / induces an analytic structure on 7. (Use
Exercise 3.) (b) If w, w’ and {, {’ are two pairs of complex numbers sqqh that
Im (w/w’) # 0 and Im (/L) # 0, define o(s{+s5'(") = (e*™®, e*"*") and
H(fw+1'o’) = (€2, ™). Let G = {to+1w:0<1<1,0<1" < 1} and
Q= {s{+57:0 < s <1,0<s < 1};show that both o and 7 are one-one
on G and Q respectively. (Both G and Q are the interiors of parallelograms.)
If @, and @, are the analytic structures induced on 7'by = and ¢ respectively,
and if the identity map of (T, ®,) into (7, ®,) is analytic then show that the
function f: G — Q defined by f= ¢! or is analytic. (To say that the
identity map of (T, ®,) into (T, ®,) is analytic is to say that ®, and @, are
equivalent structures.) (¢} Letw = 1, 0" =i, { =1, {" = o« where Im « 5 0;
define o, 7, G, Q and f as in part (b). Show that ®, and ®, are equivalent
analytic structures if and only if « = i. (Hint: Use the Cauchy-Riemann
equations.) (d) Can you generalize part (c)? Conjecture a generalization?
5. (a) Let f be a meromorphic function defined on C and suppose f has two
independent periods w and o’. That is, f(z) = f(z+nw+n'w’) forall zin C
and all integers n and n’, and Im (w/w’) # 0. Using the notation of Exercise
4(a) show that there is an analytic function F: T — C,, such that f= Fo h.
(For an example of a meromorphic function with two independent periods
see Exercise VIII. 4.2(g).)

(b) Prove that there is no non-constant entire function with two indepen-
dent periods.
6. Show that an analytic surface is arcwise connected.
7. Suppose that f: C,, — C,, is an analytic function.

(a) Show that either f = oo or f ~'(o0) is a finite set.

(b) If f# oo, let a,,...,a, be the points in C where f takes on the
value oo. Show that there are polynomials pgy, py. ..., P, such that

& |
fG) = po2) + kzlm <:_”k>

for zin C.
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(c) If f is one-one, show that either f(z) = az+b (some a, b in C) or
flz) = 4 + b (some a, b, ¢ in C).
r—c¢

8. Furnish the details of the discussion of the surface for \/z at the end of
this section.

9. Let G = {z: - g < Rez < Z} and define f: G — C by f(z) = sin z. Give

a discussion for f similar to the discussion of \/E at the end of this section.

§7. Covering spaces

In this section the concept of a covering space will be introduced and
some of its elementary properties will be deduced. One byproduct of this
study is the fact that two closed curves in the punctured plane are homotopic
iff they have the same winding number about the origin.

Intuitively, a topological space X is a covering space for the topological
space Q if X can be wrapped around  in such a way that it can be easily
unwrapped. What is meant by “wrapping” one space around another?
This seems to indicate that we want a function from X onto (. To say that

it must be easily unwrapped must mean that we can find an inverse for the
function.

7.1 Definition. If {2 is a topological space then a covering space of Q is a pair
(X, p) where X is a connected topological space and p is a continuous function
of X onto Q such that: for each w in Q there is a neighborhood A of w such
that each component of p~'(A) is open, and p maps each of these components
homeomorphically onto A. Such an open set A is called fundamental and A
is properly covered.

Both (C, exp) and (C— {0}, z") are covering spaces of the punctured
plane; also, each open disk in the punctured plane is fundamental. If T’ =
{z: |z] = 1} and p: R — T is defined by p(¢) = exp (2=it), then (R, p) is a
covering space of I'. Every proper arc in I' is fundamental.

The following is a list of properties of covering spaces. Their proof is
left to the reader.

7.2 Proposition. Let (X, p) be a covering space of Q.

(a) p is an open mapping of X onto ).

(b) If x e X then there is an open neighborhood U of x on which p is a
homeomorphism.

(c) Every fundamental open set is connected.

(d) If Q is locally arcwise connected then so is X.

In light of part (b) of the preceding proposition it is natural to ask if
cvery locally one-one function p of X onto € makes (X, p) a covering space of
L The answer is no. Forexample, ket Y o0 Uiz /0,0 < argz < Sa/41,
p(z)  Zoand let 2 p(N3 € 100 then pois focally onc-one, Let A,

GEIE i i forany £ 0 < r o LD s casy tosee that p (),) consists
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of two components. One of these (the one in the first quadrant) is mapped
homeomorphically onto A,, while the other is not. In fact, £ = i is not in the
image of this second component.

One of the most important properties of covering spaces is the fact that
a curve in € can be lifted to a curve in X.

7.3 Definition. Let (X, p) be a covering space of Q and let y be a path in Q.
A path 7 in X is called a lifting of y if po § = y.

A useful way of understanding what a lifting is is to consider the following
diagrams. If I = [0, 1] and the path y is given then we have the following
mapping diagram:

To say that y can be lifted is to say that the diagram can be completed in
such a way that it is a commutative diagram:

that is, one can go from one place in the diagram to another without being
concerned about which path is taken.

It is an important property of covering spaces that every path may be
lifted when the base space is locally arcwise connected. Actually a stronger
result which will be of use later can be proved.

7.4 Theorem. Let (X, p) be a covering space of the space Q. If F: {0, 1]1x][0, 1]
— Q is a continuous function with F(0, 0) = wq and if x, is any point in X with
p(xo) = wq, then there is a unique continuous function F. 10, 11x[0, 1] > X
such that F(0,0) = x, and po F = F.

Before giving the proof of this theorem let us state an important corollary.

7.5 Corollary. Let (X, p) be a covering space of the space \). If v is a path in L2
with initial point wg and p(x,) = w. then there is a unique lifting 3 of y with
initial point x,.

Covering Spaces 247
Proof. Define F: [0, 1]1x[0, 1] - Q by F(s, 1) = y(s); so F is continuous and
F(, 0) = w,. According to Theorem 7.4 there is a unique function F:
[0, 1]x [0, 1] — X such that F(0, 0) = x, and po F = F. Let 5(s) = F(s, 0);
then 7 has initial point x, and is a lifting of y. To prove the uniqueness of 7,
suppose & is also a path in X with initial pomt xo and which lifts v. Define
K:[0, 11x[0, 1] - X by K (s, 1) = (s). Then K: (0, 0) = xoand p o K(s 1 =
pod(s) = y(s) F(s, t) By the uniqueness part of Theorem 7.4, F = K.
Thus §(s) = F(s, 0) = K(s5, 0) = 6(s). A

Proof of Theorem 7.4. Let {0 = 55 <5, < ...<s,=1}and {0 =1, < 1,
< ... < t, = 1} be partitions off [0, 1] such that for 0 < i, j < n—1,

F(ls,, sie )%t 01D

is contained in a fundamental open set A, ; in Q. (Verify that this can be done.)
Now w, = F(0, 0)e Ay,. Let U,, be the component p~'(A,,) which
contains x,. Since p|U,, is @ homeomorphism of U, onto Ay, it is possible
to define F: [0, 5,]x[0, #,] > X by

Fis,n = (p|Ug0) ™1 © F(s, 1).

Now extend F to [0, 5,]x[0, #,] as follows. F({s,}x[0, 1,]) is connected
(Why?) and, since F({sl}x[O H]) < Ay, it is contained in p~ (A, ). Let
U,, be the component of p~!(A,,) which contains F( {s;}x[0, #,]). Then
p|U,o Is @ homeomorphism; define

F(s, 1) = (p|Uy0) ' o F(s, 1)

for (s, #) in [s,, 5,]x [0, #,]. This gives a continuous function F on [0, s5,] x
[0, #,}. (The domain can be written as the union of two closed sets, on each
of these sets F is continuous, and F agrees on their intersection; hence, Fis
continuous on their union.) Continuing this process leads to a continuous
function F: [0, 1}x [0, 1] — X such that p o F = F and F(0, 0) = x,. Since
at each stage of this construction the definition of Fis unique (because p is
a homeomorphism on each U;)), it follows that Fis unique. il

The next result is called the Monodromy Theorem. To distinguish this
from the theorem of the same name which was obtained in §3, the present
version is referred to as the “abstract” theorem. Later it will be shown how
the original theorem can be deduced from this abstract one.

7.6 Abstract Monodromy Theorem. Let (X, p) be a covering space of Q and
let y and o be two paths in Q with the same initial and final points. Let ¥ and
& be paths in X with the same initial points such that % and G are liftings of y
and o respectively. If v ~ o (FEP) in Q then § and & have the same final
points and 5 ~ & (FEP) in X.

Note. Although we have not defined the concept of FEP homotopy between
two curves in an arbitrary topolcgical space, the definition is similar to that
given for curves in a region of the plane (Definition 1V, 6.11).

Proof. Let w, and w; be the initial and final points, respectively, of y and o,
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Let xq€p '(wo) such that $(0) = 6(0) = x,. By hypothesis there is a
continuous function F: [0, 1]x[0, 1] — Q such that F(0, ) = w,, F(1, ) =
w,y, F(s, 0) = y(s), and F(s, 1) = o(s) for all s and ¢ in [0, 1]. According to
Theorem 7.4 there is a unique continuous function F: [0, 1]x[0, 1] > X
such that F(0, 0) = x, and po F= F. Now F({0}x[0, 1]) = {w,} and
po F = F implies that F({0}x[0, 1]) < p~'(w,). But each component of
p~ (w,) consists of a single point (Exercise 4) and F({0} x[0, 1)) is connected.
Therefore F(0, f) = x, for all z. Similarly, there is a point x; such that
F(, 1) = x, for all £ and p(x,) = w,.

By the uniqueness of § and the fact that s — F{(s, 0) is a path with initial
point x, which lifts y, it must be that §(s) = F(s, 0). Similarly, 6(s) = F(s, 1).
Therefore 7(1) = 6(1) = x, = F(1, ?) for all ¢, and F demonstrates that
§~&(FEP)in X. W

In order to show that the Monodromy Theorem can be deduced from
the preceding version, it is necessary to first prove a lemma. This preliminary
result is actually the Monodromy Theorem for a disk and the reader is
asked to supply an elementary proof.

7.7 Lemma. Let (g, A) be a function element and let B be a disk such that
A < Band (g, A) admits unrestricted analytic continuation in B. If 'y is a closed
curve in B with y(0) = y(1) = ain 4 and {(g,, A,,)} is an analytic continuation
of (g, A) along y then [go], = [g1].

The next theorem will facilitate the deduction of the Monodromy Theorem
from the Abstract Monodromy Theorem. Additionally, it has some interest
by itself.

7.8 Theorem. Let (f, D) be a function element which admits unrestricted
continuation in the region G, and let € be the component of the sheaf (£ (G), p)
that contains (2o, [f),,) for some zq in D. Then (€, p) is a covering space of G.

Proof. Let B be any disk such that B < G and let % be the component of
p~'(B) which is contained in €. The proof will be completed by showing
that p maps % homeomorphically onto B.

Fix (a, [g],) in %; then

7.9 Claim. (z, [h],) € % iff z e B and [#], is the continuation of [g], along
some curve in B.

In fact, if (z, [A],) is such a point then there is a curve y in p~}(B) (= S(B))
from (a, [g],) to (z, [4),) (Theorem 5.10). Thus (z, [A],) must belong to the
same component of p~!(B) as does (a, [g],); that is, (z, [A],) € %. For the
converse, let (z, [4],) € %; since % is pathwise connected (Proposition 5.7)
there is a path in % from (q, [g],) to (z, [],)- But this implies that [#], is the
continuation of [g], along a path in p(%) < B (Theorem 5.10). So claim 7.9
has been shown.

Since (f, D) admits unrestricted continuation in G and [g], is a con-
tinuation of [f],, (z, in D), it is a trivial matter to see that [g], admits un-
restricted continuation in B. In view of (7.9) this gives that p(#) = B.

It only remains to prove that p|# is onc-one. This amounts to showing
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that if (b, [A],) and (b, [k],) € % then [h), = [k],. But since % is arcwise
connected, this is exactly the conclusion of Lemma 7.7. |ij
Let us retain the notation of the preceding theorem. Fix @ in D and let
v and o be paths in G from a to a point z = b. Suppose that {(f,, D,)} and
{(g:, B)} are continuations of (f; D) along y and o respectively; so [f,], =
[gola = [f1 Now 5() = ((2), [f],) and 6(1) = (o(t), [g ]o(y) are paths in €
(see the proof of Theorem 5.10) with the same initial point (a, [f],). More-
over poj =yand po & = o;s0 §and & are the unique liftings of y and o to
%. According to the Abstract Monodromy Theorem, if y ~ o(FEP) in G
then j and ¢ have the same final point. That is, G, [fily) = D) =6() =
(b, [g1],) so that [f1], = [g,],. This is precisely the conclusion of Theorem 3.6.
For another application of the Abstract Monodromy Theorem we wish
to prove that closed curves in the punctured plane are homotopic iff they
have the same winding number about the origin. To do this let I' = {z:
|z| = 1}; as we observed at the beginning of this section, if p(f) = exp (2=it)
Fhe.n (R, p) is a covering space of T. If y is any rectifiable curve in C— {0}
1t 1s easy to see that y is homotopic (in C— {0}) to the curve o defined by
o(t) = A)/|A1)| (Exercise IV. 6.4). So assume that lv(@®)| =1 for all ¢
Similarly, we can assume that y(0) = 1.
. Let § be the unique curve in R such that §(0) = 0 and y(t) = exp 2nij(1)).
Since y is rectifiable it is easy to see that 7 is also rectifiable. Also
r
n:0) = - | %
2ni ) z
Y

1
1 (du(r)
2mi ) (D)
0

1
_1 [ d exp (2mi§(1))
2mi ) ¥(1)
0

= Jdi(t);

0

SO

. 710 n(y, 0) = (1)

since $(0) = 0.

So if ¢ is also a closed rectifiable curve with lo()] = 1, o(0) = 0 = o(1)
and n(y; 0) = n(o, 0) = nthen G(1) = (1) = n, where & is the unique lifting

of o to R such that 5(0) = 0. Let F: [0, 1]x[0, 1} »I' be defined by

F(s, 1) = exp {2mi[l = NE(s) + 15(5)) )

then F(O, 1y 1 - F(1, 1) (Why?) and # demonstrates that Yy ~ 0.
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Notice that the rectifiability of y and o was only used to define the winding
number of y and o about the origin. It is possible to extend the definition of
winding number to non-rectifiable curves.

7.11 Definition. If y is any closed curve in C—{0} with y(0) = (1) =1,
let y,(f) = #(2)/}»(?)] and let § be the unique curve in R such that §0) = 0
and y,(f) = exp (2nif(t)); the winding number of y about the origin is

n(y; 0) = F(1).

In view of (7.10) this definition agrees with the former definition for
rectifiable curves.

7.12 Theorem. Let y and o be two closed curves in C— {0} such that o(0) =
w0) = 1; then y ~ o in C—{0} iff n(y; 0) = n(o; 0).

Proof. It was shown above that if n(y; 0) = n(s; 0) then y ~ o. Conversely,
if y ~ o then the Abstract Monodromy Theorem implies that the liftings §
and & such that $(0) = &(0) = 0 have the same end point. That is, n(y; 0) =
n(s; 0). A

Exercises

1. Suppose that (X, p) is a covering space of (2 and (2, ) is a covering space
of Y; prove that (X, m o p) is also a covering space of Y.
2. Let (X, p) and (Y, o) be covering spaces of Q and A respectively. Define
pxa: XxY —QxA by (px0) (x, y) = (p(x), o(y)) and show that (Xx Y,
px @) is a covering space of QxA.
3. Let (Q, $) be an analytic manifold and let (X, p) be a covering space of Q.
Show that there is an analytic structure ® on X such that p is an analytic
function from (X, @) to (€2, ¥).
4. Let (X, p) be a covering space of Q and let w €. Show that each com-
ponent of p~(w) consists of a single point and p~!(w) has no limit points in
X.
5. Let Q be a pathwise connected space and let (X, p) be a covering space of
Q. If w, and w, are points in Q, show that p~'(w,) and p~ '(w,) have the same
cardinality. (Hint: Let y be a path in Q from o, to w,; if x; € p~!(w;) and
7 is the lifting of y with initial point x; = §(0), let f(x,) = §(1). Show that
fis a one-one map of p~'(w,) onto p~ (w,).)
6. In this exercise all spaces are regions in the plane.

(a) Let (G, f) be a covering of Q and suppose that f'is analytic; show that
if Q2 is simply connected then f is one-one. (Hint: If f(z,) = f{(z,) let ¥ be a

path in G from z; to z, and consider a certain analytic continuation along .

f o y; apply the Monodromy Theorem.)

(b) Suppose that (G, f;) and (G,, f3) are coverings of the region € such
that both f, and f, are analytic. Show that if G, is simply connected then
there is an analytic function f: G, » G, such that (G,, f) is a covering of
G,and f;  f:f That is the diagram is commutative.
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—_— G,

f
G,
Q

(c) Let (G4, f), (G5, f>) and Q be as in part (b) and, in addition, assume
that both G, and G, are simply connected. Show that there is a one-one
analytic function mapping G, onto G,.

7. Let G and Q be regions in the plane and suppose that f: G — Q is an
analytic function such that (G, f) is a covering space of {2. Show that for every
region €, contained in Q which is simply connected there is an analytic
function g: €, — G such that f(g,(w)) = w for all w in €.

8. What is a simply connected covering space of the figure eight?

9. Give two nonhomeomorphic covering spaces of the figure eight that are
not simply connected.

10. Prove that the closed curve in Exercise 1V.6.8 is not homotopic to zero
in the doubly punctured plane.



Chapter X

Harmonic Functions

In this chapter harmonic functions will be studied and the Dirichlet
Problem will be solved. The Dirichlet Problem consists in determining all
regions G such that for any continuous function f: G — R there is a con-
tinuous function u: G™—R such that u(z) = fz) for z in G and u is
harmonic in G. Alternately, we are asked to determine all regions G such
that Laplace’s Equation is solvable with arbitrary boundary values.

§1. Basic properties of harmonic functions

We begin by recalling the following definition and giving some examples
of harmonic functions.

1.1 Definition. If G is an open subset of C then a function u:G—>R is
harmonic if u has continuous second partial derivatives and
Pu  u
ox* * y?
This equation is called LAPLACE’S EQUATION.

We also review the following facts about harmonic functions.

(1) (Theorem I11.2.29) A function f on a region G is analyticiff Re /= u
and Im f= v are harmonic functions which satisfy the Cauchy-Riemann
equations.

(2) (Theorem VIIL.2.2(j) A region G is simply connected iff for each
harmonic function # on G there is a harmonic function » on G such that
f = u+ivis analytic on G.

=0.

