
Joseph J. Rotman

An Introduction
to Algebraic
Topology

Springer





Springer
New York
Berlin
Heidelberg
Barcelona
Budapest
Hong Kong
London

Milan

Paris
Singapore
Tokyo

Graduate Texts in Mathematics

Editorial Board
S. Axier F.W. Gehring K.A. Ribet



Graduate Texts in Mathematics

1 TAKEUTI/ZAPJNO. Introduction to

Axiomatic Set Theory. 2nd ed
2 OxroBv. Measure and Category. 2nd ed.
3 SCiMErER. Topological Vector Spaces.
4 HILTON/STAMMEACH. A Course in

1-lomological Algebra, 2nd ed.
5 MAC LANE. Categories for the Working

Mathematician 2nd ed
6 HuoirasfPu'wt. Projective Planes.

7 A Course in Arithmetic.
8 Axiomatic Set Theory.
9 HUMPHREYS. Introduction to Lie Algebras

and Representation Theory.
10 A Course in Simple Homotopy

Theory.
11 CONWAY. Functions of One Complex

Variable I. 2nd ed.
12 BRALs. Advanced Mathematical Analysis.
13 Rings and Categories

of Modules. 2nd ed.
14 GOLUBrISKY/GUILLEMIN. Stable Mappings

and Their Singularities.
15 BERBERIAN. Lectures in Functional

Analysis and Operator Theory.
16 WwrrER. The Structure of Fields.
17 ROSENBLATT. Random Processes. 2nd ed.

18 Measure Theory.
19 HAI.MOS. A HiThert Space Problem Book.

2nd ed.
20 HUSEM0LLER. Fibre Bundles. 3rd ed.

21 Linear Algebraic Groups.
22 BARNES/MACK. An Algebraic Introduction

to Mathematical Logic.
23 GREUB. Linear Algebra. 4th ed.
24 HoLMES. Geometric Functional Analysis

and Its Applications.
25 Real and Abstract

Analysis.
26 MANES. Algebraic Theories.
27 General Topology.
28 ZARISIU/SAMuEL. Commutative Algebra.

Vol.1.
29 Commutative Algebra.

Vol.!!.
30 JACOBSON. Lectures in Abstract Algebra

1. Basic Concepts.
31 JACoBsoN. Lectures in Abstract Algebra

II. Linear Algebra.
32 JACOBSON Lectures in Abstract Algebra

Ill. Theory of Fields and Galois Theory.

33 Hutsct. Differential Topology.
34 Principles of Random Walk.

2nd ed.
35 ALEXAND WERMER. Several Complex

Variables and Banach Algebras. 3rd ed.
36 KELLEY/NAMIOKA ci al. Linear

Topological Spaces.
37 Mathematical Logic.
38 Several Complex

Variables.
39 ARVESON. An Invitation to C'-Algcbras.
40 KEMENY/SNEUJKNAPP. Dcnumcrablc

Markov Chains. 2nd ed.
41 APosroL Modular Functions and

Dinchlet Series in Number Theory.
2nd ed.

42 SERER. Linear Representations of Finite
Groups.

43 Rings of Continuous
Functions.

44 KENDIG. Elementary Algebraic Geometry.
45 LoRve. Probability Theory 1. 4th ed.
46 L0EvE. Probability Theory II. 4th ed.
47 Moiss. Geometric Topology in

Dimensions 2 and 3.
48 SACIIS/Wu. General Relativity for

Mathematicians.
49 GRIJENBERG/WEIR. Linear Geometry.

2nd ed.
50 EDWARDS. Fermat's Last Theorem.
51 KUNGENBERG A Course in Differential

Geometry.
52 HAR1SH0RNE. Algebraic Geometry.

$3 A Course in Mathematical Logic.
54 GRAVER/WATKINS. Combinatorics with

Emphasis on the Theory of Graphs.
55 BROWN/PEARCY. Introduction to Operator

Theory 1: Elements of Functional
Analysis.

56 MAssey. Algebraic Topology: An
Introduction.

57 CiiownujFox. Introduction to Knot
Theory.

58 KoBLnz. p—adic Numbers, p-adic
Analysis, and Zeta-Functions. 2nd ed.

59 LANG. Cyclotomic Fields.
60 ARNOLD. Mathematical Methods in

Classical Mechanics. 2nd ed.

continued after index



Joseph J. Rotman

An Introduction
to Algebraic Topology

With 92 Illustrations

4 Springer



Joseph 3. Rotman
Department of Mathematics
University of Illinois
Urbana, IL 61801
USA

Editorial Board

S. Axler F.W. Gchring KA. Ribet
Mathematics Department Mathematics Department Department of Mathematics
San Francisco State East Hall University of California

University University of Michigan at Berkeley
San Francisco, CA 94132 Ann Arbor, MI 48109 Berkeley, CA 94720-3840
USA USA USA

Mathematics Subject Classification (1991): 55-01

Library of Congress Cataloging-in-Publication Data
Rotman, Joseph I.,

An introduction to algebraic topology.
(Graduate texts in mathematics; 119)
Bibliography: p.
Includes index.
1. Algebraic topology. L Title. II. Series.

QA612.R69 1988 514'.2 87-37646

1988 by Springer-Verlag New York Inc.
AN rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag. 175 Fifth Avenue, New York, NY 10010.
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or
by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc. in this publication, even if
the former are not especially identified, is not to be taken as a sign that such names, as understood
by the Trade Marks and Merchandise Marks Act, may be used freely by anyone.

Typeset by Asco Trade Typesetting Ltd., Hong Kong.
Printed and bound by R. R. Donneiley & Sons, Harnsonburg. Virginia.
Printed in the United States of America.

9 8 7 6 5 4 (Fourth corrected printing, 1998)

ISBN 0-387.96678-1 Springer-Verlag New York Berlin Heidelberg
ISBN 3-540.96678-1 Springer-Verlag Berlin Heidelberg New York SPIN 10680226



To my wife Marganit
and my children Ella Rose and Daniel Adam
without whom this book would have
been completed two years earlier





Preface

There is a canard that every textbook of algebraic topology either ends with
the definition of the Klein bottle or is a personal communication to J. H. C.
Whitehead. Of course, this is false, as a glance at the books of Hilton and
Wylie, Maunder, Munkres, and Schubert reveals. Still, the canard does reflect
some truth. Too often one finds too much generality and too little attention
to details.

There are two types of obstacle for the student learning algebraic topology.
The first is the formidable array of new techniques (e.g., most students know
very little homological algebra); the second obstacle is that the basic defini-
tions have been so abstracted that their geometric or analytic origins have
been obscured. I have tried to overcome these barriers. In the first instance,
new definitions are introduced only when needed (e.g., homology with coefli-
cients and cohomology are deferred until after the Eilenberg—Steenrod axioms
have been verified for the three homology theories we treat—singular, sim-
plicial, and cellular). Moreover, many exercises are given to help the reader
assimilate material. In the second instance, important definitions are often
accompanied by an informal discussion describing their origins (e.g., winding
numbers are discussed before computing ir1(S'), Green's theorem occurs
before defining homology, and differential forms appear before introducing
cohomology).

We assume that the reader has had a first course in point-set topology, but
we do discuss quotient spaces, path connectedness, and function spaces. We
assume that the reader is familiar with groups and rings, but we do discuss
free abelian groups, free groups, exact sequences, tensor products (always over
Z), categories, and functors.

I am an algebraist with an interest in topology. The basic outline of this
book corresponds to the syllabus of a first-year's course in algebraic topology
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designed by geometers and topologists at the University of illinois, Urbana;
other expert advice came (indirectly) from my teachers, E. H. Spanier and S.
Mac Lane, and from J. F. Adams's Algebraic Topology: A Student's Guide. This
latter book is strongly recommended to the reader who, having finished this
book, wants direction for further study.

I am indebted to the many authors of books on algebraic topology, with
a special bow to Spanier's now classic text. My colleagues in Urbana, es-
pecially Ph. Tondeur, H. Osborn, and R. L. Bishop, listened and explained.
M.-E. Hamstrom took a particular interest in this book; she read almost the
entire manuscript and made many wise comments and suggestions that have
improved the text; my warmest thanks to her. Finally, I thank Mrs. Dee
Wrather for a superb job of typing and Springer-Verlag for its patience.

Joseph J. Rotman

Addendum to Second Corrected Printing

Though I did read the original galleys carefully, there were many errors that
eluded me. I thank all who apprised me of mistakes in the first printing,
especially David Carlton, Monica Nicolau., Howard Osborn, Rick Rarick,
and Lewis Stiller.

November 1992 Joseph J. Rotman

Addendum to Fourth Corrected Printing

Even though many errors in the first printing were corrected in the second
printing, some were unnoticed by me. I thank Bernhard J. Eisner and Martin
Meier for apprising me of errors that persisted into the the second and third
printings. I have corrected these errors, and the book is surely more readable
because of their kind efforts.

April, 1998 Joseph Rotman



To the Reader

Doing exercises is an essential part of learning mathematics, and the serious
reader of this book should attempt to solve all the exercises as they arise. An
asterisk indicates only that an exercise is cited elsewhere in the text, sometimes
in a proof (those exercises used in proofs, however, are always routine).

I have never found references of the form I .2.1.1 convenient (after all, one
decimal point suffices for the usual description of real numbers). Thus, Theorem
7.28 here means the 28th theorem in Chapter 7.
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CHAPTER 0

Introduction

One expects algebraic topology to be a mixture of algebra and topology, and
that is exactly what it is. The fundamental idea is to convert problems about
topological spaces and continuous functions into problems about algebraic
objects (e.g., groups, rings, vector spaces) and their homomorphisms; the
method may succeed when the algebraic problem is easier than the original
one. Before giving the appropriate setting, we illustrate how the method
works.

Notation
Let us first introduce notation for some standard spaces that is used through-
out the book.

Z = integers (positive, negative, and zero).
Q = rational numbers.
C = complex numbers.
I = [0, 1), the (closed) unit interval.
R = real numbers.

W is called real a-space or euclidean space (of course, W is the cartesian
product of n copies of R). Also, R2 is homeomorphic to C; in symbols, R2 C.
If x = (x1, ..., W, then its norm is defined by = (when
n I, then lxii = lxi, the absolute value of x). We regard R' as the subspace
of RA+I consisting of all (n + 1)-tuples having last coordinate zero.

= l}.
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is called the (of radius I and center the origin). Observe that
5' the circle S1 R2); note also that the 0-sphere S° consists of the
two points {l, —1) and hence is a discrete two-point space. We may regard
5' as the equator oIS'41:

5' = = {(x1, ..., x.÷2)e 511+1: = 0).

The north pole is (0, 0, ..., 0, 1) e S"; the south pole is (0, 0, .. ., 0, — 1). The

antipode ofx = (xj, ..., e 5' is the other endpoint of the diameter having
one endpoint x; thus the antipode of x is —x = (—x1, ..., —x,,.1), for the
distancefrom —xtoxis2.

D'= {xER': � 1).

D' is called the n-disk (or a-bull). Observe that S't C W; indeed S'' is
the boundary of 17' in R'.

= {(x1, x2, ..., R'4': each xj � 0 and = I).

Es' is called the standard n-simplex. Observe that A° is a point, Es' is a closed
interval, Es2 is a triangle (with interior), & is a (solid) tetrahedron, and so on.
It is obvious that Es1' 17', although the reader may not want to construct' a
homeomorphism until Exercise 211.

There is a standard homeomorphism from 51' — {north pole) to R', called
szereograpbk projection. Denote the north pole by N, and define a: 5' — (N)
-. R' to be the intersection of R' and the line joining x and N. Points on
the latter line have the form tx + (1 — t)N; hence they have coordinates

tx,, tx,.,.1 + (I — t)). The last coordinate is zero fort = (1 —

hence

a(x) = (tx1, .. .,

where t (1 — It is now routine to check that a is indeed a borneo-
morphism. Note that a(x) = x if and only if x lies on the equator

Brouwer Fixed Point Theorem

Having established notation, we now sketch a proof of the Brouwer fixed point
theorem: if f:17' -, 17' is continuous, then there exists x e 17' with 1(x) = x.
When n 1, this theorem has a simple proof. The disk D' is the closed interval
[—1, 1]; let us look at the graph off inside the squareD' x D'.

'liii an exerczee that a compact convex subset of k' containing an interior point is homcomor-
phic to 1? (convexity is defined in Chapter 1k it follows that t?, D', and P are
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(—I. (I. I)

b

(—I, —I) (I. —I)

Theorem 0.1. Every continuous f: D' —. has a fixed point.

PROOF. Lctf(—l) = aandf(1) = b. Ifeitherf(— 1) = —l orf(I) = l,weare
done.Thcrefore,wemayassumethatf(—l) = a> —land thatf(l) b < I,
as drawn. ff6 is the graph of f and A is the graph of the identity function (of
course, A is the diagonal), then we must prove that G fl A # 0. The idea is to
use a connectedness argument to show that every path in D' x D' from a to
b must cross A. Since f is continuous, G = f(x)): XE D') is connected [G
is the image of the continuous map D' —. x D' given by
Define A = ((x, 1(x)): f(x)> x) and B = {(x,f(x)): 1(x) < x}. Note that a A
and b E B, so that A 0 and B 0. If G fl A = 0. then G is the disjoint
union

G = A U B.

Finally, it is easy to see that both A and B are open in 6, and this contradicts
the connectedness of G. 0

Unfortunately, no one knows how to adapt this elementary topological
argument when n> 1; some new idea must be introduced. There is a proof
using the simplicial approximation theorem (see [Hirsch]). There are proofs
by analysis (see [Dunford and Schwartz, pp. 467—470] or [Milnor (1978)]),
the basic idea is to approximate a continuous function f: I)' —. TY' by smooth
functions g: 17' in such a way that I has a fixed point if all the g do; one
can then apply analytic techniques to smooth functions.

Here is a proof of the Brouwer fixed point theorem by algebraic topology.
We shall eventually prove that, for each n � 0, there is a homology frnctor H.
with the following properties: for each topological space X there is an abelian
group and for each continuous function f: X —, Y there is a homomor-
phism HN(X) — such that:

H.(g of) = o HR(f) (1)

whenever the composite g o I is defined;

is the identity function on HN(X), (2)
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where is the identity function on X;

for alln� 1; (3)

# 0 for all n � 1. (4)

Using these III's, we now prove the Brouwer theorem.

Definition. A subspace X of a topological space Y is a retract of Y if there is
a continuous map2 r: Y -. X with r(x) = x for all x E X; such a map r is called
a retraction.

Remarks. (1) Recall that a topological space X contained in a topological
space Y is a subopace of Y if a subset V of X is open in X if and only if
V = X fl U for some open subset U of V. Observe that this guarantees that
the inclusion I: Y is continuous, because = Xfl u is open in X
whenever U is open in V. This parallels group theory: a group H contained
in a group G is a subgroup of G if and only if the inclusion I: H c. G is a
homomorphism (this says that the group operations in H and in G coincide).

(2) One may rephrase the defmition of retract in terms of functions. If
i: X .. V is the inclusion, then a continuous map r: V —, X is a retraction if
and only if

roi=
(3) For abelian groups, one can prove that a subgroup H of G is a retract

of 6 if and only if H is a direct summand of G; that is, there is a subgroup K

Lemma 0.2. If n � 0, then is not a retract of D".

PROOF. Suppose there were a retraction r: —. Sa; then there would be a
'commutative diagram" of topological spaces and continuous maps

Da+1

(here commutative means that r o = 1, the identity function on S). Applying
Ha gives a diagram of abelian groups and homomorphisms:

H,(1)
Ha(Sa).

2We use the words map and fluscilon interchangeably.
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By property (I) of the homology functor the new diagram commutes:
o = HR(l). Since = 0, by (3), it follows that Ha(I) = 0. But
is the identity on H.(SN), by (2). This contradicts (4) because H1(S") 0.

0

Note how homology functors have converted a topological problem
into an algebraic one.

We mention that Lemma 0.2 has an elementary proof when n = 0. It
is plain that a retraction r: Y -. X is suijective. In particular, a retraction
r: —' S° would be a continuous map from [—.1, 1) onto the two-point set
{ ±1), and this contradicts the fact that a continuous image of a connected
set is connected.

Theorem 0.3 (Brouwer). 1ff: IY -. is continuous, then f has a fixed point.

Suppose thatf(x) x for all x 1Y'; the distinct points x and 1(x) thus
determine a line. Define g: D' — S"' (the boundary of as the function

assigning to x that point where the ray from f(x) to x intersects S"'. Ob-
viously, x e implies g(x) = x. The proof that g is continuous is left as an
exercise in analytic geometry. We have contradicted the lemma. 0

There is an extension of this theorem to infinite-dimensional spaces due to
Schauder (which explains why there is a proof of the Brouwer fixed point
theorem in [Dunford and Schwartz]): if D is a compact convex subset of a
Banach space, then every continuous f: D —. I) has a fixed point. The proof
involves approximating I — by a sequence of continuous functions each of
which is defined on a finite-dimensional subspace of D where Brouwer's
theorem applies.

EXERasES

0.1. Let H be a subgroup of an abelian group G. If there is a homomorphism r: G -. H
with r(x) — x for all x e H, then G — H kerr. (Hint: If ye G, then y = r(y) +
(y — r(y)).)

gtx)
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0.2. Give a proof of Brouwer's fixedpoint theorem for n = I using the proof of
Theorem 0.3 and the remark preceding it.

0.3. Assume, for n � 1, that = Z if I = 0, n, and that He(S) = 0 otherwise.
Using the technique of the proof of Lemma 0.2, prove that the equator of the
n-sphere is not a retract.

0.4. If X is a topological space homeomorphic to 17, then every continuous f: X X
has a fixed point.

0.5. Letf,g: I —, I x I be continuous; let 1(0) = (a, 0) and f(1) = (b, 1), and let g(0) =
(0, c) and g(1) = (1, d) for some a, b, c, d El. Show that f(s) = g(t) for some 5,
I E I; that is, the paths intersect. (Hint: Use Theorem 0.3 for a suitable map
I x I -. I x I.) (There is a proof in [Maehara]; this paper also shows how to
derive the Jordan curve theorem from the Brouwer theorem.)

0.6. (Perron). Let A = [au] be a real n x n matrix with au > 0 for every i, j. Prove
that A has a positive eigenvalue A; moreover, there is a corresponding eigenvector
x =(x1,x2 = > 0.(Hinz:Firstdeflne

R -. R by o(x1, x2, ..., x,) = and then define g: —, by
g(x) = Ax/a(Ax), where x e c is regarded as a column vector. Apply the
Brouwer fixed point theorem after showing that g is a well defined continuous
function.)

Categories and Functors

Having illustrated the technique, let us now give the appropriate setting for
algebraic topology.

Definition. A category consists of three ingredients: a class of objects, obj
sets of morphisms Hom(A, B), one for every ordered pair A, B e obj com-
position Hom(A, B) x Hom(B, C) —, Hom(A, C), denoted by (f, g) '—' g o f, for
every A, B, C e obj 's', satisfying the following axioms:

(1) the family of Hom(A, B)'s is pairwise disjoint;
(ii) composition is associative when defined;
(iii) for each A E obj 'P1, there exists an identity 'A Hom(A, A) satisfying

'A of = fforeveryfe Hom(B, A),allB€obj 'ó',andg = gforevery
g Hom(A, C), all C e obj

Remarks. (1) The associativity axiom stated more precisely is: if f, g, h are
morphisms with either h o (g o f) or (h o g) o f defined, then the other is
also defined and both composites are equal.

(2) We distinguish class from set: a set is a class that is small enough
to have a cardinal number. Thus, we may speak of the class of all topological
spaces, but we cannot say the set of all topological spaces. (The set theory we
accept has primitive undefined terms: class, element, and the membership
relation e. All the usual constructs (e.g., functions, subclasses, Boolean opera-
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tions, relations) are permissible except that the statement x E A is always false
whenever x is a class that is not a set.)

(3) The only restriction on Hom(A, B) is that it be a set. In particular,
Hom(A, B) = 0 is allowed, although axiom (iii) shows that Hom(A, A) 0
because it contains 14.

(4) Instead of writing f e Hom(A, B), we usually write f: A —. B.

ExAMPLE 0.1. = Sets. Here obj all sets, Hom(A, B) = {all functions
A —, B), and composition is the usual composition of functions.

This example needs some discussion. Our requirement, in the definition of
category, that Horn sets are pairwise disjoint is a reflection of our insistence
that a function f: A — B is given by its domain A, its target B, and its graph:
{all (a,f(a)): a A) c A x B. In particular, if A is a proper subset of B, we
distinguish the inclusion 1: A B from the identity 14 even though both
functions have the same domain and the same graph; i e Horn(A, B) and
14 e Hom(A, A), and so I $ 14. This distinction is essential. For example, in
the proof of Lemma 0.2, H,,(i) = 0 and 0 when A = and B =
Here are two obvious consequences of this distinction: (1) If B c B' and
f: A —. B and g: A —' B' are functions with the same graph (and visibly the
same domain), then g = iof, where I: B . B' is the inclusion. (2) One may
form the composite h o g only when target g = domain h. Others may allow
one to compose g: A .- B with h: C D when B c C; we insist that the only
composite defined here is h o i o g, where I: B -. C is the given inclusion.

Now that we have explained the fine points of the definition, we continue
our list of examples of categories.

EXAMPLE 0.2. = Top. Here obj = all topological spaces, Hom(A, B) =
(all continuous functions A —.B), and composition is usual composition.

Definition. and d be categories with obj c obj d. If A, B e obj "€,
let us denote the two possible Horn sets by Hom114A, B) and Homd(A, B).
Then is a subcategory of d if B) c Hom,,(A, B) for all A, B e
obj and if composition in is the same as composition in d; that is, the
function Hom,(A, B) x Hom5.(B, C) — C) is the restriction of the
corresponding composition with subscripts d.

EXAMPLE 0.2'. The category Top has many interesting subcategories. First, we
may restrict objects to be subspaces of euclidean spaces, or Hausdorif spaces,
or compact spaces, and so on. Second, we may restrict the maps to be differ-
entiable or analytic (assuming that these make sense for the objects being
considered).

Ex.aj,tpii 0.3. = Groups Here obj = all groups, Hom(A, B) = {all homo-
morphisms A -, B), and composition is usual composition (Horn sets are so
called because of this example).
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0.4.'e = Ab. Here obj'e = all abelian groups, and Hom(A, B) = (all
homomorphisms A -. B); Ab is a subcategory of Groups

0.5. 'e= Rings. Here obj 'e = all rings (always with a two-sided
identity element), Hom(A, B) = (all ring homomorphisms A —. B that pre-
serve identity elements), and usual composition.

EXAMPLE 0.6.'e = Top2. Here obj 'econsists of all ordered pairs (X, A), where
X is a topological space and A is a subspace of X. A morphism f: (X, A)
(Y, B) is an ordered pair (f,f'), where f: X —+ Y is continuous and ft = If'
(where I and j are inclusions),

and composition is coordinatewise (usually one is less pedantic, and one says
that a morphism is a continuous map f: X -. Y with f(A) B). Top' is called
the category of pairs (of topological spaces).

Top,. Here obj 'econsists of all ordered pairs (X, x0), where
X is a topological space and x0 is a point of X. Top, is a subcategory of Top2
(subspaces here are always one-point subspaces), and it is called the category
of pointed spaces; x0 is called the basepoint of(X, x0), and morphisms are called
pointed maps (or basepoint preserving maps). The category Sets, of pointed
sets is defined similarly.

Of course, there arc many other examples of categories, and others arise
as we proceed.

EXERCISES

0.7. Letf€Hom(A,B) bea morphism in Iffhasaleft inverse g
(geHom(B.A) and gof= lÀ) and a right inverse It (h€Hom(B,A) and
foh= l,)theng=h.

0.8. (i) Let'e be a category and let A e obj'e. Prove that Hom(A, A) has a unique
identity lÀ.

(ii) If'e' is a subcategory of 'e, and if A E obj'e', then the identity of A in
A) is the identity lÀ in

A set X is called quail-ordered (or pre-ordered) if X has a transitive and
reflexive relation �. (Of course, such a set is partially ordered if, in addition, �
is antisymmetric.) Prove that the following construction gives a category'e.
Define obj 'em X; lix, ye X and x y, define Hom(x. y) — 0; lix � y, define
Hom(x, y) to be a set with exactly one element, denoted by i; if x � y � z,
define composition by i o =
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*0.10. Let G be a monold, that is, a semigroup with I. Show that the following
construction gives a category Let obj have exactly one element, denoted
by s; define Hom(., .) = G, and define composition G x G -. G as the given
multiplication in G. (This example shows that morphisms may not be functions.)

0.11. Show that one may regard Top as a subcategory of Top2 if one identifies
a space X with the pair (X, 0).

Definition. A diagram in a category is a directed graph whose vertices are
labeled by objects of and whose directed edges are labeled by morphisms
in A commutative diagram in %' is a diagram in which, for each pair of
vertices, every two paths (composites) between them are equal as morphisms.

This terminology comes from the particular diagram

A

B

which commutes if g o f = f' o g'. Of course, we have already encountered
commutative diagrams in the proof of Lemma 0.2.

*0.12. Given a category show that the following construction gives a category .4'.
First, an object of 4' is a morphism of Next, 1ff. g E obj 9, say, f: A —. B

and g: C D, then a morphism in .4' is an ordered pair (Is, k) of morphisms in
such that the diagram

A 48

C
g

commutes. Define composition coordinatewise:

(h',k')o(h,k) =(h'oh,k' o k).

0.13. Show that Top2 is a subcategory of a suitable morphism category (as con-
structed in Exercise 0.12). (Hint: Take %' = Top, and let .4' be the corresponding
morphism category; regard a pair (X, A) as an inclusion i: A -. X.)

The next simple construction is useful.

Definition. A congruence on a category is an equivalence relation on the
class U(Aa) Hom(A, B) of all morphisms in such that:
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(I) f e Hom(A, B) and f f' implies f' E Hom(A, B);

(ii) 1 1'. g — g', and the composite g o I exists imply that

g'of'.

Theorem 0.4. Let be a category with congruence —, and let [f) denote the
equivalence class of a morphism f. Define as follows:

obj (f = obj

B) = {[f]: f E B)};

[g] ° If] = [g of].

Then is a category.

PRooF. Property (i) in the definition of congruence shows that — partitions
each set Hom?(A, B), and this implies that Hom?.(A, B) is a set; moreover,
the family of these sets is pairwise disjoint. Property (ii) in the definition of
congruence shows that composition in is well defined, and it is routine to
see that composition in is associative and that [14) is the identity morphism
onA. 0

The category %" just constructed is called a quotient category of one
usually denotes B) by [A, B].

The most important quotient category for us is the homozopy category
described in Chapter 1. Here is a lesser example. Let <W be the category of
groups and let f, f' Hom(G, H). Define f f' if there exists a e H with
f(x) = af'(x)a' for all x e G (one may say that f and f' are conjugate). It is
routine to check that is an equivalence relation on each Hom(G, H). To
see that — is a congruence, assume that I that g g', and that g of
exists. Thus f and f e Hom(G, H), g and g' e Hom(H, K), there is a H with
f(x) = for all x G, and there is b e K with g(y) = for all
ye H. It is easy to see that g(f(x)) = [g(a)b)g'(f'(x))[g(a)b]1 for all x E G,

that is, g o f g' o f'. Thus the quotient category is defined. If G and H are
groups, then (G, H) is the set of all "conjugacy classes" [f], where f: G —' H
is a homomorphism.

ExmtclsE

0.14. Let G be a group and let 'Pd' be the one-object category it defines (Exercise 0.10
applies because every group is a monoid): obj = {.}, Hom(., .) = G, and
composition is the group operation. 1(8 is a normal subgroup oIG, define x — y
to mean xy' H. Show that is a congruence on and that [s, s) = G/H
in the corresponding quotient category.

Just as topological spaces are important because they carry continuous
functions, so categories are important because they carry functors.
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Definition, lId and are categories, a functor T: d —, is a function, that is,

(i) A E obj d implies TA e obj
and
(ii) 1ff: A -. A' is a morphism in d, then TI: TA -. TA is a morphism in

such that
(iii) 1ff, g are morphisms in d for which g o I is defined, then

T(gof)=(Tg)o(Tf)

(iv) T(1A) = for every A e obj d.

Our earlier discussion of homology functors H, can now be rephrased: for
each n � 0, we shall construct a functor H,: Top Ab with = 0 and

0.8. The forgetful functor F: Top -, Sets assigns to each topological
space its underlying set and to each continuous function itself ("forgetting" its
continuity). Similarly, there are forgetful functors Groups -. Sets, Ab
Groups, Ab -. Sets, and so on.

EXAMPLE 0.9. If is a category, the identity functor J: -. is defined by
JA = A for every object A and Jf = f for every morphism I.

EXAMPLE 0.10. If M is a fixed topological space, then TN: Top —. Top is
a functor, where = X x M and, if f: X -. Y is continuous, then
TM(f): X x M —, Y x Mis defined by (x, m)i—.(f(x), m).

EXAMPLE 0.11. Fix an object A in a category Then Hom(A, ): —. Sets

is a functor assigning to each object B the set Hom(A, B) and to each mor-
phism f: B-. B' the Induced map Hom(A, f): Hom(A, B) -. Hom(A, dc.
fined by gu—'fo g. One usually denotes the induced map Hom(A, f)

Functors as just defined arc also called covariant functors to distinguish
them from contravariant functors that reverse the direction of arrows. Thus
the lunctor of Example 0.11 is sometimes called a covariant Horn functor.

Definition. If d and are categories, a contratariant functor S: d is a
function, that is,

(i) A E obj d implies SA obj '1,
and
(ii) 1ff: A —, A' is a morphism in d, then Sf: S.4' -. SA is a morphism in
such that:
(iii) 1ff, g are morphisms in d for which g of is defined, then

S(gof)=S(f)oS(g)

(iv) S(IA) = 'SA for every A e obj d.
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EXAMPLE 0.12. Fix an object B in a category Then Hom( , B): Sets
is a contravariant functor assigning to each object the set Hom(A, B) and
to each morphism g: A A' the induced map Hom(g, B): Hom(A', B) —'

Hom(A, B) defined by h h o g. One usually denotes the induced map
Hom(g, B) by g; Hom( , B) is called a contravarlant Horn functor.

EXAMPLE 0.13. Let F be a field and let %' be the category of all finite-dimensional
vector spaces over F. Define S: —' %' by S(V) = V = Hom(V, F) and Sf =f Thus S is the dual space functor that assigns to each vector space V its
dual space consisting of all linear functionals on V and to each linear
transformation I its transpose f. Note that this example is essentially a
special case of the preceding one, since F is a vector space over itself.

For quite a while, we shall deal exclusively with covariant functors, but
contravariant functors are important and wiH eventually arise.

When working with functors, one is forced to state problems in a form
recognizable by them. Thus, in our proof of the Brouwer fixed point theorem,
we had to rephrase the definition of retraction from the version using elements,
"r(x) = x for all x X", to an equivalent version using functions: "r o I =
Similarly, one must rephrase the defmition of bijection.

Definition. An equivalence in a category is a morphism f: A -. B for which
= l3andgof= 'A

Tbeorem 03. If d and are categories and T: d —. is a funcror of either
variance, then f an equivalence in d implies that Tf is an equivalence in %'.

PRooF. Apply Tto theequationsfog= land gof= I. 0

0.15. Let d and d be a functor of either variance.
If D is a commutative diagram in d, then T(D) (i.e., relabel all vertices and
(possibly reversed) arrows) is a commutative diagram in

0.16. Check that the following are the equivalences in the specified category: (i) Sets:
bijections (ii) lop: homeomorphisms; (iii) Groups: isomorphisms (iv) Rings:
isomorphisms; (v) quasi-ordered set: all where x � y and y � x; (vi) Top2: all
f: (X, A) (X', A'), where 1: X -. X' is a homeomorphism for which f(A) = A';
(vii) monoid G: all elements having a two-sided inverse.

0.17. let
functor with T(f) = T(g) whenever I g, then T defines a functor T': —, d
(where 'W' is the quotient category) by T'(X) = T(X) for every object X and
T'([f)) = T(f) for every morphism 1.

0.18. For an abelian group G, let

tG = {x E G: x has finite order)

denote its torsion subgroup.
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(i) Show that i defines a functor Ab Ab if one defines t(f) = luG for every

homomorphism f.
(ii) hf is injective, then t(f)is injective.
(iii) Give an example of a surjective homomorphism I for which z(f) is not

surjecttve.

0.19. Let p be a fixed prime in Z. Define a functor F: Ab — Ab by F(G) G/pG and
x + pGi—.f(x) + pH (where 1: G -. H is a homomorphism).

(i) Show that uf is a surjection, then F(f) is a surjection.
(ii) Give an example of an injective homomorphism f for which F(f) is not

injective.

9).20. (1) II X is a topological space, show that C(X), the set of all continuous
real-valued functions on X, is a commutative ring with 1 under pointwise
operations:

f+g:x"-.f(x)+g(x) and fg:xi-.f(x)g(x)

for all x X.
(ii) Show that X s—. C(X) gives a (contravariant) functor Top —' Rings.

One might expect that the functor C: Top —. Rings of Exercise 0.20 is
as valuable as the homology functors. Indeed, a theorem of Gdlland and

Kolrnogoroff (see [Dugundji, p. 289]) states that for X and Y compact
Hausdorff C(X) and C(Y) isomorphic as rings implies that X and Y are
bomeomorphic. Paradoxically, a less accurate translation of a problem from
topology to algebra is usually more interesting than a very accurate one. The
functor C is not as useful as other functors precisely because of the theorem
of Gelfand and Kolmogoroff: the translated problem is exactly as complicated
as the original one and hence cannot be any easier to solve (one can hope only
that the change in viewpoint is helpful). Aside from homology, other functors
to be introduced are cohomology groups, cohomology rings, and homotopy
groups, one of which is the fundamental group.



CHAPTER 1

Some Basic Topological Notions

Homotopy

One often replaces a complicated function by another, simpler function that
somehow approximates it and shares an important property of the original
function. An allied idea is the notion of "deforming" one function into another
"perturbing" a function a bit may yield a new simpler function similar to the
old one.

Definition. If X and Y are spaces and if 10. f1 are continuous maps from X to
Y, then 10 is homotopic to denoted by Jo if there is a continuous map
F:X xl- Ywith

F(x, 0) = f0(x) and F(x, 1) = f1(x) for all xe X.

Such a map F is called a homotopy. One often writes F: Jo if one wishes
to display a homotopy.

If f;: X —, Y is defined by = F(x, t), then a homotopy F gives a one-
parameter family of continuous maps deforming into f1. One thinks off;
as describing the deformation at time t.

We now present some basic properties of homotopy, and we prepare the
way with an elementary lemma of point-set topology.

Lemma 1.1 (Gluing lemma). Asswne that a space X is a finite union of closed
subsets: X = X1. If, for some space Y, there are continuous maps f1: X1 —. Y
that agree on overlaps fl = X1 fl for all i, then there exists a
unique continuous f: X —, Y with f lxi = f for all 1.
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PRooF. It is obvious that f defined by f(x) = f1(x) if x e X1 is the unique well
defined function X Y with = for all 1; only the continuity
of I need be established. If C is a closed set in Y, then

f'(C) = = (UxJflf'(C)
=

= U(X1flJ71(c)) =

Since each f1 is continuous, j71(C) is closed in since X1 is closed in X,
is dosed in X. Therefore is closed in X, being a finite union of

dosed sets, and so f is continuous. 0
There is another version of the gluing lemma, using open sets, whose proof

is that of Lemma 1.1, mutatis mutandis.

Lemma 1.1' (Gluing lemma). Assume that a space X has a (possibly infinite)
open cover: X = U X.. If, for some space Y, there are continuous maps —' Y
that agree on overlaps, then there exists a unique continuous f: X —. I with

Tbeorem 1.2. Homotopy is an equivalence relation on the set of all continuous
maps X -. Y.

PROOF. Reflexivity. 1ff: X -. Y, define F: X x I -. Y by F(x. t) = f(x) for all
xeX

Symmetry: Assume that f g, so there is a continuous F: X x I -. I
with F(x, 0) = f(x) and F(x, 1) = g(x) for all x X. Define G: X x I -. 1 by
G(x, t) = F(x, 1 — t), and note that G: g f.

Transitivity: Assume that F: f g and G: g h. Define H: X x I —' I by

H(x
1G(x,2t—l)

Because these functions agree on the overlap x e X}, the gluing lemma
applies to show that H is continuous. Therefore H: f h. 0
Deflnftioia. If f: X —. I is continuous, its bomotopy class is the equivalence
dass

[f) = {continuous g: X —. 1: g f}.
The family of all such homotopy classes is denoted by (X, Y].

Theorem l.3.LetJ: X —, I —. Z,fori = 0, l,be continuous. 1ff0

and G: 9o be homotopies. First, we show that

(*)
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Define H: X x I Z by JJ(x, t) = G(f0(x), t). Clearly, H is continuous; more-
over, H(x, 0) = G(f0(x), 0) = g0(f0(x)) and H(x, 1) = G(f0(x), 1) g1(f0(x)).
Next, observe that

K:g1 Ofo oft, (S.)

where K: X x I -. Z is the composite g1 o F. Finally, use(s) and (s.) together
with the transitivity of the homotopy relation. 0

Corollary 1.4. Homotopy is a congruence on the category Top.

PRooF. Immediate from Theorems 1.2 and 1.3. 0

It follows at once from Theorem 0.4 that there is a quotient category whose
objects are topological spaces X, whose Horn sets are Hom(X, Y) = [X, Y],
and whose composition is [g] o [f] = [g o fl.
Definition. The quotient category just described is called the homotopy cate-
gory, and it is denoted by hTop.

AU the functors T: Top d that we shall construct, where d is some
"algebraic" category (e.g., Ab, Groups, Rings), will have the property that g
implies T(f) = T(g). This fact, aside from a natural wish to identify homotopic
maps, makes homotopy valuable, because it guarantees that the algebraic
problem in d arising from a topological problem via T is simpler than the
original problem. Furthermore, Exercise 0.17 shows that every such functor
gives a functor bTop —. d, and so the homotopy category is actually quite
fundamental.

What are the equivalences in hTop?

Definition. A continuous map f: X -. Y is a bomotopy equIvalence if there is
a continuous map g: Y -. X with g of tx and 10 g Two spacesX and
Y have the same homotepy type if there is a homotopy equivalence f: X Y.

Hone rewrites this definition, one sees that! is a homotopy equivalence if
and only if [1) E [X, Y] is an equivalence in bTop. Thus the passage from
bTop to the more familiar Top is accomplished by removing brackets and by
replacing = by

Clearly. bomeomorphic spaces have the same homotopy type, but the
converse is false, as we shall see (Theorem 1.12),

The next two results show that homotopy is related to interesting questions.

Definition. Let X and Y be spaces, and let Yo e Y. The constant map at is
the function c: X —' Y with c(x) = y0 for all x e X. A continuous map f: X — Y

is nuilbomotopic if there is a constant map C: x —, Y with I c.
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Theorem 1.5. Let C denote the complex numbers, let Z.,, c C R2 denote the

circle with center at the origin 0 and radius p. and let f: I, —. C — {O} denote
the restriction to of z'-.z. If none of the maps!; is nulihomotopic (n � I
and p > 0), thenthe fundamental theorem of algebra is true (i.e., every noncon-
stan: complex polynomial has a complex root).

PROOF. Consider the polynomial with complex coefficients:

g(z) = + aU_)z + + a1z + a0.

Choose p> max{1, and define F: E., x 1 -. C by

F(z, z) = + (1 — t)a,z1.

It is obvious that F: g$ f if we can show that the image ofF is contained
in C — {O}; that is,, F(z, t) 0 (this restriction is crucial because, as we shall
see in Theorem 1.13, every continuous function having values in a "contracti-
ble" space, e.g., in C, is nullhomotopic). If, on the contrary, F(z, r) = 0 for some
t I and some z with Izi = p, then z = — The triangle in-
equality gives

� (1 — t)Ja,Ip' �
for p> 1 implies that p' � Canceling gives p � 1a11, a con-
tradiction.

Assume now that g has no complex roots. Define G: x I —. C — {O} by
G(z, t) = g((l — :)z). (Since g has no roots, the values of G do lie in C — {O}.)

Visibly, 6: k, where k is the constant function at a0. Therefore g1 is

nulihomotopic and, by transitivity, is nullhomotopic, contradicting the
hypothesis. 0
Remark. We shall see later (Corollary 1.23) that C — tO} is essentially the circle
S1 = more precisely, C — {O} and S' have the same homotopy type.

A common problem involves extending a map f: X —' Z to a larger space
Y; the picture is

Yt\I'
j

"-9

x

Homotopy itself raises such a problem: if f0,f1: X —. Z, then f1 if we can
extendf0Uf1:X x {0}UX x {1}—sZtoallofX xl.

Theorem 1.6. Let f: Se—. Y be a continuous map Into some space Y. The
following conditions are equivalent:
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(i) f is nulihomotopic;
(ii) f can be extended to a continuous map Y;

(iii) x0 e S" and k: —. Y is the constant map at f(x0), then there is a
homotopy F: f k with F(x0, t) = f(x0) for all t e I.

Remark. Condition (iii) is a technical improvement on (i) that will be needed
later using terminology not yet introduced, it says that "F is a homotopy
rd {x0 }".

PROOF. (i) = (ii). Assume that F: f c, where c(x) = Yo for all x Define
g: Y by

(x)
— JYo if 0 � lxii � 4
— if4� HxIi � I.

Note that all makes sense: if x 0, then x/Ijxfl e S; if 4 � iixlI � 1, then
2— 2ilxil €I;iflixii =4,then2 — 2i)xIj = 1 and F(x/IIxil, 1) = c(x/ilxij) =
The gluing lemma shows that g is continuous. Finally, g does extend f: if
x e Su, then lix Ii = I and g(x) = F(x, 0) = f(x).

(ii) Assume that g: —. Y extends f. Define F: S" x I —. Y by
F(x, t) = g((1 — t)x + tx0) note that (1 — t)x + tx0 e since this is just a
point on the line segment joining x and x0. Visibly, F is continuous. Now
F(x, 0) = g(x) = f(x) (since g extends f), while F(x, 1) = g(x0) = f(x0) for all
x S1; hence F: I k, where k: Y is the constant map at f(x0). Finally,
F(x0, t) = g(x0) = f(x0) for all t E I.

(iii) (i). Obvious. 0
Compare this theorem with Lemma 0.2. If Y = and! is the identity, then

Lemma 0.2 (not yet officially known!) implies that f is not nullhomotopic
(otherwise would be a retract of

Convexity, Contractibility, and Cones

Let us name a property of that was used in the last proof.

Definition. A subset X of is convex if, for each pair of points x, y e X, the
line segment joining x and y is contained in X. In other words, if x, y X,
then tx + (1 — t)y E X for all E L

It is easy to give examples of convex sets; in particular, P 17, and
are convex. The sphere S" considered as a subset of W4' is not convex.

Definition. A space X is contractible if is nulthomotopic.

l'beorem 1.7. Every convex set X is contractible.
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PRoof. Choose x0 E X, and define c: X —. X by c(x) = x0 for all x E X. Define
F: X x I —. X by F(x, t) = tx0 + (1 — t)x. It is easy to see that F: c. 0

A hemisphere is contractible but not convex, so that the converse of
Theorem 1.7 is not true. After proving Theorem 1.6, we observed that Lemma
0.2 implies that is not contractible.

E X and X —. X foil = 0,1 denote the constant map at Prove
that 10 if and only if there is a continuous F: I —. X with F(0) x0 and
F(I)= x1.

1.2. (i) if X Y and X is contractible, then Y is contractible.
(ii) If X and Y are subapaces of euclidean space, XY, and X is convex, show

that Y may not be convex.

•l.3. Let R: S' —. S' be rotation by a radians. Prove that R where is the
identity map of S'. Conclude that every continuous mapf: S' —. S' is homotopic
to a continuous map g: S' —. S1 with g(1) = I (where I = eS').

1.4. (1) lfXisaconvex subset of W and YisaconvexsubsetofRm,thenX x Yis
a convex subset of Re,.

(ii) If X and Y are contractible, then X x Y is contractible.

'1.5. Let X = {O} U (1, 1/n, . . } and let Y be a countable discrete space. Show
that X and Y do not have the same homotopy type. (Hint: Use the compactness
of X to show that every map X Y takes all but finitely many points of X to a
common point of Y)

1.6. Contractible sets and hence convex sets are connected.

1.7. Let X be Ip.ce X = {x, y} with topology {X, 0. {x}}. Prove that X
is contractible.

1.8. (i) Give an example of a continuous image of a contractible space that is not
contractible.

(ii) Show that a retract of a contractible space is contractible.

1.9. 1ff: X -. Y is nulihomotopic and if g: Z is continuous, then gof is null-
homotopic.

The coming construction of a will show that every space can be
imbedded in a contractible space. Before giving the definition, let us recall the
construction of a quotient space.

Defluition. Let X be a topological space and let X = j e J} be a partition
of X (each is nonempty, X U X1 are pairwise disjoint). The
natural map v: X -. X' is defined by v(x) = X1, where X1 is the (unique) subset
in the partition containing x. The quotiesit topology on X is the family of all
subsets U' of X' for which v1(U') is open in X.

It is easy to see that v: X —. X' is a continuous map when X' has the quotient
topology. There are two special cases that we wish to mention. If A is a subset
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of X, then we write X/A for X', where the partition of X consists of A together
with all the one-point subsets of X — A (this construction collapses A to a
point but does not identify any other points of X; therefore, this construction
differs from the quotient group construction for X a group and A a normal
subgroup). The second special case arises from an equivalence relation on
X; in this case, the partition consists of the equivalence classes, the natural
map is given by v: xi—' [x] (where [xJ denotes the equivalence class containing
x), and the quotient space is denoted by X/—. The natural map is always a
continuous surjection, but it may not be an open map [see Exercise 1.23(iii)].

EXAMPLE 1.1. Consider the space I = [0, 1] and let A be the two-point subset
A = {0, 1 }. Intuitively, the quotient space I/A identifies 0 and I and ought to
be the circle S'; we let the reader supply the details that it is.

Exu'LE 1.2. As an example of the quotient topology using an equivalence
relation, let X = I x I

(0, I)

lx'

(0OJ (1,0)

and define (x, 0) — (x, 1) for every x E I. We let the reader show that is

homeomorphic to the cylinder' x I. As a further example, suppose we define
a second equivalence relation on I x I by (x, 0) (x, 1) for all x E I and
(0, y) (1, y) for all y €1. Now I x 1/-- is the torus S' x S' (first one has a
cylinder and then one glues the circular ends together).

EXAMPLE 1.3. If h: X —. Y is a function, then ker h is the equivalence relation
on X defined by x x' if h(x) = h(x'). The corresponding quotient space is
denoted by X/ker h. Note that, given h: X —, Y, there always exists an injection

X/ker h —. Y making the following diagram commute:

x h1
NA

X/ker h,

namely, q([xJ) = h(x).

If h: X —, Y is continuous, it is a natural question whether the map
(p: Xfker h —' Y of Example 1.3 is continuous.



Convexity, Contractibility, and Cones 21

Definition. A continuous surjection f: X -. Y is an identification if a subset U
of Y is open if and only if f'(U) is open in X.

EXAMPLE 1.4. If is an equivalence relation on X and X/— is given the
quotient topology, then the natural map v: X —. X/— is an identification.

1.5. 1ff: X -. Y is a continuous surjection that is either open or
closed, then f is an identification.

EXAMPLE 1.6. 1ff: X —, Y is a continuous map having a section (i.e., there is
a continuous s: Y —. X with fs = li,), then f is an identification (note that f
must be a surjection).

Theorem 1.8. Let f: X -. Y be a continuous surjection. Then! is an
tion if and only for all spaces Z and all functions g: Y —, Z, one has g
continuous if and only if yf is continuous.

xf\/g
PROOF. Assume I is an identification. If g is continuous, then gf is con-
tin uous. Conversely, let gf be continuous and let V be an open set in Z. Then
(gf)'(V) = f'(g'(V)) is open in X; since f is an identification, 9'(V) is
open in Y, hence g is continuous.

Assume the condition. Let Z = X/ker f, let v: X X/ker f be the natural
map, and let q: X/kerf—. Y be the injection of Example 1.3. Note that is
suijective becausef is. Consider the commutative diagram

X

That p'f = v is continuous implies that is continuous, by hypothesis.
Also, q is continuous because v is an identification. We conclude that is a
homeomorphism, and the result follows at once. 0

Definition. Let f: X —' Y be a function and let ye Y. Then is called the
fiber over y.

if f: X Y is a homomorphism between groups, then the fiber over I is
the (group-theoretic) kernel off, while the fiber over an arbitrary point y is a
coset of the subgroup ker f. More generally, fibers are the equivalence classes
of the equivalence relation ker I on X.
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Corollary 1.9. Let f: X Y be an identification and, for some space Z, let
h: X -. Z be a continuous function that is constant on each fiber of f. Then
hf-1: Y -. Z is continuous.

x hZ

Moreover, is an open map (or a closed map) if and only if h(U) is open (or
closed) inZwhenever U is an open (or closed)set inX of the form U = f1f(U).'

PROOF. That h-is constant on each fiber of f implies that !tft: Y —. Z is a well
defined function; h is continuous, and
Theorem 1.8 applies. Finally, if V is an open set in 1', then f1(V) is an open
set of the stated f _tf(f_1(V)) the result now follows easily.

0

Remark. If A is a subset of X and h: X —, Z is constant on A, then his constant
on the fibers of the natural map v: X —, X/A.

Corollary 1.10. Let X and Z be spaces, and let h: X —. Z be an identification.
Then the map q: X/ker h —' Z, defined by [x] '—p h(x), is a homeomorphism.

PROOF. It is plain that the function ço: X/ker h —, Z is a bijection; q is con-
tinuous, by Corollary 1.9. Let v: X —' X/ker h be the natural map. To see that
qi is an open map, let U be an open set in X/ker h. Then = v1(U) is
an open set in X, because v is continuous, and hence is open, because h
is an identification. 0

1.10. Letf: X —. Y be an identification, and let g: Y -. Z be a continuous surjection.
Then g is an identification if and only if gf is an identification.

'1.11. Let X and Y be spaces with equivalence relations and o, respectively, and
let f: X —, Y be a continuous map preserving the relations (if x — x', then
1(x) o f(x')). Prove that the induced map 7: X/— —, Yb is continuous;
moreover, if I is an identification, then so is 7

1.12. LetX and Z be compact Hausdorffspaces, and let h: X -. Zbe acontinuoussur-
jection. Prove that q: X/ker h Z, defined by [x] p—. h(x), is a homeomorphism.

'Recall elementary set tbeory ill: X —. Y is a function and U c imf, then if '(U) = U and
U c I 'f(U) in general, there is no equality U I 'f(U).
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Definition. If X is a space, define an equivalence relation on X x I by (x, t)
(x', t') if t = t' = 1. Denote the equivalence class of (x, t) by [x, tJ. The cone
over X, denoted by CX, is the quotient space X x 1/—.

One may also regard CX as the quotient space X x I/X x (I }. The identi-
fied point [x, 1) is called the vertex we have essentially introduced a new point
o not in X (the vertex) and joined each point in X to v by a line segment.

V

X

This picture is fine when X is compact Hausdorfi, but it may be misleading
otherwise: the quotient topology may have more open sets than expected.2

1.7. For spaces X and Y, every continuous map f: X x I -, Y
with f(x, I) = Yo' say, for all x e X, induces a continuous map f: CX —,

namely, J: [x, t] .-'f(x, t). In particular, let f: S5 x I —, be the map
(u, — t)u; since f(u, 1) = 0 for all u S", there is a continuous map
f: ..., 1)5+1 with [u, — t)u. The reader may check thatf is a homeo-
morphism (thus is the cone over with vertex 0).

EXEIcISES

1.13. ForlixedtwithO t < t,provethatx'—.[x, t]dcflnesahomeomorphismfrom
a space X to a subspace of CX.

1.14. Prove that Xi-. CX defines a functor Top—. Top (the reader must define the
behavior on morphisms). (Hint: Use Exercise 1.1 1.)

Theorem 1.11. For every space X, the cone CX is contractible.

PRooF. Define F: CX x I —. CX by Fffx, t], s) = [x, (1 — s)t + s]. 0

Combining Theorem 1.11 with Exercise 1.13 shows that every space can
be embedded in a contractible space.

2Lct X be the set of positive integers regarded as points on the x-axis in R2; let CX denote the
subspace of R2 obtained by joining each (ii, 0)6 X to i' (0, I) with a line segment. There is a
continuous bijection CX -, CX, but CX is not homcomorphic to CX (see [Dugundji, p. 127]).
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The next result shows that contractible spaces are the simplest objects in
hTop.

Theorem 1.12. A space X has the same homotopy type as a point tf and only
X is contractible.

PROOF. Let {a) be a one-point space, and assume that X and {a} have the
same homotopy type. There are thus maps f: X —' {a) (visibly constant) and
g:{a}—.X(withg(a)= jxafldfog 1(1)(actually,
fo g = But gf(x) = g(a) = x0 for all x e X, so that g of is constant.
Therefore is nullhomotopic and X is contractible.

Assume that k, where k(x) x0 E X. Define 1: X -. as the con-
stant map at x0 (no choice!), and defme g: {x0} —. X by g(x0) = x0. Note that
fog = l(xo} and that g of = k by hypothesis. We have shown that X
and {x0} have the same homotopy type. 0

This theorem suggests that contractible spaces may behave as singletons,
especially when homotopy is in sight.

Theorem 1.13. If Y is contractible, then any two maps X -. Y are homotopic
(indeed they are null homotopic).

PROOF. Assume that k, where there is Yo E y with k(y) = Yo for all y E Y.

Define g: X —. Y as the constant map g(x) = Yo for all XE X. 1ff: X — Y is
any continuous map, we claim that f g. Consider the diagram

k
X Y :Y.

1,

Since k, Theorem 1.3 givesf= kof= g. 0

If X is contractible (instead of Y), this result is false (indeed this result is
false for X a singleton). However, the result is true when combined with a
connectivity hypothesis (Exercise 1.19). This hypothesis also answers the
question whether two nullhomotopic maps X -. I are necessarily homotopic
(as they are in Theorem 1.13).

Paths and Path Connectedness

Definitioia. A path in Xis a continuous mapf: I —, X. Iff(O) = a and f(l) = b,
one says that I is a path from a to b.

Do not confuse a path f with its image f(1). but do regard a path as a
parametrized curve in X. Note that if I is a path in X from a to b, then
g(:) = f(l — t) defines a path in X from b to a (of course, g(I) = f(I)).
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Definition. A space X is path connected if, for every a, b E X, there exists a path
in X from a to b.

Theorem 1.14. if X is path connected, then X is connected.

PROOF. If X is disconnected, then X is the disjoint union X = A U B, where A
and B are nonempty open subsets of X. Choose a E A and b e B, and let
f: I -+ X be a path from a to b. Now f(I) is connected, yet

f(1) = (Aflf(I))U(Bflf(I))

displays f(I) as disconnected, a contradiction.

The converse of Theorem 1.14 is false.

U

EXAMPLE 1.8. The sln(1/x) space X is the subspace X = AU G of R2, where
A={(O,y): —l �y� l)andG={(x,sin(l/x)):O<x� 1/2ir}.

It is easy to see that X is connected, because the component of X that con-
tains G is closed (components are always closed) and A is contained in the
closure of G. Exercise 1.15 contains a hint toward proving that X is not path
connected.

1.15. Show that the sin(1/x) space X is not path connected. (Hint: Assume that
f: I—. X is a path from (0,0) to (1/221, 0). II r0 = sup{r ci: f(r)e A), then a =
f(t0)E A and A for all s> t0. One may thus assume that there is a path
g: I X with g(0) e A and with g(t) e G for all > 0.)

1.16. Show that 5 is path connected for all n � 1.

1.17. If U c is open, then U is connected if and only if U is path connected. (This
is false if "open" is replaced by "closed": the sin(l/x) space is a (compact) subset
of R2.)

T..
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1.18. Every contractible space is path connected.

1.19. (1) A space X is path connected if and only if every two constant maps X — X
are homotopic.

(ii) If X is contractible and Y is path connected, then any two continuous maps
X Y arc homotopic (and each is nulihomotopic).

1.20. Let A and B be path connected subspaccs of a space X. If A fl B 0 is path
connected, then A U B is path connected.

1.21. tfXand Yarepathconnected,thenX x Yispathconnected.

1.22. 1ff: X -. Y is continuous and Xis path connected, then 1(X) is path connected.

Let us now analyze path connectedness as one analyzes connectedness.

Theorem 1.15.11 X is a space, then the binary relation on X defined by "a b
there is a path in X from a to b" is an equivalence relation.

PROOF. Reflexivity: If a e X, the constant function f: I —. X with 1(t) = a for
all tells a path from a to a.

Symmetry: 1ff: I— X is a path in X from a to b, then g: I — X defined by
g(t) = f(1 — t) is a path from b to a.

Transitivity: 1ff is a path from a to b and g is a path from b to c, define
h: I-. X by

ht)_hf(2t)

The gluing lemma shows that h is continuous.

The reader has probably noticed the similarity of this proof to that of
Theorem 1.2: homotopy is an equivalence relation on the set of all continuous
maps X —' Y. This will be explained in Chapter 12 when we discuss function
spaces.

Definition. The equivalence classes of X under the relation — in Theorem 1.15
are called the path components of X.

We now can see that every space is the disjoint union of path connected
subspaces, namely, its path components.

EXERcISES

1.23. (i) The sin(1/x) space X has exactly two path components: the vertical line A
and the graph G.

(ii) Show that the graph G is not closed. Conclude that, in contrast to com-
ponents (which are always closed), path components may not be closed.

(iii) Show that the natural map v: X —. X/A is not an open map. (Hint: Let U
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be the open disk with center (0, and radius *; show that v(X fl U) is not
open in h]).)

1.24. The path components of a space X are maximal path connected suhepaces
moreover, every path connected subset of X is contained in a unique path
component of X.

1.25. Prove that the sin(1/x) space is not homeomorphic to 1.

Let us use this notion to construct a (simple-minded) functor.

Definition. Define n0(X) to be the set of path components of X. 1ff: X -.
define ,r0(f): n0(X) —' n0(Y) to be the function taking a path component C of
X to the (unique) path component of Y containing f(C) (Exercises 1.24 and
112).

Theorem 1.16. g0: lop —' Sets is a functor. Moreover, if I g, then =

PROoF. It is an easy exercise to check that preserves identities and composi-
tion; that is, ,r0 is a functor.

Assume that F: f g, where 1' g: X —, Y. If C is a path component of X,
then C x I is path connected (Exercise 1.21), hence F(C x 1) is path connected
(Exercise 1.22). Now

f(C) F(C x {O}) F(C x I)

and

g(C) = F(C x (1)) C F(C x

the unique path component of Y containing F(C x 1) thus contains both f(C)
and g(C). This says that n0(f) = n0(g). 0

Corollary 1.17.11 X and Y have the same homotopy type, then they have the
same number of path components.

PROOF. Assume that f: X —' Y and g: Y —' X are continuous with g of
and fog li.. Then x0(g of) = and lto(f° g) x0(11), by Theorem
1.16. Since g0 is a functor, it follows that it0(f) is a bijection. 0

Here is a more conceptual proof. One may regard ,t0 as a functor hTop —.
Sets, by Exercise 0.17. 1ff: X -. Y is a homotopy equivalence, then [1] is an
equivalence in hTop, and so it13((f]) (which is n0(f), by definition) is an
equivalence in Sets, by Theorem 0.5.

is not a very thrilling functor since its values lie in Sets, and the only
thing one can do with a set is count it. Still, it is as useful as counting ordinary
components (which is how one proves that S1 and I are not homeomorphic
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(after deleting a point)). it0 is the first (zeroth?) of a sequence of functors. The
next is ire, the fundamental group, which takes values in Groups; the others,
it2, it3, ..., are called (higher) homotopy groups and take values in Ab (we
shall study these functors in Chapter 11).

Definition. A space X is locally path connected if, for each x e X and every
open neighborhood U of x, there is an open V with x e V c U such that any
two points in V can be joined by a path in U.

Corollary 1.19 will show that one can choose V so that every two points
in V can be joined by a path in V; that is, V is path connected.

EXAMPLE 1.9. Let X be the subspace of R2 obtained from the sin(1/x) space
by adjoining a curve from (0, 1) to 0). It is easy to see that X is path
connected but not locally path connected.

Theorem 1.1& A space X is locally path connected if and only path components
of open subsets are open. In particular, jf X is locally path connected, then its
path components are open.

PROOF. Assume that X is locally path connected and that U is an open subset
of X. Let C be a path component of U, and let x E C. There is an open V with
x V c U such that every point of V can be joined to x by a path in U. Hence
each point of V lies in the same path component as x, and so V c C. Therefore
C is open.

Conversely, let U be an open set in X, let x e U, and let V be the path
component of x in U. By hypothesis, V is open. Therefore X is locally path
connected. 0

Corollary 1.19. X is locally path connected if and only for each x e X and
each open neighborhood U of x, there is an open path connected V with
XE Vc U.

PROOF. If X is locally path connected, then choose V to be the path component
of U containing x. The converse is obvious. 0

Corollary 1.20. If x is locally path connected, then the components of every
open set coincide with its path components. In particular, the components of X
coincide with the path components of X.

PROOF. Let C be a component of an open set U in X, and let {A1: j e J} be
the path components of C; then C is the disjoint union of the by Theorem
1.18, each A1 is open in C, hence each is closed in C (its complement being
the open set, which is the union of the other A's). Were there more than one
A1, then C would be disconnected. 0
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Corollary 1.21. If X is connected and locally path connected, then X is path
connected.

PROOF. Since X is connected, X has only one component; since X is locally
path connected, this component is a path component. 0

ExERasEs

1.26. A locally path connected space is locally connected. (Recall that a space is Locally

coeaected if every point has a connected open neighborhood.) (Hint: A space is
locally connected if and only if components of open sets are open.)

1.27. If X and Yare locally path connected, then so is X x V.

128. Every open subset of a locally path connected space is itself locally path
connected.

Definition. Let A be a subspace of X and let i: A X be the inclusion. Then
A is a deformation retract of X if there is a continuous r: X —' A such that
r o = and I or

Of course, every deformation retract is a retract. One can rephrase the
definition as follows: there is a continuous F: X x I—. X such that F(x, 0) = x
forallxeX,F(x,1)eAforallxeX,andF(a,1)=aforallaeA(inthis
formulation, we have r(x) = F(x, 1)). The next result is immediate.

Theorem 1.22.11 A is a deformation retract of X, then A and X have the same
homotopy type.

Corollary 1.23. S1 is a deformation retract of C — (0), and so these spaces have
the same homotopy type.

PROoF. Write each nonzero complex number z in polar coordinates:

z=pe", p>0, O�O<2a.
Define F: (C — {O}) x I —. C — {O} by

F(pe', t) ((1 — t)p + tje".

It is clear that F is never 0 and that F satisfies the requirements making
S' = {e': 0 0 < 2it} a deformation retract of C — {0). 0

* 1.29. For n 1, show that S is a deformation retract of RR+I — {O}.

1.30. For n � 1, show that S" is a deformation retract of the "punctured disk"
— {O}.
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1.31. Leta =(O. 0, l)andb =(0,...,0, —1)bcihenorthandsouthpoles,respec-
tively, of S'. Show that the equator S'' is a deformation retract of S' — {a, b),

hence S' and S — {a, b} have the same homotopy type.

1.32. Assume that X, Y, and Z are spaces with X c Y. If X is a retract, then every
continuous map 1: X -. Z can be extended to a continuous map f: Y -. Z.
namely,! = fr, where r: Y X is a retraction. Prove that if X is a retract of Y
and if and are homotopic continuous maps X — Z, then

Definition. Let f: X —. Y be continuous and define3

M1 =((X x J)jJ Y)/—,

where(x, t) y if y = f(x) and t = 1. Denote the class of(x, t) in M1 by [x, t]
and the cLass of y in M1 by [y] (so that {x, 1] = [f(x)]). The space M1 is called
the mapping cylinder off.

M1

Y

EXERCISES

1.33. If V is a one-point space, then 1: X —. Y must be constant. Prove that the
mapping cylinder in this case is CX, the cone on X.

1.34. (i) Define i: X M1 by i(x) = (x, 0] and j: Y -. M, by j(y) [y). Show that
i and) are homeomorpbisms to subspaces of M1.

(ii) Definer: M1—. Ybyr[x,t] =f(x)forall(x,t)e Xx land r[y]=y. Prove
that risaretraction:rj= Ii,.

(in) Prove that V is a deformation retract of M1. (Hint: Define F: M1 x I —. M1

by

F([x, r],s) = [x,(1 — s): + .s) ifx X, e,s€ I;

F([y),s)=(y] ify€ Y,seI.)

(iv) Show that every continuous map f: X —' V is homotopic to r o i, where i is
an injection and r is a homotopy equivalence.

If A and B are topological spaces, then A II B denotes their disjoint union lopologized so that
both A and B are open sets.



CHAPTER 2

Simplexes

Affine Spaces

Many interesting spaces are constructed from certain familiar subsets of
euclidean space, called simplexes. This brief chapter is devoted to describing
these sets and maps between them.

Definition. A subset A of euclidean space is called affine for every pair of
distinct points x, x' A, the line determined by x, x' is contained in A.

Observe that afline subsets are convex (convexity requires only that the
line segment between x and x' lies in the set). Note also that, by default, 0
and one-point subsets are affine.

Theorem 2.1. If {X1: j E J} is a family of convex (or affine) subsets of RN, then

fl is also convex (or affine).

PROOF. Immediate from the definitions.

It thus makes sense to speak of the convex (or affine) set in R spanned by
a subset X of RN (also called the convex huH of X), namely, the intersection of
all convex (or aflinc) subsets of R" containing X. We denote the convex set
spanned by X by IX] (note that [X) does exist, for RN itself is affine, hence
convex). It is hopeless to try to describe arbitrary convex subsets of Ra: for
example, for every subset K of S'. the set D2 — K is convex. Even closed
convex sets exist in abundance. However, we can describe [X] for finite X.

Definition. An affine combination of points Po' Pt...., Pm in RTM is a point x with

X = toPo + + +
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where t1 = 1. A combination is an affine combination for which
� 0 for all I.

For example, a convex combination of x, x' has the form tx + (1 — t)x' for
tEl.

Tbeorem2.2.Ifp0,p1, . . . e R',then [Po' Pi' ..., Pm], the convex set spanned
by these points, is the set of all convex combinations of Po'

PROOF. Let S denote the set of all convex combinations.
(Po' ..., p_] S: It suffices to show that S is a convex set containing

{Po, ...,p_}. Firstifweset t1 = 1 andtheothert1 = S
for every j. Second, let = and 13 = ES, where b1 � 0 and

= I = Weclaim that +(I — t)13eSfor tEl. Now

+ (1 — t)$ = (ta, + (1 — t)b,]p,.

This is a convex combination of p0. ..., p1w, hence lies in S:

(i) + (1— z)b,J = t t) = 1;
(ii) ta, + (I — t)b, � 0 because each term is nonnegative.

S [Po, ..., ps,]: If X is any convex set containing {Po' ..., p.,j, we show
that S c X by induction on m � 0. If m = 0, then S = {Po} and we are done.
Let m >0. If t1 � 0 and = 1, is p = in X? We may assume that

1 (otherwise p = Po by induction,

1t1\
(for this is a convex combination), and so

p=t0p0+(l —t0)qeX,

because X is convex. 0
Corollary 2.3. The affine see spanned by {Po' Pi' ..., p,,j c R" consists of all
affine combinations of these points.

PROOF. A minor variation of the proof just given. 0

Definition. An ordered set of points {Po' Pi' ' c RA is affine independent
if {PL — Po' P2 Po' ..., Pm — Po} is a linearly independent subset of the real
vector space R".

Any linearly independent subset of is an affine independent set; the
converse is not true, because any linearly independent set together with the
origin is afline independent. Any one point set { } is affine independent (there
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are no points of the form pi — with i 0, and 0 is linearly independent)
a set {Po' is affine independent if p1 — Po 0, that IS, 11 P* * Po a set
{Po' P1, is afline independent if it is not collinear, a SCt {Po' P2' P3) iS
affine independent if it is not coplanar.

Tbeorem 2.4. The following condftions on an ordered set of points {Po' Pt' ...' Pm)

in R1 are equivalent.

(I) {Po' Pa, . .., p_} is affine independent;
(ii) tf ..., s_} R satisfies = 0 and = 0, then =

(iii) each x E A, the of/Inc set spanned by {po, pa, pa), has a unique expres-
sion as an off Inc combination:

x = and = I.

PRoof. (I) (ii). Assume that = 0 and that = 0. Then

=
—

= s1(p1 — Po) = — Po)

(because pi — = 0 when i = 0). Affine independence of ..., p,,,} gives
linear independence of (p1 — Po' Pm — Po}' hence s1 = 0 for I = 1, 2,

m. Finally, = 0 implies that = 0 as well.
(ii) (iii). Assume that x e A. By Corollary 2.3,

x =

where 1. If, also,

=

= I, then

o — r)p1.

Since E(t1 — t) = — = I — I = 0, it follows that — = Ofor all I,
and:, = t for all i, as desired.

(iii) (i). We may assume that m 0. Assume that each x E A has a unique
expression as an afline combination of Po' . . ., p1. We shall reach a contradic-
tion by assuming that — Po' •"' — Po} is linearly dependent. If so, there
would be real numbers r,, not all zero, with

o = r,(p, —

Let # 0 indeed, multiplying the equation by if necessary, we may
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suppose that rj = 1. Now E A has two expressions as an affine combination
of

Pj = lPj;

r,pj+(l +
'#1 \ /

where 1 � i m in the summations (recall that Tj = 1). 0

Corollary 2.5. Affine independence is a property of the set ..., ),} that is
independent of the given ordering.

PROOF. The characterizations of afline independence in the theorem do not
depend on the given ordering. 0

Corollary 2.6. If A is the affine set in RN spanned by an affine independent set

{ Po' ..., p,,}, then A is a translate of an rn-dimensional sub-vector-space V of
RN, namely

A = V + x0

for some x0 e RN.

PROOF. Let V be the sub-vector-space with basis {Pi — Po, ..., — Po}' and
sctx0=p0. 0

Definition. A set of points {aj, a2,..., ak} in RN is in general position if every
n + 1 of its points forms an affine independent set.

Observe that the property of being in general position depends on n. Thus,
assume that a2, ..., RN is in general position. If n = 1, we are saying
that every pair {a1, aj} is affine independent; that is, all the points are distinct.
If n = 2, we are saying that no three points are collinear, and if n = 3, that no
four points are coplanar.

Let r0, r1, ..., r,,, be real numbers. Recall that the (m + 1) x (m + 1)
Vandermonde matrix V has as its ith column [1, r,, r?, ..., r"]; moreover,
det V = ft<1(r, — rj), hence V is nonsingular if all the r1 are distinct. If one
subtracts column 0 from each of the other columns of V. then the ith column
(for i > 0) of the new matrix is

rO 2 2 m m—r0,...,r1 —r0

If is the southeast m x rn block of this new matrix, then det V

(consider Laplace expansion across the first row).

Theorem 2.7. For every k � 0, euclidean space RN contains k points in general
position.
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PROOF. We may assume that k> it + I (otherwise, choose the origin together
with k — 1 elements of a basis). Select k distinct reals r1, r2,..., r&, and for each
1= 1, 2, .. ., k, define

We claim that {a1, a2, ..., a&} is in general position. If not, there are it ÷ i
points (a,0, a,1, ..., a,) not affine independent, hence (a,1 —
a, — is linearly dependent. There are thus real numbers s1, not
all zero, with

0 = — = — r,), — . .., —

If V is the n x it southeast block of the (it + I) x (it + I) Vandermonde
matrix obtained from r,,, ..., and if a is the column vector a =
(s1, s2, . .., sj, then the vector equation above is = 0. But since all the r,
are distinct, V is nonsingular and a = 0, contradicting our hypothesis that
not all the are zero. 0

There are other proofs of this theorem using induction on k. The key
geometric observation needed is that R is not the union of only finitely many
(proper) affine subsets (the reader may take this observation as an exercise).

ExntclsEs

2.1. Every afline subset A of R is spanned by a finite subset. (Hint: Choose a maximal
afline independent subset of A.) Conclude that every nonempty affine subset of
W is as described in Corollary 2.6.

2.2. Assume that it <k and that the vector space R" is isomorphic to a subepace of
R& (not necessarily the subspace of all those vectors whose last k — it coordinates
are 0). If X is a subset of then the affine set spanned by X in R1 is the same
as the affine set spanned by X in Rk.

2.3. Show that S contains an affine independent set with it + 2 points. (Hint:
Theorem 2.7.)

Definition. Let {Po' Pi' ..., be an afline independent subset of and let
A be the affine set spanned by this subset. If x A, then Theorem 2.4 gives a
unique (m + 1)-tuple (t0, t1, ..., t..,) with = I and x = g.m. The en-
tries of this (m + 1)-tuple are called the barycentrlc coordinates of x (relative
to the ordered set {Po' Pt,..., p11}).

In light of Exercise 2.2, the barycentric coordinates of a point relative to
(Po' p.,) W do not depend on the ambient space R".

Definition. Let {Po' Pt'S. .'Pm) be an affine independent subset of RM. The
convex set spanned by this set, denoted by [Po, Pt, ..., p.,], is called the (affine)
rn-simplex with vertices Po' Pt' ..., I)m.
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Theorem 2.8. If {Po' Pi, ..., p_} is affine independent, then each x in the
rn-simplex [Po, Pu •.., p_] has a unique expression of the form

x=Etjpj, I and eacht1�O.

PROOF. Theorem 2.2 shows that every x e [po. is such a convex
combination. Were this expression not unique, the barycentric coordinates of
x would not be unique. 0

Deflmdon. If {po' ..., p_} is affine independent, the barycenter of [Po, ...,
is (1/rn + l)(po + + p,13.

Barycenter comes from the Greek barys meaning heavy; thus, barycenter
is just "center of gravity". Let us consider some low-dimensional examples,
we assume that {po' ..., p_} is afline independent.

EXAMPLE 2.1. [Po] is a 0-simplex and consists of one point, which is its own
barycenter.

2.2. The 1-simplex [Po, Pt] = ftp0 + (1 — t)p1: t e I) is the closed
line segment with endpoints Po' Pu. The barycenter + Pu) is the midpoint
of the line segment.

EXAMPLE 2.3. The 2-simplex [Po, Pu' P2] is a triangle (with interior) with
Vertices Po' p1, the barycenter + + is the center of gravity (this
is easy to see in the special case of an equilateral triangle). Note that the three
edges are [Po' Pu], P2]' and [Po, P2]. Now [Po' Pt] is the edge opposite

p1

P2 and is the 1-simplex obtained by deleting Thus, a point on this edge has
barycentnc coordinates (t, 1 — t, 0); that is, the coordinate t2 is 0. More
generally,(t0, e1, t2)lies on an edge if and only if one of its coordinates is zero
(after all, such points are convex combinations of the endpoints of their
respective edges).

EXAMPLE 2.4. The 3-simplex [pa, Pu' P2' Pa] is the (solid) tetrahedron with
vertices Po' P2' P3. The triangular face opposite consists of all those
points whose ith barycentric coordinate is zero.

p2
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EXAMPLE 2.5. For i = 0, 1, ..., n, let denote the point in having

(cartesian) coordinates all zeros except for 1 in the (i + 1)st position. Clearly,
feo, e1, ..., is affinc independent (it is even linearly independent). Now
[e0, e1, . . ., consists of all convex combinations x = In this case, bary-

centric and cartesian coordinates (t0, t1, ..., coincide, and [e0, e1, ..., 4)
= the standard n-simplex.

The next definition gives names to what was seen in the examples.

Definition. Let [Po, Pi, . .., p11,) be an rn-simplex. The face opposite is

1,andt1=0}

(circumflex 'means "delete"). The boundary of [PD' ..., pmj is the union
of its faces.

Clearly,an rn-simplex hasm + Ifaces.ForanintegerkwithO � k � m — 1,

one sometimes speaks of a k-face of [Po. Pi' ..., p,j, namely, a k-simplex
spanned by k + 1 of the vertices {Po' Pi. pm). In this terminology, the faces
defined above are (m — 1)-faces.

The following theorem will be needed when we discuss barycentric sub-
division.

Theorem 2.9. Let S denote the n-simplex [Po' ..•'
(i) If u, v€S,then lu — � sup1 lu — p1fl.

(ii) diam S = — pill.
(iii) If b is the barycenter of S. then Mb — � (n/n + l)diam S.

PROOF. (i)v = � = 1. Therefore

— = Mu — t1p1fl II(E tju —

(ii) By (i), ffu — pill � SUPJ — p1N.

(iii) Since b = (1/n + we have

IIb—pdl = =

= +

�(l/n+ I) 11p1—p1IJ
J—o

� (n/n + I) sup — (for — = 0 when) = I)
i,J

=(n/n+1)diamS. 0



38 2. Simplexes

Afline Maps

Definition. Let {po. Pi' ..., c be afline independent and let A denote
the affine set it spans. An afline map T: A Rk (for some k � 1) is a function
satisfying

T(E tjpj) =

whenever = 1. The restriction of T to [po, ..., p,,,] is also called an
affine map.

Thus alfine maps preserve affine combinations, hence convex combina-
tions. It is clear that an affine map is determined by its values on an affine
independent subset; its restriction to a simplex is thus determined by its values
on the vertices. Moreover, uniqueness of barycentric coordinates relative to
{ Po, ..., p,,,) shows that such an afline T exists, since the formula in the
definition is well defined.

Theorem 2.10. If [Po, ..., p,j is an rn-simplex, [q0, ..., an n-simplex, and
1: {Po, ..., p,,,} —, [q0, ..., any function, then there exists a unique affine
mapT:[p0,...,p1j—'[q0,...,qjwithT(p1)=f(pjfori=0,1,...,m.

PROOF. Define tip,) = tj(p1), where t1p1 is a convex combination.
Uniqueness is obvious. 0
EXERCISES

If T: R Rk is affine, then T(x) = 2(x) + where 2: K" —, R& is a linear
transformation and Yo e R& is fixed. (Hint: Define Yo = T(O).)

2.5. Every affine map is continuous.

2.6. Prove that any two m-simplexes are homeomorphic via an affine map.

2.7. Give an explicit formula for the affine map 0: K -+ R carrying [se, [ti, t2]
with = t,, I = 1, 2. In particular, give a formula for the afline map taking
(32, 212] onto [0, 100]. (Hint: 0(x) = ).x + x0, by Exercise 2.4.)

*2.8. Let Ac: R' be an affine set and let T: A be an affl.ne map. If Xc: A is
alline (or convex), then T(X) c Rk is afline (or convex). In particular, if a, b are
distinct points in A and if I is the line segment with endpoints a, b, then TV)
is the line segment with endpoints T(a), T(b) if T(a) T(b), and TV) collapses
to the point T(a) if T(a) = T(b).

2.9. If ..., p,,} is afline independent with barycenter b. then (b, Po'•
p,,} (i.e., delete is afline independent for each I.

•2. 10. Show that, for 0 � i � In, (pa, ..., p,,j is homeomorphic to the cone
C(p0, . .., p3 with vertex

•Z11. Give an explicit homeomorphism from an n-simplex [Po, ..., p1] to D". (Hint:
Any n-simplex is homeomorphic to s", by Exercise 2.6, and A" IY' by radial
stretching.)



CHAPTER 3

The Fundamental Group

The first functor we have constructed on Top (actually, on hTop), namely,
takes values in Sets; it is of limited use because it merely counts the number
of path components. The functor to be constructed in this chapter takes values
in Groups, the category of (not necessarily abelian) groups. The basic idea is
that one can "multiply" two paths land g if fends where g begins.

The Fundamental Groupoid

Definition.Letf,g: I —e Xbepathswithf(l) = g(O). Defineapathfsg: I—. X
by

— Sf(2t) if 0 � t �
lg(2t— 1) 1.

The gluing lemma shows that f * g is continuous (for f(l) = g(0)), and so
f * g is a path in X. Our aim is to construct a group whose elements are certain
homotopy classes of paths in X with binary operation [f] [g] = [f * g]. Now
if we impose the rather mild condition that X be path connected, then con-
tractibility of I implies that all maps I —' X are homotopic (Exercise l.19(ii))
thus, there is only one homotopy class of maps. Since groups of order I carry
little information, we modify our earlier definition of homotopy.

Definition. Let Ac X and letf0,f1: X -e Ybe continuous maps withf0lA =
111A. We write

rd A
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if there is a continuous map F: X x I —, Y with F:f0 11 and

F(a, t) = f0(a) = f1(a) for all a A and all t E I.

The homotopy F above is called a relative bomotopy (more precisely, a
homotopy tel A); in contrast, the original definition (which may be viewed as
a homotopy tel A = 0) is called a free homotopy. We leave to the reader the
routine exercise that, for fixed A c X, homotopy rd A is an equivalence
relation on the set of continuous maps X -. Y.

Definition. Let I = {O, I) be the boundary of I in R. The equivalence class of
a path f: I —. X rel I is called the path class of f and is denoted by [f].

No confusion should arise from using the same notation for the homotopy
class of a path as for its path class, because we have remarked that the (free)
homotopy class is always trivial.

Theorem 3.1. Assume that f1, 9o, 91 are paths in X with

Jo rd I and 9o rd I.

= rell.

Remark. In path class notation, if [fe] = [f1] and [9o] = [9k], then
{f0 = * 91] (assuming that the stars are defined).

PROOF. If F:f0 tel I and G: 9o rd I, then one checks easily that
H: I x I —, X defined by

H't
JF(2t,s)

'' ' 1G(2t— 1,s) ifj�t� 1
is a continuous map (the gluing lemma applies because both functions agree
on x I) that is a relative homotopy 10 * 9o ft * tel I. 0

'3.1. Generalize Theorem 1.3 as follows. Let A c X and B c Y be given. AssuMe that
f0,f1:X—. Ywithf0lA =f1IA Bfori= G.1;assumeg0,g1: Y—.Z

'3.2. (i) 1ff: I —' X is a path with f(0) = f(l) = x0 e X. then there is a continuous
1': St X given by 1(t). If f, g: I .-. X are paths with 1(0)
f(1) = = g(0) = g(1) and if f g rd 1, then f' g rel{1} (of course,
1 =e°eS').

(ii) If f and g are as above, then f f1 ret I and g rd I implies that
rel{1).

3.3. Using Theorem 1.6, show (with the notation of Exercise 3.2) that 1ff and g are
paths with g constant, then 1' g rel{1} if and only if there is a free homotopy
f,.—g,.
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Definition. 1ff: 1 -+ Xis a path from x0 to x1, call x0 the origin off and write
x0 = rz(f) call x1 the end off and write x1 = ca(f). A path f in Xis closed at
x0 if a(f) = = w(f).

Observe that 1ff and g are paths with f g rd 1, then a(f) = a(g) and
w(f) = w(g); therefore we may speak of the origin and end of a path class and
write a[f] and co[f].

Definition. If p X, then the constant function ip: 1 —. X with = p for all
t €1 is called the coostant path at p. 1ff: I X is a path, its inverse path

—. Xis defined by ti—sf(1 —

*3•4• Let a: A2 —. X be continuous, where A2 = [e0, e1, e2).

e2

e1

Define so: I —. A2 as the affine map with = e1 and e2; similarly,
bys1(O)= e0anda1(l)= e2,anddefines2bys2(O)=e0andc2(1)— e1.

Finally, define = oo (or I =0, I, 2.

(I) Prove that • *02 is nulihomotopic rel I. (Hint: Theorem 1.6.)

(ii) Prove that * cc1) • Cj1 is nulihomotopic rd 1.

(iii) Let F:1 x I—.X be continuous, and define paths a, fi, y, 5 in X as

indicated in the figure.

p

a

6

Thus, a(t) = F(t, 0), = F(t, 1), y(t) = F(0, t), and 5(t) F(1, t). Prove
that a y • fi * S rd I.
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•3.5. Let 11 tel I and g0 g1 tel I be paths in X and Y, respectively. If, for I = 0,
1, (fe, g,) is the path in X x Y defined by ti-..(f1(t), g1(t)), prove that (Jo, 9o)
(11, g1) ret I.

*3.6. (i) If g tel I, then g1 rd I, wheref, g are paths in X.
(ii) If I andg are paths in X with w(f) = a(g), then

(f*g)'
(iii) Give an example of a closed pathf with f_I .f
(iv) Show that if c4f) = p and I is not constant, then *I 1.

Exercise 3.6 shows that it is hopeless to force paths to form a group under
* unless we can somehow identify, for example,f * f1 with * f(of course,
there are other obstacles as well). The next theorem shows that replacing paths
by path classes resolves most problems.

Theorem 3.2. If X is a space, then the set of all path classes in X under the (not
always defined) binary operation [f] [g] = [f * gJ forms an algebraic system
(called a groupoid) satisfying the following properties:

(i) each path class has an origin = p e X and an end co[f] = q e X,
and

[ia] [f] = U] = [1] [iq];

(ii) associativity holds whenever possible;
(iii) p = 4f] and q = w[fJ, then

= Lip] and = [eq].

PROOF. (i) We show only that I,, * f I rel I; the other half is similar.

(0,0)

(I, t)

(1,0)

First, draw the line in I x I joining (0, 1) to 0); its equation is 2s = 1 — t.
For fixed t, define 0,: [(1 — t)/2, 1] -+ [0, 1] as the affine map matching the
endpoints of these intervals. By Exercise 2.7,

(0, 1)

S
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s—(l —c)/2
—(1 —t)/2

DeflneH:I x

H( t) — Jp if2s � I — t ((s, t) e shaded triangle)
+t)/(1 +t)) if2s�1—t.

One sees easily that H is continuous (using the gluing lemma),1 that
H: i,, * f f, and that t remains fixed during the homotopy.

(ii) To prove associativity, use the picture below.

t 1

f\\h
First, draw the slanted lines in I x I and write their equations. On each of the
three pieces, construct a continuous function whose formula is, for each fixed
t, the affine map from the bottom 0th interval (e.g., from [0, -fl) to the upper
tth interval (e.g., to [0, (2 — t)/4]). It suffices to show that the continuous map
obtained by gluing maps together, as in part (i), is a homotopy f *(g * h)

(f * g) * h rel 1, and this is routine.
(iii) We show only that f *f1 rd I; the other half is similar. One

proceeds as in the first two cases, subdividing I x I; here are the formulas.
DeflneH:I x I—sXby

H(s t) —
— t)) if 0 � s �

— lJ(2(l—s)(l—t))
That H is the desired relative homotopy is left to the reader. 0

The groupoid in Theorem 3.2 is not a group because multiplication is not
always defmed; we remedy this defect in the most naive possible way, namely,
by restricting our attention to closed paths. See [Brown] for uses of groupoids
in topology.

l x I is divided into two pieces: a triangle and a quadrilateral. The afline maps on each tth
interval give the formula for a function of two variables defined on the quadrilateral; this formula
is used to show that this function is continuous.
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Defuution. Fix a point x0 E X and call it the basepoint. The fundamental group
of X with basepoint x0 is

it1(X, x0) = {[f]: [f] is a path class in X with x[f] = = wff]}
with binary operation

[f][g] = [fsg].

Theorem 3.3. ir1(X, x0) is a group for each x0 e X.

PROOF. This follows at once from Theorem 3.2. 0

The Functor it1

We have been led to the category Top,of pointed spaces and pointed maps
that we introduced in Chapter 0. Recall that a morphism f: (X, x0) - (Y, Yo)
is a continuous map f: X -+ Y preserving the basepoint: f(x0) = Yo• In Tops,
one usually chooses 0 as the basepoint of I and 1 as the basepoint of S'.

Theorem 3.4. it1: Top1 —, Groups is a (covariant) functor. Moreover, tf h,
k: (X, x0) (Y, Yo) and h k rel{xo}, then it1(h) =

PROOF. If [f] E ir1(X, x0), define ir1(h) by [h of]. Note that the com-
posite h of: I —' I is defined, is continuous, and is a closed path in Y at Yo;
thus [h of] E ,r1(Y, yo). Also, ir1(h) is well defined: 1ff f' rd I, then h of
h of' rel I (Exercise 3.1). 1ff and g are closed paths in X at x0, then evaluation
of both sides shows that there is equality (not merely homotopy)

h o (f * g) = (h of) * (h o

it follows that n1(h) is a homomorphism.
It is routine to check that it1 preserves composition and identities in Top,,

so that it1 is indeed a functor.
Finally, Exercise 3.1 shows that h k rd (x0 } implies that h of k of rel I

whenever f is a closed path in X at x0. Thus [h of] = [k of] for all such f;
that is, ,r1(h) = ,t1(k). 0

Remarks. (1) One usually writes instead of ir1(h) and calls the map
induced by h.

(2) We have shown that = if there is a relative homotopy h k

rel{xo}. We have not shown that h,1 = k, if there is a free homotopy h k

(between pointed maps h and k), and this may not be true (we shall return to
this point in Lemma 3.8).

(3) There is a category appropriate to the fundamental group functor it1.
Define the pointed homotopy category, as the quotient category arising
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from the congruence of relative homotopy: if f1: (X, x0) Yo), then
11 rel {x0 }. The objects of are pointed spaces (X, x0), morphisms

(X, x0) — (Y, y0)are relative homotopy classes [f], wheref: (X, x0) —, (Y, Yo)

is a pointed map, and composition is given by [h] [f] = [h of] (when h, I
can be composed in Tops). By Exercise 3.2, each closed path!: (1, 1) (Y, Yo)
may be viewed as a pointed mapf': (S1, 1) —'(1', Yo). If Horn sets in are
denoted by ((X, x0), (Y, Yo)], then [f] u—' [f'J is a bijection

iz1(Y, Yo) Z [(S', 1), (Y, Yo)1.

Using Exercise 3.2(u), one may introduce a multiplication in the Horn set,
namely, [f') [g'] = [(f * g)'], and the bijection is now an isomorphism. There-
fore n1 is an instance of a covariant Horn functor (Example 0.11). Roughly
speaking, the fundamental group of a space Y is just the set of morphisms
S' —i Y. We shall elaborate on this theme when we introduce the higher
homotopy group functors (which, roughly speaking, are the morphisms of
S" into a space). These remarks are designed to place it1 in its proper context,
to whet the reader's appetite for the and to indicate that paying attention
to categories is worthwhile. On the other hand, we must say that the funda-
mental group was invented and used (by Poincaré) 50 years before anyone
dreamt of categories!

Let us return to properties of fundamental groups. The next result shows
that one may as well assume that spaces are path connected.

Let x0 be a basepoint of a space X, and let A be a subspace of X containing
x0; the inclusionj: (A, x0) (X, x0) is a pointed map, and hence it induces a
homomorphism j1,: ir1(A, x0) -. ir1(X, x0), namely, [f] i-.[jf] (wheref is a
closed path in A at x0). The path jf is the path f now regarded as a path in
X. It is possible that f is not nullhomotopic in A. yet f (really, if) is null-
homotopic in X (e.g., take X to be a contractible space containing A—the
cone CA will do for X); the extra room in X may allow f to be contracted to
a point in X even though this is impossible in A. The may
thus have a kernel.

Theorem 3.5. Let x0 e X, and let X0 be the path component of X containing x0.
Then

n1(X0, x0) ir1(X, x0).

PROOF. Let j: (X0, x0) c.. (X, x0) be the inclusion. If [f] e then if
crell, where c:I—'X is the constant path at x0. If F:I x I—.X is a
homotopy, then F(0, 0) = x0; as F(I x I) is path connected, it follows that
F(I x I) c X0. It is now a simple matter to see thatf is nullhomotopic in X0.
Hence js is injective. To see that is surjective, observe that if f: I —' X is a
closed path at x0, then f(I) X0. Be fussy and define f: I —. X0 by f'(t) =
f(t) for all tel; note that if' = f. 0



46 3. The Fundamental Group

What happens when the basepoint is changed?

Theorem 3.6. IfX is path connected and x0, x1 E X, then

it1(X, x0) n1(X, x1).

PROOF. Let y be a path in X from x0 to x1. Define n1(X, x0)—* ir1(X, x1)
by [f) '—. [1] [y] (note that the multiplication occurs in the groupoid
of X). Using Theorem 3.2 one sees easily that q' is an isomorphism (with
inverse [g]'—'[y][g][y']).

It follows that the fundamental group of a space X is independent of the
choice of basepoint when X is path connected.

Let us establish notation. In a cartesian product H x K, there are two
projections: p: H x K —' H and q: H x K -. K defined by p(h, k) = h and
q(h, k) = k. Also, L —i H and fi: L —, K are functions from some set L, then
there is a function fi): L H x K defined by fl)(x) = fl(x)). Of

HxK

If the sets are groups and the functions are homomorphisms, then /1) is a
homomorphism; if the sets are topological spaces and the functions are
continuous, then $) is continuous.

Theorem 3.7. If(X, x0) and (Y, Yo) are pointed spaces, then

x

PROOF. Let p: (Xx Y,(x0,y0))—i(X,x0)andq:(X x
Y, (x0, Yo)) —. ir1(X, x0) X Yo) IS

a homomorphism. In more detail, if f: I —, X x V is a closed path at (x0, Yo),
then (ps, q,3: [1] '—+ If]) = ([p1], [qf]). We show that (ps, q,) is
an isomorphism by displaying its inverse. Let g be a closed path in X at x0,
and let h be a closed path in Y at yo; define x ir1(Y,y0)—'
x1(X x Y,(x0,y0))by

0: ([g], [(g, h)J,

where (g, h): 1 -+ X x I is defined by ri—.(g(t), h(r)) Exercise 3.5 shows that
0 is well defined. It is routine to check that and U are inverse. 0
Remark. Often it is not enough to know that two groups are isomorphic; one
needs to know an explicit isomorphism. For example, we shall use the isomor-
phisms (ps, and 0 in the proof of Theorem 3.20.
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3.7. If X is the sin(l/x) space, prove that ic1(X, x0) — I) for every x0 c X.

*3.8. Give an example of a contractible space that is not locally path connected.
(Hlrgt: Take the cone on a suitable space.)

3.9. Let X be a space. Showthat there is a category '€ with obj — X, with
Hom(p, q) — {all path classes [f] with a[fl = p and w[f] = q}, and with
composition Hom(p, q) x Hom(q, r) Hom(p, r) defined by ([f], (g))i...
If • g]. Show that every morphism in is an equivalence.

3.10. lf(X, x0) is a pointed space, let the path component of X containing x0 be the
basepoint of show that defines a functor Top4 -. Sets4 (pointed sets).

3.It. If X = {x0) is a one-point space, then n1(X. x0) = (I).

Choosing a basepoint in X is only an artifice to extract a group from a
groupoid. On this minor point, we have constructed new categories Top4 and
hTop4; eventually, we shall see that we have not overreacted. Nevertheless,
these constructions raise an honest question: Do spaces having the same
homotopy type have isomorphic fundamental groups?

Lemma 3.8. Assume that F: is a (free) homotopy, where X Y is
continuous for i = 0, 1. Choose x0 X and let A denote the path F(x0, ) in Y
from p0(x0) to 4'i (x0). Then there is a commutative diagram

'

it1(Y,

where is the isomorphism

PRooF. Let f: 1 —. X be a closed path at x0, and define G: I x IY by

G(t, s) = F(f(t), s).

Note that G: of ço1 of (of course, 4'o of and of are closed paths in
Y at and (x0), respectively). Consider the two triangulations of the
square I x I pictured below.

q

a

-Vp

b
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Define a continuous map H: I x I —. I x I by first defining it on each triangle
and then invoking the gluing lemma. On each triangle (2-simplex), H shall be
an affine map; it thus suffices to evaluate H on each vertex (observe that
agreement on overlaps is automatic here). Define H(a) = H(q) = a, H(b) =
H(p) = /3; H(c) = y; H(d) = o; H(r) = p. By Exercise 2.8, the vertical edge
[a, q] collapses to a, and the vertical edge [b, p) collapses to /3. Also, [q, d]
goes to [cc 5], [d, c] goes to [cS, y], and [c, p1 goes to /3]. The map J =
G o H: I x I —' Y is easily seen to be a relative homotopy;

J: q0 of of))*A' rd 1.
Therefore = of) = [ti of* ).-'] (using homotopy associa-
tivity). On the other hand, = of] = as
desired. 0

This lemma shows that freely homotopic maps 4'o and may not induce
the same homomorphism between fundamental groups, because they differ by
the isomorphism ç(i.

Corollary 3.9. Assume that (X, x0) —, (Y, yo), for i = 0, 1, are freely homo-
topic.

(I) c°o* and are conjugate; that is, there is [A] E it1(Y, Yo) with ço0,,[f] =
for every [1) e Xe).

(ii) If r1(Y, Yo) is abelian, then =

PROOF. In the notation of the lemma, we have q0(x0) = Yo = p1(x0), and the
path A in Y is now a closed path at Yo; therefore [2] lies in jt1(Y, Yo). The path
class [A * *1* 1_'], which can always be factored in the groupoid of Y, now
factors in the group ,r1(Y, yo):

of*21] = [1][ç1 ofl[2')
=

This proves (i), and the second statement is immediate from this. 0
Theorem 3.10. If /3: X —, Y is a homotopy equivalence, then the induced homo-
morphism ir1(X, x0) —' /3(x0)) is an isomorphism for every x0 e X.

PRooF. Choose a continuous map a: Y—' X with a ofl and fib a 1k..

By the lemma, the lower triangle of the diagram below commutes.

ir1(Y.a(x0))

(an)
ff1(X,d(X0))

ir1(X, x0)
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Since is an isomorphism, it follows that is an isomorphism. Now the
top triangle commutes because is a functoc = xj41. It follows that

is injective and is surjective. A similar diagram arising from
shows that is surjective; that is, is an isomorphism. 0

Corollary 3.11. Let X and Y be path connected spaces having the same homotopy
type. Then, for every x0 e X and Yo e Y, we have

n1(X, x0) it1(Y, Yo).

PR00F.Thetheoremgivesit1(X, x0) n1(Y, fl(x0))if/i: X —, Yisahomotopy
equivalence, and Theorem 3.6 shows that the isomorphism class of either side
is independent of the choice of basepoint. 0

Corollary 3.12. If X is a contractible space and x0 e X, then

it1(X, x0) = {1}.

PROOF. Corollary 3.11 and Exercise 3.11. (This result also follows from
Theorem 1.13.) 0
Definition. A space X is called simply connected if it is path connected and
it1(X, x0) = {1} for every x0 e X.

According to this definition, all simply connected spaces are path con-
nected; that is, both it1 and it0 are trivial. The reader should be aware that
some authors allow simply connected spaces that are not path connected; this
means that every path component is simply connected in our sense.

Remark. In complex variables, one calls an open connected subset U of (
(= CU{cx}, homeomorphic to S2) simply connected if its complement is
connected. This agrees with our definition, but it requires some work to prove
it: x1(U, u0) = (1] if and only ifS2 — U is connected.

We have just shown, in Corollary 3.12, that contractible spaces are simply
connected. The converse is false; for example, we will see eventually that S" is
simply connected whenever n � 2 yet these spheres are not contractible.

Here is another consequence of Theorem 3.10.

Corollary 3.13. If/i: (X, x0) (Y, Yo) is (freely) nulihomotopic, then the induced
homomorphism n1(X, x0) —* ,t1(Y, Yo) is trivial.2

Paoop. If k: X —. Y is a constant map at y1, say, then it is easy to see that
n1(X, x0) -. it1(Y, y1) is trivial (k,[f] = [k of), and k of is a constant

21r G and H arc groups, a homomorphism G -. H is called trh'IaI if — 1 for all x E 6,
where I is the identity element of H.
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path). Suppose that /3 k, as in the hypothesis. By Lemma 3.8, there is an
isomorphism with = it follows that = is trivial. 0

ir1(S')

We have yet to exhibit a space that is not simply connected, that is, a space
with a nontrivial fundamental group. Since x1(X, x0) consists of relative
homotopy classes of maps S1 —* X, the space X = 5' suggests itself for
consideration.

3.12. If Yo) {1} for some pointed space (Y, yo). then ,t1(S', 1) {1}. (Hint:
Otherwise is nufihomotopic, where is the identity map on S'. and this
implies that I = fo is nullhomotopic for every closed path fin Y at yo.)

To compute ir,(S', 1), let us view S' as the set of all complex numbers z
with lizil = 1. One feels that zi—' z2, which wraps I around S' twice, ought not
to be homotopic to the constant map z z° = 1, and so we seek a way to
distinguish these two functions (of course, we must even distinguish their
homotopy classes). Recall from complex variables that these functions can be
distinguished by a certain line integral called the winding number:

(here f: (I, I) —. (S', I) is a parametrization of the circle by some "nice", e.g.,
differentiable, functionf). Evaluate W(f) by rewriting f(t) = expf(t) for some
real-valued function f [exp s denotes With this rewriting, one can
convert the line integral into an ordinary integral via the substitution z =
f(t) = expf(t). Thus dz = z2icif'(t) dt and

W(f) = = JJ'(t) dt = J(1) — f(O).2ir: 1z
For example, let f(t) = be the function wrapping I around S' times
(counterclockwise if m � 0 and clockwise if m <0). Here we may let f(t) = mi,
and so

W(f) = J(1) — f(0) = m.

(Note that there are other possible choices for j namely, f(t) = nit + k for any
fixed integer k. This multitude of choices is easily explained: f is essentially
logf, and the complex logarithm is not single-valued.) Here is the point of
these remarks. Investigation of in the spirit of the winding number
suggests constructing maps f: I -+ R with f(t) = (for every closed path
f in S') moreover, attention should be paid tof(1) andf(0).
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Lemma 3.14. Let X be a compact convex subset of some R1, let f: (X, x0) —

(S', 1) be continuous, let t0 e Z, and let exp t denote e2". Then there exists a
unique continuousf: (X, x0) —' (R, t0) with expf = f.

(R,

,
f ," exp

(X,x0) ) (S1.!)

Remarks. (1)3' is called a lifting of f.
(2) In order that expf(x0) = f(x0) = 1, o must be an integer.

PROOF. Since X is compact metric, f must be uniformly continuous. There is
thus e > 0 such that whenever lix — x'li <c, then — f(x')il <2 (we
choose 2 = diam S' to guarantee that f(x) and f(x') are not antipodal, i.e.,
f(x)f(x')1 1). Now X bounded implies the existence of a positive integer
n with lix — x0fl/n <e for all x E X.

For each x E X, subdivide the line segment having endpoints x0 and x
(which is contained in X by convexity) into n intervals of equal length using
(uniquely determined) points x0, x1, ..., = x. Thus IiXj — x,+1i1 =
lix — x011/n —1. Foreachjwith0 �j � n — l,the

—{—l}definedby

gj(x) =

is easily seen to be continuous (for multiplication S1 x S' —. S1 and inversion
S' —. S1 are continuous); note that gj(x0) = I for all J. Since S1 is a multi-
plicative group, there is a "telescoping product" in S':

f(x) =

=

Now the restriction of exp to (—i, is a homeomorphism from (—i, j)
to S' — { — l}; let us call its inverse A (actually, A = (l/2xi) log); note that
A(l)=0. Since imgjc S1 — {—l) for all), each is defined and con-
tinuous. Define 3': X -, R by

f(x) = t0 + A(g0(x)) + A(g1(x)) + +

Now 3' is continuous (it is a sum of continuous functions), f(x0) =
(because g,(x0) = I for all j and A(1) = 0), and expf = f (because exp is a
homomorphism).

To prove uniqueness off, assume that ö: X —' R is a continuous function
with cxp = f and fl(x0) = t0. Define h: X R by h(x) = f(x) — it is
clear that h is continuous. Now

exp h(x) = exp(f(x) — = expf(x)/exp = 1,
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because expf = f = exp But exp: R —, St is a homomorphism with kernel
Z. Therefore h: X —+ R is integer-valued. Since X is connected (it is convex),
it follows from the discreteness of Z that h is constant. Finally, h(x0) =
J(x0) — = — = 0 shows that the constant is zero; that is, f =

0
Corollary 3.15. Letf: (I, I) -. (S1, 1) be continuous.

(1) There exists a unique continuousf: 1 —+ K with expf = land f(0) = 0.

(ii) If g: (1, 1) -+ (S1. 1) is continuous and f g rd I, then f rd I (where
exp = g and = O) moreover, J(l) = 4(l).

PROOF. (1) This follows from the lemma because I is compact convex.
(ii) Note that I x I is compact convex; choose (0, 0) as a basepoint. If

F: I x I —' S' is a relative homotopy, F:f g rel I, then the lemma provides
a continuous map P:i x I—sR with expP=F and with P(0,0)=0. We
claim that F:f 4 rel I; that is, the homotopy F can be lifted. If (po: I -4 R is
defined by q0(t) = P(z, 0), then exp qi0(t) = exp P(t, 0) = F(t, 0) = f(t); since

= F(0, 0) = 0, uniqueness of lifting gives Po = f. Define I —, R by
00(t) = P(0, t); a similar argument shows that is the constant function
00(t) 0 it follows that F(0, 1) = 0. Defme I—sR by p1(t) = P(t, 1); as
above, exp p1(t) = F(t, 1) = g(t) and = F'(O, 1) = 0, hence = a.
Finally, define 1—s R by (t) = r). Now exp 01 is the constant function
c with value f(l), and = f(1). Therefore the constant function at f(l) is
a lifting of c, and uniqueness gives 01(t) f(i) for all t I. Hence 4(1) = f(1)
and P is a relative homotopy P:f rd I. 0

Part (ii) of this corollary shows that differentiable functions f, g: (I, I)
(S1, I) which are homotopic rel I have the same winding number W(f) =
W(g) becausef(l) —f(0) = f(1) = 4(1) = 4(1) — 4(0).

Definition. 1ff: (I, I) —, (S', 1) is continuous, define the degree ofI by

degf =

wheref is the unique lifting off with f(0) = 0.

Observe that expf(l) = f(1) = I hence J(1) lies in the kernel of the homo-
morphism exp, namely, Z. Thus, degfE Z for every f: (I, 1) —, (S', 1). Also, if
f(z) = z (more precisely, if f(t) = exp(mt)), we saw above that f(1) = m; this
explains the term degree.

Theorem 3.16. The function d: n1(S1, 1) Z given by [f] i—s degf is an iso-
morphism. In particular, deg(f * g) = degf + deg g.

PROOF. First, Corollary 3.1 5(u) shows that d is a well defined function. Second,
d is a surjection because, for each m e Z, the function f(z) = Zm has degree m
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(as we have just observed above). Assume that degf = 0, where f is a closed
path in S1 at 1. Thus f(1) = 0, which says that f is a closed path in R at 0.
Now exp: (R, 0) (S', 1) induces a homomorphism it3 (R, 0) —, ir1(S1, 1) with
[J]i—.[expj) = [fl. But R contractible implies that ir1(R, 0) = {l}, so that
[f] = I and [f] = 1 (the identity element of ir1(R', 1)). It remains to show
that d is a homomorphism, for then we can conclude that ker d is trivial and
d is injective.

Assume that f and g are closed paths in S1 at I of degrees m and n,
respectively. To compute deg(f g), we must find a path h: I R with exp h =
fig and with h(0) = 0 then deg(fsg) = h(1). Let be the lifting of g with
ö(O) = 0. Define?: I R by = m + so that isa path in R from m to
in + n. Now let f be the lifting of I with f(0) = 0 (and f(l) = m). Then 1*? is
a path in R = Oand(f = m + n. Weclaim thatfsj7isa
lifting of f* g:

Iexpf(2t) if 0 � t �
= — 1) � t � 1.

Now expj(s) = f(s) for s I, because f is a lifting of f; also, exp y(s) =
exp(m + i(s)) = e2" exp D(s) = g(s), because in e Z and is a lifting of
g (incidentally, this shows that is the lifting of g with = in). Hence
exp(f * j)) = f * g. Therefore

deg(fsg) = = in + n = degf + degg.

It follows that d: 1c1(S1, 1) Z is a homomorphism and hence is an
isomorphism. 0
Corollary 3.17. S1 is not simply connected.

Corollary 3.18. Two closed paths in S' at 1 are homotopic rel I and only
they have the same degree.

PROOF. If f g rd I, then degf = deg g, for we have already shown that
d: (S', 1) —. Z is well defined. Conversely, degf = deg g implies that [1] =
[g] because d is injective. 0
Theorem 3.19 (Fundamental Theorem of Algebra). Every nonconstant poly-
nomial with complex coefficients has a complex root.

PROOF. Let denote the circle in C of radius p and center at the origin and,
for n � I, 1 —' C — {0} be the restriction to ofzi—'f. By Theorem
1.5, it suffices to prove that f is not (freely) nullhomotopic. Consider the
compositeh: S' — E,, —'C — {0} S11 wherethe maps arezl—*pz,zu—.f,and
zl—.z/IIzII; one checks that h(z) = Were f nullhomotopic, then it would
follow that h is nullhomotopic. Corollary 3.13 now says that ir1(St, 1)
irj(S', 1) is trivial. In particular, h,,[exp] = [h exp) = is trivial; that is,
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is nullhomotopic rd 1, and so exp' has degree 0. But we know that
has degree n � 1, and this is a contradiction. o

There are other proofs of the fundamental theorem of algebra (one of the
simplest is E. Artin's variation of a proof by Gauss, which requires only two
facts, both following from the intermediate value theorem: every positive real
number has a positive square root; every real polynomial of odd degree has
a real root (see Liacobson, p. 293]). The proof of Theorem 3.19, however, still
illustrates that the ideas we are developing are powerful. Later, we shall
investigate methods of computing fundamental groups, one of which (covering
spaces) generalizes the computation of it1(S', 1) just given. We shall also see
that 1t1(X, x0) may not be abelian, indeed, given any group G, there exists a
space X with x0) G.

3.13. Let U: (1,1) —.(S', 1) be the closed path tt-..exp(t). Show that (u] is a generator
ofn1(St, 1).

'3.14. 1ff is a closed path inS1 at I and ifm E Z, then tI—Pf(tr is a closed path inS'
at I and

deg(f") = m degf.

3.15. Let f: (1,1) —'(5', a) be a closed path in S' at a = exp(a). Define degree I
degree R of, where R: S' —' S' is rotation by — radians. Prove that two
closed paths f and g in S' (with 1(0) = a and g(0) = b) are homotopic (with
closed paths at every time r of the homotopy) if and only if they have the same
degree. (Hint: Corollary 3.18, Exercise 1.3, and Theorem 1.6.)

3.16. Compute n,(T, t0), where T is the torus S' x S'.

3.17. Prove that S' is not a retract of D2.

3.18. Prove the Brouwer fixed point theorem for continuous maps D2 -. D2.

3.19. Letfbe a closed path in S'at 1.
(I) 1ff is not surjective, then degf = 0.

(ii) Give an example of a surjective f with degf = 0.

'3.20. Let X be a space with basepoint x0, and let {U,:jE J) be an open cover of X
by path connected subspaces such that:
(i) X0 E for allj;
(ii) U1 fl Uk is path connected for all j, k.
(It follows that X is path connected.) Prove that ir1(X, x0) is generated by the
subgroups un i1,, where i1: (U1, x0) c. (X, x0) is the inclusion. (Hint: 1ff: 1 -. X
is a closed path in X at x0, use a Lebesgue number of the open cover

J) of 1.)

'3.21. If is � 2, prove that S is simply connected. (Hint: Use Exercise 3.20 with the
open cover (U,, U2) of 5", where U, is the complement of the north pole and
U2 is the complement of the south pole.)

3.22. If n � 2, then 5" and S' do not have the same homotopy type.
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Definition. A topological group is a group G whose underlying set is equipped
with a topology3 such that:

(i) the multiplication map G x G —' G, given by (x, y) xy, is continuous
if G x G has the product topology;

(ii) the inversion map i: G G, given by x'—'x', is continuous.

Both W (under addition) and S1 (under multiplication) are topological
groups.

EXERCISES

3.23. Let G be a topological group and let H be a normal subgroup. Prove that G/H
is a topological group, where G/H is regarded as the quotient space of G by the
kernel of the natural map.

3.24. Let G be a simply connected topological group and let H be a discrete closed
normal subgroup. Prove that it1(G/H. 1) H. (Hint: Adapt the proof of
Theorem 3.16 with exp: K —, S1 replaced by the natural map v: G —' GfH, and
with the open neighborhood (—4,4) of 0 in R replaced by a suitable open
neighborhood of the identity element I in G.) (Remark: If G is T0, then every
discrete subgroup of G is necessarily closed.)

3.25. Let GL(n, K) denote the multiplicative group of all n x n nonsingular real
matrices. Regard GL(n, R) as a subspace of RN2, and show that it and its
subgroups are topological groups.

3.26. A discrete normal subgroup H of a connected topological group G is contained
in the center of G (i.e., each h E H commutes with every x e G), hence is abelian.
(Hint: Fix hE H and show that G —. H defined by — is con-
stant.) Conclude that it1 (G/H, 1) is abelian when G is simply connected and H
is a discrete closed normal subgroup.

The next result is a vast generalization of the conclusion of the last exercise.

Definition. A pointed space(X, x0)is called an H-space (after H. Hopf)if there
is a pointed map m: (X x X, (x0, x0)) —. (X, x0) such that each of the (neces-
sarily pointed) maps m(x0, ) and m( , on (X, x0) is homotopic to

rel{x0}. One calls x0 a bomotopy Identity.

Clearly, every topological group X with identity x0 and multiplication m
is an H-space (one even has equality instead of relative homotopy).

To help us evaluate the induced map m(x0, )*' let us restate the definition
of H-space so that it is phrased completely in terms of maps. If k: X —' X is
the constant map at x0 and (k, li): X —. X x X is the map xi—. (x0, x), then
m(x0, ) is the composite m o (Ic, li). Similarly, m( , is the composite

3One often assumes as part of the definition that G has some separation property. It is known
(see [Hewitt and Ross, p. 70]) that if G is T0, then it is completely regular.
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m O(IX, k). In an H-space, therefore, each of these composites is homotopic
to tx rel{x0}.

Recall an elementary property of direct products of groups: if x E G and
y H, then in G x H,

(x,

1 denotes the identity element in H and I' denotes the identity element
of G.

Theorem 3.20. If(X, x0) is an H-space, then ir1(X, x0) is abelian.

PROOF. In Theorem 3.7, we have proved that 0: it1(X, x0) x ir1(X, x0) —.
x X, (x0, x0)),defined by([f), [gJ)—.[(f, g)], is an isomorphism, where

(f, g) is the path in X x X given by ti—. (f(t), g(t)). Choose [f], [g] e it1(X, x0).
Now

(g] = (m o (k, ix))*[QJ (definition of H-space)

= m,(k, (it1 is a functor)

= [(k, o g] (definition of induced map)

= g)]

= [g)) (definition of 9)

= [g]),

where e = [k] is the identity element of it 1(X, x0). Similarly,

[f] = e),

because in o (1k, k) lx rel{x0). Since m10: it1(X, x0) x ir1(X, x0) -+ ir1(X, x0)
is a homomorphism, we have

[g]) = [g])([f), e))

= e)) = [g) [1).
If instead one factors ((fl, [g]) = ([J], e)(e, [g]), one obtains [g]) =
[f] [gJ. We conclude that [g} [f] = [fl [g], hence ir1(X, x0) is abelian.

0
Corollary 3.21. If G is a topological group, then it1(G, e) is abelian.

The contrapositive of this last corollary is also interesting. If X is a space
with ir1(X, x0) not abelian (eventually we shall see such X), then there is no
way to define a multiplication on X making it a topological group. Indeed
one cannot even equip such an X with the structure of an H-space.

We have seen that computing the fundamental group of a space yields
useful information, but this computation, even for 5', is not routine. In other
chapters we shall develop techniques to facilitate this work.



CHAPTER 4

Singular Homology

Holes and Green's Theorem
For each n � 0, we now construct the homology functors H1: Top —, Ab that
we used in Chapter 0 to prove Brouwer's fixed point theorem. The question
we ask is whether a union of n-simplexes in a space X that "ought" to be the
boundary of some union of(n + I )-simplexes in X actually is such a boundary.
Consider the case n = 0 a 0-simplex in X is a point. Given two points x0,
x1 e X, they "ought" to be the endpoints of a 1-simplex; that is, there ought
to be a path in X from x0 to x1. Thus, 110(X) will bear on whether or not X
is path connected. Consider the case n = 1. Let X be the punctured plane

R2 — {0}, and let y be the 1-simplexes as drawn; U "ought" to
bound the triangular 2-simplex, but the absence of the origin prevents this;
loosely speaking, X has a "one-dimensional" hole in it. (Of course, U flU y
would not bound the triangular 2-simplex if X were missing a small line seg-
ment through the origin, or even if X were missing a small neighborhood of
the origin. When we say "one-dimensional" hole, we speak not of the size of
the hole but of the size of the possible boundary. One must keep one's eye on
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the doughnut and not upon the hole!) H1 (X) will describe the presence of such
holes. We shall also see a close relation between H1 (X) and it1(X, x0); after all,
the hole prevents one from deforming the closed path * * y to a constant.

Better insight into homology is provided by Green's theorem from
advanced calculus. Let D be an open disk in R2 with a finite number of points
z1, ..., deleted. Assume that there are closed curves y, y1, ..., in D as
pictured below.

Here each is a simple closed curve (it does not intersect itself as does, say, a
figure 8) having inside and the other z's outside; all the y, are inside y. If y is
oriented counterclockwise and each is oriented clockwise, then Green's
theorem asserts, with certain differentiability hypotheses on these curves and
on functions P. Q: D -. R, that

f Pdx+Qdy+ Pdx+Qdy
Ji, 1,.

C IIOQ aP\
= IJRJ\aX 3yj

where R is the shaded region in the picture. One is tempted to, and does, write
the sum of the line integrals more concisely as

I

Moreover, instead of describing how the orientations align, one could instead
use signed coefficients to indicate this. If we no longer demand that the curves
be simple and allow each to wind around Zj several times, we may even
admit Z-linear combinations of closed curves in D.

Green's theorem arises when one considers whether, given two points a,
b e D, a line integral P dx + Q dy is independent of the path in D from a
to b. If a is a second path in D from a to b, is P dx + Q dy = P dx + Q dy?

b
a
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(Such paths and fi are examples of chains.) Plainly, for y = — (proceed
from a to b via fi and then return to a backward via i.e., y = * in the
multiplicative notation of Chapter 3), the two line integrals have the same
value if and only ifbP dx + Q dy = 0. We are thus led to closed paths (which
are examples of cycles), and Green's theorem tells us to consider finite unions
of oriented closed curves; algebraically, we consider formal Z-linear com-
binations of cycles. If we now restrict our attention to "exact" function pairs
(P, Q) (there exists a function F: D -. R with .3F/ax = P and 0F/c3y =
hence 8Q/öx = ÔP/ôy), then the theorem asserts that the line integral van-
ishes if its oriented curves form the boundary of a two-dimensional region R
mD.

One is thus led to consideration of oriented curves, closed oriented curves,
and boundary curves (certain finite unions of oriented closed curves). The
following equivalence relation on the set S,(D) = {all 1-linear combinations
of oriented curves in D} is suggested: ifix, fi e S1(D), define fi dx ÷
Q dy = P dx + Q dy for all exact function pairs (P. Q). Such linear combina-
tions and are called homologous (agreeing), equivalence classes of such
linear combinations are called homology classes. It is known that two line
integrals J, P dx + Q dy agree in value for every exact pair
(P, Q) (i.e., and are homologous) precisely when — /1 is a boundary. Thus
integration is independent of paths lying in the same homology class. There
are higher-dimensional analogues of this discussion: Stokes's and Gauss's
theorems in two and three dimensions, more generally, there is a version for
integration on differentiable manifolds.'

Free Abelian Groups

Let us proceed to the formal definitions: but first, some algebra.

Definition. Let B be a subset of an (additive) abelian group F. Then F is free
abelian with basis B if the cyclic subgroup <b> is infinite cyclic for each b e B
and F = Ea.s<b> (direct sum).

A free abelian group is thus a direct sum of copies of Z. A typical element
x e F has a unique expression

x = m,,b,

where mb e Z and abnost aU mb (all but a finite number of mb) are zero.
Bases of free abelian groups behave as bases of vector spaces; one can

construct a (unique) homomorphism if one knows its behavior on a basis;
moreover, one can "do anything" to a basis.

'Further discussion o(Green's theorem is in the first section of Chapter 12 on differential forms.



60 4. Singular Homology

Tbeorem 4.1. Let F be free abelian with basis B. If G is an abelian group and
B G isa function, then there exists a unique homomorphism F G with

= ço(b) for all b e B.

F

J
(ii) Every abelian group G is isomorphic to a quotient group of the form

FIR, where F is a free abelian group.

PROOF. (i) Each xe F may be written x = >mbb, define =
Uniqueness of the expression for x shows that is a well defined homo-
morphism. Finally, is unique, because two homomorphisms agreeing on a
set of generators—namely, B—must be equal.

(ii) For each x e G, choose an infinite cyclic group having generator
say. It follows that F = is a free abelian group with basis B =

x e G}. Define a function q: B G by = x. Since q' is surjective, it
follows that the homomorphism is surjective. By the first isomorphism
theorem, G FIR, where R = ker 0

Definition. The construction of from q, is called extending by linearity.
Usually one abuses notation and denotes by 4' as well.

Part (ii) of the theorem suggests a way of describing abelian groups.

Definition. An abelian group G has generators B = {xj: j J} and relations
A = k e K} if F is the free abelian group with basis B, if A c F (i.e.,
each ra is a linear combination of the Xj with integer coefficients), and if
G FIR, where R is the subgroup of F generated by A. We say that (BIA) is
a presentation2 of the abelian group G.

Of course, an abelian group G has many presentations. The existence
question for free abelian groups is essentially settled by the definition: one can
exhibit a free abelian group with a basis of any cardinality merely by forming
the direct sum of the desired number of copies of Z. Here is a sharper version
of the existence theorem.

Theorem 4.2. Given a set T, there exists a free abelian group F having T as a
basis.

2 Later we shall define presentations of groups that may not be abelian,
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If T = 0, define F = 0. Otherwise, for each r e 7', define a group Z,
whose elements are all symbols mt with m e Z and with addition defined by
ml + nt = (m + n)t. It is easy to see that is infinite cyclic with generator C.
The group F = is free abelian with basis the set of all I T(-tuples b,,
where b1 has all coordinates zero save for a 1 as its tth coordinate. The theorem
is proved by first using a scissors to cut out all b,'s from F and then replacing
each b1 by t itself. (One can be more fussy here if one wishes.) 0

In our discussion of Green's theorem, we formed Z-linear combinations of
curves; Theorem 4.2 allows one to add and subtract curves without fear.

There is an analogue for free abelian groups of the dimension of a vector
space.

Theorem 4.3. Any two bases of a free abelian group F have the swne cardinal.

PROOF. Recall that any two bases of a vector space V (over any field) have the
same cardinal. If V is finite-dimensional, this is standard linear algebra. If V
is infinite-dimensional, one uses Zorn's lemma to prove that bases of V exist,
and one then uses a set-theoretic fact (the family of all finite subsets of an
infinite set A has the same cardinal as A) to prove invariance of the cardinal
of a basis.

Now let A and B be bases of F. For a fixed prime p, it is easy to see
that the quotient group F/pF is a vector space over Z/pZ and that the
cosets (a + pF: a E A} form a basis. Thus dim F/pF = card A. Similarly,
dim F/pF = card B, hence card A = card B. 0
Definition. If F is a free abelian group with basis B, then

rank F = card B.

Theorem 4.3 shows that rank F is well defined; that is, it does not depend
on the choice of basis B. Exercise 4.2 below shows that the vector space
analogy is a good one: free abelian groups are characterized by their rank as
vector spaces are characterized by their dimension.

One can now define the rank of an arbitrary abelian group G.

Definition. An abelian group 6 has (possibly infinite) rank r if there exists a
free abelian subgroup F of G with

(I) rank F =
(ii) G/F is torsion.

Such free abelian subgroups do exist. Define a subset B of G to be indepen-
dent if = 0 implies each m1 = 0 (where E Z and b, e B). It is easy to
see that the subgroup generated by an independent subset B is free abelian
with basis B. If F is the subgroup generated by a maximal independent subset
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(which exists, by Zorn's lemma), then F is free abelian and G/F is torsion. One
can prove that the rank of F depends only on G (Exercise 9.32), so that the
rank of G is indeed well defined.

4.1. Let F be free abelian with basis B. If B is the disjoint union B = U BA, then
F = where is free abelian with basis BA. Conclude that each y E F has a
unique expression y = where YA E FA and almost all YA = 0.

4.2. Prove that two free abelian groups are isomorphic if and only if they have the
same rank.

•4.3. For a given space X, define S1 (X) to be the free abelian group with basis all paths
a: I X, and let S0(X) be the free abelian group with basis X.

(i) Show that there is a homomorphism S1(X)—'S0(X) with =
a(0) for every path a in X.

(ii) If x1, x0 aX, show that x1 — x0 aim if and only if x0, x1 lie in the same
path component of X.

(iii) If a is a path in X, then a a ker if and only if a is a closed path. Exhibit
a nonzero element of ker that is not a closed path.

The Singular Complex and Homology Functors

Exercise 4.3(u) indicates that we are proceeding toward a definition that
appears to capture the informal ideas discussed at the beginning of this
chapter x1 — x0 ought to be the boundary of a curve in X, but it may not be
unless x1, x0 lie in the same path component of X. In preparation for the
general definition, recall that Green's theorem suggests looking at oriented
curves.

Definition. An orientation of is" = [e0, e1, ..., ej is a linear ordering of its
vertices.

An orientation thus gives a tour of the vertices. For example, the orienta-
tion e0 <e1 <e2 of gives a counterclockwise tour.

e0
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It is clear that two different orderings can give the same tour; thus e0 <e1 <e2
and e1 <e2 <e0 and e2 <e0 <e1 all give the counterclockwise tour, while
the other three orderings (orientations) give a clockwise tour.

If n = 3, the reader should see that there are essentially only two different
tours, corresponding to the left-hand rule and right-hand rule, respectively.

Definition. Two orientations of A" are the same if, as permutations of
{e0, e1, ..., they have the same parity (i.e., both are even or both are odd);
otherwise the orientations are opposite.

Given an orientation of A', there is an induced orientation of its faces
defined by orienting the ith face in the sense (— 1)'[e0, ..., ..., ej, where
— [e0, ..., ..., e,) means the ith face (vertex e1 deleted) with orientation
opposite to the one with the vertices ordered as displayed. For example,
assume that A2 is oriented counterclockwise.

C2

Co

The 0th face of A2 is [ê0, e1, e2] = [e1, e2J, and it is oriented from ei to e2;
the first face [e0, ê1, = [e0, e2] is oriented in the opposite direction:
—[e0, e2] [e2, e0] is oriented from e2 to e0; the second face is [e0, e1). It
is plain that these orientations of the edges are "compatible" with the orienta-
tion of A2

The boundary of A2 is

[e1,e2)U(e0,e2]U[e0,e1] = [ê0,e1,e2]U[e0, ê1,e2]U[e0,e1,ê2].

The oriented boundary of A2 is

[ê0,e11e2)U—[e0,ê1,e2)U(e0,e1,ê2]=[e1,e2]U(e2,e0]U[e0,e1].

More generally, the boundary of A" = [e0, ..., ej is fe0, ..., .. . ,

and the oriented boundary of A" is U—o(— l)'[e0, ..., ...,ej.
For the moment, denote the ith face of A2 by e,, where I = 0, 1,2. Applying

the homomorphism (see Exercise 4.3) to the oriented boundary, we see that

— £i + £2) = (e2 — e1) — (e2 — e0) + (ej — e0) = 0,

and80 +e2 ker a1;ontheotherhand,a0 -I-a2 ker 81(onethussecs
that orientations are important). At last, here are the important definitions.
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Definition. Let X be a topological space. A (singular) n-simplex in X is a
continuous map a: A" -. X, where A" is the standard n-simplex.

Since & is a closed interval (A1 I), a singular 1-simplex in X is essentially
a path in X; since A° is a one-point set, a singular 0-simplex may be identified
with a point in X.

Definition. Let X be a topological space. For each n � 0, define S(X) as the
free abelian group with basis all singular n-simplexes in X; define (X) = 0.
The elements of S(X) are called (singular) n-chains in X.

Of course, Sa(X) essentially agrees with the construction in Exercise 4.3
when n = 0 and n = 1.

The oriented boundary of a singular n-simplex a: A" —, X ought to be
Ei—o(— 1)'(aI[e0, ..., ..., eM]). A technical point arises: we prefer that this
be a singular (n — 1)-chain; it is not because the domain of aI[e0, . . . , e,, .. . , e)
is not the standard (n — 1)-simplex A"'. This is easily remedied. For each n
and i, define the ith face map

= e': A"'' —. A"

to be the affine map taking the vertices {e0, ..., eM_I) to the vertices
{e0, ..., é1, ..., e} preserving the displayed orderings:

ifi� 1.
(The superscript n indicates that the target of is A".) For example, there are
three face maps —.A2:s0: [e0,e1]—'{e1,e2J; [e0,e1]—'[e0,e21;
C2: [e0, e1] —. [e0, ed.

Definition. If a: A" —' X is continuous and n > 0, then its boundary is

= E S_1(X);

ifn=O,definea0o=0.

Note that if X = A" and ö: A" -. A" is the identity, then

= (—

Theorem 4.4. For each n � 0, there is a unique homomorphism a: S(X) —'

S_1(X) with t3a = ( — 1)1uC1 for every singular n-simplex a in X.

PROOF. Use the formula for ê,,u and extend by linearity. 0
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The homomorphisms — (X) are called boundary operators.
Strictly speaking, one ought to write since these homomorphisms do
depend on X; however, this is rarely done. We have constructed, for each X,
a sequence of free abelian groups and homomorphisms

S1(X) 0,

called the singular complex of X; it is denoted by (S,(X), or, more simply,
by

Lemma 4.5. If k <f, the face maps satisfy

PRooI. Just evaluate these affine maps on every vertex e1 for 0 � i � n — 1.

0
For example, maps e0 i—. e1; e1 e2 '—e e3; and e2 e4 (the

image is thus the 2-face [e1, e3, e4] e1i—.e21—'e3;
and e2 e3 i—' e4. If k <j, the image of LiCk jS the (ii — 1)-face of obtained
by deleting vertices ej and ek; when k � j, the image deletes vertices ej and

Theorem 4.6. For all n � 0, we have = 0.

PROOF. Since (X) is generated by all (n + 1)-simplexes a, it suffices to show
that ô&i = 0 for each such a.

= (—

=
J,k

= aej'''e+
J�k k<J

= E (— + (— 1)ia.ehiEjI_j, by Lemma 4.5.
J�k k<J

In the second sum, change variables: set p = k and q —j — 1; it is now
Each term occurs twice, once in the first sum

with sign (— and once in the second sum with (opposite) sign (—
Therefore terms cancel in pairs and 8öa = 0. 0
Definition. The group of (singular) n-cycles in X, denoted by is ker
the group of (singular) n-boundaries in X, denoted by is im

Clearly, and are subgroups of for all n 0; but more is
true.

the Getman Zykel.
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Corollary 4.7. For every space X and for every n � 0,

Bn(X) C C S,u(X).

PROOF. If e Bn(X), then j3 = for some e But then ön(P) =
= 0, by Theorem 4.6, and fi e 4(X). 0

We have now made our earlier discussion precise: an n-cycle corresponds
to those sum (unions) of oriented n-simplexes in X that ought to constitute
the boundary of some union of (n + 1)-simplexes in X. Returning to the
example of the punctured plane given at the beginning of this chapter, we see
that + + y is a 1-cycle in X. It is intuitively clear (but not so obvious to
prove) that + + y is not a 1-boundary (because the obvious candidate for
the two-dimensional region it should bound is not a 2-simplex in X, lacking
as it does the origin).

To detect "holes" in a space X, one should consider only cycles that are
not boundaries; boundaries are "trivial" cycles. Indeed, Green's theorem also
suggests this, for the line integral L P dx + Q dy (where (F, Q) is an exact pair)
is zero when y is a union of oriented curves comprising the boundary of a
region R in the space D. We are led to the following definition.

Definition. For each n � 0, the nth (singular) homology group of a space X is

H X
— B(X) — im

The coset Zn + where ; is an n-cycle, is called the homology class of;,
and it is denoted by clsz,,.

Our next aim is to show that each is actually a functor Top —. Ab.
If f: X —. Y is continuous and if i: A" —# X is an n-simplex in X, then
f o ci: A" —, Y is an n-simplex in Y. Extending by linearity gives a homo-
morphism f,: Sn( Y), namely,

m,,e.i) = oP), where rn, e Z.

This notation is careless, for does depend on n. In fact there is one such
for every n � 0.

Lemma 4.8. 1ff: X Y is continuous, then = f# ôn that is, for every n � 0
there is a commutative diagram

o
' S,,...1(fl.
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Remark. Not content with omitting subscripts on the maps we have
omitted superscripts on the boundary maps as well (these maps do depend
on the spaces X and Y). This casual attitude is customary and necessary, for
a jumble of indices, aside from being cumbersome, can mask a simple idea or
a routine calculation. When the abbreviated symbol may cause confusion,
however, we shall restore decorations as required.

PROOF. It suffices to evaluate each composite on a generator o of Now

= (—

= Z (— = (— I)'f(cie,).

On the other hand,

= i3(fa) = E(—1Y(fr)ci. 0

Lemma 4.9. 1ff: X —' Y is continuous, then for every n � 0,

f#(Zn(X)) C Zn(Y) and f#(Bn(X)) B.(Y).

PROOF. If a Z,,(X), then ea = 0. Therefore = f, = f, (0) = 0, and
f,a e ker 8,, = Z,,(Y). If e B,,(X), then = öy for some ye S,,+1(X), and

0
Theorem 4.10. For each n � 0, H,,: Top —. Ab is a functor.

PROOF. We have already defined H,, on objects X: H,,(X) = Z,,(X)/B,,(X). If
f: X —' Y is continuous, define

H,,(f): H,,(X) H,,(Y)

by Z,, + + B,,(Y), where z,, E Z,,(X) that is,

H,,(f) cls Z,,l—)c1sf0(Z,,).

There are some details to check. First, being an n-cycle in X implies that
f0 Z,, is an n-cycle in Y, by Lemma 4.9. Second, this definition is independent
of the choice of representative because f,(B,,(X)) C if b• e B,,(X),
then f,.i(Z,, + b,.) + B1,(Y) = + f0(b,,) + B,,(Y) = + B,,(Y). The
remaining details—H,,(f) is a homomorphism, is the identity homo-
morphism, and H,,(qfl = H,,(g)H,,(f)—are all easy consequences of the defini-
tion of H,,. 0

Corollary 4.11.11 X and Y are homeomorphic, then H,,(X) Y)for all n � 0.

PROOF. Theorem 0.5. 0

Each homology group H,,(X) is thus an invariant of the space X; in
particular, rank H,,(X) is an invariant of X for each n � 0.
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Definition. For each n 0, rank is called the nth Beth number of X.

If 14(X) is free abehan, then it is characterized by its rank; otherwise, there
is more information contained in the homology group.

Dimension Axiom and Compact Supports

Before giving the first properties of the homology functors, we caution the
reader. Many proofs, even of geometrically "obvious" facts, will seem too long
(and too algebraic). One reason for this is our decision to define as above,
using singular theory. The advantages of this theory arc the following: 14(X)
is defined for every topological space X, that is, 14 is defined on all of Top;
it is very easy to define induced maps and to prove that is a functor. One
disadvantage, as we have just said, is that some proofs appear too fussy and
formal; another great disadvantage is that it is usually difficult to compute
14(X) for specific X. If we limit attention to spaces X that are polyhedra or
CW complexes (these terms are defined later), then there are other definitions
of (the simplicial theory and the cellular theory) for which 14(X) is easier
to calculate. The disadvantages of the other two theories are that they apply
only to these special spaces and that induced maps are more complicated to
define. These theories4 will be presented along with a theorem of Eilenberg
and Steenrod, which axiomatizes homology functors on the subcategory of
(compact) polyhedra and which shows that the various theories agree on this
subcategory. Once all this is known, the reader may then select the particular
theory that is most convenient for a problem at hand. We have no such
freedom of choice now, however, and so all our proofs are in singular style
until Chapter 7. Thus warned, the reader should not be discouraged as we set
forth the details of (singular) homology.

Theorem 4.12 (Dimension Axiom).5 If X is a one-point space, then H,(X) =
for all n > 0.

PROOF. For each n � 0, there is only one singular n-simplex —

namely, the constant map. Therefore = (a.>, the infinite cyclic group
generated by Let us now compute the boundary operators:

= = [t(_l)']aM_l,

(for is an (n — 1)-simplex in X, and is the only such). It follows that

'There are homology theories other than the three we have mentioned here; these three are the
most popular.

3The reason tor this name will be ciiplained in Chapter 9.
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o
ifnisodd

— if n is even and positive.

Therefore 8,, = 0 when n is odd, and 4, is an isomorphism when n is even and
n > 0. Assume that n > 0, and consider the sequence

S,,+1(X) S,,(X) ' S,,_1(X).

If n is odd, then 4, = 0 implies that S,,(X) = ker 4, = Z,,(X); also is an
isomorphism (n + I is even), hence is surjective, and so S,,(X) = im =
B,,(X). Thus H,,(X) = Z,,(X)/B,,(X) = 0. If n > 0 is even, then 4, is an iso-
morphism, hence injective, and so Z,,(X) = ker 4, = 0. It follows that H,,(X) =
Za(X)/Bn(X) = 0 in this case as well. 0
Definition. A space X is called acychc if H,,(X) = 0 for all n � 1.

The dimension axiom shows that every one-point space is acyclic.

4.4. If X = then II,,(X) = 0 for all n � 0. (Hint: The free abelian group with empty
basis is the trivial group {O}.)

4.5. If X is a one-point space, then 110(X) Z.

4.6. For each fixed n 0, show that S,,: Top —' Ab is a functor.

The next result will allow us to focus on path connected spaces.

Theorem 4.13. If {XA: i.e A} is the set of path components of X, then,for every
n � 0,

H,,(X)

Remark. The elements of a direct sum are those "vectors" (gA) having
only finitely many nonzero coordinates.

PROOF. If y = S,,(X), then Exercise 1.24 shows that each im
a unique path component of X; we may thus write y =

where VA is the sum of those terms in y involving a simplex for which
im a1 It is easy to see that, for each n, the map y i—. (Va) is an isomorphism
S,,(X) —. Now y is a cycle if and only if each Va is a cycle: since
8Va S,,_I(XA) (because im a c implies im c XA), the assumption 0 =

= implies 07a = 0 for all A (because an element in the direct sum
(Xi) is zero if and only if all its coordinates are zero). It follows that the

map 0,,: H,,(X) —, given by cis y '—' (cls VA), IS well defined. To see that
6,, is an isomorphism, we exhibit its inverse. Define H,,(X) by
(cis Va) i—' Va); it is routine to check that both composites are identities.

0
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ExERcisEs

4.7. Compute for all n � 0.
4.8. Compute for all n � 0, where X is the Cantor set.

Of course, the computation of Ha(X), even when X is path connected, is
usually difficult. However, one can always compute H0(X).

Theorem 4.14.

(i) If X is a nonempty path connected space, then I-10(X) Z. Moreover,
x0, x1 E X, then cls x0 = cls x1 is a generator of H0(X).

(ii) For any space X, the group H0(X) is free abelian of rank = card A, where
{XA: A E A} is the family of path components.

(iii) If X and Y are path connected spaces and f: X —* Y is continuous, then
110(X) 110(Y) takes a generator of H0(X) to a generator of 110(Y).

PROOF. (i) Consider the end of the singular complex

S1(X) '0.

As is zero, Z0(X) = ker = S0(X); therefore every 0-chain in X is a
0-cycle (in particular, cis x e 110(X) for every x e X). A typical 0-cycle is thus
Ex.xmxx, where Z and almost all = 0. We claim that

B0(X) = {E S0(X): mi,, = 0).

If this claim is true, then define 0: 4(X) —* Z by i—. It is clear that
o is a surjection with kernel B0(X), and so the first isomorphism theorem gives
110(X) Z.

Let us prove the claim. Let y = E S0(X), and assume that m1 =
0. Choose a point x e X (X 0), and choose a path in X from x to ; for
each i (X is path connected). Note that = a1(e1) — = x4 — x (we

have identified I = [0, 1] with = [e0, e1]). Now E S1(X), and

01(E = = — x) = — =

since = 0. Therefore y = = Conversely, if
y B0(X), then y = where e Z and is a I-simplex in X. Hence

= E —

so that each coefficient flj occurs twice and with opposite sign. Thus the sum
of the coefficients is zero.

Let x0, x1 e X. There is a path a in X from x0 to x1, and x1 — x0 =
E B0(X); this says that x1 + B0(X) = x0 + B0(X), that is, cls x0 = cis x1.

Finally, if cls yisa generator of H0(X), where y = Emjx,, then 0(y) = =
± 1. Replacing y by —y if necessary, we may assume that = I. If x0 e X,
then y = x0 + (y — x0); since y — x0 E B0(X) (its coefficient sum is zero), we
have cis y = cls x0, as desired.
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(ii) Immediate from Theorem 4.13 and part (i) of this theorem.
(iii) Immediate from part (i). 0

Compare the functors it0 and H0 : it0(X) is the set of path components of
X; H0(X) carries exactly the same information and builds a free abelian group
from it.

In Theorem 4.32 we shall give a geometric characterization of 1-cycles in
a space X.

Lemma 4.15. Let A be a subs pace of X with inclusion j: A X. Then
j,: —, is an injection for every n � 0.

PROOF. Let y = e we may assume that all arc distinct. If
y E kerj,,then 0 = j, = m1(j o ak). Sincej o differs from only in
having its target enlarged from A to X, it follows that all j o are distinct.
But S(X) is free abelian with basis all n-simplexes in X; it follows that every
m,=Oandy=O. 0

This lemma is invoked often, usually tacitly.

Definition. If = e with all m1 # 0 and all distinct, then the
support of denoted by supp is U

It is clear that supp is a compact subset of X, since it is a finite union of
compact subsets.

Theorem 4.16 (Compact Supports). If cls e then there is a compact
subspace A of X with cls e wherej: A X is the inclusion.

PRooF. Let A = supp If = m1o,, then for each i we may write a1 =
ja, where a;: L\" —, A. Define y = e Now j, 87 = 8j,y = = 0
(because is an n-cycle in X); sincej, is an injection, it follows that öy = 0,

that is, y is an n-cycle in A. Therefore cls y e and cls y = cis 0

Corollary 4.17. If X is a space for which there exists an integer n � 0 with
= 0 for every compact subspace of X, then = 0.

PROOF. If cls e then the theorem provides a compact subspace A of
X (with inclusionj: A C.. X) and an element cls with f cls y = cls
But = 0, by hypothesis, hence cls y = 0, and hence cls = 0. 0

The next technical result will be used in proving the Jordan curve theorem.

Theorem 4.18. Let X = X" with for all p (call the inclusion
maps X and C. X"41). If every compact subspace A of X is
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contained in some X", then cls is zero and only jf there exist p and
cls e with

AcIsC'=clsC and
xp+1

PROOF. Sufficiency is obvious, for o ç&' = A", hence 0 = cls =
A, cls = cls

Conversely, assume that cis = 0 in 116(X). Thus t = e and
there exists fi = E with c3fJ = Define A = supp fl,6
and choose p with A c X". As in the proof of Theorem 4.16, there are
n-simplexes A" -+ X" and (n + 1)-simplexes Ai11 —, X" for all 1, k with

= and ; = moreover, if = then is an n-cycle in
X" and cis = cls On the other hand, if fi' = then =

= that is, q, cis = 0 in 0

Theorem 4.18 and Corollary 4.17 are instances of a more general result:
each homology functor preserves "direct limits" over a directed index set
(see [Spanier, p. 162]).

The Homotopy Axiom

Our next goal is to show that H6(f) = for all n whenever I and g are
homotopic. First, we present a preliminary result.

Theorem 4.19. If X is a bounded convex subspace of euclidean space, then
H(X) = 0 for all n � 1. In particular, Hfl(Dt) = 0 for all n > 0 and all k.

Remarks. (1) ffX # 0, then Theorem 4.14 shows that H0(X) = Z.
(2) This theorem will be used to prove a stronger result, Corollary 4.25,

which replaces "convex subspace of euclidean space" by "contractible space".

PROOF. Choose a point b X. For every n-simplex a: A" X, consider the
"cone over a with vertex b" (recall that Exercise 2.10 shows that an affine
simplex is the cone over any one of its faces with opposite vertex). Define an
(n + 1)-simplex b . a-: —, X as follows:

6 Actually. it is easy to see that supp supp so that one may take A = supp P.
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ift0=1
/ t1 \

I t0b+(1 —t0)a( ,...,, J
1

\i—t0

(here (t0, t1,..., are barycentric coordinates of points in Note that

= 1 implies that (t0, ..., ta+i) = (1, 0, ..., 0); moreover, b . a is well defined
because (1 — t0)1 t, = 1 (hence the argument of a lies in and X is
convex. A routine argument shows that b . a is continuous.

Define —. by setting = b.c and extending by linear-
ity. We claim that, for all n � I and every n-simplex a in X,

= a — (*)

(If one ignores signs, formula (*) says that the (oriented) boundary of the cone
on a is the union of a with the cone on the boundary of a. We illustrate this
when a is a 2-simplex.

b

e0 e2

Here a is represented by [e0, e1, e2]; the cone b.c is the tetrahedron, and the
boundary of this tetrahedron is a together with the three faces [b, e0, e1],
[b, e0, e2), and [b, e1, e2], each of which is the cone on a face on a.)

If formula (s) holds, then the theorem follows easily. If y SN(X), then
extending by linearity gives

y = t3cy + coy;

if y is a cycle, that is, Oy = 0, then y = Ocy Hence ZR(X) = and
H(X) =0.

To verify (ii), let us first compute the faces of cA(a) = b.c. If n � I and I = 0,
then

..., = (b.a)(O, = a(t0, ...,
IfO<i�n+ 1,then

= (b.a)(t0, ..., t1_1,0, t,, ..., t).

11 in addition, t0 = 1, then

(b.a)(I,O,...,0)=b;
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if t0 ,& I, then the right side above is equal to

t0b+(1 _to)a(1
1 —so)

=

t0b + (1—
'

— c_..1(aE,_1)(t0, ..., ta).

In conclusion, after evaluating each side on (ta, ...,
= a and = if 1> 0.

Taking alternating sums,
al-i

= (— = a + (— 1)1ca..1(ae,_i)
1—0 i—i

= a
—

= —

=a—c,,_18,,a. 0
Definition. The homomorphism is called the cone construction.

Corollary 4.20.

(i) Let X be convex and let y = m1a1 e S(X). if b e X, then

Efn>0
— — y tin = 0.

(ii) Ifyisann-cycleandn>O,then

3(b.y) = = y.

Remark. Part (ii) may be regarded as an Integration formula.

(I) For n> 0, the formula has just been proved above. When n = 0,
consider first a 0-simplex a (which we identify with its image x e X). The
definition b.a:A' —'Xis

(b.a)(t) = tb + (1 — t)x.

Therefore, if one identifies a1 with its image x1,

y) = m1b. =

= m,(b — x1) = (E m1)b —

(ii) Immediate from part (i). 0
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Lemma 4.21. Assume that 1. g: X —, Y are continuous maps and that there are
homomorphisms P.,,: S,,(X) —' S,,+1(Y) with

1, — = +

Se.. 1(X) >...A/I
) S,,(Y ) )...

Then, for all ii � o, 14(f) = 14(g).

PRooF. By definition, 14(f): z + + B,,(Y), where ôz = 0. But

(f, — g0)z = + P3)z = 8'Pz

and sof,(z) + B,,(Y) = + B,,(Y) that is, Ji,,(f) = 14(g). 0

Remark. The equation in the statement of the lemma makes sense when n = 0,

for S_1(X) was defined to be zero, hence P_1: S_1 (X) —.S0(Y) must be the zero
map.

Lemma 4.22. Let X be a space and, for i = 0, 1, let Af: X — X x I be defined
by xI—l(x, I). If H,,(A5) H,,(Af): 14(X)-. H,,(X x 1), then H,,(f) = 14(g)
wheneverfandg:X-. Yarehomotopic.

PROOF. 1fF: X xl—. Ylsa homotopyf g, then

and g=FAf.
Therefore

14(f) = =

= = = H,(g). 0
Theorem 4.23 (Homotopy Axiom). 1ff, g: X —, Y are homotopic, then

14(f) = 14(g) for all n � 0.

PROOF. By Lemma 4.22, it suffices to prove that = for all
n � 0 by Lemma 4.21, it suffices to construct homomorphisms Pt': S,,(X) —'

SI,+1(X xl) with

2X DX1 oX
— —

We propose proving the existence of such homomorphisms for all spaces
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X by induction on n � 0. in order to prove the inductive step (and realizing
that we must define on a basis of the free abelian group SR(X)), we
strengthen the inductive hypothesis as follows. For all spaces X, there exist
homomorphisms P.x: —' Sa+I(X x I) satisfying (1) and the following
"naturality condition": the following diagram commutes for every simplex
a: AN —*

SN(A") x I)

(ax I),

x I);

that is,
AN X(ax =P,o.. (2)

(Recall that a x 1: AN x I —. X x I is defined by (x, t) (a(x), t).)
Let n = 0. Begin by defining P!, =0 (there is no choice here because

S_,(X) = 0). Now A° = {e0); given a: A° -s X, define Pj(a): A' —, X x I by
t (a(e0). t), and then define P01: S0(X) —. S, (X x I) by extending by linearity.
To check Eq. (1), it suffices to evaluate on a typical basis element a:

8,PJa = (a(e0), 1) — (a(e0), 0) = o a — o a = —

that is (since P!1 = 0),
IXV1Z-0 + Z-_1u0 — —

To check the naturality condition (2), consider the diagram

S0(A°) S,(A° x 1)

0.1

S0(X) S,(X x

There is only one 0-simplex in A°, namely, the identity function c5 with
ö(e0) = e0. To check commutativity, it suffices to evaluate each composite on
5; note that each result is a map A' — X x I. identify (1 — t)e0 + te, e A'
with t, and evaluate:

= PJ(a aS) = tI—.(a(e0), t)

(a x ti—.(a x = (a x 1)0(e0, t) = (a(e0), r),

as desired.
Assume that n > 0. We shall sometimes write A instead of AR for the
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remainder of this proof. Were Eq. (1) true, then — —

would be a cycle for every y e This is indeed so.

— — I?_IÔN) = — — (Lemma 4.8)

— IA iIA DA
—

(by induction)

= 0 (since 88 = 0).