1.2 Definition. If f: G — C is an analytic function then u = Re fand v = Im f
are called harmonic conjugates.

With this terminology, Theorem VII1.2.2(j) becomes the statement that
every harmonic function on a simply connected region has a harmonic
conjugate. If u is a harmonic function on G and D is a disk that is
contained in G then there is a harmonic function v on D such that u+iv is
analytic on D. In other words, each harmonic function has a harmonic
conjugate locally. Finally note that if v, and v, are both harmonic
conjugates of u then i(v,—vy)=(u+ iv;)—(u+iv,) is an analytic function
whose range is contained in the imaginary axis; hence v; =v,+ ¢, for some
constant c.

1.3 Proposition. If u: G —> C is harmonic then u is infinitely differentiable.

Proof. Fix zo = x¢+iyo in G and Ict 8 be chosen such that B(z4:8) < G.
252
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Then u has a harmonic conjugate v on B(z,;8). That is, f = u+iv is analytic
and hence infinitely differentiable on B(z,;8). It now follows that u is
infinitely differentiable. |l

The preceding proposition gives a property that harmonic functions share
with analytic functions. The next result is the analogue of the Cauchy
Integral Formula.

1.4 Mean Value Theorem. Let u: G — R be a harmonic function and let B(a; r)
be a closed disk contained in G. If y is the circle |z—a| = r then

2n

u(a) = ;ﬂju(a+re“’) do

0

Proaf. Let D be a disk such that B(a;r) < D < G and let f be an analytic
function on D such that u = Re f. It is easy to deduce from Cauchy’s Integral
Formula that

2n

fla) = 21Jf(a+re”) ds.

0

By taking the real part of each side of this equation we complete the proof. ll
In order to study this property of harmonic functions we isolate it.

1.5 Definition. A continuous function u: G — R has the Mean Value Property
(MVP) if whenever B(a;r) < G

2n

u(a) = ;Ju(a+rei9) ds.

0

In the following section it will be shown that any continuous function
defined on a region that has the MVP must be a harmonic function. One
of the main tools used in showing this is the following analogue of the
Maximum Modulus Theorem for harmonic functions.

1.6 Maximum Principle (First Version). Let G be a region and suppose that
u is a continuous real valued function on G with the MVP. If there is a point
a in G such that w(a) > u(z) for all z in G then u is a constant function.

Proof. Let the set A be defined by
A= {zcG:uz) = u(a)}.

Since  is continuous the set 4 is closed in G. If zy« A let r be chosen such
that B(z,:r) < . Suppose there is a point b in B(z,:r) such that w(h) # w(a).
then, w(h) < u(a). By continuity, n(z) < w(a)  1u(z,) for all z in a neighbor-
hood of b In particular, if p [z, -bland b 44 pe 0 - B < 2m then
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there is a proper interval 7 of [0, 2] such that B e and u(zo+ pe’®) < u(zo)
for all 8 in 1. Hence, by the MVP

2n

1 .
u(zy) = ” ju(zo +pe) db < u(zy),
o

T

a contradiction. So B(z,;r) < A and A4 is also open. By the connectedness
of G,A=G. 1

1.7 Maximum Principle (Second Version). Let G be a region and let u and
¢ be two continuous real valued functions on G that have the MVP. If for
each point a in the extended boundary d,G,

limsupu(z) < ligniglfc(z)

zZ—a

then either u(z) < v(z) for all z in G or u=v.

Proof. Fix ain 2,,G and for each 8 > 0 let G; = G N B(a;d). Then according
to the hypothesis,

0

v

lim [sup{u(z): z € G5} —inf{v(z):z € G4}]
50

lim [sup{u(z):z € G4} +sup{—v(z):z € Gs}]

8- 0

1

> lim sup {u(z)—v(z):z € Gs}.
80

So lim sup [#(z) —v(z)] < O for each a in 2,,G. So it is sufficient to prove the

theorem under the assumption that v(z) = 0 for all z in G. That is, assume

1.8 lim sup u(z) < 0

for all ¢ in 3G and show that either u(z)<O0 for all z in G or u=0. By
virtue of the first version of the Maximum Principle, it suffices to show
that #(z)<0 for all z in G.

Suppose that u satisfies (1.8) and there is a point b in G with u(b)>0.
Let €>0 be chosen so that u(b)>e€ and let B={ze G:u(z)>¢€}. If
a e 3G then (1.8) implies there is a § = 8(a) such that u(z) <e for all z in
G N B(a;8). Using the Lebesgue Covering Lemma, a & can be found that
is independent of q. That is, there is a § >0 such that if ze G and
d(z,0,G)<d then u(z)<e. Thus,

B< {zeG: d(z, 8,G) > 8}.

This gives that B is bounded in the plane: since B is clearly closed, it is
compact, So if B # [, there is a point z in Bsuch that u(zy) = u(z) forall z
in B. Since u(z) < € for z in G— B, this gives that ¥ assumes a maximum
value at a point in G. So u must be constant. But this constant must be
u(z,) which is positive and this contradicts (1.8). ll

»
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The following corollary is a useful special case of the Maximum Principle.

1.9 Corollary. Let G be a bounded region and suppose that w:G ~—>Ris a
continuous function that satisfies the MVP on G. If w(2)=0 for all z in 9G
then w(z)=0 for all z in G.

Proof. First take w = u and v = 0 in Theorem 1.7. So w(z) < 0 for all z or
w(z) = 0. Now take w = v and u = 0 in (1.7); so either w(z) > 0 for all z or
w(z) = 0. Since both of these hold, w = 0. Il

Even though Theorem 1.7 is called the Maximum Principle, it is also a
Minimum Principle. For the sake of completeness, a Minimum Principle
corresponding to Theorem 1.6 is stated below. It can be proved either by
appealing to (1.7) or by considering the function —u and appealing to (1.6).

1.10 Minimum Principle. Let G be a region and suppose that u is a continuous
real valued function on G with the MVP. If there is a point a in G such that
u(a) < u(z) for all z in G then u is a constant function.

Exercises

e . . ou u
1. Show that if u is harmonic then so are u, = py and u, = -
X

2. If u is harmonic, show that ' = u,—iu, is analytic.
3. Let p(x, y) = i ax*y! for all x, y in R.
Show that p is h;:;lgnic iff:
(@) k(k=1)ay, ;-2 +1(I—Day_p,, = 0for2 < k, [ < n;

(®) ay-y1,1 =0, =0for2 <l <n;

(C) Gp-1 =@, =0for2<k<n
4. Prove that a harmonic function is an open map. (Hint: Use the fact that
the connected subsets of R are intervals.)
5. If fis analytic on G and f(z) # O for any z show that u = log|f|isharmonic

on G.
6. Let u be harmonic in G and suppose B(a;R) < G. Show that

u(a) = ﬂ—;—z JJ u(x, y) dx dy.

E(a;R)

u(z) = Im [(E_j)z]
1-z

Show that u is harmonic and lim u(re’®) = O for all 0. Does this violate

rel-
Theorem 1.7? Why?
8. Let #:G ~R be a function with continuous second partial derivatives
and define U(r, 1) - u(r cos 0, r sin ).
(a) Show that

7. For |z| < 1 let
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,[%u  *u , 0°U 8U+ o*U
J— _ = p° — r— —
prci y* ar T a T o

0 oU U
T\ ar ) T e
So if 0 ¢ G then u is harmonic iff

o Uy U _
rEOEJ+aW_'

(b) Let u have the property that it depends only on |z| and not arg z. That
is, u(z) = ¢(|z|). Show that u is harmonic iff u(z) = a log |z|+& for some
constants @ and b.

9. Let u:G — R be harmonic and let 4 = {z e G: u(z) = uy(z) = 0}; that
is, A is the set of zeros of the gradient of u. Can A4 have a limit point in G?
10. State and prove a Schwarz Reflection Principle for harmonic functions.
11. Deduce the Maximum Principle for analytic functions from Theorem
1.6.

§2. Harmonic functions on a disk

Before studying harmonic functions in the large it is necessary to study
them locally. That is, we must study these functions on disks. The plan is to
study harmonic functions on the open unit disk {z:|z| < 1} and then inter-
pret the results for arbitrary disks. Of basic importance is the Poisson kernel.

2.1 Definition. The function
PO = Y rre,

= —w

for0 <r<1and —oo < 0 < oo, is called the Poisson kernel.
Letz = re®, 0 < r < 1; then

1 +ret®
m=(1+z)(l+z+zz+ .
=1+42) 2"
n=1
= 1+22 riein?
n=1

Hence,

r" cos nf

™Ms

1 +re't
R — =142
© <l—re"’) n
=1+ Y r(e"+e

+

1]

1

P
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18 0__,—i0_ 2
Also 1+re‘o = L+re rezo 3 ' so that
1—re' |1 —re*|
1—r2 1+ re'*t
2.2 P0)) = —— =Re| ——
) 1-2r cos 8+r% 1—-re*

2.3 Proposition. The Poisson kernel satisfies the following:

k3

@ 3 [ @@ -1;

-r

(b) PA0) > 0 for all 8, P(—0) = P(9), and P, is periodic in 6 with period

2m;

© PO <P if0<d<|f <m;

(d) for each 8 > 0, lim P,(6) = O uniformly in 6 for = > 8] = 8.
r-1-

Proof. (a) For a fixed value of r, 0 < r < 1, the series (2.1) converges
uniformly in 6. So

L pgar= 5 | owmp—
27 r 2m

n=—w
-

(b) From equation (2.2), P(9) = (1—r})|1—re®|"%2 > 0 since r < 1.
The rest of (b) is an equally trivial consequence of (2.2).

(c) Let 0 < 8 < 8 < = and define f:[8, 8] — R by f{r) = P(¢). Using
(2.2), a routine calculation shows that f'(#) < 0 so that f(8) > f(0).

(d) We must show that

lim [sup{P,(0):8 < |8 < =}] =0
r—1-

But according to part (c), P(6) < P8 if 3 < |8] < =; so it suffices to show
that lim P(8) = 0. But, again, this is a trivial consequence of equation (2.2).1}

r—+1-

Before going to the applications of the Poisson kernel, the reader should
take time to consider the significance of Proposition 2.3. Think of P.(f) not
as a function of r and 8 but as a family of functions of 8, indexed by r. As r
approaches 1 these functions converge to zero uniformly on any closed
subinterval of [—=, 7] which does not contain 8 = 0 (part d). Nevertheless,
part (a) is still valid. So as r approaches 1, the graph of P, becomes closer to
the 0 axis for # away from zero but rises sharply near zero so that 2.3(a) is

" maintained.

The next theorem states that the Dirichlet Problem can be solved for the

unit disk.

2.4 Theorem. Let D = {z:|z| < 1} and suppose that f:6D — R is a continuous
function. Then there is a continuous function u:D™— R such that

(a) u(z) = f(z) for z in @D,
 (b) u is harmonic in D.
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Moreover u is unique and is defined by the formula

25 u(re'®) = ZLJP,(G—t)f(ei') dt

forO0<r<1,0<0 <2

Proof. Define u:D — R by letting u(re'®) be as in (2.5) if 0 < r < 1 and
letting u(e'®) = f(e'?). Clearly u satisfies part (a); it remains to show that u
is continuous on D~ and harmonic in D.

(i) uis harmonicin D.If0 < r < 1 then

; L[ [l4rei@ !
u(re9)=5;JRe 1— o0 f(e') dt

V[ o fl4re®D
=Re{5; f(e ')[W]dt}

1 e +re
—Re{éaf( ot
So define g:D — C by

g) = Jf( ")[ +j]dr.

-n

Since # = Re g we need only show that g is analytic. But this is an easy
consequence of Exercise 1V.2.2.

(ii) u is continuous on D~. Since u is harmonic on D it only remains to
show that u is continuous at each point of the boundary of D. To accomplish
this we make the following

2.6 Claim. Given « in[—m, #] and € > O thereisa p, 0 < p < 1, and an arc
A of 2D about e* such that for p < r < 1 and €'’ in 4,

lu(re’®) ~fle™)| < «
Once claim 2.6 is proved the continuity of u at e™ is immediate since f'is a

continuous function.
To avoid certain notational difficulties, the claim will only be proved for

o = 0. (The general case can be obtained from this one by an argument:

which involves a rotation of the variables.) Since f is continuous at z = 1
there is a 8 > 0 such that

]
2.7 | = /(D] < ;e
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if [0] < 8. Let M = max {|f(¢®)|:|0] < =}; from Proposition 2.3 (d) there
is a number p, 0 < p < 1, such that

2.8 P.(6) < —

P(8) M
for p < r < 1 and |0] = 35. Let A be the arc {¢”:|0] < 48}. Then if e® e 4
and p < r <1,

u(re®)y—f1) = — j P 0—1)f(e") dt—f(1)

I

. 1 _
= 2—ﬂf PO DIfe")~f(D}dr+ 5- J PO LA —f(D]de

|t| <8 1t|=8

If|¢| > §and |0 < 48 then [—0] > 13; so from (2.7) and (2.8) it follows that

u(re®)—f(D)| < e+2M (3 M) =<

This proves Claim 2.6.

Finally, to show that u is unique, suppose that v is a continuous function
on D~ which is harmonic on D and v(e’®) = f{e’) for all 8. Then u—v is
harmonic in D and (u—v) (z) = 0 for all z in éD. It follows from Corollary
1.9 that u—v=0. 1R

2.9 Corollary. If u: D~ —R is a continuous function that is harmonic in D
then

. I .
u(re'®) = J P(0—Du(e') dt
2w
for 0 < r < 1andall 0. Moreover, u is the real part of the analytic function

n

1
f&) =5 J e

-n

Proof. The first part of the corollary is a direct consequence of the theorem.
The second part follows from the fact that fis an analytic function (Exercise
©1V.2.2) and formula (2.2). W

2.10 Corollary. Let ac C, p > 0, and suppose h is a continuous real valued
function on {z:|z—a| = p}: then there is a unique continuous function
w:B(a; p) > [R such that w is harmonic on B(a; p) and w(z) = h(z) for |z—a|
= p.

H) L

Proof. Constder f(e ha ¢ pe'”y:then fis continuouson D MWy D - R
is it continuous lumlmn such lh it wis harmonic in D and a(e’”) (') then
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z—ay. . .
it is an easy matter to show that w(z) = u<——) is the desired function on
P

B(a; p).- 1
It is now possible to give the promised converse to the Mean Value
Theorem.

2.11 Theorem. If u:G — R is a continuous function which has the MVP then
u is harmonic.

Proof. Let ae G and choose p such that B(a; p) < G; it is sufficient to show
that u is harmonic on B(a; p). But according to Corollary 2.10 there is.a
continuous function w:B(a; p) — R which is harmonic in B(a; p) and
w(a+pe'®) = u(a+pe'®) for all 0. Since u—w satisfies the MVP and
(u—w)z) = 0 for |z—a| = p, it follows from Corollary 1.9 that u = w in
B(a; p); in particular, ¥ must be harmonic. [l

To prove the above theorem we used Corollary 2.10, which concerns
functions harmonic in an arbitrary disk. It is desirable to derive a formula
for the Poisson kernel of an arbitrary disk; to do this one need only make a
change of variables in the formula (2.2).

If R > 0 then substituting r/R for r in the middle of (2.2) gives

R2 _r2
R2—2rR cos 0+r2

2.12

for 0 < r < R and all 0. So if u is continuous on B(a; R) and harmonic in
B(a; R) then

2.13 i0 1 R —r
. u(a+re’’) = 27 ) | R*=2rR cos (8—1)+r?

-n

] u(a+ Re') dt

Now (2.12) can also be written
R2__r2
|Reit___rei6|2
and R—r < |Re'*—re'®| < R+r. Therefore
R—r R*—r? R+r
— < 2 Y < .
R+r = R°—2rRcos (0—t)+r R—r

If # > 0 then equation (2.13) yields the following.

2.14 Harnack’s Inequality. If u: B(a; R) — R is continuous, harmonic in
B(a; R),and u = O thenfor0 < r < Randall 0

—r . R+r
2 u(a) < u(a+-re'®) < u(a
g W@ S uatre) = 7 @)

Before proceeding, the reader is advised to review the relevant definitions
and properties of the metric space C(G, 1R) (Section VILD).

i
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2.15 Definition. If G is an open subset of C then Har(G) is the space of
harmonic functions on G. Since Har(G) < C (G, R) it 1s given the metric that
it inherits from C (G, R).

2.16 Harnack’s Theorem. Let G be a region. (a) The metric space Har(G) is
complete. (b) If {u,} is a sequence in Har(G) such that u; < u, < ... then
either u,(z) — oo uniformly on compact subsets of G or {u,} converges in
Har(G) to a harmonic function.

Proof. (a) To show that Har(G) is complete, it is sufficient to show that it is
a closed subspace of C(G, R). So let {u,} be a sequence in Har(G) such that
u, — u in C(G, R). Then (Lemma 1V.2.7) it follows that u has the MVP and
so, by Theorem 2.11, ¥ must be harmonic.

(b) We may assume that u; > 0 (if not, consider {u,—u,}). Let u(z)
= sup {u,(z):n = 1} for each z in G. So for each z in G one of two possi-
bilities occurs: u(z) = o0 or u(z) € R and u,(z) — u(z).

Define
A={zeG:u(z) = 0}

B={zeG:u(z) < 0};

then G = A U Band A N B = []. We will show that both 4 and B are open.
If a e G, let R be chosen such that B(a; R) < G. By Harnack’s inequality

R—|z—aq] R+|z—d|
R+|z—d| @) < () < R—|z—d

for all zin B(a; R) and all n > 1. If a € 4 then u,(a) — oo so that the left half
of (2.17) gives that u,(z) — oo for all z in B(a; R). That is, B(a; R) < A and
so A is open. In a similar fashion, if a € B then the right half of (2.17) gives
that u(z) < oo for |[z—a| < R. That is B is open.

Since G is connected, either A = G or B = G. Suppose 4 = G; that is
u = o0. Againif B(a; R) < Gand0 < p < Rthen M = (R—p)(R+p)"*> 0
and (2.17) gives that M u,(a) < u,(z) for |z—al < p. Hence u,(z) > ©
uniformly for z in B(a, p). In other words, we have shown that for each a in
G there is a p > 0 such that u,(z) - oo uniformly for |z—a| < p. From this
it is easy to deduce that u,(z) —> co uniformly for z in any compact set.