If ö: A" —' A" is the identity map, then ö S,,(A'), it follows that —

— E x I). But A" x I is convex, so that Theorem 4.19
gives HN(A" x I) = 0 (because n > 0) therefore x I) = x I), and
there exists p,,+1 e x I) with

0 _IIA IA DA
— — r.o# — Ill_lu.

Define —, x 1), for any space X, by

PX(a) = (a x

(where a is an n-simplex in X), and extend by linearity.
Before checking Eqs. (1) and (2), observe that, for i = 0, 1 and for a: A" X

an n-simplex in X, we have

(ax (3)

[if y e A", then

(a x = (a x I)(y, i) = I) =

To check Eq. (1), let a: A" -. X be an n-simplex in X.

= x

=(a x (Lemma 4.8)

= (a x — — (definition of

= (a x — (a x — (a x (since =

= (ax — (ax — (Eq. (2) for P,,_1)

= — — (Eq. (3) and Lemma 4.8)

= (At' — — (since a(ô) = a).

To check the naturality equation (2), let r: A" -' A" be an n-simplex in A".
Then for every a: A" —+ X,

(a x I),,J?(r) = (a x x = (at x

while

= = (at x

as desired. 0
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Remarks. (1) If X = A" and a- = 5, the identity map in A, then one can give
a geometric interpretation of Recall that = (a- x in
particular, = (5 x = since S x I is the identity on A" x I.
Now fl,,+, = is, in no obvious way, a linear combination of simplexes
because A" x I is a prism (hence the letter P) which is not triangulated.

hA" = [e0, ..., e), define a1 = (es, O)and b1 = (e1, 1)for 0 � i � n. A formula
for turns out to be

= Z— 1)1[a0, ..., a1, b1, b1.,.1, ..., bj, (4)

where the brackets denote the affine map A"•' — N' x I taking the vertices
{e0, ..., e41 } to the vertices {a0, ..., a1, b1, ..., b} preserving the displayed
orderings. Aside from signs, formula (4) does triangulate the prisms. For
example, & x I is divided into two triangles [a0, b0, b1J and [a0, a1, b1J.

,
,/

XI

x i

a1

h.b0

00

02

b0

,,
a0

After drawing in dotted lines in A2 x I pictured above, one sees three tetra-
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hedra: [a0, b01b11b2], and [a03a11a21b2). One thus views
P(c) as the "triangulated prism over f'. The geometric interpretation of
oP + = — Ao # is: the (oriented) boundary OP of the solid prism with-
out P0, the prism on the boundary, is the top and bottom (we ignore signs
when being descriptive).

(2) One could prove Theorem 4.23 using the explicit formula (4) for
but the proof is no shorter and one must always be alert that signs are correct.

(3) The construction of the sequence of homomorphisms P, has been
axiomatized (and will appear again); it is called the method of acyclic models,
and we shall discuss it in Chapter 9.

We now draw the usual consequence of the homotopy axiom: the homo-
logy functors induce functors on the homotopy category; we may regard
as a functor hTop -. Ab.

Corollary 4.24. If X and Y have the same homotopy type, then H,(X) HR(Y)
for all n � 0, where the isomorphism is induced by any homotopy equivalence.

We now generalize Theorem 4.19.

Corollary 4.25. If X is contractible, then = 0 for all n > 0.

PROOF. X has the same homotopy type as a one-point space; apply Corollary
4.24 and the dimension axiom, Theorem 4.12. 0

4.9. (i) Using the explicit formula for show that

ft
.—I

for n = 0 and n = 1.

(ii) Give an explicit formula for where c: -. X is a 1-simplex.

'4.10. Prove that is "natural": if 1: X —, Y is continuous, there is a commutative
diagram

S1(X) x I)

I
I),

SN(Y) x I).

'4.1!. If X is a deformation retract of Y, then 111(Y} for all n � 0. In fact, if
I: X .—' Y is the inclusion, then is an isomorphism.

4.12. Compute the homology groups of the sin(l/x) space.
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The Hurewicz Theorem

There is an intimate relation between and H1.

Lemma 4.26. Let -. 1 be the homeomorphism (1 — t)e0 + t. There is
a well defined function

q: ir1(X, x0)—. H1(X)

given by

[1] clsfij,

wheref: 1-. X is a closed path in X at x0.

PROOF. It is plain that fij is a 1-simplex in X, so that fi1 E S1(X). Indeed,
fi1eZ1(X), for because f is a

closed path; thus clsfii E H1(X). In particular, if u: I —. S1 is defined by z—'

then uq is a 1-cycle in S1. We saw in Exercise 3.2 that there is a map
f': S1 —' X making the following diagram commute (f is a closed path in X):

I

hence f' induces a homomorphism H1 (S1) —. H1 (X), namely,

cls(Zmj(f' o ok)). It follows that

cls e H1(X).

Now assume that g is a closed path in X at x0 with f g rd I; by Exercise
3.2 we have f' g'. The homotopy axiom (Theorem 4.23) thus gives

clsf,i = J cls = cls = cis

Therefore is well defined. 0

Lemma 4.26 may be paraphrased: homotopic closed curves in X must be
homologous.

Definition. The function q: ,r1(X, x0) —. H1(X) of Lemma 4.26 is called the
Hurewicz map.

Theorem 4.27. The Hurewicz map q: ir1(X, x0) —, H1(X) is a homomorphism.

PROOF. Let f and g be closed paths in X at x0. Define a continuous map
o: A2 —. X as indicated by the following picture.
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In more detail, first define a on A2: a(I — t, t, 0) = f(t); a(0, I — t, t) =
a(1 — t, 0, t) = (f * g)(t). Now define a on all of A2 by setting it constant on
the line segments with endpoints a = a(t) = (1 — t, r, 0) and b = b(t) =
((2 — t)/2, 0, t/2), and constant on the line segments with endpoints c = c(t) =
(0, 1 — t, t) and d = d(t) = ((1 — t)/2, 0, (1 + t)/2). It is easy to see that
a: A2 -. X is continuous, that is, a e S2(X). Moreover, öa = ac0 — ac1 + as2.
But a50(t) = a(O, I — t, 1) = g(t), = f * g, and as2 = f, so that ôa =
g — f*g + f.Therefore

(p: [f][g] = = cls(f + g)' = cls g,i. 0
EXERCISES

'4.13. Prove that the Hurewicz map is "natural". If h: (X, x0) (Y, Yo) is a map of
pointed spaces, then the following diagram commutes:

h
it1(X,x0) S

H1(X)
h

' H1(Y).

'4.14. 1ff is a (not necessarily closed) path in X, prove that the 1-chain .1 is homo-
logous to (Hint: Use Theorem 4.27 and Exercise 3.4 with the picture
below.)

'4.15. Let X be a space and let a, $, y be (not necessarily closed) paths in X such that
as * y is defined and is a closed path. Prove that, in H1 (X),

Is

I

f*
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cls(a • • y) = + fi + y) = cis a + cis + cis y.

(Hint: Use Theorem 4.27 and Exercise 3.4 with maps A2 -, X suggested by

a

Lemma 4.28 (Substitution Principle). Let F be a free abelian group with basis
B, let x0, x1, ..., be a list of elements of B, possibly with repetitions, and
assume that

m0x0 = mjx,, where mj E Z.

IfGis any abelian group, and y0, such that
implies = then m0y0 = in G.

PROOF. Defineafunctionf: B—. Gbyf(x1) = = 0,1,... ,k,andf(x) = 0
otherwise (f is well defined by hypothesis). By Theorem 4.1, there is a homo-
morphism f: F —. G extending f. But

0 = f(m0x0 — m1x1) = m0y0 — m1y1. 0

A key ingredient in the next proof is that if a: A2 —. X is a 2-simplex, then
alA2 is nulihomotopic (Theorem 1.6), and hence alA2 (ac0)s(ae1)_1 *(ae2)
is nullhomotopic (Exercise 3.4).

Theorem 4.29 (Hurewicz7 Theorem). If X is path connected, then the Hurewicz
map ir1(X, x0) —. is a surf ection with kernel ir1(X, the commu-
tator subgroup of n1(X, x0). Hence

ir1(X, x0)/ic1(X, x0)' H1(X).

PROOF. To see that q is a surjection, consider a 1-cycle = m,c,in X; hence

o = = E mj(a1(e1) —

an equation among the basis elements X of the free abelian group S0(X). Now
X path connected implies that, for each i, there are paths in X, say, from x0
to and ö, from x0 to a1(e0).

Although this result is due to Poincaré, there is a more general theorem of Hurewicz relating
homotopy groups and homology groups.

(a .P)s
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o1(e0)

ci

c,(e1 )

Choose Vt = if a1(e1) = choose ö1 = if = *Jj(eo); choose =
if a1(e1) = The substitution principle (for the list a1 (e1), a1 (en), a2(e1),
o2(e0),... in the free abelian group S0(X) and for the list y1 ö1 y2q,
in S1(X)) gives the equation 0 = — y,,) in S1(X). Hence

+

a closed path in X at x0, so that Exercise 4.14 and
Exercise 4.15 give

q;(fI = *yr1]

+ a1—

We now compute ker q. For the remainder of this proof, abbreviate
n1(X, x0) to it. Since 111(X) is abelian, it' c ker For the reverse inclusion,
assume that y is a closed path in X at x0 with [y] e ker p; there are thus
2-simplexes;: & —' X with = a2(En1;) for n1 e Z. If is denoted by T1j,
then 82(t1) = — + and

7,1 = — + t12), (2)

an equation among the basis elements of the free abelian group S1(X). It
follows that yt = tM for some p = I and q e {O, 1, 2} (because also is a basis
element). As in the first part of the proof, we use path connectedness to
construct auxiliary paths to make loops at x0. For each i. choose paths A,, jz,,
vz from x0 to ;0(e0), ;1(e1), ;2(e0), respectively.

xo

Should any of the ends r,0(e0), (e1), ;2(e0) be x0, choose the corresponding
A, p, v to be the constant path at x0; also, should r10(e0) = choose
A, = (and similarly for p. v). Assemble paths to obtain elements of it =
it1(X, x0). Define
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=

L11 = [v1*t11ii'

L12 = [vj*t12q'

The substitution principle when applied to Eq. (2) in S1(X) and the multiplica-
tive abelian group ic/it' gives an equation

= I-I

where bar denotes coset mod it'. Now LN = * * where and fi
are appropriate A, v. Since v,,17 = yi is a closed path at x0, the choice of
auxiliary paths shows that and are constant paths at x0; therefore LN =

= [y]. Finally, we have in it that

L,2 = * * * * * yr1 * v, * *

= = 1,

by Exercise 3.4(i). It follows that LN = fl = 1 in ic/ic', hence
= L1,,, = I in it/it'; that is, [y] e it'. 0

As we mentioned earlier, two homotopic closed curves in a space X are
necessarily homologous (this is the statement that the Hurewicz map is well
defined). One can show that the converse is not true by giving a space X whose
fundamental group is not abelian (so that is not injective). An example of
such a space X is the figure 8.

The closed paths * fi and fi. at x0 are homologous, but they are not
homotopic (i.e., * fi * * is not nulihomotopic in X; see Corollary 7.42.

Corollary 4.30. H1(S') Z.

Corollary 4.31. lix is simply connected, then H1 (X) = 0.

ExE&cIsE

4.16. 1ff: S' is continuous, define degree f = m if the induced map H1 (St) _+

H1(S') is multiplication by in. Show that this definition of degree coincides with
the degree of a pointed map (S1, 1) —' (S1. 1) defined in terms of x1(S1, 1).
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The last result in this chapter is a geometric characterization of Z, (X).

Definition. A polygon in a space X is a 1-chain it = where =
for all i (indices are read mod(k + 1)).

Theorem 4.32. Let X be a space. A 1-chain y = m,u, e S1(X) is a cycle and
only if y is homologous to a linear combination of polygons.

PROOF. Sufficiency is clear, for every polygon it is a cycle:

= a,) = (a,(e1) — a,(e0)) = 0.

Conversely, let y = m,a, be a cycle. If some m, <0, then Exercise 4.14
says that is homologous to We may thus assume that each
m1 � 0. The proof proceeds by induction on in, � 0 the induction does begin
when m1 = 0, for now v = 0. For the inductive step, we may assume each
m, > 0. Define E, = a,(e,)} and define E = U E,. Since every closed
path a is itself a polygon, we may assume that no a, is closed (otherwise, apply
induction to y — a,). Denote a1(e0) by x1 and a,(e,) by x2, so that 0a1 =

— x1. Since öy = 0 and all in, > 0, there must be some occurring in y with
a,(e0) = x2 [and so x2 occurs with a negative sign in = —

Define x3 = Iterate this procedure to obtain a sequence x1, x2, x3,...
of points in E. Because E is a finite set, there exists a "ioop" x,,, x,,4.,, ...,

= that is, there is a polygon it = Thus y — it is a 1-cycle to
which the inductive hypothesis applies. Therefore y — it and hence y is (homo-
logous to) a linear combination of polygons. U

Just as one may regard it1(X, x0) as (pointed) maps of S1 into X, one can
define higher homotopy groups x0) as pointed maps of into X. There
is a Hurcwicz map —. and the question whether there is an analog
of Theorem 4.32 is related to the image of this map.

There are two more fundamental properties (axioms) of homology functors:
the long exact sequence and excision. Once we know these, we shall be able to
compute some homology groups and give interesting applications of this
computation. These properties, along with properties we already know, serve
to characterize the homology functors as well.



CHAPTER 5

Long Exact Sequences

The homology groups of a space X are defined in two stages: (1) construction
of the singular complex and (2) formation of the groups =
ker The first stage involves the topology of X in an essential way,
for one needs to know the n-simplexes in X; the second stage is purely
algebraic. Let us now acquaint ourselves with the algebraic half of the defini-
tion in order to establish the existence of certain long exact sequences; these
are very useful for calculation because they display connections between the
homology of a space and the homology of its subspaces.

The Category Comp

Definition. A (chain) complex is a sequence of abelian groups and homo-
morphisms

S1,_1 ' ", fl

such that = 0 for each n e Z. The homomorphism 3,, is called the
differentiation of degree n, and S,, is called the term of degree n.

The complex above is denoted by (Se, 3) or, more simply, by Observe
that the condition = 0 is equivalent to

im C ker 8,,.

Of course, the singular complex (S1,(X), 8) is an example of a complex (in which
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all terms with negative subscripts are zero). We shall see examples of com-
plexes with negative subscripts in Chapter 12.

Definition. A sequence of two homomorphisms (of groups) A B C is
exact at B if im f = ker g. A sequence of abelian groups and homomorphisms

—s-. SR_I

is exact if it is exact at each S1, that is, im = ker for all n e Z.

It is clear that every exact sequence is a complex: equality (im = ker) implies
inclusion (im C ker).

5.l. (i) ItO—. A L B is exact, then f is injective (there is no need to label the only
possible homomorphism 0—. A).

(ii) 11 B C -.0 is exact, then g is surjective (there is no need to label the only
possible homomorphism C .-. 0).

(iii) 110—. A LB —'0 is exact, then fis an isomorphism.
(iv) 110—' A —, 0 is exact, then A = 0.

If A B C D is exact, thcnf is surjective if and only if h is injective.

*53 A short exact sequence is an exact sequence of the form
I p0-. A B -. C -.0.

In this case, show that iA A and B/iA C via b +

*54• If —. —'A1 B1 —. C. —' —.C,_1
is exact and every third arrow h,: A1 —. B. is an isomorphism, then C, = 0 for
all n.

*55 (1) 11 0-. A —. B —. C —.0 is a short exact sequence of abelian groups, then
rank B = rank A + rank C. (Hint: Extend a maximal independent subset of
A to a maximal independent subset of B.)

(ii) If 0—. A,—. A,_1 — A3 —. A0 —.0 is an exact sequence of (finitely
generated) abelian groups, then (— 1)' rank A, = 0.

Definition. If (Se, is a complex, then ker is called the group of n-cycles
and is denoted by Z,(S,, 0), mi is called the group of n-boundaries and is
denoted by 0). The Mb homology group of this complex is

0) = Z1(S0, 0).

Of course, we shall abbreviate this notation if no confusion ensues. If
z, e Z,, then z, + B, e H, is called the homology class of z, and it is denoted
byclsz,.
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Theorem 5.1. A complex (Se, a) is an exact sequence and only 0) = 0

for every n.

PROOF. = if and only if ker = im 0

Thus the homology groups "measure" the deviation of a complex from
being an exact sequence. Because of this theorem, an exact sequence is also
called an acyclic complex.

Definition. If 0') and (S,,. 0)arecomplexes,achainmapf: 0') —. (Se, 0)

is a sequence of homomorphisms —, such that the following dia-
gram commutes:

a
s,,

I
Sn ) Sn_i

that is, '3nfn = for all n e Z. 1ff = then one calls f,, the term of
degree n.

1ff: X —' Yis continuous, then we saw in Lemma 4.8 that f induces a chain
mapf: S,,(X)—.

Definition. All complexes and chain maps form a category, denoted by Comp,
when one defines composition of chain maps coordinatewise: o {fn} =
(g,, ofn}.

The category Comp has the feature that, for every pair of complexes and
Hom(S, is an abelian group: if f = {fn} and g = Se),

then f + g is the chain map whose term of degree n is +
The reader may now show that there is a functor Top —, Comp with

X i—* 0) and Also for each n e Z, there is a functor Hn: Comp -÷
Ab with i—. Hn(S*) = Zn(S*)/Bn(S*) and with cis '— cls for
every chain map f: S,1 (one proves that is well defined, as in
Lemma 4.9, and one proves that is a functor, as in Theorem 4.10). One
usually writes f1 instead of again omitting the subscript n unless it
is needed for clarity. Obviously, each homology functor fin: Top —, Ab (for
n � 0) is the composite of these functors Top -. Comp —. Ab; we have made
precise the observation that our original construction of involves a
topological step followed by an algebraic one.

Theorem 5.2. For each n e Z, the functor Comp -. Ab is additive; that is,
f, g E Se), then + g) = Hn(f) + Hn(g).



The Category Comp 89

PROOF. A routine exercise. D

It follows easily that Hn(O) = 0, where (the first) 0 denotes either the zero
complex (all terms zero) or the zero chain map (all terms fM zero).

The category Comp strongly resembles the category Ab in the sense that
one has analogues in Coinp of the familiar notions of subgroup, quotient group,
first isomorphism theorem, and so on. It is important that the reader feel
as comfortable with a complex as with an abelian group. Here are the
constructions.

Subcomplex. Define (S's, 8') to be a subcomplex of (Se, 8) if each is a
subgroup of and if each = Here are two other descriptions: (1) the
following diagram commutes for all n:

s,

'1 1

Sn
a

Sn_i,

where c.. is the inclusion map; (2) if i = then i: S1, —, S, is a chain
map. (That all three descriptions are equivalent is left as an exercise.)

Quotient. If 8') is a subcomplex of (Se, 8), then the quotient complex is
the complex

where + + is well defined because c
Kernel and Image. 1ff: (S0, 0)—.(SZ, 8") is a chain map, then kerfis the

subcomplex of

ker —' ker In-i

where is (necessarily) the restriction I is the subcomplex of S

where is (necessarily) the restriction 0,'Iim
Exactness. A sequence of complexes and chain maps

11+1 fq

is exact if im = ker f4 for every q. A short exact sequence of complexes
is an exact sequence of the form

I p
0 —' —. S1 —+ S1, —40,

where 0 denotes the zero complex.
Here is the picture of a short exact sequence of complexes in unabbreviated

form.
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1. 1 1

0
'

0

8:.11
ä_41

1
18:11

o

18:

o
P.—i

s;_, o

I

This is a commutative diagram whose columns are complexes. By Exercise
5.8 below, its rows are short exact sequence of groups.

Intersection and Sum. Let S S

subcomplex of fl S is the sub
complex of whose nth term is + 5,7.

Direct Sum. Let ÔÄ): A e A) be a family of complexes, indexed by a
set A. Their direct sum is the complex

('A 8.11 V c,A V

where 8,, = E Note the special case A =
{1,2}.

An important example of a subcomplex arises from a subspace A of a space
X. If j: A c.. Xis the inclusion, we saw in Lemma 4.15 that S,,(A)—. S,,(X)
is injective for every n. There is thus a short exact sequence of complexes

0—. —' —. -.0
that will be very useful. It is convenient to regard as being a subcomplex
of (instead of being isomorphic to im This is accomplished by
regarding every n-simplex a: A" —, A as an n-simplex in X whose image
happens to be contained in A, that is, by identifying a with ja.

One cannot form the intersection of two arbitrary sets one can only form
the intersection of two subsets of a set. Let A1 and A2 be subspaces of a space
X. As above, regard S,,(A1) and as subcomplexes of S1,(X). We claim
that S,(Aj) fl = fl A2). IfZmjcrj E S,(A1) fl S,,(A2), then each is

an n-simplex in X with im a1 c A1 and with im c A2; hence each a, is an
n-simplex in X with A1flA2, that is, For the
reverse inclusion, each n-simplex a in X with im a, fl may be regarded
as an n-simplex in either A1 or A2, and so a E S,,(A1)flS,,(A2).
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Our last example here involves the decomposition of a space X into the
disjoint union of its path components: X = U X1. As above, each subspace
XA gives a subcomplex S*(Xa) of S,(X). Each n-simplex a: -. X actually
takes values in some therefore a linear combination of n-simplexes in
X can be written, after collecting like terms, as a linear combination of
n-simplexes in various It follows (with routine details left to the reader)
that =

ExERcIsEs

5.6. If (S1, is a complex with = 0 for every n E 1, then = for every
n e Z.

5.7. Prove that a chain map! is an equivalence in Comp if and only if each is an
isomorphism (one calls fan isomorpbisin).

5.8. A sequence SL S, S is exact in Comp if and only if 4 s. s is
exact in Ab for every n e Z.

5.9. (i) Recall that the natural map v: G —, G/K (in Ab) is defined by v(g) = g + K.
If is a subcomplex of S11. show that v: S - defined by v =

is the natural map}, is a chain map whose kernel is
(v is also called the natural map).

(ii) Prove that the first isomorpliism theorem holds in Comp. 1ff: S is a
chain map, then there is an isomorphism

0:

making the following diagram commute (v is the natural map):

SI, I

S are subcomplexes of S1, prove that the second isomorplaism theorem
holds in Comp:

(Sr, + SZ)/SZ.

(Hint: Adapt the usual proof from group theory deriving the second isomor-
phism theorem from the first)

5.ll.
a short exact sequence of complexes

o-.
where i.,: + + and + = +

For every a, H.(L S,) (See the proof of Theorem 4.13.)

The next definition comes from Lemma 4.21.
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Definition. 1ff, g: (S,,, 0) are chain maps, then I and g are (chain)
homotopic, denoted by f g, if there is a sequence of homomorphisms
(P,,: such that, for all neZ,

+

P = is called a chain homotopy.
A chain map 1: 0') —* (S1. 0) is called a chain equivalence if there exists

a chain map g: (Se, 0) —1 0') such that g of and fog Two
chain complexes are called chain equivalent if there exists a chain equivalence
between them.

The relation of homotopy is an equivalence relation on the set of all chain
maps

Theorem 5.3.

(i) 1ff, g: S,, —' S,, are chain maps with f g, then, for all n,

= —.

(ii)' 1ff: —+ is a chain equivalence, then, for all n,

-+

is an isomorphism.

PROOF. (i) See the proof of Lemma 4.21.
(ii) An immediate consequence of part (i) and the definitions. 0

The next definition recalls the cone construction of Theorem 4.19.

Definition. A contracting homotopy of a complex (Se, 0) is a sequence of
homomorphisms c = —* } such that for all n e Z,

O,1+jc,, ÷ =
Plainly, a contracting homotopy is a chain homotopy between the identity

map of (namely, and the zero map on

Corollary 5•4•2 If a complex has a contracting homotopy, then is acyclic
(i.e., = 0 for all n, i.e., S, is an exact sequence).

'The converse is almost true. In Theorem 9.8, we shall prove that and S8 are chain complexes
each of whose terms is free abelian and if 1: —. is a chain map with every 14(f) an
isomorphism, then f is a chain equivalence.
2 converse is true if each term S of S8 is free abelian (Theorem 9.4).
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PROOF. If 1 denotes the identity on then Theorem 5.3 gives =
= 0 for all n. Since is a functor, is the identity on it

follows that = 0. 0
Indeed it is easy to see that a complex with a contracting homotopy is chain

equivalent to the zero complex.

Exact Homology Sequences

A fundamental property of the homology functors is that they are con-
nected to one another. To see this, let us first see how affects exactness.

Lemma 5.5. If 0 —' (S, 8") -40 is a short exact sequence
of complexes, then for each n there is a homomorphism

dn: Ha(S)

given by

cls

PROOF.3 Because i and p are chain maps, the following diagram commutes;
moreover, the rows are exact, by Exercise 5.8.

Suppose that z" Z so 8"z" = 0. Since p is surjective, we may lift z" to e Sn
and then push down to êsn E S,,.1. By commutativity,

e ker(Sn_i -+ S_1) = im i.

It follows that r2 ôsn makes sense; that is, there is a unique (1 is injective)
with = as5.

Suppose that we had lifted z" to c5 e Sn. Then the construction above yields
e with = ôa,,. We also know that

3is method of proof is called diagram di.th,g ft is really a simple technique, for each step is
essentially dictated, and so one proceeds without having to make any decisions.
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so there is E with — a well defined
homomorphism

It is easy to see that this map sends into 0 and that = is
a cycle. Therefore the formula does give a map HM(S) —, HN_l as desired.

0

Definition. The maps d,, of Lemma 5.5 are called connecting homomorphisms.

Theorem 5.6 (Exact Triangle). If 0—. (S, 0 is a
short exact sequence of complexes, then there is an exact sequence

PROOF. The argument is routine, but we give the details anyway. The notation
below is self-explanatory and subscripts are omitted.

(I)
This follows from p5i5 = (p05 = 0, = 0.

(2)
If p5(z + B) = pz + B" = B", then pz = ?s". But p surjective gives s" = ps,

so that pz = O"ps = pOs and p(z — Os) = 0. By exactness, there exists s' with
is' = z — Os. Note that s' e Z', for 18's' = Ois' = 3z — OOs = 0 (z is a cycle).
Since i is injective, ifs' = 0. Therefore

i5(s'+B')—is'+B=z—Os+B=z+B.
(3) im p, ker d.

dp1,(z + B) = d(pz + B") = + B'.

As the definition of d is independent of the choice of lifting, we may choose
z = p1(pz), hence F'0p1(pz) = r'Oz = 0.

(4) kerdc imp5.
If d(z" + B") = B', then x = E B' and x' = .3's'. Now ix' =

18's' = Ois' = z", so that z" — is') = 0, and p'z" — is' e Z. Therefore

— is' + B) = pp'z" — pis' + B" = z" + B".

(5) im d c ker i,.

i5d(z" + B") = + B') = i3p1z" + B = B.

(6) ker i5 im d.
If i,(z' + B') = B, then iz' = Os, and O"ps = pt3s = piz' = 0 and ps E Z".

But d(ps + B") = F1 8p' ps + B' = F1.3s + B' = F1iz' + B = z' + B'. 0
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Theorem 5.6 is called the Exact Triangle because of the mnemonic diagram,

"

H(SZ)

Theorem 5.7 (Naturality of the Connecting Homomorphism). Assume that
there is a commutative diagram ofcomplexes with exact rows:

o es,,

If' ji ji..____

o '0.

Then there Is a commutative diagram of abelian groups with exact rows:

4 H4,(Sp) Ha(S*)

I
Ih

—' —' H1(T,') —-.
d

PROOF. Exactness of the rows is Theorem 5.6. The first two squares commute
because is a functor (e.g., ft if' implies that =

To see commutativity of the last square, we first set up notation: let
S,, = (Se, and let 7; = If cls f e then p surjective implies
that cis = cis ps for some s. But now

cis z" = f cls F'as

= cls j'r' ôs = cls j'fôs (since if' = fl)

= cls (f is a chain map)

= d' cis qfs (since d' cis = clsj'&r1C")

= d' clsfMps = d'f cis ps = d'f cis f. 0
As we remarked earlier, a subspace A of a topological space X gives rise

to a short exact sequence of complexes:

0-4 —' -4 0.

We have already dubbed and as and

respectively; we now give a name to the homology of the quotient complex.
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Definition. If A is a subspace of X, the nth relative homology group A)

is defined to be

Theorem 5.8 (Exact Sequence of the Pair (X, A)). If A is a subspace of X, there
is an exact sequence

-, H,,(A) -, H,,(X) A)

Moreover, (X, A) —. (Y, B) (i.e., f: X —. Y is continuous with f(A) c B), then
there is a commutative diagram

HN(A) HN(X) 4)

I I. I
HM(Y) H1(Y, B) Ha_i(B) '

where the vertical maps are induced by f.

PROOF. Immediate from Theorems 5.6 and 5.7. 0

One now sees that the homology of a subspace A of X influences the
homology of X, because Exercises 5.1—5.4 may be invoked when applicable.

A tower of subspaces gives a long exact sequence of relative homology
groups.

Theorem 5.9 (Exact Sequence of the Triple (X, A, A')). If A' A c X are
subspaces, there is an exact sequence

H,,(A, A') -, H,,(X, A') -' H,(X, A) H,..1(A, A') -p....

Moreover, if there is a commutative diagram of pairs of spaces

(A, A') -, (X, A') (X, A)

I I
(B,B') (Y,B') (Y,B),

then there is a commutative diagram with exact rows

H,,(A, A') Ha(X, A') H,,(X, A) HR.l(A, A')

,t. 1 1 1

H,(Y,B') —. H,,(Y,B) —. —.

PRooF. Apply Theorems 5.6 and 5.7 to the short exact sequences of complexes
given by the third isomorphism theorem (Exercise 5.11):

0 —. —. —. —.0
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and

0—. S,,(B)/S1,(ff ) —. —' —.0. 0
Remarks. (1) If A = 0, then we saw in Exercise 4.4 that S1,(A) = 0. It follows
that 0) = that is, absolute homology groups are particular
relative homology groups. Thus Theorem 5.8 is a special case of Theorem 5.9.

(2) We claim that, except for connecting homomorphisms, all homo-
morphisms in Theorems 5.8 and 5.9 are induced by inclusions.

Recall that Top2 is the category whose objects are pairs (X, A) (where A is
a subspace of X), whose morphisms f: (X, A) (Y, B) are continuous
functions f: X —. Y with f(A) c B, and whose composition is ordinary com-
position of functions. Define a functor Top2 -. Comp as follows. On an
object (X, A), define S(X, A) = To define S, on a morphism
f: (X, A) —. (Y, B), note that the induced chain mapf0: —' S1,( Y) satisfies

c It follows that I induces a chain map —.

namely,

+ +

where y,, One usually denotes by f,. That is a functor is
routine.

In Top2, there are inclusions

(A, 0) (X, c?. (X, A);

there are thus chain maps 1, and j0 that give a short exact sequence of com-
plexes is the natural map!):

Theorem 5.8 is the result of applying the exact triangle to this short exact
sequence of complexes. In a similar way, using the third isomorphism theorem,
one sees that Theorem 5.9 arises from the inclusions (in Top2)

(A, A') c-. (X, A') c-. (X, A).

(3) One can show that Theorem 5.8 implies Theorem 5.9. The proof is a
long diagram chase using the following commutative diagram.

'

I

—_--..J-f,,_1(X)

I
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All maps are either connecting homomorphisms or are induced by inclusions;
the map A) —i B) is defined as the composite i,d: HN(X, A) —'

—. B). Full details can be found in {Eilenberg and Steenrod,
pp. 25—28]. One should note that this proof applies to any sequence of func-
tots 1: Top2 —, Ab that satisfies Theorem 5.8; that is, there is a long exact
sequence of a pair that has natural connecting homomorphisms.

(4) The following special case of Theorem 5.9 will be used in Chapter 8.
If (X, A, B) is a triple of topological spaces, then there is a commutative

diagram

Ha(X, A)
d

B)

where i: (A, 0) —' (A, B) is the inclusion, where d is the connecting homo-
morphism of the pair (X, A), and where d' is the connecting homomorphism
of the triple (X, A, B).

To see this, just apply Theorem 5.9 to the following commutative diagram
of pairs and inclusions:

(A,Ø) ' (X,Ø) (X,A)

ii I
(A, B) (X, B) (X, A).

With Theorem 5.9 in mind, the reader can believe that the following
theorem will be useful.

Theorem 5.10 (Five Lemma). Consider the commutative diagram with exact
rows

A1 • A2 'A3 ' A4 ' A3

lIt Ill
B1 'B2 'B3 'B4 •B5.

(i) 'ff2 and 14 are surf ective and is infective, then is surf ective.

(ii) 1112 and are infective and f1 is surf ective, then is infective.
(iii) If 14,15 are isomorphisrns, then is an isomorphism.

PROOF. Parts (i) and (ii) are proved by diagram chasing; part (iii) follows from
the first two parts. 0

Having seen the proof of the exact triangle and having supplied the proof
of the five lemma, the reader should now be comfortable with proofs by
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diagram chasing. Although such proofs may be long, they are not difficult; at
each step, there is only one reasonable way to proceed, and so such proofs
almost write themselves.

The definition of the relative homology group H1(X, A) as
is perhaps too concise. Let us put this group in a more convenient form.

Recall the definition of the quotient complex

SR+l(X) S1_1(X)

Sa+i(A)
'

S,_1(A)

where, for y SN(X),

+ S1(A)) = 8v + SA_l(A).

Now

ker = {y + D,y e

and

im = {y + SN(A): y e im = BR(X)}.

Definition. The group of relative n-cycles mod A is

A) = {y e ô,y Sa_i(A)}.

The group of relative n-boundaries mod A is

A) = (y e y — y' e for some y' E

= +

It is easy to check that S,,(A) A) ZR(X, A) Se(X).

Theorem 5.11. For aim � 0,
H,(X, A) ZN(X, A)/B,,(X, A).

PROOF. By definition,

A) = ker ô,,/im

But it is easy to see from our remarks above that

ker = ZN(X,

and

im = BR(X,

The result now follows from the third isomorphism theorem (for groups). 0

ExERcisEs

5.l 3. If A is a subspace of X, then for every n � 0, is a free abelian group
with basis all (cosets of) n-simplexes a in X for which im A.



tOO 5. Long Exact Sequences

5.14. (i) Consider an exact sequence of abelian groups

—' —. B. —. A1_1

in which every third map is injective. Then

0—' A,, -s-. B. C,, —0
is exact for all n. (Hint: Exercise 5.2.)

(ii) If A is a retract of X, prove that for all n � 0,

H,,(X) H,,(A) H,(X, A).

(iii) If A is a deformation retract of X, then A) = 0 for all n � 0. (Note:
not impiythatK=0.)

5.15. Assume that 0—. S -.0 is a short exact sequence of complexes. If
two of the complexes are acyclic, then so is the third one.

5.16. If f: (X, A)-. (X', A'), then 1,: —. satisfies A)) c
A') and f1,(B(X, A)) c A').

5.17. 1ff: (X, A) -.(X', A'), then the induced map!1,: HN(X, A)-. A') is given
by

y + + B.(X', A'),

where y e A). (The original definition off, is not in terms of relative cycles
and relative boundaries.)

p5.18. if every face as, of an n-simplex a: 1k" —. X has its values in A c X, then a
represents an element of Z1(X, A).

Exercise 5.18 gives a picture.

For example, a path a in X is a 1-cycle if it is a closed path; it is a relative
1-cycle if it begins and ends in A. Observe, in this example, that if A =
then "cycle" and "relative cycle" coincide. This is actually true (almost) always.
First, we do a small computation.

Theorem 5.12. If X is path connected and A is a nonempty subspace, then
H0(X, A) =0.

PRoOF. Choose x0 E A, and let y = e Z0(X, A) = S0(X). Since X is path
connected, for each x e X there is a "path" AL -. X with = x0 and

x
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= x. Then E S1(X), and

= — =y —

But Y defined as mjx0 lies in S0(A); hence y — y' = e B0(X), and
so y e BO(X, A). Therefore BO(X, A) = Z0(X, A) and H0(X, A) = 0. £3

Theorem 5.13. If A E A} is the family of path components of X, then, for
each n � 0,

H,(X, A) HJU(XA, A fl

PROOF. Use Exercise 5.12 and Theorem 4.13. 0

Corollary 5.14. H0(X, A) is free abelian and

rank H0(X, A) = card{Ae A:

A E A) is the family of path components of X).

PRooF. By Theorem 5.13, H0(X, A) HO(XA, A fl X1). If A fl XA = 0, then
Ho(XA, A 11 XA) = Ho(Xa) = Z (by Theorem 4.14(i)). If, on the other hand,
A flXa $ 0, then Ho(XA, Afl XA) = 0 (by Theorem 5.12, for X1 is path
connected). 0

Corollary 5.15. If X is a space with basepoint x0, then H0(X, x0) is a free abelian
group of (possibly infinite) rank r, where X has exactly r + I path components.

PROOF. Since path components are pairwise disjoint, the path component
containing x0 is unique, and so {xo) fl = 0 for all A A0. Hence
Ho(XA, (xo} fl Z for all A A0, while x0) = 0. 0

Theorem 5.16. Let X be a space with basepoint x0. Then

HN(X, x0) H(X)

foralin � 1.

PRooF. By Theorem 5.8, there is an exact sequence

— H1((x0)) — H,(X) —' H1(X, x0)

If n> 2, then n — 1 � 1, and the dimension axiom (Theorem 4.12) gives
hence for all n�2. To

examine the remaining case n = I, let us look at the tail of the exact sequence:

—, H1({x0))-4 HI(X, x0)-. H0(X, x0)—.0.

Since H1 ({x0 }) = 0, the map g is injective; by Exercise 5.2, g is surjective (hence
is an isomorphism) if and only if h is injective. The map h has domain
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H0({x0}) Z and target the free abelian group 1f0(X). If h 0, then h must
be injective (if ker h 0, then 110(X) would contain a nontrivial finite sub-
group isomorphic to Z/ker h). Now im h = ker k, so that ker k 0 implies
that im h 0, hence h 0, as desired. But k, being induced by inclusion, is
the map S0(X)/B0(X) —' S0(X)/B0(X) + S0(x0)[S0(X) = 4(X) = ZO(X, x0)]
given by y + B0(X)i—iy + B0(X) + S0(x0), and so ker k = (B0(X) + S0(x0))/
B0(X). The proof of Theorem 4.14 describes B0(X) as all E with =
hence ker k 0, and the proof is complete. 0

For each n � I, one may thus regard HN as a functor with domain Tops,
the category of pointed spaces.

Reduced Homology

The coming construction of reduced homology groups will allow us to avoid
the fussy algebra at the end of the proof of Theorem 5.16.

Definition. Let 8) be the singular complex of a space X. Define (X)
to be the infinite cyclic group with generator the symbol [ ], and define
Do: S0(X) (X) by i—' [ ]. The augmented singular complex
ofXis -

-, S2(X) S0(X) 0.

It is a quick calculation that = 0, so that the augmented singular
complex is in fact a complex (having L1(X) Z as a nonzero term of negative
degree).

There are several remarks to be made. First, the map 80 has already
appeared (in the proof of Theorem 4.14(i)). Second, suppose that one defines
the empty set 0 as the standard (— 1)-simplex. For any space X, there is a
unique (inclusion) function 0—' X, and so (X) as defined above is rea-
sonable. Moreover, if one regards the boundary of a point x E X as empty,
then is obtained from 80x = [ J by extending by linearity.

Definition. The reduced homology groups of X are

= 8), for all n � 0.

Theorem 5.17. For all n � 0,

x0).

PROOF. If n � 1, = ker DRum = so the result follows from
Theorem 5.16. If n = 0, the end gives a short exact sequence

0—' ker & (. S0(X) —, 0.
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S0(X) satisfies = 1, then it is easy to see4 that S0(X) = ker
and Z. But = 0 implies that B0(X) = im a, c ker a0. Since
S0(X) = 4(X), we have5

H0(X) = S0(X)/B0(X) = (ker <cz>)/B0(X)

(ker Z = R0(X) Z.

Since H0(X) is free abelian, the result follows from Corollary 5.15. 0

One can squeeze a bit more from this proof to improve Theorem 5.17 by
exhibiting a basis of R0(X).

Corollary 5.18. Let {Xa: A e A} be the family of path components of X, and let
be a choice of points, one from each path component. If x0 e X lies in

then R0(X) is free abelian with basis — x0): ,2,

PROOF. We saw in the last proof that

S0(X) = ker

where is any 0-chain with = 1; let us choose = Since X is a basis
of S0(X), we see that {x0} U Y is also a basis, where V = {x — x0: x x0}.
We claim that Y is a basis of ker o0, for which it now suffices to prove that
V generates ker As 80(x — x0) = 0, we see that V c ker a0; furthermore, if

E m1x, E SO(X) and Em, = 0, then

m,x, = m,x, — = Em,(xj — x0)

(of course, we may delete x, — x0 from the sum if x, = x0).
R0(X) = ker is a direct summand of H0(X) = S0(X)/B0(X) =

(ker + <xo>)/Bo(X). By Theorem 4.14, {cls x0} is a basis
of 110(X). As above, — x0): A0) U x0} is also a basis of 110(X);
since — x0): A A0} generates I?0(X), it is a basis. 0

We shall see that reduced homology has other uses than allowing us to
avoid algebraic arguments as in the proof of Theorem 5.16. For example, look
at Theorem 6.5 and its proof.

'This is a special case of a more general result (Corollary 9.2): ifO —. K C. G -. F —.0 is exact and
F is Iree abelian, then G K F', where P F. Here we present a proof of this special case.

then x= ma and 80(x)=0=m, hence x=0; ifyeS0(X), then
say, and soy = (y — ka) + ka e ker ö0 + (a>.

'If for I = 1, 2, then (A1 A2)/(B1 ® B,) (A1/B1)e(A,/B2) (indeed the analogous
statement for any index set is true): define a map 0: A1 A2 —. (A1/B1) ® (A,/B,) by (as,

a2 + B2). Then 0 is surjective and ker 0 B1 B2; now apply the first isomorphism
theorem
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EXERCISES

5.19. If A c X, then there is an exact sequence

-, H..(X, A) R.1(A)

which ends

A)-.O.

(Hint: =

5.20. Show that H1(D2, St) = 0.

5.21. Assume that X has five path components. If CX is the cone on X, what is
H1(CX, X)?

5.22. What is H,(S', S°)?

5.23. Show that X) 0 for all n � 0.

There is a geometric interpretation of relative homology groups other than
Theorem 5.11. Recall that the quotient space X/A is obtained from X by
collapsing A to a point. For a large class of pairs, for example, for A a "nice"
subset of a polyhedron X, one can prove that A) (see
Theorem 8.41). In this case, the exact sequence of Exercise 5.19 is

-' -' R,,(X) -,
It turns out that the importance of relative homology groups is such that

the category of pairs, Top2, is more convenient than Top. Let us therefore give
the obvious version of homotopy in Top2.

Definition. 1ff, g: (X, A) —'(1', B), then f g mod A if there is a continuous
F: (X x I, A x I) (Y, B) with F0 = land F1 = g.

This notion of homotopy mod A is weaker than the previous notion of
homotopy ret A, which requires that f IA = and also that F(a, t) remain
fixed for all a e A during the homotopy (i.e., for every time t). Now we require
only that F(a, t) B for all a e A and all t I. Of course, the notions coincide
when B is a one-point space.

Here is the appropriate version of the homotopy axiom in Top2.

Theorem 5.19 (Homotopy Axiom for Pairs). If f, g: (X, A) —. (Y, B) and
f g mod A, then for all n � 0,

= A) B).

PROOF. If j: A '-. X is the inclusion, then Exercise 4.10 gives a commutative
diagram
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p4
Sa(A) SN+l(A x I)

1(1x
1),

Sft(X) )( I),

where is the nth term of the chain homotopy of Theorem 4.23. It follows
that induces a homomorphism F,: — x x I),
that is, A) S,,÷1 (X x I, A x I). The proof now proceeds exactly as
that of Theorem 4.23; it is left to the reader to show that the maps P,, satisfy
.3P + P.3 = — and hence comprise a chain homotopy. 0



CHAPTER 6

Excision and Applications

Excision and Mayer—Vietoris

The last fundamental property (or axiorn)of homology is excision. We state
two versions. If A is a subspace of X, then A denotes its closure and A° denotes
its interior.

Excision I. Assume that U c A X are subspaces with U c A°. Then the
inclusion i: (X — U, A — U) c. (X, A) induces isomorphisms

for all n.

U,A—

Stated in this way, we see that one may excise (cut Out) U without changing
relative homology groups.

Excision IL Let X1 and X2 be subspace's of X with X U Then the
inclusion j: (X1, X1 flX2) C.. (X1 UX2, X2) = (X, X2) induces isomorphisms

for all n.

HN(Xl, X1 fl X2) z X2)
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The second form is reminiscent of the second isomorphism theorem. Note
that both forms involve two subspaces of X.

Theorem 6.1. Excision I is equivalent to Excision II.

PROOF. Assume Excision 1, and let X = X1° U Define A = X2 and U =
X — X1. First, we claim that U c A°: X X —

X — (for the last set is closed); but X — =
= = A°.Second,X — U =X—(X— X1)=

X1 and A — U = — (X — X1) = X2 fl (where = X — X1, the
complement of X). Thus the pair (X — U, A — U) is the pair (X1, X1 flX2).
Finally, the pair (X, A) is the pair (X, X2). The inclusions coincide and hence
induce the same map in homology.

Assume Excision II, and let U A°. Define X2 = A and X1 = X — U.
Now U U c A° implies X — U X — U X — A°. Since X — U is open,

Finally, it is easy to see that (X1, X1 fl X2) = (X — U, A — U) and (X, X2) =
(X,A). 0

Before we prove excision, let us see some of its consequences. We begin
with a general diagram lemma.

Lemma 6.2 (Barratt-Whitehead). Consider the commutative diagram with exact
rows

'B.

in which every third vertical map hR is an isomorphism. Then there is an exact
sequence

_______

, djç'q1

_______

PROOF. The map (1k, is defined by a,,'—' (i,,a,,, f,,o,,); and the map g,, — J. is
defmed by (b,,, a diagram chase.

0
Theorem 6.3 (Mayer-Vietoris). If X1, X2 are subspaces of X with X =
X U X20, then there is an exact sequence

— fl X2)
('II' II,(X,) — 't H,,_1(X, flX2)
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with i2, g, j inclusions and D = dh'q,, where h, q are inclusions and d is
the connecting homomorphism of the pair (X1, X1 11 X2).

PRooF. The following diagram of pairs of spaces commutes when all maps are
inclusions:

(X111X2,Ø) (X1,Ø) (X,,X1flX2)

1"
(X2, 0) (X, 0)

q
(X, X2).

By Theorem 5.9, there is a commutative diagram with exact rows:

— fiX2) 1I.(X,) H.(X1.X,flX2) —f--.

I— H,(X) — H,(X,X2) — —
Excision 11 asserts that each is an isomorphism, so that Lemma 6.2 gives
the result at once. 0

EXAMPLE 6.1. Here is an example of a space X = X1 U X2, where X1 and X2
are (closed) subspaces of X (but where X X7 U in which the Mayer—
Vietoris theorem, and hence excision, fails.

Let X be the closed vertical strip in R2 lying between the y-axis and the
line x = 1/2ir. Define

X1 ={(Q,y): —l �y}U{(x,y):O.<x � 1/2xandsin(1/x)�y};

define

X2={(O,y):y� 1}U{(x,y):O<x� l/2xandsm(l/x)�y).

Note that X1 U X2 = X and that X1 fl X2 is the sin(1/x) space. Were the
Mayer—Vietoris theorem true here, there would be an exact sequence

H1 (X) -. H0(X1 fl X2) -. 110(X1) H0(X2) 110(X) -.0.

Since X, X1, and X1 are contractible, H1(X) = 0 and H0(X) = Z = H0(X1) for
= 1, 2. There is thus an exact sequence of the form

and this contradicts Exercise 5.5.

Corollary 6.4 (Mayer—Vietoris Theorem for Reduced Homology). If X1, X2
are subspaces of X with X = X1° U and X1 fl X2 0, then there is an exact
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sequence

-, fi,(x1 flX2)-' Rft(X2) -. 11,(X)—. fl X2)-*

with induced maps as in Theorem 6.3. This sequence ends

1?0(X1) R0(x2) I?0(X) -.0.

PROOF. If x0 e X1 fl X2, proceed as in Theorem 6.3 from the commutative
diagram of inclusions of pairs

(X1 flX2, x0) (X1, x0) (X1, X1 11X2)

I I I
(X2,x0) (X,x0) (X,X2). 0

EXERaSES

Assume that X = A U B is a disconnection (A and B are nonempty open sets and
A fl B = 0). Then e for all n 0. (Hint: The inclusion
A c.. X is an excision here; or, use Theorem 4.13.)

6.2. if X = A U B is a disconnection, then A) HR(B) for all n � 0.

*63 Assume that X = X U X and Y = Y1° U Y; assume further that f: X —. Y is
continuous with c Y1 for i = 1, 2. Then the following diagram commutes:

D
111(X) —p

i.j,
1°'

Ha(Y) H..1(Y1flY2),

where g is the restriction off and D, 1)' are connecting homomorphisms of
Mayer— Vietoris sequences.

6.4. Assume that X = X1 U X1 U X3, where each X, is open. If all X1, all three X, fl Xj,,
and X1 fl X2 fl X3 are either contractible or empty, then Ha(X) =0 for all fl � 2.

(Hint: Iterate Mayer— Vietoris.) (For a generalization to any open cover of X, see
[K. S. Brown, p. 166). Also, see Corollary 7.27.)

Homology of Spheres and Some Applications

Theorem 6.5. Let S" be the n-sphere, where n � 0. Then

jfp=0

n > 0, then
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H(SR)_JZ :fp=Oorp=n
tO otherwise.

Remark. Using reduced homology, we can state these formulas more concisely:

ifp=n
10

PROOF. We do an induction on n � 0 that is as claimed for all p � 0.
The formula holds if n = 0, by the dimension axiom (Theorem 4.12) and
Theorem 4.13; one can also use Exercise 6.1.

Assume that n > 0. Let a and b be the north and south poles of S", let
x1 = SR — (a), and let X2 = SR — {b}. Note that SR = X7 U X2° (because X1
and X2 are open), that X1 and X2 are contractible, and that X1 11 X2 = SR —

(a, b} has the same homotopy type as the equator SR_i (by Exercise 1.31).
Applying the Mayer—Vietoris sequence for reduced homology, we obtain an
exact sequence

fl X2)—'

Contractibility of X1 and X2 shows that the flanking (direct sum) terms are
both zero, and so

flX2)

by Corollary 4.24 (note that we are using n > 0 as well). By induction,
= Z if p — I = n — 1 and 0 otherwise; therefore = Z if

p=nand0otherwise. 0

This theorem illustrates the value of reduced homology. Not only is the
"reduced" statement better, but the proof is shorter. Without reduced homo-
logy, the inductive step would divide into two cases: p — 1 > 0 (which would
proceed as above) and p — I = 0 (which would require an extra argument
involving free abelian groups as in the proof of Theorem 5.16).

We may now draw some conclusions.

l'heorem 6.6. If n � 0, then SR is not a retract of

PROOF. We have verified all the requirements for the proof of Lemma 0.2.
0

Theorem 6.7 (Brouwer Fixed Point Theorem). 1ff: 17' 17' is continuous, then
there isxelY withf(x) = x.

PROOF. Theorem 0.3.

Theorem 6.8. If m n, then STM and SR are not homeomorphic. Indeed they do
not have the same homotopy type.
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PROOF. If SN' and SN had the same homotopy type, then H,(S") for
allp. 0

Theorem 6.9. If m n, then and are not homeomorphic.

PROOF. If there is a homeomorphism f: R —, choose x0 e R and obtain
a homeomorphism Rtm — {xo} z RN — {f(xo)}. But R — {xo} has the same
homotopy type as (Exercise 1.29), which leads to a contradiction of
Theorem 6.8. 0

Theorem 6.10. If n � 0, then 5" is not contractible.

PROOF. Otherwise 5" would have the same homology groups as a point. 0

Using Exercise 3.21, we now have examples, namely, 5" for n � 2, of simply
connected spaces that are not contractible.

Barycentric Subdivision and the Proof of Excision

The applications of Theorem 6.5 are not exhausted, but let us get on with the
proof of excision (more precisely, of Excision II); we begin with an algebraic
lemma.

if X1 is a subspace of X, regard as the subcomplex of S1(X) whose
term of degree n is generated by all n-simplexes cr: —' X for which

X1.

Lemma 6.11. Let X5 and X2 be subspaces of X. If the inclusion +
c.. S,(X) induces isomorphisms in homology, then excision holds for

the subspaces X1 and X1 of X.

PROOF. Applying the exact triangle to the short exact sequence

+ +

we obtain a long exact sequence in which every third arrow is

an isomorphism (by hypothesis); it follows easily (Exercise 5.4) that
+ = 0 for all n.

Now consider the short exact sequence of complexes

+ j
0—.. -4 -4 —.0.

+

The corresponding long exact sequence has every third term zero, so that
is an isomorphism for every n.

Finally, consider the commutative diagram of complexes
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k

+

where k is induced by the inclusion (X,, X, flX2) c-. (X, X2) and t is the
isomorphism of the second isomorphism theorem (recall that fl X2) =

fl Now ft = k implies Hfl(j)HA(t) = We have just seen
that is an isomorphism, while is an isomorphism because I is. It
follows that is an isomorphism for all n, which is the statement of
Excision II. 0

It thus remains to show that the inclusion + c.

induces isomorphisms in homology whenever X = U This would
appear reasonable if every n-cycle in X were a sum of chains in X, and chains
in X2. However, an n-simplex a in X may have its image in neither X, nor
X2. The idea is to subdivide A" into small pieces so that the restrictions of a
to these pieces do have images in either X, or X2. The forthcoming construc-
tion, barycentric subdivision, is important in other contexts as well; let us
therefore consider it leisurely.

We begin by examining (geometric) subdivisions of A" for small n. With an
understanding of these low-dimensional examples, we shall see how to define
(inductively) subdivisions of every A"; this definition will then be transferred
to subdivisions of n-simplexes in an arbitrary space X.

Now is a one-point set; we admit it cannot be divided further and define
A° to be its own subdivision. Consider the more interesting A' = [e0, e,]. A
reasonable way to subdivide A' is to cut it in let b be the midpoint of the
interval [e0, e1], that is, b is the barycenter of A'. Define the barycentric
subdivision of A' to be the 1-simplexes [e0, b] and [b, e,] and their faces. Let
us now subdivide the standard 2-simplex A2.

e1

b2

b0
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Subdivide the triangle A2 as follows: first, subdivide each face (which is a
1-simplex) as above, using new vertices the barycenters b0, b1, b2; second, let
b be the barycenter of A2; finally, draw the six new triangles illustrated above.
Here is one way to view this construction. We have adjoined new vertices
b1, b2, b to the original vertices. Which triangles do we form using these seven
vertices? Note that each vertex is a barycenter of a face of A2: the original
vertices e0, e1, e2 are barycenters of 0-faces (themselves); b0, b1, b2 are bary-
centers of 1-faces; b is the barycenter of A2 itself. Each vertex may thus be
denoted by where a denotes a face of A2, and {b', ba, b"} is a triangle
precisely when or (t is a proper face of a) and or < p. There are thus 3!
triangles.

Definition. The barycentric subdivision of an affine n-simplex Z", denoted by
Sd E", is a family of afline n-simplexes defined inductively for n � 0:
(i) SdE°—E°

(ii) if PN+1 are the n-faces of and if b is the barycenter of
then Sd consists of all the (n + 1)-simplexes spanned by b and

n-simpiexes in Sdp1, I = 0,..., n + 1.

It is plain that EN is the union of the n-simplexes in Sd EN.

ExERcisEs

6.5. Prove that Sd EN consists of exactly (n + 1)! n-simplexes.

6.6. (i) Every vertex b of Sd ZN is the barycenter of a unique face a of EN (denoted by
b = b6).

(ii) Every n-simplex in Sd I." has the form bdt, ..., where each is an
i-face olE' and 00 <<

Observe that even though an affine n-simplex may not be given with an
orientation (i.e., an ordering of its vertices), Exercise 6.6(u) shows that each
n-simplex of Sd comes equipped with an orientation.

Here is one last remark before we subdivide an arbitrary n-simplex
or: A' X. Recall that we saw in Exercise 2.10 that an (affine) n-simplex
[Po...., p,] is the cone over its ith face [Po. ..., ..., p3 with vertex
This observation suggested the singular version, in a convex set, of the cone
b . a over a singular n-simplex a with vertex b (see Theorem 4.19).

Definition. Let E be a convex set. Then barycentric subdivision is a homo-
morphism Sd,: S,(E) — S,(E) defined inductively on generators t: A' —. E as
follows:

(1) If n = 0, then Sd0(r) =
(ii) if n > 0, then Sd,(T) = t(b,). Sd,_1 (or), where is the barycenter of
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If X is any space, then the nth barycentric subdivision, for n � 0, is the
homomorphism SN(X) —, S(X) defined on generators a: —* X by

SdN(r) =

where a" is the identity map.

Observe that a: —, X induces —. so that =
o does make sense and does lie in It is easy to see that both
defmitions of agree when Xis convex. If = then =

= Em1ar1; thus one may view the n-simplexes ; as the smaller
simplexes subdividing A", and one may view the n-simplexes a; as "restric-
tions" of a to the r1 that subdivide the image of a.

EXERCISES

6.7. (i) Give explicit formulas for when n = 1 and n = 2.
(ii) Give explicit formulas for whenever a is an n-simplex in X and n = 1

and n = 2.

"6.8. If f: X —, Y is continuous, prove that Sd Sd, that is, the following
diagram commutes for every n � 0:

S1(X) ' S1(X)

i4
'

Lemma 6.12. Sd: —, is a chain map.

Pitooi. The proof is in two stages, according to the definition of Sd. Assume
first that X is convex and that v: A" —, X is an n-simplex. We prove, by
induction on n � 0, that

Sd,,_1 = 1),, Sd,, t.

Since Sd_1 = 0 (because S_1(X) = 0) and = 0, the base step n = 0 is
obvious. If n > 0, then

Sd,, r = (definition of Sd)

= —

(Corollary 4.20(i): D(b . y) = y — b. öy)

= Sd,,...1 8,,r — t(b,,) . ((Sd,,_2 ö,,..1 )ê,,t) (induction)

= (08 = 0).

Now let X be any space, not necessarily convex. If a: A" —, X is an
n-simplex, then
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8 Sd(a) = (definition of Sd)

= 8 Sd(t5") (a# is a chain map)

= a1, Sd 5(ö") (A" is convex)

= Sd 8(ö") (Exercise 6.8)

= Sd 8a0(ô") (a, is a chain map)

= Sd 0o' (a,(ö") = a). 0
What is z + Sd z + the homomorphism induced by Sd in

homology?

Lemma 6.13. For each n � 0, —' H,,(X) is the identity.

PROOF. It suffices (Theorem 5.3) to construct a chain homotopy between the
chain maps Sd and 1, the identity on we want homomorphisms
7: —, such that + = — Sd1.

Again the proof is in two steps. Assume first that X is convex; let us do an
induction on n. If n = 0, define T0: S0(X) -. S1(X) as the zero map. If a is a
0-simplex, then

0=8T0a and a—Sda=a--a=O.
Assume that n > 0. If y then T1y should satisfy

87y=y—Sdy—

Now the right-hand side is a cycle, because, using induction,

8(y—Sdy—T1_18y)——8y—äSdy—(I —Sd— T1_28)8y=0.

Since X is convex, the "integration formula", Corollary 4.20(u), applies; define

7y=b.(y—Sdy—

andnotethatôT1y=y—Sdy—
The remainder of the proof proceeds as the second stage of the preced-

ing lemma. Let X be any space, not necessarily convex. If a: A" —, X is an
n-simplex, define

1(a) = a1, 1(ö")

where ö" is the identity on A", and extend by linearity. We leave as an exercise
that the T1's constitute the desired chain homotopy. As a hint, one should
show first that 1ff: X -. Y, then there is a commutative diagram

S1(X)

, ' 0
J.
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Corollary 6.14. If q � 0 is an integer and f z e ZA(X), then

cis z = z).

PROOF. Since Sd induces the identity on so does every composite
z + 2 + 0

If E is a subspace of a euclidean space, then a continuous map E
was called affine (in Chapter 2) if t1e1) = E t1r(e1), where � 0 and

= 1. Clearly, the identity —. is affine.

Definition. If E is a subspace of euclidean space, then an n-chain y =
m1a1 is affine if each aj is afline.

EXERCISES

6.9. If a is afline, then so is its ith face ae,; moreover, the vertex set of ae,, the set of
all images of e0, e1 is contained in the vertex set of a. Conclude that &r
is afline whenever a is affine.

6.10. If E is convex and a is affine, then so is the cone b.a, where bE E; moreover,
the vertex set of b. a is the union of {b} and the vertex set of a. Conclude that
Sd a is affine whenever a is affine.

Definition. If E is a subspace of some euclidean space, and if y =
where all mj 0, then

mesh = sup {diam aj(A")}
J

(note that is compact (because A" is) and hence has finite diameter).

Using Theorem 2.9, the reader may show that if E is a subspace of some
euclidean space and y is an afline n-chain in E, then mesh(Sd y) �
[n/(n + 1)] mesh y. Iteration gives the next result.

Theorem 6.15. If E is a subspace of some euclidean space and y is an affine
n-chain in E, then for all integers q � 1,

mesh y � (n/n + mesh y.

This last theorem is fundamental; it says that the mesh of an affine chain,
for example, s": A" A", can be made arbitrarily small by repeated barycen-
tric subdivision (n/n + 1)" = 0 because n/n + 1 < 1).

After this discussion of various features of barycentric subdivision, let us
return to the proof of excision. Recall that we have only to show that the
inclusion + c.. induces isomorphisms in homology when-
everX =
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Lemma 6.16. If X1 and X1 are subspaces of X with X = U and if a is
an n-simplex in X, then there exists an integer q � 1 with

ae + SR(X2).

PRooF. Since a: A" —. Xis continuous, is an open cover of
A". Since A" is compact metric, this open cover has a Lebesgue number A> 0
whenever x, ye A" satisfy lix — Yll <A., then there is an i = 1, 2 with a1(Xfl
containing both x and y. Choose q � 1 with (n/n + ir diam A" < A.. Since the
identity ö": A" -. A" is an affine n-simplex in A", Theorem 6.15 says that such
a choice of q forces

mesh Sd(ÔR) < A.

If = mjr,, then diam t1(A") < A for every j; hence (X')
for some i = E {l, 2). Now a = a, = =
therefore c X1 (where I = for every J. After collecting terms,

a can be written + Vi' where E 0

Theorem 6.17 (Excision). IfX = U X10, then the inclusion j: (X1, X1 fl X2) c.
(X, X2) induces isomorphisms, for all n � 0,

H(X1, X1 fl X2) Xi).

PROOF. By Lemma 6.11, it suffices to show that the maps

OR: + —' =

induced by the inclusion + c.. are isomorphisms. If
e for i = 1, 2 and if y1 + Vi is a cycle in the subeomplex (hence in

then

0: [y1 + + Vi).

where we denote the homology class in the subcomplex by [ ].
o is surjective. Let cls z e By Lemma 6.16, there is an integer q � 1

with z = + Vi, where e for i = 1, 2. Since z is a cycle and
is a chain map, it follows that z = + Vi is a cycle. Thereforc

+ is an element of the nth homology group of the subeomplex, and
Offy1 + Vi]) = cls(y1 + Vi) = cis z, by Corollary 6.14.

O is injective. Suppose that + Vi] e ker 0; then cls(y1 + Vi) = 0, so there
is /3 e with 313 = y1 + Vi. By Lemma 6.16, there is an integer q � 1
with Sd4 /3 = + where $,e for I = 1, 2. Hence + /32) =
OSd" p = i3/3 = Sd4(y1 + Vi) (because is a chain map). It follows
that ÷ Vi)] = 0. However, we know only that cls Sd4(y1 + 72) =
cls(y1 + we do not yet know that [Sd4(71 + Vi)] = [Vi + 72].

By Exercise 6.8 applied to the inclusion map X,' X, one sees that
Sd: —, carries into for I = 1, Z hence Sd carries the
subcomplex + into itselt Moreover, the contracting homotopy
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—, of Lemma 6.13 restricts to contracting homotopies T'
and T" of and S1(X2), respectively (inspect the definition). Therefore

— = (T'a + aT')71 and 72—
72 = (T"ô + 3T")72, hence

Vt + 72 — + 72) T'öy1 + T"e3y2 + a(T'71 + T"72).

Toy1 + T'0y2 = T and r are restrictions of and so it is
0, since + is a cycle. Because O(Ty1 + T'72) e + it fol-
lows that [Vi + 72] = + 72)]. But + 72)] = + fl2)] = 0.

0
Having completed the proof of excision, we may now accept the Mayer—

Vietoris theorem and the calculation of the homology groups of the spheres.
We record two useful facts before giving more applications.

Lemma 6.18. Let X = let X1 flX2 c.• be inclusions for j =
1, 2, and let cis z e fl X2). If HR÷i(X) = 0, then cls z = 0 (land only

cis z = 0 and cis z = 0.

PRooF. Consider the portion of the Mayer—Vietoris sequence

fl X2)
f2.)

Since = 0, the map is injective. Thus cis z = 0 if and only if
cis z = 0 in and cis z = 0 in 0

Lemma 6.19. Assume that X = X is homologous
to a cycle of the form Vi + 72, where Moreover, D:

(X1 11 X2) is the connecting homomorphism in the Mayer— Vietoris
sequence, then

D(cls z) = D(cls(y1 + 72)) = cls(0y1).

Remark. Of course, one may interchange X1 and X2.

PROOF. That cis z = cls(y1 + 12) has already been proved (in Theorem 6.17).
To see the last assertion, consider the diagram

flX2)

q,
+

where sends 71 + into its coset mod and is the isomorphism
of the second isomorphism theorem; hence h' sends the coset 71 + +
SN(X2) to + fl X2). The formula for 0 in Theorem 6.3 is D =

q that 0 cls(y1 + 72) iS d(71 + Sa(XI fl X2)), where d is the connecting
homomorphism from the exact sequence
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Now d = (Lemma 5.5); thus one lifts + fl X2) to Yi. pushes

down to and regards as being in X1 11 X2. Hence D + Y2) =
cls(5y1) in HN_l(Xl fl X2). 0

More Applications to Euclidean Space

Recall that if h: Z -. Z is a homomorphism, then h is multiplication by some
integer m: h(n) = mn for all n e Z (indeed m = h(I)).

Definition. A continuous map f: 5" —, 5" (where n > 0) has degree m, denoted
by d(f) = m, if —, is multiplication by m.

Recall that we discussed a notion of degree for maps f: S1 —. S1 (denoted
by deg f) in terms of fundamental groups.

Theorem 6.20. 1ff: S1 —, S1. then deg(f) = d(f).

PROOF. By Exercise 4.13, there is a commutative diagram

it1(S', 1) '

R1(S')

where q is the Hurewicz map. Since ir1(S1) Z is abelian, we know that q' is
an isomorphism (Theorem 4.29). Finally, use Exercise 3.14, which says that
one may view ir1(S1, 1)—. it1(S1, f(l)) as multiplication by deg(f). 0

Lemma 6.21. Let f, g: 5" S" be continuous maps.

(i) d(g o f) = d(g)d(f).
(ii) d(15,.) = 1.

(iii) 1ff is constant, then d(f) = 0.
(iv) 1ff g, then d(f) = d(g).1
(v) Iff is a homotopy equivalence, then d(f) = ± 1.

PROOF. All parts follows from the fact that 11 is a functor defined on hTop
(and that = Z); in particular, (iii) follows from the existence of a corn-

'The converse is also true, and it is a theorem of Brouwer (see tSpanicr. p. 398]). We know the
converse when n I (Corollary 3.18). A theorem of Hopf (see [Hu (1959), p. 53]) generalizes this
by classifying all homotopy classes of maps X -. S. where X is an n-dimensional polyhedron, in
terms of the cohomology Z).
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mutative diagram

where is a one-point space.

Sn /
{s)

0
Using degrees, one may give another proof of Theorem 6.10: Sn is not

contractible. Otherwise, 1g.. c, where c: 5" -.5" is some constant map, and
these two maps would have the same degree, by Lemma 6.21 (iv); but Lemma
6.21, parts (ii) and (iii), show that this is not so.

Computation of the degree of a map is facilitated if one has an explicit
generator of The next result exhibits a generator when n = 1.

Theorem 6.22. Let x = (—1, 0)and y = (1, 0)e S1. let a be the (northerly) path
in S1 from y to x, and let r be the (southerly) path in S1 from x to y. Then
a + r is a 1-cycle in S' whose homology class generates H1 (S').

Let n = (0, 1) and s = (0, —1) be the north and south poles; let X1 =
S' — {n} and X2 = S' — {s}. Note that S1 = U each X1 is contractible,
and X1 11 X2 = S' — {n, s} consists of two disjoint open arcs L and H with
x e Land y R. The Mayer—Vietoris theorem for reduced homology provides
exactness of

R1(X2) f11(S') f10(X1 1) X2)-. B0(X2).

Now D is an isomorphism, because contractibility of X1 and X2 forces
both direct sums to be zero. Since X1 fl X2 = LU R, Corollary 5.18 gives
fl0(X1 fl X2) infinite cyclic with generator cls(x — y). But Lemma 6.19 shows

n

xl y

S

PRooF. First, a + r is a 1-cycle, because
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that D cls(o + t) = cis = cls(x — y); it follows that cls(o + t) generates
R1(S')=H1(S1). 0

Remark. One can show that a (simple) closed path generates H1(S1), but we
need Theorem 6.22 as stated.

Defmition.lfx —x =(—x1,...,
The antipodal map a = —' is defined by xi—' —x.

Note that the distance from x to —x is 2, the diameter of S". so that —x is
indeed antipodal to x.

Theorem 6.23.11 n> 1, then the antipodal map

a preliminary step, we show, by induction on n, that the map

given byf(x1, ..., ..., has degree —1.
Recall that the north pole of is (0, 0, ..., 0, 1) and that the south pole is

(O,0,...,—l).

Let n = 1. Set X1 = S' — {north pole} and X2 = Sl — {south pole). By

Exercise 6.3, there is a commutative diagram from Mayer—Vietoris

H1(S')
D H0(X1flX2)

D
H1(S1) H0(X1flX2),

where g is the restriction off(note that 1(X1) c X1 for i = 1, 2). Observe that
D is injective, for the preceding term in the Mayer—Vietoris sequence is

H1(X2) = 0. By Theorem 6.22 and Lemma 6.19, cls(o + t) is a
generator of and D(cls(a + r)) = cis &r = cls(x — y). Hence corn-
mutativity of the diagram above gives

cls(ti + T) = cls(a + = g1, cls(x — y) = cls(g(x) — g(y))

= cls(y — x),

because f (and hence g) interchanges x and y. But

cls(y — x) = —D cls(c + t) = D cls(—(a + T)).

Since D is injective, we + = —cls(a + t), and d(f) = —1.
For the inductive step, we may assume that n � 2. Let X1 = — {north

pole), let X2 = — {south pole}, and let i: c. x1 flX2 be the inclusion
of the equator. Since is a deformation retract of X1 fl X2, we know that

i1,: IIN.1(Xl fl X2) is an isomorphism. 1ff' is the restriction of f

to S"', there is a commutative diagram
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H1(SN)
D ' H,,..1(S"1)

D j I
H1(S1) H1_1(X1flX2) S

Since n � 2, we know that D is an isomorphism (for the flanking terms in the
Mayer—Vietoris sequence are 0 because X1 and X2 are contractible). We thus
have f,, = D1 i*fi;t D. By induction, d(f') = — 1, so that is multiplication
by — I; the other factors cancel each other and so f, is also multiplication by
—I, that is, d(f)= —1.

The next step shows that there is nothing magical about changing the
sign of the first coordinate: if is defined by f1(x1, ...,
(x1, ..., —xe, ..., xN+L}, we claim that d(f1) = —1 also. If h: S1 —. SN is the
homeomorphism of 5" interchanging the first and ith coordinates, then f1 =
hfh. Using Lemma 6.21, we see that

= d(hfh) = (d(h))2d(f) = (d(h))2(— 1).

As d(h) = ± I (since h is a homeomorphism), we have d(f1) = — 1.
Finally, observe that the antipodal map a" is the composite

so that d(a1) = as desired. 0
Another proof of this theorem is given as Corollary 9.24.

Theorem 6.24.

(1) 1ff: S1 —, S" has no fixed points, then f is homotopic to the antipodal map
a = a1.

(ii) If g: S1 —. SN is nulihomotopic, then g has a fixed point.

PROOF. (i) We can give a homotopy explicitly. Define F: SN x I —. SN by

F(x t) —
(I — t)a(x) + tf(x)

— 11(1 — t)a(x)+ tf(x)Ir

The right-hand side is a unit vector (hence lies in SN) as long as (1 t)a(x) +
tf(x) 0. Were this zero, then we would have

f(x) = (—(1 — t)/c)a(x).

Taking the norm of each side, noting that Ilf(x)lI = I = jIa(x)II, we see that
(1 — t)/t = 1; therefore f(x) = —a(x). But, by definition, a(x) = —x, so that
f(x) = x, a contradiction.

(ii) If g has no fixed points, then g a, by part (i), and so d(g) = d(a) =
± I (Lemma 6.21). But g nullhomotopic implies that d(g) = 0, a contradiction.
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Theorem 6.25. 1ff: S2" -+ S2", then either f has a fixed point or some point is
sent to its antipode.

PROOF. Assume that f has no fixed points. By Theorem 6.24, f a2"; by
Theorem 6.23, d(f) = 1

= — 1. Suppose that f(x) # — x for all x E S2".
If we define g(x) = —f(x), we see that g has no fixed points, and so —f =
g a2". It follows that f —a2" = lv.. and d(f) = I, a contradiction. £3

This result is false for odd-dimensional spheres; for example, rotation
p: S1 -+ S' about the origin through almost any angle has neither fixed points
nor points sent into antipodes. More generally, regard a point x S2"1 as an
n-tuple (z1, ..., z) of complex numbers, and define f: —. by

where p: S' —, S' is a suitable rotation.

Theorem 6.26, There is no continuous f: S2" —' S2" such that x and f(x) are
orthogonal for every x.

PROOF. If 1(x0) = — x0 for some x0, then their inner product (x0, f(x0)) = — 1,
contradicting the hypothesis that (x0,f(x0)) = 0. Hence f sends no point to
its antipode, so that f must have a fixed point, say, x1. But then x1 is
orthogonal to itself contradicting lix, ii = 1. 0

Theorem 6.26 is false for S'; indeed it is false for every odd-dimensional
sphere. If x eS2"', then x = (x1, x2, ..., x2,,_1, x2); define f: S2"' —. S2"1
by

f: —x4, x3, ..., —x2, x2_1).

Definition. A vector field on S'" is a continuous map f: S"" —, RM+I with f(x)
tangent to 5" at x for every x e S.'; one says that f is nonzero if f(x) 0 for
all x.

Corollary 6.27 (Hairy Ball Theorem). There exists no nonzero vector field on
s2".

PROOF. 1ff: S2" —+ is a nonzero vector field, then g: S2" —' S2" defined
by x i—.f(x)/llf is a continuous map with g(x) tangent to S2" at x for every x.