Now suppose B = G, or that u(z) < oo for all zin G. If p < R then, as
above, there is a constant N, which depends only on a and p such that
Mufa) < ufz) < Nuya) for |z—a| < pand all n. Soif m < n

N u,(a)— M u,(a)
Clu,(a) ~ u,(a)]

for some constant C. Thus, {u,(z)} is a uniformly Cauchy sequence on
B(a; p). 1t follows that {u,} is a Cauchy sequence in Har(G) and so, by part
(a), must converge to a harmonic function. Since w,(z) > u(z), u is this
harmonic function. i}

It is possible to give alternate proofs of Harnack’s Theorgm. One involves

2.17 u(a)

0 < un(z) - um(z)

IA

IA
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applying Dini’s Theorem (Exercise VII.1.6). Another involves using the
Monotone Convergence Theorem from measure theory to obtain that u has
the MVP. However, both these approaches necessitate proving that the
function u is continuous. This is rather easy to accomplish by appealing to
(2.17) and the fact that u,(z) — u(z) for all z; these facts imply that

R—|z—4q R+|z—aq|
m w(a) < u(z) < -‘—"R_Iz_al u(a)
Hence | |
—2|z—aq| 2|z—a )
R—_'_“l:a‘l wa) < u(z)—u(a) < ———R—lz——al u(a);
or
2 |z —
ju(z)~u(a)] < ﬁz—_”;‘] (a)

So as z — a, it is clear that u(z) — u(a).

Exercises

1. Let D = {z:|z] < 1} and suppose that /: D~ — C is a continuous function
such that both Re f and Im f are harmonic. Show that

fre = 5 J Fle )P (61) di

for all re'® in D. Using Definition 2.1 show that f'is analytic on D iff
[ feye dr = 0

foralln > 1.
2. In the statement of Theorem 2.4 suppose that f is piecewise continuous
on 8D. Ts the conclusion of the theorem still valid? If not, what parts of the
conclusion remain true?
3. Let D = {z:]z] < 1}, T= 8D = {z:|z| = 1}
(a) Show that if g:D~ — C is a continuous function and g,:7—C is
defined by g,(z) = g(rz) then g(z) — g(z) uniformly for zin Tasr - 1—.
(b) If 2T — C is a continuous function define f:D~ —C by f(z) = f(2)

for z in T and

o 1 .

flre®y = 5- jf(e")Pr(o—t) dt

2n

(So Ref and Imf are harmonic in D). Define f:T>C by f:(z)'=f(‘rz).
Show that for each r <1 there is a sequence {p,(z.0)} of po]yn(>mlqls.|'r1 z
and 7 such that p,(z.2)—f(z) uniformly for z in 7" (Hint: Use Definition
2.1)
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(c) Weierstrass approximation theorem for T. If f: T—C is a continuous
function then there is a sequence { p,(z,z)} of polynomials in z and Z such
that p,(z,z)—f(z) uniformly for z in T.

(d) Suppose g:[0,1]—C is a continuous function such that g(0)=g(I).
Use part (c) to show that there is a sequence { p,} of polynomials such that
P.(1)—g(¢) uniformly for ¢ in [0, 1].

(e) Weierstrass approximation theorem for [0,1]. If g:[0,1]-C is a
continuous function then there is a sequence {p,} of polynomials such
that p,(1)>g(?) uniformly for ¢ in [0,1]. (Hint: Apply part (d) to the
function g(1)+ (1 —1) g(1) +1g(0).)

(f) Show that if the function g in part (e) is real valued then the

polynomials can be chosen with real coefficients.
4. Let G be a simply connected region and let T be its closure in C;
0,G = I'=G. Suppose there is a- homeomorphism ¢ of I' onto D™(D
= {z:|z] < 1}) such that ¢ is analytic on G.

(a) Show that ¢(G) = D and ¢(¢,G) = éD.

(b) Show that if f:2,G — R is a continuous function then there is a
continuous function u:I" — R such that u(z) = f(2) for z in ¢,G and u is
harmonic in G.

(c) Suppose that the function f in part (b) is not assumed to be con-
tinuous at co. Show that there is a continuous function u: G~ — R such that
u(z) = f(z) for z in 0G and u is harmonic in G (see Exercise 2).

5. Let G be an open set, ae G, and G, = G— {a}. Suppose that u is a har-
monic function on G, such that lim u(z) exists and is equal to 4. Show that

if U:G—R is defined by U(z) = u(z) for z # a and U(a) = 4 then U is
harmonic on G.

6. Let f:{z:Re z = 0} — R be a bounded continuous function and define
w:{z:Re z>0} - R hy

29

u(x+iy) = l J /(i)

2+(y—-0* "

Show that u is a bounded harmonic function on the right half plane such that
for ¢ in R, fic) = lim u(z).

7. Let D={z:|z|<1} and suppose f: ID—R is continuous except for a
Jump discontinuity at z=1. Define u:D—-R by (2.5). Show that u is
harmonic. Let v be a harmonic conjugate of . What can you say about
the behavior of v(r) as r—1—? What about v(re”) as r—>1~— and §—0?

§3. Subharmonic and superharmonic functions

In order to solve the Dirichlet Problem gencralizations of harmonic
functions are introduced. According to Theorem 211, a function is harmonic
cxactly when it has the MVP. With this in mind, the choice of terminology in
the next definition becomes appropriate,
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3.1 Definition. Let G be a region and let ¢:G — R be a continuous function.
@ is a subharmonic function if whenever B(a;n < G,

2n

#(@) < 2ij ola+re®) db.

m
V]
@ is a superharmonic function if whenever Ba;r) < G,
2n

pl@) = —ZITTJ‘ qo(a+re“') deo.

0

The first comment that should be made is that ¢ is superharmonic iff —¢
is subharmonic. Because of this, only the results on subharmonic functions
will be given and it will be left to the reader to state the analogous result for
superharmonic functions. Nevertheless, we will often quote results on
superharmonic functions as though they had been stated in detail.

In the definition of a subharmonic function ¢ it is possible to assume
only that ¢ is upper semi-continuous. However this would make it necessary
to use the Lebesgue Integral in the definition instead of the Riemann Integral.
So it is assumed that g is continuous when ¢ is subharmonic even though
there are certain technical advantages that accrue if only upper semi-
continuity is assumed.

Clearly every harmonic function is subharmonic as well as superharmonic.
In fact, according to Theorem 2.11, u is harmonic iff u is both subharmonic
and superharmonic. If ¢, and ¢, are subharmonic then so is a;p; +a,9;
ifay,, a, 2 0.

It is interesting to see which of the results on harmonic functions also
hold for subharmonic functions. One of the most important of these is the
Maximum Principle.

3.2 Maximum Principle (Third Version). Let G be a region and let ¢:G — R
be a subharmonic function. If there is a point a in G with p(a) = ¢(z) for all z
in G then ¢ is a constant function.

The proof is the same as the proof of the first version of the Maximum
Principle. (Notice that only the Minimum Principle holds for superharmonic
functions.)

The second version of the Maximum Principle can also be extended, but
here both subharmonic and superharmonic functions must be used.

3.3 Maximum Principle (Fourth Version). Let G be a region and let ¢ and ¢
be real valued functions defined on G such that ¢ is subharmonic and ¥ is
superharmonic. If for each point a in 0,G

lim sup ¢(z) < lim inf (z2),

z—a z—a

then either p(z) < Y(z) for all z in G or ¢ = ¢ and @ is harmonic.
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Again, the proof is identical to that of Theorem 1.7 and will not be
repeated here.

Nptice that we have not excluded the possibility that a subharmonic
function may assume a minimum value. Indeed, this does happen. For
ex_axpple, @(x, y) = x*4+)* is a subharmonic function and it assumes a
minimum at the origin. This failure of the Minimum Principle is due to the
fact that if u has the MVP then so does —u; however, if @ is subharmonic
then —g is never subharmonic unless it is harmonic.

When we say that a function satisfies the Maximum Principle, we refer
to the third version. That is, we suppose that it does not assume a maximum
value in G unless it is constant.

3.4 Theorem. Let G be a region and :G — R a continuous function. Then @pis
subharmonic iff for every region G, contained in G and every harmonic function
uy on Gy, p—u, satisfies the Maximum Principle on G,.

Proof. Suppose that ¢ is subharmonic and G, and u, are as in the statement
of thp theorem. Then ¢—u; is clearly subharmonic and must satisfy the
Maximum Principle.

Nov}' suppose ¢ is continuous and has the stated property; let B(a, r) < G.
Acgord‘mg to Theorem 2.4 there is a continuous function u: B(a, r) >R
which 1s‘harmomc in B(a; r) and u(z) = ¢(z) for [z~a| = r. By hypothesis,
¢ —u satisfies the Maximum Principle. But (¢ —u)(z) = 0 for |z—a| = r. So
¢ < uand

@) < u(a) = El:rj u(a+re'®) do

1 .
= E;f pla+re'®) db.

Therefore ¢ is subharmonic. |}

3.5 Corollary. Let G be a region and ¢ : G— R a continuous function; then ¢
is subharmonic iff for every bounded region G, such thax G, < G and for
every continuous function u,:G," >R that is harmonic in G, and satisfies
@(2) < u\(2) for z on 3G \.@(z) S u\(z) for z in G,.

3.6 Corollary. Let G be a region and ¢, and ¢, subharmonic functions on

G; if o(z) = max{gp,(2), ¢(2)} for each z in G then ¢ is a subharmonic
Sfunction.

Proof. Let G| be a region such that G{ < G and let v, be a continuous
function on Gy which is harmonic on G, with ¢(z) < u,(z) for all z in 4G,.
Then both ¢(z) and ¢,(z) < u,(z) on ¢G,. From Corollary 3.5 we get that
®1(2) and @() < wy(z) for all z in G,. So ¢(z) < u,(z) for z in G,, and,
again by Corollary 3.5, ¢ is subharmonic. i}
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3.7 Corollary. Let ¢ be a subharmonic function on a region G and let
B(a;r) © G. Let ¢’ be the function defined on G by:

() ¢'(2) = ¢(2) if z ¢ G—B(a; r);

(ii) @' is the continuous function on B(a; r) which is harmonic in B(a; r)
and agrees with ¢(z) for |z—a| = r.

Then ¢’ is subharmonic.

The proof is left to the reader.

As was mentioned at the beginning of this section, one of the purposes
in studying subharmonic functions is that they enter into the solution of the
Dirichlet Problem. Indeed, the fourth version of the Maximum Principle
gives an insight into how this occurs. If G is a region and #:G~ — R is a
continuous function (G~ = the closure in C,) which is harmonic in G, then
#(z) < u(z) for all z in G and for all subharmonic functions ¢ which satisfy
lim sup @(z) < u(a) for all a in 8,G. Since u is itself such a subharmonic

z7a

function we arrive at the trivial result that

3.8 u(z) = sup {@(2): ¢ is subharmonic and lim sup ¢(z) < u(a)forallaind,,G}.
Although this is a trivial statement, it is nevertheless a beacon that points
the way to a solution of the Dirichlet Problem. Equation (3.8) says that if
f:90,,G—>Ris a continuous function and if f can be extended to a function
u that is harmonic on G, then u can be obtained from a set of sub-
harmonic functions which are defined solely in terms of the boundary
values f. This leads to the following definition.

3.9 Definition. If G is a region and f:0,,G — R is a continuous function then
the Perron Family, P(f, G), consists of all subharmonic functions ¢:G — R
such that

lim sup ¢(2) < fl@)

for all ¢ in 2 ,G.

Since f is continuous, there is a constant M such that | f(a)] < M for all
a in 8,,G. So the constant function — M is in Z(f, G) and the Perron Family
is never empty.

If u:G~ — R is a continuous function which is harmonic in G and
f = ulé,G then (3.8) becomes

3.10 u(z) = sup {p(2):p e Z(f, G)}

for each z in G. Conversely, if £ is given and u is defined by (3.10) then u
must be the solution of the Dirichlet Problem with boundary values f; that
is, provided the Dirichlet Problem can be solved. In order to show that
(3.10) is a solution two questions must be answered affirmatively.

(a) Is « harmonic in G?
(b) Does lim 1(z) = fla) for cach a in ¢, G7?

T 0
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The first question can always be answered “Yes” and this is shown in
the next theorem. The second question sometimes has a negative answer and
an example will be given which demonstrates this. However, it is possible to
impose geometrical restrictions on G which guarantee that the answer to

(b) is always yes for any continuous function f. This will be done in the next
section.

3.11 Theorem. Let G be a region and f8,,G — R a continuous function; then
u(z) = sup {p(z):9 € Z(f, G)} defines a harmonic function u on G.

Proof. Let [f(a)] < M for all ae ,G. The proof begins by noting that
312 o(z) < Mforall zin G, ¢ in Z(f, G)
This follows because, by definition, lim sup ¢(z) < M whenever ¢ € Z(f, G);

so (3.12) is a direct consequence of the Maximum Principle.

Fix a in G and let B(a; r) < G. Then u(a) = sup {p(a):p e Z(f, G)};
so there is a sequence {p,} in Z(f, G) such that u(a) = lim ¢,(a). Let
®, = max {g;, ..., ¢,}; by Corollary 3.6 @, is subharmonic. Let @, be the
subharmonic function on G such that ®,(z) = ®(z) for z in G—B(a; r) and
®, is harmonic on B(a; r) (Corollary 3.7). It is left to the reader to verify the
following statements:

3.13 O <@,
3.14 ¢, <@, < @
3.15 @ e 2(f, G).

Because of (3.15), @,(a) < u(a); from (3.14) and the choice of {¢,}, this gives
that

3.16 u(@) = lim ®/(a).

Moreover, statement (3.12) gives that @, < M for all r; so using (3.13),
Harnack’s Theorem implies that there is a harmonic function U on B(a; r)
such that U(z) = lim ®,(z) uniformly for z in any proper subdisk of B(a; r). It
follows from (3.15) and (3.16) that U < u and U(a) = u(a), respectively.

Now let zy e B(a; r) and let {,} be a sequence in Z(f, G) such that
u(zo) = lim 4,(z,).

Let x, = max {g,, ¢,}, X, = max {x, ..., x»}, and let X be the sub-
harmonic function which agrees with X, off B(a; r) and is harmonic in
B(a; r). As above, this leads to a harmonic function U, on B(a; r) such that
Uy < u and Uy(zy) = u(zy). But &, < X, so that ®; < X, Hence
U< Uy <u and Ule) = Uya) = u(a). Therefore U—U, is a negative
harmonic function on B(a: r) and (U—Uy)a) = 0. By the Maximum
Principle, U/ U, so U(zy) - u(z,). Since. z, was arbitrary, w = U in
B(a; r). That is, w is barmonic on every disk contained in (. I}

3.17 Definition. et G be a region and let /o, G~ R be a continious
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function. The harmonic function u obtained in the preceding theorem is
called the Perron Function associated with f.

The next step in solving the Dirichlet Problem is to prove that for each
point a in &,G lim u(2) exists and equals f(a). As was mentioned earlier, this

does not always hold. The following example illustrates this phenomenon.

Let G = {z:0 < |z] < 1}, T = {z:]z] = 1}; so G = TV {0}. Define
f:8G >R by f(z) = 0if ze Tand f{0) = 1. For 0 < ¢ < 1 let u(2) = (log
lz]) (log €)™ !; then u, is harmonic in G, u(z) > 0 for z in G, u(2) = 0 for
zin T, and u/(z) = 1 if |z| = . Suppose that ve Z(f, G); since [f| < 1,
lo(z)] < 1 forall zin G. If R, = {z: e < |z| < 1} then lim sup v(2) < ul(a)
for all a in @R_; by the Maximum Principle, v(z) < u/(2) for all z in R.. Since
¢ was arbitrary this gives that for each z in G, v(z) < lim u(z) = 0. Hence

€= 0
the Perron function associated with f is the identically zero function, and
the Dirichlet Problem cannot be solved for the punctured disk. (Another
proof of this is available by using Exercise 2.5 and the Maximum Principle.)

Exercises

1. Which of the following functions are subharmonic? superharmonic?
harmonic? neither subharmonic nor superharmonic? (a) ¢(x, y) = x*+y*;
(d) e(x, ) = x*—y%; (©) ¢(x, y) = x> +y; (d) ¢x, ¥) = x> =y; (€) ¢(x, »)
= x+y% ) plx, y) = x=)*.
2. Let Subhar(G) and Superhar(G) denote, respectively, the sets of sub-
harmonic and superharmonic functions on G.

(a) Show that Subhar(G) and Superhar(G) are closed subsets of C(G; R).

(b) Does a version of Harnack’s Theorem hold for subharmonic and
superharmonic functions?
3. If G is a region and if f:8,G — R is a continuous function let u, be the
Perron Function associated with . This defines a map 7:C(2,,G; R)—~Har(G)
by T(f) = uy. Prove:

(a) Tis linear (i.e., T(a fi+a,f>) = a,T(f)+a,T(f))).

(b) Tis positive (i.e., if fla) > 0 for all a in 9,G then T(f)(z) = O for all
z in G).

(c) T is continuous. Moreover, if {f,} is a sequence in C(2,G; R) such
that £, — f uniformly then 7(f,) — T(f) uniformly on G.

(d) If the Dirichlet Problem can be solved for G then T is one-one. Is the
converse true?
4, In the hypothesis of Theorem 3.11, suppose only that f is a bounded
function on d,G; prove that the conclusion remains valid. (This is useful if
G is an unbounded region and g is a bounded continuous function on 9G.
If we define f:9,G — R by f(z) = g(z) for z in dG and f(o0) = O then the
conclusion of Theorem 3.11 remains valid. Of course there is no reason to
expect that the harmonic function will have predictable behavior ncar oo —
we could have assigned any value to f{«0). However, the behavior near points
of @G can be studied with hope of success.)
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5. Let G be a region and f:9,G — R a continuous function. Define U(f, G)
to be the family of all superharmonic functions ¢ on G such that lim inf

#(2) = fla). If v:G — R is defined by v(z) = inf {§(z):4 € U(f, G)}, prove
that v is harmonic on G. If u is the Perron Function associated with f, show
that u(z) < v(z). Prove that lim u(z) = f(a) for all a in 9,G iff u(z) = v(z)

z=a

for all z. Can you give a condition in terms of # and » which is necessary and
sufficient that lim u(z) = f{a) for an individual point @ in ¢,,G?

6. Show that the requirement that G, is bounded in Corollary 3.5 is
necessary.

7. If f:G—>R is analytic and ¢:£2—R is subharmonic, show that gef is
subharmonic if f is one-one. What happens if f'(z)#0 for all z in G?

§4. The Dirichlet Problem

4.1 Definition. A region G is called a Dirichlet Region if the Dirichlet Problem
can be solved for G. That is, G is a Dirichlet Region if for each continuous
function f: 9,,G — R there is a continuous function u: G~ — R such that u is
harmonic in G and u(z) = f(z) for all z in ¢,G.

We have already seen that a disk is a Dirichlet Region, but the
punctured disk is not. In this section, we will see conditions that are
sufficient for a region to be a Dirichlet Region. The first step in this
direction is to suppose that there are functions which can be used to
restrict the behavior of the Perron Functions near the boundary.

For a set G and a point @ in 2,G, let G(a; r)y = GN B(a; r) forallr > 0.

4.2 Definition. Let G be a region and let a € 8,,G. A barrier for G at a is a
family {,:r > 0} of functions such that:

(a) ¥, is defined and superharmonic on G (a;r) with 0< ¢, (2) < 1;

(b) lim #,(z) = 0;

(© limy(z) = 1 forwin GN {w:|lw—a| = r}.

The following observation is useful: if , is defined by letting /, = ¢, on
G(a; r) and {/,(z) = 1 for z in G—B(a; r), theny, is superharmonic. (Verify!)
So the functions § ““approach” the function which is one everywhere but
z = a, where it is zero. The second-observation which must be made is that
if G is a Dirichlet Region then there is a barrier for G at each point of ¢.,,G.
In fact, if aed,G (a# ) and f(z) = |z—a|(1+]|z—a|)™" for z # o
with f(o0) = 1, then f is continuous on @,G; so there is a continuous
function #:G~ > R such that u is harmonic on G and u(z) = f(z) for z in
2,G. In particular, u(a) = 0 and a is the only zero of u in G~ (Why?)
Let ¢, = inf {u(z):|z—a| =r, 2z« G} = min {(z):|z—a| =r, z¢ G} > 0.

1
Define ¢,:G(a; r) »R by §(z) = min {u(z), ¢,}. It is left to the reader to
, .

check that {4, } is a barrier.
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The next result provides a converse to the above facts.

4.3 Theorem. Let G be a region and let a € 0 ,G such that there is a barrier for
G at a. If f:8,G — R is continuous and u is the Perron Function associated

with f then
lim u(z) = f(a)

Proof. Let {¢,:r > 0} be a barrier for G at @ and for convenience assume
a # oo; also assume that f(@) = 0 (otherwise consider the function f—f(a)).
Let « > 0 and choose 8 > 0 such that [f(w)| < ¢ whenever we d,G and
|lw—a| < 28; let § = ;. Let :G — R be defined by ¥(z) = ¢(z) for z in
G(a; 8 and ¥(z) = 1 for z in G——B(ai 8). Then ¥ is superharmonic. If
|f(w)| < M for all win &,,G, then — My —e is subharmonic.

4.4 Claim. — My —« is in 2(f, G). X

If we d,,G—B(a; 8) then lim sup [— My(z)—e¢] = —M —¢ < f(w). Because
¥(z) > 0, it follows that lim sup [~ M{y(z)—¢] < —e for all win 3,G. In
particular, if w e 8,G N B(a; ) then lim sup [~ MJ(z)—¢] < —e < fw) by

the choice of 8. This substantiates Claim 4.4. Hence

4.5 —M(2)—e€ < u(2)
for all zin G.
A similar analysis yields

lim inf [M{(z)+ €] = lim sup ¢(2)
for all ¢ in Z(f, G) and w in 9,,G. By the fourth version of the Maximum
Principle, ¢(z) < Myi(z)+¢ for ¢ in P(f, G) and z in G. Hence

uz) < My(z)+e;

or, combining this with (4.5),
4.6 ~MJ(2)—€ < u(z) < MY(2)+e

for all z in G. But lim {(z) = lim ¢(z) = O; since ¢ was arbitrary, (4.6) gives
that z-a z—a
lim u(z) = 0 = fla).
This completes the proof. i A
Notice that the purpose of the barrier was to construct the function v
which “squeezed” u down to zero.

4.7 Corollary. A region G is a Dirichlet Region iff there is a barrier for G at
each point of 0,,G.

The above corollary is not the solution to the problem of characterizing
Dirichlet Regions. True, it gives a necessary and sufficient condition that a
region be a Dirichlet Region and this condition is formally weaker than the
definition. However, there are aesthetic and practical difficulties with Corol-
lary 4.7. Onc difficulty is that the condition in (4.7) is not casily verified.
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Another difficulty is that it is essentially the same type of condition as the
definition; both hypothesize the existence of functions with prescribed
boundary behavior.

What is desired? Both tradition and aesthetics dictate that we strive for
a topological-geometric condition on G which is necessary and sufficient
that G be a Dirichlet Region. Such conditions are usually easy to verify for
a given region, and the equivalence of a geometric property and an analytic
one is the type of beauty after which most mathematicians strive. At the
present time no such equivalence is known and we must be content with
sufficient conditions.

4.8 Lemma. Let G be a region in C and let S be a closed connected subset of
C,, such that © € S and SN 0,G = {a}. If G, is the component of C,— S
which contains G then G is a simply connected region in the plane.

Proof. Let Gy, Gy, . . . be the components of C, —S with G = G; note that
each G, is a region in C. Iif ze 9,G, then G, U {z} is connected (Exercise
I.2.1). Since G, is a component it follows that ¢_,G, = S. By Lemma

I12.6 G,w S (=G, VS)is connected and, consequently, so is U G, v S)
n=1
= C,—G,y. In virtue of Theorem VIII 3.2(c), G, is simply connected. i

4.9 Theorem. Let G be a region in C and suppose that a € 8 ,G such that the
component of C, — G which contains a does not reduce to a point. Then G has a
barrier at a.

Proof. Let S be the component of C_ — G such that a € S. By considering an
appropriate Mobius transformation if necessary, we may assume that @ = 0
and coeS. Let G, be the component of C_~S which contains G. The
preceding lemma gives that G, is simply connected; since O ¢ G, there is a
branch £ of log z defined on G,. In particular ¢ is defined on G. For r > 0,
let £(z) = Az[r) = {z)—log r for z in G(0; r). So —Z(G(0; r)) is a subset
of the right half plane. Now let C, = G N {z:|z] = r}; then C, is the union
of at most a countable number of pairwise disjoint open arcs y, in {z:|z|=r}.
But —Z,(y,) = (ing, iB) = {it:o, < t < B, } for k > 1. Hence

~44C) = U Gimy 18

and these intervals are pairwise disjoint. Furthermore, the length of y, is
r(Bx—o4); 8O

4.10 Y (Be—a) < 2m.
k=1

Now if log is the principal branch of the togarithm then

h(z) - Im ]ug(: 7;)
z i,
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is harmonic in the right half piane and 0 < 4, (z) < 7 for Re z > 0 (see
Exercise 111.3.19). Moreover

Bi
X

4,11 h(x+iy) = m dt

ok

if x > 0. From (4.11) it follows that

k;1hk(x+iy) < J‘xz—_*_“(;—_;)‘i dt

-

Since each A, = 0, Harnack’s Theorem gives that 4 = Z hy is harmonic in
the right half plane. Hence

5D = T (=42

is harmonic in G(0; r). It will be shown that {,} is a barrier at a.
Fix r > 0; then lim Re [-Z(2)] = + o0. So it suffices to show that
z=0

h(z) >0 as Re z — + . Using (4.11) and (4.10) it follows that for x > 0,

h(x+iy) = z h(x+iy)
k=

Z 1+(y—t/x)2

i Br—x)
k=1

T

IA
%1

[N

IA

;-
So, indeed, lim A(x+iy) = O uniformly in y; this gives that hm $,(2) = 0.
X~ + 0
To prove that lim ¢,(z) = 1 for w in G with |w| = r, it 1s sufﬁment to
prove that =w

4,12 lim A(z) = 7 if ¢, < ¢ < B, for some k

So fix k > 1 and fix ¢ in (e, B;). The following will be proved.

4.13 Claim. There are numbers « and g such that « < o, < 8, < 8 and if

— o
u(z) = Im log( o )
— oy,

v(z) = Im 1og< g")

o A e 3 7 ~
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then x >0 and o < y < B, implies 0 < A(x+iy)—h(x+iy) < u(x+1iy)
+v(x+iy).

Once 4.13 is established, Equation 4.12 is proved as follows. From Exercise

I11.3.19,
v(x+1iy) = arctan (y—,B k) —arctan ()i?)
x x

so if x+iy —ic, ¢ < B < B, then v(x+iy) — 0.
Similarly u(x+iy) — 0 as x+iy — ic, with « < &, < c.
Hence, Claim 4.13 yields

4.14 lim [A(z)— hy(z)] = O.

But
h(x+iy) = arctan (y —a"> —arctan <y;'3k>,
x

so lim #,(z) = =; this combined with (4.14) implies Equation 4.12).

z-ie

It remains to substantiate Claim 4.13; we argue geometrically. Recall
(Exercise II1.3.19) that h(z) is the angle in the figure. Consider all the
intervals (ix;, i8)) lying above (fo4, iB,) and translate them downward along
the imaginary axis, keeping them above (ix, i8,) until their endpoints
coincide and such that one of the endpoints coincides with iB:. Since
Z(B —a;) < 2x there is a number B < (B, +2#) such that each of the trans-
lated intervals lies in (i, i). Now if z = x+iy, x > 0 and o <Y < B,

iB;

hj(z)

Ix;
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then the angle /,(z) increases as the interval (ia;, iB ;) is translated downward.
Hence o, < Im z < B, implies

4.15 2hi@) < v2),

where v is as in the statement of the claim and the sum is over all j such that
«; > B,. By performing a similar upward translation of the intervals (ix;,
iB;) with B; < «, there is a number « < (,— 2m) such that the translates

lie in the interval (i, iay). So if u is as in the claim and «, < Im z < B,

4.16 Yhiz) < u(@)

where the sum is over all j with B; < o,. By combining (4.15) and (4.16) the
claim is established. I

4.17 Corollary. Let G be a region such that no component of C,,—G reduces
to a point; then G is a Dirichlet Region.

4.18 Corollary. A simply connected region is a Dirichlet Region.

Proof. If G # C the result is clear since C,, —G has only one component.
If G = C then the result is trivial. Il

Theorem 4.9 has no converse as the following example illustrates. Let
1>r, >ry,>...with r,—0; for each n let y, be a proper closed arc of
the circle |z| = r, with length ¥(,). Put G = B(0; 1)— [U {vm}t Y {0}] and

w n=1

suppose that lim V(y,)/r, = 27. So C,,—G = {0} v ul{y,,} U {z:z] = 1}

According to Theorem 4.9 there is a barrier at each point of 9,,G = 9G with
the possible exception of zero. We will show that there is also a barrier at zero.

Ifr,_, >r>r,andif m > n, let B, = BO; r)— U{'yj} Let 4, be the
continuous function on B,, which is harmonic on B with A, (z) =1 for
|z| = rand h,(z) = 0 for z in U {y;}. Then {h,} is a decreasing sequence of

positive harmonic functions on G(O r); by Harnack’s Theorem {4, } con-
verges to a harmonic function on G(0; r) which is also positive (Why?)
Since lim A(z) = 1 for |w| = r, we need only show that lm(l) h(z) = 0. Let k,,
be thez h:lrmomc function on B(0; r,) which is 0 on {y,,} and 1 on {z:z|
= r, } = {ym} (this does not have continuous boundary values, only piecewise
continuous boundary values which are sufficient—see Exercise 2.2). Then
0 < h <k,on B(0; r,)and

2n

1 .
km(()) = 21rj km(rme'o) do

0

L P (2
2 r,
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Since %”—) — 2m, k,(0) — 0; it follows that 4(z) — 0 as z — 0. Thus, G has

m
a barrier at zero.

Exercises

1. Let G = B(0; 1) and find a barrier for G at each point of the boundary.
2. Let G = C—(c0, 0] and construct a barrier for each point of 2,G.

3. Let G be a region and « a point in 2_,G such that there is a harmonic
function u:G — R with lim u(z) = 0 and lim inf u(z) > 0 for all w in 2,,G,

z-a zw

w # a. Show that there is a barrier for G at a.

4. This exercise asks for an easier proof of a special case of Theorem 4.9.
Let G be a bounded region and let a € 4G such that there is a point b with
[a, 5] " G™ = {a}. Show that G has a barrier at a. (Hint: Consider the
transformation (z—a)(z—b) ")

§5. Green’s Function

In this section Green’s Function is introduced and its existence is dis-
cussed. Green’s Function plays a vital role in differential equations and other
fields of analysis..

5.1 Definition. Let G be a region in the plane and let ae G. A Green’s
Function of G with singularity at a is a function g,:G — R with the
properties:

(a) g, is harmonic in G— {a};

(b) G(2) = g(z)+log |z—al is harmonic in a disk about a;

(c) lim g,(z) = O for each win ¢_G.

For a given region G and a point a in G, g, need not exist. However, if it
exists, it is unique. In fact if A, has the same properties, then, from (b),
h,—g, is harmonic in G. But (c) implies that lim [4,(z) — g,(z)] = O for every

Jow

win @,G; so h, = g, by virtue of the Maximum Principle.
A second observation is that a Green’s Function is positive. In fact, g, is
harmonic in G— {a} and lim g(z) = + co since g,(z)+log |z—a| is harmonic

z—a
at z = a. By the Maximum Principle, g,(z) > Ofor allzin G— {a}.

Given this observation it is easy to see that C has no Green’s Function
with a singularity at zcro (or a singularity at any point, for that matter). In
fact, suppose g, is the Green's Function with singularity at zero and put
g = —gy.s0g(z) < 0forall z. We will show g must be a constant function,
which is a contradiction. To do this, it is suflicient to show that if 0 7 2
/ zy /O then g(my) - gy e - 0 then there is a & - 0 such that
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1g2)—g(z)| < € if |z1—2 < 8; so g(z2) < glz)+e if [z—z,] <8 Let
r > |z, —2,] > 8; then

8(z)+e zZ—Z

()

is harmonic in C— {z,}. It is left to the reader to check that g(2) < h(2)
for z on the boundary of the annulus 4 = {z:8 < |z—z;| < r}. By the Maxi-
mum Principle, g(z) < h(2) for z in A; in particular, h(z;) = g(z,). Letting
r — oo we get

h(z) = log

g(z;) < limh(z,) = g(zy)+<;
r—o
since € was arbitrary, g(z,) < g(z;) and g must be a constant function.
When do Green’s Functions exist?

5.2 Theorem. If G is a bounded Dirichlet Region then for each a in G there is
a Green’s Function on G with singularity at a.

Proof. Define f:8G — R by f(z) = log |z—a|, and let u:G™ >R be the
unique continuous function which is harmonic on & and such that u(z)=£(2)
for z in 9G. Then g,(z) = u(z)—log |z—a| is easily seen to be the Green’s
Function. i

This section will close with one last result which says that Green’s
Functions are conformal invariants.

5.3 Theorem. Let G and Q be regions such that there is a one-one analytic
function f of G onto Q; let ac G and o = f(a). If g, and y, are the Green’s
Functions for G and Q with singularities a and « respectively, then

842) = 7(f(2))-

Proof. let :G — R be defined by ¢ = y,of. To show that ¢ = & 1t. is
sufficient to show that ¢ has the properties of the Green’s Function with
singularity at z = a. Clearly ¢ is harmonic in G- {a}. If we d,G then
lim ¢(z) = 0 will follow if it can be shown that lim ¢(z,) = 0 for any sequence

Zw

{z,} in G with z, — w. But {f(z,)} is a sequence in { and so there is a sub-
sequence {z,, } such that f{z,) — win Q7 (closure in C_). So y,(f(z,)) = 0.
Since this happens for any convergent subsequence of {f(z,)} it follows that
lim ¢(z,) = lim y,(f(z,)) = 0. Hence lim ¢(z) = 0 for every w in 0,G.

zw

Finally, taking the power series expansion of f about z = a,

A2) = at+A(z—a)+ A z—a)* +. . .;

or

f(2)—a = (z—a)4,+4,z—a)+. . ]
Hence
54 log|f(z) — x| = log|z —a| +h(2),
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where h(z) = log |[A; + A,(z—a)+. . .| is harmonic near z = a since 4, # 0.
Suppose that y,(w) = A(w) —log|w—«| where A is a harmonic function
on . Using (5.4)
¢(2) = Af(2) —log| f(z) — o
= [A(f(2) - M(2)] —log|z —a].

Since Ao f—h is harmonic near z = a, ¢(z)+log |z—a| is harmonic near
4

z=a R

Exercises

1. (a) Let G be a simply connected region, let a ¢ G, and let f:G — D = {z:
|z| < 1} be a one-one analytic function such that f{iG) = D and f(a) = 0.
Show that the Green’s Function on G with singularity at a is g,(z) = ~log
L)

(b) Find the Green’s Functions for each of the following regions:
() G =C—(00,0];(ii)) G = {z:Rez > 0}; (iii) G = {z:0 < Im z < 2=}.
2. Let g, be the Green’s Function on a region G with singularity at z = a.

Prove that if ¢ is a positive superharmonic function on G — {a} with lim inf

[¥(z)+log |z—a] > — oo, then g(2) < ¥(2) for z # a.
3. This exercise gives a proof of the Riemann Mapping Theorem where it is
assumed that if G is a simply connected region, G # C, then: (i) C,—G is
connected, (ii) every harmonic function on G has a harmonic conjugate,
(iii) if @ ¢ G then a branch of log(z—a) can be defined.

(a) Let G be a bounded simply connected region and let @ € G; prove that
there is a Green’s Function g, on G with singularity at a. Let u(z) = g (2)
+log|z—a] and let v be the harmonic conjugate of u. If ¢ = u+iv let
f(2) = e™(z—a)e™*? for a real number «. (So fis analytic in G.) Prove that
[f(2)] = exp (—g4(2)) and that lim |f(z)| = 1 for each w in 8G (Compare this

with Exercise 1). Prove that for 0 < r < 1, C, = {z:|f(z)| = r} consists of
a finite number of simple closed curves in G (see Exercise VI.1.3). Let G,
be a component of {z:|f(z)| < r} and apply Rouché’s Theorem to get that
f(z) = 0and f(z)—wy = 0, |we] < r, have the same number of solutions in
G,. Prove that f is one-one on G,. From here conclude that f(G) = D = {z:
Iz| < 1} and f'(a) > 0, for a suitable choice of «.

(b) Let G be a simply connected region with G # C, but assume that G
is unbounded and 0, o € 2,,G. Let £ be a branch of log z on G, ae G, and
« = {(a). Show that 7 is one-one on G and #(z) # «+2=i for any z in G.
Prove that ¢(z) = [/(z) —a—2#i]" ' is a conformal map of G onto a bounded
simply connected region in the plane. (Show that £ omits all values in a
neighborhood of «+ 27i.)

(¢) Combine parts (a) and (b) to prove the Riemann Mapping Theorem.
4. (a) Let (7 be a region such that <Gy is a simple continuously difTeren-
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tiable closed curve. If f:0G — R is continuous and g(z, @) = g.(z) is the
Green’s Function on G with singularity at a, show that

5.5 h(a) = ~[‘f(z) % (z, a) ds

is a formula for the solution of the Dirichlet Problem with boundary values f;
0 . . .
where a~g is the derivative of g in the direction of the outward normal to y and
n

ds indicates that the integral is with respect to arc length. (Note: these con-
cepts are not discussed in this book but the formula is sufficiently interesting
so as to merit presentation.) (Hint: Apply Green’s formula

ov ou
f [uAv—vAu] dx dy =f[u —v ~:| ds
on on
0

Q

with Q = G—{z:|z—a| < 8}, 8 < d(a, {y}), u=h, v =g 2) = g(z, a).)
(b) Show that if G = {z: |z] < 1} then (5.5) reduces to equation (2.5).