0
A function f: S.' -s may be viewed as a family of vectors with f(x)

attached to S.' at x (thus S"' isa "hairy ball"). If we say that a hair is "combed"
if it lies flat, that is, if it is tangent to the sphere, then Theorem 6.27 can be
interpreted as saying that one cannot comb the hair on an even-dimensional
sphere.
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Definition. A continuous map g: S" S' is called antipodal if gaTM = aug, that
is, ifg(—x) = —g(x) for all x eStm.

An antipodal map g thus carries the antipode of x to the antipode of g(x).
Hence, if y = —x, then g(y) = —g(—y), that is, g maps antipodal pairs into
antipodal pairs. Note that the antipodal map aN: —. SN is antipodal.

EXERCISES

6.1 I. If y: SN isa "path" with y(e3) = —y(e0), then (1 + a I-cycle in 5".
By "path" we mean that a has domain & = [—1, lJ instead of L)

'6.12. Ifyisa 1-chain in 5", then

(1 + — a)y = 0.

'6.13. If$ is a 1-chain in S'. then

(1 +

a is the northerly path inS' from y = (1, 0)toa'(y) = (— 1,0), then (1 +
a 1-cycle whose homology class generates H, (S'). (Hint: Theorem 6.22.)

l'heorem 6.28. If rn> 1, there exists no antipodal map g: S" — S1.

PROOF (after J. W. Walker). Assume that such a map g exists. Let
y = (I, 0) E S1 and let a be the northerly path in S' from y to a1(y) =
(—1, 0). Choose a point x0 e 5"', and let A be a path in 5tm from x0 to
—x0. Finally, choose a path fin S' from g(x0) toy. Now

a — g1,A + I — af

is a 1-cycle in St, for its boundary is

(a1y — y) — (g(—x0) — g(x0)) + (y — g(x0)) — (a1y — a1g(x0)) = 0

(because g is antipodal). Let 0 = I + 4. Since cis thi is a generator of
H1(S'), by Exercise 6.14, there is some integer m with

cls(a — g0A + f — a'f) = m cis Oa.

On the other hand, applying 0 to this equation gives

cls(Oo — Og, A) = 2m cls Oo

(using Exercises 6.12 and 6.13). Therefore

cls(Oa) = cls(Ug,A) in H1(S')12H1(S')

(where bar denotes coset mod_2H,(S')). As cls(Oa) is a generator
of H1(S'), it follows that cls(Oa) and cls(Ug,A) are nonzero in
H1(S')/2H,(S'); therefore cls(9g,A) 0 in H,(S1). But g is antipodal, so that
Og,,1 = (1 + = + Since (1 + a)2 is a 1-cycle in Stm.
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Exercise 6.11, we must have cls((I + in H1(S"). As rn> 1, this
contradicts H1(S) = 0. 0
Corollary 6.29 (Borsuk—Ulam). Given a continuous 1: S2 —' R2, there exists
xc S2 withf(x) =f(—x).

PRooF. If no such x exists, define g: S2 —' S' by

g(x) = (f(x) — f(—x))/IIf(x) — f(—x)II.

Clearly, g is an antipodal map, and this contradicts the theorem. 0
Remark. In Chapter 12 we shall prove the more general version of Theorem
6.28 and its corollary: if m > n, then there is no antipodal map S' S"; if
f: SN RN, then there exists x c S with f(x) = f(—x).

6.15. Prove directly that if f: S' —. R is continuous, then there exists x eS' with
f(x)= f(—x).

6.16. Prove that there is no homeomorphic copy of S2 in the plane R2. This result says
that a map of the earth cannot be drawn (homeomorphically) on a page of an
atlas. (Remark: This result remains true if "2" is replaced by "n"; it follows from
the general Borsuk—Ulam theorem.)

Corollary 6.30 (Lusternik—Schnirelmann). If S2 = F, U F2 U F3, where each F,
is closed, then some F, contains a pair of antipodol points.

Paoor. If a2: S2 — S2 is the antipodal map x'—. —x, then we may assume that
a2(F,) fl F, = 0 = a2(F2) fl F2, or we are done. By the Urysohn lemma, there
are continuous maps S2 —' I, for I = 1, 2 with = 0 and = 1.

Definef:S2—.R2by
f(x) = (g,(x), 92(X)).

By Corollary 6.29, there exists x0 E S2 with f(x0) = f(—x0), that is, =
g,(—x0) for I = 1,2. It follows that x0 F, for I = 1,2 because xc F, implies
that = 0 and g,(—x0) = I (for —x0 = a2(x0)ea2F,). Since S2 =
F, U F2 U F3, we must have x0 e F3. A similar argument shows that

—x0eF3,asdesired. 0
EXERCISES

6.17. 1ff: S2 —. R2 satisfies f(—x) = —1(x) for all x, then there exists x0 aS2 with
0.

6.18. Assume that there is no antipodal map S' —. S" for m> n. Prove that if
f: S -. R, then there exists x0 e with 1(x0) = f(—x0).

6.19. Assume that there is no antipodal map S1' —.S form > n. Prove that if is the
union of n + I closed subsets F1, F2 then at least one a pair
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of antipodal points. Prove that this conclusion is false if one replaces n ÷ I by
n +2.

We now prepare for the Jordan—Brouwer separation theorem.

Definition. If r > 0, a (closed) r-cell e, is a homeomorphic copy of I', the
cartesian product of r copies of I. In particular, e0 is a point.

Theorem 6.31. If SN contains an r-cell e,, then — is acyclic:

— e,) = 0 for all q.

PROOF. We prove the theorem by induction on r � 0. If r = 0, then e0 is a
point, SN — e0 R' (stereographic projection), and so S" — e0 is contractible;
the result follows.

Suppose that r > 0, let B = I' I —. e, be a homeo.
morphism. Define e' = h(B x [0,j]) and e" = h(B x 1]). Then e, = e'U

while e'fle" = h(B x is an (r — 1)-cell. By induction, (5" — e')LJ
(5" — e") = Sn — (e' fl e") is acyclic. Since 5" — e' and S" en are open sub-
sets, Mayer—Vietoris for reduced homology gives exactness of

— (e' fle)) —. — (e' U e)) —' — e') — -. fl4(S — (e' fl en)).

The outside terms being zero and 5" — (e' U e") = 5" — e, give an isomorphism

Rq(S" — e,) Z Rq(S" — e') Ilq(S" — e").

Assume that cis e R4(S" — e,) and cis 0; we shall reach a contradiction.
Now Lemma 6.18 gives either cis C 0 or 1 cis 0, where 1': S" —
5" — e' and i": S" — e, c.. S" — e" are inclusions. Assume that cis C 0, and
define E1 = e'. We have thus constructed an r-cell E' e, such that the
inclusion i: S" — e, c.. SN — E' satisfies i,1, cis ,& 0. Repeat this construction
with B x I replaced by B x [0, fl and with [0, fl bisected. Iterating, we see
that there is a descending sequence of r-cells

with = h(B x JP) (where JP is a subinterval of length with
cis 0 (where 511 — e, c.. 5" — E9 is inclusion), and with fl an

(r — 1)-cell, namely, h(B x {point}).
We are going to apply Theorem 4.18. There is a commutative diagram with

all arrows inclusions:

S" —

5" —
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Since i cis 0 for all p, it follows that cls C) 0 for all p. Now
assume that A is a compact subset of STM — fl = — Es), an ascending
union of open sets in SN. This open cover of A has a finite subcover, that is,
A c STM — E' for some p. Theorem 4.18 now applies to give cis 0 in

— fl for all k. But — fl = 0, by induction, because fl E"
is an (r — 1)-cell, and we have reached a contradiction. Therefore cis = 0,

that is, f?q(STM — e,) = 0, and SN — e, is acyclic. 0

Corollary 6.32. lIe, is a closed r-ceIl in SN, then SN — e, is path connected.

PROOF. R0(S" — e,) = 0, and so Corollary 5.15 applies. 0

Theorem 6.33. Lets, be a homeomorphic copy of S' in 5", where n > 0. Then

' tO otherwise.

PROOF. We do an induction on r. If r = 0, then consists of two points and
5" — has the same homotopy type as (think of s0 as the north and
south poles, and deform SN — s0 to the equator). Hence

Rq(S" — s0)

and this isO for q n — 1, and Z for q = n — 1, as desired.
Assume that r > 0, and let qi: 5' —. s, be a homeomorphism. Write S' =

E4 U E, where E is the closed
E the equator. If e' = 4(E4)

and e" = qi(E), then it is an easy exercise to show that e' and e" are closed
r-cells in 5".

Define X1 = SN — e' and X2 = SN — e"; then X1 and X2 are open subsets
of S". hence X1 U X1 = U X20. Furthermore,

X1 UX2 = (5'— e')U(S" — e") 5" — (e'I'le") = 5"—

We also have

X1flX2 = (S" — e')fl(S" — e) = 5"— (e'Ue) = 5"— Sr.

There is an exact Mayer—Vietoris sequence

— e) —. — fl,(S — —e R,(S — e') — e).

By Theorem 6.31, the flanking (direct sum) terms are 0, so that

— Rq(S" — s,).

By induction,

TM
ifq+1=n—(r—1)—1

— s,..1) —
otherwise,
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and this gives

JZ ifq=n—r—1
— s,)

— 10 otherwise. 0

Corollary 6.34. Let Sr be contained in Sn. If r n — 1, then S5 — s, is path
connected; r = n — 1, then s5 — s, has exactly two path components.

PROOF. Compute — s,.) by the theorem, and apply Corollary 5.15. 0

We have shown that one cannot disconnect by removing a homeomorph
of a sphere of dimension � n — 2. Since s5 is the one-point compactification
of R", it follows that one cannot disconnect R5 by removing s, with r � n — 2.

Definition. Let U be a subspace of a space X. An element x e X is a boundary
point of U if every neighborhood of x meets both U and X — U. The boundary
of U (or the frontier of U), denoted by U, is the set of all boundary points of U.

Clearly, U depends on the ambient space X;moreover, the closure U of U
is just U U U, while U open implies that U = U — U.

Theorem 6.35 (Jordan--Brouwer2 Separation Theorem). If ;1 is a subspace
of S chat is homeomorphic to then s5 — has exactly two components,
and s5_1 is their common boundary.

PROOF. Denote s5_1 by s. By Corollary 6.34, S5 — s has exactly two path
components, say, U and V. By Exercise 1.28, S5 — s is locally path connected,
and so Corollary 1.20 shows that U and V are components; by Theorem 1.18,
U and Vare open sets ofS' — sand hence are open in S.
— Since V is open in S5 — V = U Us is a closed set containing U; hence
U c UUs, and so U = U — U cs. A similar argument shows that V cs.
For the reverse inclusion, let x E s and let N be an open neighborhood of x.
Clearly, N meets S5 — U = VU s; to show that x E U, it remains to prove that
N meets U. Now every nonempty open subset ofS"1 contains an (open) subset
D whose complement is an (n — 1)-cell (because every open set contains a
homeomorph of since s S5', there exists a subset A of N (is with
s — A a closed (n — 1)-cell. By Theorem 6.31, R0(S' — (s — A)) = 0, hence
S — (s — A) is path connected. If u E U and v V, there exists a path f in
S" — (s — A) from u to v. Since u and v lie in distinct path components of S5 —
wemusthavef(I)flA Ø.Butf(1)flA =f(I)fls:f(I)IIA C f(I)flsbecause
A c s; for the reverse inclusion,

The special case n 2 is called the Jordan curve theorem; it was conjectured by Jordan but
proved by Veblen Theorem 6.35 was later proved by Brouwer.
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f(1)flscf(I)fl(SR —(s— A))flscf(1)flA.

Hence, if t0 = inf{t e I: f(t) s}, then t0 = inf{t e I: f(t) E A). Thus 1(t0) e
f(I) flA N. If J = [0, ta), then f(J) is a connected set containing u = f(0)
and with Jo) f(I) fl SR — s = f(I) fl (U U V) it follows that f(J) U. There-
fore any open neighborhood of f(t0) in N meets U, as desired. A similar
argument using = sup{z e 1:1(t) e s} shows that N meets V as well. 0

If we regard SR = R"U {co}, and if then that component of
— containing is called the outside of and the other component

is called the inside. Is the inside of homeomorphic to an open ball (i.e.,
the interior of 1)1)? When n = 2 then is called a Jordan curve, and the
Sdioenflies theorem gives an affirmative a Jordan curve
is homeomorphic to the interior of D2. However, for n = 3, Alexander gave
an example (the "horned sphere") showing that the inside need not be homeo-
morphic to an open ball (the interior of D3)(see [Hocking and Young, p. 176)).
Alexander's example can be modified to show the same phenomenon of bad
insides can occur for all n � 3.

Let us mention a famous example (the lakes of Wada), which comes very
close to the Jordan curve theorem. There exists a compact connected subset
K of R2 whose complement R2 — K has three components U1, U2, U3 and
K = U, for i = 1, 2, 3. Of course, K is not a Jordan curve, otherwise its
complement would have two components. (See [Kosniowski, p. 100) for
details of this example.)

Here is another important theorem of Brouwer.

Theorem 6.36 (Invariance of Domain). Let U and V be subsets of SR having a
homeomorphism h: U -+ V. If U is open, then V is open.

PROOF. Let y E V and let h(x) = y. Take a closed neighborhood N of x in U
with N P and N of course, h(N) c V. Now N and h(N) are closed
n-cells, so that Theorem 6.31 says that SR — h(N) is connected. On the other
band, SR — has two components, by Theorem 6.35. Since

SR — = (SR — h(N))U(h(N) —

and the two terms on the right are disjoint, nonempty, and connected, they
must be the components of S — It follows that each is open in S" —
in particular, h(N) — is open in S" — h(1'I) and hence is open in SR. But
y E h(N) — h(N) V; since h(N) is the boundary of each component, it follows
that y is an interior point of V. Therefore, V is open in 0

For more applications to euclidean space, we recommend [Eilenberg and
Steenrod, Chap. XI].
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ExERcisEs

6.20. Show that S is not homeomorphic to any proper subspace of itselL (Hint: Use
compactness of S' and invariance of domain.)

*6.21. Prove invariance of domain if the ambient space S is replaced by R.
*6.22. If invariance of domain holds with ambient space X, then show it holds with

any ambient space homeomorphic to X.
6.23. Show that invariance of domain docs not hold with ambient space 1)".



CHAPTER 7

Simplicial Complexes

Definitions

We have been studying arbitrary spaces X using fundamental groups and
homology groups, and we have been rewarded with interesting applications
in the few cases in which we could compute these groups. At this point,
however, we would have difficulty computing the homology groups of a space
as simple as the torus T = S' x S1; indeed Sa(T) is uncountable for every
n � 0, so it is conceivable that is uncountable for every n (we shall soon
see that this is not so). Many interesting spaces, as the torus, can be "tri-
angulated", and we shall see that this (strong) condition greatly facilitates
calculation of homology groups. Moreover, we shall also be able to give a
presentation of the fundamental groups of such spaces.

In contrast to the singular theory, a q-simplex will once again be an honest
space (and not a continuous map with domain A'). Recall that if ...,
is an affine independent subset of some euclidean space, then it spans the
q-simplex s = [v0, ..., Vj consisting of all convex combinations of these
vertices.

Definition. Ifs = [v0, ..., is a q-simplex, then we denote its vertex set by
Vert(s) = {v0, ..., Vq}.

Definition. If s is a simplex, then a face of s is a simplex s' with Vert(s') c
Veri(s); one writes s' � s. If s' <s (i.e., Vert(s') Vert(s)), then s' is called a
proper face of s.

Definition. A finite simplicial complex K is a finite collection of simplexes in
some euclidean space such that:
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(i) if SE K, then every face of s also belongs to K;
(ii) ifs, t K, then sfl t is either empty or a common face of s and oft.

We write Vert(K) to denote the vertex set of K, namely, the set of all
0-simplexes in K.

Definition. If K is a simplicial complex, its underlying space 1K I is the subspace
(of the ambient euclidean space)

1K! = U s,
sc K

the union of all the simplexes in K.

Clearly, 1K I is a compact subspace of some euclidean space. Note that ifs
is a simplex in K, then Isi = s.

Definition. A topological space X is a polyhedron if there exists a simplicial
complex K and a homemorphism h: I -+ X. The oracred pair (K, h) is called
a triangulation of X.

EXAMPLE 7.1. The standard 2-simplex A2 is contained in euclidean space R3.
Define K to be the family of all vertices and 1 -simplexes of A2 (i.e., K is the
family of all proper faces of A2). Then K is a simplicial complex whose
underlying space 1K! is the perimeter of the triangle A2 in R3. If X = S1. choose
distinct points a0, a1, a2 e S'. and define a homemorphism Is: IKI —. S' with
h(e1) = a, for i = 0, 1, 2, and with h taking each 1-simplex [e,, e,÷1] (read
indices mod 3) onto the arc joining a, to Then (K, h) is a triangulation
of S', and soS1 is a polyhedron.

EXAMPLE 7.2. If K is the family of all proper faces of an n-simplex s, then there
is a triangulation (K, Is) of S"'. Denote this simplicial complex K by L
(Note that IKI is the boundary s S'', so that our two dot notations are
compatible.)

EXAMPLE 7.3. It is easy to give examples of finite collections of simplexes
satisfying condition (i) of the definition of simplicial complexes but not condi-
tion (ii).

I

b
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The simplexes s = [a, b, c] and t = [d, e,fJ (and all their faces) do not com-
prise a simplicial complex because sfl t, though a face oft, is not a face of s.
The space X = Isi U jtl is a polyhedron, but one needs another simplicial
complex to triangulate it; for example, K = {[a, b, d], [a, d, c], [d, e,f], and
all their faces) will serve.

EXAMPLE 7.4. Every q-simplex s determines a simplicial complex K, namely,
the family of all (not necessarily proper) faces of s. Clearly, K I = s. if h: I K I —, s

is the identity map, then s is a polyhedron (as it ought to be!).

EXAMPLE 7.5. Consider the square I x I with sides identified as indicated.

In detail, (t, 0) is identified with (t, I) for each t e I, giving a cylinder, and (0, s)
is identified with (I, s) for each s e I, giving a torus. A triangulation of I x I
(e.g., insertion of the diagonal bd) may not give a triangulation of the torus
because, after the identification, the two distinct triangles (2-simplexes) abd
and bcd have the same vertex set. The following triangulation of I x I does
lead to a triangulation of the torus, hence the torus is a polyhedron.

///
7/
7
///

This triangulation of the torus has 18 triangles (2-simplexes), 27 edges
(1-simplexes), and 9 vertices; it is known that the minimum number of tri-
angles in a triangulation of the torus is 14 (see (Massey (1967), p. 34, Exercise
2] for an inequality implying this result).
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EXAMPLE 7.6.1 Other identifications of the boundary points of I x I lead to
other polyhedra.

The space obtained from Fig. (i) by identifying (t, 0) with (1 — t, 1) and (0, t)
with (1, 1 — t) for all z I is called the real projective plane RP2; the space
obtained from Fig. (ii) is called the Klein bottle. If one identifies all the
boundary to a common point, one obtains the sphere S2.

EXERCISES

7.1. Show that RP2 is homemorphic to the quotient space of the disk P2 after
identifying antipodal points.

7.2. Exhibit a compact connected subset of R2 that is not a polyhedron.

7.3. Why does the following triangulation of I x I not give a triangulation of the
torus? /

N
N/

Definition. Let s be a q-simplex. If q = 0, define s; if q > 0, define =

s — (see Example 7.2). One calls s° an open q-simplex.

Observe that a simplicial complex is the disjoint union of its open
simplexes.

It is plain that an open q-simplex s° is an open subset of s (it is its interior),
but ifs lies in a simplicial complex K, then s° may not be an open subset of

It will be shown that the homology groups obtained from I x I by "twisting", for example. RP2
and the Klein bottle, have homology groups with elements of finite order. This is probably the
reason that torsion groups are so called. An etymology of twisting also appears in the discussion
of lens spaces in [Seifert and Threlfall, p. 220].

Figure (i) Figure (ii)
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dim K = sup {dim s}
JGK

(of course, a q-simplex has dimension q).

The construction of polyhedra as quotient spaces of I x I raises an interest-
ing question. It is plain that there exists a simplicial complex—indeed a
collection of triangles in R3—which can be assembled to form a space home-
omorphic to the torus. It is less obvious, though not difficult, that such a
simplicial complex with fourteen 2-simplexes exists in R3. Now the Klein
bottle exists in R4, but it cannot be imbedded in R3. There is a general existence
theorem (see and Wallman, p. 56]) that a finite simplicial complex
of dimension d always triangulates a subspace of R2atl; moreover, this result
is best possible: if K consists of all the faces of having dimension � d,
then d and K cannot be imbedded in R2d (see [Floresj)(when d = 1,

this says that the complete pentagon cannot be imbedded in the plane, as one
knows from Kuratowski's theorem characterizing planar graphs).

Theorem 7.1 (Invariance of Dimension). If K and L are simplicial complexes
and there exists a honieomorphisrn f: 1K I I Lj, then dim K = dim L.

Remark. It follows that one can define the dimension of a polyhedron X as
the common dimension of the simplicial complexes involved in triangulations
of X.

PROOF. Assume, on the contrary, that m = dim K > dim L = n (replacing f
by f1 handles the reverse inequality). Take an rn-simplex in K, and let
a° = a — d be its interior. Now a° is an open set in IKI, by Exercise 7.4(u).
Since f is a homeomorphism, f(a°) is open in ILl. There thus exists some p-
simplex r in L (of course, p � n <m) with f(a°) fl r° = W, a nonempty open set
in ILl (for the stars of vertices form an open cover of ILl, by Exercise 7.7(i)).
Choose a homeomorphism g: & -+ a with p(AM) = ó; then U, defined by
U = is an open subset of Since p < m, there exists an
imbedding g: & -+ such that im g contains no nonempty open subsets
of Both U and g(W) are homeomorphic subsets of as U is open
and g(W) is not, this contradicts invariance of domain (Theorem 6.36) as
modified by Exercises 6.21 and 6.22. 0

Simplicial Approximation

If we want a category whose objects are simplicial complexes (and we do),
what are the morphisms?

Definition. Let K and L be simplicial complexes. A simplicial map K L
is a function Vert(K) —+ Vert(L) such that whenever {po' Pi' ..., pq} Spa.fls
a simplex of K, then {'p(Po), q(p1), ..., (P(Pq)} spans a simplex of L.
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Of course, repetitions among co(Po), ...' (P(Pq) are allowed.

Theorem 7.2. If it consists of all simplicial complexes and all simplicial maps
(with usual composition), then ir is a category, and underlying defines a functor
I (:ir—.Top.

PROoF. It is routine to check that ir is a category; let us construct I I. On
objects, assign the space IKI to K. If p: K —, L is a simplicial map, define
1(p): 1K) —. IL) as follows. For each se K, define f3: s —, ILl as the affine map
determined by (p)Vert(s) (Theorem 2.10). Condition (ii) of the definition of
simplicial complex implies that the functions agree on overlaps, so that the
gluing lemma 1.1 assembles them into a unique continuous function 1K I —. I Li,
denoted by I q). That we have defined a functor is left as an exercise. 0

Definition. A map of the form Iq,I: IKI —' IL), where qi: K —, L is a simplicial
map, is called piecewise linear.

There is no obvious functor Top —' .K, even if we confine our attention to
the subcategory of polyhedra. Given a continuous f: 1K I —' I LI, it may not be
true that f = I q) for some simplicial map after all, there are only finitely
many (p's. But we are flexible. Is it true that f Ic') for some c'? The answer
is still "no": if K = L = (all proper faces of [po, P2])' then 1K I S1 IL).

Since ,r1(S') Z, there are infinitely many nonhomotopic maps f: S' S1,

while there arc still only finitely many simplicial maps K —. L. We shall
subdivide K (the same process as in the proof of excision) to obtain more (and
better) approximations by simplicial maps.

Definition. Let K and L be simplicial complexes, let K —, L be a simplicial
map, and letf: IKI —. IL) be continuous. Then (p is a simplicial approximation
to f if, for every vertex p of K,

f(st(p)) c st(q,(p)).

It is easy to see that Iql(st(p)) C st(c'(p)). Thus we are saying thatf behaves
like in that it carries neighboring simplexes of p inside the union of the
simplexes near c'(p).

7.9. Let K and K' be simplicial complexes, and let Vert(K) -. Vert(K') be a
function. Prove that is a simplicial map if and only if, whenever fl 0.
then fl st(4p1) 0. (Hint: Use Exercise 7.8.)

7.10. Prove that asimplicial map K —. Lisa simplicial approximation to!: jK) —
IL) if and only if. whenever xc 1K) and f(x) es° (where s is a simplex of L), then

ES.

'7.11. If c': K — L is a simplicia) approximation to f: 1K) — )L), then )c'J f.
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Our remarks about n1(S') show that, for a given triangulation, a con-
tinuous map need not have a simplicial approximation. Let us therefore
change the triangulation.

Definition. If s is a simplex, let b' denote its barycenter. If K is a simplicial
complex, define Sd K, the barycentrk subdivision of K, to be the simplicial
complex with

Vert(Sd K) = {b': s e K}

and with simplexes [b'°, b', ..., b"], where the s1 are simplexes in K with

Recall that if s is a vertex of K, that is, s is a 0-simplex, then b' = s; therefore
Vert(K) Vert(Sd K). It is easy to check axioms (1) and (ii) in the definition
of simplicial complex; using Exercise 7.13 below, one shows that [b'°, ..., b"}
is a q-simplex.

EXAMPLE 7.7.lf a = p1, p2],then Vert(Sd a) = {Po' Pt' P2' b0, b1, b2, b°}.

Examples of 1-simplexes in Sd 0 are [po. b2] and [Po, b']; an example of a
2-simplex in Sd a is [Po' b1, bd]. Thus this is precisely the earlier construction
of Chapter 6.

EXERGSES

'7.12. (I) For every siinplicial complex K, prove that lSd KI = IKI.
(ii) Prove that there exists a simplicial map Sd K K that is a simplicial

approximation to the identity Sd KI (Hint: Define Vert(Sd K) —8
Vert(K) so that q(b') e Vert(4)

(iii) If X is a polyhedron and x E X, there exists a triangulation (K, h) of X with
x = h(v) for some vertex v of K.

'7.13. Ifs0 <s, are simplexes in some euclidean space, then W', ..., b'.}
is afline independent.

7.14. Every open simplex of Sd K is contained in a unique open simplex of K.

P2

Po
b2

Pi
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Definition. If K is a simplicial complex, then

mesh K = sup {diam(s)},
s*K

where diam(s) denotes the diameter of s.

*7.15. If mesh K = and p e Vert(K), then diam(st(p)) � 2i.

7.16. IfdimK =n,then

mesh SdK �(n/n+ 1)meshK.

(Hint: Theorem 2.9.) Conclude that, for q � I,

mesh Sd' K � (n/n + 1)' mesh K.

Theorem 7.3 (Simplicial Approximation Theorem). if K and L are simplicial
complexes and tff: IKI -. ILl is continuous, then there is an Integer q � 1 and a
sbnplicial approximation p: K -' L to!.

PROOF. Let Vert(L) = (wj:j 6 J} and let be the open cover of ILl by its
stars. Sincef is continuous, {f' is an open cover of IKI. Since IKI is

compact metric, this cover has a Lebesgue number .4 > 0. By Exercise 7.16, we
can choose q large enough so that mesh Sd' K it follows from Exercise
7.15 that diam(st(p)) < .4 for every p 6 Vert(Sd' K).

Define q: Vert(Sd' K) —, Vert(L) by q(p) = where is some vertex with
st(p) c I (Wj exists, by definition of Lebesgue if there are
several choices, pick any one). It follows that f(st(p)) = st((p(p)), so
that we are done if we can show that is a simplicial map: if {Po' ..•'
spans a simplex in K, does span a simplex in L? Now
Exercise 7.8 gives st(p1) 0, so that

f(fl st(p1)) fl c fl st(q(p1)).

Exercise 7.8 thus shows that ip(p_)} spans a simplex of L. 0
Corollary 7.4. Let K and L be simplicial complexes, and let f: IKI —+ ILl be

continuous. Assume that K' is a simpliclal complex such that

(i) IK'I = IKI;
(ii) Vert(K) c Vert(K')

(iii) mesh K' is "small".

Then there exists a simplicial approximation q: K' —. L to f.

The listed properties are the only properties of Sd' K used in the proof
of the theorem. 0
Definition. A sabeomplex L of a simplicial complex K is a simplicial complex
contained in K (i.e., s e L implies that s e K) with Vert(L) c Vert(K).
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Note that Sd K is not a subcomplex of K (nor is K a subcomplex of Sd K).

Defmition. For any q � —1, the q-skeleton of K, denoted by
K consisting of all simplexes s E K with dim(s) � q.

*7.17. II K .-. Lisa simplicial map, then for every q. Conclude that
dim K = n implies that imJQJ

7.18. If K is the n-skeleton of an (n + 1)-simplex, then I K I S.

Theorem 73. If m <n, then every continuous map f: S'" is nulihomotopic.

PROOF. Let K be the rn-skeleton of an (m + 1)-simplex, and let L be the
n-skeleton of an (n + 1)-simplex; we may regard f as a continuous map from
IKI into ILl. Let q: K L be a simplicial approximation to 1. Since
dim K = dim K = m, Exercise 7.17 gives imlq'l and so lql is not
surjective. Hence c ILl — {point}, which is contractible, and so is
nulihomotopic. But f, hence f is nullhomotopic. 0

Corollary 7.6. If n � 2, then is simply connected.

PROOF. The theorem shows that every continuous map f: S' —, is null-
homotopic, and so the result follows from Theorem 1.6. 0

We have already sketched a proof of this corollary in Exercises 3.20 and
3.21. The result does not follow, however, from the Hurewicz theorem and the
fact that H1 (Sn) = 0 for n � 2 (one can conclude from these data only that
n1(S, l)is its own commutator subgroup, and such groups do exist; e.g., every
nonabelian simple group is such a group).

Let us mention a famous problem. The Poincaré conjecture asks whether
a simply connected compact n-manifold having the same homology groups
as S" is homeomorphic to It is not too difficult to show that the conjecture
is true when n = 2; for n � 5, the conjecture was solved affirmatively by
Smale in the 1960s; the case n = 4 was solved (affirmatively) in the 1980s by
Freedman. The familiar dimension 3 is thus the only open case.

Abstract Simplicial Complexes

We are going to define homology groups of a simplicial complex K (which
will turn out to be isomorphic to the homology groups of the space X = 1K I

as defined in Chapter 4). This construction works in a simpler setting, which
we now describe.
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Definition.2 Let V be a finite set. An abstract simplicial complex K is a family
of nonempty subsets of V. called simplexes, such that

(I) ifve V,then{v}eK;
(ii) ifs K and s' c s, then s' E K.

One calls V the vertex set of K and denotes it by Vert(K); a simplex s K
having q + 1 distinct vertices is called a q-simplex.

Definition. If K and L are abstract simplicial complexes, then a simpliclal map
K —' L is a function Vert(K) —, Vert(L) such that whenever {v0, ..., vj

is a simplex in K, then {qv0, ..., is a simplex in L (of course, it is possible
that the latter list of vertices has repetitions).

Theorem 7.7. All abstract simplicial complexes and simplicial maps determine a
category, denoted by it".

PROOF. A routine check. 0

Equivalences in the category .*' and in the category Jr are called
isomorphisms.

EXAMPLE 7.8. Every simplicial complex K determines an abstract simplicial
complex K' with the same vertex set: let each simplex s E K determine its
vertex set Vert(s) c Vert(K).

7.9. Let X be a topological space, and let 'W be a finite open cover
of X. Define an abstract simplicial complex having vertices the open sets
in and declare that open sets U1, ..., 1.4 in 'if form a simplex if

U1 0. This simplicial complex is called the nerve of the open cover 'if
and is denoted by N('&').

EXAMPLE 7.10. Let G be a finite group. Define an abstract simplicial complex
whose vertex set consists of all nontrivial p-subgroups (for some fixed

prime divisor p of IGI) and with subgroups P0. P1, ..., forming a simplex if

7.11. If K is an abstract simplicial complex, we construct its bary-
centric subdivision Sd K as follows (here Sd K is also an abstract simplicial
complex): define Vert(Sd K) = (simplexes a: a E K}; define a simplex in
Sd(K)to be a set ..., crq} with a0 < 01 <'"<aq(where o< a' means

* a).

Here is the definition of a possibly infinite abstract simplicial complex K; let V be any set and
define K as a family of finite nonempty subsets of V satisfying properties (i) and (ii).
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The construction Ki—. K' in Example 7.8 defines a functor Jr —' if'. The
next theorem says that there is a good way to reverse the procedure, obtaining
a simplicial complex from an abstract one.

Theorem 7.8. There is a functor U: *' -. if such that K u(Ka) for all
K E obj Jr and L (uLr for every L e obj if'.

PROOF. Let L be an abstract simplicial complex, and let V = Vert(L) =
{v0, v1,..., Recall that the standard n-simplex a." has vertices
(eo, e1, ..., e,}. Ifs = (Vj0, is a q-simplex in L, define Isl = ...,
the q-simplex in tx" spanned by the displayed vertices. Finally, define u(L) as
the family of all si for s e L. It is plain that u(L) isa simplicial complex; indeed
u(L) is a subcomplex of A".

It is easy to see that a simplicial map q: L —' L' in if' (which is a certain
function Vert(L) —, Vert(L')) corresponds to the obvious simplicial map
u(q,): u(L) —' u(L') (which is a certain function {e0, . .., e,} —' {e0, ...,
Moreover, one verifies quickly that U: —' if is a functor and that the
isomorphisms mentioned in the statement do exist. 0

Definition. If L is an abstract simplicial complex, then a geometric realization
of L is a space homeomorphic to Iu(L)i.3

Corollary 7.9. Isomorphic abstract simplicial complexes have homeomorphic
geometric realizations.

PROOF. Every functor (in particular, the composite if' —+ if —. Top) preserves
equivalences. 0

As a result of Theorem 7.8, one usually does not emphasize the distinction
between simplicial complexes and abstract simplicial complexes. Henceforth,
we drop the adjective "abstract", although we shall usually be thinking of the
simpler notion of abstract simplicial complex. We shall also not distinguish
between the categories if and if'; either will be denoted by Jr. Indeed some
authors do not bother to distinguish simplicial complexes from polyhedra!

Simplicial Homology

Definition. An oriented simplicial complex K is a simplicial complex and a
partial order on Vert(K) whose restriction to the vertices of any simplex in K
is a linear order.

The geometric realization of an infinite abstract simplicial complex can also be defined (see

Example 8.1 l) in general, it does not lie in any (finite-dimensional) cuclidean space.
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Every linear ordering of Vert(K) makes K into an oriented simplicial
complex. For every simplicial complex K, the barycentric subdivision Sd K
is always oriented (see Exercise 6.6 (ii)).

We shall define homology groups of oriented simplicial complexes K;
eventually, we shall see that they coincide with the homology groups of
(hence are independent of the partial order on Vert(K)).

Definition. If K is an oriented simplicial complex and q � 0, let Cq(K) be the
abelian group having the following presentation.

Generators: all (q + 1)-tuples (Po' ..., Pq) with e Vert(K) such that
I Po' ..., pq} spans a simplex in K.

Relations: (i) (Po, ..., = 0 if some vertex is repeated;
(ii) (Po, ..., jig) = (sgn ir)(p,,0, PRI' . ., where it is a per-

mutation of {O, 1, ..., q}.

Denote the element of Cq(K) corresponding to (po. ..., pq) by <Po. ..., 1)4).
Of course, sgn it = ±1 (depending on the parity of it).

Lemma 7.10. Let K be an oriented simplicial complex of dimension m.

(i) Cq(K) is a free abelian group with basis all symbols <Po' . .., pa), where
I Po, ..., pq) spans a q-simplex in K and <Pi <<p4. Moreover,
<Pio,...,P,iq> =(sgnic)<po,...,p4).

(ii) C4(K)Oforallq>m.

PROOF. (i) Define F4 to be the free abelian group with basis all (q + 1)-tuples
(Po' ..., p4) of vertices of K such that {Po' ..., pq} spans a simplex in K. If
is the subgroup of relations (as in the definition above), then Fq/Rq = C4(K).
But it is easy to see that there is a new basis of F4 of the form B1 U B2 U B3,
where B1 consists of all (q + 1)-tuples in F4 with a repeated vertex, B2 COflSIStS
of all (po, ..., Pq) with Po <Pi < ... and B3 consists of all terms of the
form (po, ..., — (sgn ..., where iris a nonidentity permutation
of {0, 1, ..., q}. It is now clear that R4(with basis B1 U B3)is a direct summand
of Fq. Therefore C4(K) = F4/R4 is free abelian as claimed.

(ii) If q > in, then every(q + 1)-tuple(p0, ..., of vertices, which spans a
simplex of K, must have a repeated vertex; hence <Po, ..., pq> = 0 in C4(K).

0
The reason for not defining C4(K) as described in the lemma will soon be

clear.

Definition. Define a4: Cq(K) _' Cq_2(K) by setting

(where means delete the vertex P1) and extending by linearity.
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Theorem 7.11. If K is an oriented simplicial complex of dimension in, then

is a chain complex.

PROOF. The argument of Theorem 4.6 can be used here to show that ôô = 0.

0
Definition.4 If K is an oriented simplicial complex, then

Zq(K) = ker the group of simplicial q-cycles,
B4(K) = im the group of simplicial q-boundanes,

and
Hq(K) = Zq(K)IBq(K), the qth simplicial homology group.

We now associate an induced homomorphism to every simplicial map.

Definition. Let K and L be oriented simplicial complexes. If p: K —' L is a
simplicial map, define Cq(K) _4 Cq(L), for each q � 0, by

Of course, if some vertex is repeated, then the term on the right is
zero. Furthermore, the ordering of the vertices on the right side may not be
compatible with the orientation of L; our fussy definition of Cq(K) (and
thus allows to be defined. Better, it allows the next result to be proved.

Lemma 7.12. If p: K -. L is a simpliciat map, then -÷ C4(L) is a
chain map; that is, =

PROOF. The usual calculation, as in Lemma 4.8. 0

Theorem 7.13. For each q � 0, Hg: .* —, Ab is a functor.

PROOF. Hq(K) has already been defined on objects K. On morphisms K
that is, on simplicial maps, define ca,,: Hq(K) _4 Hq(L) by

(p.: z + + Bq(L).

That 11q is a functor is routine. 0

One wants to promote the definition of simplicial homology functors to
the subcategory of Top of polyhedra. One problem is the definition off1, when
f is a continuous map. Plainly, the simplicial approximation theorem will be

4This definition also makes sense for infinite oriented simplicial complexes.
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useful, and this will force comparison of Hq(K) and Hq(Sd K). This complica-
tion is one reason that we presented the singular theory first.

Theorem 7.14. Let K be a (finite) oriented simplicial complex of dimension m.

(I) Hq(K) is f.g. (finitely generated) for every q > 0.
(ii) H,(K)=Oforallq>m.

(iii) HM(K) is free abelian, possibly zero.

PROOF. (i) Cq(K) is f.g., hence its subgroup Zq(K) is f.g. (Theorem 9.3), and,
finally, its quotient 114(K) is f.g.

(ii) Immediate from Lemma 7.10(u).
(iii) Since Cm+i(K) = 0, we have Bm(K) = 0 and so = 4(K). But a

subgroup of a free abelian group is also free abelian (Theorem 9.3). 0

Remark. If dim K = m, we do not assert that 0 (this may be false).
Moreover, if there are aq q-simplexes in K, then Hq(K) needs at most
generators.

We have just defined "absolute" simplicial homology groups. If K is an
oriented simplicial complex and L is a subcomplex, then L is also oriented in
the induced orientation, namely, the partial order on Vert(L) inherited from
that on Vert K. It is easy to see that each Cq(L) is a subgroup of Cq(K) and
that C,(L) is a subcomplex of

Definition. If L is a subcomplex of an oriented simplicial complex K, then the
qth relative slmphcial homology group is

Hq(K, L) =

Let (K,f) be any triangulation of S2; let V be the number of vertices, let E
be the number of edges (1-simplexes), and let F be the number of faces
(2-simplexes) in K. Euler's famous formula is

V—E+F=Z
this formula is a key ingredient in showing that the five Platonic solids
(tetrahedron, cube, octahedron, dodecahedron, and icosahedron) are the only
regular solids in R3. Let us now generalize Euler's formula.

Definition. Let K be a simplicial complex of dimension m, and for each q � 0,
let be the number of q-simplexes in K. The Euler—Poincaré characteristic
of K, denoted by is defined by

X(K) = (_
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Theorem 7.15. If K is an oriented simpikial complex of dimension m, then

X(K)
=

ir rank Hq(K).

Remark. The Euler—Poincaré characteristic is the alternating sum of the Betti
numbers (once we show that Hq(K) Hq(IKI) for all q).

PROOF. Consider the chain complex

o ' Cm(K) ... C0(K)—' 0.

Each Cq(K) is a (free abelian) group of rank Of COUrSe, Hq(K) =
Zq(K)/Bq(K) = ker ôq/im Exercise 5.5 thus gives

rank Hq(K) = rank Zq(K) — rank Bq(K).

Note that rank B_(K) = 0 (in fact = 0). For each q � 0, there is an exact
sequence

0—' Zq(K) Cq(K) 0;

again Exercise 5.5 applies, and

= rank Cq(K) = rank Zq(K) + rank Bq..1(K).

Hence

X(K)
= =

Zq(K) + rank Bq_i(K))

= rank Zq(K) + (—Ir rank Bq_i(K).

Changing index of summation in the last sum and using the fact that
rank B_3 (K) = 0 = rank Bm(K), we have

= rank Zq(K) + £ rank Bg(K)

=
lr(rank Zq(K) — rank Bq(K))

0

Remark. We have actually proved a more general result. If

= 0—' C,, —. C1 C0 —' 0

is a chain complex in which each C1 is a f.g. free abelian group of rank then

(— = (—1)' rank H1(C5).
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EXERCISES

7.19. Prove that

12 ilniseven
ifnisodd.

7.20. Compute x(T), where Tis the torus (see Example 7.5 above).

7.21. if B is a set, let F(B) denote the free abelian group with basis B. If B = B1 U B2,

show there is an exact sequence

0-.F(B1

where i is the "diagonal" map xi—.(x, x) and p is the "subtraction" map
p:(x,y)i—.x — y.

Theorem 7.16 (Excision). If K1 and K2 are subcomplexes of a simplicial complex
K with K1 UK2 = K, then the inclusion (K1, K1 fl K2) c.. (K, K2) Induces iso-
morphisms, for all q � 0,

Hq(Ki, K1 Hq(K, K2).

PROOF. By Lemma 6.11, it suffices to show that the inclusion C1(K1) +
c. C,,(K) induces isomorphisms in homology. But this map is the

identity: + = If where denotes a
q-simplex in K, then e K = K1 UK2; that is, E K1 or e K2. One may
thus collect terms and write = 71 + where is the sum of all those
terms involving a, in K1, and 72 is the sum of the other terms involving
necessarily in K2. 0
Corollary 7.17 (Mayer—Vietoris). If K1 and K2 are subcomplexes of a simplicial
complex K with U K2 = K, then there is an exact sequence

Hq(Ki fl H,(K2) H,(K)4 H,..1(Ki fl K2)

PRooF. Use the proof of Theorem 6.3; even the induced maps are the same.
0

Comparison with Singular Homology

We are now going to compare with To facilitate our work,
we introduce reduced simplicial homology groups by augmenting
because it is more convenient to compare (defined below) with RS(IKI).

Definition. If K is an oriented simplicial complex, define C...1 (K) to be the
infinite cyclic group generated by the symbol < >, define ô0: C0(K) C.1(K)
by I—' ), and define the augmented complex
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Finally, define reduced simplicial homology groups by

Rq(K) =

Essentially, reduced simplicial homology differs from ordinary simplicial
homology in that it recognizes 0 as the (unique)(— 1)-simplex.

EXERCISES

7.22. For all q � I, Hq(K); H0(K) 110(K) Z. (Hint: See Theorem 5.17.)

7.23. Show that = 0.

Corollary 7.18. Let K be the simplicial complex consisting of all the faces of an
n-simplex whose vertex set is linearly ordered (so that 1K I Then

flq(K) = 0 for all q � 0.

PROOF. The statement is that the augmented complex is an exact
sequence; we prove this by appealing to Corollary 5.4. Thus it suffices to
exhibit a contracting homotopy,

{hq: Cq(K) Cq+1(K), all q � —1)

so that

(3q+jhg + hq_iöq = 1q' the identity on Cq(K). (*)

The construction of h is patterned after the cone construction in Theorem 4.19.
Let v0 be the smallest vertex in the orientation. For q = — 1, define

h_1: C0(K) by < >I—'<v0> and extending by linearity. For q � 0,
define hq: Cq(K) Cq+i(K) by <Po, ..., Pq> F+ <V0, Po, ..., Pq> and extending
by linearity. Note that the last value is 0 if v0 = Po- It remains to verify Eq. (*).

If q = — 1, the desired formula is 00h_1 = 1; this is clear because
ô0h.1(< >)=50(<v0>)=< >.Ifq�0,

On the other hand,

aq+ihq<po, Pq> = (3q+i<t'o, Po' ...' Pq>

Therefore(hô + ah)(<po,...,pq>) = <Poi.",Pq>. 0
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Remarks. (1) If K is any oriented simplicial complex and ifs is a simplex in
K, then the induced orientation on s is a linear ordering of Vert(s).

(2) Note how much simpler this proof is than the corresponding result for
singular homology. The next result is also simpler than its singular version,
and so we present it; however, we do not use it in the proof of Theorem 7.22.

Corollary 7.19. L.et K consist of all the faces of an oriented n-simplex (so that
Vert(K) is linearly ordered), and let L be the subcomplex of all the proper faces
(so that ILl S"). Then

ilL_JO

PROOF. Since L is a subcomplex of K, is a subcomplex of and so
there is a commutative diagram

o —. 0 —' C,,...1(L) —' ... —p —. C1(L) —' 0

I .1 1

o — —' —' —' — C...1(K) —' 0,

where the vertical maps (for — I � q � n — 1) are identities. Now the bottom
row is an exact sequence, by Corollary 7.18. It follows easily that flq(L) =
Rq(K)0 for all q<n— 1; moreover, R4(L)=O for all q>n— 1, by
Theorem 7. 14(u).

Note that Z because K has only one n-simplex. Exactness of the
bottom row of the diagram thus gives

On the other hand, L) = ker (because = 0 implies that
= im = 0). We conclude that Z, as desired. 0

The reader can readily construct an example of a simplicial complex K hay-
ingsubcomplexes and K2 with K=K1 UK2 such that
Nevertheless, excision and Mayer—Vietoris do hold for JKI, (K1 (, and 1K2 I;
this will follows from Theorem 7.16 and Corollary 7.18 once we prove that
Hq(K, K1) Hq(IKI, 1K11). The next lemma is a special case of this extended
(singular) Mayer—Vietoris theorem that will be used to establish the general
case.

Lemma 7.20. Let K be a finite simplicial complex, and let s be a simplex of
highest dimension; define K1 = K — {s) and K2 = {s and all its proper faces).
Then there is an exact Mayer— Vieroris sequence in singular homology

He(IK1lfllK2I)' Hq(IKI)'
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PROOF. It suffices to prove excision here. Define V = s — {x}, where x is an
interior point of s. Then V is an open subset of IK2I (because s has highest
dimension), and 1K1 fl = 1K1I flIK2l = is a deformation retract of V
(deform along radii from x). There is a commutative diagram with exact rows
and with vertical arrows induced by inclusions:

Hq(IKLflK2I) Hq(1K21) 4 Hq(IK2LIK1flK2I)

1
11

1

Hq(V) Hq(1K21) Hq(IK2I, V)

Since 1K1 fl K21 is a deformation retract of V, the inclusion is a homotopy
equivalence, hence it induces isomorphisms for all q. The five lemma now
shows that inclusion induces an isomorphism for all q

Hq(1K21, 1K21) Hq(1K21, V).

LetX1 = IK1IU V. Note that X1flIK2I =(IK1IU V)fllK2I =(IK1IflIK2I)U
(VnIK2I)= V because K1IflIK2I=fK1flK2Ic VcIK2I. Furthermore,
K11 c and, since 1K21 — 1K11 is an open subset of 1K21, it follows that

1K21 — IK1I c 1K21°. Therefore = IKI and (singular) excision
holds: inclusion induces isomorphisms for all q

Hq(1K21. V) IlqOKI.

Composing with the earlier isomorphisms gives the desired isomorphisms

Hq(1K2I, IK1IflIK2I) Hq(IKI, 1K11) for all q. 0
Lemma 7.21. For each oriented simplicial complex K, there is a chain map
j with each Jq an injection. For every simplicial map
'p: K —, K', there is a commutative diagram

4

_______

Ic'L

Moreover, and K2 are subcomplexes of K as in Lemma 7.20, then there is
a commutative diagram

Hq(K) Hq.i(K1flK2)

1 1

Hq(IKI) I Hq...i(IK1flK2I),

where the horizontal maps are connecting homomorphisms of Mayer— Vietoris
sequences.
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PROOF. Defrnej_1: C_1(K)—.S_1(IKI) by < J and extending by lin-
earity. If q � 0, defineJq: Sq(IKI) by

where —' 1K I is the affine map t1e1 i—p t,p,. The routine verifications
of the stated properties of j are left to the reader. 0

Theorem 7.22. For every oriented finite simplicial complex K, the chain map
j: -. (of Lemma 7.21) induces isomorphisms,5 for all q � 0,

Rq(K) Rq(IKI).

PROOF. We do an induction on the number N of simplexes in K. If N = 1,

then K = 0 and IKI = 0 (reduced homology recognizes 0 as a simplex),
and 0= R.(IKI)in this case.

Assume that N> I and choose a simplex $ e K of highest dimension.
As in Lemma 7.20, define

K1 = K — {s} and K2 = (sandallofitsproperfaces}.

Thus K1 UK2 = K and K1 fl K2 = (all proper faces of s}. Note that the vertex
sets of K2 and of K1fl K2 are each linearly ordered in the induced orientation.
Since each of K1 and K1 fl K2 have fewer than N simplexes (the alternative
is that K1 = K — {s} = 0 and K = s, which must now be a 0-simplex),
the inductive hypothesis says that the respective chain maps j induce iso-
morphisms for each q � 0

flq(Ki)ZRq(IK1I) and

There are two Mayer--Vietoris sequences, from Corollary 7.17 and Lemma
7.20, and the maps j between them give a commutative diagram with exact
rows, by Lemma 7.21.

R5(K1nK2) -. R4(K1)®R,(K2) -. R,(K) -e R11(K1flK2) -.
I. I I I I

Rq(IK1I1K2I)+fi(IK1

By Corollary 7.18

=

similarly, since 1K2 I = s is contractible,

= Rq(IK1I).

Since all vertical maps are now induced byj, all save the middle one are known
to be are isomorphisms. But the five lemma (Theorem 5.10) applies to show
that the middle Rq(K) Rq(IKI) is also an isomorphism. 0

jig actually a chain this follows from Theorem 9.8.
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Corollary 7.23 (Alexander-. Veblen). Let X be a polyhedron having criangula-
tions (K, h) and (K', h'). Then Hq(K) H4(K') for all q � 0.

PROOF. By hypothesis, (K) (K'). But 1i4(K) Hq(JKI) and H,(K')
Hq(IK'l), by Theorem 7.22. 0

Corollary 7.24. If X is a polyhedron of dimension m, then

(I) Hq(X) is f.g. for every q � 0
(ii) H4(X)=Oforallq>m;
(iii) H_(X) is free abelian.

PROOF. Immediate from Theorems 7.22 and 7.14. 0

Corollary 7.25. (I) If K is an oriented simplicial complex, then Ii,(K) is inde-
pendent of the orientation.

(ii) If X is a polyhedron with triangulation (K, h), then the Euler—Poincaré
characteristic is independent of the triangulation.

PRooF. (I) H,(IKI) is independent of any ordering of Vert(K).
(ii) Combine Theorems 7.22 and 7.15. 0

One can now define X(X), the Euler—Polnearé characteristic of a poly-
hedron X as X(K), where there is a triangulation (K, h) of X.

One last comment before proceeding. First attempts to prove Corollary
7.23 were aimed at the polyhedron itselt For many years, one tried to prove
the Haeptvermutang (principle conjecture): if (K, h) and (L, g) are triangula-
tions of a polyhedron X, then there arc subdivisions (not necessarily bary-
centric) K of K and L' of L with K' L'. Were this true, there would be an
easy proof of the topological invariance of The Hauptvcrmutung was
proved for n = 3 by Moise (in the 1950s), but in 1961 Milnor constructed
counterexamples to it for every n � 6.

The following notion is a substitute for homotopy in it.

Definition. Let p, K L be simplicial maps. Then q' is contiguous to
denoted by ç ,4', if, for each simplex s = (Po' ..., pq) of K, there exists a
simplex s' of L with both {ppo'..., çOP,} and faces of s'.

ExmtcJsEs

7.24. Let p, K -. L be contiguous.
(i) Prove that Iq,I

(ii) = 111(K) —. H,(L) for all q � 0 (Hint: Theorem 7.22.)

7.25. Give an example showing that contiguity may not be a transitive relation.
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Definition. Let x0) and (Y, Yo) be pointed spaces. Their wedge X v Y is
the quotient space of their disjoint union, X Yin which the basepoints are
identified.

It is easy to see that ifX and Yare polyhedra, then so is Xv Y.

ExEitcisEs

(I) Show that wedge is associative; that is, (X v Y) v Z and X v (Y v Z) are
homeomorphic pointed spaces.

(ii) If K1 and K2 are polyhedra, then for all n � 1,

H.(K1 v

(Hint: Mayer—Vietoris, Corollary 7.17.)

(iii) Let m1 be a sequence of nonnegative integers. Prove that there exists
a connected polyhedron X of dimension n with H,(X) free abelian of
rank m4foreveryq= 1,...,n.

7.27. (i) If Lisa subcomplex of K, prove that for all q � 0,

H,(K, L) H4(IKI, ILl).

(Hint: Five lemma and Theorem 7.22.)

(ii) There is an exact Mayer—Vietoris sequence in singular homology corre-
sponding to any pair of subcomplexes K1, K2 of a simplicial complex K for
which K = K1 UK2, namely,

—. H,(IK,IfllK2l) —. H4(1K21) —e H.(IKI) —.

*7.28. Let K be a simplicial complex and let p Vert(K). Define the closed star of p
to be the subcomplex of K consisting of all the faces of those a in the star st(p).
Prove that the closed star of p is contractible. (Hint: Exercise 7.7(ü).).

The next result considers the question, generalizing the Mayer—Vietoris theo-
rem, of relating the homology of K to the homology of subcomplexes whose
union is K (also see [K. S. Brown, p. 166)).

Definition. A cover of a simplicial complex K is a family of subcomplexes
= UL1.
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Definition. Let 1/= A) be a cover of a simplicial complex K. The
nerve of 2', denoted by N(2'), is the simplicial complex having vertices
Vert(N(2')) = A and with . , a simplex if fl L(1 0 (see Example
7.9.)

Theorem 7.26 (Leray).6 Asswne that 2' = {L]: E A) is a cover of a simplicial
complex K such that each L, and every finite intersection fl L1 fl
is acyclic. Then

114(K) H,(N(2'))

for all q � 0.

PROOF. It suffices to construct a simplicial map f: Sd K -' N(2') that induces
isomorphisms lI,(Sd K)-' H6(N(2')) (because H,(K) H,(Sd K) since IKI =
IS4 KI). We view Sd K as an abstract simplicial complex, as in Example 7.11.
Linearly order the index set A, say, A = ..., ;}. Define 1: Vert(Sd K)-.
Vert(N(2')) = A as follows: for each simplex a e K, there exists With a 6
(for .9' is a cover of K); define f(a) = where ; is the first for which a e L1.
We claim that f is a simplicial map. If (a0, ..., a simplex in Sd K. then
a0<a1
Therefore {fa0, . . is a simplex in N(2'), for a0 e flL1, and so
this intersection is nonempty.

The proof that I induces isomorphisms in homology is by induction on
n = Al. If n = 1, then N(2') is a point and K = has the homology of a
point: = 0 for all q > O(Kis acydic because, by hypothesis, every
is acyclic). The result is thus obvious in this case.

Assume that A = ..., Define

and

(thus2'1 ={L1,...,Lg}isacoverofK1);deflne

N1 N(2'1).

Note that N1 is a subcomplex of N(2'), as is N2 defined by

N2 = closed star of

The construction of I shows that if a E K1, then ffr) e ..., rL..,}. It follows
by induction that flSd K1 induces isomorphisms H4(Sd K1) Z H,(N1).
Furthermore fISd L,,1 induces isomorphisms K2) H4(N2) because
K2 = L,1, hence Sd K2, is acyclic (by hypothesis) and N2 is acyclic (by
Exercise 7.28).

Thereis an obvious cover ofK1 fl K2, namely,4' = ..., M,j, where
M1 is defined by = L, fl Note that .t has the property that each

6ft is proved in (Bolt and Tu, p. 148] that if every finite intersection is contractible, then
x1(N(2fl
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and every finite intersection of them is Since Sd(K1 fl K2) =
Sd K1 fl Sd K2, it follows by induction that flSd(K1 fl K2) induces isomor-
phisms Hq(Sd(K1 (1K2)) Z Hq(N(M). But it is easy to see that N(4) =
N1flN2, hence Hq(N(4'))= Hq(N1flN2). Of course, Sd K = Sd K1USd K2
and N1 UN2 = N(2),so that we may apply Mayer- Vietoris (Corollary 7.17)
to assert the rows in the following commutative diagram.

H,(fi1flfl2) -. -. Hq(Sd K) H,...1(fl1flfl2)

I I I

here denotes Sd K, for i = 1, 2, and the vertical maps are induced by
restrictions off. We have already seen that the four outside vertical maps are
isomorphisms, and so the five lemma gives K) -. H,(N(2')) an iso-
morphism for all q. 0
Definition. An acyclk cover of a simplicial complex is a cover satisfying the
hypotheses of Theorem 7.26.

Corollary 7.27. If £" is an acyclic cover of a simplicial complex K, then
=0 for all q > dim N(%').

Remark. Compare Exercise 6.4.

7.29. In the proof of Theorem 7.26, suppose that we define g: Sd K as follows:
g(a) — a, where a e L, (but a may not be the first such index in the ordering of
A). Show that g and fare contiguous.

7.30. Let {M, L L1} be a cover of a siniplicial complex K such that (i)each is

acyclic, (ii) M fl L, is acydic for each I, and (iii)L, (1 c M for all I j. Prove
that

Calculations

The significance of Theorem 7.22 is that one can compute homology groups
of polyhedra using simplicial homology. That this is valuable is clear from
Corollary 7.24, for we now know that H1(IKI) is always f.g., and this is
important because such groups are completely classified.

Fundameital Theorem. Let G be a abelian group.

(1) G = F 7', where F Is free abelian of finite rank r � 0 and T Is finite.
(ii) T Is a direct sum of cyclic groups, T = C1 with order C, = b,,

say, and with b1 1b21 (b1 lb2 means "b1 divides b2"). The numbers b1,
are called the tonlois coefficients of G.

(iii) rank F and the torsion coefficients are invariants of G, and two f.g. abelian
groups are isomorphic If and only they have the same rank and the same
torsion coefficients.
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Let F and F' be free abelian groups with finite bases {x1,..., xN} and
respectively. If h: F F' is a homomorphism, then =

with dfi e Z. Thus, given ordered bases of F and F', h gives an m x n
matrix D = [dfl] over Z, where the ith column consists of the coefficients of
h(x1) in terms of the x. In light of Theorem 4.1(i), his completely determined
by this matrix.

Definition. A nonnal form is an m x n matrix N over Z such that

N
IA 0
[o o

where A is a diagonal matrix, say, A = diag{b1, b2, ..., ba), with b11b21"
(Zero rows or columns bordering A need not be present.)

There is an analogue of Gaussian elimination for matrices over Z. Define
three types of elementary row operation: (1) interchange two rows, (ii) multiply
a row by ± 1, and (iii) a row by that row plus an integer multiple of
another row; there are three similar elementary column operations.

Theorem (Smith Normal Form). Every rectangular matrix D over Z can be
transformed, using elementary row and column operations, into a normal form;
moreover, this nonnal form is independent of the elementary operations and is
thus uniquely determined by D.

The proof of this theorem uses nothing more sophisticated than the division
algorithm in Z; indeed the usual proof is itself an algorithm (e.g., see
(Jacobson, p. 176]).

Theorem. For any oriented simplicial complex K, there is an algorithm to
compute H,(K) for all q � 0.

For a proof, see [Munkrcs (1984), p. 60].
Here is the algorithm. Each C,(K) is a free abelian group equipped with a

(finite) basis of oriented q-simplexes. As above, each 8,: C,(K) Cq_1(K)
determines a matrix 1), over Z (with entries 0, 1, 1). Let N, be the Smith
normal form oft),, let A, = ..., bj} be the diagonal block of Nq, let
c, 0 be the number of zero columns of N,, and let r, � 0 be the number of
nonzero rows of N,. Then the qth Setti number of K is c, — and the
torsion coefficients of H,(K) are those b7, . . . , bZ, if any that are distinct from 1.

Here is the reason that the algorithm computes Betti numbers. Regard each
integer matrix I), as a matrix of rational numbers. Then the rank of the matrix
1), is the rank of the abelian group B,_1(K) and the nullity oft), is the rank
of Z,(K). Therefore

rank JI,(K) = rank Z,(K) — rank B,(K) = nullity 1), — rank

In spite of this algorithm, one cannot in practice compute H,(X) with its
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use because of the large number of q-simplexes in a triangulation (K, h) of X.
In short, the matrices D, are too big and the calculations are too long. One is
led to modify the definition of triangulation to obtain cellular decompositions
of a space, which are more useful (we shall soon give an algebraic method of
reducing the number of simplexes).

We illustrate these remarks by trying to compute via simplicial
homology when X is either the torus or the real projective plane.

EXAMPLE 7.12. In Example 7.5, we gave an explicit triangulation (K, h) of the
torus X with dim K = 2 moreover, if ç denotes the number of q-simplexes
in K, then = 18, = 27, and = 9. It follows from Corollary 7.24
that Hq(X) = 0 for all q > 2 and that H2(X) is free abelian. Since X is
path connected, 110(X) = Z. Now X(K) = 9 — 27 + 18 = 0, so that 1 +
rank H2(X) = rank H1 (X). To complete the computation using the algor-
ithm, we must examine the matrices of ô2 and the first is 18 x 27 and the
second is 27 x 9. These matrices are too big! Even a minimal triangulation
having 14 triangles is not a significant improvement. These matrices will be
shrunk in Example 7.14.

Let us instead use a Mayer—Vietoris sequence to compute Take two
circles a and b on the torus. Choose two overlapping open cylinders X1 and

X2, each containing a and b, with X1 U X2 = X and such that X1 fl X2 =
VaU [4, a disjoint union of two open cylinders with a c U,, and b Note
that X1, X2, U0, and Ub each have the homotopy type of a circle 51• There is
thus an exact sequence of reduced homology groups:

Since we know generators of H1(S'), we can abuse notation and write
R1(U4) = <a> and Rj(Ub) = <b>. Recall that if

U U,, C.. X2 are inclusions, then the map f in the sequence is given by
cis cis z, cis z). In particular, and are generators of
111(x1) and and are generators of R1(X2). It follows easily thatf
cannot be injective; therefore fl2(X) ,& 0. Furthermore, since fl1(U0 U U,,)
Z Z, we must have I?2(X) Z (otherwise, imf is a subgroup of

R1(X2) = Z Z of rank 0, i.e., imf = 0, and this is not so).
One can show that (Z Z)/im f Z. Since R1(X) Z Z)/im f(see
footnote on page 103), it follows that (X) Z Z. (A more sophisticated
argument showing that H, (X) = Z Z uses the Hurewicz theorem (Theorem
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4.29) since we know that

ir1(X)=ir1(S'

We agree that this proof is not satisfying, because it really does not use a
triangulation of X. See Example 7.14 for a better version.

7.13. Let X be the real projective plane RP2 regarded as the quotient
space of D2 by identifying antipodal points.

Note that dim K = 2, = 10, = 15, and = 6. Again, 110(X) = Z, but
now = 6 — 15 + 10 = 1. It follows that rank 112(X) = rank H1(X). If

= <4, 5) — (3, 5) + <3, 4>, then it is easy to see that is a cycle, that is,
= 0. To see that cis 0, assume that I = where = Com-

puting öcj explicitly for each of the ten and comparing coefficients, one sees
that all the are equal; this leads to the contradiction that the coefficient
say, <4, 5> in the expression = is even. If fi is the 2-chain which is the
sum of all the 2-simplexes in K with signs chosen according to the orientations
above, then = 21 (every edge inside D2 occurs exactly twice as a face of a
2-simplex and with opposite orientations hence only the edges on the circum-
ference survive). It turns out that H1(X) = Z/2Z (we have shown only that it
has an element, namely, els of order 2), hence rank H1(X) 0. It follows
that H2(X) = 0, since it is free abelian of rank 0. This example thus shows that
the top homology group may be zero and also that there may be torsion
coefficients. We shall complete this calculation in Example 7.15.

We have seen in Example 7.12 that the algorithm for computing homology
is impractical for a space as simple as the torus. The following technique is
more practical.

Defmition. A subcomplex of a chain complex is adequate if, for all q � 0

(i) If z Zq, then there exists z' e with Z — Z' E B4

(ii) if z' e and z' = c E Eq+i, then there exists C' with
=

3

3
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(Of course, Zq and B4 are cycles and boundaries of E4, and Zq and arc cycles
and boundaries of Es.)

Lemma 7.28. If E'4 is an adequate subcomplex of E4, then, for every q. the map
Z' + + B4 is an isomorphism

Hq(E'4) Z

PROOF. Let 0: z' + + B4 be the "enlargement of coset" map; it is well
defined because c B4. Now ker 0 is fl and this is zero because
axiom (ii) says that Zq fl c Finally, im 0 = + B4)/B4 = Z4/B4,

because axiom (i) says that + Bq = Z4. 0

Definition. A chain complex is finitely based if each term E4 is a f.g. free
abelian group with a specified basis; the elements of the specified basis of E4
are called (algebraic) q-cefls.

If K is a finite oriented simplicial complex, then is finitely based with
q-cells all symbols <Po p4>, where Po <Pi << Pq and {Po' .. .. Pq}
spans a simplex in K.

Lemma 7.29. Let E4 be a finitely based chain complex, and let a be a q-cell such
that a = &r for some (q + 1)-cell t. If a is not involved in
r' a r leaving an adequate subcomplex

PROOF. Let be the free abelian group with basis all (q + 1)-cells r'
let E, be the free abelian group with basis all q-cells a' a, and let E',, =
for alIp q, q + 1. It is easy to see that is a subcomplex ofE,, if we show
that im c It suffices to see that there are no (q + 2)-ceils c with

= ± r + y, where r is not involved in y. If such a c exists, then 0 = ±a +
and a is involved in contrary to the hypothesis. It remains to check axioms
(i) and (ii) in each dimension.

Dimension q + 1. To check (i), let z e Is there z' E with z — z' e
Bq? Now z = mt + a, where m Z and t is not involved in a. Since z is a cycle,
0 = 3z = mc + 3a, where (by hypothesis) a is not involved in öa. But 0 =
mo + is an equation relating basis elements, hence m = 0 8a. Thus
a e and z — a = 0€ B4+L. To check (ii), assume that z' e and z' =
for some CE Eq+2. Since Eq+2 = we have CE

Dimension q. To check (i), let z Z4. and write z = na + fi, where n e Z
and a is not involved in fi. Then 0 = = m3a + = (because a =
Therefore fi E and z — fi = na = nat E Bq. To check (ii), take z' Z4 with
2' = ac for some ce E4+1; thus c = mt + c' form Z and c' e Hence

2' = ?c = mar + ac' = mc + ac'.

Since a is not involved in either ac' or z', it follows that m = 0. 0
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Theorem 7.30 (Reduction). Let be a finitely based chain complex. Let a be
a q-cell involved in the boundary of precisely two (q + l)..cells and r2 and
with opposite sign; that is,

&r1=a+c1 and c3r2=—o+c2,
where a is involved in neither c1 nor c2.

Then replacing and t2 by t1 + r2 and deleting a yields an adequate
subconiplex.

PROOF. Change the basis of E141 by replacing r1 by r1 + r2 and r2 by r1;
change the basis of Eq by replacing a by a' = a + c1. We claim that this new
finitely based chain complex satisfies the hypotheses of Lemma 7.29. Note that
a' = 8t1. Let r be a (q + 1)-cell with r t1. Either t = r1 + r2 or r is an
origmal(q ÷ 1)-cell. In the first case, = ô(z1 + r2) = c1 + c2, and this does
not involve a' because it does not involve a. In the second case, the hypothesis
says that t3t does not involve a, and hence it does not involve a' = a + c1. It
follows from Lemma 7.29 that removal of and a' leaves an adequate
subcomplex (note that r2 was removed at the outset, being replaced by r1).
Finally, rewrite the basis of Eq in terms of the original basis. 0

In Examples 7.5 and 7.6, certain spaces were constructed from the square
I x I by identifying various edges; the following discussion will compute the
homology groups of these spaces.

Let P be a polygon in the plane having m sides, with vertices ordered
counterclockwise, and let X be the quotient space of P that identifies certain
edges. The following triangulation of P induces a triangulation of X. Let A,

0

D be consecutive vertices of P. Insert an interior vertex 0 and new (boundary)
vertices B, C as illustrated, and draw the edges 0,1, OB, OC, OD. Insert new

A

H
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vertices E on OA and H on OD. Finally, draw EH, label the new vertices F and
G, and insert edges BE, CF. and DG. This triangulation should be repeated
for each sector of P. Now orient every triangle counterclockwise. Note that
the triangle OAD has been subdivided into nine triangles, so that P is sub-
divided into 9m triangles.

Let K denote this triangulation of X, and let be the simplicial chain
complex of K. Then C,(K) has nonzero q-cells only for q � 2. We shall use
reduction (Theorem 7.30) to replace C,(K) by an adequate subcomplex having
fewer cells.

Apply reduction to remove successively the I-cells corresponding to the
edges OF, 0G. BE, BF, CF, CG, DG (each lies on the boundary of exactly two
2-cells); the picture is now

0

Reduce by removing the 0-cells B, C, F, G; now remove the 1-cell El!, and
then the 0-cells E and H. What remains is

Now successively remove all but two of the radii, leaving

A

B

C

H

0
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Finally, remove the 0-cell 0 (which lies on exactly two 1-cells), making the
broken line 40 + OD into a new 1-cell; reduce once again to eliminate this
I-cell (which lies on exactly two 2-cells).

In sum, we have arrived at an adequate subcomplex of having at
most m 0-cells (Example 7.14 shows that there can be fewer than rn), at most
m I-cells, and one 2-cell (the polygon itself).

EXAMPLE 7.14. Let X be the torus arising from identifying opposite edges of
a square P as follows.

a
V u

b b

V I,
a

Note that, in this case, all the vertices (corners) of the square are identified to
a common vertex. The adequate subcomplex obtained above has chains

E2 = (P>, E1 = <a) <b), E0

and differentiations

= a — b — a + b = 0,

aa=v—v=0=ob, and

a subcomplex are restrictions of the differentiations in
the original subcomplex.) We see that

Z2 = <P), Z1 = (a)®<b), Z0 =

B2=0. B1=0, 80=0,

and we conclude that

H2=Z, H1=ZG)Z, H0=Z.

Of course, this result agrees with Example 7.12. Note that a basis of H1(X)
consists of the two "obvious" circles.

7.15. Let X be the real projective plane RP2. Here are two pictures
(m = I and m = 2)
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a
14 V

b b

I?

a

For the first picture, the adequate subcomplex has chains

E2 <F>, E1 = <a), E0 =

and differentiations

aP=a-+-a=2a, àa=v—v=O, and
We conclude that

Z2=O, Z1 =(a>, Z0=<v>,

B2 =0, = <2a>, B0 =0,

hence

H2 0, H1 = Z/2Z, H0 = Z.

If we compute using the second picture, the adequate subcomplex has
chains

E2 = <P), E1 = E0=

and differentiations

e3P=2(a+b), t3a=w—v, ôb=v—w, av=0=öw.
We conclude that

Z2=0, Z1=<a+b), Z0=(v>e(w>,
B2=0, B1=(2(a+b)), B0=<w—v>,

and again

H2 =0, H1 = Z/2Z, H0 = Z

(one needs a little algebra to see that H0 is infinite cyclic: the homomorphism
Zdefined bymv + + nisasurjectionwith kernelB0,andsothe

first isomorphism theorem gives H0 = Z0/BO Z).

Remark. It is known (see (Massey (1967), Chap. 1]) that every compact
connected 2-manifold can be obtained by identifying edges of an even-sided
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polygon. The method of adequate subcomplexes is thus strong enough to
compute their homology groups.

EXERcISES

7.31. Show that the homology groups of the Klein bottle are

H, 0 for p � 2 H1 = Z (Z/2Z), and H0 Z.

7.32. Let P be a polygon with k vertices v0, vi,..., (where we assume that v1 is
adjacent to for all i (subscripts are read mod k)). Orient the edges in the
direction from to and now identify all edges with one another. The
quotient space is called the k-fold dmicr cap (when k = 2, the dunce cap is the
real projective plane).

Prove that the homology groups of the k-fold dunce cap are:

H,=Oforp�2, H0=Z.

Fundamental Groups of Polyhedra

Let us turn our attention from the homology groups of a polyhedron to its
fundamental group. We begin by mimicking, in an atopological setting, our
earlier discussion of multiplication of paths.

Definition. An edge e = (p. q) in a simplicial complex K is an ordered pair of
(not necessarily distinct) vertices lying in a simplex of K; p is called the origin
of e and q is called the end of e.

Definition. An edge path (of length n) in K is a finite sequence of edges,

whereende1 = origin foralli = 1,2,...,n — the origin
of z denoting it by and we call end e, the end of denoting it by

=
paths with = then their product is
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Clearly, the product of edge paths, when defined, is associative.

Notation. If e = (p. q) is an edge, then e' = (q, p) (which is also an edge). If
= e1 is an edge path, then its inverse is = e1 er'. Ife = (p, p),

then e is called a constant path and is denoted by i,.

In order to force a group structure on edge paths, we must (as with
fundamental groups) impose an equivalence relation on them.

Definition. Two edge paths a and a' in K are homotopic, denoted by a a', if
one can be obtained from the other by a finite number of elementary moves
consisting of replacing one side of the following equation by the other:

=

where
{ p. q, r} lie in a simplex of K, and fi, y are (possibly empty) edge paths

inK.

EXAMPLE 7.16. If K is the 2-simplex [po. Pi' Pu, then the edge paths a =
(Po, Pa)(Pi, p2)and = (Po' p2)are homotopic if is the 1-skeleton of K,
then these edge paths are not homotopic in Ku).

EXERCISES

7.33. Homotopy is an equivalence relation on the set of all edge paths in K; the
equivalence class of a is denoted by (a] and is called a path

7.34. (i) If a a', then o(a) = o(a') and e(a) = c(a'). Conclude that o[aJ and e[a) are
well defined.

(ii) If a a', fi fi' and e(a) = o($), then nfl a'fl'. Conclude that [a][fl] =
(nfl) is well defined when e[n] = olfl].

Let n(K) denote the set of all path classes in K.