Chapter XI

Entire Functions

To begin this chapter, let us recall the Weierstrass Factorization Theorem
for entire functions (VII. 5.14). Let f be an entire function with a zero of
multiplicity m > 0 at z = 0; let {q,} the zeros of f, a, # 0, arranged so that
a zero of multiplicity k is repeated in this sequence k times. Also assume
that |a,| < ja,| < ....If {p,} is a sequence of integers such that

x r patl
0.1 ; <Ian|> < 00

for every r > 0O then

0.2 P(z) = nl:II E, (z/a,)
converges uniformly on compact subsets of the plane, where

2?2 z?
0.3 Ep(z)=(l—z)exp<z+ 5 +...+—>

p
for p = 1 and
Eyz)=1-z

Consequently
0.4 f(@) = 2" e! @ P(2)

where g is an entire function. An interesting line of investigation begins if we
ask the questions: What properties of fcan be deduced if g and P are assumed
to have certain “nice” properties? Can restrictions be imposed on f which
will imply that g and P have particular properties? The plan that will be
adopted in answering these questions is to assume that g and P have certain
characteristics, deduce the implied properties of f, and then try to prove the
converse of this implication.

How to begin? Clearly the first restriction on g in this program is to
suppose that it is a polynomial. It is equally clear that such an assumption
must impose a growth condition on **. A convenient assumption on P is
that all the integers p, are equal. From equation (0.1), we see that this is to
assume that there is an integer p > 1 such that

o

Y la,)™? < oo;

n=1

that is, it is an assumption on the growth rate of the zeros of £, In the first
279
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section of this chapter Jensen’s Formula is deduced. Jensen’s Formula says
that there is a relation between the growth rate of the zeros of f and the
growth of M(r) = sup {|f(re’®)|: 0 < 6§ < 27} as r increases. In succeeding
sections we study the growth of the zeros of f and the growth of M (r). Finally,
the chapter culminates in the beautiful factorization theorem of Hadamard
which shows an intimate relation between the growth rate of M (r) and these
assumptions on g and P.

§1. Jensen’s Formula

If f is analytic in an open set containing B(0; r) and f doesn’t vanish in
B(0; r) then log | f] is harmonic there. Hence it has the Mean Value Property
(X. 1.4); that is

2n
1

11 log | f(0)] = ZTTJ log | f(re'®)| db.

0

Suppose f has exactly one zero @ = re’* on the circle [z| = r. If g(2) = f(2)
(z—a)~! then (1.1) can be applied to g to obtain

2=x
1 . . .
log |g(0)] = z—ﬂf llog | f(re*)|—log |re” —re'™|] db
0

Since log [g(0)] = log |f(0)|—log r, it will follow that (1.1) remains valid
where f has a single zero on |z| = r, if it can be shown that

2n
1 . .
—J log |re'® —re*®| df = log r;
2m
/]

alternately, if it can be shown that
2n
| 1og [1—€*| b = o.
1]
But this follows from the fact that
2r
f log (sin? 26) df = — 4m log 2
1]

(Exercise V. 2.2(h)). So (1.1) remains valid if £ has a single zero on |z] = r;
by induction, (1.1) is valid as long as f has no zeros in B(0; r).

The next step is to examine what happens if f has zeros inside B(0; r).
In this case, log | f(2)] is no longer harmonic so that the MVP is not present.

1.2 Jensen’s Formula. Let f be an analytic function on a region containing
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B(0; ry and suppose that ay, .. ., a, are the zeros of f in B(O; r) repeated
according to multiplicity. if f(0) # 0 then
2n

og 1701 = = > tog (1) + [ 1og ) .

=1 |ay|
Proof. If |b| < 1 then the map (z—b) (1—5z)"" takes the disk B(0; 1) onto
itself and maps the boundary onto itself. Hence
r’(z—a)
r’—az

maps B(0; r) onto itself and takes the boundary to the boundary. Therefore

Fo -0 ] |

is analytic in an open set containing B(0; r), has no zeros in B(0; r), and
|F(2)|] = |f(2)] for |z] = r. So (1.1) applies to F to give

2n

log [F(0) = 5 f log | (e db.

0

r

2 gz
r(z—a)

However

FO =0 [ ] ( - ai)

so that Jensen’s Formula results. i

If the same methods are used but the MVP is replaced by Corollary X. 2.9,
log | f(2)] can be found forz # q,, 1| < k < n.

1.3 Poisson-Jensen Formula. Let f be analytic in a region which contains

E(O;.r) and let ay, . . ., a, be the zeros of f in B(0; r) repeated according to
multiplicity. If |z| < r and f(2) # O then

2r
1 re’®+4z .
+ i—;f Re <re“’-—z) log | f(re'®)| db.
6

r’—az

riz—a,)

log /@) = — > log

k=1

Exercises

1. In the hypothesis of Jensen’s Formula, do not suppose that S(0) # 0.
Show that if f has a zero at z = 0 of multiplicity m then

n

/'(m)(() ", r 1
" bomlogr - l lug(l” |> ] ’"J log | f(re'™) do,
A

A1 -

log

Q



282 Entire Functions
2. Let f be an entire function, M(r) = sup {|f(re'®)]: 0 < 6 < 2=}, n(r) =
the number of zeros of f'in B(0; r) counted according to multiplicity. Suppose
that f(0) = 1 and show that n(r) log 2 < log M(2r). .
3. InJensen’s Formula do not suppose that fis analytic in a region containing
B(0; r) but only that f is meromorphic with no pole at z = 0. Evaluate

2
. j log | (re™)] .
0

4. (a) Using the notation of Exercise 2, prove that

where a,, ..., a, are the zeros of f in B(0; r).

(b) Let f be meromorphic without a pole at z = 0 and let n(r) be the
number of zeros of f in B(0; r) minus the number of poles (each counted
according to multiplicity). Evaluate

r

JM dt.
t

0

5. Let D = B(0; 1) and suppose that f: D — C is an analytic function which
is bounded. .

(a) If {a,} are the non-zero zeros of f in D counted according to multi-
plicity, prove that » (1—|a,|) < co. (Hint: Use Proposition VIL 5.4).

(b) If f has a zero at z = 0 of multiplicity m > 0, prove that f(z) =
z"B(z) exp (—g(z)) where B is a Blaschke Product (Exercise VII. 5.4) and g
is an analytic function on D with Re g (2) = —log M (M = sup {|f(2)|:
2l < 1.

§2. The genus and order of an entire function

2.1 Definition. Let f be an entire function with zeros {a,, a,, . . .}, repeated
according to multiplicity and arranged such that |a;| < |a,| < ... . Then
[ is of finite rank if there is an integer p such that

s

2.2 la,| """ < oo,

n=1

If p is the smallest integer such that this occurs, then f'is said to be a/ran.k IR
a function with only a finite number of zeros has rank 0. A function is of
infinite rank if it is not of finite rank.

T e
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From equation (0.1) it is seen that if f has finite rank p then the canonical
product P in (0.4) can be taken to be

2.3 P(z) = f[Ep(z/a,,).

Notice that if f is of finite rank and p is any integer larger than the rank
of £, then (2.2) remains valid. So there is a second canonical product (2.3),
and this shows that the factorization (0.4) of fis not unique. However, if the
product P is defined by (2.3) where p is the rank of S then the factorization
(0.4) is unique except that g may be replaced by g+2mmi for any integer m.

2.4 Definition. Let f be an entire function of rank p with zeros {a,, a,,...}.

Then the product defined in (2.3) is said to be in standard Jorm for f. If fis
understood then it will be said to be in standard Sform.

2.5 Definition. An entire function f has finite genus if f has finite rank and if
(@) = 2" "D P(2),

where P is in standard form, and g is a polynomial. If p is the rank of f
and g is the degree of the polynomial g, then p = max (p, q) is called the
genus of f.

Notice that the genus of fis a well defined integer because once P is in

standard form, then g is uniquely determined up to adding a multiple of 27i.

In particular, the degree of g is determined. .

\
2.6 Theorem. Let f be an entire function of genus . For each positive number
« there is a number r such that for |z| > r,

/@) < exp (afz]**1)

Proof. Since f'is an entire function of genus 7
(@) = 2"e*® [] E,(z/a),
n=1

where g is a polynomial of degree <pu. Notice that if Iz] < 4 then
2.7 log |E,(2)]

Re {log (1 ~z)+z+...4+2%u}
Re{ - ! z"“-——l—z"”—...
p+1 -2

nt+1 1 'Zl + }
1] ;—ﬁ + P S
< A+ +HEP A+ L)

— 2 lzl;n-l

IA

Also

TE] < (]2 exp (JzF+. .+ ]z,
so that

log [£,()] < dog (P [z v z) 4 .. .4 21"/,
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Hence,

i g EGI

ro oo |Zlu+1

So if 4 > 0 then there is a number R > 0 such that
2.8 log |[E(2)] < Alz]**, |z| > R.

But on {z: } < |z| < R} the function |z|~®**" log |E,(2)| is continuous
except at z = + 1, where it tends to —o0. Hence there is a constant B>0
such that

2.9 log |[E(2)| < Blz|**!, 4 < |zl < R.
Combining (2.7), (2.8), and (2.9) gives that
2.10 log |[E(2)] < M|z]**!

for all z in C, where M = max {2, A, B}.
Since Yla,|"®“*" < oo, an integer N can be chosen so that

d [+ 4
-(M'*'l) < — .
z ] aMm

n=N+1

But, using (2.10),

© «© ut+1 o
2.11 Z log [E(zla)| < M _Z 1 =3 Eas
n=N¥1 n=N+1

Now notice that in the derivation of (2.8), 4 could be chosen as small as
desired by taking R sufficiently large. So choose r; > 0 such that

log |E,(2)] < ﬁv |2|**1, for |z| > ry.
If r, = max {|a,| ry, |as| ry, ..., |ay] r1} then

N
> log |Eza)| < §|zln+1 for |z| > r,.

n=1

Combining this with (2.11) gives that
2.12 log |P(z)| = Z log |E,(z/a,)]| < ; |zpet 1
n=1

for |z| > r,. Since g is a polynomial of degree <p, -

mlog [z|+]g(2)| _
]Zlu+1 -

lim 0.

So there is an r3 > 0 such that m log |z|+|g(z)| < % « |z|** . Together with
(2.12) this yields
log | /(z)] < e |z|**!
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for |z| > ro = max {r,, r3}. By taking the exponential of both sides, the
desired inequality is obtained. [l

The preceding theorem says that by restricting the rate of growth of the
zeros of the entire function f(z) = z™ exp g(2)P(z) and by requiring that g
be a polynomial, then the growth of M(r) = max {|f(re'®)|: 0 < 6 < 2=} is
dominated by exp («|z|**!) for some x and any « > 0.

We wish to prove the converse to this result.

2.13 Definition. An entire function f is of finite order if there is a positive
constant @ and an r, > 0 such that | f(2)| < exp (|2} for |z] > rq. If fis not
of finite order then f is of infinite order.

If f is of finite order then the number A = inf {a: |f(2)| < exp (|z|*) for
|z| sufficiently large} is called the order of f.

Notice that if | f(2)| < exp (|z|°) for |z| > r, > 1 and b > a then |f(2)| <
exp (|z|%). The next proposition is an immediate consequence of this obser-
vation.

2.14 Proposition. Let f be an entire function of finite order A. If € > 0 then
|f(2)| < exp (|z]**) for all z with |z| sufficiently large; and a z can be found,
with |z| as large as desired, such that | f(z)| > exp (|z]*7°).

Although the definition of order seems a priori weaker than the con-
clusion of Theorem 2.6, they are, in fact, equivalent. The reader is asked to
show this for himself in Exercise 3.

So it is desirable to know if every function of finite order has finite genus
(a converse of Theorem 2.6). That this is in fact the case is a result of \
Hadamard’s Factorization Theorem, proved in the next section.

The proof of the next proposition is left to the reader.

2.15 Proposition. Let f be an entire function of order X and let M (r) = max
USF@): |z| = r}; then
loglog M
A = fim sup £ 108 M)
ro o logr
Consider the function f(z) = exp (e”); then |f(z)| = exp (Re &) = exp
(¢" cos 0) if z = re'®. Hence M(r) = exp (¢) and
loglog M(r)  r
logr " logr’
thus, fis of infinite order. On the other hand if g(z) = exp (z"), n > 1, then
|g(2)] = exp (Re z") = exp (" cos mfb). Hence M(r) = exp (") and so
log log M(r) _
log r B

>

thus g is of order n. For further examples sce Exercise 7.
Using this terminology, Theorem 2.6 can be rephrased as folows

2.16 Corollary. If [ is an entire function of finite genus o then fis of finite order
A not 1.
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Exercises

1. Let f(z) = Y c,z" be an entire function of finite genus y; prove that

lim ¢, (n)Y®*H = 0.
(Hint: Use Cauchy’s Estimate.)
2. Let f; and f, be entire functions of finite orders A; and A, respectively.
Show that f = f; +f, has finite order A and A < max (A, A,;). Show that
A = max (A, A,) if A; # A, and give an example which shows that A < max
(A1, Ay) with £ # 0.
3. Suppose f is an entire function and A4, B, « are positive constants such
that there is a ro with | f(2)| < exp (4|z}*+ B) for |z| > r,. Show that fis of
finite order <a.
4. Prove that if f is an entire function of order A then f’ also has order A.
5. Let f(z) = Y. c,z" be an entire function and define the number « by
« = lim inf — 28 1%l
oo hlogn
(a) Show that if f has finite order then « > 0. (Hint: If the order of fis A
and 8 > A show that |c,| < r™" exp () for sufficiently large r, and find the
maximum value of this expression.)
(b) Suppose that 0 < « < oo and show that for any € > 0, € < «, there
is an integer p such that |c,|'* < n7¢*7 for n > p. Conclude that for
|z| = r > 1 there is a constant A such that

@) < 4+ > (;1'—)

(c) Let p be as in part (b) and let N be the largest integer <(2r)/(*~9.
Take r sufficiently large so that N > p and show that

<) n N n
r
z < a_(> < land Z <—;2;) < Bexp (29 logr)
n n=p+1 R

m=N+1

where B is a constant which does not depend on r.

(d) Use parts (b) and (c) to show that if 0 < « < oo then f has finite
order Aand A < «~ L.

(e) Prove that f is of finite order iff « > 0, and if f has order A then
A=o"L

7. Find the order of each of the following functions: (a) sin z; (b) cos z;
(c) cosh /z; (d) Z n~*z" where a > 0. (Hint: For part (d) use Exercise 6.)

8. Let f; and f, be entlre functions of finite order A,, A,; show that f = f, f,
has finite order A < max (A,, A,).

9. Let {a,} be a sequence of non-zcro complex numbers. Let po inf {a:
Z la,] ™ < oo}: the number pis called the exponent of conrergence of {a, ).
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(a) If fis an entire function of rank p then the exponent of convergence
p of the non-zero zeros of fsatisfies: p < p < p+1.
(b) If p'= the exponent of convergence of {a,} then for every ¢ > 0,
Y la,| ¢ < wand ¥ |a,| "¢ = oo.
. (¢) Let f'be an entire function of order A and let {a,, a,, ...} be the non-
zero zeros of f counted according to multiplicity. If p is the exponent of

convergence of {a,} prove that p < A. (Hint: See the proof of (3.5) in the
next section.)

(d) Let P(2) = H E(z/a,) be a canonical product of rank p, and let p
n=1

be the exponent of convergence of {a,}. Prove that the order of P is p.
(Hint: If A is the order of P, p < A; assume that |q,| < |a,| < ... and fix z,
|z > 1. Choose N such that |a,| < 2 |z|if n < Nand |a,| > 2 |z|if n > N
+ 1. Treating the cases p < p+1and p = p+1 separately, use (2.7) to show

that for some ¢ > 0.
Z log |E <~>

n=N+1

Prove that for |z] > 4, log [E,(2)| < B |z|° where B is a constant independent
of z. Use this to prove that
z
E, a—n

N
Z log
for some constant C independent of z.)
10. Find the order of the following entire functions:
@ f0= ][] -a2), 0<la <1

n=

@ =T](1-2)
(=

© f) = TG

< A |z[r*e

< C|z|r*e

§3. Hadamard Factorization Theorem

In this section the converse of Corollary 2.16 is proved; that is each
function of finite order has finite genus. Since a function of finite genus can
be factored in a particularly pleasing way this gives a factorization theorem.

3.1 Lemma. Let f be a non-constant entire function of order X with f(0) =
and let {a,, a,,...} be the zeros of f counted according to multiplicity and
arranged so that |a1] < |ay| <....If an integer p > A—1 then

d? 1 1(2) U 1
— : =t N
d=r [/'(:)_—] P ,.h' (e, —zy"*!

1
forz / ay ay ...,



288 Entire Functions
Proof. Let n = n(r) = the number of zeros of fin B(0; r); according to the

Poisson-Jensen formula
2n
i0+ ;
+ lf Re ('em ) log | f(re™®)| do
2 ret’—z

0

n

log|f(z)l = — > log

k=1

r*—az

r(z—a)

for |z| < r. Using Exercise 1 and Leibniz’s rule for differentiating under an
integral sign this gives

2n
+ lf 2reio(rei0—z)_2 log lf(reie)l do
27
0

for |z] < rand z # a,, ..., a, Differentiating p times yields:

n

dp ’ % —-p—1 pt1 —a ~p-1
M[%]: —pz;(ak—z) +,,sz @t —a)

2n

+(p+1)! 2i f 2re'(re —z)"""* log | f(re")| db.
T

0

Now as r — o0, n{r) — oo so that the result will follow if it can be shown that
the last two summands in (3.2) tend to zero as r — co.

To see that the second sum converges to zero let r > 2|z|; then |q]| < r
gives |[r?—g.z| > 4r* so that (|G| |r2—dkz|“1)"“. < (2/r)P*!. Hence the
second summand is dominated by n(r) (2/r)?* . But it is an easy consequence
of Jensen’s Formula (see Exercise 1.2) that log 2 n(r) < log M(r). Since f is
of order A, for any € > 0 and r sufficiently large

log 2 n(r) r™®*Y < log [M(] r~®*V

< PAro-G+D

But p+1 > A so that ¢ may be chosen with (A+e)—(g+l) < 0. Hence
n(r) (2/r)**! — 0 as r — co; that is, the second summand in (3.2) converges
to zero. ‘

To show that the integral in (3.2) converges to zero notice that

2n
f re'’(re'®—z)"?"2do = 0
4]
since this integral is a multiple of the integral of (w—z)"?P~2 around the

circle |w| = r and this function has a primitive. So the value of the integral
in (3.2) remains unchanged if we substitute log |f]—log M(r) for log |f].
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So for 2|z| < r, the absolute value of the integral in (3.2) is dominated by
2n

3.3 (p+ 1)1 2P+ 3,~p+D) %Tf [log M(r)—log | f(re')|} db.