Theorem 7.31. n(K) is a groupoid, that is, it is an algebraic system satisfying the
following axioms:

p2
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(i) each path class (2] has an origin p and an end q, where p. q e Vert(K), and

[ii] [a] = [a] = [a] [i4);

(ii) associativizy holds when defined;
(iii) [a][a'] = [I,,] and [a'][a] =

PRooF. Straightforward (much simpler than the analogous Theorem 3.2).
0

Definition. Fix a vertex p E Vert(K) and call it a baseporni The edge path group
is

p) = {[a] ir(K): o[cx] = p = e[a]}.

Theorem 7.32. The edge path group ir(K, p) is a group.

PROOF. Immediate from Theorem 7.31. 0

Definition. A siinplicial complex K is connected il for every pair of vertices p,
q e Vert(K), there exists an edge path in K from p to q.

7.35. Show that the following are equivalent: K is connected; the I-skeleton is
connected; IKI is connected; IKI is path connected.

7.36. If K is connected and Po' E Vert(K), then x(K, Po) n(K, Pi). (Hini: See the
proof of Theorem 3.6.)

7.37. II K is a connected simplicial complex with 2-skeleton then ir(K, p)

Let a = be an edge path in K from Po to p1., where e1 =
for I = 1, ..., m. Let I denote I subdivided into m intervals of equal lcngth
more precisely, let I,, be the simplicial complex with Vert(1_) = {v0, v1, . .., v_ }

= i/m)and = 1,...,m. An edge path nof length
m defines a simplicial map a°: I,, —+ K by a°(v1) = Of course, ta°I: I —' IKI is

an honest path in IKI, where Ia°I is the piecewise linear map determined by a°.

7.38. Define a relation R on Vert(K) by vRw if there exists an edge path in K from v
tow.

(1) Show that R is an equivalence relation on Vert(K).
(ii) For each x e Vert(K), define the component of K containing x as the family

of all simplexes s e K with Vert(s) contained in the R-equivalence class of
x. Show that each component of K is a connected subcomplex and that K
is their disjoint union.

(iii) If x e Vert(K) and L is the component of K containing x, then
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it(K, x) iz(L, x).

'7.39. (1) If a and fi are edge paths in K of lengths m and n, respectively, and if
e(a) = then there are simplicial maps a°: I. —. K and fl°: 1. -. K (as
above). Define a simplicial map y: —, K by y(v1) = for 0 � i � m
and Y(V.,+j) = for 0 � i � n. Show that (a$)° = y.

(ii) If a and ji are edge paths in K with a fi, then rd 1.

In the sequel, we drop the distinction between a and x°, and we shall regard
an edge path as a simplicial map when convenient.

Definition. An edge path = e1 is reduced if no e1 is a constant i,, and if
for allj = 1,2,..., n — I; a circuit is a reduced closed edge path.

Definition. A tree is a connected simplicial complex T with dim T � I and
which contains no circuits.

A tree of dimension 0 must have only one vertex.

ExERcISEs

'7.40. If a = e1 e,, is a closed edge path in K with o(a) = p = e(a), and if there is a
tree Tin K containing every edge ej, then [a:! = I in ir(K, p). (Intuitively, trees
are contractible, and every path in a contractible space is nulihomotopic.)

'7.41. Let T1 and T2 be trees in a simplicial complex K. If T1 (1 T2 is connected, then
T1U T2 is a tree.

Lemma 733. Every tree T' in a connected simplicial complex K is contained in
a tree T with Vert(T) = Vert(K) moreover, a tree Tin K is maximal tf and only
if Vert(T) = Vert(K).

PROOF. Suppose there is a vertex q E Vert(K) with q Vcrt(T'). Choose p e
Vert(T'). Since K is connected, there is a (reduced) edge path in K from p = Po
to q, say, = 0" Pi)(Pi' P2) q). Since p e Vert(T') and q Vert(T'),
there is a smallest index i with e Vert(T') and Pi+i Vert(T'). Define a
subcomplex TM of K with vertices Vert(T')U {PI+,} and one additional
I-simplex }. Clearly, T" T'. But T" is a tree, for any circuit in T"
must pass through (since T' is a tree), and such an edge path cannot be
reduced. This procedure may be iterated as long as the tree obtained has vertex
set smaller than Vert(K). We conclude that a maximal tree T containing T'
exists, and that Vert(T) = Vert(K). The proof of the second statement is left
as an (easy) exercise. 0

It follows from Lemma 7.33 that maximal trees in finite simplicial com-
plexes always exist; one can prove their existence in general by Zorn's lemma.

Some maximal trees of a "figure 8" are indicated below.
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We now introduce free groups so that we can describe (not necessarily
abelian) groups by generators and relations.

Definition. Let F be a group containing a subset X. Then F is free with basis
X if for every group G and every function p: X —, G, there exists a unique
homomorphism F -. G with = q(x) for all x X.

t S."

"-S
SJ "S

X iG.

The reader should compare this definition with the corresponding property
of free abelian groups in Theorem 4.1(i) (we emphasize that the groups G here
may not be abeian). Assuming that free groups exist, one can prove, as in
Theorem 4.1 (ii), that every group is isomorphic to a quotient group of a free
group. The positive answer to the existence question for free groups is given
by the following construction.

Let X' be a set disjoint from X and let be a bijection X X'. Let
X be a set disjoint from X U X' that contains one element we denote by 9".
Call X U X' U X the alphabet, and call its elements letters. Let S be the set of
all sequence of letters (a1, a2,...); that is, each; = I or for some XE X
(we agree that x1 may denote x). A word on X isa sequence (as, a2, ...)ES

such that all coordinates are I from some point on; that is, there is an integer
n such that; = 1 for all k � n. In particular, the constant sequence

(1, 1,1,...)

is a word; it is called the empty word and is also denoted by L.A reduced word
on X is a word on X that satisfies the extra conditions:

(i) X and x1 are never adjacent,
(ii) if a = I for some in, then; = 1 for all k > in.

In particular, the empty word is a reduced word. Since words contain only a
finite number of letters before they become constant, we use the more eco-
nomical (and suggestive) notation

w =

where = ±1. Observe that this speHing of a reduced word is unique, for this
is just the definition of equality of sequences.
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The idea of the construction of the free group F is just this: the elements of
F are the reduced words and the binary operation is essentially juxtaposition.
Unfortunately, the juxtaposition of two reduced words need not be reduced,
and one defines the product of two reduced words as the reduced word
obtained from their juxtaposition after performing all possible cancellations.
One verifies that this product is well defined and associative. Moreover, given
a function q: X — G, one defines

=

Definition. If F is free with basis X, then rank F = card X.

7.42. If F is free with basis X and if F is the commutator subgroup of F, then F/F'
is free abelian with basis all coscts xF' with x e X.

7.43. The rank of a free group does not depend on the choice of basis. (HuU: Exercise
7.42 and Theorem 4.3.)

Definition. A group G is defined by generators X = k e K} and relations
1:jeJ} if where F is free on X and R is the normal

subgroup of F generated by e J). The ordered pair (XIA) is called a
presentation of G.

There are two reasons forcing us to use the normal subgroup R generated
by {rj: j e J}: we wish to form the quotient group FIR; if r1 = 1 in G and we F,
then wrjw' = 1 in G.

Definition. Let K be a connected simplicial complex and let T be a maximal
tree in K. Define a group G = having the presentation:

Generators: all edges (p. q) in K;
Relations: (i) (p. q) = I if(p, q) is an edge in T;

(ii) (p, q)(q, r) = (p, r) if {p, q, r} is a simplex in K.

Tbeorem 7.34. If K is a connected simplicial complex with basepoint p, then
n(K, p)

Remark. We are describing ir(K, p) by generators and relations.

PROOF. Let F be the free group with basis all edges (ii, v) in K, and let R be
the normal subgroup of F generated by all relations of types (i) and (ii) above
(so that Gxr = FIR).

Let ye Vert(K). If v = p, define a, = (p, p). If v 5é p. there is a reduced edge
path in T from pto v (for T is connected and Vert(T) = Vert(K), by Lemma
7.33). Note that is the unique such path lest T contain a circuit.
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Define F—' ir(K, p) by q(u, v) = To see that q defines a
homomorphism on FiR = suffices to show that all the relators (hence
R) lie in ker q.

Type (i). If (u, v) e T, then every edge in lies in T, and Exercise
7.40 shows that v) = 1.

Type (ii). If {u, v, w} is a simplex of K, then

= w)u1]

= v)(v, =

the last equation being the definition of the homotopy relation. Hence *p
induces a homomorphism —, ,r(K, p), namely,

(u, v) =

We prove that is an isomorphism by constructing its inverse. If =
e1 is a closed edge path in K at p. define

= e1 E GKT.

If is a second such edge path with the relations of type (ii) show that
8(cc) = Therefore 8 induces a homomorphism 8: 7t(K, p) —, GX.T by

Let us compute composites. If [c) e p) and = e1 e,,,

= = .. . eAR)

= q(e1)" (since is a homomorphism killing R)

= [s], since [x,,) = 1.

Finally, assume that (u, v) is a generator of

v)R) = v)) =

= R.

Now and lie in R (since their edges do), so that normality of R gives
= ;(u, v)R = (u, v)R.

Therefore both composites are identities, and is an isomorphism. 0

Corollary 735. if K is a graph, that is, a connected 1-complex, then 7r(K, p)
is a free group. Moreover, it has a basis in byective correspondence with
(1-simplexes SE K: s T}, where T is some chosen maximal tree in K.

PROOF. By relations of type (i), ir(K, p) is generated by all edges (u, v)
that are not in T. Examining relations of type (ii), we see that (u, v)(v, u) = 1,
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so that, for each of the edges just mentioned, picking just one of (u. v) or (v, u)

still leaves a set of generators. Next, if {u,v, w} is a simplex of K, then at least
one vertex is repeated, for dim K � 1. The relations of type (ii) are thus all
trivial [(u, u)(u, v) = (u, v), (u, v)(v, v) = (u, v), and (u, u)(v, u) = (u, u)]. 0

7.17. (i) if K is the 1-skeleton of a 2-simplex s, then n(K, p) Z.
(ii) If K is v that is, a "figure 8", then it(K, p) is a free group having two
generators. In particular, x(K, p) is not abelian.

Tbeorein 7.36. If K is a connected simphcial complex with basepoint p, then

it(K, p) n1(IKI, p).

Remark. A presentation for n(K, p) is given in Theorem 7.34.

PRooF. If we regard an edge path a of length m as a simplicial map I,, —. K,
then Exercise 7.39(i) shows that there is a homomorphism t: ,t(K, p) —'

1t1(IKI, p) given by [a] i—' [(all, where lal: = 1 —. KI.
To see that t is surjective, let f: I —. IKI be a closed path in K( at p. By

Corollary 7.4, there is an integer m and a simplicial approximation p: 1. —' K
to f. Of course, we may regard .p as a closed edge path in K at p; moreover,

f rd I [Exercise 7.39(ü)], and so r: [q1] i—. [f].
To see that Tis injective, assume that a is a closed edge path in K at p with

lal nulihomotopic in (K(; we must show that a i,,. Let F: I x 1 -. IKI be a
(relative) homotopy F: lal c rd I, where c is the constant path at p. Assume
that a has length m, that is, a: I,,, —. K, where a(O) = a(m) = p and a(i)
pj Vert(K) for 0 < i < in. Subdivide I x I by a rectangular grid of vertical
and horizontal lines, which contains a vertical line passing through each point
(V1. 0), 0 � i � m (recall that Vert(I,,) = {v0,..., v_}). Further subdivide by
bisecting each little square in the grid into two triangles, using one of its
diagonals. Clearly, such subdivisions can be made with arbitrarily small mesh,
and so Corollary 7.4 gives a simplicial approximation (Il: L —, K to F, where
L is a suitable subdivision of I x I.

LetJ* bethebottomedgeofl x Jassubdivided byL.Clearly,411': 1* K
is a simplicial approximation to Fil x = lal. Suppose that

Vert(1) = {..., v1,a1,a2,..., ak, ...}.
Since 41P is a simplicial map, e Vert(K), '11(v1) = p1, and =
Furthermore, that 1111* is a simplicial approximation to fa( gives e

Pt+i}' that is, = or The edge path a' (D(1 is thus obtained
from a by insertion of edges of the form (pt, P,+i), ps), or
(ps, p1); it follows that a a'. A similar investigation of the top edge of I x I
(as well as the left and right sides) shows that each is just a product of is's (P
is the basepoint of K), which is obviously homotopic to ii,. The bottom row
of 1 x I has the following form.
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p u1 •••

...

1'N P

tj P

Now a a' = (p, t2) P)

t1)(t1, u2)(u2, u,j(UN,

(p, . U!)(U., p).

Thus, a is homotopic to the edge path on the top of the row. An induction on
the number of rows gives a 1,,, as desired. 0

Corollary 7.37 (Tietze). lix is a connected polyhedron, then ,r1(X, x0) is finitely
presented, that is, x1(X, x0) has a presentation with only finitely many genera-

tors and finitely many relations. Indeed, If (K, h) is a triangulation of X and T
is a maximal tree in K, then

x1(X, x0) GXT.

PROOF. Theorems 7.36 and 7.34. 0

We remark that it is a stronger condition on a group that it be finitely
presented than that it be finitely generated; in fact there are uncountably many
nonisomorphic f.g. groups while there are only countabty many finitely pre-
sented groups. It is easy to prove, however, that every f.g. abeian group is
finitely presented.

To see the power of Corollary 7.37, recall our earlier labor in proving
that ,rj(S', 1) Z. This is immediate from the corollary and Corollary 7.35.
Example 7.17 also gives us our first example of a nonabelian fundamental
group. On the other hand, there is a limit to the power of Corollary 7.37, which
shows that fundamental groups are inherently more diflicult than homology
groups. We have already mentioned that there exists an algorithm to compute
the homology groups of a polyhedron. In contrast, it is known (see [Rotman
(1984), p. 395]) that there is no algorithm that can decide of an arbitrary finite
presentation whether or not the presented group has order 1. In our context,
there is no algorithm using Corollary 7.37 which can always decide whether
or not a polyhedron is simply connected!

EXERCISES

7.44. (i) Using Exampk 7.13, prove that Z/2Z.
(ii) Using part (1) and the Hurewicz theorem, show (again) that

Z/2Z.
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7.45. Let X be a polyhedron.
(i) Show that X is connected if = Vert(X) is contractible in X, i.e., there

is F:X x I-'X With F(v,0)=v for all veX'0' and F( ,1)a constant
function.

(ii) Show that X is simply connected if X'1' is contractible in X.

746. Let K be a connected one-dimensional simplicial complex having m edges and
n vertices. Prove that ,r,(IKI, x0) is a free group of rank m — n + 1.

7.47. If X is a connected polyhedron of dimension 1, show that:

110(X) =
H,(X) is free abelian of rank (1 —

� 2.

7.48. Use Theorem 7.36 to prove (again) that S" is simply connected for all m � 2.

7.49. A subcomplex L of a simplicial complex K is called full whenever e K and
Vert(c) c Vert(L), then a e L.
(i) The q-skeleton is not full for q <dim K.

(ii) If A Vert(K), then there is a unique full subcomplex L of K with Vert(L) =
A; moreover, if L' is a subcomplex of K with Vert(L') = A, then L' L.

7.50. Let K be a connected simplicial complex, let L be a full connected subcomplex
of K, and let v0 e Vert(L). If every closed edge path in K at is homotopic to
a closed edge path in L. at then the inclusion L c. K induces a surjection

00) ,r(K, 00). Show that this map need not be an isomorphism (take K
simply connected).

The Seifert—van Kampen Theorem

Definition. Let A and B be (not necessarily abeian) groups. Their free product,
denoted by A * B, is a group satisfying the following condition:

A*B

there are homomorphisms i andj such that, for every pair of homomorphisms
f: A —. G and g: B —.6 for any group 6, there exists a unique homomorphism
h: A s B —.. 6 making the diagram commute.

In categorical language, A * B is the coproduct in Groups and hence is
unique to isomorphism if it exists. Existence is proved by showing that there
is a group, each of whose nonidentity elements has a unique factorization of
the form
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where A, b1 E B, and only a1 or is allowed to be I.' An alternative
description of A * B can be given via presentations. Let A = (XIR) and
B = (YIS) be presentations in which the sets X and Y of generators (and
hence the relations R and S) are disjoint; then a presentation for A e B is
(XU YIRUS).

7.18. Z • Z is a free group (of rank 2).

Definitiog. Let B, A1, A2 be objects in a category and let 11. be
morphisms:

B

(t5)

A solutlo. of the diagram (5) is an object C and morphisms g2, 9i such that
the following diagram commutes:

B

121

A2

A psisl*out of the diagram (5) is a solution (C, g1, g2) such that, for any other
solution (I), h1, h2), there exists a unique morphism p: C—. D making the
following diagram commute:

'I
B t A1

1 Multiplication is essentially juxtaposition moreover, in the definition of A .8, one defines

12j

1,
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One proves quickly that pushouts, when they exist, are unique to equi-
valence: if (C,91, 92) and (D, h1, h2) are both pushouts, then the morphism

C -. P is an equivalence.

Theorem 7.38. A pushout exists for the diagram ((5) in Groups. Moreover, for
= 1, 2, has presentation then the pushout has the presentation

C = (X1 UXZIAI be B)).

PROOF. Let N be the normal subgroup of A1 * A2 generated by
be B).DefineC =(A1 = 1,

2. It is easy to verify that (C, g2) is a solution of(5).
Suppose that (D, h1, h2) is a second solution of ((5). The definition of free

product provides a unique homomorphism A1 A2 -. D with = for
1,2. Since h2f2 = h1f1, it follows that N c ker ,.J, and ,j, induces a homo-

morphism C —. D. One shows easily that the diagram ((5*) commutes and
that q, is unique. Finally, it is plain from the construction that C has a
presentation as described in the statement. 0
Corollary 7.39. If A2 = {1} in diagram ((5), then the pushout C is A I/N, where
N is the normal subgroup generated by ft (B).

An observation is needed. If G is an infinite cyclic group with generator x,
we know that G • G is a free group of rank 2 and that a presentation of 6* G
is (x, y to avoid
confusing it with x. More generally, if groups have presentations (X1Ji%,)
for i = 1,2, then A1 * A2 has presentation (X1 if X1 and X2 are
disjoint if and X2 are not disjoint, new notation must be introduced to
make them disjoint. We have tacitly done this in Theorem 7.38; we shall be
more explicit in the next proof.

The next theorem shows that pushouts occur quite naturally.

Theorem 7.40 (Seifert—van Kampen).89 Let K be a simplicial complex having
connected subcomplexes L1 and L2 such that L1 U L2 = K and L1 fl L2 is
connected. If v0 Vert(L1 fl L2) (so that L1 fl L2 0), then ir(K, v0) is the
pushous of the diagram

n(L1 fl L2, v0) n(L1, v0)

I
ir(L2, v0)

where the arrows are induced by the inclusion L1 fl L2 c.. for i = 1, 2.

'Many authors call this van Kampens theorem.
0 In light ol Theorem 7.36. this theorem may be rephrased so that complex" may
everywhere be replaced by 'potyhedron'.
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Remark. The hypothesis implies that K is connected.

PROOF. Denote L1 flL2 by L0. Choose a maximal tree T0 in L0 and for each
1,2 choose a maximal tree in containing T0. By Exercise 7.41, T1 U T2

is a tree in K; moreover, 1'1 U T2 is a maximal tree because Vert(T1 U T2) =
Vcrt( T1 ) U Vert( 1's) = Vert(L1 ) U Vert(L2) = Vert(K). Theorem 7.34 says that

v0) has a presentation (EIA' U A), where E is the set of edges (u, v) in K,
A' = Efl(T1UT2),and

AN = ftu, v)(v, w)(u, w)': {u, v, w} = se K).

There are similar presentations for v0), namely, (E11A U where E, is
the set of edges in

Denote the set of edges in L0 = L1 fl L2 by E0. We make E1 and E2 disjoint
by affixing the symbols 11 and j2 (which designate the inclusions). Theorem
7.38 thus gives the presentation for the pushout

Uj1A' Uj2A'2 Uj2A U {(j1e)(j2e)1: e E0}).

The generators may be rewritten as

JLEOUJ1(E1 — EO)UJ2EOUJ2(E2 — E0).

The relations includcj1 E0 = fiE0 (so that one of these subsets is superfluous).
Next, = E,fl7 =(E4flT0)U(E,fl(1 — T0)), and this gives a decomposi-
tion off1 into four subsets, one of which is superfluous. Furthermore,
AN = A U A, for if(u, v)(v, w)(u, A, then {u, v, w} E K = L1 U L2 and
{u, v, w} E L, for some i. Transform this presentation as follows: (1) isolate
those generators and relations involving L0; (2) delete superfluous generators
and relations involving L0 (say, delete such having symbol J2); (3) erase the
now unnecessary symbolsj1 andj2. It is now apparent that the pushout and
n(K, v0) have the same presentation and hence are isomorphic. 0
Coroflary 7.41. With the hypothesis and notation of the previous theorem, a
presentation for it(K, v0) 15

(j1 E1 Uj1A Uj2A U e e E0}).

Corollary 7.42. If K is a simplicial complex having connected subcomplexes
L1 and L2 such that L1 U L2 = K and L1 fl L2 is simply connected, then for
V0 E Vert(L1 IlL2),

x(K, ir(L1, v0)sn(L2, v0).

Remark. There is a version of the Seifert—van Kampen theorem for spaces
other than polyhedra, but the analogue of Corollary 7.42 [x1(X1 v X2, x0)

x0) • x0)] may be false (see [Olum]).

Note that a "figure 8" is S1 v S1. so that Corollary 7.42 gives another proof
of Example 7.17.
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Corollary 7.43. Let K be a simplicial complex having connected subcomplexes
L1 andL2 such thatL1 U L2 = K andL1 flL2 is connected. If v0 e Vert(L1 flL2)
and if L2 is simply connected, then

ir(K, v0) n(L1, v0)/N,

where N is the normal subgroup generated by the image of fl L2, v0).
Moreover, in the notation of the theorem, ir(K, v0) has the presentation

Uj1E0).

PROOF. Since ,c(L2, v0) = { 1 }, the first statement is immediate from the Seifert—
van Kampen theorem and Corollary 7.39; the second statement is immediate
from CoroNary 7.41. 0

We now exploit Corollary 7.43. Let K be a connected 2-complex with
basepoint v0 and let 2 be a closed edge path in K at v0, say,

Define a triangulated polygon D(2) as the 2-complex with vertices Vcrt(D(2)) =

{ PO, ..., q0, ..., r} and 2-simplexes {r, q1, q1+1 }, q1+1, Pi÷i }, and

{ Pi÷i)' where 0 � i � n — 1 and subscripts are read modulo n.

Let ÔD(2) denote the boundary of Dfrx), that is, aD(rx) is the full sub-
complex with vertices {Po' ..., }. Define the attaching map aD(2) -. K
by = for 0 � i � n — 1. Clearly, carries the boundary edge path
(Po, Pi) Po) onto the edge path 2.

Definition. Let K be a simplicial complex and let — be an equivalence relation
on Vert(K). The quotient complex K/- is the simplicial complex with
vertex set all equivalence classes [vi for v Vert(K) and with simplexes

[v0], ..., [Vq]} if there exists a simplex {u0, ..., e K with for
i=O,...,q.
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One verifies quickly that K/—. is in fact a simplicial complex.

DeIIltion. Let be a closed edge path in K at v0, let D(1x) be the corresponding
triangulated polygon, and let p,: -. K be the attaching map. The quo-
tient complex K, = (K where identifies each with ço,(p,). is
called the simplicial complex obtained from K by attaching a 2-cell along

Theorem 7.44. Let be a closed edge path in K at v0 and let K, be obtained by
attaching a 2-cell along Then

ic(K,, v0) a(K, v0)/N,

where N is the normal subgroup generated by (a].

Paooi. Define L1 to be the full subcomplex of K, with vertices Vert(K)U
{q0, ..., q,_1}, and define L2 to be the full subeomplex of K, with vertices
(r. v0, q0, q1, ..., q,_1 }. Note that L1 U L2 = K, and IlL2 is the edge
(v0, q0) and the loop (q0, ..., q,_1}; it follows that IlL2, v0) Z. Now
L2 (isomorphic to the full subcomplcx of D(a) with vertices {r, q0,..., })
is simply connected. The inclusion j: K induces an isomorphism
ir(K, v0) ,t(L1, v0). Define a function *: Vert(L1) —, Vert(K) by 4c(v) = v for
all v e K and = for all 1. It is easy to see that is a simplicial map
and —. L1 is homotopic to the identity; hence the induced map is the
inverse of The proof is completed by applying Corollary 7.43, since the
image of the infinite cyclic group ic(L1 IlL2, v0) is generated by 0

Defmitlo.. A of circles is a wedge of complexes VK4, where each K1
has the form for a 2-simplex s.

If VK1 is a bouquet olm circles, then Corollary 7.35 shows that ir(VK1, b)
is a free group of rank m.

Theorem 7.45. Given a finitely presented group G, there exists a connected
2-complex K with G n(K, v0).

Remark. If one uses infinite siznplicial complexes K, one can prove that for
any (not necessarily finitely presented) group G, there exists a topological
spaceX K with G x1(X, x0).

PRoOF. Let (XIA) be a presentation of G and let B be a bouquet of Xl
circles: Vert(B) = {v0, x E X}. If we identify the closed edge path
(v0, v0) with x, then each word w e A may be regarded as a
closed edge path in B at v0. Let D(w) be the triangulated polygon of w and let

ÔD(w) -.' B be the attaching map; let D be the wedge and let
q): -. B satisfy = p,,. Finally, define K as the quotient com-
plex of BUD in which we identify each pW un D(w)J with
[vertices of D(w) are rw, pr,...,
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Let T be the tree in K with vertices {v0, x e X}. Define L1 to be the full
subcomplex of K with vertices

Vert(B)U(U
w,A

and define L2 to be the full subcomplex of K with vertices

Vert(T)U(U

Note that L1 U = K and L1 flL2 is the union of Twith loops
it foUows that ir(L1 fl L2, v0) is free on these loops. Now L2, being a wedge of
simply connected complexes, is simply connected and it(L1, v0) n(B, v0), as
in the proof of Theorem 7.44. This proof is completed by applying Corollary
7.43, for the image of the free group ,r(L1 fl L2, v0) is generated by A. 0

Corollary 7.46.

(i) Let K be a bouquet of 2g circles, and let K1 be obtained from K by attaching
a 2-cell along a, where a = Then

ir(K1, v0) = (at. b1, ..., a,,

a bouquet of g circles, and let K1 be obtained from K by attaching
a 2-cell along a, where a = c,2. Then

,r(K1, v0) = ...,

PROOF. Theorem 7.44. 0
Definition. The one-relator groups occurring in Corollary 7.46 are called
surface groups.

Surface groups are the fundamental groups of surfaces (compact connected
2-mathfolds) see Exercise 8.18 and the subsequent discussion.

Corollary 7.47. A group G is finitely presented if and only if there exists a
polyhedron X with G it1(X, x0).

PROOF. Necessity follows from the theorem; sufficiency follows from Corollary
7.37. 0

The quotient group in the statement of the Seifert—van Kampen theorem
can be complicated. In the special case when the maps j,4, induced by the
inclusions (for 1 1, 2) are injections, the resulting group is called an amalgam
(or a free product with amalgamated subgroups). Such groups have been
studied extensively.



CHAPTER 8

CW Complexes

We return to homology, seeking to compute homology groups more effec-
tively. The spaces for which this search is successful, the so-called CW com-
plexes introduced by .1. H. C. Whitehead, generalize siinplicial complexes; they
have also proved to be of fundamental importance in homotopy theory.

The basic idea is quite simple. Recall that a simplicial complex is a union
of simplexes (homeomorphs of standard simplexes) that fit together nicely:
any two of its simplexes that intersect do so in a common face. Standard
simplexes as building blocks of nice spaces is too good an idea to abandon.
On the other hand, we can replace simplexes by spaces that are "almost"
homeomorphic to standard simplexes in the sense that boundary points may
be identified. Think for a moment of the interesting spaces obtained from the
square I x I (which is homeomorphic to by identifying points on its
boundary: torus; real projective planç Klein bottle; 2-sphere;there are others,
of course. After constructing these spaces, one must take care in actually
triangulating them; moreover, triangulations are wanted only because sim-
plicial homology requires them. The idea now is to consider spaces built from
generalized simplexes ("almost" homeomorphic to standard simplexes) that
are glued together along their boundaries (more details later). We shall see
that the homology groups of these spaces arise from chain groups having
smaller ranks than the chain groups appearing in simplicial theory.

Hausdorif Quotient Spaces

In Chapter 1 we considered quotient spaces X/—, where — is an equivalence
relation on a space X; the points of are the equivalence classes fx) for
x E X. An important item in this context is the natural map v: X XI'—,
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defined by x—. lxi; it is a continuous surjection; indeed v is an identification.
Recall that if A is a subset of X, then X/A denotes the quotient space
corresponding to the equivalence relation that identifies every pair of elements
of A and no others.

The following examples show that a quotient space of a (compact)
Hausdorif space may not be Hausdorif and that the natural map need be
neither an open map nor a closed map.

8.1. Consider the quotient space X/A, where X = I and A is the
(open) subset A = 10, 1); let v: X X/A be the natural map. Then the point
[0] X/A is open (because = A is open), but the other point [1] E
X/A is not open (because = (1) is not open). Therefore X/A is
Sierpinski space, which is not Hausdorfl.

EXAMPLE 8.2. (i) Let v: X —+ X/A be the natural map of Example 8.1. Then
v([0, 1/2]) = {[0)} is not closed in X/A, and so v is not a closed map.

(ii) Let X be the sin( l/x) space, and definef: X —. I as the vertical projection
(x, y) i— x; it is easy to see (using the definition of an identification) that the
continuous surjection I is an identification. If U = V fiX, where V is the open
disk with center (0, and radius then f(U) is not open in I, and so f is not
an open map. (Note that the target I is Hausdorif.)

We seek sufficient conditions guaranteeing that XI be HausdorlT when
X is Hausdorft Recall an elementary fact. The diagonal of a space Y is the
subset D of Y x Y (product topology) defined by

D={(y,y)EYx Y:yeY};

a space Y is Hausdorif if and only if its diagonal D is closed in Y x Y.

Definition. If — is a binary relation on a space X, then its graph G is the subset
ofX x Xdefinedby

G = {(x1, x X: x1 — x2};

we say that —, is closed if its graph G is a closed subset of X x X.

The identity relation on X is closed if and only if X is Hausdorif.
if is an equivalence relation on a space X, then its graph 6 is equal to

(v x where v: X —' is the natural map and D is the diagonal of
Xf—. When X/—. is the diagonal D (X/—) x (XI—.) is closed,
hence G is closed in X x X (because v and hence v x v are continuous) and
— is closed. We give a partial converse after a general lemma.

Lemma8.I.Letv: W—iZbeaclosed map,letSbeasubset of Z,andle: Ube
an open subset of W containing v'(S). Then there exists an open set V in Z with

and v'(V)c:U.
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PROOF. Define V = where C means complement. Since U is open, UC is
closed; since v is a closed map, v(UC) is closed and so V = v(UCY is open. Now
v_1(S)c U gives Sflv(UC)=Ø, so that Scv(U7= V. Finally,
W — v1v(W— U) W — (W — U) = U, as claimed. 0
Theorem 8.2.11 is a closed equivalence relation on a compact !Iausdorff space
X, then the quotient space XI is also (compact) Hausdorif.

PROOF. Let v: X —' X X bethegraph
of —;fori = X x X —. X betheprojection(x1, x2)i—.x1. Weclaim
that v is a closed map. If C is any subset of X, then

If C is closed, then so are pj' (C) and fl 6; since Xis compact Hausdorif,
P2 is a closed map, and so v is

is closed, as claimed.
It follows that every point of X/ — is closed (being the image of a (necessarily

closed) singleton in X). If fx), [yJ are distinct points of XI—, then ([x]) and
are disjoint dosed subsets of X. Since X is compact and Hausdorif,

it is normal; there thus exist disjoint open sets and in X with
v'([xJ) c and c By the kmma, there are open sets and

in with [xJ e E c and c It
follows that fl = and this shows that XI'— is Hausdorif. 0

Corollary 8.3.11 X is a compact Hausdorff space and A is a closed subset, then
X/A is (compact) Hausdorff.

PROOF. The graph of the appropriate equivalence relation is (A x A) U D,
where D is the diagonal of X, and this is a closed subset in X x X because A
is closed in X. 0

Here is an important class of examples.

Definition. Let F be a division ring and let n � 0. Define an equivalence
relation on — {0} (where F consisting
of all (n + 1)-tuples x = (x0, x1, ..., with coordinates x1 in F) by x y if
there exists A F — (0} with x = Ày. The quotient set (P' — {O})/—, that is,
the set of all equivalence classes, is called F-projecthe -space and is denoted
by The class of x = (x0, ..., x,) is denoted by [x] = [x0, ..., x,j e

Note, for each n � 0, that there is an imbedding F?' given
by [x0, ..., ..., 0]. One calls the union1 infinite-
dimensional F-projecthe space and denotes it by

'Actually, one can only take the union of a family of subsets or a gwen set, the notion of dirrct
linug is needed to make ibis definition precise.
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There are three division rings in which we are interested: the reals R, the
complexes C, and the quaternions H. Of course, the reader is familiar with C
as a two-dimensional vector space over R with basis {l. i}. Let us recall that
H is a four-dimensional vector space over R with basis {l, i, j, k}. The ring
structure on H is determined by the distributivity laws and the rules: = =
k2 = —I; tj = —fl = k;jk —kj = i;ki = —ki =j. Each ofR, C, and H has
a norm I I with values nonnegative real numbers: in R, lxi is abso-
lutevalue;inCjzI=Ia+bil=.Ja2+b2;inH,!wI=la+bi+cj+dki=

+ b2 + c2 + d2. One verifies that, in each case, the norm is a continuous
multiplicative map: Ixyl = IxI (this calculation in H is tedious).

In C, we know that ifz = a + bi, then idefined as a — bi satisfies
z 0, then f' = i/zr = z,1z12. Similarly, if w = a + bi + cj + dk E

H. then as = a — bi — cj — dk satisfies = 1w12. lfw 0, define
= it is now straightforward to check that H is a division ring.

For each of the three division rings F = R, C, and H, we see that F"4' — {O}

is a topological space, and so the corresponding projective spaces F?' are also
topological spaces when given the quotient topology.

Notation. For each n � 0, real projective n-space is denoted by RP", complex
projective n-space is denoted by Cl"', and quatensionic projective n-space is
denoted by HP".

EXERCISES

8.1. For every division ring F, show that FP° is a point.

'8.2. Show that RP' Sl, CP1 S'. and HP1 S'

8.3. Define U(F) — {x e F: IxI I), where F = R, C, or H. Show that U(R) S°.

(J(C) S'. and U(H) S'.

8.4. Show that RP2 is homeomorphic to the real projective plane (defined earlier as
a certain quotient space of I x I).

'8.5. For each n� 0, define an equivalence relation on S" by x y if x = ±y (identify
antipodal points). Prove that 5"! RP.

'8.6. For each n � 0, define an equivalence relation on by x — y if x = Ày for
some complex A with 121 1. Prove that CP. (Hint: Write x
(x1, x2 e as an (n + 1)-tuple of numbers: x =
(z z..thcnx=Ayimpliestxi=iAyi=IAIIyiandiAl=1.)

'8.7. For each n � 0, define an equivalence relation on by x y if x = Ày for
some quaternion A with 121 = 1. Prove that S4"43/—. HP". (Hint: If X, yE

c — {O}, then x = Ày implies 121 = I.)

Theorem 8.4. For every n � 0, the projective spaces RP", Cl"', and HP" are
compact Hausdorff.
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PROOF. In tight of Exercise 8.5, we may regard RP as a quotient space of
S". Moreover, it is easy to see that the graph of the equivalence relation
(in that exercise) is DUD, where D is the diagonal in S' x S and D =
{(x, —x) 5 x 5": xe This graph is closed, and so Theorem 8.2 applies.

As in Exercise 8.6, we may regard CP" as a quotient space of 5254.1•

Moreover, it is easy to see that the graph of the equivalence relation is

G = {(x,).x)eS2"4' x and ).ESL}.

Thus G is the image of S2"4' x under the continuous map of x

to itself given by (x, y) i—. (x, yx) therefore G is compact, hence closed.
A similar argument, using Exercise 8.7, applies to HP" regarded as a

quotient of the graph is a continuous image of x S3. 0

Attaching Cells

We now prepare for an important construction of examples of quotient spaces.
Recall the definition of the coproduct Jj X2 of two spaces X1 and X2 (the
disjoint union in which each X1 is an open subset). 1ff1: -. Y is continuous,
for 1 1, 2, then the (continuous) map 1112: X1 Y is defined by

(f1 fl f2)(x) = f1(x), where x X1.

Definition. Let X and Y be spaces, let A be a closed subset of X, and let
f: A -, Y be continuous. The space obtained from Y by attaching X via f is
(X jj Y)/-., where is the equivalence relation on X fl Y generated2 by
((a,f(a))E(Xj[ Y)x (Xfl Y):aeA}, This space is denoted by XJJ1 Y;
the map f is called the attaching map.

The mapping cylinder shows that every continuous map can be viewed as
an attaching map.

8.8. Lctv: X lj Y-'XJI, Ybethenaturalmap.LetZbeaspace,andleta: X—.Z
and fi: Y —' Z be continuous maps such that

2(0) = for allac A.

Then (811 fi) a is a well defined continuous map X Jj, Y -. Z. (Hint: Use
Corollary 1.9.)

"8.9. lfBisasubseiofZ x ZforsomesetZ,thendefine

B' ={(v,u)eZ Z:(u,v)EB}.

It R is a binary relation on a set X. then define a new binary relation R' on X by (x, y) R' if
thereexistsn�l x1—ysuchthai,torall

equivalence relation on X; it is called the equivalence relation gruerated by R.
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(I) LetXand Ybeafunction.
If B = ((a, f(a)) e (X Y) x (X jj Y): a c A}, then the equivalence rela-
tion on X jj Y generated by B is

DUBUW1UK,

whereDisthediagonalofX II YandK {(a,a')e A x A:f(a)—
f(a')} (regard A x A as a subset of(X Y) x (X Jj Y)).

(ii) Let A be the diagonal of Y x Y. Show that

K = (f x x 1)).

8.10. Show that the diagram

A

ij

x
(where i: A c. X is inclusion) is a pushout in iop.

8.11. If X and Y are path connected, then X jj1 Y is path connected.

8.12. LetXand Ybespaces,IetAbeanonemptydosedsubsetofx,letf:A—.Y
be and let v: X JI Y -. X Y be the natural map.
(i) Assumethat C X YissuchthatCflXisclosedin X.Showthatv(C)

is closed in XJJJ Y if and only if(Cfl Y)UJ1CflA) is closed in Y(Hinz:
For any C X Y, show that

v'v(C) = Y).)

(ii) Show that the composite

YC..Xfl Y-.XIL, Y

is a homeomorphism from Y to a subspace of X jj, Y. (One usually identi-
fies Y with its image under this map.)

(iii) Show that the composite

X C.. X JI Y -, X JI, Y

maps X — A homeomorphically onto an open subset of X Y.

(iv) Under the identification in (ii), show that one may regard 'Z1A as the
attaching map f.

8.13. Suppose that, in Exercise 8.12 A is compact and both X and Y are Hausdorit
(1) Show that the natural map v: X II Y X Y is a closed map.

(ii) If z€ X Y, show that its fiber v'(z) is a nonempty compact subset of
xJJ.Y.

X Y) is called the characteristic map. (See the remark after Theorem
8.7 as well as the definition of CW complex.)

Theorem 83. LetXandYbe Hausdorff,letAbeacompact subset of X,and
let f: A —. Y be continuous; then X Y is Hausdorff.
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PROOF. Let z1 and z2 be distinct points of X Y. The tibers v'(z1) and
are disjoint compact subsets of X Y, by Exercise 8.13(u). Since

X JJ Y is a standard subcover argument provides disjoint open
sets U1 and LI2 in X JJ Y with c U1 for i = 1,2. Since visa closed map
(Exercise 8.13(i)), Lemma 8.1 gives open subsets V, in X Y with E and

c U,, i = 1, 2. But V1 and V2 must be disjoint (because U1 and U2 are
disjoint), hence X fly. Y is HausdoriL 0
Remark. Theorem 8.2 cannot be used to prove Theorem 8.5 because we are
not assuming that X and Y are compact.

The next (technical) result enables one to recognize when a given space is
homeomorphic to a space obtained from another space via an attaching map.
This situation is analogous to that in group theory when one passes from the
description of an external direct product in terms of ordered pairs to a
description of an internal direct product whose elements need not be ordered
pairs.

Ybe compact Hausdorff,letAbeactosed subset of X,
Ia f:A Y be continuous, and let X Y = (X II Y)/—. Asswne that W Is
a compact Hausdorff space for which there exists a continuous surjection
h:Xjj Y-.WsUchthaf,forU,VEXJI Yonehasu—

h(u) is a homeomorphism X Jj1 Y -. W.

PRooF. Consider the diagram

xJIY

x-IJ-fY
where the vertical arrow is the natural map u'—' [u). The hypothesis says that
the equivalence relation — on X jj Y coincides with ker h, hence X jj, Y =
(X jj Y)fker h. Since all spaces are compact HausdoriT, Corollary 1.10 applies
at once to show that the dashed arrow [u] i-. h(u) is a homeomorphism. 0

Defiiiidon. An n-cell (or simply e) is a homeomorphic copy of the open
n-disk D' —

Of course, 17 — S'' is homeomorphic to W (hence has dimension n). This
definition of n-cell is compatible with our earlier notion of "closed n-cell" (a
homeomorphic copy of 17) as the foHowing exercise shows.

EXERCISE

'8.14. Assume that Y is Hausdorfi and that E is a closed n-cell in Y, where n > 0. If
'V: -. Eisa homeomorphisin, then - an n-cell whose closure
in
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Definition.3 Let Y be a Hausdorif space and let f: S'' -. Y be continuous.
Then 17111 Y is called the space obtained from Y by attaching an n-ceO via
L and it is denoted by Y1.

The elements of Y1 have the form [x] or {y], where x LV' and y e Y.
Exercise 8.9(i) says that the only identifications are [x) = (x'] (when x,

e S"' and f(x) = f(x')) and [x] = [yJ (when y = f(x)). The characteristic
map 1 in this case is the composite

DI'c.DRJL Y-DI'JJJ Y= Y1,

so that l): (17, Y)is a function of pairs (as in Exercise 8.12(11), we
have identified I with its homeomorphic copy in 11 via y -. [y)). Our previous
discussion gives the following: (i) Y1 is a Hausdorfi space (Theorem 8.5), which
is compact when Y is: (ii) is the attaching map f (Exercise 8.12(iv));
(iii) — is an n-cell, which is an open subset of Y1 (Exercise 8.12(111)).

The next definition isolates a property of characteristic maps.

Definition. A continuous map g: (X, A) —, (Y, B) is a relative bomeomorphism
if — A): X — A -. Y — B is a homeomorphism.

EXAMPLE 8.3. If I is a Hausdorif space, then a characteristic map D: (17, _
(Yr, Y) is a relative homeomorphism.

ExAMPii 8.4. If U c A c X with U A°, then the excision map (namely, the
inclusion (X — U, A — U) c (X, A)) is a relative homeomorphism.

8.5. If X isa compact Hausdorif space and A is a closed subset, then
the natural map v: (X, A) —' (X/A, s), where * denotes the equivalence class
comprised of all the points of A, is a relative homeomorphism.

In contrast to the constructive approach we have been giving, the following
result shows that spaces with attached cells exist in nature.

Theorem 8.7. Let Z be a compact Hausdorff space, let Y be a closed subset of
Z,and let e bean n-cell inZ with efl I = 0. If there isa relative homeomor-
phism D: (17, SI'') -. (e U I, Y), then the "obvious" map 11= IV' jj1 Y —' e U I
(wheref defined by [uji—.(2) 11 ly)(u), isa homeomorphism.

PROOF. We are going to use Lemma 8.6. The map h: DI' JJ Y -. e U Y defined
by h = fl is a continuous surjection, hence e U I is compact. Assume
that u, v LV' Y. We must show that u v (where is the defining equiva-
lence relation for attaching via f) if and only if h(u) = h(v). If ii — v, then
Exercise 8.9(1) allows us to assume that u e and that either (1) v e Y and
v = or (2) v SI' and (11(v) = f(v) = f(u) = (11(u). In either case, one sees

Compare the simplicial version of this construction at the end of Chapter 7.
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that h(u) = h(v). Conversely, ifh(u) = h(v), then either u, v are both in LV', both
in Y, or one in each. The only nontrivial case is u, v in LV'; here the hypothesis
that — is a homeomorphism from DN — to(e U Y) — Y = e((or
eli Y= 0) forces u, v in and f(u) =i Hence v.

Lemma 8.6 applies (for e U Y is compact Hausdorif) to show that [u) '— h(u)
isahomeomorphismY1=LV'jj,Y-.eUY. 0

Remark. A relative homeomorphism as in the statement of this theorem is
also called a characteristic map. This extends our earlier usage, which allowed
only maps with values in fY jj, Y.

8.15. Let K be an n-diznensionai simplicial complex, and let s be an n-situ1 K.
Show that may be viewed as a space obtained from by
attaching an n-cell. (Hint: Let e be the open n-simplex e = s — L)

8.16. 11 Y is a singleton, show that the space obtained from Y by attaching an n-cell
is S., hence S. e° U ê (disjoint union) (where denotes an I-cell). (See Example
8.14.)

Theorem

(i) For each n � I, RP' is obtained from RP"' by attaching an n-cell;
moreover, there is a disjoint union

where e' denotes an i-cell.
(ii) For each n � 1, CP' is obtained from CP'' by attaching a 2n-cell; more-

over, there Is a disjoiiu union

CP = e° U e2 U "U e2.

(iii) For each n � 1, HP" Is obtained from by attaching a 4n-ceIl; more-
over, there is a disjoint union

HP" = e° U e4 U— U e"'.

PRooF. (i) If x = (x1, ..., e S", denote its equivalence class in RP" by
[x) = [x,, ..., Define

e=
The complement Y of e in RP is just (the standard imbedded copy of) RP'.
Also, e is an n-cell, fore R" via [x,,..., and

IV' — By Theorem 8.7, it suffices to find a relative homeomorphism
I): (IV', S"4) -. (e U Y, Y) = (RP', 1). Let u = (u1, ..., u,,) E IV' (so �
1), and define
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ft is easy to see that D has the required properties.4 Finally, the decomposition
of RI" as a disjoint union of cells follows by induction on n.

(ii) and (iii). Imitate the proof in (i) after identifying complex numbers as
ordered pairs of real numbers in the first case and quaternions as ordered
quadruples of real numbers in the second case. 0

Homology and Attaching Cells

There is a close relation between H1(Y) and H4(YJ) before displaying it, we
need a technical lemma.

Definition. A Hausdorif space X is locally compact if, for eachxe X and every
open set U containing x, there exists an open set W with W compact and
xe Wc Wc U.

Lemma 8.9. If v: X —. X' is an and Z is locally compact
Hausdorff, then v x I: X x Z X' x Z is also an identification.

PROOF. It suffices to prove that if U' is a subset of X' x Z for which U =
(v x l)'(U') is open in X x Z, then U' is itself open. Choose (x', z) e U'; if
vx = x', then (v x l)(x, z) = (x', z) and (x, z) a U. Since U is open in X x Z,
there are open sets V in X and J in Z with (x, z) a V xJ c U. Local compact-
ness of Z provides an open set Win Z with z a W c W c J with W compact.
Of course,{x} x WcU.Define

x WcU};

note that x e A. We claim that A is open in X. Fix a A. For each a W, there
are open sets in X and in Z with E x c U. The family

a N_} beafinite
subcover. Then, for I � i � m, we have L, x N, c U (if N, = we define

= L1) moreover, a fl L,, and W c U N1. Now L = fl L, is an open set
x x x N1)c U;

—

Now observe that, for aX, we have {$} x W U = (v x IY1(U')if and
only if {v(fl)} x Wc U'. In particular,fieAif and only if {v($)} x Wc U,
from which it follows that vtv(A) = A. Since v is an identification, v(A) is
open in X', hence v(A) x W U' is an open neighborhood of(x', z). Therefore
U' is open. 0

Lemma 8.9' (Tube Lemma). Let X and Y be topological spaces with Y compact.
Ifx0 aX and U isan open subset of X x Ycontaining {x0} x Y, then there is

'Note that the attaching map = is just (u [u1 u,. 0].
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an open neighborhood L of x0 in X with

YcLx YcU.

PRooF. In the proof of Lemma 8.9, replace a by x0 and W by Y. 0

Corollary 8,10. 1ff, g: (X, A) —. (Y, B) are homotopic (as maps of pairs), then
the induced maps f, (X/A, .) —. ( Y/B, s) are homotopic (as maps of pointed
spaces).

PROOF. If F:(X x I, A x I) -, (Y, B) is a homotopy from Ito g. then it induces
a function F: (X/A) x I —' Y/B making the following diagram commute:

Xxi F

Pxlj

(X/A) x I Y/B,

where p and q are identifications. Since qF is continuous, F(p x I) is con-
tinuous. But p X us an identification (Lemma 8.9 applies because us compact
Hausdorif); by Theorem 1.8, F is continuous, as desired. 0

If brackets denote the Horn set in the homotopy category of pairs, then
this last corollary gives (the known fact) [(1, 1), (X, x0)) = [(S1, 1), (X, x0));
that is, either Horn set can be used to describe ,r1(X, x0).

Theorem&1I.Letn land assumethat Y1 is obtained fromaHausdorff space
Y by attaching an n-cell vial. Then there Is an exact sequence

where i: Y V1 is the Inclusion.

PROOF. Let v: f)" Y-. —

(Y1, Y) be the characteristic map; let e II)(D" — open n-cell in Y,),
and let U' be the open n-disk in with center the origin and radius 4. Since

is a relative horneomorphism and e is open, we have U = 4(U')open in V1.

Define V = Y1 — D(0) thus {U, V} is an open cover of Y1. There is an exact
(Mayer—Vietoris) sequence

For p > 0, we have II,(U) 0 because U is contractible. From Theorem 6.3,
one sees that the homomorphisms fl V) and —e

for p > 0, arc induced by inclusions. Let us examine U fl V and V. The first is
an open punctured n-disk and hence has the same homotopy type as
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The second space V has Y as a deformation retract: define F: V x I —. V by

(v ifveY

F is well defined because Y1 is the disjoint union e U Y. To see that
F is continuous, consider first the following diagram:

((IY'—{O})JjY)
h

vxil
VxI

F

where V is the restriction of the natural map D" Y Y1 and h is defined by
(x, — t)x + txfllxllforx €1)'— {O}andt e I, and by(y,

t I. Since h(x, t) = x for all x E and all t e I, it is easy to see that v'h
is constant on the fibers of V x 1; it follows from Corollary 1.9 and Lemma
8.9 (for I is locally compact) that F is continuous.

We now see that the displayed sequence (save for recognizing that, for
p > 0, the maps H,(Y) are induced byf)is exact; when p = 0, we
are looking at the end of the Mayer—Vietoris sequence with H0(U) replaced
by Z (for U is path connected).

Finally, consider the following commutative diagram of spaces (vertical
maps are inclusions and horizontal maps are restrictions of (1)

u—(0} uflV

fk

V

1'
Note that the inclusions fi, and j are homotopy equivalences because the
respective subspaces are deformation retracts; it follows from Exercise 4.11
that fl1, and are isomorphisms. The map (D's is also an isomorphism,
for (I)' is a homeomorphism. Therefore the following diagram is commutative:

' H,(V)

I I
'
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where the vertical maps are the isomorphisms and This completes
the proof. D

Corollary 8.12. Suppose that n � 2, and let Y1 be the space obtained from a
compact Hausdorff space Y by attaching an n-cell via f.

l,then

H,(Y)

(ii) There is an exact sequence

0—. HN(Y)

moreover, the last map is a surjection n � 3.

PROOF. Immediate from the theorem and the computation of The
last remark about surjectivity is true because the next term in the sequence is
HN_z(S"1), and this vanishes when n � 3. 0
Theorem

H
— lo otherwise.

H,(Hr) = {z p = 0,4,8, ...,
otherwise.

PROOF. We prove that the formula for is correct by induction on
n �O.Alliswellforn =ObecauseCP°isapointsinceCP'
holds for n = 1 as well. We may now consider for n � 1. By Theorem
8.8(11), CP"' is obtained from C?' by attaching a 2(n + 1)-cell since n � 1,
2n + 2> 3, and so we may usc the full statement of Corollary 8.12. Thus, for

1,wehave

H,(C?')

By induction, the left side is nonzero only for even p � 2n, in which case it is
Z. For p = 2n + 2, 2n + 1, there is an exact sequence

0 H2.+2(Cr) -. —, z -+ -. —, 0.

Since = 0 = Hia+i(C?') (by induction), it follows that
Z and = 0, as desired.

The quaternionic case is similar, using the facts that HP1 S' and Theorem
8.8(iii) that is obtained from HF' by attaching a 4(n + 1)-cell. 0

Theorem 8.11 and its corollary are not strong enough to allow computation
of (arguing as above breaks down when n = 2). Before introducing
cellular theory, which will greatly assist computations (indeed it wll simplify
the proof of Theorem 8.13), let us give more applications of Theorem 8.11.
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EXAMPLE 8.6.

ifp=O

= Z/2Z if p = 1

1.0 ifp�2.
We already know (Example 7.13) that = 0 for p � 3, that N0(RP2) =
7, and that rank H2(RP2) = rank H1 (RP2) (the last fact follows from our
computation of the Euler—Poincaré = 1). Regard HP2
as the space obtained from RP' = S1 by attaching a 2-cell via f, where
f(e") = (thereby identifying antipodal points). The attaching map f has
degree 2, and so the induced H1(S') H1(S1) is multiplication by 2.
Now Theorem 8.11 gives exactness of

H1(RP') —e H2(RP2) —' H1(S1) I!. H1(RP') —s. H1(RP2)—. HO(S')

this can be rewritten (since RP1 = 51) as

0—. H2(RP2 ) —p z HI(RF2) —.7.

Since multiplication by 2 is monic, H2(RP2) = 0-, since rank H1 (HP2) =
rank H2(RP2) = 0, it follows that HI(RP2) is torsion, and so exactness
shows is surjective (because HL(RP2) is torsion and Z is torsion-free).
Therefore H1(RP2) = Z/2Z. Note that the generator of 111 (RP2) arises from
the obvious 1-cycle, namely, the image of f. (Of course, this result agrees with
our computation in Example 7.15.)

EXAMPLE 8.7. If T is the torus, then

if p = 0, 2

ifp=1
[0 ifp�3.

We already know (Example 7.12) that = 0 for p � 3, that 110(T) = 7,
and that rank H2(T) + I = rank H1 (T) (for = 0). The construction ofT
as a quotient space of I x I by identifying parallel edges exhibits T as being

a

P P1
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obtained from the wedge S' v S1 by attaching a 2-cell. More precisely, let
•: I x I —. T be the natural map, let 0(1 x I) denote the perimeter of I x I
(which we identify with S1), and let I = x 1). Note that 0(8(1 x 1)) =
S' v S1. and so we may regard las a function S1 S' v S'. Now Theorem
6.22 says that (the class of) * * * is a generator of more-
over, fix = f with either projection
S1 v S1 —iS1 yields maps Sl namely, and f$sf$ç1. Since
each of these maps has degree 0 (Theorems 3.16 and 6.20), it follows that
1,: H1(S')-. HI(S1 v S1) H1(S') is the zero map. But Theorem
8.11 gives exactness of

0=H2(S1

Since = 0, the map H2(T) —. H1(S') is an isomorphism and H2(T) = Z.
Also, H1 (T) must be torsion free (because the two flanking terms H1 (S1 v S1)
and H0(S')are) and of rank 2(rank H2(T) + 1 = rank H1(T));henccH1(T) =
Z ® Z. Note that i5 must be an isomorphism, so that the two obvious circles
on the torus are independent generating 1-cycles, as one expects. (Of course,
this result agrees with our computation in Example 7.14.)

These examples do not yet indicate the power of "cellular homology" that
will be apparent by the end of this chapter.

EXERciSES

8.17. If K is the Klein bottle, prove that

I
Z ifp—O

if p

Lo ifp�2.
(Hint: Show that K arises by attaching a 2-cell to S' v S1; compute the induced

H1(S')-.H1(S' v S')asin Example8.7.)

*8.18. Let W be a 4h-gon in the plane whose edges are labeled

and let M be the quotient space of Win which the edges are identified according
to the labels. (Nh 1, then Mis the torus; if h —0, one defines M by
all the boundary points of W to a point, hence M S'.) One calls h the number

Let W' be a 2n-gon in the plane whose edges are labeled

and let be the quotient space of W' in which the edges are identified
according to the labels. (If it 1, then M' is RP2.) One calls it the number
of of
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(1) Prove that M (respectively, M') is obtained from a wedge of h (respectively,
ii) circles by attaching a 2-cell (here h � 0 and n � 1).

(ii) Prove that H2(M) = 1, that H1(M) is free abelian of rank 2k and that
= h.

(iii) Prove that H2(M') 0, that rank H1(M') = ii — 1, and that = 2 — n.

(iv) Use the method of adequate subcomplexes for these computations.

Definition. An n-manifold is a Hausdorif space M such that each point in M
has a neighborhood homeomorphic to

It is a remarkable fact that every compact connected 2-manifold is homeo-
morphic to either M or M' as defined in Exercise 8.18; in the first case, M is
called a sphere with h handles and is orientable; in the second case, M' is
nonorlentable.

If M1 and M2 are compact connected 2-manifolds, choose open sets in
(for I = 1, 2) with R2, and choose (closed) disks D1 in Define a new

space M1 # M2 (the connected sum) by removing the interiors of D1 and D2
and then gluing M1 and M2 together at the boundaries of the D1. More
precisely, choose a homeomorphism k: — c M2 (of course, A S') and
let M1 # M2 = M1 ilk M2. It can be shown that M1 # M2 can be viewed as
a (compact connected) 2-manifold and that, to homeomorphism, it is inde-
pendent of the several choices. The # operation is commutative and associa-
tive; also, S2 acts as a unit, that is, for every (compact connected) 2-manifold
X, we have 52 X. The "remarkable fact" mentioned above is proved
in [Massey (1967), Chap. 3]. In more detail, it is first shown that such a
2-manifold X is homeomorphic to either S2, T = S1 x S' (the torus), RP2,
or a connected sum of several copies of the latter two. Then one sees that
RP2 # RP2 # lip2 # RP2 (this last relation explains why there is no mix-
ture of tori and projective planes needed in expressing X as a connected sum;
one can also prove [Massey (1967), p.9] that the Klein bottle is homeomorphic
to RP2 # RP2). If X is orientable, then either X S2 or X M1 # .•. # M,,
where each = T; if X is nonorientable, then X M1 # .•. # M9, where
each M, = RP2. The number g of "summands" is called the

g of that
X and X' are homeomorphic if and only if(1) both are orientable

or both are nonorientable and (2) = where is the Euler—
Poincaré characteristic of X. Next, one sees that g = — when X is
orientable and g = 2 — when is nonorientable. The invariance of g is
thus a consequence of the invariance of (Theorem 7.15 proves the invariance
of for simplicial complexes, and compact 2-manifolds can be triangulated).
The fundamental groups of these surfaces are the surface groups of Corollary
7.46: If X is orientable of genus g, then n1(X) has a presentation of the first
type in that corollary; if X is nonorientable of genus g, then (X) has a
presentation of the second type (see [Massey (1967), pp. 131—132] or [Seifert-
Threlfall, p. 176]).
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CW Complexes

This section introduces an important class of spaces that contains all (possibly
infinite) simplicial complexes. The definition may appear at first to be rather
technical, but we shall see that such spaces are built in stages: attach a (possibly
infinite) family of 1-cells to a discrete space; attach a family of 2-cells to the
result; then attach 3-cells, 4-cells, and so on. Since we allow attaching infinitely
many cells, let us begin by discussing an appropriate topology.

Definition. Let X be a set covered by subsets where flies in some (possibly
infinite) index set J, that is, X = Assume the following:

(i) each is a topological space;
(ii) for each j, k J, the topologies of and of Ak agree on A) 11 Ak;

(iii) for each j, k E J, the intersection fl Ak is closed in A) and in

Then the weak topology on X determined by {A,: j e J} is the topology
whose closed sets are those subsets F for which F fl A1 is closed in for
every j e J.

It is easy to see that each is a closed subset of X when X is given the
weak topology; moreover, each A1, as a subspace of X, retains its original
topology, if the index set J is finite, then there is only one topology on X
compatible with conditions (i), (ii), and (iii), and so it must be the weak
topology.

ExERcisEs

8.19. If X has the weak topology determined by j e J}, then a subset U of X is
open if and only if U fl is open in A,, for every j J.

8.20. If X has the weak topology determined by {A,,: J J} and if Y is a closed subspace
of X, then V has the weak topology determined by { V fl j e J}.

EXAMPLE 8.8. If j J} is a family of topological spaces, then their
coproduct X,, is their disjoint union equipped with the weak topology
determined by j J}. The reader may check that each X1 is both open
and closed in the coproduct.

EXAMPLE 8.9. If {(X,,, x1): j E J} is a family of pointed topological spaces, then
their wedge V is the quotient space of ft X1 in which all the (closed)
basepoints x, are identified (V X1 is thus a pointed space with basepoint the
identified family of basepoints). Each X1 is imbedded in V and VX,, has
the weak topology determined by these subspaces.

EXAMPLE 8.10. Let X = Vt� (where S1' S1) have basepoint b, and let Y
be the subspace of R2 consisting of the circles n � 1, where has center
(0, 1/n) and radius 1/n. Now X and Y are not homeomorphic. For each n � 1,
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choose e C,, — (origin), and define F = {xN: n � I). Now F fl C,, = {x,,}, so
that F is closed in C,,. Thus F is a closed subset of V S/ = X. On the
other hand, F is not a closed subset of Y, for (0, 0) F and (0,0) is a limit point
of F in Y.

A similar argument, using a compact neighborhood of the origin, shows
that X is not homeomorphic to the subspace Z of R2, which is the union of
the circles B,, having center (0, n) and radius n. Of course, Y and Z are not
homeomorphic because Y is compact and Z is not.

EXAMPLE 8.11. Let K be an abstract simplicial complex with vertex set V
(which may be infinite). Define V"1 to be the set of all functions q: V - I that
are zero for all but a finite number of v E V is a subspace of the cartesian
product I", the latter consisting of all functions V -. I). In particular, for each
VE

- (1 ifu=v

(Informally, we identify the function with the vertex v.) If a = {v0, ..., v,,} is
an n-simplex in K, define J as the family of all convex combinations of

v,,} (it is easy to see that the subspace 8 is homeomorphic to via
A1), the barycentric coordinates). Finally, define

IKI = U

and equip IKI with the weak topology determined by (6: ore K). (Note that,
when K is infinite, IKI is not a subspace of Ia" c I".) One calls IKI the
geometric realization of K. The reader should check that, when K is finite, this
definition coincides with our earlier definition (in Chapter 7).

Lemma 8.14. Let X have the weak topology determined by a family of subsets
{Aj: j E J}. For any topological space 1', a function f: X — Y is continuous if
and only is continuous for every j eJ.
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PROOF. As always, f continuous implies that each of its restrictions is con-
tinuous. Conversely, if G is closed in Y, then f'(G)fl = is

closed in A, for every j e J. Since X has the weak topology, f'(G) is closed
in X and f is continuous. 0

EXAMPLE 8.8'. Let {X,: j e J} be a family of topological spaces, let Y also be
a topological space, and let j e J} be a family of continuous functions,
where X1 -' Y. Define

Y

as follows: if x E fl then there is a unique containing x; define f(x) =
f/x). Since = for all j, it follows from Lemma 8.14 that f is continuous.
One often uses the notation

f=iIf,.
EXAMPLE 8.9'. Let x1): j e J} be a family of pointed spaces, let (Y, Yo) also
be a pointed space, and let {fj: j e J} be a family of continuous pointed maps,
where (X,, x,) —. (Y, Yo). Define

1: (V b) (Y, y0)

as follows: if x E V and x b, then there is a unique containing x; define
f(x) = f,(x); if x = b, define f(x) = Since fIX1 = for all j, it follows from
Lemma 8.14 that f is continuous (one can also prove continuity of f using
Theorem 1.8). One often uses the notation

f=vfJ.

Definition. Assume that a topological space X is a disjoint union of cells:
X = (J {e: e e E}. For each k � 0, the k-skeleton of X is defined by

= U (e E: dim(e) � k}.

Of course, X = Uk�o

Definition. A CW complex is an ordered triple (X, E, (D), where X is a Hausdorif
space, E is a family of cells in X, and D = {4e: e E E} is a family of maps, such
that

(1) X = {e: e E E} (disjoint union);
(2) for each k-cell e e E, the map (Dk, is a rela-

tive homeomorphism;
(3) if e e E, then its closure ë is contained in a finite union of cells in E;
(4) X has the weak topology determined by {ë: e E E}.

lf(X, E, ci)) is a CW complex, then X is called a CW space, (E, ci)) is called
a CW decomposition of X, and e i) is called the characteristic map of e. One
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should regard a CW space X as a generalized polyhedron (Examples 8.11 and
8.12 below), and one should regard (E. 1) as a generalized triangulation of X.

Remarks. (1) Axiom (1) says that the cells E partition X.
(2) Axiom (2) says that each k-cell e arises from attaching a k-cell to

via the attaching map
(3) Axiom (3) is called closure finiteness; the letters CW are the initials of

"closure finiteness" and "weak topology".
(4) Axiom (4) says that a subset A of X is closed if and only if A fl ë is closed

in ë for every e e E. Moreover, Lemma 8.14 implies that if Y is any topological
space and f: X —' Y any function, then f is continuous if and only if lIe is
continuous for every e e E.

(5) Just as a polyhedron may have many triangulations, a CW space may
have many CW decompositions.

Definition. A CW complex (X, E, 1') is finite if E is a finite set.

If(X, E, 1) is a finite CW complex, then axioms (3) and (4) in the definition
of CW complex are redundant. The reader interested in this case only can
shorten many of the coming proofs.

EXAMPLE 8.12. Let X be a compact polyhedron and let (K, h) be a triangulation
of X, where K is a finite simplicial complex and h: IKI -+ X is a homeomor-
phism. For each simplex a e K, let a° = a — a denote the corresponding open
simplex, and define E = {h(a°): a E K). It is clear that E is a partition of X. If

denotes the (n — 1)-skeleton of K, and if a E K is an n-simplex, then
define = (hla) o where (Da, S"_1) —' (a, d) is some homeomorphism.
Because simplexes intersect in faces (or not at all),

(D0: (D", S"1)—.(a,

is a relative homeomorphism (indeed each (bg, is a homeomorphism from IY
to d(IY')). Since K is finite, it follows that X is a finite CW complex.

The geometric realization K I of a (possibly infinite) simplicial complex K
is a CW complex. The definition of(E, D) is as above; by definition (Example
8.11), 1K I has the weak topology determined by the closures of its cells, and
it is straightforward to check that IKI is closure finite.

EXAMPLE 8.13. 1ff is a real-valued function on a manifold M and if a e R, then
M4 = {x E M: f(x) � a}. A basic result of Morse theory (see [Milnor (1963)])
is that if f is a differentiable function on a manifold M with no "degenerate
critical points" and if each M the same homotopy
type as a CW complex. Indeed it is shown in [Lundell and Weingram, p. 135]
that every separable manifold has the same homotopy type as a CW complex.

EXAMPLE 8.14. Regard S" as a subspacc of For each n � 1, define

— Ilxll2x, 211x112 — 1).
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If we denote an i-cell by e', then the map 4) allows one to view S' as a CW
complex with E = {e°, ?}. Of course, S° also has a CW decomposition with
two cells, namely, {e?,

EXAMPLE 8.15. Recall that = U (upper and lower closed hemispheres)
and fl = S"' (the equator). There are thus two n-cells and e2 with

= and ë2 = one concludes by induction that S has a CW decom-
position with two i-cells in every dimension 0 � I � n.

EXAMPLE 8.16. RP has a CW decomposition {e°, ..., e'} (Theorem 8.8(i)).

Ex.uIPLE 8.17. RP'° has a CW decomposition with one icdU in every dimen-
sion i � O(by definition, RP has the weak topology determined by
the family {RP': n � 0}).

EXAMPLE 8.18. CP' has a CW decomposition {e°, e2, ..., e2'} (Theorem 8.8(ü)).

EXAMPLE 8.19. HP' has a CW decomposition {e°, e', ..., e"} (Theorem
8.8(iii)).

Definition. Let (X, E, 4)) be a CW complex. If E' c E, define

tE'I=

and define 4)' = {4,: e E'). Call (IE'l, E', 4)') a CW subcomplez if im 4),
IE'Iforeverye€E'.

if E' E and X' = IE'I, then it is easy to see that every CW subcoznplcx is
itself a CW complex (once one observes that = fl X' for all k � 0).
It is also easy to see that any union and any intersection of CW subcomplexes
is again a CW subcomplex.

Henceforth we may not display all necessary ingredients, and we may say
that (X, E), or even X, is a CW complex; similarly, we may say that (X', E'),
or even X', is a CW subcomplex. The next lemma is just Exercise 8.14.

Lemma &15. If (X, E) is aCW complex and if e E E is a k-cell (where k >0)
with characteristic map (1),, then ë = im 4), =

PROOF. Since CD, is continuous,

= 4),(Dk — CD,(Dk — =

For the reverse indusion, observe that compactness of Dk gives compactness
of 4),(D&). Since X is 4)1(Dk) is a closed subset of X containing

0
8.20. If (X, E) is a CW complex and E' c E, then IE'I is a CW

subcomplex if and only if ë c IE'I for every e e E'. Hence, if E' is a family of
k-cells in E, for some fixed k > 0, then IE't Li is a CW subcomplcx (for
axiom (2) gives ë c e U
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EXAMPLE 8.21. Every k-skeleton is a CW subcomplex (this is the special
case of the previous example for which E' = 0).

The following technical lemma will be useful.

Lemma 8.16. Let (X, E, c1) be an ordered triple satisfying axiom (1) and axiom
(2) of the definition of CW complex, and let —' X be the map
'P = IJ..s Then X has the weak topology determined by {ë: e e E} if and
only if q' is an identification.

PROOF. Assume that X has the weak topology. Since 4) jS a continuous
suijection, it suffices to show that if C c X and q(C) is closed in
then C is closed in X. Now p'(C) fl is compact, being a closed subset of
1Y(e). On the other hand,

=

c n ë is compact, hence closed in e As X has the weak topology, C is
closed in X.

Conversely, assume that q' is an identification. Let C X be such that C fl ë
is closed in ë for all e e E. Then is closed in for all e e E.
Since has the weak topology determined by e e E}, g'(C) is
closed in since 4, is an identification, C is closed in X. Therefore X
has the weak topology. 0

Lemma 8.17. Let (X, E) be a CW complex, and let E' be a finite subset of E.
Then IF'! is a CW subcomplex tf and only if IE'I is closed.

PROOF. If !E'I is a CW subcomplex, then e c IE'I for every e e E'. Hence
IE1 U {e: e E E') = U {ë: e E E'} is closed, being a finite union of closed
sets. Conversely, if IE'I is closed and e e E', then e c IE'I and ë IE'I; hence
IE'I is a CW subcomplex. 0

Lemma 8.18. If (X, E) is a CW complex and e e E, then the closure is

contained in a finite CW subcomplex.

PROOF. We proceed by induction on n = dim(e); the statement is obviously
true when n = 0. If n > 0, then Lemma 8.15 gives

ë — e = (I),(D') — e c (eU — e

By axiom (3), meets only finitely many cells other than e, say, e1, . . ., e,,, and
we have just seen that � n — I for all i. By induction, there is a finite
CW subcomplex X, containing for I = 1, ..., m, and each X1 is closed, by



202 8. CW Complexes

Lemma 8.17. But e c eUX1 U so that this union of frnitely many cells
is closed and hence is a finite CW subcomplex. 0
Theorem 8.19. If (X, E) is a CW complex, then every compact subset K of X
lies in a finite CW subcomplex. Therefore, a C W space X is compact and only

E) is a finite CW complex for every CW decomposition E.

PROOF. For each e E E with K fl e 0. choose a point a1 e K fl e, and let A
be the set comprised of all such a1. For each e e E, Lemma 8.18 says that there
is a finite CW subcomplex X, containing ë. Therefore A fl ë c A fl X. isa finite
set and hence is closed in e Since X has the weak topology, A is closed in X;
indeed the same argument shows that every subset of A is closed in X, hence
A is discrete. But A is also compact, being a dosed subset of K. Thus A is

finite, so that K meets only finitely many e€ E, say, e1, ..., e_. By Lemma
8.18, there are finite CW subcomplexcs X1 with X1 for I = 1, ..., m. It
follows that K is contained in the finite CW subcomplex U 0

Lemma &2ft If (X, E) Is a CW complex, then a subset A of X is closed if and
only if Afl X' is closed in X' for every finite CW subcomplex in X.

Pacxw. If A is dosed in X, then A fl X' is certainly closed in X'. Conversely,
for each e e E, choose a finite subcomplex X, containing e By hypothesis,
A fl is closed in X1; it follows that A fl (A fl X,) fl is closed in X, and
heisclosedinthemallersetëThereforeAisclosedinXbecauseXhas
the weak topology determined by all e 0

It follows that a CW complex has the weak topology determined by the
family of its finite CW subcomplexes. The next result generalizes Lemma
8.17 by removing the finiteness hypothesis.

Theorem 8.21. Let (X, E) be a CW complex and let E' be a (possibly infinite)
subset of E. Then is a CWsubcomplex if and only If IE1 is closed.

PROOF. UIE'I is closed and e E then ë c IE'I and IE'I is a CW subcomplex.
Conversely, assume that = X' is a CW subcomplex. It suffices, by Lemma
8.20, to show that X' fl Y is closed in Y for every finite CW subcomplex Y of
X.NowX'flYisafiniteunionofcells,say,X'flY=e1U"Ue,11.AsX'flY
is a CW subcomplex, c X' fl Y for all i; hence X' fl Y = e1 U U e,., and so
X'flYisclosedin Y(eveninX). 0
Co 8.22. Let (X,E beaCWcomplexwd, for some fixedn>O, let
be a family of n-cells in E.

(I) X' = fE'I U Is closed in X;
(ii) every n-skelezon is closed in X;
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(iii) every n-cell e is open in
(iv) X(N) — is an open subset of

PROOF. (i) We know that X' is a CW subcomplex (Example 8.20), hence it is
closed.

(ii) If n > 0, this is the special case 01(i) in which E' = 0; if n = 0, this is
Exercise 8.22.

(iii) This is the special case 01(i) in which E' consists of every n-cell in E
except e.

(iv) Immediate from (iii). 0

Theorem 8.23. Let X be a CW complex.

(i) Every path component of X is a CW subcomplex, hence is closed.
(ii) The path components of X are closed and open.

(iii) The path components of X are the components of X.
(iv) X is connected If and only If X is path connected.

PRooF. (i) Since X is a disjoint union of cells, each of which is path connected,
it follows that each path component A is a union of cells. If e is an n-cell with
e A, then ë = is also path connected, and so ë c A. Therefore A is
a CW subcomplex and hence is closed.

(ii) Let A be a path component of X, and let B be the union of the other
path components. Since B is a union of CW subcomplexes, it is a CW
subcomptex and hence is closed. As B is the complement of A, we see that A
is open.

(iii) Let A be a path component of X and let Y be the component of X
containing A. Since A is closed and open, it follows that A = Y (lest Y =
AU(Y — A) be a disconnection).

(iv) Immediate from (iii). 0

The sin(1/x) space is connected but not path connected; there are thus
Hausdorfi spaces (even compact subsets of the plane) that are not CW spaces.

8.21. A space is called compactly generated if it is Hausdorif and it has the weak
topology determined by its compact subsets. Prove that every CW complex is
compactly generated.

8.22. If (X, E) is a CW complex, then is a discrete closed subset of X. (Hint: If A
is any subset of then A ë is finite for every en E. Note that 1/n: n � 1)
is a discrete subspace of R that is not a closed subset of R.)

*8.23. Show that a CW complex X has the weak topology determined by the family
of its skeletons n � 0). Conclude that a set U is open in X if and only if
U fl is open in for every n � 0.
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8.24. Let (X, E) be a CW complex, and for fixed n > 0, let E, be the family of all n-cells
in E. Show that

= (ii.

where f = lje.E ('1,IS"1). (As in Exercise 8.12(u), we identify with its
image in the space obtained from by attaching jJ I)" vial.)

8.25. Show that both the torus and the Klein bottle have CW decompositions of the
form e2), that is, one 0-cell, two 1-cells, and one 2-cell.

8.26. (i) Show that neither union of tangent circles in Example 8.10 is a CW space.
(ii) Show that the subspace X of K, namely,

X={0}U{l/n:n� 1),

is not a CW space.

8.21. Define the dimension of a CW complex (X, E) to be

dim X = sup(dim(e): e E E}.

If E' is another CW decomposition of X, show that (X, E) and (X, E') have the
same dimension. (Hint: See the proof of Theorem 7.1.) Conclude that dim X is
independent of the CW decomposition of X.

8.28. Show that a CW complex X is connected if and only if its 1-skeleton is
connected.

8.29. Let (X, E) be a CW complex, and Y be any space. Prove that a function
f: X V is continuous if and only if is continuous for all e e E.

The next theorem is the generalization of Lemma 8.6 (where we attached
one cell), which characterizes CW complexes as spaces obtained by a sequence
of attaching spaces. More important, this theorem provides an inductive
method of constructing CW complexes.

Theorem 8.24. Let X be a space, and let

X° c X1 X2

be a sequence of subsets with X = Assume the following:

(i) X° is discrete;
(ii) for each n > 0, there is a (possibly empty) index set A, and a family of

continuous functions {fr': -. X"11OC e so that

wheref= II.fr';
(iii) X has the weak topology determined by {X": n � O}.
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If 'D denotes the (usual) composite

then (X, E, 4) is a CW complex, where

E=X°U U
n� 1

and

b = {constant maps to X°} U (J {D:
'i� 1

Remarks. (I) The converse of this theorem is contained in Exercises 8.22, 8.23,
and 8.24.

(2) Often the most difficult part of verifying that a space X is a CW complex
is checking that it is Hausdorif; this theorem is a way to avoid this problem.

PROOF (after Maunder). Let us show that X is Hausdorfi. Let x, y be distinct
points in X, and let n be the least integer with both x and y in we may
assume that x e e = ED(Da — S"_1). We claim that there are disjoint sets

that are open in and with x e U,, and y E If n = 0, such sets exist
because X° is discrete. If n > 0, and B(c) denotes the closed disk in with
radius e and center (D)1(x), then one may choose I',, = — for
suitable £. Next, we show by induction on k � n that there exist disjoint subsets

open in Xk, with c and c and with Ukfl = U,, and
= Given Z4 and observe that, for each (k + 1)-cell e, the sets
and are disjoint open sets in Sk Define

Ar = e — S&: IIzfl > 4 and z/IIzi E

and

= (z E — Sk: lizil > 4 and e 4)1(If)}

4';'

DkI

4';!
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Nowdefine = U(u = U(u 1e(Be)), wheree varies
over all (k ÷ 1)-cells in X. Clearly, fl = 0, and 1) X" =

= = Uk+l(and
using condition (ii) and Exercise 8.12(i). Finally, define U = Uk�* Uk and
V = Vk. Both U and V are open in X, because X has the weak topology
determined by n � O}, by condition (iii). Therefore X is HausdorfE

Let us now verify the four axioms in the definition of CW complex. It is
plain that axiom (1) and axiom (2) are satisfied. We prove, by induction on n,
that each is a CW complex. If n = 0, this follows from X° being discrete.
Assume that n > 0. To see that is closure finite, let e be an i-cell in (hence
i � n). If I < n, then induction shows that e meets only finitely many cells. If
I = n, then e = for some (the proof of Lemma 8.15 requires that X
be Hausdorif). But is a compact subset of X't, which is a CW
complex, by induction; by Theorem 8.19, there is a finite CW subcomplex Y
containing Therefore

ë = (V(D") = eU

e meets only finitely many cells. We prove, by induction on n � 0,
that X' has the weak topology determined by {ë: dim(e) � n). Of course,
the discrete space X° has the weak topology. Since X' is a quotient space
of (II D') fl X'_', the result follows from the inductive hypothesis and
Lemma 8.16.

We now know that is a CW complex for every n. To see that X is a CW
complex, one can quickly check axioms (1), (2), and (3). To check the weak
topology, assume that Z c X and Z fl e is closed in ë for every cell e. In
particular, Z ë is closed in ë for every i-cell e with I � n; hence Zfl X' is
closed in X' for every n. Condition (iii) now gives Z closed in X. 0
EXERCISES

8.30. (i) Show that there exist finite CW complexes that are not polyhedra. (Hint:
Attach a 2-cell to S' with an attaching map resembling x sin(1/x).)

(ii) Prove that every finite CW complex has the same homotopy type as a
polyhedron. (If tnt: Use Theorem 8.24, induction, and the simplicial approxi-
mation theorem. See [Lundell and Weingram, p. 131).)

8.31. II {X1: AC A) is a family of CW complexes with basepoint, then their wedge
VXA is also a CW complex. (Note: This result follows at once from Theorem
8.27 below, but a direct proof can be given here.)

*8.32. If (X, E) and (X', E) are finite CW complexes, then (X x X', is a CW
complex, where E' = {e x e': e e E and e' e E). (Hint: lie is an i-cell and

e is e x e' x
x —

'8.33. If (X, E) is a CW complex, then so is X x I. (Hint: View I as a CW com-
plex having two0-cells,a°, b°, and one l-cellc'.ShowthatE" = e x
e x e e E} is a CW decomposition of X x I. In particular, show that X x I
has the weak topology determined by E".)
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Remark. There exist CW complexes (X1, E1) and (X2, E2) with X1 x X2 not
a CW space (see [Dowker]). It is known (see [Maunder, p. 282] that if X1
and X2 are CW spaces, then so is X1 x X2 if either one of the X, is locally
compact or if both X1 and X2 have only a countable number of cells.

The inductive construction of open sets given in the proof of Theorem 8.24,
that is, the "thickening" of to can be modified and used again.

Theorem 8.25. Every C W complex X is locally path connected.

PROOF. Let x X and let U be an open neighborhood of x; it suffices to find
an open path connected set V with x e V c U. Let n be the smallest integer
with x e and let e0 be the n-cell containing x. We prove, by induction on
k � n, that there exist path connected subsets in with fl

x with open in The base of the induction
requires two cases: if n > 0, then exists because e0 is homeomorphic to the
locally path connected space — if n = 0, define V0 = e, = {x}, which
is an open set in the discrete space

For the inductive step, assume that Vk exists as in the inductive state-
ment. If T is any open path connected subset of and if 0 < c < 1, define
"thickenings"

B(T, e) = {z — Sk: lizi > e and z/IIzII e T}.

It is easy to see that every B(T, E) is an open path connected subset of f)k+1

with TU B(T, r) c B(T, e). Moreover, if W is any open subset of and
a E W fl Sk, then (here exists an open path connected set T(o) with a e T(a) c

and there exists an e with 0 < < I such that B(T(a), e) c W. For
every (k + 1)-cell e, cIç'(U fl is an open subset of Dkl.1; moreover,
(D;1(Vk) is an open subset (in Sk) contained in Sk fl fl Define

vi.., = U (I'e(B(T(a),cfl,
e

where a e T(o) c and s (which depends on T(a)) are chosen so that
B(T(a), e) c fl Now is path connected: it is the union
of the path connected subsets U B(T(c), e)) (for B(T(a), e) c T(a) U
B(T(a), £) B(T(a), c) and T(a) = each of which meets the path
connected set contained in the union. Plainly, fl = and x e

c Finally, is open in by Exercise 8.l2(iii)(Vk+I is
the image of

B(T(a), £)) jj
e

Define V=UVk. Then XEVC U, V is open in X, and V is path
connected. 0

This result coupled with Corollary 1.20 gives another proof of Theorem
8.23(iii). We continue investigating topological properties of CW complexes.
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l'beorein 8.26. Every CW complex X is a normal space.

PROOF. If A and B are disjoint closed subsets of X, it suffices to find a
continuous f: X —, I with f(A) = {0} and 1(B) = (1). We shall prove by induc-
tion on n that there exist continuous maps fm: -. I with 11 Xt1) = {O}

and fN(B fl = { I). Given such maps one can define the desired map!
by setting = f•.

If n = 0, then exists ecause is discrete. Assume that n > 0 and let
e be an n-cell in X with characteristic map D,. Now I)'(A) = 4),'(A fl e) and
4ç1(B) = cl);1(B flë) are disjoint closed subsets of IY'. If h1 = e

then he: S"' —.1 is a continuous map with S'') = (0) and
S't) = {l}. Extend to defined on 1ç'(A)U by

defining (A)) = {0) and h(1ç1 (B)) = (1). By the Tietze extension theo-
rem, there is a continuous —' I extending Finally, define —' I
as the extension off,,..1 with f.Ie = for all n-cells e in X. It is easy to see that
J, has the necessary properties. 0

It is known that CW complexes are paracom pact and perfectly normal (see
[Lundell and Weingram, p. 54]).

Theorem 8.27. If X is a CW complex and Y is a CW subcomplex, then X/Y is
a CW complex.

PRooF. Let us prove that X/Y is Hausdorif. Let v: X —' X/Y be the natural
map, Let * = y(Y), and let v(x), v(z) be distinct points in X/Y. If neither v(x)
nor v(z) equals s, then they can be separated by open sets because X, hence
X — Y, is Hausdorif and vIX — Y is a homeomorphism from X — Y to the
subspace (X/Y) — (*). If v(z) = *, then x Y; since X is normal, there is a
continuous!: X —. I with f(x) = 0 and f(Y) = (I). Since f is constant on the
fibers of v, Corollary 1.9 says that f induces a continuous f': X/Y —. I with
f'(v(x)) = 0 and f'(.) = I; it follows that X/Y is Hausdorif.

Let (E, '))be a CW decomposition of X and let (E', be a CW decomposi-
tion of Y, where E' c 4D. For each n � 0, let E,, (respectively,
denote the family of all n-cells in E (respectively, E'). Define the 0-cells in XI Y
by

(X/Y)° = {v(e): e E E0 — U(s);

for n > 0, define

(X/Yr = {v(e):e€E,, —

Finally, define the characteristic map of v(e) as the composite v(I),,.
We now verily the four axioms in the definition of CW complex.
(I) X/Y is the disjoint union of its cells; this follows easily from the cor-

responding property of X.
(2) Note first that, for each e E, — the map v(b,, is a map of pairs
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(D, —. (v(e) U I); moreover, since De and v: (X, Y)

(X/Y, s) are relative homeomorphisms (Example 8.5), it follows that V4e is also
a relative homeomorphism.

(3) If e e — then v(e) = = v(ë);since ë is contained in the
union of finitely many cells in X, it follows that v(e) is also contained in such
a finite union in X/Y.

(4) Suppose that B X/Y is such that B fl v(e) is closed in v(e) for every e.
Then v (v(e)) is closed in (v(e)) = Y u ë for every
cell e. For every cell a in X, = is closed in ã
Since X has the weak topology determined by its cells, v1(B) is closed in X;
since v is an identification, B = vv1B is closed in X/Y. 0

One can also prove this theorem using Theorem 8.24.

Definition. Let A be a subspace of X, and let i: A X be the inclusion. Then
A is a strong deformation retract of X if there is a continuous r: X A such
that r o I = 'A and 1 a r tx rd A; one calls r a strong deformation retraction.

One can rephrase this definition as follows: There is a continuous
F: X x I —' X such that

(I) F(x,O)=xforallxeX;
(ii) F(x, 1) e A for all x e X;
(iii) F(a,t)=aforallaeAandallt€I.
Now define r: X —' A by r(x) = F(x, I) to recapture the definition.

Recall the weaker definitions already given. A subspace A is a retract of X
if there exists a continuous r: X —. A with r o I = IA; a subspace A is a deforma-
tion retract of X if r ° = 1A and i o r Thus A is a strong deformation
retract if A is a retract and there is a relative homotopy i a r lx' not merely
a free homotopy.

Let X be the subset of the closed strip in R2 between the y-axis and the line
x = 1, which is the union of I and all the line segments through the origin
having slope 1/n for n = 1, 2, 3 It can be shown that I is a deformation
retract of X, but that I is not a strong deformation retract of X.

EXERCISE

8.34. Let Z c Y c X. If Z is a strong deformation retract of Y and Y is a strong
deformation retract of X, then Z is a strong deformation retract of X. More
precisely, if r2: X -+ Y and rL: Y —' Z are strong deformation retractions, then

r2: X —. Z is a strong deformation retraction.

The next technical lemma is useful.

Lemma &28. Let (X, E) be a CW complex and let (Y, E') be a CW subcomplex
(where E E). If M c — U Y) consists of one point chosen from
each k-cell in X — Y, then U Y is a strong deformation retract of

1.
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PROOF. There is no loss in generality in assuming that, for each k-cell e, the
characteristic map Dk —. U Y satisfies = me, where = efl M.
Define F: Y)— M) x Y)—Mby

fx
if x = v 0, and e

(we are merely projecting e — onto the boundary of ë by contracting
along radii from me). It suffices to show that F is continuous.

Now U Y has the weak topology determined by its cells; it is easy to
see that U Y) — M has the weak topology determined by the cells in E'
and the punctured cells e — fore E — E'. It follows from Exercise 8.33
that Y) — M) x I has the weak topology determined by all e x a°,
e# x b°, and e# x c1, where the cells in I are a0, b° (the endpoints), c' (the
open interval), and is either a cell in E' or a punctured cell in E — E'. But,
as in the proof of Theorem 8.11, the restriction of F to any of these subsets
is continuous, so that the continuity of F follows from Lemma 8.14. 0

Theorem 8.29. Let X be a CW complex and let Y be a CW subcomplex. There
is an open set U in X containing Y with Y a strong deformation retract of U.

PROOF (Dold). By Lemma 8.28, U Y is a strong deformation retract of
U Y) — M for every k � I (where M consists of exactly one point from

each cell in X that is not in Y); let

Y)— M-'X1U Y
be a strong deformation retraction. Define U0 = Y and U,, = for
k � 1. Clearly, Y c U1; moreover, U1 is open in(X'"U Y) — M(since U0 = Y
is open in U Y because is discrete). It follows that U,, is open in

Mforallk> land that U,, U,,+1. Hence U = U U,, isan open
set in X containing Y (that U is open is by now a familiar argument). By
Exercise 8.34, Y is a strong deformation retract of each U,,: there are contin-
uous maps G,,: U,, x I —. U,, for all k � 1 such that

G,,(x,0)=x ) forallxeU,,;
G,,(x, 1) = Yj

G,,(Y,t)=Y Yandtel.
Moreover, these (3,, can be constructed, inductively, so that I U,, x I = 6,,.

Finally, define H: U x I U by HILl,, x I = G,,. Now H is continuous, for
U x I has the weak topology determined by {(U x x I: k � 1} =
{U,, x I: k � l}, and H exhibits Y as a strong deformation retract of U. 0

Remark. More is true: given any open set W containing Y, there exists an open
V with Y V c W and with Y a strong deformation retract of V ([Lundell
and Weingram, p. 63]).
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Lemma 8.30. Let (X, E) be a CW complex and let x e X. Then there is a CW
decomposition of X having x as a 0-cell.

PROOF. There exists a (unique) n-cell e e E containing x. If n = 0, then x is
already a 0-cell. If n > 0, there exists z e I)" — with ')e(Z) = x. By sub-
dividing, one can regard I)" as a CW complex with cells E, say, and with z a
0-cell in Then E' = (E — {e})U {l1),fr): a e E} gives the desired CW decom-
position of X. 0
Corollary 8.31. If X is a CW complex and x X, then there exists an open
neighborhood U of x with U contractible to x.

PRooF. By Lemma 8.30, we may assume that x is a 0-cell in X, hence {x} is a
CW subcomplex of X. Theorem 8.29 now applies. 0

Remark. More is true. A space X is locally contractible if, for every x e X, each
neighborhood U of x contains an open neighborhood V of x that is contracti-
ble to x in U; that is, there exists a continuous F: V x I U with F(v, 0) = v

and F(v, 1) = x for all v E V. Using the improved version of Theorem 8.29 cited
above, one can prove that CW complexes are locally contractible.

Lemma 8.32. Let X be a normal space, and let Y be a closed subspace. If
X x {0} U Y x I is a retract of some open set U containing it, then, for every
space Z, every map H': X x {0} U Y x I —, Z can be extended to X x 1.

xx'

\
LI

Xx(o)uYxI

PROOF. Let r: U —, X x {0} U Y x I be a retraction. We shall construct a
continuous map U': X x 1—. U that fixes X x {0} U Y x I pointwise then the
composite H'ru' is the desired extension of H'.

For each y e Y, {y} x I c U, so that the tube lemma (Lemma 8.9') gives
an open set W, of X containing y such that 14', x I U. If W is the union of
these sets Is, then W is an open set in X with Y W and with W x I U.
Since X is normal, the Urysohn lemma gives a continuous map u: X —, I with
u(Y) = I and u(X — W) = 0.

Define u': X x 1—. X x I by u'(x, t) = (x, tu(x)). First, we show that im xi'
U, so that we may assume that u': X x I —, U. If x W, then u(x) = 0 and
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u'(x, t) = (x, 0) e X x {0} c U; if x e W, then u'(x, t) = (x, tu(x)) e W x I c
U. Finally, we show that u' fixes X x {O} U Y x I pointwise. Clearly, u'(x, 0) =
(x, 0), while y E Y implies u'(y, t) = (y, tu(y)) = (y, t) because u(y) = 1. 0

Theorem 8.33 (Homotopy Extension Theorem). Let X be a CW complex, let
Y be a CW subcomplex, and let Z be a space. For every continuous f: X -. Z
and every homotopy h: Y x I —. Z with h(y, 0) = 1(y) for ally e Y, there exists
a homotopy H: X x I Z with

H(x,O)=f(x) forallxcX
and

JI(y,t)=h(y,t) forall(y,t)eYxI.

PROoF. Define H': (X x {0}) U (Y x I) .-. Z by H'(x, 0) = f(x) for all x e X and
H'(y, t) = h(y, t) for all (y, t) E Y x I. Since X x {0} U Y x I is a CW sub-
complex of X x I, Theorem 8.29 provides an open neighborhood U con-
taining it and with X x {O} U Y x I a (strong deformation) retract of U. Since
X is normal, by Theorem 8.26, Lemma 8.32 applies to show that H' can be
extended to X x 1. 0

For a proof of Theorem 8.33 avoiding Theorem 8.29, see [Maunder,p. 284].
There is standard terminology describing these theorems. Every CW sub-

complex of a CW complex is an absolute neighborhood retract (ANR) (Theorem
8.29), and its inclusion is a cofthration (Theorem 8.33).

Cellular Homology

We now introduce cellular homology, the theory most suitable for computing
homology groups of CW complexes. Given a CW decomposition E of a space
X, we shall define a chain complex whose group of n-chains, for each n � 0,
is a free abeian group whose rank is the number of n-cells in E. For simplicial
complexes, these ranks are usually smaller than the ranks of the chain groups
of simplicial theory, for the number of n-cells in a CW decomposition can be
less than the number of n-simplexes in a triangulation. Thus Example 8.14
shows that the cellular chain groups for (with n > 0) can be infinite cyclic
in degree 0 and n and zero elsewhere. Knowing this, one can instantly compute
H,(S).

One could define the cellular chain complex directly (we have not yet
described the differentiations), but it is quicker for us to define it in terms of
singular homology groups.

Definition. A filtration of a topological space X is a sequence of subspaces
fl E Z} with C for all n. A filtration is cellular if:
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(1) H,(X, 0 for all p n;
(ii) for every m � 0 and every continuous a: —, X, there is an integer n with

im a c XN.

Note that condition (ii), a weak version of Theorem 8.19, implies that
X = U

XN because every 0-simplex (namely, every point in X) lies in some .r.

Definition. A cellular space is a topological space with a cellular filtration. If
X and Y are cellular spaces, then a cellular map is a continuous function
f: X -. Y with f(XM) c ya for all n e Z.

It is plain that all cellular spaces and cellular maps form a category. The
filtration of a CW complex by its skeletons will be seen to be cellular (Theorem
8.38).!! no other cellular filtrations are mentioned, a continuous map f: X -. Y
between CW complexes is called cellular if

c for all n � 0.

Definition. If X is a cellular space and k � 0, define

Wk(X) = JI&(Xk, (singular homology);

defme dk: -. as the composite dk = il,&

X')

Hk_l(Xkl) Xk_2)

where i: 0) c.. (Xa, the inclusion and ôis the connecting homo-
morphism arising from the long exact sequence of the pair (Xk,

X is cellular space, then (W(X), d) is a chain complex (called
the cellular chain complex of the filtration of X).

PROOF. We need show only that = 0. But dkdk+l is the composite

Xk) —. Hk(Xk) —. X*1) —. H&_i(X&l, X),
and this is zero because the middle two arrows are adjacent arrows in the long
exact sequence of the pair (Xk, 0

The hypothesis that the filtration on X is cellular is not needed for Lemma
8.34; any filtration gives the same result.

Lemma 8.35. Let X be a cellular space and let p � q.

(i)
(ii)
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(iii) Xe) if q < n.
(iv) X1) X3) for all n.

PROOF. (i) We do an induction on p — q � 0. 11 p — q = 0, then the result is
true because HN( Y, Y) = 0 for every space Y and every n (use the long exact
sequence of the pair(Y. Y)).lf p — q >0, consider the following portion of the
long exact sequence of the triple (X', Xe', Xe):

X')—. Xe)—.

Now n > p � q + I implies that n q + 1, so that the first term is zero,
by definition of cellular filtration. The inductive hypothesis does apply to
the third term, for p — (q + 1) <p — q; moreover, we know that n p.
while q � n implies that q + I � n; therefore H.(X', = 0, and hence the
middle term is zero, as desired.

(ii) Let cis e H4(X, X'). By condition (ii) in the definition of cellular
filtration, there exists p � q with Hence

cis E X) —, Xe)),

and this last (sub)group is zero, by (i).
(iii) The long exact sequence of the triple (X, XC) contains the portion

H,,÷1(X, X4) Ha(X, X') HN(X, X4'),

and the outside flanking terms are zero, by (ii).
(iv) Let q � —2. Given n, we know that Ha(XI X') X'), by (iii).

The long exact sequence of the triple contains the portion

H4(X1, HI(XR+I, —. Xe).

Now HN(X', = 0 if n � 0, by (i); when n <0, singular homology always
vanishes. We conclude that

HR(X,

X is a cellular space and k � 0, then

X').

PROOF (Dold). Let k <n — 1. By remark (4) after Theorem 5.9, the triple
Xk) gives a commutative diagram

X)

X&),

where are appropriate connecting homomorphisms and is induced
from the inclusion A: (Xe, 0) —. (X, Xi). Since is a functor, there is a



X) H5(X")

H,I(X5, X*) 'H,(X",
is

By definition, = There is thus a commutative diagram

X")

Xk) X51).
is

A similar argument gives commutativity of the other triangle in the diagram
below:

Li lvi'+l vs
,

I
The row and two columns are each portions of appropriate exact sequences
of triples, the zeros occurring by Lemma 8.35. Now

HII(X, Xk} H5(X54', xk) [Lemma 8.35(iii)]

Xk)/im cY [exactness of first column)
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commutative diagram

115(X")

!p.
H5(X5, Xk)

where all arrows are induced from inclusions. Combining these triangles gives
a commutative diagram

a H5_1(X_1, Xk)

H5_1



216 8. CW Complexes

im is an injection]

= ker 3fim [exactness of row]

= ker 8/im d_1.1 (definition of d1.1]

ker is an injection]

= ker dR+l [definition of di].

Thus whenever k <n — 1. Ii follows from Lemma
&35(iv) that 14(W(X)) for all n. 0

= Ø,then,foralik,

Hk(W.(X)). 0
Let X be a CW complex with CW subcomplex Y. Define

= U Y,

where (as usual) is the k-skeleton of X. Note that = Y; in particular,
= ØifY= 0. It is c

a filtration of X.

Notation. WS(X, Y) is the chain complex determined by the filtration of X by
the [so that Y) = Xt')).

Suppose that X and Xt are CW complexes and that f: X -. X1 is a cellular
map; that is, f(X(*)) c for all k � 0. If Y and Y' are CW subcomplexes
of X and X', respectively, and if I is a map of pairs (1: (X, Y) (X', Y')].
then f: X —.X' is cellular with respect to the fihtrations and It
follows that every cellular map of pairs f: (X, Y) —' (X', Y') induces a chain
map Y) —. Y') and hence homomorphisms

fk: Y)) -. Y'))

for all k � 0.

Theorem 8.38. Let X be a CW complex with CW subcomplex Y.

(i) The filtration of X by the subspaces X
a cellular space).

(ii) If Y) is the corresponding cellular chain complex, then there are
isomorphisms for all Ic � 0,

Y)) Y).

(i) Let E be a CW decomposition of X, let E' E be a CW decomposi-
tion of Y, and let M consist of one point chosen from each cell in E — E'. If
Ic � 1, then Lemma 8.28 says that is a deformation retract of — M;
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for all p � 0, Exercise 5.14(iii) gives — M, Xr1) = 0. A portion of the
long exact sequence of the triple (Xi, — M, L) is

— M, —. Xv') —. — M) —. — M,

where the middle arrow is induced by inclusion. It follows from the two outside
terms being zero that there are isomorphisms (all p, k � 1)

u lxk Xk — Mp' Y' Y ;—+ Y' Y

Computing closure and interior in we see that c — M)°. Hence
excision applies and there are isomorphisms

— M) — — — M).

Since — = E E — E': is a k-cell}, Theorem 5.13 applies to
give isomorphisms for all p. k � I

— Xv', — — M) 4 — M) (*)

(remember that 4 — M = 4 — {ma} for some mA e 4).Now 4 Rk implies
that 4 — M) Rk — {0}). Taking composites, we have isomor-
phisms for all p. k � 1

Rk — {0}). (*.)

Since Rk — {0} has the same homotopy type as the long exact sequence
of the pair (Rk, Rk — (0)) becomes

—. Rk — {0}) —. —+

lip � 1, then both homology groups of Rk vanish, and there are isomorphisms

Rk — {0})

The right-hand side is zero unless p = k — 1, hence Rk — (0)) = 0 for

lip = 1 (and k 1), we have exactness of

0 = H1(Rk) H1(Rk, R& — (0))—' R0(Rk — (0)).

Since k 1, we know that — (0) is path connected therefore — (0)) =
{0))=0,asdesired.

Finally, if p = 0, then HO(Rk, Rk — (0)) = 0 when k 0 because Rk is path
connected and Rk — (0) 0.

The second condition in the definition of a cellular filtration is that for every
m � 0 and every continuous a: A' —. X, there exists an integer n with im a
X. This follows at once from Corollary 8.19, because im a is compact and
hence lies in some finite CW subcomplex of X.

(ii) Now that we have verified that the form a cellular filtration with
= Y, the result is immediate from Theorem 8.36. 0
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One can squeeze more information from the proof just given.

l'beorem 8.39. Let (X, E) be a CW complex with CW subcomplex (Y, E'). For
each k > 0, the chain group Y) is free abelian of (possibly infinite)
rank rk, where rk is the number of k-cells in E — E'. In particular, =
Wk(X, 0) is free abelian of rank equal to the number of k-cells in E.

PROOF. Equation (*s) in the proof of Theorem 8.38 holds for all p, k � 1; in
particular, when p = k, it says that

Wk(X, Y) = Rk —

where A ranges over an index set of cardinal rk. We later observed, when k> I
(remember p = k now), that H&(R&, — The theorem is
thus proved for all k � 2, for then Z.

When k = I, there is an exact sequence

0 = H1(R') — H1(R', R1 — {0}) —. R0(s°)—. R0(R') = 0;

that is, there is an exact sequence

0-' R' — {0}) —, Z —.0.

It follows that H1(R', R' — {0}) = Z, and the theorem holds in this case too.
The case k = 0 follows from Corollary 5.14: H0(X, A) L HO(XJ, A fl

where j e J) is the set of path components of X. Here we must compute
Y), where X? = U Y. Let i E I} be the path components of Y,

and let Xr' = e Y}. Since is discrete and Y is closed, the
path components of X? are the and the singletons {eI}. Thus

H0(X?,

Yfl (Theorem 5.12)

= 0).

We have shown that W0(X, Y) = HO(X?, Y) is free abelian of rank r0, where
r0 is the cardinal of the 0-cells in E — E'. 0

*8.35. If X is a CW complex, show that there is a chain map W,(X) -. S,(X) inducing
isomorphisms in homology. (Hint: First define an isomorphism r,: W,(X) -.

ea — M) as in the proof of Theorem 8.38, namely, the composite

= H,(X", —. — M)

-. — X4'", — — M) —e E H,(ea, — M).
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Now define s,: ea — M) -. S,(X) by sending a generator of
— M) into o e, where e: (A', A') (D', is a homeomor-

phism. Then {s,r,) is the desired chain map.)

As we asserted at the outset, the chain groups of the cellular chain complex
of a CW complex are free abelian groups of "small" rank. For example, the
reader may now give a quick proof of Theorem 6.22, which says that a loop
generates H1 (S1).

Corollary 8.40.11 X is a compact CW complex of dimension in, then

(i)

H,(X) = Oforallp > in;
(iii) H_(X) is free abehan.

Theorem 8.41. Let (X, E) be a CW complex with CW subcomplex (1, E'). Then
the natural map v: X —. X/Y induces isomorphisms for every k � C)

Hk(X, Y) Hk(X/Y, *)

where • denotes the singleton point v(Y) in XII.

PROOF. As in Theorem 8.27, we regard X/Y as a CW complex with CW
decomposition = (E — E') U {.}. The natural map v is a cellular map of
pairs (X, 1) —, (X/Y, s), which maps those cells of X not in Y homeomor-
phically onto those cells of X/ I other than the 0-cell .. That v is cellular implies
that v induces a chain map W(X, Y) —. W•(X/Y, .). Recall the isomor-
phism (s) in the proof of Theorem 8.38:

Wk(X, Y) = e& — M) for all k � 1;

this map is a composite of inclusions (and the injections and projections of a
direct sum decomposition). Since v maps cells in E — E' homeomorphically,
it follows that v3 is an isomorphism for all k � 1. Even v0 is an isomorphism,
but now we must also observe, using Theorem 5.13, that v induces a bijection
from the family of path components of U I not containing Y to the family
of path components of X/Y not containing.. Therefore v,, is an isomorphism
of chain complexes, and hence it induces isomorphisms of the respective
homology groups:

H•(X, Y) *).

But Theorem 5.17 gives H•(X/Y, .) 0
Corollary 8.42. For i = 1, 2, let X, be a CW complex with CW subcomplex
let f: (X1, (X2, I2) be a continuous (but not necessarily cellular) map of
pairs that induces a homeomorphism f: X1/Y1 Z X2/Y2. Then f induces iso-
nwrphisms for all k � 0

12).
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PRooF. For i = 1, 2, let v1: X1 —. be the natural map. The following
diagram commutes:

Y1) Hk(X2, Y2)

fl1(X1/Y1) '

Since three of the maps are isomorphisms by hypothesis and the by
Theorem 8.41), it follows that f, is an isomorphism. 0

Corollary 8.43 (Excision). If X is a CW complex and Y1, Y2 are CW subcom-
plexes with X = Y1 U Y2, then the inclusion i: c.. (X, Y2) induces
isornorphisms for all k � 0,

Y1 fl Y2) Hk(X, Y2).

PROOF. The inclusion induces a homeomorphism Y1/Y1 11 z X/Y2 (if E1 is
the family of cells in then the cells of the left side are those of E1 — (E1 fl E2)
and the basepoint, while the cells of the right side are those of(E1 U E2) — E2

and the basepoint). The corollary now follows at once from Corollary 8.42.
0

Corollary 8.44 (Mayer—Victoris). ijx isa CWcomplex with CWsubcomplexes
Y1 and Y2 with X = Y1 U Y2, then there is an exact sequence

H,(Y1 fl Hk(Y2)-. 115(X)-. fl

whose maps can be given explicitly.

PRooF. The usual consequence of excision (see Theorem 6.3). 0

8.36. (I) If X is a compaet CW complex with CW subcomplex Y. then Y) is
f.g. for every k � 0.

(ii) If(X, E) is a CW complex having only finitely many cells in each dimension,
then is f.g. for every k � 0.

8.37. Show that is cyclic (possibly zero) for every k � 0.

8.38. If {Xa: A E A) is a family of CW complexes with basepoint, show that

R,(Vx)

8.39. Using the CW decomposition of the torus T given in Exercise 8.25, compute
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v S',sothatH2(T, S' v S') = Z
and H1(T,S' vS1)=O.)

Definition. Let (X, E) bea finite CW complex and let denote the number of
i-cells in E. The Euler-Poinearé characteristic of (X, E) is

The remark after the proof of Theorem 7.15 shows that the Euler— Poincaré
characteristicofaflnitcCWcomplex(X, E)is equal toE,�o(— rank lI,(X);
hence this number depends only on X and not on the CW decomposition E.
Moreover, since every polyhedron X may be viewed as a CW complex
(determined by a triangulation of X), we see that we have generalized our
previous definition from polyhedra to finite CW complexes.

Theorem &45. If X and X' are finite CW complexes, then

x X') = X(X)X(X').

PRooF. If E and E' are CW decompositions of X and xl, respectively, then we
saw in Exercise 8.32 that E e' e a CW decomposi-
tion of X x X'. Ife is an i-cell and e' is a i-cell, then e x e' is, of course, an
(i + j)-cell. The number $k of k-cells in E" is thus L+J.k (where is the
number oft-cells in E and a is the number off-cells in E'). But

= = 3)" =

Therefore = x X'). 0

If x and X' are polyhedra, a proof of this formula using the techniques of
Chapter 7 is fussy (a triangulation of X x X' is more complicated than the
CW decomposition above).

8.40. Compute 1(S x S).

8.43. Show that n + I =

8.42. Show that 4(1 + (—1)").

8.43. If X is a CW complex with CW subcomplexes and Y2 such that X Y1 U Y2.

then

+ = z(X) + fl

Of course, one must know both the chain groups and the differentiations
to understand a chain complex; apart from its definition, we have not yet
discussed the differentiations of To emphasize this point, consider
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X = Ri". By Theorem 8.8(i), there is a CW decomposition of X of the form
{e°, e', ..., and so each chain group Wk(X) = 0) = Z for 0 �
k � n (and Wk(X) = 0 for k > n). We conclude that is cyclic for
0 � k � n; however, without knowing the differentiations explicitly, we can-
not yet say whether these cyclic groups, for any fixed k. are infinite, finite, or
even zero. (On the other hand, the CW decompositions of C?' and HP' of
Theorem 8.8 may now be used to give an instant proof of Theorem 8.13.)

As in Example 8.15, regard S" as a CW complex having two k-cells { }

for each k with 0 � k � n. Recall that is the closed northern hemisphere of
and that ë2k is the closed southern hemisphere. thus the k-skeleton of 5fl

consists of the cells in Sk. By Eq. (*) in the proof of Theorem 8.38,

= Hk(Sk, — {m1 }) $
e i = 1,2, are any chosen points; choose m2 to be the antipode

of in We know that each summand on the right-hand side is infinite cyclic.
Let be a generator of — {m1}).

As usual, let a": Sk —. S" denote the antipodal map; let us denote the
antipodal map of pairs (S", S"_1) (S". by A" Now A" restricts to
a homcomorphism — {m1}) — {m2)). Therefore, is a
generator of — trn2c), and hence (/3", is a basis of

Consider the commutative diagram

= Recall that Theorem 6.23 says that is multiplication
by I)"; on the other hand, we see that is the automorphism of

Z $ Z which interchanges the free generators fJ" and
Let v: SN —. be the usual identification, which identifies antipodal

points. If we regard RP" as a CW complex with the CW decomposition
of Theorem 8.8(i), then v is a cellular map and it induces a chain map

Since vA" = v for all k, it is plain that =
(At,(/J")) for all k and (hat their common value is a generator of the infinite

cyclic group

Lemma 8.46. Uring the notation above, for all k � 0 there is a basis of
of the form (fi". with the following properties:

(i) = and their common value isa generator of
(ii) the for k > 0. satisfies

= + ( j)k/3k1)
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PROOF. (1) This was proved above.
(ii) Identify fik {m1 }) with its image in Hk(Sk, =

(Eq. (s) in the proof of Theorem 8.38). Recall that dk: Wk(S") —. (5R) is the

composite 4 =

where i: 0) c.. Now

(I) = = = =

It follows that defined by

7k = — (— l)kflk = + (....

lies in ker dk = Zk(Ws(S")). We claim that = for I � k � n.
For the other inclusion, assume that

0 = d&(rAk.(fik) + sfik), r, s e Z

= + sdk(flk)

= r(— 1)kdk(pk) + = [r(— I)k +

Since is a free abeian group, either r(— 1)k + s = 0 or dk(flk) = 0. In
the first case, s = (— and + sfJk = (a>, as desired. We
now show that the second case cannot occur. If = 0, then Eq. (1)
gives = = 0, and so = im dk = 0. If it>
k — 1 > 0, then we contradict = 0 (since we have just seen that
Zk_l(W*(S')) = 0). There is also a contradiction jfk = 1, because

= W0(S") is free abelian of rank 2, while = Z forces
0.

Ill <k � it, then d*(13k) Bk_l(W,(S')) = Zk...l(WU(S')) = <Yk-1>, by our
computation above. Hence d&($k) = my&_i for some m e Z; furthermore

= Thus im c <mykt>; since yk...1 0 has infinite
order, m = ±1. Therefore

dk(flk) = ±7k-i = ±(4_i(Pk_i) +

as desired. When k = I, we may computed1 directly. Now is the upper half
circle from 1 to — I, and /3° = 1; hence

1 —cls(—I),

as desired. 0
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Theorem 8.47. If n is odd, then

rz
Z/2Z

L 0 otherwise.

ij n is even, then

Z ifp=0
jfpisoddandO<p<n

[o otherwise.

PkOOF. Consider the commutative diagram

d,,

VaI

Wk(RP) Wk1(RP'),

where we are writing for the differentiation in Then

Dkr#(flk) = v#dk(flk)

= ± + (_
= ±(l

Since is a generator of Dk is the zero map for odd k and is
multiplication by 2 for even k. Abbreviating to Wk, we see that the
cellular complex is:

II I! II
2 0 2

II II

The theorem now follows easily.

Remark. It is possible to compute H1,(RP") by simplicial methods using an
explicit triangulation of RP". First, triangulate using the 2(n + 1) vertices

where = ± 1 and is the (n + I)- tuple having (i + 1) St coordinate 1
and all other coordinates 0; the n-simplexes are of the form [e0e0, ...,
for every choice of signs If this simplicial complex is called K, then
one proves by induction that Sd K induces a triangulation of RP' (under the
map —* RP', which identifies antipodal points). This triangulation is essen-
tially in [Hilton and Wylie, p. 133]; the reader is referred to the discussion in
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[Wallace, p. 71], which contains a geometric version of Theorem 7.30; see also
[Maunder, p. 140].

EXAMPLE 8.22. Let p and q be relatively prime integers. Regard S3 as all
(z0,z1)eC2 with 1z012 + 1z112 = 1. Let = be a primitive pth root of
unity; define h: S3 —, S3 by

h(z0, z1) = (Czo,

and define an equivalence relation on S3 by(z0, z1) if there exists an
integer m with h(z0, Zi) = z). The quotient space S3/— is called a lens
space and is denoted by L(p, q).

ExERcisEs

8.44. Show that L(p, q) is a compact Hausdorif space. (In Exercise 10.32, we shall see
that L(p, q) is a compact connected 3-manifold.)

8.45. (1) Show that L(1, 1) = S3.

(ii) Show that L(2, 1) = RP3.
(iii) If q q' mod p, then L(p, q) =L(p, q').

*8.46. (i) Show that there is a CW decomposition of S3 having p cells in each
dimension, namely, for r = 0, 1, ..., p — 1,

e? = {(z0, 0) e S3: arg(z0) = 2nr/p},

= 0) e S3: 2iu/p < arg(z0) < 2it(r + l)/p},

e,2 {(z0, z1)c S3: arg(z1) 2iw/p},

e,3 = ((z0,z1)cS3:2irr/p< < 2ir(r+ 1)/p}.

(Recall that if z is a nonzero complex number, then z = p > 0 and

0 � 9 < 2n; one defines arg(z) 9.)
(ii) If v: S3 —. L(p, q) is the natural map, show that the family of all v(e,k) is a

CW decomposition of L(p, q). Conclude that L(p, q) may be viewed as a
CW complex having one cell in every dimension � 3.

8.47. (i) Show that the CW decomposition of S3 in the above exercise leads to a
cellular chain complex with differentiations:

= —

= Zf;Je!

(take subscripts r mod p in the first and third formulas).

(ii) From Exercise 846(u), we know that there is a CW decomposition of
L(p, q) with q)) = Z for all k � 3 (and with = 0 for k> 3), let

denote a generator of q)). Use part (i) of this exercise to show
that the differentiations satisfy

D(y2) = py1 and D(y1) = 0 = D(y3).
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(iii) Show that

ifk=O,3

Hk(L(p, q)) = Z/pZ ilk — 1

otherwise.

Lens spaces are examples that arose in investigating the Poincaré conjec-
ture (they also enter into Milnor's counterexample to the Hauptvermutung)
Is every compact simply connected manifold having the homology groups of
a sphere actually homeomorphic to a sphere? (We have already mentioned
this problem in Chapter 7.) A natural first question is whether two (corn.
pact connected) manifolds having the same homology groups are necessarily
homeomorphiq indeed, must they have the same homotopy type? The lens
spaces (which are compact 3-manifolds) settle these first questions. Note that
if p ,& p', then L(p, q) and L(p', q') do not have the same homotopy type
because they have different first homology groups.

(i) L(p, q) and L(p, q') have the same homotopy type if and only (1 either qq'
or — qq' is a quadratic residue mod p;

(ii) L(p, q)and L(p, homeomorphic (land only (leither q ±q mod p
±lmodp.

The first statement is proved in (Hilton and Wylie, p. 223] and in [Seifert and
Threlfall, p. 222]; necessity of (ii) is outlined in (Munkres (1984), p. 242];
sufficiency is proved in [Brody].

The 3-manifolds L(5, 1) and L(5, 2) have the sante homology groups,
but they do not have the same homotopy type (for neither 2 nor —2 is a
quadratic residue mod 5). The 3-manifolds L(7, 1) and L(7, 2) have the same
homotopy type (for 2 32 mod 7), but they are not homeomorphic (for
2 * ±1 mod 7).

There are two general methods for computing cellular homology (aside
from variations of the method used for RI"). One way involves selecting bases,
say, Eel) of and {/3j:jeJ} of Now =
where are certain integers called incidence numberi of course, is
completely determined by the matrix of incidence numbers. It can be shown
([Maunder, p. 319) that (;:fl,] can be computed as the degree of a certain
map —, (which is a composite of maps involving the characteristic
maps of and of

A second approach (see [Cooke and Finney] or [Massey (1978))) involves
defining (new) cellular chain groups as free abeian groups with bases
the k-cells in a given CW decomposition of X, and then defining the differentia-
tions by specifying incidence numbers. When the CW complex is regthr,
that is, all attaching maps are homeomorphisins, then all incidence numbers
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are 0, 1, or —1, and there is an axiomatic description of them. In this case
(which obtains, e.g., when X is a polyhedron), there is an algorithm for
computing that is essentially the same as that described for polyhedra
in Chapter 7.

There are other features of CW complexes to interest us. For example, one
can generalize Tietzc's theorem (Corollary 7.37). If X is a finite CW complex
having m I-cells and n 2-cells, then x1(X, x0) is a finitely presented group;
indeed there is a presentation having m generators and n relations (see [Fuks
and Rokhlin, p. 448]). One can also show that the Seifert—van Kampen
theorem holds for a CW complex X and connected CW subcomplcxes Y1 and
Y2 such that u Y2 = X and Y1 (1 Y3 is connected.

There is also an analogue of the simplificial approximation theorem.

Cellular Approximation Theorem. Let X and I be CW complexes, and let
g: X -. Y be continuous; suppose that is a cellular map for some(possibly
empty) CW subcomplex X' of X. Then there exists a cellular map f: X -. I
such that fIX' =gJX' and

f g rd X'.

There is a proof in [Maunder, p. 302] or in [Lundell-Wcingram, p. 69].



CHAPTER 9

Natural Transformations

In preceding chapters, the adjective "natural" was used, always in the context
of some commutative diagram. This important term will now be defined, for
it will allow us to compare different functors, in particular, it will make precise
the question whether two functors are isomorphic. The notion of an adjoint
pair of functors, though intimately involved with naturality, will not be
discussed until Chapter 11, where it will be used.

Definitions and Examples

Definition. Let and d be categories, and let F, G: %' -' d be (covariant)
functors. A natural transformation r: F —. G is a one-parameter family of
morphisms r = F(C) —. G(C)IC e obj such that the following diagram
commutes for every morphism f: C —. C':

F(C)
Ff

F(C)

TcI ITc.

G(C)
Gf

G(C').

A similar definition can be given, mutatis mutandis, when both functors F
and G are contravariant just reverse both horizontal arrows.

Definition. A natural transformation r: F —, G is a natural equivalence if every
is an equivalence. Two functors are called Isomorphic (or naturally equiva-

lent) if there is some natural equivalence between them.
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Ex.&MpI1 9.1. If • is a one-point space, say,. = (a), then a function h: . —, X
is completely determined by its only value x =h(a) e X; denote It by One
usually identifies x and even though they are distinct (e.g., we have identified
the singular 0-simplexes in a space X with the points of X). More precisely,
let us see that the identity functor on Sets is isomorphic to Hom(s, ). For
each set X, define r1: X -, Hom(s, X) by = 1ff: X -. Y is a function,
then the diagram below commutes:

I

Hom(., X) Hom(., Y);
1.

if xc X, then t1f: and f.tx: xi—.fo = hf(,,). Therefore r is a
natural transformation (we let the reader check that r is in fact a natural
equivalence).

9.2. The identity functor on Ab is isomorphic to Horn (Z, ). The
argument is essentially that of the preceding example, for every homomor-
phism f: Z —, G is completely determined by f(1) E G.

EXAMPLE 9.3. Let k be a field and let = d be the category of all vector spaces
over k and all linear transformations. Recall that V' denotes the dual space
of a vector space V. namely, the vector space of all linear functionals on V
(hence V = Hom(V, k)) and that V' = (V')' is the second dual. For xc V
and f E V, let (x, f) denote f(x). For each vector space V, define ey: V —,

by ey(x) = (x, ), evaluation at x. The reader may check (if this has not
already been seen in one's linear algebra course) that ey is an injective linear
transformation. It is also easy to check that all such ey defme a natural
transformation from the identity functor to the second dual functor (which is
a natural equivalence when one restricts to the subcategory of all finite-
dimensional vector spaces over k).

ExntcIsEs

9.1. I1(S,(X), is the singular complex of a space X, then we have seen, in Exercise
4.6, that SI: Top Ab is a functor for each fixed n � 0. For each space X,
the boundary operator's complete notation is S(X) -. (X). Show that
8,: S1 —.. S,.1 is a natural transformation. (Hi,u: Lemma 4.8.)

9.2. For each fixed n � 0, define a functor E: Top-. Ab by EX = x 1) and
Ef = (f x Use Exercise 4.10 to show that the prism operator SI— £
is a natural transformation.

9.3. Recall that 111(X) H1(X, x0) for any x0 X, and regard R,: Top,-. Groaps
(of course, A1 (X) is abelian, but we choose to forget this in this exercise). Show
that the Hurewicz map defines a natural transformation .-. A1. (Hint: Exercise
4.13.)
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'9.4. Consider the functor R: Top2 -. Top2 defined on objects by (X, A)'—' (A, 0) and
defined on morphisms by A, where 1: (X, A)-' (X', A'). Use Theorem 5.9
to show that the connecting homomorphism defines a natural transformation
a: H. —. o R.

9.5. Foreachfixedn � O,show that S, —.

tion, where S,: Top .-' Ab is the nth term of the singular chain complex. (Hint:
Exercise 6.8.)

9.6. (i) Prove that the composite of two natural transformations, when defined, is a
natural transformation.

(ii) Prove that natural equivalence is an equivalence relation on the class of all
(covariant) functors between a given pair of categories.

'9.7. (Yoaeda Lemma) Let be a category, let A obj and let F: Sets be a
contravariant functor, let Nat(Hom( , A), F) denote the class of all natural
transformations Hom( , A) —' F.

(i) There is a Function y: Nat(Hom( , A), F) —. F(A) given by

(ii) There is a function y': F(A) -. Nat(Hom( , A), F) given by where,
for each X obj Hom(X, A) -. F(X) is defined by

(iii) y is a bijection with inverse y.
(iv) If B€ obj 'i', then every natural transformation p: Hom( , A) —' Hom( , B)

has the Form with ço1(f)—pf, where p=q'A(lA) and 1€ Hom(X, A).
(v) State and prove the dual version of the Yoneda lemma involving

Nat(Hom(A, ), G), where (3: 'd' —, Sets is a covariant functor.

9.8. Call a category unall if obj '1 is a set (it follows that the class of all morphisms
in is also a set). and d are categories with small, show that there is a
category (denoted by cl') whose objects are all (covariant) functors —, d and
whose morphisms are all natural transformations. (Remark: One assumes that

small to guarantee that Hom(F, G) isa set.) A subcategory old is called a
fimctor category.

9.9. (i) Regard the ordered set Z as a category (Exercise 0.9) and show that a complex
may be construed as a contravariant functor C: Z -. Ab (with the extra
condition that composites of nonidentity morphisms are zero).

(ii) If C and C' are complexes, then a chain map f: C —. c' is a natural trans-
formation.

Eilenberg—Steenrod Axioms

We are now able to state the theorem of Eilenberg and Stcenrod.

Defmnisiomi. A pair (X, A) of spaces, where A is a subspace of X, is called a
compact polyhedral pair if there is a (finite) simplicial complex K, a subcomplex
L, and a homeomorphism f: —. X with f(ILI) = A.
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Definition. Let be the category of compact polyhedral pairs A homology
theory (H, on is a sequence of functors Ab for n � 0 and a
sequence of natural transformations ö,,: o R (where R: is the
functor (X, A)i.—. (A, 0) of Exercise 9.4) such that the following axioms hold.

Homotnpy Axiom. If (X, A) —. (Y, B) are homotopic (ic., there is a
homotopyF:(X x I,A xl) —.(Y,B) with F0=f0 and F1 =fl),thenHNIJ)=
H1(f1): A)—. B) for all n � 0.

Exactness Axiom. For every pair (X, A) with inclusions I: (A, 0) (X, 0)
and j: (X, 0) C.. (X, A), there is an exact sequence

H1(A, 0) HN(X, A) 0)

Excision Axiom. For every pair (X, A) and every open subset U of X with
U c A°, the inclusion (X — U, A — U) c.. (X, A) induces isomorphisms

HN(X— U,A— U)ZH.(X,A)

for all n � 0.
Dimension Axiom. If X is a one-point space, then H,,(X, 0) = 0 for all

n > 0. (One calls HO(X, 0) the coefficient group,)

Since we have proved that each part of the definition holds for the singular
theory, we know that homology theories with coefficient group Z on do
exist. Indeed we have even proved that such theories exist for the larger
category Top2. Of course, one usually writes H,(X) instead of 0).

Definition. Let (H, 3) and (H', 8') be homology theories on An isomorphism
r: (H, 8)—. (H', 8') is a sequence of natural equivaknces

aIIn�O
making the following diagram commute

'

______

Jr

for all pairs(X, A) and alln �0.

Theorem (Eilenberg-Steenrod). Any two homology theories with isomorphic co-
efficient groups on the category %' of all compact polyhedral pairs are isomorphic.1

Remarks. (1) A proof of this theorem (indeed of more general versions of it)
can be found in fEilenberg and Steenrod]. See also [Spanier, pp.199—205].

pp. 51-60) extends this theorem to the category of aB (X. A), where X is a finite
CW complex and A is a CW subcompkx.
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(2) We have already seen that singular, simplicial, and cellular homology
theories assign isomorphic homology groups to each compact polyhedral pair
(X, but we have not shown the stronger result that these three theories on

are isomorphic that is, the induced homomorphisms are essentially the
same as well.

(3) An extraordinary cohomology theory on is almost a homology theory:
it satisfies all the conditions of the definition except the dimension axiom
(on page 257, we shall introduce homology with arbitrary abelian coefficient
groups) An example of an extraordinary cohomology theory is topological
K-theory.

(4) There is an extension of the Eilenberg—Stccnrod theorem characterizing
homology theories on larger categories that contain certain noncompact
pairs. This extension requires an extra axiom, compact sapports, which is
essentially Theorem 4.16. More precisely, the axiom states that if cia z e

A), then there is a compact pair (X', A') c (X, A) (i.e., (X', A') is a pair,
X' is compact, and A' is closed in X) with cis z in the image off1,: H,(X' A') —.

HN(X, A), where j: (X', A') (X, A) is the inclusion. With this extra axiom,
there is an isomorphism of any two homology theories having isomorphic
coefficient groups defined on the category of all not necessarily compact
polyhedral pairs.

(5) Here is the reason that the dimension axiom is so called. Given a
homology theory (H, ö), one can define an extraordinary homology theory
(H', by defining A) H.1(X, A) for all n and for all pairs (X, A).
Since one wants a point to be zero-dimensional (and eventually that spaces
X of dimension d should have H1(X) = 0 for all n > d), the dimension axiom
'tends to insure that the dimensional index should have a geometric meaning"
(quotation from [Eiknberg and Steenrod, p. 12]).

(6) The only axiom guaranteeing nontriviality, that is, which forbids
H1(X) 0 for all n and all X, is the dimension axiom (when we further assume
that the coefficient group is nontrivial). In principle, one ought to be able to
construct H,(X) from the homology of a point! The first step in this construc-
tion is the computation of the homology of spheres. In Chapter 11, we shall
discuss the suspension of a space X.

b

a
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One defines EX as the quotient space of X x I in which X x {0} is identified
to a point, say, a, and X x { I } is also identified to a point, say, b. Of course,
Xis imbedded in EX as X x The picture of EX reminds one of a sphere
in which X is the equator, the cone over X with vertex a is the northern
hemisphere, and the cone over X with vertex b is the southern hemisphere.
Indeed one can prove that this picture is accurate: Now the proof
of Theorem 6.5, the computation of can be adapted to prove that

for every space X (this is called the suspension isomor-
phism). In particular, Z R0(S0) R3(S') the axioms pro-
duce the homology of spheres from the homology of a point.

(7) It can be shown that the excision axiom can be replaced by an exact
Mayer—Vietoris sequence [Spanier, p. 208).

The Eilenberg—Steenrod theorem was very important in the development
of algebraic topology. For two decades before it, there was a host of homology
theories (we have discussed only three; some others are named Cech, Vietoris,
cubical) designed to treat appropriate classes of problems. One was obliged
to learn them all, and the subject grew quite complicated. Today one can
invoke the Eilenberg—Steenrod theorem to see that the various homology
theories are but different constructions of the unique theory (on compact
polyhedral pairs). Besides giving a simplifying organizing principle, the
Eilenberg—Steenrod theorem also introduced the possibility of axiomatic
proofs in algebraic topology, which are conceptually easy to grasp.

Chain Equivalences

Definitloo. A chain complex is called free if each of its terms is a free abelian
group.

The main theorem in this section is a necessary and sufficient condition
that a chain map between free chain complexes be a chain equivalence.

Theorem 9.1. Let F be a free abelian group. In the diagram below with exact
row, that is, g is a surfective homomorphism, there exists a homomorphism
1: F B with gf = h.

F

r
h

B
g

PRooF. Let X be a basis of F. For each x X, choose e B with
g is surjective). The function x '—' b,, defines a

homomorphism f: F —. B by extending by linearity. For each x X, we have
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gf(x) = h(x) it follows that gf h, because both homomorphisms
agreeonasetofgeneratorsofF. 0

CoroUary9ilfFsafreeabelianroupandg:B-'Fisasuilectivehomomor-
phism from some abelian group B, then

B ker g F',

where F' F.

PROOF. Consider the diagram

F

1,,,

B '0.
9

By the theorem, there is a homomorphism f: F —, B with gf = 1,; it follows
that I is injective. But B=kergeimf: if beB, then b=(b—fg(b))+
fg(b) e ker g + im f (because g(b — fg(b)) = 0), and (it is easy to see that)
ker gil im f =0. The result follows by defining F = im f. 0

One can rephrase the conclusion of the corollary in terms of exact
sequences.

Definition. A split exact seqoence is an exact sequence 0-. A B 1' C -' 0
for which there exists a homomorphism s: C -. B with ps =

EXERCISE

9.1O. The following statements are equivalent
(i)

(ii) A is a direct summand of B that is, there exists a subgroup C' of B with
C via pJC and B= im

(iii) There exists a homomorphism q: B A with qi —

Corollary 9.2 thus says that an exact sequence 0-. A -. B -, F -, 0 with F
free abelian is necessarily a split exact sequence.

Theorem 9.3. Every subgroup H of a free abelian group F is free abelian;
moreover, rank H � rank F.

Remark. It follows that if F is f.g., then H is f.g.

PROOF. We give two proofs: the first proof works only when F has finite rank,
but it allows us to focus on essentials.
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Suppose that F has finite rank n; we prove the theorem by induction on n.
If n = 1, then F Z and the division algorithm shows that any subgroup H
of F is cyclic, hence is 0 or isomorphic to Z. Thus H is free abelian and
rank H � I = rankF. For the inductive step, let {x1, ..., be a basis ofF,
let F = <x1, ..., x1_1 and let H1 = H 11 F,,. By induction, H,, is free abelian
of rank �n — 1. Now

H/H,, = H/(H fl F) (H + FIJ/F,, c F/F, Z.

By Corollary 9.2, H = H,, or H = H,, <h>, where <h> Z. Therefore H is
free abelian of rank � n.

We now give a second proof that does not assume the rank of F is finite.
Let {x&: k K) be a basis of F, which we assume is well ordered. (That every
nonempty set can be somehow well ordered is equivalent to the axiom of
choice.)

For each k K, define = <Xi> and = <x1>; define 11k =

HkflFk. Hence

= Hk/(Hk fl (Ilk + Fk)/Fk c F/Ft Z.

By Corollary 9.2, either or

14 = <hi)', where (hi) Z.

We claim that H is free abelian on the set of he's note that it will then follow
thatrank H � rank � KI = rank F.

Let H° be the subgroup of H generated by the hk. Since F = U Fk, each
h e H (as any element of F) lies in some Fk. Let i(h) be the least index k with
h e Suppose that H # H° and consider (p(h): h e H and h H°). There is
a least such index j, because K is well ordered. Choose h' H with 14h') = j
and h' H°. Now j4h') = j says that h' H fl so

h' a h' a contradic-
tion. Hence H = H°.

Next, we show that linear combinations of the hk are unique. It suffices to
show that if

mlhk, + + = 0, k1

then each m1 = 0. We may assume that 0. But then = 0,
a contradiction. This shows that H is free abelian on the hk. 0

Theorem 9.4. A free chain complex (As, 8) is acyclic if and only if it has a
contracting homotopy.

PROOF. Sufficiency is Corollary 5.4. For the converse, assume that = 0
for all n � 0. Now Z,,(A,,) c A,, is free abelian, by Theorem 9.3. The differentia-
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tion A1 —. has image = (since = 0), so
thatTheorem9.l givesahomomorphisms1_1: —. 1.

It follows that the map I — s1_181: A1 —. A1 has its image in Define
t1: A1 —, as the composite

= s1(1 — s1_181).

Then

+ tl...18,, = e31,isl(l — s1_181) + s1_1(I —

= 1 — + = 1.

Therefore {t1} is a contracting homotopy of A. 0
Definition. Letf: (As, 8) 8') be a chain map. The mapping cone of J is
the chain complex C(f) whose nth term is

C(f)1 = B1

and whose differentiation 1)1: C(f)1 —. C(f)1_1 is given by

D1(a_1, b1) = +

It is convenient to write D1 in matrix form:

D 8'.
Lemma 93. If f: 4,, —, is a chain map between free chain complexes, then
C(f) is a free chain complex.

PROOF. Matrix multiplication shows that DD = 0, using the fact that —.fê +
ö'f = 0 (because f is a chain map). The freeness of C(f) follows at once from
the freeness of and of 0
Theorem 9.6. Let f: be a chain map between free chain complexes. If
C(f) is acychc, then f is a chain equivalence.

PRooF. Assume that C(f) is acyclic since the chain complexes are free,
Theorem 9.4 says that C(f) has a contracting homotopy. In matrix notation,
there is a 2 x 2 matrix T with DT + TD = I:

(—8 o\j'A (A 0\(J 0

) )k I 8') — 1

Define f' = p. s' = — z, and s = A. Then the matrix equation shows that 1' is
a chain map (—8p + p8' = 0), so + Os = ff — 1, and s'O' + 8's' = if' — 1.

Therefore f is a chain equivalence. 0
Lemma 9.7. 1ff: —' is a chain map, then there is an exact sequence

—' H1÷1(C(f)) —' —. H1(C(f))
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Define a shifted version of as follows:

= /la_1 and =

There is a short exact sequence of chain complexes

—'0,

where I: bi—.(0, b) and p: (a, b)i—'a. There results a long exact sequence of
homology groups

—' H1+1(C(f)) —, H1(C(f)) —'s
where A is the connecting homomorphism. Now it is easy to see that

= let us compute A. Consider the usual diagram

If a is a cycle, then (a) = D(a, 0) = (— 0a, fa) = (0, fa) = hence
0

Theorem 9.8. Let and B1 be free chain complexes, and let f: —. be a

chain map. Then f is a chain equivalence if and only —,

is an Isomorphism for every n.

PROOF. Necessity is Theorem 5.3. For sufficiency, consider the exact sequence
of Lemma 9.7. Since each is an isomorphism, exactness forces H1(C(f)) = 0
for all n; that is, C(f) is acyclic. Theorem 9.6 now applies to show that f is a
chain equivalence. 0
Remark. If E',, is an adequate subcomplex of a free chain complex then
Lemma 7.28 shows that the inclusion I: E1, c. induces isomorphisms in
homology. It follows from Theorem 9.8 that i is a chain equivalence.

The chain map j: —. 1K I) of Theorem 7.22 (where K is a simplicial
complex) is a chain equivalence, because j1, is an isomorphism also, the chain
map W4(X) -+ of Exercise 8.35 is a chain equivalence for every CW
complex X.

Acyclic Models

The next topic, the method of acyclic models, is a technique of constructing
chain maps and chain homotopies. The following elementary result is the heart
of the so-called comparison theorem of homological algebra; its analogue in
functor categories is the heart of acyclic models.
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Theorem 9.9.

(i) Consider the commutative diagram of abelian groups

F
'

lb

in which the bottom row is exact, st = 0, and F is free abelian. Then there
exists a homomorphism c making the frst square commute.

(ii) Consider the diagram of abelian groups2

2 e
F2 — F1 —' F0 —' cokerd1 0

tQ f
1.

E2 —' —' —' coker81 —. 0
82 81

in which the rows are chain complexes, each F1 is free abelian, and the
bottom row is exact (i.e., it is an acyclic complex). Then there exists a chain
map t: F —' E with ft = et0.

(I) If we can show that im bt c im r, then we have a diagram

F

hi

imr

to which Theorem 9.1 applies, yielding the result. Now exactness of the bottom
row gives im r = ker p, so that it suffices to prove that pbt = 0. But pb: = ast,

by commutativity, and St = 0, by hypothesis.
(ii) Construct i � 0. When I = 0, use Theorem 9.1 with

the diagram

loft

' 0.

For the inductive step, use part (1). 0
Dellaidon. One says that a chain map t is over f in the circumstance of
Theorem 9.9(ii) that is, ft = a0.

21ff: A -. A is a homomorphism, then its cokernel is defined as

cokerf — A/imf.
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EXERcISE

9.11. In Theorem 9.9(u), prove that is unique in the sense that any other such chain
map :' (over 1) is chain homotopic to:. (Him: Define = 0 and construct

F,, with + s,,_1d,, = — ,. by induction on n � 0 by using the
commutative diagram

I
E.+1 ' E,, E,,_1.)

Definition. A functor F: Ab —, Ab is additive if whenever f, g: A —. B are
homomorphisms then

F(f + g) = F(f) + F(g).

(In Theorem 5.2, we proved that H,,: Comp —. Ab is additive if one makes
the obvious generalization from Ab to Comp.)

ExaiclsEs

'9.12. Let F: Ab -, Ab be an additive functor, if f is a zero homomorphism, then so
is F(f), if A is the zero group, then so is F(A).

'9.13. Let F: Ab —'Abbe an additive functor of either variance.
(1) lfO-.A-.B-.C-.Oisasplitexactquence,theno-.FA-.FB-.FC-0

is also split exact when F is covariant (and 0-' FC -, FB -, FA -.0 is split
exact when F is contravariant). In particular, the functored sequence is exact.

(ii) If! is a finite index set, then

uI 1.1

'914 Let F: Ab —. Ab be an additive functor of either variance.
(i) If(A,, 8) is a chain complex, then (FA,,F8) is a chain complex.
(ii) 1ff: A,-. isa chain map, then Fl: FA, —. FB1 is a chain map when F

is covanant (Fl: FB, -. FA, when F is contravanant).
(iii) 1ff: A, -. B, is a chain equivalence, then so is Fl. Conclude that FA, and

FB, have the same homology groups.

Definition, A category with models .4 is an ordered pair .4), where .4'
is a subset ofobj 1fF: —, Ab is a functor, then an F-model set is an indexed
SCt = e FM,: j J}, where {Mj: j J} is an indexed family of models.

For every object C in and every a: M, —' C in one has Fa: FM1 —' FC
in Ab, and hence (Fa)(x1) e FC for everyj E J and every e X.

Definition. Let '€ be a category with models .4, and let F: '€ —, Abbe a functor.
Then F is free with base in .4 ii:
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(I) FC is a free abeian group for every object C;
(ii) there is an F-model set = {Xj e FM,: j J} such that, for every object

C, the set

Xj e and a: —' C)

is a basis of FC.

EXAMPLE 9.4. Fix k � 0, and consider the category Top with models .N = {Etk}

(there is only one model). If Sk: Top —, Ab is the functor that is the kth term
of the singular complex, then = {S} is an Sk-model set, where 5 e
is the identity map. For every space X, we know that Sk(X) is a free abelian
group with basis all k-simplexes a: —, X. But Sk(a)(S) = a0(S) = a a 5 = a,
so that

{Sk(cr)(S): c5 and a: -. X)

is a basis of Sk(X). Hence Sk is free with base in .t =

9.5. Let .% be the category of simplicial complexes, let p � 0 be fixed,
and let C,,: -' Ab be the pth term of the simplicial chain complex. If
ii = where iS! is the standard p-simplex [e0, ..., e,,], then proceeding
as in Example 9.4 does not show that C,, is a free functor. Let = {c5), where
S e is the element <eo, . .., e,,>. IlK is a simplicial complex, then the set

iS! -+ K is a simplicial map)

= {<aeo,..., ae,,>ta: iS! -. K simplicial}

is too big; it does contain a basis of C,,(K), but it also contains symbols
<V0...., v,,> with repeated vertices as well as symbols vi,,> for every
permutation of (0, 1, ..., p}.

Define F,,: ir —, Ab so that F,,(K) is the free abelian group having the large
basis above; that is, F,,(K) is the free abelian group with basis all symbols

v,,> for which V0, ., are (not necessarily distinct) vertices that span
a simplex in K. Then F,, is free with base (A").

Lemma 9.10. Let be a category with models .11, and let F: —* Ab be a free
functor with base = {Xj e j E J}. If G: —, Ab is a functor and =

e j J} is a G-model set (same models Mi), then there exists a unique
natural transformation r: F G with rM,(x,) = yj for all j J.

Remark. The following diagram is a mnemonic.

xi,—. Yj
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PROOF. Let us prove uniqueness oft (assuming that it exists). For fixed index
j and object C, naturality of t gives a commutative diagram for every
a: -. C:

FCFC

1:,

_______

bGC,

where t, abbreviates Tu.; that is, o (Fa) = (Ga) o Hence, if e X, the
hypothesis gives tc((Fa)(xj)) = (Ga) (tAxi) ) = Since the family of all

forms a basis of FC and hence generates FC, it follows that each
homomorphism is uniquely determined. Therefore r = is unique.

To construct t, define tc: FC GC by first setting =
and then extending by linearity (FC is free abeian, and we have assigned a
value to each basis element). It remains to prove that all such constitute a
natural transformation if f: C -. D, then the following diagram commutes:

FC
Ff

FD

tcl Ito
GC

Gf

Since FC is free abelian, it suffices to evaluate both composites on a typical
basis element, say, (Fa)(x1). Now

(Gf) o rc: = (Gfo

G is a functor) on the other hand,

ID o Fl: Fa)(xj)) = TD((F(fO))(Xi)) = 0

Lemma 9.11. Let be a category with models A'. Consider the commutative
diagram of functors '1 —' Ab and natural transformations

F G
c

I:
in which at = 0 (i.e., = 0 for every object C), im p = ker n on 41 (i.e.,

im PM = ker for every model M), and F is free with base in 41. Then there
exists a natural transformation y: F -. E' making the first square commute.
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PROOF. By hypothesis, there exists an F-model set {Xj e FM1: j E J) that is a
base for F. Now for each j, there is a commutative diagram in Ab satisfying
the hypotheses of Theorem 9.9(i):

FM1 'GM1

EM1 E"M1;

hence each FM1 determines some y E E'MJ (its image under the dashed
arrow); of course, these y form an F-model set. By Lemma 9.10, there exists
a natural transformation y: F -. E' with yj(Xj) = y (here y1 abbreviates Vu,) It
remains to check commutativity. Define an E-model set by setting Yj p1y.
Since both fry and py are natural transformations F —, E whose M1th compo-
nent takes x1'—. y1, the uniqueness assertion in Lemma 9.10 gives fir = py. 0

It is simplest to regard Lemma 9.11 as merely a functor version of the
elementary Theorem 9.9(i). But Lemma 9.11 is stronger than this; not only
is there no assumption that is small (to force "functor categories" to be
categories), but the most important feature is that the bottom row of the
diagram is assumed exact only for models M in 4'.

The theorem we seek is a version of these results with Ab replaced by Comp.
Of course, if E: -. Comp is a functor, then is defined for every object
C; moreover, if E is that is, E1 = 0 for I <0, then we may lengthen
the complex EC as follows:

(for HO(EC) is just coker(E1 C —. E0C)). Finally, for every k � 0, E determines
a functor Ek: 'W —' Ab, namely, C the kth term of the chain complex EC.

Deflaitloim. Let E: -. Cosnp be a functor. An object C in is called E-acydk
if HA(EC) = 0 for all n > 0.

Theorem 9.12 (Acyclic Models). Let '1 be a category with models 4', and let F,
E: —' Comp be nonnegative functors. For each k � 0, asswne that Fk is free
with base in 4' 4' is E-acyclic. Then

(i) For every natural transformation H0F —. H0E, there is some natural
chain map r: F —. E over that is, there is a commutative diagram

d3
F1 . • H0F 0

I
•H0E .0.
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(ii) If r, r': F—' E are natural chain maps over then r and r' are naturally
chain homotopic.

(iii) Assume that is free with base tk and each model M in .1 is
F-acyclic. If p is a natural equivalence, then every natural chain map
t: F -. E over is a natural chain equivalence.

Remarks. (1) We shall elaborate on the term "naturally chain homotopic" in
the proof.

(2) Realize what this theorem does; it constructs (natural) chain maps and,
perhaps more useful, it constructs (natural) chain homotopies and chain
equivalences.

(3) Recall that chain maps induce homomorphisms in homology, chain
homotopic chain maps induce the same homomorphisms in homology, and
chain equivalences induce isomorphisms in homology.

PROOF. (i) The statement means that for every natural transformation
q: 110F —. H0E there exists a sequence of natural transformations;: Fk —'
all k � 0, making the diagram in the statement commute (note that, for every
model M, indeed for every object C in %', the bottom row is exact at E0 C,
because H0(EC) is just the cokernel of E1 C —, E0C). The proof is by induction
on k � 0. When k = 0, use Lemma 9.11 with the diagram

F0 'H0F

10

the inductive step also follows easily from Lemma 9.11.
(ii) Assume that both r, r': F —. E are over q,; our task is to find natural

transformations Sk: Fk —' for all k � — I such that

3k+lsk + sk.ldk =

Define = 0, and proceed by induction on k � 0 to define 5k Let 0,, =
— r and t' are over q',it is easy to see that the following diagram

commutes:

F0 ' 0

190 10

E1 E0 H0E.

Lemma 9.11 applies at once (the bottom row is exact for every model M,
indeed for every C, as noted above) to provide so: F0 —' E, with as
desired.
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For the inductive step, consider the diagram

F,, 'IF,,

j
10

E,, •

whose bottom row is exact for every model M. Now Lemma 9.11 provides
s,,: F,, —' E,,4, with as,, = 8,, — s,,_1d,, (which is what we seek) if we can show
that this diagram commutes. But, by induction,

— s,,_,d,,)= ô,,O,, — (a,,s,,_,)d,,

= —(0,,.., — ;2d)d

= ao,, —

and this last is zero because 0 is a chain map.
(iii) If ip is a natural equivalence, then its inverse H0E —. H0F exists.

By (I), there exists a natural chain map a: E —e F over Therefore at: F —. F
is a natural chain map over = 1, the identity natural transformation on
If0 F. Obviously, the identity 1,: F —. F is also a natural chain map over 1. so
that (ii) gives a natural chain homotopy at I,. A similar argument gives
to hence r: F —' E is a natural chain equivalence. 0

Let us now review the proof of the homotopy axiom (Theorem 4.23) in the
light of acyclic models. Top is a category with models .J = (At: k � O}.
In Example 9.4, we saw that the singular complex S,: Top -. Comp has
each term S,,: Top —. Ab free with base in 4. Recall that the proof of Theorem
4.23 involved constructing a chain homotopy P': for every space
X, where X —, X x I is defined by xi—.(x, i) for i = 0, 1. Delme a functor
E: Top —e Comp by E(X) = x I). In Theorem 4.19. it was shown that
every convex set is acyclic since x I is convex, it follows that every model

is E-acyclic. Now both A,, and A01 are natural chain maps —e E.

Therefore acydic models says that if 110(A,) = H0(A0), then A,, and At,, are
naturally chain homotopic. The equality 110(A,) = H0(A0) is the content of
Eqs. (1) and (2) in the base step (n = 0) of the proof of Theorem 4.23. Thus all
other calculations in the proof of the homotopy axiom arc necessarily routine,
because they can be made once and for all in great generality.