0

But according to Jensen’s Formula,

2=
1 .
‘flog |f(re')} db = 0
27

V]

since f(0) = 1. Also log M(r) < r**¢ for sufliciently large r so that (3.3) is
dominated by

(p+ 1)' 2p+3rl+£—(p+1)

As before, ¢ can be chosen so that rA*<~®+1D 5 0 a5 -5 o0, |

Note that the preceding lemma implicitly assumes that f has infinitely
many zeros. However, if f has only a finite number of zeros then the sum in
Lemma 3.1 becomes a finite sum and the lemma remains valid.

3.4 Hadamard’s Factorization Theorem. If f is an entire function of finite
order X then f has finite genus 1 < A,

Proof. Let p be the largest integer less than or equalto A;s0p < A < p+1.
The first step in the proof is to show that f has finite rank and that the rank.

is not larger than p. So let {a,, a,, .. .} be the zeros of f counted according
to multiplicity and arranged such that |a,| < la,| < .... It must be shown
that

o«
35 Y la, Y < o,

n=1

There is no loss in generality in assuming that f(0) = 1. Indeed, if f has
a zero at the origin of multiplicity m and M(r) = max {If(@)]: |z] = r} then
for any e > O and |z| = r

log | f(2)z™") < log [M(r)r~™]
<r**—mlogr

rl+2e

IA

if r is sufficiently large. So f(z)z™™ is an entire function of order A with no
zero at the origin. Since multiplication by a scalar does not affect the order,
the assumption that f(0) = | is justified.

Let n(r) = the number of zeros of f in B(0; r). It follows (Exercise 1.2)
that {log 2] n(r) < log M(r). Since [ has order A, log M(r) < r**3 for any
€ > 0 so that lim a(r)r =4 . 0. llence n(r) = r*** for sufficiently large r.

re o )
Since lay| - Ja.| - ook e - a2t for all & larger than some
integer Ay, lHencee,

11 LI Y i}
] 711 gy
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for k > k. So if € is chosen with A+e¢ < p+1 (recall that A < p+1) then
la,|~®* " is dominated by a convergent series; (3.5) now follows.
Let f(z) = P(z) exp (g(z)) where P is a canonical product in standard
form. Hence for z # q,
1@ P

7o £

Using Lemma 3.1 gives that

o » TP
_pY 'Z; (an“Z)_(p+l) = g(p+1)(Z) + Ez—p [?8]

However it is easy to show that

& [P() < .

for z # ay, aj, . . . . Hence g?*! = 0 and g must be a polynomial of degree
<p.Sothe genusof f < p < A

As an application of Hadamard’s Theorem a special case of Picard’s
Theorem can be proved. This theorem is proved in full generality in the next
chapter.

3.6 Theorem. Let f be an entire function of finite order, then f assumes each
complex number with one possible exception.

Proof. Suppose there are complex numbers « and 8, « # $, such that f(2) # «
and f(z) # Bforall zin C. So f—« is an entire function that never vanishes;
hence there is an entire function g such that f(z) —« = exp g(z). Since f has
finite order, so does f—a; by Hadamard’s Theorem g must be a polynomial.
But exp g(z) never assumes the value B—« and this means that g(z) never
assumes the value log (B—«), a contradiction to the Fundamental Theorem
of Algebra. |l

One might ask how many times f assumes a given value «. If g is a
polynomial of degree n > 1, then every o« is assumed exactly n times. How-
ever f = e assumes each value (with the exception of zero) an infinite number
times. Since the order of e is n (see Exercise 2.5) the next result lends some
confusion to this problem; the confusion will be alleviated in the next chapter.

3.7 Theorem. Let f be an entire function of finite order A where A is not an
integer; then f has infinitely many zeros.

Proof. Suppose f has only a finite number of zeros {a,, a3, ..., a,} counted
according to multiplicity. Then f(z) = ¢**(z—a,)...(z—a,) for an entire
function g. By Hadamard’s Theorem, g is a polynomial of degree <A. But
it is casy to sec that fand e* have the same order. Since the order of ¢ is the
degree of g, A must be an integer. This completes the proof. n
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3.8 Corollary. Iffis an entire function of order A and A is not an integer then f
assumes each complex value an infinite number of times.

Proof. If o € f(C), apply the preceding theorem to f—«. [l

Exercises

1. Let f be analytic in a region G and suppose that f is not identically zero.
Let G, = G~ {z: f(z) = 0} and define h: G, — R by h(z) = log |f(2)|.
Show that oh — iilz = f— on G,.
ox ay f

2. Refer to Exercise 2.8 and show that if A; # A, then A = max (A, A,).
3. (a) Let f and g be entire functions of finite order A and suppose that
f(a,) = g(a,) for a sequence {a,} such that ¥ l|a,|”**" = co. Show that
f=g

(b) Use Exercise 2.9 to show that if f, g and {a,} are as in part (a) with
Y la,|"**9 = co for some € > 0 then f = g.

(c) Find all entire functions f of finite order such that f(log n) = n.

(d) Give an example of an entire function with zeros {log2,log 3, ...}




Chapter X1

The Range of an Analytic Function

In this chapter the range of an analytic function is investigated. A generic
problem of this type is the following: Let % be a family of analytic functions
on a region G which satisfy some property P. What can be said about f(G)
for each fin %7 Are the sets f(G) uniformly big in some sense? Does there
exist a ball B(a; r) such that f(G) > B(a; r) for each fin % ? Needless to say,
the answers to such questions depend on the property P that is used to
define #.

In fact there are a few theorems of this type that have already been
encountered. For example, the Casorati-Weierstrass Theorem says that if
G = {z: 0 < |z—a| < r} and F is the set of analytic functions on G with
an essential singularity at z = a, then for each 8, 0 < 6 < r, and each f'in
F f(ann (a; 0; 8)) is dense in C (V. 1.21). Recall (Exercise V. 1.13) that if fis
entire and f(1/z) has a pole at z = 0, then fis a polynomial. So if fis not a
polynomial then f(1/z) has an essential singularity at z = 0. So as a corollary
to the Casorati-Weierstrass Theorem, f(C) is dense in C for each entire
function (if /' is a polynomial then f(C) = C).

This chapter will culminate in the Great Picard Theorem that sub-
stantially improves the Casorati-Weierstrass Theorem. Indeed, it states that
if £ has an essential singularity at z = a then f(ann (a; 0; 8)) is equal to the
entire plane with possibly one point deleted. Moreover, f assumes each of
the values in this punctured disk an infinite number of times. (See Exercise
V. 1.10.) As above, this yields that f(C) is also the whole plane, with one
possible point deleted, whenever fis an entire function. This is known as the
Little Picard Theorem. However, this latter result will be obtained inde-
pendently.

Before these theorems of Picard are proved, it is necessary to obtain
further results about the range of an analytic function—which results are of
interest in themselves.

§1. Bloch’s Theorem

To fit the result referred to in the title of this section into the general
questions posed in the introduction, let D = B(0; 1) and let & be the family
of all functions f analytic on a region containing D~ such that f(0) = 0
and f'(0) = 1. How “big” can f(D) be? Put another way: because f'(0) =
1 # 0, fis not constant and so f(D) is open. That is, f(D) must contain a
disk of positive radius. As a consequence of Bloch’s Theorem, there is a
positive constant B such that f(G) contains a disk of radius B for each fin .#.
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1.1 Lemma. Let f be analytic in D = {z: |z| < 1} and suppose that f(0) = 0,
[0 = 1,and |f(2)] < M forall zin D. Then M = 1 and f(D) > B(0; 1/6M).

Proof. Let 0 < r < 1 and f(z) = z+a,z*+...; according to Cauchy’s
Estimate |a,] < M/r" forn > 1. So | = |a;| < M. If |z| = (4M)"! then

@) =12 = Y a2

n=2

> (M)~ - i M@&M)™"

= (4M) ' —(16M—4)""

> (6M)~?
since M > 1.
Suppose |w| < (6M)~*; it will be shown that g(z) = f(z) —w has a zero.
In fact, for |z| = 4M)~, |f(2)—g(2)| = |w] < (6M)~! < |f(z)]. So, by
Rouché’s Theorem, f and g have the same number of zeros in B(0; 1/4M).
Since f(0) = 0, g(z,) = 0 for some z,; hence f(D) > BO; 1/6M). I

1.2 Lemma. Suppose g is analytic on B(0; R), g(0) = 0, |g'(0)] = p > 0, and
|g(2)| < M for all z, then
RZ[J-2
B(0; R)) > B 0;

&(B(O; R) < G M>
Proof. Let f(z) = [Rg’ (0)]" 'g(Rz) for |z| < 1; then fis analytic on D =
{z:]z] < 1}, f(0) = 0,7(0) = 1, and | f(z)| £ M/uR for all z in D. Accordin
to the preceding lemma, f(D) > B(0; nR/6M). If this is translated in terms
of the original function g, the lemma is proved. [l

1.3 Lemma. Let f be an analytic function on the disk B(a; r) such that
If@)=f@| < |f'(a)| for all z in B(a; r), z # a; then f is one-one.

Proof. Suppose z, and z, are points in B(a; r) and z; # z,. If v is the line
segment [z,, z,] then an application of the triangle inequality yields

fe) -l = |[ 1@ ]
> |[r@d| - |[ ro-r@ia
2 /@) |z -2l = [ 17 @=f @] |l
Using the hypothesis, this gives | f(z,)—f(zz)|y> 0 so that f(z,) # f(z,) and

fis one-one. [l

1.4 Bloch’s Theorem. Let f be an analytic function on a region containing the
closure of the disk D {z: )z < VY and satisfying f(0) 0, f(0) 1. Then
there is a disk S < D on which [ is one-one and such that [(S) contains a dish
of radius 1/72.
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Proof. Let K(r) = max {|f'(z)|: |z| = r} and let k(r) = (1 —r)K(@). It is
easy to see that 4: [0, 1] — R is continuous, A(0) = 1, k(1) = 0. Let r, =
sup {r: k(r) = 1}; then h(ro) = 1, ro < 1, and A(r) < 1 if r > r, (Why?).
Let a be chosen with |a| = rq and |f'(a)| = K(ry); then
L5 If'@] = (1=ro)~".
Now if [z—a] < ¥ (1—rg) = po, |2| < 3 (1+rg); since ro < ¥ (1+ry), the
definition of r, gives
1.6 '] < KG(1+r0)

= h(3(1+r) [1 =31 +ro) ™!

<[I=3(1+rol™!

= 1/po
for |z—a| < po. Combining (1.5) and (1.6) gives

f@-f@ <[/ + |f @I
< 3/2P0.

According to Schwarz’s Lemma, this implies that

3|z—q]

re-rel <=,

for z in B(a; po). Hence if ze S = B(a; %po),

f@-r@l < 5— =10l

By Lemma 1.4, f'is one-one on S.

It remains to show that f(S) contains a disk of radius 1/72. For this
define g: B(0; 3po) — C by g(z) = f(z+a)—f(a) then g(0) = 0, [g'(0)] =
| (@] = 2po) 1. If ze B(0; 3po) then the line segment y = [a, z+4] lies
in S < B(a; py)- So by (1.6)

8@ = |[ 770w d]

1
< — |z
Po

<1
Applying Lemma 1.2 gives that

&(B(0;3po)) = B(0; 0)
1\ 12
(5 Po )\ 20, 1

7= of! )
3

where
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If this is translated into a statement about f; it yields that

1
S)> B i I
£8) (f(a), 72) n
1.7 Corollary. Let f be an analytic function on a region containing B(O; R);
1
then f(B(0; R)) contains a disk of radius 7 R|f" (0)|.

Proof. Apply Bloch’s theorem to the function g(z) = [f(Rz) — — f(O)l/Rf" (0)
(the result is trivial if f'(0) = 0, so it may be assumed that f0) #0. R

1.8 Definition. Let F be the set of all functions f analytic on a region con-
taining the closure of the disk D = {z: |z] < 1} and satisfying f(0) = 0,
S'(0) = 1. For each fin & let B(f) be the supremum of all numbers r such
that there is a disk S in D on which fis one-one and such that f(S) contains

1
a disk of radius r. ( So B(f) = 75) . Bloch’s constant is the number B defined
by
= inf {B(f): fe F}.
1
According to Bloch’s Theorem, B > 7 If one considers the function

f(z) = z then clearly B < 1. However, better estimates than these are
known. In fact, it is known that 43 < B < .47. Although the exact Value
of B remains unknown, it has been conjectured that

BROLG)
(1 +\/3)%F<i>

A related constant is defined as follows.

1.9 Definition. Let & be as in Definition 1.8. For each fin & define Af) =

sup {r: f(D) contains a disk of radius r}. Landau’s constant L is defined by
=inf {M(f): fe F}.

Clearly L > B and it is easy to see that L < 1. Again the exact value of

L is unknown but it can be proved that .50 < L < .56. In particular, L > B.

1.10 Proposition. If f is analytic on a region containing the closure of the disk
D = {a: |z| < 1} and f(0) = 0, f'(0) = 1; then f(D) contains a disk of radius
L.

Proof. The proof will be accomplished by showing that f(D) contains a disk

n
< (D). Now a,« f(D) « 1D ) and this last set is compact. So there iy a

- |
of radius A A(/). F'or cach n there is a point a, in /(D) such that I)’(a"; A )
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point « in f{D ) and a subsequence {wx, } such that «, — «. It is easy to see
that we may assume that « = lim «,. If |[w—a| < A, choose n, such that
|w—o| < A—1/ng. There is an integer n, > n, such that

Jogy—o| < A — e w—a]
for n > n,. Hence
[w_an] < |w—a] + [a_“n|

1
<A —-—
Ry
1
< A—-
n

if # > n,. That is w e B(x,; A—1/n) < f(D). Since w was arbitrary it follows
that B(x; ) < A(D). A

1.11 Corollary. Let f be analytic on a region that contains B(O;R); then
S(B(0; R)) contains a disk of radius R|f(0)|L.

Exercises

1. Examine the proof of Bloch’s Theorem to prove that L > 1/24.

2. Suppose that in the statement of Bloch’s Theorem it is only assumed that
f is analytic on D. What conclusion can be drawn? (Hint: Consider the
functions fi(z) = s~ 'f(sz), 0 < s < 1.) Do the same for Proposition 1.10.

§2. The Little Picard Theorem

The principal result of this section generalizes Theorem XI. 3.6. However,
before proceeding, a lemma is necessary.

2.1 Lemma. Let G be a simply connected region and suppose that f is an
analytic function on G that does not assume the values 0 or 1. Then there is
an analytic function g on G such that

f(z) = —exp (im cosh [2g(2)])
forzinG.

Proof. Since f never vanishes there is a branch ¢ of log f(z) defined on G;
that is ¢’ = f. Let F(z) = (2#i) 14z); if F(a) = n for some integer n then
f(a) = exp (2=in) = 1, which cannot happen. Hence F does not assume any
integer values. Since F cannot assume the values 0 and 1, it is possible to
define -
H@) = VF() — VF()—1.

Now H(z) # 0 for any z so that it is possible to define a branch of g of
logf on G. Hence cosh(2g)+ 1 (e +e T+ e e 9!

o

R e S
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1
YH+1/H? = 2F = - Z. But this gives f = e’ = exp [=i+ =i cosh (2g)] =
o

—exp [«i cosh (22)]. I

Suppose fand g are as in the lemma, » is a positive integer, and m is any
integer. If there is a point a in G with g(a) = # log (n+/n=1)+% imm,
then 2 cosh[2g(a)] = €9 4720 = eimn( [y [n_T)*2 +e” " (/n+
Jn—1* = (=D"(/n+n=172 +(Jn—/n=1’1 = (= D)"[22n~1)]; or
cosh [2g(a)] = (—1)"(2n—1). Therefore fla) = —exp [(—1)™(2n— 1)=i] and,
since (2n—1) must be odd, f(a) = 1. Hence g cannot assume any of the values

{+log (Vn+Vn—T)y+yimm:n > Lm =0, £1,...}.

These points form the vertices of a grid of rectangles in the plane. The height
of an arbitrary rectangle is

[Yimm —Yim+Dn| = 1n < \/3.

The width is log (/n+1+/n)—log (/n+./n—1) > 0. Now ¢(x) = log
(Jx+1+/x)—log (/x+/x—1) is a decreasing function so that the width
of any rectangle <¢(1) = log (1+\/2) < log e = 1. So the diagonal of the
rectangle <2. This gives the following.

2.2 Lemma. Let G, f, and g be as in Lemma 2.1. Then 8(G) contains no disk
of radius 1.

2.3 Little Picard Theorem. If f is an entire function that omits two values
then f is a constant.

Proof. If f(z) # a and f(z) # b for all z then (f—a) (b—a)~ ' omits the
values 0 and 1. So assume that f(z) # 0 and f(z) # 1 for all z. According to

Lemma 2.2, this gives an entire function g such that £(C) contains no disk

of radius 1. Moreover, if fis not a constant function then g is not constant

so there is a point z, with g'(z,) # 0. By considering g(z+ zo) if necessary,

it may be supposed that g'(0) # 0. But according to Corollary 1.11,

&(B(0; R)) contains a disk of radius LR|g '(0)|. If R is chosen sufficiently large

this gives that g(C) does contain a disk of radius 1—a contradiction. So f

must be constant. i}

Exercises

I. Show that if f is a meromorphic function on C such that C_, — f(C) has
at least three points then f is a constant. (Hint: What if oo ¢ f(C)?)

2. For each integer n = 1 determine all meromorphic functions f and g on
C such that f"+g"=1.

§3. Schottky’s Theorem

Let /'be a function defined on a simply connected region containing the
disk B(0: 1) and suppose that f never assumes the values 0 and 1. Let us
examine the proof of Femma 2.8 I 7 is any branch of log f let
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H =F-JF-1,

g = a branch of log H.
There are two places in this scheme wnere we are allowed a certain amount
of latitude; namely, in picking the functions ¢ and g which are branches of
log f and log H, respectively. For the proof of Schottky’s Theorem below
specify these branches by requiring
31 0 < ImA0) < 2=,

3.2 0 < Img®0) < 27

3.3 Schottky’s Theorem. For each o and 5, U< a < oo and 0 < B <1, there is
a constant C(a,B) such that if f is an analytic function on some simply
connected region containing B(0; 1) that omits the values 0 and 1, and such

that | f(0)| < a; then | f(2)| < C(a,B) for |z| < B.

Proof. It is only necessary to prove this theorem for 2 < « < co. The proof
is accomplished by looking at two cases.