Before giving further applications of acyclic models, we modify it to make
it easier to use.

Definition. An augmentation of a nonnegative complex (Se, is a surjective
homomorphism c: S0-. Z with the composite cö1 =0. A chain map 1: S, —

is augmentation preserving if there is a commutative diagram
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101 1'
Jz.

We have seen augmentations before, when reduced homology was intro-
duced (then we wrote instead of a, where adds coefficients).

Corollary 9.13. Let be a category with models and let F, E be functors
from to the category of augmented chain complexes.

(i) If each is free with base in .4' and each model M is totally E-acydlic (i.e.,

= 0 for all n � 0), then there exist natural chain maps F —. E that
are augmentation preserving, and any two such are naturally chain homo-

topic.
(ii) If both and Ek are free with bases in .11, all k � 0, and if every model is

both totally E-acyclic and totally F-acyclic, then every augmentation pre-
serving natural chain map is a natural chain equivalence.

PROOF. (I) In the proof of Theorem 9.12, replace F0—. H0F —.0 and E0
H0E —.0 by their respective augmentations, so that Z now plays the role of
H0 and the identity Z —. Z plays the role of q: 110F —. H0E (the only proper-
ties of 110F and H0E used in the proof are shared by augmentations, namely,
commutativity of the square

10

and exactness of E1 M —. E0M --. Z —-.0 for all models M: since each model
M is totally E-acyclic, 0 = R0(EM) = ker —. E0M)). There is thus
a natural chain homotopy between any two augmentation preserving natural
chain maps.

(ii) If both F and E are free and acyclic, then there are augmentation
preserving natural chain maps t: F —. E and a: E —. F. But the identity chain
map I: F —. F is also augmentation preserving, so that uniqueness says that
there is a natural chain homotopy (IT similarly, ra Therefore r and
a are natural chain equivalences. 0

9.l5. (I) The "large" simplicial chain functors F, in Example 9.5 can be assembled
(with the usual alternating sum differentiations) to form a lunctor
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F: .-' Comp. Prove that F is naturally chain equivalent to the singular
chain complex functor (restricted to the category of finite simplicial
complexes).

(ii) Using Theorem 7.22, prove, for K a finite simplicial complex, that 114(K)
can be computed either via singular theory, or via the large simplicial chain
complex, or via oriented simplicial chain complexes. (As we observed in
Example 9.5, the "oriented" functor is not free, so that acyclic models
does not apply to prove Theorem 7.22. in this case, Theorem 9.8 applies.)

There is a cheap variant of acyclic models called acyclic carriers; rather
than deriving it from acyclic models, we prove it directly.

Definition. Let be a free chain complex in which each term has a
given basis If a e and /3 e then is a face of a, denoted by /3 <a,
ii /3 occurs with nonzero coefficient in aa.

Let (T1, be a chain complex, and let -.+ be a chain map. A carrier
function for is a function E that assigns to each y e U a subcomplex E(y)
of such that, for all y,

(i) E(y) is acyclic;
(ii) if y then EN(V) c

(iii) jf /3 < y, then E(/3) c E(y).

Carrier functions arise as follows. Let K and L be simplicial complexes.
and let be a function that assigns to each simplex s c K an acyclic subcom-
plex of L such that s' s implies c It is straightforward to check
that if q,: C4(K) is a chain map for which whenever s
is an n-simplex in K, then E(s) = is a carrier function for

Theorem 9.14 (Acyclic Carriers). Let S4 be a free chain complex in which each
term has a given basis, and let S,, 7 be a chain map into some chain
complex TI;. If q has a carrier function and (1 S0 T0 is the zero map, then
41 is chain hoinotopic to the zero chain map.

PROOF. We prove by induction on p � 0 that there exist homomorphisms
S, such that:

(1) = +
(2) s1(y) E E(y) for all y e S, with i � p.

Sp ) Sp_i

,+ I

The induction begins by setting = 0 = (here one uses the hypothesis
that = 0).
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Suppose, by induction, that s0, s1, ..., s, have been defined satisfying (1)
and (2). To define

—
it suffices to evaluate it on any y in the

basis of S,+1. The boundary 8y of such a basis element y lies in so that
is defined. Moreover,

s,,(3y) e (E('/): y' <y> c E(y)

(where < ) means "subcomplex generated by"); the first relation holds by (2)
of the inductive hypothesis; the inclusion holds by (iii) of the definition of
carrier function. It follows from (ii) that

(y) — E(y).

Now (y) — is a cycle in the complex E(y):

— s,(&y))= —

(by(l))

= — — th3)(y) = 0,

the last equality because q is a chain map. Since E(y) is acyclic, (y) — s,(t3y)

must be a boundary: there exists a (p + 2)-chain fi e with

8'(fl) = (p,+1(y) — s,(8y);

define S,+i(V) = This last formula now reads

ä'sy = q'y —

and this is (1). Also, (2) holds, because does lie in E(y). 0

Corollary 9.15. Let S1, arid be chain complexes, let S, be free with each term
havingagiven basis,and let ço and be chain maps -. = S0—. T0

and if — has a carrier function, then "p and are chain homotopic.

PRooF. By the theorem, — 0. 0

Lefschetz Fixed Point Theorem

Recall that when we constructed barycentric subdivision Sd in singular theory,
we saw (Lemmas 6.12 and 6.13) that Sd,: —. is a chain map that
induces the identity map in homology. In simplicial theory, however,
Sd: K —. Sd K, hence the chain map —. K) cannot induce
the identity map in homology.

Lemma 9.16. For every simplicial complex K, Sd,: —. K) Induces
an Isomorphism in reduced homology.
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PROOF. By Lemma 7.21, there is a natural chain map j: -.
moreover, by Theorem 7.22, j induces isomorphisms in homology. The result
thus follows from commutativity of the diagram

Sd KI = I
and the other three maps in the diagram induce

isomorphisms. 0
It will be convenient to have an explicit description of the inverse of this

isomorphism. Recall (Exercise 7.12(u)) that there exists a simplicial map
q: Sd K —. K that is a simplicial approximation to the identity Sd KI —, KI.

Lemma 9.17.11K is a finite simplicial complex and Sd K K is a sinzplicial
approximation to the identity Sd KI —. IKI, then

= K)

PRooF. Let d be the category of all subcomplexes of K (with inclusions as
the only nonidentity morphisms), and define models in d to be all the
simplexes of K. If F is the augmented (large) simpticial chain complex functor
of Exercise 9.15 (restricted to d), then each is free with base in and each
model M is totally F-acyclic.

Define E: .W -, Comp by setting

E(L) = L)

for every subcomplex L of K. Now Sd,: F -. E and E —, F are aug-
mentation preserving natural chain maps (Exercises &8 and 7.12(u)), so that
the composite q', Sd,: F F is an augmentation preserving natural chain
map. Since F is free with totally acycic models, Corollary 9.13(ü) shows
that q,Sd, is naturally chain equivalent to the identity, hence q,Sd,, is the
identity on flJFK) = R1(K). But Sd, is an isomorphism, by Lemma 9.16,
hence q and Sd5 are inverse. 0
Remark. This lemma cannot be proved using Theorem 9.9 in place of acyclic
models, because the bottom row of

C1(K) C0(K) z o

1'
' C1(K) C0(K) Z
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is not exact (it is only a chain complex), and so it is not obvious how to
construct a chain homotopy between the identity and p,, Sd,.

The purpose of these lemmas is to prove the Lefschetz fixed point theorem,
which gives a sufficient condition that a continuous map I on a compact
polyhedron have a fixed point.

Recall that if V is a finite-dimensional vector space over Q and T: V — V
is a linear transformation, then a choice of basis of V associates a square matrix
A to T; one defines the trace ofT, denoted by tr T, to be the trace of A (namely,
La,,). It is a standard argument that tr T is independent of the choice of basis
(and the resulting matrix A). 110—. V' c. v —. V" —.0 is a short exact sequence
of vector spaces and if T: V -. V is a linear transformation with T(V') V',
then T induces a linear transformation T" on V". In fact, if {x1, ..., is a
basis of V', and if one extends it to a basis {x1, ..., of V. then + V')
Th, + V' for i = k + 1, ..., n (we have identified V with V/V'). Moreover,

tr T = tr(TI V') + tr TN,

for the matrix A of T with respect to the (extended) basis is

where A' is the matrix of TI V' with respect to {x1, ..., and K is the matrix
+ V', + V'}.Theresultisnowclear,because

tr T is just the sum of the diagonal entries of A. It is also easy to see that

tr = dini V.

The notion of trace can also be defined for endomorphisms of f.& free
abelian groups, and even for endomorphisms of arbitrary f.g. abelian groups.
If G is free abelian with basis .., x.}, then a homomorphism f: G -. G

is completely determined by the n x ii matrix A over Z,where f(x,) = L aj1xj
and A = [a,j]. A different choice of basis {yi' ..., y,,} of G replaces A by
P'AP, where the ith column of P expresses y, as a Z-linear combination of
the xj's; it follows that tr f defined as tr A is independent of the choice of basis
(and of the matrix A). Finally, if G is any f.g. abelian group and f: G — G is a
homomorphism, then f(tG) c tG (where tG is the torsion subgroup of G), and
so f induces a homomorphism f: GItG -, G/tG, namely, x + tG + tG.
Observe that GIIG is free abelian, because it is f.g. with no (nonzero) elements
of finite order.

Definition. If G is a fg. abelian group and f: G —. G S a homomorphism, then
the trace of f, denoted by tr f, is defined to be tr f, where is the induced
homomorphism on the f.g. free abelian group G/:G.
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9.16. Prove that tr(IG) — rank G.

9.17. -.Oisanexactsequenceoffg.abeliangroupsandf: G-.G
is a homomorphism with f(G') c 6, then

tr(flG') + erf" = tn,
G —. G is induced byf(ifx' e (7 and x a G satisfies px = then

define f'x" = pfx).

Definition. Let G0, G1 be a sequence of f.g. abelian groups and let
h=(h0,h1,...,h1_), where is a homomorphism for every 1. The
Lefschetz number of h, denoted by is

l(h)=

EXAMPLE 9.6. Let K be an rn-dimensional (finite) simplicial complex, and let
f:K-i.K be asimplicial map. Letf,
C,(K) is the ith term of the chain map Then

ExMuu 9.7. In the above example, let I = Then = rank C,(K), so
that is the Euler— Poincaré characteristic of K.

9.8. 1ff: K —. K (as in Example 9.6), let = .. where
f1. H1(K) -. H4(K). Then

which each C4 is f.g., and let f: C —' C be a chain map. Then

A.(f) =

where 111(C) -. H1(C).

Paooc. Imitate the proof of the corresponding result for the Euler—Poincaré
characteristic (Theorem 7.15), using Exercise 9.17 at appropriate moments.

0
It follows that if f: X -. X is a continuous map on a compact polyhedron,

then 1(f) defined by is a well defined number, independent of any
triangulation of X.

Theorem 9.19 (Lefschetz). Let X bea compact polyhedron and let f: X —,X be
continuous. If 1(f) 0, then f has a fixed point.
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PRoOF. Assume that f has no fixed points, so that compactness of X provides
c5 > 0 with ix — f(x)ll � for all x e X. Let X = 1K! for some finite simplicial
complex K, and choose n so that mesh Sd" K Choose so that there
is a simplicial approximation g: Sd" K Sd" K

to Sd" KJ, then
and Iterated application of Lemma 9.17 gives =

',hence

K)—. K)

is a chain map inducing (actually, since Lemma 9.17 applies only to reduced
homology, this is so for all subscripts n > however, it holds trivially when
n = 0 because Sd is the identity on 0-simplexes).

If a is a p-simplex in Sd" K, then = where m, Z and each
r1 is a p-simplex. If, for every simplex a, none of the r1 is a, then the definition
of trace gives = 0, hence = = 0. by Lemma 9.18.
Suppose, on the contrary, that some = a for some p and some p-simplex
a. Since = where each is a p-simplex with PI! a!, it follows
that = ai. Hence there is .x E al with gi(x) e al (namely, any
XE that is. lix — Iukx)lI � mesh Sd" K But Exercise 7.10 (essen-
tially the definition of simplicial approximation) gives ii (x) — 1(x)!!
Thus

lix —1(x)!! � lix — jgI(x)(I + —f(x)Ii <6,

and this contradicts the definition of 6.

Corollary 9.20. Let X he a path connected compact polyhedron for which
is finite for every n > 0. Then every f: X —, X has a fixed point.

PROoF. Since rank = 0 for n > 0, it follows that = 0 for all n > 0
where is the homomorphism induced by on therefore
tr = 0 for all n > 0 and

=

Since X is path connected, H0(X) Z and tr 0 (indeed is the
identity, by Theorem 4.1 4(iii), and so tr = 1). The result is now immediate
from the Lefschctz theorem. El

Corollary 9.21. If n is even, every f: RP RP" has a fixed point.

PROOF. We saw in Theorem 8.47 that Hq(RP") = 0 or ZJ2Z for all q > 0. LII

Corollary 9.22. If X is a compact contractible polyhedron, then every f: X —. X
has a fixed point.

PRooF. Immediate from Corollary 9.20, because = 0 for all n > 0. 0
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Of course, Corollary 9.22 implies the Brouwer fixed point theorem.

Corollary 9.23. if X is a compact contractible polyhedron with more than one
point, then there is no multiplication p: X x X -. X making X a topological
group.

PROOF. Suppose X were a topological group. Choose y E X with y 1; then
p: X -. X defined by = xy (= p(x, y)) is a continuous map (even a
homeomorphism) having no fixed points. 0

Corollary 9.24 (= Theorem 6.23). if n � 1, then the antipodal map a: S —. S'
has degree(— ira.

PROOF. By definition, degree a = d, where a,,: —. H4(S') is multiplica.
tion by d. Thus tr aR, = d = degree a, so that

1(a)= 1 ÷(—ly'd.

But 1(a) = 0 because the antipodal map has no fixed points; therefore d =
o

There is a survey article [Bing] in which the following simple example is
given. Let X denote a circle in the plane with a spiral converging to it.

Then CX, the cone on X, is a contractible space that does not have the fixed
point property.

9.18. 1ff: S.. —, S is a continuous map that is not a homotopy equivalence, then I has
a fixed point.
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Tensor Products

The last topic in this chapter answers the question: What is H,(X x Y) in
terms of Ii1,(X) and Y)? The ultimate answer is quite satisfactory, and it
involves a nice mixture of algebra and topology. First, we need the notion of
tensor product (which we shall define) and some results from homological
algebra (which we shall quote). The link with algebraic topology is the
Eilenberg-Zilber theorem, whose heart is an application of acyclic models.

Definition. Let A and B be abelian groups. Their tensor product, denoted by
A ® B, is the abeian group having the following presentation:

Generators: A x B, that is, all ordered pairs (a. b).
ReIa:ions: (a + a', b) = (a, b) + (a', b) and (a, b + b') = (a, b) + (a, b') for

all a, a' eA and all b, b' B.

If F is the free abelian group with basis A x B and if N is the subgroup ofF
generated by all relations, then A 0 B = F/N. We denote the coset (a, b) + N
by a ® b. Observe that a typical element of A 0 B thus has an expression of
the form E m,(a1 0 b1) for mj a Z. Indeed one can dispense with them1 because
of Exercise 9.20 below.

9.19.

IfmeZ,thenm(aOb)='(ma)Ob=a®(mb).

9.21. !fA istorsion,thenAOQ =O.(Hint: lfaeA,thenma =Oforsomem >01f
q a Q, then a® q = a 0 m(q/m) = ma® (q/m) = 0.)

'9.22. If A and B are finite abelian groups whose orders are relatively prime, then
A® B =0.

A definition by generators and relations, though displaying elements, is
difficult to work with; for example, it is usually unclear whether or not a given
element is zero. A worse defect is that one does not understand what purpose
the construction is to serve.

Definition. Let A,B, and G be abelian groups. A bilinear function p: A x B-. G
is a function such that

q(a + a', b) = q(a, b) + q,(a', b)

and

b + b') = b) + b')

for all a, a' aA and all b, b' E B.
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Thenaturalmapv:A x B—'A®Btaking(a,b)intoaøbisbiinear.
The next result states that A ® B is a group (indeed is the only group) that

converts bilinear functions into ordinary (linear) homomorphisms.

Theorem 9.25.

(I) Given any abelian group G and any bilinear map A x B G, there
exists a unique homomorphism f: A 0 B G making the following diagram
commute:

A'xB
N /

G

(v is the natural map (a, b)i—. a 0 ii).
(ii) A 0 B is the only group with this property; that is, tf T Is an abelian group

and A x B —. T is a bilinear map such that the diagram

AxB

G

always has a unique "completion" then T A ® B.

PROOF. (i) Recall that A 0 B = F/N, where F is free abelian with basis A x B
(and N is generated by certain relations). Consider the diagram

'F/N=A®B
,f, /

Define F G by extending by linearity. The reLations N are such that
N c ker and so induces a homomorphism f: FfN -. G, namely,
f: (a, b) + N i—. b) = b). In other words, f(a ® b) = q(a, b) for every
(a, b) e A x B. Such a homomorphism f is unique, for the set of all a 0 b
generates A 0 B.

(ii) Consider the following diagram:

AxB v

A B A 0 B
and = v. Now consider the diagram
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,4xB )A®B

A®B.

Both gf and the identity complete the diagram, so that uniqueness of the
completion gives gf = identity. A similar diagram shows that fg = li.. hence
f and g are isomorphisms. 0
Theorem 9.26. Let f: A -, A' and g: B B' be homomorphisms.

(i) There is a unique homomorphism A ® B —. A' 0 B', denoted by f 0 g, with
a®bi.-.fa®gbforeveryaeAandbeB.

(ii) 1ff': A' A" and g': B' —. B' are homomorphisms, then (f' ® g') o (Jag) =
(f'of)Ø(g'og).

PROOF. (i) The function ço: A x B A' 0 B' defined by q(a, b) = fa 0gb is
easily seen to be bilinear. By Theorem 9.25(i), there is a unique homomor-
phism A 0 B -. A' 0 B' with a ® b b) = fa 0gb.

(ii) Both maps complete the diagram

AxB 'A®B/>'\\ //
A'®B",

where q,(a, b) = f'(f(a)) 0 g'(g(b)). 0
Corollary 9.27. Let A be a fixed abelian group. There is a functor T = TA: Ab
Ab such that T(B) = A 0 B and T(f) = 'A ®f'

PROOF. That T preserves composites follows from Theorem 9.26(u):

(lAOf')°(IA®f)= IA®f'f;
that 'A 0 I, = follows from Theorem 9.25(1). 0

One usually denotes the functor TA by A ® —.

EXERCISES

9.23. For a fixed abelian group B, show that there is a lunctor F = F,: Ab Ab such
that F(A) = A 0 B and F(g) = g 0 1,. (One usually denotes this functor by
_ØB.)

9.24. (1) Prove that there is an isomorphism A 0 B —' B® A taking a ® b i—. b ® a.
(ii) For any abelian group A, the functors A 0— and — ® A are isomorphic.

9.25. Prove that the tensor product functor TA (and F,) is additive. Conclude that if
f: B-. B' is the zero map (1 = 0), then T(f) = 0, and that if B = {O}, then
T(B) = (0).
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9.26. 1ff: B —. B is multiplication by an integer m, that is, f(b) = mb for all be B,

then 1401 is also multiplication by m.

9.27. (i) For every abelian group A, there is an isomorphism Z 0 A -. A with
n 0 a i—' na.

(ii) Show that the family of all r4 comprise a natural equivalence between
Z 0— and the identity functor on Ab.

We remind the reader of a property of direct sums of abelian groups.
Suppose that j e J} is a (possibly infinite) family of abelian groups and
that {f,: B1 -. E J} is a family of homomorphisms into some abelian group
6. There exists a unique homomorphism 1: B, G with Il B, = f, for all

j C J.

Theorem 9.28. There is an isomorphism A 0 B1 -, (A ® B,) with

PROOF. First, the function r: A x B1 -. 0 B1) defined by (a, (b1))i—'
(a ® b1) is bilinear. Consider the diagram with q bilinear

AXEBi

G.

x

the jth coordinate and 0 elsewhere. U is easy to see that each is bilinear, so
there exists a homomorphism f,: A 08, -, G with a® b,i-. Q(a, b,). Our re-
marks about direct sums show that there is a homomorphism f: Z(A B1)—. G

with p(a,(bj)). It follows
that fq = q,, so Theorem 9.25(u) gives But this last
theorem not only asserts that an isomorphism exists; it also constructs one
(with a commutative diagram). The reader can now show that this isomor-
phismdoessenda®(b,)into(a®b,). 0

Note that Exercise 9.13 shows only that there is some isomorphism
A 0 z (A 0 whenever there are only finitely many summands, and
so it is a weaker result than Theorem 9.28.

Universal Coefficients

If (C1,, 8) is a complex, then so is 0 6, 8® lG) (for any fixed abclian group
G), because the composite of any two consecutive maps in

is zero, thanks to the additivity of—- 0 6 (Exercise 9.25).
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Definition. Let (X, A) be a pair of spaces and let G be an abeian group. If
(S1,(X, A), 8) is the singular chain complex of(X, A), then the singular complex
with coeflicients G is the complex

The nth homology group of(X, A) with coefficients G is

HN(X, A; G) = 0 0 1).

The word "coefficient" is suggested by the definition of tensor product, for
a typical n-chain in A) 0 G has the form ® where e A)

and e G; the elements g1 do resemble coefficients.
Here is one way such a construction arises in topology. Given a field F and

a space X, construct a vector space analogue of call it S,,(X, F), as
follows: S,(X, F) is the F-vector space with basis all n-simplexes in X; the
differentiations are F-linear transformations defined on basis vectors as the
usual alternating sum. Note that the subgroups of cycles and of boundaries are
F-vector spaces, since they are, respectively, kernels and images of F-linear
transformations. It follows that the homology groups are now F-vector spaces.
This can be convenient, because it allows one to use linear algebra. We have
already alluded to this in Chapter 7 when we mentioned how to find the Betti
numbers of finite polyhedra in terms of ranks and nullities of certain matrices.

Coefficients make a more serious appearance in obstruction theory (see
[Spanier, Chap. 8)) where the coefficients are certain homotopy groups. But
the major reason one needs coefficients is for spectral sequences, the most
powerful method of computing homology groups (see [McCleary]). In the
very statements of its theorems, one sees terms of the form H,(X, H,( Y)),
homology groups of X with coefficients Hq( fl.

For every abelian group G, ; G) is a homology theory with coefficient
group G. The proof is straightforward, using Theorem 9.29 (the interested
reader may look at the corresponding result for cohomology, Theorems 12.3,
12.4, 12.9, and 12.10).

The first question is the relation of homology with coefficients to ordinary
homology. The optimistic guess is that HN(X, A; G) Ha(X, A) 0 G; unfor-
tunately, this is always true only for certain G, namely, G torsion-free, and so
it is usually false. This question eventually leads to an algebraic question: How
does —0 G affect exact sequences?

Theorem 9.29. If B' -4 B -4 B" -.0 is on exact sequence of abelian groups, then
for every abelian group A, there are exact sequences

I4®B' '®"A®B
and

B'®A i®I,BOA iO.
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PROOF. (i) im(1 ® I) ker(l 0 p).
It suffices to prove that (1 0 p)(I 01) = 0; but this composite is equal to

I ®pi = 100 = 0.

(ii) ker(lØp)cim(101).
If we denote im(10t) byE, then I Øp induces a map

A 0 B" given by a 0 b + E i—. a ® pb (since E ker( I 0 p), by It is easily
seen that 1 0 p = where it: A 0 B -. (A 0 B)/E is the natural map.

If i is an isomorphism, then

ker(1 0 p) = ker = ker it = E = im(1 00,
as desired. Let us construct a map A 0 B" —, (A ® B)/E inverse to The
function f: A x B" (A ® B)/E defined by

f(a,b")=a®b + E,
where pb = b is a
surjection ifpb1 = b" pb, then b1 — be ker p = im 1, hence b1 — b = ib' for
some b' e B', and

Now f is easily seen to be bilinear, so that Theorem 9.25(1) gives a homomor-
phisznf: A ®B" —o(A 0 r= aØb + E(wherepb — It
is plain that land are inverse functions.

(iii) 1 ®p is a surjection.
If 0 be" e A 0 B", then surjectivity of p provides elements B, for

all I, with = b', and

(1

Proof of exactness of the second sequence is similar to that just given. 0

Note that there is no zero at the Left, nor need there be one even under the
extra hypothesis that I is injective.

9.9. Consider the short exact sequence 0 —. Z Q1. QJZ -.0, and
let G be a torsion group. Now Exercise 9.27(i) shows that Z 0 G 6, while
Exercise9.21 showsthatQ0G =O.ThustherecanbenoinjectionZOG-'
Q ® G, and so, in particular, i 0 1 is not injective.

Corollary 9.3(L

(i) Let in > 0. For any abelian group 6,

(Z/mZ) 0 G 6/mG.

(ii) Ifm, n are integers with (in, n) = d (i.e., gcd = d), then

(Z/mZ) 0 (Z/nZ) Z/dZ.
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PROOF. (i) Apply ® G to the short exact sequence

(where the first map is multiplication by in) to obtain exactness of

G
m

(we have used Exercises 9.26 and 9.27). The first isomorphism theorem
now applies: G/ker(p® 1) imp® I. But ker(p® I) = 1mm = mG. and
imp® 1 =(Z/mZ)®G.

(ii) The proof that G cyclic of order n implies G/mG cyclic of order d =
(rn, n) is left to the reader. D

Observe that Exercise 9.22 is a consequence of this corollary.

Corollary 9.31. if A and B are known f.g. abe/ian qroups, then A ® B is also
known.

PROOF. A and B, being f.g. abelian groups, have decompositions as direct sums
of cyclic groups. When we say these groups are "known", we mean that we
know such decompositions of each. The result now follows from Corollary
9.30 and Theorem 9.28. D

EXERCtSES

*9.28. (i) Let F and F' be free abelian groups with bases {xj: f e and k e K).
respectively. Then F® F' is free abelian with basis ® f eJ. k E K).
(Hint: Theorem 9.28.)

(ii) If F and F' are f.g. free abelian groups, then F ® F' is a f.g. free abelian group
and rank F® F' = (rank F)(rank F').

9.29. Compute A ® B. where = Z ® Z ® Z/6Z ® Z/5Z and B = Z/3Z ® Z/5Z.

Evaluating ker(A' ® G —' A ® G), where 0—' A' —' A A" —'0 is a short
exact sequence of abelian groups, is one of the basic problems of homological
algebra.

Definition. For each abelian group A, choose an exact sequence 0 —' R F —'
A 0 with F free abelian. For any abelian group B, define

Tor(A, B) = ker(i ® la).

Note that R is free abelian, by Theorem 9.3. Choosing bases of F and of R
thus gives a presentation of A by generators and relations.

(We can view this construction in a sophisticated way. If we delete A,
then = 0—' R —' F —' 0 is a chain complex, as is ® B = 0—' R ® B —.
F 0 B —. 0 (just attach a sequence of zeros). Hence Tor(A, B) = H1 0 B).
For fixed B, Tor( , B) is even a (covariant) functor. 1ff: A —, A' is a homo-
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morphism, then Theorem 9.9 asserts the existence of the dashed arrows
making the diagram below commutative.

o )A

I
1.

0 R' F' A' 0.

The dashed arrows constitute a chain map over f; moreover, after being
tensored by 'ff. they constitute a chain map C, ® B —' ® B (where C,, is
the complex 0—. R' F' -.0). One defines Tor(A, B) —. Tor(A', B) as the
homomorphism HI(C1, ® B)—' 0 B) induced by this chain map.)

Of course, there is an obvious question. Is the definition of br independent
of the choice of exact sequence 0 —, R —, F —' A -.0? The answer is "yes". In
fact one can even work on the second variable: if 0 —' R' -4 F' -. B —' 0 is exact,
then ker(i 0 ker(IA 0 j). Proofs of these facts can be found in any book
on homological algebra.

The reader may yearn for a less sophisticated description of Tor(A, B). Here
is a presentation of it. As generators, take all symbols <a, in, b>, where a e A,
b e B, m E Z, and ma = 0 = mb. These generators are subject to the following
relations:

<a, in, b + b'> = <a, in, b> + <a, in, b'> if ma = 0 = mb = mb';

<a+a',m,b)=<a,m,b)+<a',m,b> ifma=ma'=0=mb;

<a,mn,b>=<ma,n,b> ifmna=0=nb;

<a,mn,b>=<a,m,nb> ifma=0=mnb.
With this description of Tor(A, B), it is easy to define the map induced by
f: A —. A'; send the coset of <a, in, b> into the coset of <fa, m, b>. It also
follows that Tor(A, B) is a torsion group for all A and B (this is the etymology
of Tor).

Here are the basic properties of Tor.
For each fixed abelian group B, Tor( B): Ab —. Ab is an additive

(covariant) functor satisfying the following:

[Tor I]. If 0 —. A' A -. —.0 is a short exact sequence, then there is an
exact sequence

0—. Tor(A', B) -, Tor(A, B) -+ Tor(K, B) -. A' 0 B -. A 0 B -, A" 0 B —.0.

[Tor 2]. If A is torsion-free, then Tor(A, B) = 0 for any B.
[Tor 3]. B) Tor(A, Tor(A,
[Tor 4]. Tor(Z/mZ, B) B[m] = {b B: mb = 0}.
[Tor 5]. Tor(A, B) Tor(B, A) for all A and B.

Using these properties, one can compute Tor(A, B) whenever A and B are
f.g. abelian groups. Indeed [Tor 4] shows that Tor(A, B) is finite in this case.
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Remark. As with tensor product, fixing the first variable of br gives an
additive functor Tor(A, ): Ab —' Ab, and the value of Tor(A, ) on B is
(isomorphic to) the value of Tor( , B) on A.

Proofs of the properties [Tor I], I � i � 5 (and of the theorem mentioned
in the remark), can be found in books on homological algebra.

Let A be an abelian group, and let 0—s R —s F -. A -.0 be an exact sequence
with F free abeian. For any abelian group B, Tor(F, B) = 0, by [Tor 2),
and so the exact sequence given by [Tor 1] shows that Tor(A, B)
ker(R 0 B —. F 0 B), we have recaptured the definition of Tor.

EXERcISES

9.30. (i) For any abelian group G, prove that Q 0 G is a vector space over Q. (Hint:
Q ® G is an abelian group admitting scalar multiplication by rational
numbers.) Conclude that dim Q ® G is defined.

(ii) If 0-' A'-' A -. K -.0 is an exact sequence of abelian groups, then 0-'
Q 0 A' -. Q 0 A -. Q ® K -.0 is an exact sequence of vector spaces. Con-
clude that

dim Q®A = dim QO A' + dim K.

(Hint: Use [Tot 1] and [Tot 2).)

9.31. Compute Tor(A, B), where A = Z Z Z/6Z Z/5Z and B = Z/3Z Z/5Z.

9.32. For any abelian group G, prove that rank G dim Q 0 G. (Him: Exercise
9.21.)

9.33. If 0-48 —, B —, 8" -.0 is an exact sequence of abelian groups and if A is
torsion-free, then

is also exact.

*9.34. If F, H are abelian groups with F free abeian, and if a e F and h H are
nonzero, then a ® h 0 in F® II.

We are now able to compute homology with coefficients.

Theorem 9.32 (Universal Coefficients Theorem for Homology),

(i) For every space X and every abelian group G, there are exact sequences for
all n � 0

0-' H,(X)O G H,,(X; G) -, G) -.0,

where (cls z)Ogi—'cls(zØg).
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(ii) This sequence splits; that is,

Hft(X; G) H,(X) 0 G G).

Remark. The value of the first statement is that one has an explicit formula
for an isomorphism HN(X) ® G HN(X; G) in the special case when

G) vanishes.

PROOF. (I) We prove a more general result. If (C,, ö) is a free chain complex,
then there are exact sequences for all n � th

0 H(C,) 0 G H,(C, ® G) -. Tor(HNL(C$), G) —

where (cis z) ® g i—e cls(z 0 g)(note that if z is a cycle in then z 09 is a
cycle in CN 0 G for every g e 0). The theorem follows by specializing C, to
S,(X).

The definition of cycles and boundaries of C, gives exact sequences for
every n:

(1)

where is the inclusion and dN differs from only in its target; there is a
commutative diagram

/1
Since BN_I is a subgroup of the free abdian group Theorem 9.3 shows
that BN_j is free abelian by (the rephrasing of) Corollary 9.2, Eq. (1) is a split
exact sequence. Exercise 9.13(i) now applies to show that

o d.®IB®G '0 (2)

is a (split) exact sequence.
If Z, is the subcomplex of C, whose nth term is ZN, then the differentiations

in Z, are restrictions and hence are zero; it follows that the differentiations
in Z, 0 G are zero. Define to be the chain complex whose nth term is B,1
(sic) and with all differentiations zero; it follows that the differentiations in

0 G are zero. Assembling the exact sequences (2) gives an exact sequence
of complexes

0 -'Z,®G '®"C,®G d®l,B:®G '0,

and this sequence begets a long exact sequence of abelian groups (exact
triangle)



Universal Coefficients 263

where is.,, is the connecting homomorphism. Since B ® G and Z, 0 G have
zero differentiations, Exercise 5.6 gives

0 G) = ® G),, = Z,, ® G

0 G) = (B: ® G),, = ® G.

The long exact sequence can thus be rewritten as

For each n, there is thus an exact sequence

0—. 0 G)/im 0 G)
(d®

ker 0, (3)

where a is induced by (i 0 that is,

a: z 0 g + im i—+(i 0 ® g) = cls(z ® g).

Let us evaluate A,, (and A,,÷1) and the two outside terms in Eq. (3). Consider
the usual diagram for the connecting homomorphism:

c®a

101
o

On any generator b,,.1 0 g B,,_1 ® G, we have

A,,(b,,_1 ®g) =(iØ l)-'(ao l)(d® 1)'1(b,,_1 ®g)

= ® g regarded as an element ® G; thus A,, ® I, wherej,,1:
B,,_1 .. is the inclusion. We may thus rewrite the exact sequence (3) as

0—'(Z,,®G)/im(j,,0 01 0. (3')

The definition of homology gives exact sequences for every n:

in—I
0 —. 0.

By [Tor 1], there is an exact sequence

Tor(Z,..,, G)—. G)—' B,.1 G ''s' Z,,.1 0 G —. G —, 0.

Since is torsion-free (it is a subgroup of the free abelian group C,,..1),
[Tor 2] says that Tor(Z,,_1, G) = 0. Therefore

ker(j,,_1 ® 1) G)

and, by replacing n — I by n,
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® G)/im( JR® I) = 0 1) = HN(C*) ® G. (4)

The exact sequence (3') can thus be rewritten as

G)—.O. (5)

(ii) It remains to show that the exact sequence (3'), hence (5), is split.
Examining elements gives the string of inclusions

im(3R+l 0 1) c ZR®G ker(ÔRO 1)c CA®G.

Now Z ® G is a direct summand of 0 G (because the exact sequence
(2) splits); a fortiori, it is a direct summand of ker(8R 0 1). It follows that
(ZN® ® I) is a direct summand of ker(BR 0 1)fim(aN+l 0 1) =
IIR(C* 0 0). But im(ÔR+I ® I) = 0 1), so that (ZN 0 G)/im(ÔR+l 0 1)

HR(C*) 0 G (by (4)), and the result now follows from Exercise 9.10. 0

Remarks. (I) There are stronger forms of the universal coefficients theorem
(and also a contravariant version to be discussed in Chapter 12); this weaker
version is satisfactory almost always.

(2) The name of the theorem is well chosen, because it reminds one that
homology with any coefficient group G can be computed from ordinary
homology.

(3) Note that Tor delayed his entrance until the last act of the proof.

ExncisEs

9.35. IfG is a torsion-free abelian group, then (cis z) 0 ® is an isomorphism
HJX)O G -. HR(X; G).

9.36. For every positive integer m and every space X,

H,(X; Z/mZ) lI1(X) ® Z/mZ H..a(X)[m),

where, for an abelian group If, one defines

H[mJ={hEH:mh...O).

Conclude that if is torsion-free, then

H,(X; Z/mZ) 11(X) 0 Z/mZ.

(When p is a prime, one calls H,(X; Z/pZ) homology mod p.)

9.10. Although homology with coefficients was defined only for
singular homology, the proof of the universal coefficients theorem also applies
to the simplicial and cellular homology theories as well, since they have been
defined using free chain complexes (see the remark after Theorem 9.8 and
Exercise 9. 14(iii)).

9.11. Ordinary homology can be regarded as homology with coeffi-
cients in Z, for HR(X) 0 Z H,(X), by Example 9.2, and (X), Z) = 0,
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by [Tor 2]. An easier way to see this, however, is to return to the definition
of homology: applying the functor — 0 Z to a chain complex does not change
anything (Example 9.2).

9.12. If G is the additive group of either Q, R, or C, then

H,(X)ØG,

because G is torsion-free in each case, and so [Tor 2) gives (X), G) = 0.

(l1,,(X; Q) is called rational homology, R) is called real homology, and
C) is called compkx homology.)

One can simplify the discussion of the Lefschetz number if one uses rational
homology. By Example 9.12, Q) is a vector space over Q; moreover, if
f: x X is continuous, then Q) —' Q) can be seen to be a
linear transformation, and so the trace off,1, is now the usual trace of linear
algebra. A similar simplification occurs in our discussion, in Chapter 7, of
computing homology; if one wants only Betti numbers, then all is linear
algebra.

Eilenberg—Zilber Theorem and the Künneth Formula

The long algebraic interlude began with the problem of computing x Y).
The main result shows that SS(X x Y) is determined by and

Definition. Let (Ce, d) and (Ge, 8) be nonnegative chain complexes. Their
tensor product 0 is the (nonnegative) chain complex whose term of
degree n � 0 is

C1®GJ

and whose differentiation 0 Ge),, —' 0 is defined on genera-
tors by

i+j= n.

Since i + j = n and both d and 8 lower degrees by 1, we have DN(cj ® e
0 The sign in the definition of is present to force Da_iDn = 0,

as the reader can easily check.

EXERCISES

9.37.
is a chain map, where

1+1=I
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9.38. If A, A': (C5, d) —. (C,,, d') arc chain homotopic and if p. p': E5 —, are chain
homotopic, then A® p and A' ® p' are chain homotopic. (Hint: First show that
A 0 p and A' 0 p are chain homotopic via s ® p. where d's + sd = A — A'.)

9.39. If C is chain equivalent to then C, ® E,
is chain equivalent to 0 E',.

'9.40. Let 0—' S —, 0 be a short exact sequence of nonnegative complexes.
If E, is a nonnegative free chain complex, then 0 -. 0 E, -. S, ® E,

0 E, —.0 is exact. (Hint: Exercise 9.33.)

Theorem 9.33 (Eilenbcrg—Zilber). For topological spaces X and 1', there is a
(natural) chain equivalence x Y) —, S1(X) 0 S,( Y), unique to chain
homotopy, hence

H5(X x Y) H5(S,(X)ØS,(Y))
for all n � 0.

PROOF. Let Top x Top denote the category with objects all ordered pairs of
topological spaces (A, B) (we do not demand that B be a subspace of A), with
morphisms all ordered pairs of continuous maps, and with coordinatewise
composition. Let be the set of all (A', As), p. q � 0. Define functors
F, E: Top x Top —' Comp by F(X, Y) = S,(X x Y) and E(X, Y) =
S,(X) 0 S,(Y). We show that both F and E are free and acyclic.

For fixed p � 0, define an F,-model set to be the singleton {dP}, where
d': & -. A' x A' is the diagonal x (x, x) (note that d' e F,(A', A') =
S,(A' x A')). IfA1 and A2 are spaces and a: A' —, A, x A2 isa p-simplex, then
there are continuous maps a,: & —' A,, for I = 1, 2, with a = (a, x a2) o d'
(define a, = p, o a, where p,: A, x A2 —, A, is the projection, for I = 1,2). Con-
versely, given any pair of continuous maps a,: A' —' A,, then (a, x a2) o d' is
a p-simplex in A, x A2. ft follows that F, is free with base X,. Since A' x A'
is convex, we see that the model (A', A') is F-acyclic.

Let us now consider the functor E. Exercise 9.28(i) shows that S,(X) 0 Sq( Y)

is free abelian with basis all symbols a ® r, where a: A' —' X and r: —. Y
are continuous. By Example 9.4, the functor S, is free with (singleton) base
{ö'}, where ö': A' — A' is the identity (of course, t5' S,(A')). It follows easily
that E5 is free with base in Al: indeed the E-model set '3',, = {o' 0 t5' e
S,(&) 0 S,W) p + q = n} serves. To check acyclicity, recall that each A' is
S,-acyclic (i.e., = H_(S,(&)) = 0 for all m � 1), so that the free chain
complex S,(A') is chain equivalent to Z,, the chain complex with Z concen-
trated in degree 0 (Theorem 9.8). Therefore the model (A', A5) is E-acyclic,
because E(A', A4) = S1,(&) 0 S,(A') is chain equivalent to Z, 0 Z,, by
Exercise 9.39.

Define p: H0F —s H0E as follows. For a pair of spaces A, and A2,
F0(A,, A2) = SQ(A, x A2) is the free abelian group on all ordered pairs
(a,, a2) (where E A,), while E0(A,, A2) = ® S,(A2))0 is the free
abelian group on all symbols a, ® a2. ft is easy to see that the maps
(pA,A2: F0(A,, A2) —' EO(A,, A2), defined by (a,, 0 a2, induce iso-
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morphisms HOF(A1, A2) — HOE(A1, A2) which constitute a natural equiva-
lence By acyclic models (Theorem 9.1 2(iii)), there is a natural chain map
r: F E, unique to homotopy, that is a natural chain equivalence. 0

To use the Eilenberg—Zilber theorem, it is necessary to solve the algebraic
problem of computing the homology groups of the tensor product of two
complexes. The proof below (which I learned from [Vick]) reduces the prob-
km to the universal coefficients theorem.

Lemma 9.M Let and be nonnegative chain complexes. If every d((feren-
tiation in is zero, then

where is "sh(fted by I", that is,

=

PRooF. Recall that DA: ® ® is defined by 0
da, 0 + (— l)'a, 0 ag,, where i + j = n, where d is the differentiation in
and where 8 is the differentiation in As d = 0, by hypothesis, we have

6 — ¶..(kerl®ÔN_,HI(A.® •) .im \im

For each fixed i, there is thus the shifting described in the statement. 0
Lemma 9.35.11 and are nonnegative free chain complexes, then

where is regarded as a chain complex in which every d(fferentiation is
zero.

PROOF. Let be the subcomplexes of C,, whose terms are boundaries
and cycles, respectivel)r, each of these complexes has all differentiations zero,
hence the quotient complex H,, = may also be viewed as a complex
with zero differentiations. As in the proof of the universal coefficients theorem,
let denote the complex (with zero differentiations) with nth term
There are two short exact sequences of complexes:

(1)

(2)

(here p is the natural map and i, fare inclusions). Since each term of 6, is free
abelian, Exercise 9.40 gives exactness of

0 l®huC.®G, d®IB+®G (3)

and
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0 B,®G, "®"H,®G, *0. (4)

Next, the exact sequences
S. d,

0 —. —. —.0

must split, since Corollary 9.2 applies because BN_l is free abelian (Theorem
9.3); there are thus homomorphisms —.4 with = I. Define
co.: —. as the composite

(p• = pNqN.

The map qi: C, H, is a chain map: ifc E then

(pdc =

= p1(dc) (because dc E 4 and hence is fixed by

= 0 (because dc is a boundary).

On the other hand, d'çoc = 0, where d' is the (zero) differentiation of H1,, and
so cod = dq,.

Consider the following diagram:

H,.,(B, ®G,,) _..L HAZ,®G.) IIJC,®G.} H.AB ®G.) H,(Z.®G,)

I' I' I'
H.(Z.®G.) H.(H.®G,) —i-.

The rows are exact, because they arise by applying the exact triangle to
sequences (3) and (4); thus D and A are connecting homomorphisms. Since

0 G,) = HN(B* ® G,), we may defme and to be identities.
Finally, define fi to be (q, ® I),.

We claim that each of these squares commutes up to sign. If this is so, then
a trivial modification of the five lemma shows that fi is an isomorphism, and
the proof is complete. Each verification is routine; for example, let us prove
that the first (and fourth) squares actually commute. Let b7 0g1.5 be a cycle
in = 85_1ØG,_5; hence 0 —db7 +(—l)1b7
(— 0 because dbt = 0. By Exercise 9.34, it follows that og,_5 0
(for is free abelian). Hence A 0 0 where
c1 e and dc5 = Now

D(c5Og._5)= + (—l)'CSOa9N_, = b7

(since dc5 = b7 and aQN, = 0). We have checked commutativity for a set of
generators of 0 G,). The commutativity to sign of the other two
squares is left to the reader. 0

Theorem 936 (Künneth Theorem).

(1) If C, and (3, are nonnegative free chain complexes, then there are exact
sequences for all n:
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0-' H1(C5) ® H,(G5)!. H(C, 0 Tor(If,,(C5), -.0,
p+qR—l

where cls(z,) 0 (cls 0 z).
(ii) This exact sequence splits; that is,

HR(Cs 0 Hq(G5)).
14)n p+q=N—1

PROOF. By Lemmas 9.35 and 9.34,

0 ® > 0

By the universal coefficients theorem, Theorem 9.32 (actually, by the more
general isomorphism given in its proof), there are split exact sequences for all
n,i,

0—' H1(C5) 0 0 —. —' 0;

that is, there are split exact sequences

0-. H1(C5) 0 HN(Hj(C.) 0 —' Tor(H1(C5), —' 0.

If i> n, we have = 0. Taking the direct sum over all i � 0 now gives
the result. 0

There are more sophisticated proofs allowing one o prove the Künneth
theorem with no (freeness) condition on the nonnegative chain complex G1,.
There is an immediate proof of the universal coefficients theorem from this
more general Künneth theorem. Given an abelian group G, define G5 as the
chain complex with G concentrated in degree 0 G0 = G and G1 = 0 if n * 0
(all differentiations are necessarily zero). By Exercise 5.6, H0(G5) = G and

= 0 for n 0. The tensor product C,,, 0 G,, in this case is just C,, 0 G,
and the Künneth theorem simplifies to

® G) HN(CS)® G G),

as claimed.
Combining the Eilenberg—Zilber theorem with the Künneth theorem yields

the result we have been seeking.

Theorem 937 (Künneth Formula).3 For every pair of topological spaces X and
Y and for every integer it � 0, there is a split exact sequence

Here is the original form of the Künneth formula. If X and 1' are compact polyhedra, then

b1(X x Y) = b4(X)bAY),

where is the ith Oct11 number of X. This follows from Theorem 9.37 once one observes that,
for any fg abelian groups A and B, the group Tor(A, B) is and hence it contributes nothing
to the calculation of Betti numbers.
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0-. 0 H1(Y) HI,(X x Y) -. Tor(H,(X), H,(Y)) -.0,
1•'•)—i,

where &': (cis 0 (cls 0 z)) and ® 1)—' x Y)
is the inverse of an Eilenberg—Zilber chain equivalence. Hence

HI(X x 1) 111(X) 0 H,(Y) Tor(H,(X), H,(Y)).

PROOF. The Künncth theorem gives a split exact sequence with middle term
0 Y)), and the Eilenberg— Zilber theorem identifies this term with

HJ,(X x Y). 0
This theorem is especially useful when X and Y are compact polyhedra,

better, finite CW complexes, for then each of their homology groups is a f.g
abeian group. Thus, if the homology groups of X and I are known, then
Corollary 9.31 and the cited properties of Tor are adequate for computing
H1(X x Y).

EXAMPLE 9.13. Let m, n be positive integers. Urn # n, then

if p = 0, rn, n, rn + n

(0 otherwise.

If m n, then

rz ifp=O,2rn

H,(S x Se') = Z ® Z lIp

0 otherwise.

(Note that this example agrees with our earlier computation of the homology
groups of the torus S1 x S'.)

EXAMPLE9.14.IIX = S' vS2 v S3(wedge),thenwesawinExercise7.26that

H X
ifp=0,I,2,3

— otherwise.

It follows from Example 9.13 thai X and x S2 have the same homology
groups; however, they do not have the same homotopy type (see Exercise
below).

Ex.utPLE 9.15. If X RP3 x RI'2, then Theorem 8.47 with the Künneth
formula gives

Z ifp=0

ifp=l
H,(X)= ZI2Z ifp=2

Z®Z/2Z ifp=3
0 ilp�4.
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9.41. If X and Y are acyclic, then X x Y is acyclic.

9.42. II X and Y are path connected, then

x

and

H2(X x

9.43. Compute x RP), where K is the Klein bottle.

9.44. Compute x S).

9.45. Compute x RP).

*9.46. Prove that S' v S2 v S3 does not have the same homotopy type as S1 x S2.

9.47. Show that S' x S' and S2 v S1 v S' have the same homology groups. (In
Example 12.8, we shall see that these two spaces do not have the same homotopy
type.)

9.48. (i) Show that RP3 and liP2 v S3 have the same homology groups. (Hint:
Exercise 7.26(u).)

(ii) Show that liP3 and liP2 v S3 do not have the same homotopy type.
(iii) Show that RP3 x RP2 and (liP2 v S3) x RP2 have the same homology

groups and the same fundamental group. (These spaces do not have the
same homotopy type.)

9.49. Compute H1,(T'), where is the r-torus, that is, r is the cartesian product of
r copies ofS1.



CHAPTER 10

Covering Spaces

When first computing ir1(S1), we looked to winding numbers for inspiration.
Every closed path fin S1 at 1(1 = e2*IO E S') suggested the picture

I
I

We proved two preliminary results: the lifting lemma (Lemma 3.14) says that
every (not necessarily closed) path I possesses a "lifting" f: I -. R that is
unique once 1(0) is specified

I S1;

the covering homotopy lemma (Corollary 3.15) says that if g: I —, S1 is a path
and More precisely, if F:I x is con-
tinuous (i.e., F is a homotopy), then one can lift the homotopy: there exists a
continuous P making the following diagram commute:
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lxi S1.
F

These two lemmas were used (in Theorem 3.16) to show that the degree
function d: n1(S', 1) Z, defined by [fli—'f(l), is an isomorphism. In the
first section, we shall extend this proof by replacing the exponential map
exp: R —, S1 by certain maps between more general spaces. What emerges is
a tool for computing fundamental groups as well as an analogue of Galois
theory! Moreover, many important constructions (e.g., fibrations, "killing"
homotopy groups) can be viewed as generalizations of covering spaces.

Basic Properties

Definition. Let 2 and X be topological spaces and let p: 2 .- X be continuous.
An open set U in X is evenly covered by p if p1(U) is a disjoint union of open
sets Si in 2, called sheels, with U a homeomorphism for every i.

The exponential map exp: R —, S1 provides an example: the open set U =
S1 — { — I) is evenly covered by exp, where exp(f) = indeed

U

so that the sheets here are open intervals.

Definition. If X is a topological space, then an ordered pair (2, p) is a covering
spaceofXif

(I) 2 is a path connected topological space;
(ii) p: 2 X is continuous;

(iii) each x e X has an open neighborhood U = that is evenly covered by p.

The map p is called the covering projection,1 and an open set that is evenly
covered by p is called p-admissible or, more simply, admissible.

A covering projection is an example ofa local homeomorphism. defined as follows. A continuous
map f: Y-. X is a local bomeomorphism if each ye Yhas an open neighborhood V with f(V)
open in X and with Il V: V .-' f(V) a homeomorphism.
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It is clear that the admissible open sets comprise an open cover of X. The
picture to keep in mind is

x

Lemma 10.1. Let p) be a covering space of X. Then p is an open continuous
surjection and hence is an moreover, X is path connected.

PROOF. If x E X and U = is admissible, then = U and x E imp;
hence p is a surjection. To see that p is open, let V be an open set in A' and let
x e p( V); let U be an admissible open set containing x, let e (x) fl V. and
let U be the sheet over U containing Then U fl V is an open set in U
(containing and so p(U fl V) is an open subset of U containing x; therefore
p( V) is open. Finally, an open continuous map is an identification; moreover,
a continuous image of a path connected space is path connected. 0
Remark. The covering projection p: A' —. X need not be closed. For example,
the discrete set {n + 1/n: n 3} is a closed subset of R whose image under
exp is not closed in

10.1. Show that (R, exp) is a covering space of S1.

10.2. IfS1 is regarded as a multiplicative topological group and jfk e Z — {0}, then
the map p&: —, S1 given by is continuous. Prove that (S1. is a
covering space of S1.

10.3. Prove that (5". p) is a covering space of Ri", where p is the map identifying
antipodal points.

* 10.4. Let X be a wedge of two circles, say, X = A v B, and let x0 denote their point
of tangency. Let q: — X be the identification map that identifies —1 and +1
(so we may assume that q(— 1) = = q(1)).
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(i) Show that (S'. q) is not a covering space of X.
(ii) Let X be a doubly infinite sequence of tangent circles:

=

with points of tangency for k e Z. Define p: —, X to be the map with
= x0 for every k and with the restriction of p to every circle being q (we

have been imprecise). Prove that (X. p) is a covering space of X.

*1l).5. If(X, p) is a covering space of X and if x0 e X, then the fiber is a discrete
subset of X.

* 10.6. Let (2, p) be a covering space of X. Prove that ii X is either Hausdorff or locally
compact or locally path connected or is an n-manifold, then so is 2. Indeed any
local" property of X is inherited by 2.

* 10.7. Let p: 2 —. X be continuous and let (I be an open set in X that is evenly covered
by p. 11 V is an open subset of U, then V is also evenly covered by p.

10.8. (i) If (Xe, is a covering space of for i = 1, 2, then x X2, Pi X P2)
is a covering space of X1 x X2. (Him: If U1 is p1-admissible and is
p2-admissible, then U1 x U2 is (P1 X p2)-admissible.) Conclude that the
plane is a covering space of the torus.

(ii) Prove that an infinite cylinder R x S' is a covering space of the torus. (Hint:
For any path connected space X. (X, is a covering space of X.)

10.9. Consider the commutative diagram p2

Y

in which II and are homeomorphisms and (2, p) is a covering space of X. Show
that (I',q) is a covering space of Y.

Theorem 10.2. Let G be a path connected topological group, and let H be a
discrete normal subgroup of G. If p: G —, G/H is the natural homomorphism,
then (G, p) is a covering space ofG/H.

Remark. We know, by Exercise 3.23, that G/H is a topological group.

PROoF. Let us first show that p is an open map. If V is open in G, then
p(V)={Hx:xe V}.Hence

U Hx= U hV.
beH
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Now each h V is open in G (because g i-. kg is a homeomorphism G G), and
so p1p(V) is open in G; since p is an identification, it follows that p(V)is open
in Gil.

Since H is discrete, every subset of H is closed in H, and so every subset of
H is open in H. In particular, there is an open set Win G with Wfl H = {1},
where I is the identity element of G. As the map G x G —. G given by (x, y) i—'

is continuous, there is an open neighborhood V of I with VV1 W
(recall that VV1 = a, be V}). Define U = p(V); since p is open, U is

an open neighborhood of I in G/H. We claim that U is evenly covered by p.
As we saw above,

p1(U)=p1p(V)= U hi',

where each hi' is open in G. The sets of the form hV, where h e H, are pairwise
disjoint: if h, k are distinct elements of H and h V fl kV 0, then there are
elementsv, we Vwith hv= kw;hencevw' = k'he VV1flH c WflH =
(1}, a contradiction. Finally, p1kv is a homeomorphism from hV to U. We
already know that plhV is an open continuous map; pIhV is a surjection,

since p(hV) = p(h)p(V) = p(V) = U (because h e H = ker p); pIhV is an
injection, because if p(hv) = p(hw) (where v, w V), then p(v) = p(w) and

VV'flH= {1}.
It is now easy to see that if E G/H, then is an open neighborhood of

in G/H that is evenly covered by p. Therefore (G, p) is a covering space of
G/H. 0

Note that if (G, p) is a covering space of G/H, then H = ker p is just the

fiber over 1; by Exercise 10.5, H must be discrete.
After giving a uniqueness result, we shall show that the lifting lemma and

the covering homotopy lemma (which we have proved for (R, exp)) hold for
arbitrary covering spaces.

Lemma 10.3. Let (X, p) be a covering space of X, let Y be a connected space,
and let f: (1', Yo) —' (X, x0) be continuous. Given in the fiber over x0, there
is at most one continuous f: (Y, Yo) —' (R, with p1 = f

(Y,Yo) (X,x0).

PROOF. Suppose that f': (Y, Yo) satisfies pf' = f. Let

A = {ye Y:J(y)=f'(y)}

and

B = {ye Y:f(y)
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Clearly, Y = AUB,AI1B = Ø,and A Ø(becausey0 GA). lfwe show that
A and B are open, then the connectivity of Y will force B = 0. hence! = f'.

Let a e A. Let U be an admissible neighborhood of f(a), and let S be the
sheet over U containing f(a) = f'(a). Of course, W = f'(S)flf't(S) is an
open neighborhood of a in Y. Indeed W A: if w E W, then f(w) and f'(w) lie
in S. and so pf(w) = f(w) = pf'(w); hence f(w) = f(w) because pIS is a
homeomorphism. Therefore w A, W c A, and A is open.

Were I Hausdorff one could use a standard result that A is closed, and
this would complete the proof. Without this assumption, we argue as follows.
If b E B, then let V be an admissible neighborhood of f(b). If both f(b) and
f1(b) lie in the same sheet over V. then the argument above gives f(b) = f'(b),
contradicting the fact that b B. Hence f(b) e S and f'(b) S', where S, S' are
distinct sheets. But now W' = f'(S)flf''(S') is an open neighborhood of
b, and one can check quickly that W' c B. Therefore B is open. 0
Theorem 10.4 (Lifting Lemma). Let (I, p) be a covering space of X and let
f: (1, 0) —, (X, x0) be a path. If is in the fiber over x0, then there exists a
uniquef: (1,0) -.(I, with pf = f.

PROOF. In light of Lemma 10.3,1 connected implies the uniqueness of any such
f We now prove that! exists. Suppose that [a, b] c I is such that f([a, b]) c U,
where U is an admissible neighborhood of x = f(a). If lies in the fiber over
x, then £ lies in a unique sheet, say, S. It is easy to see that a: ([a, b], a) —' (I, £)
defined by ö = ° (fI[a, b]) satisfies = f)[a, b].

For each t e 1, let U1 be an admissible neighborhood of f(t). Now
{ I t I), being an open cover of the compact metric space I, has a
Lebesgue number A. This means that if 0 < ci <A and Y is a subset of I of
diameter less than 5, then Y c for some £ e 1; that is, f(Y) c U,.
Partition I with points = 0, t2,..., r,,, = 1, where t1÷, — t, <ci for I � I �
m — 1. By our initial remarks, there is a continuous [0, £2] —+ I with
pg1 = I [0, t2] and ã1(O) = £o. Similarly, there is a continuous ö2: [t2, £3] -4I with = fI[t2, t3] and a2(t2) = indeed, for I � i � m — 2,

there is a continuous ö1+1: [t141, —.1 with = t1,.2] and
= a1(t,+1. By the gluing lemma (Lemma 1.1), we may assemble

the functions g1 into a continuous function f: 1 —P 1, where J(t) = ai(:) if
t e [t,, t1÷1]. 0

A stronger version of the covering homotopy lemma holds, and its proof
is essentially that of the special case.

Theorem 103 (Covering Homotopy Theorem).2 Let (I, p) be a covering space
of X, and let Y be any space. Consider the diagram of continuous maps

2 Anticipating terminology not yet introduced, this theorem says that a covering projection
-. X is a libratlon.

Suppose one defines g: Y —. X by g(y) = F(y. 1) and ö: Y -. g by P(y, Then = g
and P:j Therefore, if f g, then their respective liftings land are also homotopic.
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y 11g

p

I
F

wherej(y) = (y, O)for oily E Y. Then there exists a continuous map F: Y x I —i
making the diagram commute; moreover, Y is connected, then F is unique.

PROOF. Note that if y is connected, then Y x I is also connected, and so
Lemma 10.3 gives the uniqueness of F (because, for any y Y, we have
F(y, 0) = f(y)).

We show first that it suffices to work locally: we shall show that F exists if
each y e Y has an open neighborhood N, such that there is a continuous F,
making the following diagram commute

1'

I t

N,xI
(the horizontal maps are restrictions off and F, respectively). Since {N, x I:
ye Y} is an open cover of Y x I, it suffices to show that the F, agree on
overlaps (Lemma Suppose that y' e N,fl N,. Then

P,(y', 0) = J(y') = F,(y', O)

moreover, if t e I, then

pF,(y', z) = F(y', t) = pP,(y', t).

Thus both F, and F, are liftings of Fl{y'} x 1 which agree on (y',O). Since
{y'} x x I=FI(y'} x 1;asy'isan
arbitrary element of N, fl N,, it follows that F, and F, agree on (N, fl N,) x I =
(N, x 1)11 (N, x 1), as desired.

We now construct the neighborhoods N, and the maps F,. For each y e Y
and each t e 1, let U, be an admissible neighborhood of F(y, t) in X; since F
is continuous, there are open neighborhoods M, and 1, of y and t, respectively,
with F(M, x 1,) c U,. Compactness of I implies that finitely many 1,'s cover
I; denote them by ..., If we define N, = then N, is an open
neighborhood ofy. Also, there are numbers O=t0<t1 <<t,,= I in

I with tj contained in some I,, (depending on i), where v = I, ..., n.

Hence N, x c M, x I,, and F(N, x t1)) is contained in some
admissible open set in X (which depends on i).

It suffices to construct continuous maps G1: N, x — Z for i =
1, .. ., m, such that
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(i) = FIN, x ti],
(ii) G1(y', 0) = f(y') for all y' e N,,
and
(iii) = for all y' e N, and all i,

because such maps G, can be glued together giving P,: N, x 1 —'1, as desired.
To define G1, let U be an admissible open set with F(N, x [0, 'i]) c U, let

1 e A} be the sheets in 2 over U, and let = f'(SA) in Y. Note that
{ I e A) is a disjoint open cover of N,. Define G1 as the composite

Va x [0,
F u

It is easy to see that G1 satisfies (i) and (ii). Assuming that G1_1 exists, a similar
construction gives and so the proof is completed by induction. 0

Corollary 10.6 (Covering Homotopy Lemma). Let (1, p) be a covering space
of X. Let x0, x1 be points in X, let f, g: I —' X be paths in X from x0 to x1, and
let be in the fiber over x0.

(i) If F: I x I —. X is a relative homotopy F:f g rd I, then there exists a
unique continuous P: I x I —. A' with pF = F and P(O, 0)

(ii) If f, are the off, g, respectively, with f(0) = = then

Remark. Statement (ii) is often called the monodromy theorem.

PROOF. (i) This follows from Theorem 10.5 ii we set Y = I.
(ii) If we define I -. A' by 1'0(t) = P(z, 0), then = f and P0(0) =

P(0, 0) = the lifting lemma (Theorem 10.4) gives P0 = f. Next, PI{0} x I
is a path in A' lying over the constant path at x0 and starting at Theorem
10.4 gives P(0, t) = for all t E I. Similarly, P1(1) x I is the constant path
at f(l). Finally, if I -. A' is defined by P1(t) = P(t, 1), then = g and
P1(0) = F(0, 1) = (since Pj{o) x us constant). Hence P1 = Therefore

= P(1, []

Recall that the fundamental group it1 is a functor from pointed spaces to
groups in particular, if qi: (X', xi,) (X, x0) is continuous, then there is a
homomorphism it,(X', —' n1(X, x0) defined by Lf'J'—'[q'f'].

Theorem 10.7. 11(2, p) is a covering space of X, then

p1,: ir1(A', i0)—. it1(X, x0)

is an injection (where lies in the fiber over x0).

PROOF. Letf: (1, 1)—. (A', be a closed path in 2 at I
in n1(X, x0), then there is a relative homotopy F: pf c ret1, where c is the
constant path at x0. By Corollary 10.6, there is a lifting P:f rd I, where
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ë is the constant path at i0, hence [f) = 1 in Therefore is an
injection. 0

In the special case of the covering space (R, exp) of S1, the covering
homotopy lemma enables one to define the degree map d: n1 (S', 1) —' Z (the
fiber over 1) by [f}t—*f(1), where Jis the lifting of f with f(0) = 0€ R. For
an arbitrary covering space (2, p) of X, there is a function

2tL(X,xo)x Y-+Y,

where Y is the fiber over x0, given by

(11),

where f is the lifting off with f(0) = y e Y 2. Corollary 10.6 shows that
this function is well defined, for it is independent of the choice of path in the
path class [f]. Fixing ye Y thus gives a function x0) -. Y that general.
izes the degree function d. Since a fiber Y may not be equipped with a group
structure (as is the case for (R, exp) or, more generally, for topological groups),
these generalized degree functions are not homomorphisms.

Definition. Let G be a group and let Y be a set (topological space). Then G
acts on Y if there is a (continuous) function G x Y -. Y, denoted by (g, y) i—+ gy,
such that

(gg')y = g(g'y)

and

1y = y

for all y e Y and g, g' e G (here 1 is the identity element of G). Call Y a G-set
(G-space) if G acts on Y. One says that 0 acts transitively on Y if, for each y,
y' E Y, there exists g e G with gy = y'; call Y a transitive G-set (G-space) in this
case.

Let a group G act on a set Y. For each g e 0, the function on Y defined by
y'—'gy is a permutation of Y (its inverse is yi—'g'y) moreover, if 0 acts on
a topological space Y, then y i—' gy is a homeomorphism.

Definition. Let a group G act on a set Y, and let y e Y. Then the orbit of y is

o(y)=(gy:geG}c Y,

and the stabilizer of y (also called the isotropy subgroup of y) is

G,={geG:gy=y}c G.

It is easy to see that G, is a subgroup of G. Note that G acts transitively on
Yif and only if o(y)= Yloreveryye Y.
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Lenuna 1O.S.IfagroupGactsonaset Y,then

Io(y)I = fG G,].

In particular, G acts transitively, then I = [G: G,J.

PROOF. The following statements are equivalent: gy = hy; g''hy =
g1h e G,; gG, = hG,. If G//G, denotes the family of left cosets of G, in G, then
it follows that p: o(y) -. G//G, given by ço(gy) = gG, is a well defined function
that is injective. Since q' is obviously a surjection, it is a bijection. 0

Remark. There is another way that Y can be a G-set: if there is a function
G x Y Y, denoted by (g, y)t—'yg, such that

y(gg') = (yg)g'

and

y1 =y
for all y E Y and g, g' e G. Call Y a right G-set if such a function exists; call Y
a left G-set when the original definition holds.

We are forced to consider both types of G-sets because of our choice of
notation. When f and g are paths, then f * g means first traverse f and then
g; when f and g are functions, then their composite fo g means first apply g
and then f. There is no real problem here, because one can convert a right
G-set into a left G-set by defining

gy =

Note that this does work, because

g(g'y) = = = = = (gg')y.

l'heorem 10.9. Let (2, p) be a covering space of X, let x0 e X, and let Y be the
fiber over x0.

(i) x1(X, x0) acts transitively on Y.
(ii) e Y, then the stabilizer of i0 is

(iii) IYI = [ir1(X, x0): i0)].

PROOF. (i) Let us first show that Y is a(right) n1(X, x0)-set. If[fJ e it1(X, x0)
and e 1', then is defined as f(I), where f is the (unique) lifting of f with
f(0) = L By Corollary 10.6, this definition does not depend on the choice of
representative in the path class [f].

It is easy to see that = i when f is the constant path at x0, for then
f is the constant path at Suppose that [g] e n1(X, x0). Let f be the lifting
off with f(0) = let be the lifting of g with = f(1). Then f * is the
lifting of f * g that begins at and it ends at It follows easily that

= (x[f])[g].
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Choose E Y, and let 2 be any point in Y. Since g is path connected (this
is the first time we have recognized this property of there is a path A in 2
from to 2. Now pA is a closed path in X at x0 whose lifting with initial
point is visibly A. Thus {pA] e ic1(X, x0), and 20[pA] = A(1) = 2. It follows
that n1(X, x0) acts transitively on Y.

(ii) 1ff is a closed path in X at x0, let f be the lifting off with J(0)
If[f) E it1(X, the stabilizer of then = 20[f] = f(1); hence ff3

and ff3 = [pf] For the reverse inclusion, assume
that [1] = [pa] for some Lu] (1, Then! = (for both tiftf and both
have initial point is), and soj(1) = u(1) = Therefore = f(1) =
and [1] lies in the stabilizer of

(iii) This now follows from Lemma 10.8.

Theorem 10.10. Let (2, p) be a covering space of X, let x0, x1 e X, and let Y0,
Y1 be the fibers over x0, x1, respectively. Then

tYol=IYiI.

Choose Y0 and Y1, let X be a path in 2 from to and

let A = pA denote the corresponding path in X from x0 to x1. It is easy to see

that the following diagram commutes:

-

p. p.

a

Here the top map Z sends [f]i.-+ * f * lj, and the bottom map a sends
[f] —' [A_1 * f * A]. Since these maps are isomorphisms and is an injection,

it follows that E induces a bijection between cosets: [ir1(X, x0): p1n1(2, =
[it1(X, x1): 2k)]. Theorem l0.9(iii) now gives the result. 0

We have just proved that all the fibers in a covering space have the
same cardinal. Since each fiber is discrete, it follows that any two fibers are
homeomorphic.

Definitiou. The multiplicity of a covering space (2, p) of X is the cardinal of
a fiber. If the multiplicity is m, one also says that (2, p) is an rn-sheeted covering
space of X, or that (2, p) is an in-fold cover of X.

Corollary 10.11. If n � 2, then Z/2Z.

We know that (S1, p) is a covering space of RI" (Exercise 10.3) of
multiplicity 2, therefore x0): = 2. By Corollary 7.6,
is simply connected for n � 2. Therefore I,r1(RP", x0)l = 2 and ir1(RP", x0)
Z/2Z. 0
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Corollary 10.12. Let (X, p) be a covering space of X, let x0 E X, and let Y be
the fiber over x0.

(1) If Y, then and p1ir1(X, are conjugate subgroups
of it1(X, x0).

(ii) IfS is a subgroup of it1(X, x0) that is conjugate to for some
E Y, then there exists i1 e Y with S =

Remark. Since is path connected, we know that ic1(Z, so

that their images under the injection p, are isomorphic. This corollary asserts
that these images are even conjugate.

(I) Recall the commutative diagram from Theorem 10.10 (with
Y0= Y1):

Cit1(X,x0)

here Z: [f]i—.[11 ifs and (f]i_.[A' *f* A], where ,t is a path in I
from to and A = pA. Now

= p5it1(2, = crp•,t1(R,

so that the two subgroups are conjugate by [2] e it1(X, x0) (note that A is a
closed path in X at x0 since both E 1').

(ii) Suppose that S = [A.1]p5iri(Z, for some closed path Am X at
x0. Let A be the path in2 lying over A for which 2(0) = Note that 2(1) E Y
(because pA = A), say, 2(1) = Using the commutative diagram in Theorem
10.10,

S = = =

as desired. 0

Definition. A covering space (2, p) of X is regular if p5it,(R, is a normal
subgroup of n1(X, x0) for every x0 e X.

11(2, p) is a regular covering space of X, then = p5ir1(2,
for every in the same fiber. If 2 is simply connected, then (2, p) is
regular.

10.10. Let (X, p) be an rn-sheeted covering space of X, where mis prime. 112 is simply
connected, prove that x0) Z/mZ.
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10.11. It is known that (in, cp(m)) = 1, where qi is the Euler if and only if
every group of order m is cyclic. Prove that if (2, p) is an rn-sheeted covering
space of X, where (m, qi(rn)) = 1, and if 2 is simply connected, then n1(X, x0)
Z/mZ.

10.12. Let (2, p) be an rn-sheeted covering space of X (we allow m to be an infinite
cardinal). If U is an admissible open set in X, so that = U111 Si, then
I1I=m.

*10.13. Let (X, x0) be a pointed space, let (2, p) be a covering space of X, and let
Y = Let 0: it1(X, x0) —, S1 (where is the symmetric group on Y) be
the homomorphism corresponding to the action of x1(X, x0) on the fiber,
namely, 0([f)):
(i) Show that ker 8 = (The quotient x1(X, x0)/ker 0 is

called the monodromy group of (2, p).)
(ii) If £ is simply connected, then 0 is an injection.

10.14. Let G be a simply connected topological group, and let H be a discrete normal
subgroup. Prove that 1) H. (Remark: This is Exercise 3.24, whose
solution should now be clearer.)

* 10.15. If it1 (X, x0) is abelian, then every covering space of X is regular.

• 10.16. Let (?,q) and (2, p) be covering spaces of X. If there exists a continuous
h: i'—, 2 with ph = q, then h is a surjection. (Hint: Use unique path lifting.)

10.ll. Let (2, p) be a covering space of X, let x0 E X, and let E p'(x0). 1ff is a
closed path in X at x0 and if f is the lifting of I with f(0) = then (f] E

if and only iff is a closed path in 2 at

Covering Transformations

In this section, we investigate maps between covering spaces of a space X. Let
us begin by recalling the covering homotopy theorem (Theorem 10.5). If(Z p)
s a covering space of X and if f: Y —. X is a continuous map that has a lifting

f: Y —p2, then any homotopy starting with f lifts to a homotopy starting at
f. Thus, if f g and f has a liftingf, then g has a lifting and I If Y = I,
then Theorem 10.4 says that every f: 1 —. X does have a lifting; the next result
gives a necessary and sufficient condition for f: Y —. X to have a lifting.

Theorem 10.13 (Lifting Criterion). Let Y be connected and locally path con-
nected, and let f: (Y, Yo) — (X, x0) be continuous. If (2, p) is a covering space
of X, then there exists a uniquef: (Y, Yo) —(2, (where i0 e
ftfandonly Yo)

Lemma 10.3 allows us to consider only existence. Assume that a lifting
f does exist: pf = f and f(Yo) = Then

Yo) = Yo) C
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The converse is less obvious. By Corollary 1.21, Y is path connected. Let
ye Y and let h:1-. Y be a path from Yo to y; thus us is a path from
f(Yo) = x0 tof(y).

—
-.—

p
———

1_
h I

By Theorem 10.4, there is a unique path in g that liftsfh and with =
We propose to define f: Y —, 2 by f(y) = ).( I). 1ff is well defined, then pJ(y) =
p2(l)=fls(1)=f(y).
We claim that is independent of the choice of path Ii. Choose another

path h2 from Y0t0 y, and let be the path in 2 liftingJh1 for which (0) = 2o.
Now isaclosed path in Yaty0, hencefo(hisih1) = (fo h)'i'(fo hi')
is a closed path in X at x0. Since

(the inclusion is the hypothesis), there exists a closed path in I at with

(f a h)*(fo rd I.

Hence
(fo h)*(fo rd I,

and

becausepi1 =foh1.
By Theorem 10.5, the covering homotopy theorem,

rd1

and = (flsA1)(1) = as desired.
It remains to prove that f: Y —' I is continuous. Let y e Y, let 2 =

and let 01 be an open neighborhood of 2; we must find an open neighborhood
V of y with f(V) U1. Let x = p2 X, let U be an admissible open neighbor-
hood of x, and let S be the sheet over U containing 2. Replacing 01 by fl S
if necessary, we may assume that S(remember that S is an open set in 2).