Case 1. Suppose 4 < |f(0)] < «. Recalling the functions F, H, and g in
Lemma 2.1 (and rediscussed at the beginning of this section), (3.1) gives

FO = . [Iog] /0)] +1 Im A0)

1
< —1 1;
2 08T

1
Let Cy(x) = 7 log e+ 1. Also

T

34  NFO) +VFO)—-1] < NFO)| + WF©O)—1]
= exp (4 log | f(0)}) +exp (4 log | F(0)—1])
= |[O)[* + |FO)—1
< Co(@* +[Co(0)+11*
Let Cy(a) = Co(x)* +[Cole)+1]%. Now if |H(0)] = 1 then (3.2) and (3.4) give

lg(0)| = |log] H(0) |+ 1m g(0)]
< log |HO)|+ 27
< log C,(x) + 2.

If |H(0)] < 1 then in a similar fashion,
|g(0)| < —log |H(0)| + 27

1
1°g<|H(0)1> o

Clog VFO) + VO = 1] + 27
log €\ (2) { 2m.

It
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Let Cy(«) = log C () + 2.

If l[a] < 1 then Corollary 1.11 implies that g(B(a; 1 —|a|)) contains a disk
of radius

3.5 L(1-la]) [g"(@)].

On the other hand, Lemma 2.2 says that g(B(0; 1)) contains no disk of
radius 1. Hence, the expression (3.5) must be less than 1; that is,

3.6 |g’(a)| < [L(1—]a)]~* for |a] < 1.
If [a| < 1, let ¥ be the line segment [0, a]; then
lg(@)] < |g(0)] +|g(a)—5(0)|
< Cz(a)+U g dz[
< Cy(e)+a] max {|g'(2)|: z € [0, a]}

Using (3.6) this gives d
a

L(1—|a))
If Cy(x, B) = Cy(e)+B[L(1—P)]~! then this gives
18] < Ci(e, B
if |z| < B. Consequently if |z] < B,
| /()| = lexp [wi cosh 2g(3)]|
exp [r|cosh 2g(z)|]

g@)] < C;(a) +

IA

A

exXp [—n-ezlg(z)ll
< exp [re?C3 =8,

define C,(«, B) = exp {m exp 2C;(x, B)]}.

Case 2. Suppose 0 < |f(0)] < 4. In this case (1—) satisfies the conditions
of Case 1 so that {1 —f(2)| < C4(2, B) if |z] < B. Hence [f(2)] < 1+C,(2, B).
If we define

C(aa ﬁ) = max {C4(dt, /9)5 1+C4(27 ﬁ) }’
the theorem is proved. |l

3.7 Corollary. Let f be analytic on a simply connected region containing
B(0; R) and suppose that f omits the values 0 and 1. If C(«, B) is the constant
obtained in Schottky’s Theorem and |f(0)| < « then |f(z)| £ C(«, B) for
|z| < BR.

Proof. Consider the function f(R2), |z| < |. R

What Schottky's Theorem (and the Corollary that follows it) says is that
a certain family of functions is uniformly bounded on proper subdisks of
B(0; 1). By Montel's Theorem, it follows that this family is normal. It is
this observation which will be of use in proving the Great Picard Theorem
in the next section, '
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§4. The Great Picard Theorem

The main tool used in the proof of Picard’s Theorem is the following
result.

4.1 Montel-Caratheodory Theorem. If F is the family of all analytic
functions on a region G that do not assume the values O and |, then F is
normal in C(G,C.)

Proof. Fix a point z, in G and define the families ¥ and .# by
G ={feF: [z <1}

H = {feF:|flzo)l 2 1};
s0 F = G U . It will be shown that ¢ is normal in H(G) and that ¢ is
normal in C(G, C_) (that co is a limit of a sequence in # is easily seen by
considering constant functions). To show that % is normal in H(G), Montel’s
Theorem is invoked ; that is, it is sufficient to show that % is locally bounded.

If ais any point in G lety bea curve in G fromzgto a;let Dy, Dy, ..., D,
be disks in G with centers z,, z,,..., 2, = @ on {y} and such that z,_,
and z, are in D,_, N D, for 1 < k < n. Also assume that D, < G for
0 < k < n. We now apply Schottky’s Theorem to D,,. It follows that there
is a constant C, such that |f(z)] < C, for z in Dy and fin 4. (If D, =
B(zy; r) and R > r is such that B(zy; R) < G then, according to Corollary
3.7, |f(2)| = €1, B) for zin Dy and fin ¥ whenever § is chosen with r < BR_).
In particular |f(z;)] < Co so that Schottky’s Theorem gives that ¥ is
uniformly bounded by a constant C, on D;. Continuing, we have that ¥ is
uniformly bounded on D,. Since a was arbitrary, this gives that ¥ is locally
bounded. By Montel’s Theorem, ¥ is normal in H(G).

Now consider # = { fe F: |f(zo)| = 1}. If fe S then 1/f is analytic
on G because f never vanishes. Also 1/f never vanishes and never assumes
the value 1; moreover |[(1/f) (zo)| < 1. Hence o# = {l/f: fe #} < ¥ and
7 is normal in H(G). So if {f,} is a sequence in # there is a subsequence
{f,.} and an analytic function # on G such that {1/f, } converges in H(G)
to h. According to Corollary VII. 2.6 (Corollary to Hurwitz’s Theorem),
either 4 = 0 or h never vanishes. If 4 = 0 it is easy to see that f, (z) -
uniformly on compact subsets of G. If 4 never vanishes then 1/h is analytic
and it follows that f, (z) — 1/k(z) uniformly on compact subsets of G. IR

4.2 Great Picard Theorem. Suppose an analytic function f has an essential
singularity at z = a. Then in each neighborhood of a f assumes each complex
number, with one possible exception, an infinite number of times.

Proof. For the sake of simplicity suppose that f has an essential singularity
at z = 0. Suppose that there is an R such that there are two numbers not in
{f(2): 0 < |z] < R}; we will obtain a contradiction. Again, we may suppose
that f(z) # 0 and f(z) # | for 0 < |z] < R. Let G - B(O; Ry- {0} and
define f,: G - € by f(z)  f(c/n). So cach f, Is analytic and no f, assumes
the value U or 1. According to the preceding theorem, (/0 v a normal
fanul nmnC G 1 )
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Let {f,.} be a subsequence of {f,} such that f, — ¢ uniformly on {z:
|z| = 3R}, where @ is either analytic on G or ¢ = co. If ¢ is analytic, let
M =max {lpz)|: |z| = 4R}; then |f(z/n)| = |£,(2)| < |fulD—o(D)] +
lp(z)] < 2M for ny sufficiently large and |z = 4R. Thus |f(z)| < 2M for
|z = R/2n, and for sufficiently large n,. According to the Maximum Modulus
Principle, f is uniformly bounded on concentric annuli about zero. This
gives that f is bounded by 2M on a deleted neighborhood of zero and, so,
z = 0 must be a removable singularity. Therefore ¢ cannot be analytic and
must be identically infinite.

It is left to the reader to show that if ¢ = co then f must have a pole at
Zero.

So at most one complex number is never assumed. If there is a complex
number w which is assumed only a finite number of times then by taking a
sufficiently small disk, we again arrive at a punctured disk in which f fails to
assume two values. i

An alternate phrasing of this theorem is the following.

4.3 Corollary. If f has an isolated singularity at z=a and if there are two
complex numbers that are not assumed infinitely often by f then z = a is either
a pole or a removable singularity.

In the preceding chapter it was shown that an entire function of order
A, where A is not an integer, assumes each value infinitely often (Corollary
XI.3.8). Functions of the form e, for g a polynomial, assume each value
infinitely often, although there is one excepted value—namely, zero. The
Great Picard Theorem yields a general result along these lines (although
an exceptional value is possible), so that the following result is not
comparable with Corollary XI.3.8).

44 Corollary. If f is an entire function that is not a polynomial then f
assumes every complex number, with one exception, an infinite number of
times.

Proof. Consider the function g(z)=f(1/z). Since f is not a polynomial, g
has an essential singularity at z=0 (Exercise V.1.13). The result now
follows from the Great Picard Theorem. W

Notice that Corollary 4.4 is an improvement of the Little Picard Theorem.

Exercises

I. Let f be analytic in G= B(0; R)— {0} and discuss all possible values of
the integral

H f@
. ) Z
271 | f(z)—a
Y
where y is the circle 2] r < R and a is any complex number, If it is
assumed that this integral takes on certain values for certain numbers .
does this imply anything about the nature of the singularity at = 0?

2. Show that «f /18 o onc-one entire function then f(s)y=us + b for some
constants w and b, 4 7 O,



Appendix A

Calculus for Complex Valued Functions
on an Interval

In this Appendix we would like to indicate a few results for functions
defined on an interval, but whose values are in C rather than R. If £ [a, b]
— C is a given function then one can easily study its calculus type properties
by considering the real valued functions Re f and Im f. For example, the
fact that for a complex number z = x+iy

max (x|, [y]) < |z = Vx*+p* < 2max (x], [y),

easily allows us to show that fis continuous iff Re fand Im f are continuous.
However we sometimes wish to have a property defined and explored directly
in terms of f without resorting to the real and imaginary parts of f. This is
the case with the derivative of f.

A.1 Defiition. A function f: {a, b] > C is differentiable at a point x in (a, b)
if the limit
o SO+ f(3)

h—0 h

exists and is finite. The value of this limit is denoted by f’(x). For the points
x = a or b we modify this definition by taking right or left sided limits. If f
is differentiable at each point of [a, b] then we say that f is a differentiable
Sfunction and we obtain a new function f’: [a, b] — C which is called the
derivative of f.

The next Proposition has a trivial proof which we leave to the reader.

A.2 Proposition. A function f: [a, b] — C is differentiable iff Re f and Im f are
differentiable. Also, f'(x) = (Re f)'(x)+i(Im f)'(x) for all x in {a, b].

Of course it makes no sense to talk of the derivative of a complex valued
function being positive; accordingly, the geometrical significance of the
derivative of a real valued function has no analogue for complex valued
functions. However the reader is invited to play a game by assuming that
Re fand Im f have positive or negative derivatives, and then interpret these
conditions for f.

One fact remains true for derivatives and this is the consequence of a
vanishing derivative.

A.3 Proposition. If a function f: [a, b] - > C is differentiable and {'(x) = O for
all x then fis a constant.

303
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Proof. If f'(x) = 0 for all x then (Re f)'(x) = (Im f)'(x) = 0 for all x. It
follows that Re f and Im f are constant and, hence, so is f.

One important theorem about the derivative of a real valued function
which is not true for complex valued functions is the Mean Value Theorem.
In fact, if f(x) = x*+ix? it is easy to show that

SB)=fl@) = f'(c) (b—a)

for some point ¢ in [a,b] only when a=b5.

One of the principal applications of the Mean Value Theorem for
derivatives is the proof of the Chain Rule. In ligi,: of the discussion in the
preceding paragraph one might well doubt the validity of the Chain Rule
for complex valued functions. The Chain Rule tells us how to calculate the
derivative of the composition of two differentiable functions; this leads to
two different situations. First suppose that f:{a,b]>C is differentiable
and let g:[c,d]—[a,b] also be differentiable. Then f(g(#))=Ref(g(#))+
iImf(g(t)); from here the Chain Rule follows by applying the Chain Rule
from Calculus. In the second case the result still holds. Let G be an open
subset of C such that f({a,b]) =G and suppose #:G—C is analytic. We
wish to show that A< f is differentiable and calculate (h°f)". Since the proof
of this Chain Rule follows the line of argument used to prove the Chain
Rule for the composition of two analytic functions (Proposition I11.2.4) we
will not repeat it here. We summarize this discusston in the following.

A.4 Proposition. Let f: {a, b] — C be a differentiable function.

(@) If g: [c, d)—la, b] is differentiable then fo g is differentiable and
(f=8)'(0) = f" (&g’ ().

(b) If G is an open subset of C containing f([a, b)) and h: G — C is an
analytic function then h o f is differentiable and (h o f)'(x) = h'(f(x))f'(x).

To discuss integral calculus for complex valued functions we adopt a
somewhat different approach. We define the integral in terms of the real and
imaginary parts of the function.

A.S Definition. If - [a, b] — C is a continuous function, we define the integral
of f over [a, b] by

fb f(x)dx = bee fOo)dx+i fb Im f(x) dx.

If the reader wishes to see a direct development of the integral he need
only work through Section IV. 2 of the text with 4(f) = ¢ for all t. However,
this hardly seems worthwhile.

Besides the additivity of the integral the only result which interests us is
the Fundamental Theorem of Calculus.

Recall that if F: [a, b]->C is a function and /' = F’' then Fis called a
primitive of f.
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A.6 Fundamental Theorem of Calculus. A continuous function f: [a, b] - C
has a primitive and any two primitives differ by a constant. If F is any primitive

of f then
[ fydx = F(b)—- F(a)

Proof. If g and h are primitives of Re fand Im fthen F = g+ ik is a primitive
of f. The result now easily follows.,
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Suggestions for Further Study
and Bibliographical Notes

GENERAL

The theory of analytic functions of one complex variable is a vast one.
The books by Ahlfors [1], Caratheodory [9], Fuchs [17], Heins [24], Hille
[26], Rudin [41], Saks and Zygmund [42], Sansone and Gerretsen [43], and
Veech [46] treat some topics not covered in this book. In addition they
contain material which further develops some of the topics discussed here.
We have not touched upon the theory of functions of several complex
variables. The book by Narasimhan [37] contains an elementary introduc-
tion to functions of several complex variables. Also Cartan [10] contains an
introduction to the subject. The book by Whittaker and Watson [47]
contains some very classical analysis and several bibliographical com-
ments. Finally the two volume work by Polya and Szegd [39] should be
looked at by every student. These books contain problems on analysis with
the solutions in the back.

CHAPTER 111

§1. A more thorough treatment of power series and infinite series in
general can be seen in the book by Knopp [28].

§2. There are several ways to define an analytic function. Some books
(for example, Ahlfors [1]) define a function to be analytic if it has a
derivative at every point in an open subset of the plane. Other books (for
example, Cartan [10]) define a function to be analytic in an open subset of
the plane if at every point of this open set the function has a power series
expansion. This latter approach has one advantage in that it is the
standard way of defining a function to be analytic in several variables.

In many ways the study of analytic function theory can be considered
as the study of the logarithm function. This will become more evident in
the remainder of the book.

§3. More information concerning Mdbius transformations can be ob-
tained from the book by Caratheodory [9].

CHAPTER 1V

§3. See the paper by Burdick and Lesley [8] for more on uniqueness
theorems.

Kiiy)
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§4 and §5. Cauchy’s Theorem first appeared in the treatise [11]. How-
ever Cauchy’s original statement was far different from the one that
appears in this book. Cauchy proved his theorem under the assumption
that the function f is differentiable and that the derivative is continuous on
and inside a simple closed smooth curve. Goursat [20, 21] removed the
assumption that f” is continuous but retained the assumption that the curve
over which the integral is to be taken is a simple closed smooth curve.
Pringsheim [40] introduced the method of proof that is used by many
today. He first proved the theorem for triangles (the method used to prove
Goursat’s Theorem in §8) and then approximated the contours by poly-
gons. The role of the winding number in Cauchy’s theorem and the
extension to a system of curves such that the sum of the winding numbers
with respect to every point outside of the region of analyticity is zero,
seems to have first been observed by Artin [4]. The proof of Theorem
IV.54 is due to Dixon [13].

CHAPTERYV

For more examples of the use of residues to calculate integrals see the
books by Lindelof [31] and Mitrinovic [35]. An interesting paper is the one
by Boas and Friedman [7].

§3. The reference for Glicksberg’s statement of Rouché’s Theorem is
[18].

CHAPTER VI

The original paper of Phragmen and Lindelof [38] is still worth reading.

CHAPTER VII

§1. Much of the material in this section can be done in a more general
setting. See for example the books by Kelley [27] and Dungundi [15].

§2. Montel’s book [36] on normal families is well worth reading. In this
treatise he explores several applications of the theory of normal families to
problems in complex analysis.

§4. There is a wealth of material on conformed mappings. Caratheodory
[9] has some additional information. Also the books by Bergman [5],
Goluzin [19], and Sansone and Gerretsen, vol. II [43] have extensive
treatments. It is also possible to use Hilbert space techniques to construct
conformal maps. See Bergman [5] and the second volume of Hille [26)].

§7. For more information on the gamma function look at the book of
Artin [3]. Also the paper [30] contains more information about the gamma
function. An interesting survey article is one by Davis [12].

§8. The book by Edwards [16] gives a complete exposition of the
Reimann zeta hypothesis from an historical point of view. This book
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examines Riemann’s original paper point by point and fully explicates his
results. There is a result of Beurling (see the book by Donoghue [14]) that
gives an equivalent formulation of the Riemann zeta hypothesis in terms of
functional analysis.

CHAPTER VIII

The reference to Grabiner’s treatment of Runge’s Theorem is [22].
There are several other proofs of Runge’s Theorem. One proof is by “pole
pushing”; this was used in the earlier edition of this book and also appears
in [42]. A proof using functional analysis appears in Rudin’s book [41].

CHAPTER IX

§3. An interesting paper on the monodromy theorem is [45].
§6. The book by Springer [44] gives a readable introduction to the
theory of Riemann surfaces. A more advanced treatment is [2].

§7. An excellent treatment of covering spaces can be found in Massey
[33].

CHAPTER X

Further results on harmonic functions can be found in Helms [25]. This
area of harmonic functions has been extended to functions of more than
two variables. In addition the Dirichlet problem can be formulated and
solved in this more general setting.

CHAPTER X1

The theory of entire functions is one of the largest branches of analytic
function theory. The book by Boas [6] is a standard reference.

CHAPTER XII

The book by Hayman [23] contains many generalizations of the theo-
rems presented in this chapter. Also the paper by MacGregor [32] contains
many applications and additional results. This paper also contains an
interesting bibliogr}:phy. ,

There are essentially two ways of proving Picard’s Theorem. The
clementary approach used in this chapter is based on the treatment found
in Landaw’s book [29). The other treatment uses the modular function and
can be found in 1) or |46



[1] L. V. AHLFORS, Complex Analysis, McGraw-Hill Book Co. (1966).
[2] L. V. AHLFORs and L. SARIO, Riemann Surfaces, Princeton University Press (1960).
[3] E. ARTIN, The Gamma Function, Holt, Reinhart, and Winston (1964).
[4] E. ARTIN, Collected Papers, Addison-Wesley Publishing Co. (1965).
[5] S. BERGMAN, The Kernel Function and Conformal Mapping, American Mathematical
Society (1970).
[6] R. P. Boas, Entire Functions, Academic Press (1954).
[7]1 R. P. Boas and E. FRIEDMAN, A simplification of certain contour integrals, Amer. Math.
Monthly, 84 (1977), 467-468.
[8] D. Burpick AND F. D. LESLEY, Some uniqueness theorems for analytic functions, Amer.
Math. Monthly, 82 (1975), 152-155.
[9] C. CARATHEODORY, Theory of Functions (2 vols.), Chelsea Publishing Co. (1964).
[10] H. CARTAN, Elementary Theory of Analytic Functions of One or Several Complex Vari-
ables, Addison-Wesley Publishing Co. (1963).
[11] A. CaucHY, Mémoire sur les Integrales Definies entre des Limites Imaginaires, Bure Freres
(1825).
[12] PuiLiP J. DAvis, Leonhard Euler’s Integral: A historical profile of the gamma function,
Amer. Math. Monthly 66 (1959), 849-869.
[13] Joun D. DIXON, A brief proof of Cauchy’s integral theorem, Proc. Amer. Math. Soc., 29
(1971), 625-626.
[14] W. F. DONOGHUE, Distributions and Fourier Transforms, Academic Press (1969).
[15] J. DuGunDI, Topology, Allyn and Bacon (1966).
[16] H. M. EDWARDS, Riemann’s Zeta Function, Academic Press (1974).
[17] W. H. J. FucHs, Topics in the Theory of Functions of One Complex Variable, D. Van
Nostrand Co. (1967).
[18] 1. GLICKSBERG, A remark on Rouche’s theorem, Amer. Math. Monthly, 83 (1976), 186.
[19] G. M. GoLuzIN, Geometric Theory of Functions of a Complex Variable, American
Mathematical Society (1969).
[20] E. GOURSAT, Démonstration du Theoreme de Cauchy, Acta Math., 4 (1884), 197-200.
[21] E. GOURSAT, Sur la Définition Genéral des Fonctions Analytiques d’apres Cauchy, Trans.
Amer. Math. Soc., 1 (1900), 14-16.
[22] S. GRABINER, A short proof of Runge’s theorem, Amer. Math. Monthly, 83 (1976),
807-808.
[23] W. K. HAYMAN, Meromorphic Functions, Oxford at the Clarendon Press (1964).
[24] M. HEINs, Selected Topics in the Classical Theory of Functions of a Complex Variable,
Holt, Reinhart, and Winston (1962).
[25] L. L. HELMS, Introduction to Potential Theory, Wiley-Interscience (1969).
[26] E. HILLE, Analytic Function Theory (2 vols.), Ginn and Co. (1959).
[27] J. L. KELLEY, General Topology, Springer-Verlag (1975).
[28] K. KNoPP, Infinite sequences and series, Dover Publications (1956).
[29] E. LaNDAU, Darstellung und Begrundung einiger neuerer Ergebnisse der Funktionentheorie,
Springer-Verlag (1929).
[30] R. LEIPNIK AND R. OBERG, Subvex functions and Bohr’s uniqueness theorem, Amer. Math.
Monthly, 74 (1967) 1093-1094.
[31] E. LINDELOF, Le Calcul des Résidues et ses Applications a la theorie des Fonctions, Chelsea
Publishing Co. (1947).
[32] T. H. MACGREGOR, Geometric Problems in Complex Analysis, Amer. Math. Monthly 79
(1972), 447-468.
[33] W. MaSsSEY, Algebraic Topology: An Introduction, Springer-Verlag (1977).
[34] CHARLES A. McCARTHY, The Cayley-Hamilton Theorem, Amer. Math. Monthly 82
(1974), 390-391.
[35] D. S. MitriNovIC, Calculus of Residues, P. Noordhoff (1966).
[36] P. MONTEL, Lecons sur les series de polynomes, Gauthier-Villars (1910).
[37] R. NARASIMHAN, Several Complex Variables, The University of Chicago Press (1971).
[38] E. PHRAGMEN AN1y E. LINDELOF, Sur une extension d'un principe classique de 'analyse et
sur quelques proprietés des fonctions monogeues dans le voisinage d'un point singulier,
Acta Math. 31 (1908), 381 406,

v

i



312 References

[39] G. PoLYa AND G. SZEGO, Problems and Theorems in Analysis (2 vols.), Springer-Verlag
(vol. 1, 1972; vol. 2, 1976).

[40] A. PRINGSHEM, Uber den Goursat’schen Beweis des Cauchy’schen Integralsatzes, Trans.
Amer. Math. Soc., 2 (1901), 413421,

[41] W. RUDIN, Real and Complex Analysis, McGraw-Hill Book Co. (1966).

[42] S. SAKS AND A. ZYGMUND, Analytic Functions, Monografie Matematyczne (1952). )

[43] G. SaNsONE and J. GERRETSEN, Lectures on the Theory of Functions of a Complex Variable
(2 vols.), P. Noordhoff (vol. 1, 1960; vol. 2, 1969).

[44] G. SPRINGER, Introduction to Riemann Surfaces, Addison-Wesley Publishing Co. (1957).

[45] DAviD STYER and C. D. MINDA, The use of the monodromy theorem, Amer. Math.
Monthly, 81 (1974), 639-642.

[46] W. A. VEECH, A Second Course in Complex Analysis, W. A. Benjamin, In.c. (1967). )

[47] E. WHITTAKER and G. N. WATSON, 4 Course of Modern Analysis, Cambridge University
Press (1962).

INDEX
Abel’s Theorem 74 Cayley-Hamilton Theorem 87
absolute value 2 . Chain of disks 216
absolutely convergent product 166 chain rule 34
absolutely convergent series 30, 106 Change of parameter 64
analytic continuation along a path 214 closed ball 11
— along a chain of disks 216 closed curve 66
— of a germ 215 closed map 99
analytic function 34, 236 closed set 12, 222
analytic manifold 234 closure 13
analytic structure 234 compact 20, 224
analytic surface 234 complete analytic function 215, 216
angle between two paths 45 — of local inverses 239
arc 229 complete metric space 18
arcwise connected 230 component 16
argument 4 conformal mapping 46
argument principle 123 conformally equivalent 160
Arzela—Ascoli Theorem 148 conjugate 2

connected 14, 224

barrier 269 continuous function 24, 224
base space 228, 232 convergent sequence 18

convergent series 30, 106
convex function 134
convex set 89, 134

Bernoulli numbers 76
Bessel function 122
beta function 186

Blaschke product 173 coordinate patch 234
Bloch’s constant 295 cover 20

Bloch’s Theorem 293 covering space 245
Bohr—Mollerup Theorem 179 critical strip 193
boundary 13 cross ratio 48

bounded function 12 curve 64

branch of the logarithm 39, 40
DeMoivre’s Formula 5

Cantor’s Theorem 19 dense 13

Caratheodory’s inequality 133 diameter of a set 19

Casorati—Weierstrass Theorem 109, d?ffe.r entiable function 33
111 dilation 47, 56

Dini’s Theorem 150

Dirichlet problem 252, 269

Dirichlet region 269

distance between a point and a set 25
distance between two sets 27
distance function 11

Cauchy’s estimate 73

Cauchy’s Integral Formula 84

Cauchy—Riemann equations 41

Cauchy sequence 18

Cauchy’s Theorem

— first version 85

-— second version 89 )

- third version 90 elementary factor 168
fourth version 94 empty set 12 .



314

entire function 77
equicontinuous 148
equivalence of paths 64
essential singularity 105, 111
Euler’s constant 75, 177, 185
Euler’s Theorem 193
exponent of convergence 286
exponential function 32
exponential series 32
extended boundary 129
extended plane 8

FEP homotopic 93

fip. 21

fiber 228

final point 229

finite genus 283

finite intersection property 21

finite order 285

finite rank 282

finitely generated ideal 208

fixed ideal 209

free ideal 209

function element 214

function of bounded variation 58

functional equation of the gamma
function 178

of the zero function 192

fundamental set 245

Fundamental Theorem of Algebra 77,
100

gamma function 176
Gaussian psi function 186
Gauss’s Formula 178

genus 283

geometric series 30

germ 214

Goursat’s Theorem 100
Great Picard Theorem 300
greatest common divisor 174
Green’s function 275

Hadamard’s Factorization Theorem
289

Hadamard’s Three Circles Theorem
137

Hardy's Theorem 138

harmonic conjugate 42, 252

Index

harmonic function 41, 252
Harnack’s Inequality 260
Harnack’s Theorem 261, 268
Hausdorff space 224
Heine—Borel Theorem 23
holomorphic function 126, 151
homeomorphism 163, 202
homologous to zero 95
homomorphism 6

homotopic closed curves 88
homotopic to zero 89
Hurwitz’s Theorem 152

ideal 174

ideal generated by . 208
imaginary part 2

Independence of Path Theorem 93
index 81

infinite order 285

infinite product 164

infinite rank 282

initial point 229

integration around a branch point 119
interior 13

Intermediate Value Theorem 27
inversion 47

isolated singularity 103
isomorphism 238

Jensen’s Formula 280
Jordan Curve Theorem 213

Landau’s Constant 295
Laplace’s Equation 252

Laurent Seties Development 107
Lebesgue’s Covering Lemma 21
left side of a circle 53

Leibniz’s Rule 68, 73

lifting 246

limit inferior of a function 129
— of a sequence 30

limit point 18, 222

limit superior of a function 129
— of a sequence 30

line integral 63

linear fractional transformation 47
Liouville's Theorem 77, 123, 238
Lipschitz function 25

Little Picard Theorem 297

Index

locally bounded 153

locally arcwise connected 230
locally Lipschitz 154
logarithmically convex function 135

MVP 253, 260

maximal ideal 174

Maximum Modulus Theorem,

— first version 79, 128, 238

— second version 128

— third version 129

Maximum Principle for harmonic
functions

— first version 253

— second version 254

— third version 264

— fourth version 264

mean value property 253, 260

Mean Value Theorem 253

meromorphic function 123

metric space 11

metrisable space 223

Minimum Principle 129, 255

Mittag—Leffler’s Theorem 205

Mobius transformation 47

Monodromy Theorem 219, 221, 247

Montel—Carathedory Theorem 300

Montel’s Theorem 153

Morera’s theorem 86

multiplicity of a zero 76

neighborhood system 226
normal set of functions 146
normal subgroup 57

open ball 11

open cover 20

open map 99

Open Mapping Theorem 99, 238
open set, 12, 222

order 285

orientation 52

Orientation Principle 53

parallelogram law 3

partial fractions 106 /
path 45, 229

pathwise connected 230

315

periodic function 38

Perron family 266

Perron function 268
Phragmen—Lindelof Theorem 138
Picard’s Great Theorem 300
Picard’s Little Theorem 297
Poisson—Jensen Formula 281
Poisson Kernel 256

pole 105, 111

polygon 15

polynomially convex hull 200
power series 30

prime ideal 174

primitive 65, 94

principal branch of the loagrithm 40
principal ideal 208

projection map 228

proper ideal 174

properly covered 245

punctured disk 103

radius of convergence 31

rank 282

real part 2

rectifiable path 62

region 40

regular function 151

relative topology 225
relatively prime 208
removable singularity 103, 111
residue 112

Residue Theorem.112
Riemann’s Functional Equation 192
Riemann Hypothesis 193
Riemann Mapping Theorem 160, 277
Riemann Surface 232
Riemann Zeta Function 187
right side of a circle 53

roots of unity 5

rotation 47

Rouché’s Theorem 125
Runge’s Theorem 198

Schottky’s Theorem 298

Schwarz Reflection Principle 211, 256
Schwarz’s Lemma 130

sequentially compact 21

sheaf of germs 228

simple group 57



316

simple root 98

simply connected 93, 202
singular part 105
singularity at infinity 111
stalk 228

standard form 283

star shaped set 89
stereographic projection 9
subharmonic function 264
superharmonic function 264
symmetric points 50
Symmetry Principle 52

terminal point 229

topological space 221

topology induced by a neighborhood
system 227

total boundedness 22

total variation 58

trace of a path 62, 229

translation 47

Index

triangle inequality 3, 11
triangular path 86
trivial zeros 193

uniform convergence 28, 29
uniformly continuous 25

uniformly convergent integral 154
unrestricted analytic continuation 219

Vitali’s Theorem 154

Wallis’s Formula 176

Weierstrass Approximation Theorem
263

Weierstrass Factorization Theorem
170, 207

Weierstrass M-test 29

Weierstrass Pe Function 207

Weierstrass Zeta Function 207

winding number 81, 250

C,R

z, |z
argz

cisd

Co

O

B(S)

q-

intA

a4

Q

(z,w]

lim f(x)=w
d(x,A)
d(A4,B)
f=u~—limf,
liminfa,
limsupa,
GLy(C)
SLy(C)
SU,

o(y; P)
V(y)
fafay
br

Iy Sfldz|
n(y;a)

LIST OF SYMBOLS

Yo ~ v 88
y~0 89
=0 95
Res(f; a) 112
lim inf /(z) 129
lim sgp (@) 129
C(G,Q) 142
o(f.8) 143
H(G) 151
M(G) 155
»( 158
2(H, Z(2) 174
F(A) 174
>, 1 175
R 201
@ (2 207
G* 210, 213
(/,G) 214
(fl. 214
Ty 225
N(f,D) 228
N @i 228
U,¢) 234
X, ®) 234
Har(G) 261
2 (£.6) 266



Graduate Texts in Mathematics

Soft and hard cover editions are available for each volume up to vol. 14, hard cover
only from Vol. 15

12
13

14

15

16
17
18
19
20
21
22

23
24

TAKEUTI/ZARING. Introduction to Axiomatic Set Theory.

vii, 250 pages. 1971.

OXTOBY. Measure and Category. viii, 95 pages. 1971. (Hard cover edition only.)
ScHAEFFER. Topological Vector Spaces. xi, 294 pages. 1971.
HiLtoN/STAMMBACH. A Course in Homological Algebra.

ix, 338 pages. 1971. (Hard cover edition only)

MacLANE. Categories for the Working Mathematician.

ix, 262 pages. 1972.

HuGHES/PIPER. Projective Planes. xii, 291 pages. 1973.

SERRE. A course in Arithmetic. x. 115 pages. 1973. (Hard cover edition only.)
TAKEUTI/ZARING. Axiomatic Set Theory. viii, 238 pages. 1973.
HUMPHREYS. Introduction to Lie Algebras and Representation Theory. 2nd
printing, revised. xiv, 171 pages. 1978. (Hard cover edition only.)

CoHEN. A Course in Simple Homotopy Theory. xii, 114 pages. 1973.
Conway. Functions of One Complex Variable. 2nd ed. approx. 330 pages. 1978.
(Hard cover edition only.)

BEeaLs. Advanced Mathematical Analysis. xi, 230 pages. 1973.
ANDERSON/FULLER. Rings and Categories of Modules.

ix, 339 pages. 1974.

GOLUBITSKY/GUILLEMIN. Stable Mappings and Their Singularities.
X, 211 pages. 1974.

BERBERIAN. Lectures in Functional Analysis and Operator Theory.
X, 356 pages. 1974.

WINTER. The Structure of Fields. xiii, 205 pages. 1974.

RosENBLATT. Random Processes. 2nd ed. x, 228 pages. 1974.
HaLmos. Measure Theory. xi, 304 pages. 1974.

Hacrmos. A Hilbert Space Problem Book. xvii, 365 pages. 1974.
HuseMoLLER. Fibre Bundles. 2nd ed. xvi, 344 pages. 1975.
HuMPHREYS. Linear Algebraic Groups. xiv. 272 pages. 1975.
BarNES/Mack. An Algebraic Introduction to Mathematical Logic.
x, 137 pages. 1975,

GREUB. Lincar Algebra. 4th ed. xvii, 451 pages. 1975.

Hotwmes. Geometric Functional Analysis and Its Applications.

X, 246 pages. 1975,

HEWITI/STROMBLRG. Real and Abstract Analysis. 4th printing. viii. 476
pages 1978

Manrs. Algebraic Theories, x, 356 pages. 1976,

Krrrry, General Topology. viv, 298 pages. 1975

Zarisk1 Samtn 1 Commutative Algebra i, v, 129 puges. 1975,



29
30

31

32

33
34
35

36
37
38
39
40

41

42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58

59
60

61

ZARIsKl/SAMUEL. Commutative Algebra I1. x, 414 pages. 1976.
JacoBson. Lectures in Abstract Alegbra I: Basic Concepts.

Xii, 205 pages. 1976.

JacoBson. Lectures in Abstract Algebra II: Linear Algebra.

xii, 280 pages. 1975.

JacoBsoN. Lectures in Abstract Algebra III: Theory of Fields and
Galois Theory. ix, 324 pages. 1976.

HirscH. Differential Topology. x, 222 pages. 1976.

SpiTzEeR. Principles of Random Walk. 2nd ed. xiii, 408 pages. 1976.
WERMER. Banach Algebras and Several Complex Variables. 2nd ed.
Xiv, 162 pages. 1976.

KeLLEY/NaMIokA. Linear Topological Spaces. xv, 256 pages. 1976.
MonNk. Mathematical Logic. x, 531 pages. 1976.

GRAUERT/FRriTZSCHE. Several Complex Variables. viii, 207 pages. 1976
ARVESON. An Invitation to C*-Algebras. x, 106 pages. 1976.
KeMENY/SNELL/KNapp. Denumerable Markov Chains. 2nd ed.

xii, 484 pages. 1976.

APposTOL. Modular Functions and Dirichlet Series in Number Theory.
X, 198 pages. 1976.

SERRE. Linear Representations of Finite Groups. 176 pages. 1977.
GiLLMAN/JERISON. Rings of Continuous Functions. xiii, 300 pages. 1976.
KEenNDIG. Elementary Algebraic Geometry. viii, 309 pages. 1977.

Lotve. Probability Theory. 4th ed. Vol. 1. xvii, 425 pages. 1977.

LOEVE. Probability Theory. 4th ed. Yol. 2. xvi, 413 pages. 1978.

Moise. Geometric Topology in Dimensions 2 and 3. x, 262 pages. 1977.
SacHs/Wu. General Relativity for Mathematicians. xii, 291 pages. 1977.
GRUENBERG/ WEIR. Linear Geometry. 2nd ed. x, 198 pages. 1977.
Epwarps. Fermat’s Last Theorem. xv, 410 pages. 1977.

KLINGENBERG. A Course in Differential Geometry. xii, 192 pages. 1978.
HaRrTSHORNE. Algebraic Geometry. xvi, 496 pages. 1977.

MaNIN. A Course in Mathematical Logic. xiii, 286 pages. 1977.
GRAVER/WATKINS. Combinatorics with Emphasis on the Theory of
Graphs. xv, 368 pages. 1977.

BrowN/PEARCY. Introduction to Operator Theory. Vol. 1: Elements
of Functional Analysis. xiv, 474 pages. 1977.

Massey. Algebraic Topology: An Introduction. xxi, 261 pages. 1977.
CrowkeLL/FoxX. Introduction to Knot Theory. x, 182 pages. 1977.
KogsLiTZ. p-adic Numbers, p-adic Analysis, and Zeta-Functions.

X, 122 pages. 1977.

Lana. Cyclotomic Fields. xi, 250 pages. 1978.

ARNOLD. Mathematical Methods in Classical Mechanics.

approx. 480 pages. 1978,

WHITEHEAD. Elements of Homotopy Theory. approx S00 pages 1978




TR L OE IR
#,FEF BT K