Since p is an open map, the set U1 defined by U1 = p(01) is an open
neighborhood of x with U1 U; since I is continuous, is an open
neighborhood of y in Y. By Corollary 1.19, Y locally path connected implies
that there is an open path connected V with ye V c We claim that
f(V) U1, which will complete the proof. Let h: I —' Y be a path from Yo to
y, and let A be the lifting of fls with A(0) = If v e V. then there is a path
h2:I—i Vfromytov;thush2(I)c Vcf3(U1)andfh2(I)c U1.Letfi:1—..I
be the lifting 011152 with fl(O) = 2. Since U1 U and U is admissible, it follows
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that
is defined. But where hsh2

is a path from Yo to v; moreover, * = 1(0) = . Therefore f(v) =
=ji(l)E U1, as desired. 0

The lifting criterion is a fine example of a good theorem of algebraic
topology: a topological result (here the existence of a certain continuous map)
is equivalent to an algebraic problem (is one subgroup contained in another).

Corollary 10.14. Let Y be simply connected and locally path connected, and let
f: (Y, Yo) (X, x0) be continuous. If (2, p) is a covering space of X and

(xe), then there exists a unique f: (Y, Yo) (2, f.

PROOF. Since Y is simply connected, ,t1(Y, Yo) = {1}, and so =
0

This corollary applies, in particular, to Y = S". n> 2.

Remark. Recall (Exercise 3.8) that a simply connected space need not be locally
path connected.

Corollary 10.15. Let X be connected and locally path connected, and let (2, p)
and (V. q) be covering spaces of X. Choose base points x, X, 2, and Po e £
with = X0 = q90.

If = then there exists a unique continuous
h: (?,j0) (2, with ph = q, and h is a homeomorphism.

PROOF. The existence and uniqueness of h are guaranteed by the theorem; we
need check only that h is a homeomorphism. Consider the commutative
diagram

£
h

q\/p
The theorem also guarantees a continuous k: (2, —, (V. with qk = p.

The composite hk and the identity both complete the diagram

2

uniqueness of the completion gives hk = Similarly, kh = lj, and h is a
homeomorphism (with inverse k). 0
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The next theorem augments the lifting criterion (Theorem 10.33).

Theorem 10.16. Let X be connected and locally path connected, and let (2, p)
and (1', q) be covering spaces of X. Choose basepoints x0 X, e 2, and EL
with = X0 =

If q,ir1(?, c then there exists a unique continuous
h: %) —. (2, with ph = q. Moreover, h) is a covering space of 2,
and so 2 is a quotient space of L.

V

PROOF. By the definition of covering space, both 2 and V are path connected;
by Exercise 10.6, X locally path connected implies that both 2 and V are
locally path connected. Since c the lifting criterion
provides a unique continuous h: -. (I, such that ph = q. It remains
to prove that h) is a covering space of 2; Lemma 10.1 will then apply to
show that h is an identification, hence 2 is a quotient space of

Let e 2, and let x = E X. Let U1 be a p-admissible open neighborhood
of x and let U2 be a q.admissible open neighborhood of x. Then U1 fl U2 is an
open neighborhood of x, and, since X is locally path connected, there is an
open path connected U with x E U c U1 fl U2. By Exercise 10.7, U is evenly
covered by p and by q. Hence = U where the 5, are sheets in 2; let
S = Sk be the sheet containing It suffices to prove that S is evenly covered
by h (for h is a sui)ection, by Exercise 10.16).

Now = U where the are sheets in V; thus the Tk are open,
pairwise disjoint, and U are homeomorphisms, hence each TL is
path connected. For each k,

= = U,

so that

Since h(l) is path connected and the S, are open, pairwise disjoint, it follows
that either h(Tk) S or h(Tk)fl S = 0. Therefore is the disjoint union
of those such that h(Tk) c S. Finally, if h(lj) 5, then there is a commu-
tative diagram

u. P1
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Since q( Tk and pjS are homeomorphisms, it follows that Tk is a homeo-
morphism. We have shown that S is evenly covered by h. 0
Definition. A universal covering space of X is a covering space (2, p) with 2
simply connected.

Often one abuses notation and says that 2 is a universal covering space of
X when 2 is simply connected.

EXAMPLE 10.1. The space of real numbers R is a universal covering space of
si, and the plane is a universal covering space of the torus. If n � 2, is a
universal covering space of RP.

The reason for the adjective "universal" is provided by the next theorem.
We defer the question of the existence of universal covering spaces (see
Theorem 10.34).

Theorem 10.17. Let X be connected and locally path connected, and let (?,q)
be a covering space of X. If(2, p) is a universal covering space of X, then there
exists a unique continuous h: 2 —' V making the following diagram commute:

q

PROOF. Since X is locally path connected, Exercise 10.6 says that 2 is locally
path connected. Corollary 10.14 now gives the result. 0

A standard argument shows that a universal covering space, if it exists, is
unique to homeomorphism. The converse of Theorem 10.17 is not true unless
some mild restrictions are imposed on X (see Corollary 10.35).

The fundamental group has already been seen to be intimately related to
covering spaces. When comparing covering spaces (1', q) and (2, p) of a space
X, one considers diagrams of the form

This leads one to the following group.

Definition. If (2, p) is a covering space of X, then a covering transformation
(or deck transformation) is a homeomorphism h: 2 —.2 with ph = p; that is,
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the following diagram commutes:

A'

Define Cov(R/X) as the set of all covering transformations of A'.

It is easy to see that Cov(A'/X) is a group under composition of functions.
Before continuing, we mention an analogy between groups of covering trans-
formations and Galois groups. Suppose that F is a subfield of a field E. Recall
that

Gal(E/F) = {automorphisms a: E -. EIa fixes F pointwise}.

If i: F c.. E is the inclusion, then an automorphism a of E lies in Gal(E/F) if
and only if the following diagram commutes:

E
g

Since all arrows are reversed, one might expect that covering transformations
give a "co-Galois theory"; that is, there may be "duals" for covering spaces of
the usual results for Galois groups. In this analogy, universal covering spaces
will play the role of algebraic closures (see Theorem 10.52).

In light of Theorem 10.9, the next result suggests that Cov(A'/X) resembles
ir1(X, x0).

Theorem 10.18.Let X be connected and locally path connected, and let x0 X.
Then a covering space (A'. p) of X is regular (1 and only Cov(A'/X) acts
transitively on the fiber over x0.

PRooF. Let E p1(x0). If (A', p) is regular, then Corollary 10.12 gives
= By Corollary 10.15, there is a homeomorphism

h: (A', (A', with ph = p; thus h E Cov(A'/X) and as

desired.
Conversely, assume that Cov(A'/X) acts transitively on p1(x0):

p'(x0), then there exists h e Cov(A'/X) with = Now
it follows that = hence

= = ii).

By Corollary 10.12, is a normal subgroup of ir1(X, x0), and so
(A', p) is regular. D
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Theorem 10.19. Let (R, p) be a covering space of X.

(i) if h e and h then h has no fixed points.
(ii) If h1, h2 E Cov(R/X) and there exists 2 E with h1(2) = h2(2), then

= h2.

PROOF. (i) Suppose that there exists i with h(2) = 2; let x = p2. Consider
the diagram

(Z2) ————.

(X, x).

By Lemma 10.3, there is at most one way to complete this diagram so that it
commutes. Since both h and complete it, h = 12, a contradiction.

(ii) The map h1 has a fixed point, namely, 2, and so
h1 = h2. 0

Definition. Two covering spaces (I', q) and p) of a space X are equivalent
if there exists a homeomorphism g making the following diagram
commute:

p 4•P,g

q\/p
Theorem 10.20. Let X be locally path connected, and let x0 X. Let (?, q) and
(R, p) be covering spaces of X,andlet20 E e q'(x0). Then(I', q)
and (g, p) are equivalent and only if and are con-
jugate subgroups of x1(X, x0).

PROOF. Assume that (1', q) and (Z, p) are equivalent, and let p: P —. X be
a homeomorphism with pp = q. Then e p'(x0) and Po) =

By Corollary 10.12(i), 9'Po) and are con-
jugate subgroups of n1(X, x0).

Conversely, assume that 9o) and 2o) are conjugate sub-
groups of irj(X, x0). By Corollary 10.12(u), there exists E such that

= ii). The lifting Criterion provides a continuous map
p: P X with pço = q, and Corollary 10.15 says that q is a homeomorphism.
Therefore (?, q) and (g, p) are equivalent. 0

Recall that if p) is a covering space of X and if x0 X, then ,r1(X, x0)
acts transitively on the fiber if [f) Eit1(X, x0) and 2€ then
i[f) = f(I), where f is the lifting of f with f(0) = 2.

Definition. Let G be a group, and let Y and Z be G-sets. A function irp: Y —. Z
is a G-map (one also says that is G-equivarlant) if
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9i(gy) = g9i(y)

for all g G and y Y. A G-isomorphism is a G-map that is also a bijection.
Let Aut( Y) denote the group (under composition) of all G-isomorphisms from
Yto itself.

We are going to prove that a covering space (2, p) of a space X (with
basepoin x0) is completely determined by the fiber (x0) viewed as a
n1(X, x0)-set. Another group-theoretic lemma is needed.

Let G be a group, let H be a (not necessarily normal) subgroup of G, and
let G//H denote the family of all left cosets of H in G. Now G acts on Gil/i by
left translation: if a e G and gH e G//H, then a: gH agH. It is easy to see
that G//Ii is a transitive G-set and that H is the stabilizer of the cosct H.

Lemma 10.21.

(i) If X is a transitive G-set and H is the stabilizer of a point, then X is
G.isomorphic to G//H, the family of all kfi cosets of H in G on which G
acts by left translation.

(ii) If H and K are subgroups of a group G, then G//H and G//K are
G-isomorphic and only H and K are conjugate in G.

(i) Let .x0 X, and let H = For x X, transitivity provides
an element a G with = x. The routine argument that 0: H —÷ G//H,
defined by 0(x) = is a well defined bijection is left to the reader. To see
that 0 is a G-isomorphism, let a a G and x a X. Now x = and ax =
hence ax = a = H. Thus gax11 = But 0(ax) =

and aO(x) = so that 0(ax) = aO(x), as desired.
(ii) Assume that 0: G/fH G//K is a G-isomorphism. There exists g a G

with 0(H) = gK. if h a H, then

gK = 0(H) = 0(hH) = lzO(H) = hgK.

Therefore K and g'Hg c K. Since D(g1H) = q'O(H) = g1gK =
K, we see that = g'1H. The argument above now gives gKg1 H,
hence Hg = K.

For the converse, choose g a G with Hg = K. Observe that the follow-
ing are equivalent for a, b a G: a/i = b/i; a'!, a H; a g1Hg = K;
agK = bgK. We conclude that the function 0: G//li -+ G//K given by 0(aH)
agK is a well defined injection. Clearly, 0 is onto, because b e G implies
bK = 0(bg' H). Finally, 0 is a G-map, because 0(ahH) = (ah)gK and aO(hH)=
a(bgK). 0

Corollary 10.22. Let K he locally path co,,m'cted, and let a K. Two corering
spaces (2, p) and (i', q) of X are equivalent and only the fibers (x0) and
q'(x0) are isomorphic x0)-sets.
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PROOF. Choose E p'(x0) and q'(x0). By Theorem 10.20, (X, p) and
q) are equivalent if and only and are conjugate

subgroups of ,r1(X, x0). By Theorem 10.9, the fiber p'(x0) is a transitive
ir1(X, x0)-set, and p, iri(X, is the stabilizer of similarly, q'(x0) is a
transitive ,r1(X, x0)-set and q,,n1(?, $'o) is the stabilizer of It follows from
the lemma that and q,ir1(?, are conjugate subgroups of
n1(X, x0) if and only if the fibers are n1(X, x0)-isomorphic. 0

This last corollary explains why so much of the theory of permutation
groups appears in this context.

Lemma 10.23. Let a group G act transitively on a set Y, and let x, y Y. Then
the stabilizers (3, and G, are equal çf and only there exists Aut(Y) with
q(x) = y.

PROOF. Assume that there exists e Aut(Y) with q(x) = y. If h E 0,, then
hx = x and q,(hx) = = y; on the other hand, q(hx) = hQ(x) = hy, and so
h fixes y. Therefore (3,, c G,; the reverse inclusion is proved similarly.

Conversely, assume that (3= G,. If z e Y, then there exists g e G with
z = gx; define Y Y by 4)(z) = 4)(gx) = gy. Now p is well defined, because
ifgx = g1x, then g'g1x = x, hence g1g1 E 4, = 0,, and so gy = Also,

a (3-map, because = ço(hgx) = hgy = h4)(z). Finally, 4) is a bijection:
its inverse is 0: Y —. Y, where 0(g'y) = g'x. 0

Lemma 10.24. Let (.2, p) be a covering space of X, where X is locally path
connected; let x0 E X, and recall that p (x0) is a transitive ir1(X, x0)-set. Given

E p' (x0), there exists h Cov(R/X) with = V and only V there
exists 4) Aut(p'(x0)) with 4)(i0) =

PROOF. If there exists h e Cov(2/X) with = then the lifting cr1-
tenon (with h and with gives = the converse
follows from Corollary 10.15. Since is the stabilizer of by
Theorem I 0.9(u), h exists if and only if the stabilizers of and i1 coincide.
But, by Lemma 10.23, these stabilizers coincide if and only if there exists
4) Aut(p1(x0)) with = 0

Lemma 10.25. Let (g, p) be a covering space of X, where x is locally path
connected. Let x0 X, and let the fiber p'(x0) be viewed as a ir1(X, x0)-set.
Then hi—' hIp' (x0) is an isomorphism

Cov(1/X) Aut(p'(x0)).

PROOF. Denote p'(x0) by Y. If h€ then it is plain that h(Y) = Y
and that hi Y: Y -. Y is a bijection. To see that hi Y is a n1(X, x0)-isomorphism,
consider [f] e n1(X, x0) and e Y. Now
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= hf(l),

where f is the lifting of f with f(0) = L On the other hand,

[f]h(2) =

where!1 is the lifting off with (0) = But phf = p1 = f and h.f(0) =
so that uniqueness gives!1 = hf Hence

h a homomorphism. By Theorem 10.19(i), this map is an
injection. To see that this map is a surjection, let q, e Aut(Y). If e V then
Lemma 10.24 provides h with = Since ir1(X, x0) acts
transitively on Y,foreachi1 Ythereexists{f]€ir1(X, x0) with = [f]2.
Therefore

= h([f]2) = [fjh(2) = = pfff)2) =

and so hi V = q, as desired. 0
Recall that if H is a subgroup of a group G, then its normalizer is the

subgroup

NG(H) = {g E G: = H}.

Note that H is a normal subgroup of NG(H); moreover, if H is a normal
subgroup of G, then = G.

Lemma 10.26. Let G be a group acting transitively on a set V. and let Yo E V.
Then

Aut(Y)

where G0 is the stabilizer of Yo.

PROOF. Let qi E Aut(Y). Since G acts transitively on Y, there is g G with
= gy0. First, we show that g e NG(GO). If hE G0, then hy0 = Yo and

gy0 = q'(Yo) = (p(hy0) = = hgy0;

hence Yo = hgy0 and hg E G0, as desired. Second, if = gy0 =
then fixes Yo and = gG0. Therefore the function

r: Aut(Y) N6(G0)/G0

defined by

=

where q(yo) = gy0, is a well defined function.
To see that V is a homomorphism, let 8 E Aut( Y) and let = Now

Oq'Q'o) = O(gyo) = 9O(Yo) = gg'y0, so that = On the other
hand, = = Since = it fol-
lows that r is a homomorphism (the reason for the inverse in the definition
of V is now apparent).
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Assume that r(4,) = G0. Then 4'(Yo) = Yo, hence p(hy0) = hp(y0) = hy0
for every h E G; that is, q axes every element in Y of the form hy0. As G acts
transitively, q, = li,, and so F is an injection.

Finally, assume that g e NG(Go). The function Y Y given by =
hgy0, where y = hy0, is easily seen to be a well defined (i-automorphism of Y.
As F that is an
isomorphism. 0

Theorem 10.27. Let p) be a covering space of X, where X is locally path
connected. Then, for x0 E X and

Cov(R/X)

where it denotes n1(X, x0).

PRooF. By Lemma 10.25, Cov(A'/X) Aut(p1(x0)), where the fiber p1(x0)
is viewed as a transitive ,r1(X, x0)-set (Theorem 10.9(1)). The stabilizer of
is by Theorem 10.9(u). The theorem now follows from Lemma
10.26. 0

Corollary 10.28. Let (X, p) be a regular covering space of X, where X is locally
path connected. Then, for x0 E X and e

ir1(X,

the monodromy group of the regular covering space.

PRoof. Since (X, p) is a regular covering space of Y, p1,n1(A', is a normal
subgroup of it1(X, x0), and so = y) for all y e p'(x0).

0

Corollary 10.29. Let (X, p) be a universal covering space of X, where X is locally
path connected. Then, for x0 6 X,

Cov(X/X) ,r1(X, x0).

PRool. Since is simply connected, it1(Z, = {l} for every e
and {1}. 0

Observe that the last result gives a description of the fundamental group
of X, which requires no choice of basepoint.

EXAMPLE 10.2. We use Corollary 10.29 to give another proof that ,r1(S', 1)
Z. Since R is simply connected, (R, exp) is a universal covering space of S1 (of
course,S1 is locally path connected) hence Cov(R/S') ,r1(S', 1). Leth: R—.
K be a homeomorphism with exp(h(x)) = cxp(x); then h(x) = x + n(x), where
n(x) 6 Z (by definition, exp(x) = Hence n(x) = h(x) — x is a continuous
map R —. Z; as K is connected and Z is discrete, n(x) is constant, say, n(x) n.
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Therefore h(x) is the translation x x + n. It is clear that all such translations
under composition form an infinite cyclic group.

EXERCISES

10.18. Let (A', p) be a universal covering space of X, where X is locally path connected.
If x0 E X, give an explicit isomorphism Cov(A'/X) —' ir1(X, x0).

10.19. In Exercises 8.6 and 8.7, it is shown that complex and quaternionic projective
spaces are quotient spaces of spheres. Are these spheres universal covering
spaces?

10.20. If G is a simply connected and locally path connected topological group, if H
is a discrete normal subgroup, and if p: G — G/H is the natural map, then every
continuous q): G —, G with pço = p has the form q,(x) = xh0 for some ho e H.
(Hint: Adapt the argument in Example 10.2.)

10.21. Let (A', p) be a covering space of X, where X is locally path connected. Prove
that (A', p) is regular if and only if, for each closed path f: 1 X, either every
lifting f of f is a closed path or no lifting f of I is a closed path. (Hint: Exercise
10.17.)

10.22. Let (A', p) be a covering space of X, where Xis locally path connected. If(X, p)
is regular, then the monodromy group of (A', p) (sec Exercise 10.13) is iso-
morphic to Cov(A'/X).

10.23. If X is an H-space (a fortiori, if X is a topological group), then every covering
space of X is regular. (Hint: Exercise 10.15.)

Existence

When does a space X possess a universal covering space (A', p)? More
generally, given x0 e X and a subgroup G of ,t1(X, x0), when does there exist
a covering space (A', p)ofX (and a point e p'(x0)) with G =

Defmition. Let G be a subgroup of n1(X, x0) and let P(X, x0) be the family of
all paths fin X with f(0) = x0. Define —. 12 (more precisely, — mod G)
by

(i) = 12(1);
(ii) [f1*fj1JeG.

Lemma 10.30. If 6 is a subgroup of ir1(X, x0), then the relation ft — is an
equivalence relation on P(X, x0).

PROOF. Reflexivity holds because 1 G; symmetry holds because g E G implies
that e G; transitivity holds because g, h e G implies that gh e 6. 0
Defmition. Let (X, x0) be a pointed space and let G be a subgroup of it1 (X, x0).
Denote the equivalence class of fe P(X, x0) by <f>G, and define as the
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set of all such equivalence classes. If e0 is the constant path at x0, define
= Finally, define a function p: X by

It is obvious that x0. We shall prove that, with some mild condi-
tions on X, the set can be topologized so that (Is, p) is a covering space
of X with G.

Definition. If fc P(X, x0) and U is an open neighborhood of f(1), then a
continuation of f in U is a path F a P(X, x0) of the form F = f* A, where
A(O) = f(1) and ).(I) U.

Definition. Let = and let U be an open neighborhood of x in X. Then

(U, = (U, (f)0) = { a X0: F is a continuation off in U}.

Note that iff .f' and 1(0) = f(l), then f* A f' * A.

Recall that a family of subsets of a set Y is a basis for a topology if:

(B!) for each y a Y, there is Ba with ye B;
(B2) cB1flB2.

The corresponding topology on Y is the family of all unions of sets in
One may rephrase Corollary 1.19 by saying that a space is locally path

connected if and only if it has a basis of path connected subsets.

Lemma 10.31. Let (X, be a pointed topological space, and let G be a subgroup
of it1 (X, x0). Then the subsets (U, form a basis for a topology on for
which-the function X is continuous. Moreover, (f X is path connected,
then p is a surjection.

PRooF. Let and let e be the constant path in X at f(l). For
every open neighborhood U of f(l), the function F f * e is a continuation
of f in U. Therefore (Bi) holds, for = = <F>G C (U,

We show that a (U, then (U, = (U, Now = (F)0 = (f *
where 1(0) = f(l) and 1(1) c U. If 2 a (U, then 2 = (F')0 = <f *
where and p(I)c U. Hence
F*(1' *p); since(1' *p)(O) F(1) c U, we have 2 <F')0
<F * (1' * a (U, y) and (U, (U, 5J). The reverse inclusion is proved
similarly. To prove (B2), assume that 2 (U, fl (V. 5); then (U, = (U, 1)

and (V, = (V, 2), and it is easy to see that 2e(Ufl V, 1) c (U, 2)fl(V, 1).
To prove that p: X is continuous, let and let U be an open

neighborhood of in X. Then it is easy to see that p((U, U. Finally, if
X is path connected, then for each x a X, there is a path fin X from x0 to x,
and p(s) = x, where = (f>G. 0
Lemma 10.32. Let (X, x0) be a pointed space, and let G be a subgroup of
rr1(X, x0). Every path f in X beginning at x0 can be to a path fin X0
beginning at and ending at <f)0.
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PRXF. For t e I, define /: 1 —. X by i;(s) = J(rs). Each J is a path in X
beginning at x0: that is. J E P(X. x0). = e0 (the constant path at x0), and

— f Define f: I 2 by

1(1) =

Observe that •f(0) = = (eo>c = and that J(l) = <fI>c; =
Moreover, for each tel, we have pf(t) = = 1(l) = f(,), that is,

pf = I It remains to prove that f is continuous.
Let e I and let (U,fU0)) be a basic open set containing f(i0). Since f is

continuous, there is an open interval V of in I with f( V) U; we claim that
f(V) (U,f(t0)), that is, if, e V. then / is a continuation of/0 in U. It is

straightforward to show that f = *). for some path A with A(0) = =
f(t(})and with A(1) LI: if, > then let A = r] suitably reparametrized
so that its domain isi: if t <r0, 'a].

Corollary 10.33. If (X, x0) is a pointed space and G is a subgroup of it1 (X, x0),
then 2G is path connected.

PRool:. For each = e there is a path in 2G from to

There is a necessary condition that a locally path connected space K have
a universal covering space (2. p). If x e X. then Exercise 10.7 allows us to
assume that x has a path connected admissible open neighborhood Ll. Let

e and let S be the sheet lying over U that contains There is a
commutative diagram

ir1(S, ir1(X.

J I
ir1(U, x) ir1(X, x),

where the horizontal maps arc induced by inclusions. Since ir1(2, = 1

(because 2 is simply connected) and is an isomorphism (because pIS is
a homeomorphism). it follows that ir1(U. x)—' it1(X. x)is the trivial map.

Definition. A space X is semilocally 1-connected3 if each x e X has an open
neighborhood U so that ,t1(U. x) ir1(X, x) is the trivial map (where
i: Li X is the inclusion).

EXAMPI.E 10.3. Every simply connected space is semilocally I-connected.

A space A is called locally I-connected if. for each \ E .V. every neighborhood N of contains
a neighborhood U of s wtth a1(t'. ,r1(N. x) invial, Compare this definition with that of
locally path connected (which could be called locally 0-connected).
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EXAMPLE 10.4. If each point x e X has a contractible open neighborhood, then
X is semilocally 1-connected. By Corollary 8.31, every CW complex (and
hence every simplicial complex) is semilocally 1-connected.

EXAMPLE 10.5. A cartesian product of infinitely many circles is connected and
locally path connected, but it is not semilocally 1-connected (see [Spanier,
p. 84)).

One can rephrase the definition. A space X is semilocally 1-connected if
each x E X has an open neighborhood U with the following property: every
closed path in U at x is nullhomotopic in X.

Theorem 10.34. Let (X, x0) be a pointed space and let G be a subgroup
of ir1(X, x0). If X is connected, locally path connected, and semilocally
1-connected, then p) is a covering space of X and P.7r1(ZG, = G.

PROOF. Let x e X. Since X is semilocally I-connected, there is an open
neighborhood W of x with every closed path in W at x nulihomotopic in X.
Since X is locally path connected, there is an open path connected neighbor-
hood U of x with xo U W; of course, every closed path in U at xis
nulihomotopic in X. We shall show that U is evenly covered by p, and this
will show that (1G, p) is a covering space of X (for we already know that 1G
is path connected and p is a continuous surjection).

Let 2 so that S = where f is a path in X from x0 to x. To
prove that U is evenly covered by p, we shall show that (U, 2) is the sheet over
U containing 2. First, pI(U, 5): (U, 2) —* U is a surjection. If y e U, there exists
a path A in U from x to y (because U is path connected). Then f * A is
a continuation of f in U with (fs A)(1) = y; hence <1* E (U, 2) and
p((f sA>6) = (fs A)(1) = y. Second, pJ(U, 5) is an injection. Suppose that
!€(U, 5) and p(y) = p(i). Now 2 = <f*p>a, where ji(0) = f(1) = x and
p(I) c U; similarly, ' = <faA>G, where A(O) = x and A(I) U. Since =
p(2'), we have 2(1) = p(l), so that Asp1 is a closed path in U at x. By the
choice of U, A • is nullhomotopic in X. Hence f * As * f is null-
homotopic in X; that is, = 1 in x1(X,x0). Therefore

E G, and so = that is, =2. Third,
pI(U, 2) is an open map. Every neighborhood t' of S in contains an open
set of the form (U, 2), where U is as chosen in the first paragraph. But, for
such U, we know that p((U, 2)) = U (because pI(U, 2) is a surjection). It follows
that pJ(U, 2): (U, 2) -+ U is a homeomorphism.

Next, we show that (U) = 2). Clearly, p'(U) contains the union.
For the reverse inclusion, let e be such that p(y) U, that =
and f(l) e U. Since U is path connected, there is a path A in U from f(l) to x.
Then f s A is a continuation of f in U, so that S defined by S = <1 * lies
in the fiber over x. Now (f*A)*2' is a continuation of fsA in U, so that
<(1 * A)* 2' o (U, 2). But = <f>0 = <(f * A) * 2'

As each (U, 5) is open in it remains to prove that the sheets are pairwise
disjoint. In the proof of Lemma 10.31, we showed that if E (U, 2), then
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(U, = (U, p E(U, ii), then
(U, = (U, I = 1,2, and(U, = (U, We have proved that i')
isa covering space of X.

Finally, let us show that p5n1(R6, = G. Let [1] en1(X, x0). Since

(2Gm p) is a covering space of X, there exists a unique lifting f of I with f(0) =
In Lemma 10.32, however, we constructed such a lifting, namely, f(t) =

<j where J is a path from x0 to f(t). By Exercise 10.17, [f) e
Butf(0)=

= <e()>(, where is the constant path in X at x0, while f(1) <11 >G =
(J>G. Hence f(0) = J(1) if and only if f — e0. But I — e0 if and only if [1) =
[1• e G. Therefore = G, as desired. 0
Corollary 10.36. Let X be a connected, locally path connected, semilocally
1-connected space.4 Every covering space (I', q) of X is equivalent to a covering
space of the form (Xe, P).

PROOF. Choose a basepoint x0 E X and let e 1' lie in the fiber over x0. If
G = q5x1(?, then = G, and so Theorem 10.20 applies to
show that (V. q) is equivalent to (A'0, p). 0

Corollary 10.36. Let X be a connected, locally path connected, semilocally
1-connected space. If(Z, p) is a covering space of X, then every open contractible
set U in X is evenly covered by p.

PROOF. In the proof of the theorem, we saw that if U is an open path connected
set in X for which every closed path in U is nuilbornotopic in X. then U is
evenly covered by p (indeed, if x e U, then

U (U,i)).
i.p'(x)

In particular, contractible open sets are evenly covered in every covering space
of the form (A'0, p). The result follows from Corollary 10.35. 0
Coroftary 10.37. Let X be connected and locally paTh connected. Then X has a
universal covering space and only if X is semilocally 1-connected.

PROOF. Sufficiency follows immediately from the theorem; necessity was
proved in our discussion given just before the definition of semilocally
I-connected. 0

We repeat the description of the elements of when it is simply connected,
that is, when G = (1): they are the equivalence classes of P(X, x0) defined by
the relation f — g if f(1) — g(1) and is nullhomotopic in X.

'Perhaps such spaces should be called connected!
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Theorem 10.38. Every connected CW complex has a universal covering space.

PRooF. CW complexes are locally path connected (Theorem 8.25) and semi-
locally 1-connected (Example 10.4). 0

It follows immediately that connected polyhedra have universal covering
spaces. Let us give a direct proof of this, avoiding the fussy proofs of Theorem
8.25 and Corollary 8.31.

Lemma 10.39. A locally contractible space X is locally path connected and
setnilocally I-connected.

PROOF. Let x E X, let U be an open neighborhood of x, and let V c U
be an open neighborhood of x, which is contractibk to x in U; that is, let
F: V x I —. U be a continuous map with F(v, 0) = v and F(v, 1) = x for all
v e V. If v0 e V. then f(t) = F(v0, t) is a path in U from v0 to x. It follows that
X is locally path connected (use the definition of locally path connected rather
than its characterization, Corollary 1.19).

With the same notation as in the first paragraph, it is easy to see that if
V c. U is the inclusion, then i: it1(V, x) —, x1(U, x) is trivial. It follows that

ifj: V c. x is the inclusion, x) -. x1(X, x) is trivial; hence X is
semilocally I-connected. 0
Tbeorem 10.40. Every polyhedron is locally contractible, and every connected
polyhedron has a universal covering space.

PROOF. The second half of the statement follows from the first, in light of
Lemma 10.39 and Corollary 10.37.

Let x X and let U be an open neighborhood of x. By Exercise 7.12(iii),
we may assume that there is a simplicial complex K with lKI X and with
x e Vert(K). Defme F: st(x) x 1-. IKJ by F(w, t) = tx + (1 — t)w, where WE
st(x) (Exercise 7.7(u) guarantees that such convex combinations make sense).
Note that F is a deformation in IKI of st(x) to x and that F({x} x I)
{x} c U. By the tube lemma (Lemma 8.9'), there is an open neighborhood V
of x such that F(V x I) c U. Replacing V by Vfl U if necessary, we may
assume that V c U. It follows that X is locally contractible. 0

Though we have not proved it, we remind the reader that CW complexes
are locally contractible.

Corollary 10.41. Every connected n-man(fold has a universal covering space
(which is also an n-man ).

PROOF. We have already remarked that n-manifolds are locally contractible,
hence locally path connected and semiocally 1-connected, by Lemma 10.39.



Existence 301

In Exercise 10.6, we observed that any covering space of an n-manifold is itself
an n-manifold. 0

In Exercise 10.6, we observed that every covering space A' inherits local
properties of X. Let us prove that other properties of the base space X may
lift to properties of covering spaces (I, p) of X.

Theorem 10.42. Every covering space (A', p) of a connected, locally path con-
nected, semilocally 1-connected topological group X can be equipped with a
multiplication making A' a topological group and p a homomorphism.

PROOF. Let e be the identity element of X. By Corollary 10.35, we may assume
that A' = A'6 for some subgroup G of n1(X, e). Letm: X x X —, X be the given
multiplication in the topological group X, and write m(x, y) = x o y for x,
y X. 1ff, g P(X, e), define a product Jo g by pointwise multiplication:

(fo g)(t) = f(t) 0 g(t) for all t e 1.

Note that Jo g is continuous, being the composite of the continuous functions
f x g and m. Since f(0) = e = g(O), it follows that (Jo g)(0) = e, and sofo g 6
P(X, e). We propose to define multiplication in A'6 by

= <10 g>6, (1)

but we need some preliminary results to prove that this is well defined.
Let 82, P2 be paths in X that agree when necessary: =

22(1) = p2(0), and 0 22(1) = fl1(0) 0 Evaluating at e I gives

(2)

1f as usual. = 2(1 — t), then evaluating at t e I gives

0 22) 2r1 0 (3)

Let us denote the pointwise inverse of 2 by

=

Now suppose that a and are closed paths at e; we claim that

(4)

To sec this, consider the continuous map F: I x I —+ X defined by F(s, t) =
c1(st) 0 a(s). The following picture displays F on the boundary of I x I:

a
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By Exercise 3.4(iii), /3 (a 0 /3)sa' rel I, hence /3.2 ao /3 rd 1. Since
n1(X, e) is abelian, by Corollary 3.21, it follows that a. /3 o /3 rd1.

Let us now show that formula (I) does not depend on the choice of
paths in <1>6 and <g>6. Suppose that E <1>6 and <g>0: thus =
f(l) and g1(1)=g(1) and Now (fog)(l)=
f(l) 0 g(l) = 0 g1)(1). Moreover,

[(fog).(f1 = og1)), by(3)

= by(2)

= by(4)

=

Therefore <f>G<9>G = <11 >G, as desired.
Define J E P(X, e) to be the constant path at e. It is easy to see that is

a group with identity e and with [lithe inverse of [f). Since = f(l),
it follows at once that p is a homomorphism.

It remains to prove that g6 isa topological group. To see that inversion
—0 X6 is continuous, let (U, (1>6) be a basic open neighborhood of <1>6

(thus U is an admissible open neighborhood off( I Since X is a topological
group, U' {x': XE U) is an open neighborhood of f(1) moreover,
we may assume that U1 is admissible (for any open subset of an admissible
open set is admissible). But inversion carries (U', inside (U,
and hence it is continuous. To see that multiplication is continuous, let
W be an admissible open neighborhood off( 1 )g( 1), and let U, V be admissible
open neighborhoods of f(1), g(1), respectively, such that U o V = {u 0

u e U, v E V} c W. Then multiplication carries (U, (J>6) * (V, <g>6) inside
(W, (f>6<g>6), and so A'6 is a topological group. 0

EXERCISES

10.24. Let X be a topological group that is connected, locally path connected, and
semilocally I-connected, and let G be a subgroup of n1(X, e), where e is the
identity of X. 1ff is a closed path in X at e, show that [1) — and
\)/6\) /G

10.25. Let X be an H-space that is connected, locally path connected, and scmilocally
I-connected, and let G be a subgroup of n1 (X, e), where eisa homotopy identity
in X. Prove that A'6 is an H-space and that p "preserves" multiplication.

Remark. A Lie poop is a topological group whose underlying space is an
n-manifold and whose group operations are real analytic. Covering spaces of
connected Lie groups are also Lie groups.

Theorem 10.43.

(i) Every covering space (A', p) of a connected CW complex (X, E, (I)) can be
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equipped with a CW decomposition so that X is a C W complex with
dim X = dim X and p is a cellular map.5

(ii) Every covering space (g, p) of a connected polyhedron X can be equipped
with a triangulation so that is a polyhedron with dim X = dim X and p
is a simplicial map.

Remark. Since covering spaces of compact spaces need not be compact, one
is thus obliged to consider infinite CW complexes and infinite simplicial
complexes.

PROOF. (i) Let I be a set indexing the points in a fiber: if x e X, then p'(x) =
i 1, = x}. For each e E, let x, = e e. Since JY' is simply

connected, the lilting criterion (Theorem 10.13) provides continuous maps
0)-.. (g, i,), all e E and i e I, with = and =

(X, Xe).

Denote — by ë1. Define

= —, 21e E, i €1, n =

= {ë1: e E, i e I}

and

= U n}.

If (g, is a CW complex, then dim X = dim X and p is a cellular map
(indeed, since = a relative homeomorphism, it is easy to see that

e is a homeomorphism).
We show by induction on n � 0 that is a CW complex; the argument

in the last paragraph of the proof of Theorem 8.24 shows that this implies that
is a CW complex. The induction begins because is discrete ((i, p) is a

covering space).
Assume that n > let us check the axioms in the definition of CW complex.
(I) IfpeR, let y = p(9), let e be the cell in X containing y,and let f be a

path in e from y to x,. For each there is a lifting f of f that is a
path in e, from 9 9 e1 c A'. Therefore
A' = (Of course, is the union of cells, by its very definition.)

To see that this is a disjoint union, consider cells e, a in and suppose

More is true: the appropriate restriction of p is a horneoinorphiszn from each cell in to a cell
in X.
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that è1 fl 0 for some i, j. By induction, we may assume that ë, is an
n-cell and hence is open in (Corollary 8.22(iii)). If e a, then fl c

= efla = 0. hence e = 0 i

e is evenly covered by p.
(2) If dim(e) = n, then c Since = G,, it follows that

c so isa map of ) —.(ë1U
Furthermore, each is a relative homeomorphism because each is.

(3) We use the following commutative diagram to check that has the
weak topology determined by the closures of its cells.

______

I,,
x.

Here = q' = and q = where —. acts as
the identity. By Lemma 8.16, 2 has the weak topology if and only if is an
identification. Suppose that B isa subset off with open; since is a
continuous surjection, is an identification if each such B is open in 2. Let

B, let x = let U be an admissible open neighborhood of x, and let U
be the sheet over U containing i. Then B is open if and only if each such B fl U
is open in 2. Changing notation if necessary, we may thus assume that B c U,
where pIU is a homeomorphism. Now is open; since q is an open map,

is open. We claim that = If this claim is correct,
then (B) = tpq, 'p(B) = p(B) is open in X, because is an identification.
It follows that Ur'(fl) = B is open in 2, for U is a homeomorphism, and
this will complete the proof.

Assume that B. Commutativity of the diagram gives pq(z) = E

p(B); hence c ç,'p(B). For the reverse inclusion, let z E 4,'p(Th, so
that 4,(z) E p(B). Now z E say; choose a path fin from z toO. Hence
pf is a path in e from 4,(z) to x,. Let be a lifting of 'p1 with e B; of course,

1) = for some i. But çoq11f is also a lifting of 'p1 (for = =
çof), which ends at By uniqueness of path lifting (here we lift the reverse of
4,1), it follows that = and so = e B. But =

and so z e as desired.
(4) is closure finite, for if dim(ë1) = n, then the closure of è1 is contained

in Since is compact, it is contained in a finite CW
subcomplex of it follows that the closure of è1 meets only finitely many
cells.

(ii) If X isa polyhedron, then one can adapt the proof above replacing the
word "cell" everywhere by "open simplex". The straightforward and simpler
details are left to the reader. 0

Corollary 10.44. If X is a connected graph, then its universal covering space is
a tree.
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PROOF. A connected graph is, by definition, a connected one-dimensional
simplicial complex. The universal covering space A' of X is thus a simply
connected graph. It is easy to see that A' can have no circuits, hence A' is a tree.

0

Corollary 10.45. Let X be a compact connected CW complex, and let (A', p) be
a f-sheeted covering space of X for some integerj. Then A' is compact and

=

PROOF. The proof of the theorem shows that there is a CW decomposition of
A' having precisely j i-cells for each i-cell in X. Thus, if respectively
denotes the number of i-cells in A', respectively X, then = for all i. Since
X has only finitely many cells, it follows that A' has only finitely many
cells and hence is compact. Moreover, the definition of the Euler—Poincaré
characteristic is

x(A') = E (— i (— =fx(X). o

Here are some applications to group theory; for deeper applications, see
[Massey (1967)].

Theorem 10.46. Every subgroup G of a free group F is itself free.

PROOF. Let {x1: I E I} be a basis of F, and let X be a wedge of III circles. By
Corollary 7.35, ir1 (X, x0) F (where x0 is a basepoint of X). Now the covering
space (A'0, p) of X has fundamental group isomorphic (via Pe) to G. Theorem
10.43(ü) says that A'0 is a (connected) one-dimensional simplicial complex, and
Corollary 7.35 says that its fundamental group is free. 0

1'heorem 10.47. A free group F of rank 2 contains a subgroup that is not finitely
generated.

PRooF. In Exercise 10.4(u), we exhibited a covering space (A', p) of S' v
that is a doubly infinite sequence of tangent circles. If one regards A' as a
simplicial complex, then there is a maximal tree whose complement is the
union of the open upper semicircles in A'. By Corollary 7.35, n1(X, is free
of infinite rank. But ir1(X, is isomorphic to a subgroup of it1(S' v S1, x0),
which is free of rank 2. 0

One can show that the commutator subgroup of a free group of rank � 2
is free of infinite rank.

Theorem 10.48. Let F be a free group of finite rank n, and let G be a subgroup
of finite indexf. Then G Is a free group of finite rank; indeed

rank G =fn —j + 1.
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Pgoor. tf r is a finite graph (i.e., a finite one-dimensional simplicial complex),
let e([') denote the number of edges in r and let t4r) denote the number of
vertices in r. If T is a finite tree, then e(T) = v(T) — 1: since T is contractible,

= I; on the other hand, X(T) = t4T)— e(T)(thereareelemcntary proofs
of this equality). It follows that if T is a maximal tree in a finite graph IT, then
the number of edges in IT — T is e(IT) — e(T) = e(IT) — v(T) + 1. Since T is a
maximal tree, v(T) = v(F')(Lemma 7.33). Therefore, if IT is a finite graph, then
*1(r, x0) is free of rank e(F) — v(IT) + I (Corollary 7.35).

If X is a wedge of n circles, then it is easy to see that = I — n. Let
(X0, p) be the covering space of X corresponding to G (we identify F with
x1(X, .)). Since [F: GJ = j, Theorem 10.9(u) says that 2G is a f-sheeted cover-
ing space. Therefore

I = I

= + I by Corollary 10.45

= —j(l — n) + 1

=jn —j + 1.

as claimed. 0
EXERCISES

In each of the following exercises, the space X is connected, locally path connected,
and semilocally 1-connected.

10.26. If X is compact and (A', p) is a finite-sheeted covering space of X, then A' is
compact

10.27. II) is a positive integer and x0 is a basepoint in X, then the number olj-sheeted
covering spaces of X is the number of subgroups of 1(X, x0) having index J.
(Remark: There is a group-theoretic result that could be used in conjunction
with this exercise. If G is a finite abelian group, then the number of subgroups
of G having index) is equal to the number of subgroups of G having order j.)

10.28. If) isa positive integer and Xis a finite CW complex, then there are only finitely
many i-sheeted covering spaces of X. (Hint: Use the group-theoretic result that
a finitely generated group has only finitely many subgroups of index j.)

Orbit Spaces

If (A', p) is a covering space of X, then both ic1(X, x0) and Cov(R/X) act
on the fiber p1(x0) moreover, if (A', p) is a regular covering space, then
Cov(A'/X) ,r1(X, Let us now concentrate on groups acting
on A' instead of on fibers. Plainly, Cov(A'/X) acts on A'; moreover, if(2, p) is
regular, then there is a surjection ,z1(X, x0) —, Cov(A'/X) (the isomorphism
above displays Cov(Z/X) as a quotient group of x1(X, x0)), which shows that
x1(X, x0) acts on A' as well.
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Definition. If a group G acts on a space Y, then the orbit space Y/G is the set
of all orbits of G,

Y/G = {o(y): y E Y},

regarded as a quotient space of Y via the identification v:

The next pair of lemmas will be used in proving an analogue of the
fundamental theorem of Galois theory.

Lemma 10.49. Let (R, p) be a regular covering space of X, where X is connected
and locally path connected, and let G = Cov(Z/X). There exists a homeo-
morphism q: X -. ZiG making the following diagram commute:

X-----. ZIG;
4,

moreover, (Z, v) is a covering space of Z/G.

PROOF. If x e X, choose e p'(x), and define q' by

q(x) = = o(i).

(1) is well defined.
Assume that e p'(x). The hypotheses allow us to use Theorem 10.18,

so that Cov(Z/X) acts transitively on (x). There exists g e Cov(Z/X) with
g(2) = and so = as required.

(2) q, is a bijection.
Commutativity of the diagram and the sw)ectivity of v imply that q is

surjcctive. To see that qi is injective, assume that qi(x) = qi(y). Then there exists
i e p'(x) and e with = o(5); that is, there exists g e Cov(Z/X)
with = Hence

x = p(i) =

pg = p for every covering transformation g).
(3) q' is continuous.
If U is open in ZIG, then the continuity of v shows that =

v1(U) is open in Z. But p is an open map, so that p(p1qi'(U)) = qi'(U) is
open in X.

(4) qiis open.
If V is open in X, then v'qi(V) = p'(V) is open in Z; since v is an

identification, qi(V) is open in ZIG.
We have shown that q is a homeomorphism. That (X, v) is a covering space

of ZIG now follows from Exercise 10.9. 0

Let us generalize the notion of equivalence of covering spaces.
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Definition. Let (2, p) and (V. q) be covering spaces of X and 1, respectively.
These covering spaces are equivalent if there exist homeomorphisms q and
making the following diagram commute:

V "

If X = Y and = then we have the old definition of equivalence. The
conclusion of Lemma 10.49 can now be restated: the covering spaces (2, p)
and (2, v) arc equivalent.

Lemma 1030. Let X be connected and locally path connected, and consider the
commutative diagram of covering spaces

where (2, p) and (2, r) are regular; let G = Cov(2/V) and let H =Cov(2/X).
Then there is a commutative diagram

2

p

2/H

of covering spaces, each of which is equivalent to the corresponding covering
space in the original diagram.

PROoF. By Lemma 10.49, (A', r) is equivalent to (2, r') and (2, p) is equivalent
to (2, p'), where r' and p' are natural maps that send a point into its orbit.
Lemma 10.49 does not apply to the third covering space because (I', q) need
not be regular.

Now G = Cov(X/I') c H = Cov(2/X) if ço: A' -, A' is a homeomorphism
with rcp = r, then = qrøp = qr = p. It follows that, for each E 2, the
G-orbit oU is contained in the H-orbit of L Define q': RIG —' 2/H to be the
function that sends a G-orbit into the H-orbit containing it; it is clear that
q'r' = p'. Note that q' is continuous: if U is open in X, then =
p'(U) is open in 2; since r' is an identification (because (A', r') is a covering
space), q_t (U)) = (U) is open. Finally, (A'/G, q') is a covering space
of 2/H equivalent to (V, q), by Exercise 10.9. 0
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Corollary 1031. Let X be a connected, locally path connected, seniilocally
1-connected space, and let (2, p) be its universal covering space. Every covering
space q) of X is equivalent to (2/G, v) for some subgroup G of Cov(A'/X).

PROOF. By Theorem 10.17, there exists a continuous map r: 2—. V making
the following diagram commute:

moreover, (2, r) is a covering space of by Theorem 10.16. Since 2 is simply
connected, both (2, p) and (2, r) are regular covering spaces. Therefore
Lemma 10.50 applies to show that (i',q) is equivalent to (21G. v), where
G = Cov(R/V). 0

There are set-theoretic problems arising from an attempt to consider all
the covering spaces of a space X: the totality of all covering spaces equivalent
to a fixed covering space (2, p) is a proper class and not a set. The same
problem arises in Galois theory; there are too many field extensions of a given
field F unless one restricts attention to only those inside a given algebraic
closure of F. In light of the last corollary, let us regard "all" covering spaces
of a space X to be of the form (21G. v), where (2, p) is a universal covering
space of X and G is a subgroup of Cov(2/X).

Theorem 1032. Let X be a connected, locally path connected, seniilocally
1-connected space, and let (2, p) be its universal covering space. Denote the
family of all covering spaces of X of the form (21G. v), where G is a subgroup
of Cov(2/X), by and denote the family of all subgroups of Cov(X/X) by .9'.

Then 1: —p.9' defined by q)i—.Cov(2/?) and '1': .9'—. defined by
6 (2/G, v) are bijections inverse to one another.

Remark. Recall that Corollary 10.29 gives an isomorphism Cov(X/X)
x0). Therefore this theorem shows that the covering spaces of X are

classified by the subgroups of the fundamental group of X. (Also see Theorem
10.20.)

PROOF. Let us evaluate both composites and 'I's to see that they are
identities. If G Cov(2/X), then 4bq'(G) = Cov(Xf(X/G)) call this last group
G*. Note that G consists of all homeomorphisms h: 2 —'1 making the
following diagram commute:

2 h2
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where v: 2 -. 2/G is the natural map. Is G = G? If g e 6 and E 2, then
= (definition of orbit), so that vg = v; hence g G* and G c

For the reverse inclusion, let h G*, so that vh = v. If e 2, then =
so that, by definition of G-orbit, there exists g e G with

g E 6* (by the first inclusion), it follows that gh G'. By Theorem
10.19(i), gh = 11, and h = G.

Finally, PV is the composite (2/G, v)s—. Cov(2/(X/G)) = vs).
But we have just seen that 6 = so that v = v and P(I) is also an
identity. 0

Corollary 1033. Let X be a connected, locally path connected, semilocally
I-connected space, and let (2, p) be its universal covering space. If 6 is a
subgroup of Cov(R/X) ,r1(X, ,c0)), then

irj(X/G, *) 6.

PROOF. By Corollary 10.29, ir1(X/G, .) Cov(2/(2/G)). In the proof of the
theorem, however, we saw that the latter group is just 6. 0

The theorem reverses the viewpoint adopted instead of beginning
with X and constructing 2, one can also start with 2 and construct X (as an
orbit space). Let us pursue this further. Let (2, p) be a covering space of X,
let U be an admissible open set in X, and let S be a sheet in 2 lying over U.
Suppose that h n Cov(2/X) and that h(S) fl S 0. If e h(S) (iS, then there
is S with = Hence = = so that both and 9 lie in the
fiber over pL Since pIS is a homeomorphism, it follows that = p. By
Theorem 10.19(i), h =

Definition. Let G be a group acting on a space X. An open set V in X is proper
if gV fl V = 0 for every g G — { I }. One says that 6 acts properly on X if
every point in X has a proper open neighborhood.

Our preliminary discussion shows that Cov(X/X) acts properly on 2.

Theorem 1034. Let X be a connected locally path connected space, let 6 be a
group acting properly on X, and let p: X —. X/G be the natural map.

(i) (X, p) is a regular covering space of X/G.
(ii) If X is semilocally 1-connected, then Cov(X/(X/G)) G.

(iii) If X is simply connected, then n1(X/G, *) G.

PROOF. (i) The natural map p is an identification. If U is any open set in X, then

p'(p(U)) = U

is open; it follows that p(U) is open, hence p is an open map. Let e X/G, let
x e X be such that p(x) = and let U be a proper open neighborhood of x.
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We claim that p(U) is evenly covered by p (we do know that p(U) is an open
neighborhood of If g, h are distinct elements of G, then gU fl hU = 0 (lest

bUfl U 0). It remains to prove that pIgU: gU p(U) is a bijection (for
we already know that plgU is an open continuous map). If u E U, then u and
gu lie in the same orbit, for every g 6, and so p(gu) = p(u); hence pIgU is
surjective. If p(gu) = p(gv), where u, v E U, then there exists h E G with gu =
hgv; hence gU fl hgU 0, a contradiction. Therefore is an injection.
We have proved that (X, p) is a covering space of X/G.

Now G Cov(X/(X/G)) because each g G may be regarded as a homeo-
morphism of X with pg = p. As the fiber over is {gx: g e 6) (where p(x) =
it follows that G, hence Cov(X/(X/G)), acts transitively on the fiber. By
Theorem 10.18, (X, p) is regular.

(ii) This follows at once from Theorem 10.52.
(iii) This follows at once from Corollary 10.29. 0

10.29. Let X be connected, locally path connected, and semilocally 1-connected, let
(A', p) be its universal covering space, and let G and H be subgroups of
Cov(Z/X). Prove that G c H if and only if(X/G, v) is a covering space oIA'/H,
where v sends G-orbits of elements of A' into H-orbits.

10.30. (i) If a group G acts properly on a space X, then G acts without fixed points;
that is, ifg e G and g 1, then g has no fixed points.

(ii) If X is HausdoriT, G is finite, and G acts on X without fixed points, then
G acts properly on X.

10.31. If G is a topological group, then every subgroup H acts on G by left translation:
if h e H and x e G, then h: x '—. hx. Prove that if H is a discrete subgroup, then
H acts properly on G. (Hint: See the proof of Theorem 10.2.)

'10.32. (i) For every p � 2, show that the action of Z/pZ on S3 giving lens spaces
L(p, q) (Example 8.22) is proper.

(ii) Show that S3 is a universal covering space of L(p, q) for all q and that
ir1(L(p, q)) Z/pZ. -

(iii) Show that L(p, q) is a compact connected 3-manifold.

10.33. Let G be a group. If there exists a tree T on which G acts properly, then G is
free. (Hint: T —. T/G is a universal covering space.)

Remark. The theory of groups acting on spaces in a rich one; we recommend
[Bredori] to the interested reader.



CHAPTER 11

Homotopy Groups

Sinceaclosedpathf: (I, I)-.(X, x0)canbeviewcdasamap(S', l)—.(X, x0),
one may view ,r1(X, x0) as (pointed) homotopy classes of (pointed) maps from
S' into X. It is thus quite natural to consider (pointed) maps of S into a space
X; their homotopy classes will be elements of the homotopy group ltN(X, x0).

This chapter gives the basic properties of the homotopy groups; in particular,
it will be seen that they satisfy every Eilenberg—Steenrod axiom save excision.

Function Spaces

We shall soon be examining subspaces of the space of all paths in a space, so
let us begin by looking at function spaces.

Definition. If X and Y are topological spaces, then XT is the set of all
continuous functions from Y into X. The compact-open topology on is the
topology having a sub-basis consisting of all subsets (K; U), when K is a
compact subset of Y, U is an open subset of X, and

(K; U) = {fE XT:f(K) c U}.

A typical open set in is thus an arbitrary union of finite intersections
of sets of the form (K; U).

Although there are other topologies one can give X', we shall always
consider it topologized with the compact-open topology. We remark that the
compact-open topology does arise naturally. For example, if X is a metric
space, then the compact-open topology on XT, for any space Y, is precisely
the topology given by uniform convergence on compact subsets (see [Munkres
(1975), p. 286]).
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Let X, Y, and Z be sets, and let F: Z x Y —. X be a function of two variables.
If we fix the first variable, then F(z, ): Y —. X is a function of the other
variable; let us write instead of F(z, ). Thus F determines a one-parameter
family of functions F determines a function F': Z —,
Hom(Y, X) by F'(z) = (where Hom(Y, X) denotes the set of all functions
from YintoX).

Definition. If F: Z x Y X is a function, then its associate is the function
F': Z Hom(Y, X)defined by F'(z) = y)).

Note that F can be recaptured from its associate F': if G: Z — Hom(Y, X),
define Z x Y X by y) = G(z)(y). Indeed Fi—.F' is a bijection
Hom(Z x Y, X) —' Hom(Z, Hom(Y. X)) with inverse Gi—' (this is called
the exponential law for sets because it becomes Xz )' = (X)')z if one uses
exponential notation). A decent topology on function spaces (the set of all
continuous functions) should give analogous results.

There is another obvious function in this context.

Definition. If X and Y are sets, then the evaluation map e: Hom( Y, X) x Y —' X
is defined by

e(f, y) = f(y).

Theorem 11.1. Let X and Z be topological spaces, let Y be a locally compact
Hausdorff space, and let XT have the compact-open topology (as usual).

(i) The evaluation map e: XT x Y —. X is continuous.
(ii) AfuncuonF:Z x Y—X is continuous if and only if its associateF': Z—XT

is continuous.

PROOF. (I) Let (f, y) XT x Y, and let V be an open neighborhood of 1(y) in
X. Since I is continuous, there is an open neighborhood W of y with f( W)
since Y is locally compact Hausdorfi there is an open set U with U compact
such that x €U U W. Now (U; V) x El is an open neighborhood of(J y).
lf(f', y') e (U; V) x U, then e(f', y') = f'(y') Ef'(U) c f'(U) c V, as desired.
Therefore e is continuous.

(ii) Assume that F': Z —, X1 is continuous. It is easy to check that F is the
composite

ZxY FXIXYY
since e is continuous, it follows that F is continuous.

Conversely, assume that F is continuous. Observe first that if z Z, then
y) is a continuous map Y —i Z x Y and F2 = F o 1,; it follows that

each F2 is continuous and that the target of F' is indeed X1 (not merely
Hom(Y, X)).

It suffices to prove that if z E Z and (K; U) is any sub-basic open neighbor-
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hood of F#(z) = then there exists an open neighborhood V of z with
F(V) c (K; U). Now e(K; U) means that F(z, y) e U for every K;
equivalently, F({z} x K) U; continuity of F says that F'(U) is an open
subsetofZ x Y. HenceF1(U)1l(Z x K)isanopensubsetofZ x Kcontain-
ing {z} x K, and the tube lemma (Lemma 8.9') gives an open neighborhood
V of z with V x K It follows that F'(V) (K; U), as desired. 0

Corollary 11.2. Let X and Z be spaces, and let Y be locally compact Hausdorff.
A function g: Z X1 is continuous if and only tf the composite e o (g x 1) is
continuous.

ZxY e

PROOF. If.this composite is denoted by F, then g is just its associate F'. 0

Remember the following commutative diagram:

F x 1ZxY

A thorough treatment of function spaces proves the exponential law: if
X, Y, Z are spaces with Y iocally compact then F'—' F# is a
bijection Xz'( —' with inverse G i—' indeed this bijection is a homeo-
morphism.

Homotopy fits nicely into this setting. Assume that f, g: Y -+ X are homo-
topic maps, where Y is locally compact Hausdorif. For this remark, let a
homotopy be a continuous function F: I x Y —' X with F0 = f and F1 = g
(usually, the domain ofF is Y x 1). The associate F' ofF is a continuous map
F#: X1'; that is, F' is a path in fromf tog. Conversely, every path in
XT determines a homotopy. It follows that the homotopy classes are the path
components of [Y, XJ = ir0(X1).

Group Objects and Cogroup Objects

From concrete point-set topology, we now pass to categories. As we are
interested in the homotopy category (actually, a category with com-
plicated morphisms, this abstract approach is probably the simplest.

Definition. An object A in a category is an initial object if, for each object
X in there exists a unique morphism A —' X. An object Z in %' is a terminal
object if, for each object X in there exists a unique morphism X —' Z.



Group Objects and Cogroup Objects 315

It is plain that any two initial objects in a category, if such exist, are
equivalent; similarly, terminal objects are unique. One can thus speak of the
initial object and the terminal object (if either exists).

EXAMPLE 11.1. In the category Sets, the empty set 0 is the initial object and
a singleton set is the terminal object.

11.2. The category of nonempty sets has no initial object.

EXAMPLE 11.3. Let Sets1, be the category of pointed sets. If {.} is a singleton,
then A = ({*}, *)is both an initial object and a terminal object. (An object
that is both an initial object and a terminal object is called a zero object.)

EXAMPLE 11.4. In Groups, the group of order I is a zero object.

One can give a formal definition of duality in a category (we shall not do
so). Suffice it that the dual of a commutative diagram is the commutative
diagram obtained by (formally) reversing each of its arrows; the dual of an
object that is defined by diagrams is the object defined by the dual diagrams.
Thus initial and terminal objects are dual; another pair of dual notions is
product and coproduct.

Definition. If C1 and C2 are objects in a category, then their product is an
object C1 x C2 together with morphisms C1 x C2 —' C1, for I = 1, 2, called
projections, such that, for every object X with morphisms q1: X —. there
exists a unique morphism 0: X —+ C1 x C2 making the following diagram
commute:

Cl x C2

2

The map 0 is denoted by (q1, q2).

In the case of Sets, products are the usual cartesian products equipped
with the usual projections onto the factors, and (q1, q2): xi—' (q1(x), q2(x)).
In particular, if C1 = C2 = C, say, then la): C —. C x C is the diagonal
xi—.(x, x). In general, define the diagonal Ac: C —, C x C by = 'a).
Also, note that (pi, P2) =

Definition. If C1 and C2 are objects in a category, then their coproduct is an
object C1 C2 together with morphismsj1: C1—' C1 JI C2, for i = 1,2, called



316 11. Homotopy Groups

injections such that, for every object X with morphisms C1—' X, there exists
a unique morphism 9: C1 jJ C2 —. X making the following diagram commute:

C1 IL C2

NNv%
The map 0 is denoted by (k1, k2).

In the case of Sets, coproducts are just disjoint unions equipped with the
usual inclusions into the separate pieces, and (k1, k2) is the function whose
restriction to C1 is k1 for I = 1, 2. In particular, if C1 = C2 = C, say, then

ic): C fl C —, C maps each of the two copies ofanyc e Cto this map
is often called the folding map. In general, define the codiagonal Vc: C IL C -, C
by = la). Also, note that (Jj'i2) =

Theorem 113.

(i) Let C1, C2 be objects in a category in which C1 x C2 exists. Then, for every
object X, there is a natural bijecrion

Hom(X, C1) x Hom(X, C2) Hom(X, C1 x C2).

(ii) Let C1, C2 be objects in a category in which C1 C2 exists. Then, for every
object X, there is a natural bijection

l-Iom(C1, X) x Hom(C2, X) Hom(C1 C2, X).

PROOF.(i)DefineafunctionHom(X, C1) x Hom(X, C2)-. Hom(X, C1 x C2)
by sending the ordered pair into the unique morphism (also denoted
by (f1,f2)!) which is guaranteed to exist by the definition of product. Defme
a function in the reverse direction as follows: to g: X —+ C1 x C2 associate the
ordered pair (p1g, p2g), where p1: C1 x C2 C, is the projection (for i = I, 2).

it is easy to check that these functions are inverse, hence both arc bijections.
The check of naturality is also left to the reader if h: X Y is any morphism,
then the following diagram commutes:

Hom(X, C1) x Hom(X, C2)-' Hom(X, C1 x C2)

1h1

Hom(Y, C1) x Hom(Y, C2) -' Hom(Y, C1 x C2).

(ii) This proof is dual to that in the first part. 0
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The notation (f1 '12) for the morphism X C1 x C2 (or for C, C2 -+ X),
though awkward in the proof of Theorem 11.3, is now seen to be convenient.

EXERCISES

11.1. (i) Let C,, C, be sets. Define a new category as follows: its objects are all
ordered triples (X, q,, q,), where X is a set and q1: X —. C,(fori = I, 2)is a
function;amorphism0:(X, q1, q,)—.(Y, r1, r,)isafunction9: X Ymak-
lug the following diagram commute:

C, C,;

composition is ordinary composition of functions. Prove that (C, x C,,
Pi' P2) is a terminal object in

(ii) Given sets C,, C,, construct a category in which their coproduct is an initial
object

11.2. in Ab, show that product and coproduct coincide (C, x C2 = C, C, =
C, JI C,). In Groups, show that product is direct product and that coproduct
is free product (and so product and coproduct are distinct).

* 11.3. (i) In Sets, and Top,, consider the objects (A,, for i = 1, 2. Their product
is (A, x (a,, a,)) and their coproduct is the wedge (A, v A,, .), where
* is the pair (a,, a,) identified to a point.

(ii) In Top,, show that A, v A, is homeomorphic to the subset (A1 x {a,})U
((a,) x A,) of A, x A2. (In general, the coproduct cannot be imbedded in
the product; for example, if A, and A, are finite groups with more than one
element, then their free product (coproduct in Groups) is infinite while their
direct product (product in Groups) Is finite.)

11.4. If products exist, then the associative and commutative laws hold similarly for
coproducts. (Warning: One needs an extra diagrammatic axiom to deduce the
generalized associative law from the associative law three terms.)

'11.5. (i) If C, x C, and D1 x 1,2,
then there is a unique morphism x f,: C, x C2 —. x D, making the
diagrams (for i = I, 2) commute (unlabeled arrows are projections):

C,xC,
f,xf2 'D,xD,

(ii) There is a dual constructionf, flf,: C, C, —, D, JI I),.
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11.6. (i) if X —'C1 are morphisms fort = 1,2, prove that

(q1, q2) = (q, x

(ii) If —. X are morphisms fort = 1,2 prove that

(Ic1, Ic2) — jj k2).

(iii) If A and B are abelian groups and 1' g e Hom(A, B), then

A x B A B A Ii B.

and I + g = V,(f x

91.7. (I) If Z is the terminal object in a category and if X is any object in
then X x Z is equivalent to X via the projection X x Z X. (Hint: Let

x Z-.X and q:X x Z—.Z be the projections, andlet
where oi: X -. Z is the unique morphism in Hom(X, Z). Then A0 = and

the latter equality arising from the fact that both morphisms
complete the diagram

XxZ

X\i/Z.
XxZ

where is the unique morphism X x Z -. Z.
(ii) LI A is an initial object, then A Jj x is equivalent to X via the injection

X -. A JJ X.

The axioms in the definition of a group can be rewritten so that they become
assertions that certain diagrams commute! There are two reasons for doing
this: one can consider "group-like" objects in a category; one can reverse
arrows to obtain the dual notion of "cogroup".

Definition. Let be a category having (finite) products and a terminal object
Z. A group object in is an object G and morphisms p: G x G -. G (called
multiplication), r: G -. G, and e: Z -. G such that the following diagrams
commutc(themorphismsfx gand(f,g)aredeflnedin Exercises 11.Sand
11.6).

(I) Assoclathity:

GxGxG IXPGG
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(ii) Identity:

&x1GxZ ZxG

and p are the equivalences of Exercise 11.7(i) namely, the projections
t:G

x G G

I

G —, Z is the unique morphism to the terminal object.

It is easy to see that a group object in Sets is a group and that a group
object in Top is a topological group. In bTop, the weaker notion of a space X
equipped with p and e satisfying condition (ii) is an H-space.

Here is the dual of a group object.

Definition. Let be a category having (finite) coproducis and an initial object
A. A cogrotip object in %' is an object C and morphisms m: C —' C C (called
comultiplication), h: C —, C, and e: C —' A, such that the following diagrams
commute (the morphism I is defined in Exercise 11.5).

(i) Co-assoclativity:

dc
nil

CJJC mfll'

(ii) Co-identity:

CIIA
Ijje efll

AJIC.
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(iii) Co-inverse:

c (1,h) (h,1), c

e

Im

e

where A —, C is the unique morphism from A to C.

We shall see that suspensions lead to cogroup objects in
Recall that if G is an object in a category then the (contravariant) functor

Hom( , G): %' —* Sets is defined on morphismsg: X Yasg*: Hom(Y, G)—i
Hom(X, G), where Similarly, (covariant) functor Hom(G, ):

Sets is defined on g as Hom(G, X) —. Hom(G, Y), where
When we say that Hom( , G) takes values in Groups, then it follows, of

course, that Hom(X: G) is a group for every object X and g* is a homo-
morphism for every morphism g; a similar remark holds if Hom(G, ) takes
values in Groups.

Theorem 11.4. Let be a category with (finite) products and a terminal object.
An object G in is a group object in tf and only Hom( , G) takes values
in Groups

In this case, the multiplication

Hom(X, G) x Hom(X, G) Hom(X, G)

is given by

(f, g),

where z is the multiplication on G and (f, g): X —+ G x G is the morphism of
Theorem 11.3(i).

PRooF. Assume that G is a group object in By Theorem 11.3(i), we identify
Hom(X, G) x Hom(X, G) with Hom(X, G x G). Define M1 as in the state-
ment. For every fixed object X, apply Hom(X, ) to each of the three
diagrams in the definition of group object. It follows that Hom(X, G) is a
group object in Sets, hence is a group. It remains to show that if h: X —'
then h*: Hom(Y, G) Hom(X, G) is a homomorphism. 1ff, g E Hom(Y, G),
then h*M1(f, g) = h*(,z(f, g)) = p(f, g)h = gh) = p(h*f, h*g) =
Mx(h*f, h*g). Therefore, Hom( , G) takes values in Groups.

Conversely, for each object X, assume that there is some group operation

Hom(X, G) x Hom(X, G) Hom(X, G).

Again, identify Hom(X, G) x Hom(X, G) with Hom(X, G x G), and now
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specialize X to G x G. Thus

MGXG: Hom(G x G, G x G) -. Hom(G x G, G).

Define p E Hom(G x 6, 6) as the image of the identity under the func-
tion M0 x 0 11'lx Hom(X, 6) —. Hom(X, G) is inversion, set X = G and define
'?E Hom(G, G) as qG(1G). Define e e Hom(Z, G), where Z is the terminal object
in as the identity element of the group Hom(Z, G). One can also view e as
an image of an identity morphism. For each object X, Hom(X, Z) is a single-
ton and there is a function Lx: Hom(X, Z) Hom(X, G) whose (unique) value
is the identity element of the group Hom(X, G). Set X = Z, so the unique
element of Hom(Z, Z) is then c =

That G so equipped is a group object in %' can be seen using the Yoneda
lemma, Exercise 9.7. We prove associativity, but the similar proofs of the
commutativity of the identity and inverse diagrams are left to the reader.

By hypothesis, each Hom(X, G) is a group, and the associative law holds
for its multiplication: there is a commutative diagram

Hom(X, 6) x Hom(X, 6) x Hom(X, 6)
X

Hom(X, 6) x Hom(X, 6)

IxMxI IMZ

Hom(X, G) x Hom(X, G)
M1

Hom(X, G).

By Theorem 11.3, we may rewrite this diagram as

Hom(X,GxGxG) M5x1,
Hom(X,GxG)

lxMxI IMX

Hom(X, G x 6) ' Hom(X, G).

One checks easily that there is a natural transformation M: Hom( , G x 6) -.
Hom( , G) with M = (M1), that is, the appropriate diagrams commute.
Write p = MGXG(IGXG)€ Hom(G x G, G). By the Yoneda lemma, Exercise
9.7(iv), for every object X and every morphism 1: X —, 6 x G, one has

(a)

The associativity diagram above can be used to show

M(M x 1) = M(l x M): Hom( , 6 x G x G) -, Hom( , 6)

is a natural transformation. If h: X —' G x G x G. then the Yoneda lemma
gives

Mx(MxX l)(h)=uoh,

where u = MGYG(MGXG x i)(1GxG x eHom(G x G x G, G). Since
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u = MG, G(MGXG(IGXG) x IG)

= MG*G(P X 1G) = x la). by Eq. (s).

Similarly, {M(l x M)]5(h) = v o h, where v = x p). Taking X = G x
G x G and h =

> G' we see that u = v, i.e, p(p x 1) = x p), as desired.
El

Remark. Recall that if p1. p2: G x G —. G are the projections, then =
(PI,P2). Therefore, p = MG G(IGxG) = a(pt,pi); that is, p is the product
(in the group Hom(G x G, G)) of the morphisms and

There is a dual result.

Theorem 11.4'. Let be a category with (finite) coproducts and an initial object.
An object G in %' is a cogroup object in and only Hom(G, ) takes values
in Groups.

In this case, the multiplication

Hom(G, X) x Hom(G, X) Hom(G, X)

is given by

(f, g)i-.(f, g)m,

where m is the comultiplication of G and (f, g): G ft G -. X is the morphism of
Theorem I L3(ii).

PROOF. The argument is similar (dual) to the one just given, but let us describe
the comultiplication of G when Hom(G, ) takes values in Groups. For each
object X, there is a multiplication

Hom(G, X) x Hom(G, X) -, Hom(G, X).

Identify Hom(G, X) x Hom(G, X) with Hom(G jj G, X) as in Theorem
I 1.3(u). Now set X = G ft G, so that

Hom(G ft G, G ft G) Hom(G, G ft G).

Then the comultiplication in: G —. G jj G is the image of 1G II G under

But(j1 sf2) = 'Gil G' wherej1 andj2 are the injections of the coproduct G ft G.
Therefore, m is the product ofj1 and J2 in the group Hom(G, G ft G). D

ExERcisEs

11.8. Prove that a group object in Groups is an abelian group.

11.9. In Sets and in Top, the only cogroup object is 0.

11.10. In Sets,,, and in Tops, the only cogroup object is *.
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* 11.11. (i) Let be a category with (finite) products and a terminal object. If G and
H are group objects in call a morphismf: G -* H special if the following
diagram commutes:

fxf
GxG 'HxH

I I
6 H,

where the vertical arrows are the multiplications in 6 and in H. Show that
all group objects in '€ and all special morphisms form a category. State
and prove the analogous result for cogroups.

(ii) If G and H are group objects in 'i', then Hom(X, 6) and Hom(X, H) are
groups. Show that 1ff: 6—' His special, then f1,: Hom(X, 6) Hom(X, H)
is a homomorphism.

11.12. Prove that every abelian group is both a group object in Ab and a cogroup
object in Ab.

11.13. Prove that every f.g. free group is a cogroup object in Groupa. (One can
dispense with the finiteness hypothesis.)

11.14. Every topological group (with its identity element as bascpoint) is a group
object in blop and in Top,1.

Loop Space and Suspension

The homotopy category bTop is the interesting category for us. It is easy to
see that the empty set 0 is an initial object; because there are no (continuous)
functions X 0 when X is nonempty, there are no cogroups in hTop. If we
consider pointed spaces, however, then we shall see that there are interesting
cogroups in bTop4.

Lemma 11.5, The category blop, has a terminal object and an initial object
(indeed it has a zero object), and it has (finite) products and (finite) coproducts.

PROOF. Let • be a singleton, and let A = (* , i). If X is a pointed space (we do
not display the basepoint), then there is a morphism from X to A, namely,
[f], where 1: X -+ s is the constant map. This morphism is unique, for any
morphism [g]: X —. A is a (pointed) homotopy class of pointed maps g: X
A; but the only such pointed map is the constant map. A similar argument
shows that A is also an initial object, for the only pointed map A —' (X, x0) is
the function taking * to x0.

If C1 and C2 are pointed spaces, let C1 x C2 (with projections p,) be their
product in Top4. We claim that x C2 with projections [ps] is their product
in Let [ft]: X -. C1 be morphisms. In Top4, one can complete the
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appropriate diagram with (fl'f2). Suppose that f' is a pointed homo-
topy X x I C1, for i = 1, 2. Then (F1, F2): X x I -+ C1 x C2 is a pointed
homotopy (f1 It follows that [(f1 ,f2)]: X -. C1 x C2 completes
the appropriate diagram in We Let the reader prove uniqueness of this
morphism. A similar argument shows that C1 v C2 is the coproduct in

0

Notation. A pointed space (X, x0) may be denoted by X if there is no need to
display the basepoint. In particular, if is a singleton, then the pointed space
(*, s) may be denoted by *.

Definition. A pointed space (X, x0) is an H-group if there are continuous
pointed maps p: X x X X and i: X —' X, and pointed homotopies:

P(ix x p) p(jz x (associativity);

lx

wherej1 ,j2: X —' X x X are "injections" defined byj1 (x) = (x, x0) and j2(x) =
(x0, x)

li).
where c: X —. X is the constant map at x0.

Before giving the dual definition, let us agree on notation. As in Exercise
1L3(ii), the wedge X v X is viewed as the subspace X x {x0} U {x0} x X of
the product X x X. If p1: X x X X, for i = 1, 2, are the usual projections
onto the first or second coordinates, respectively, then define "projections"
q1: X v X —, X, for i = 1, 2, by q, = p1JX v X; each q1 sends the appropriate
copy of x e X, namely, (x, x0) or (x0, x), into itself.

Definition. A pointed space (X, x0) is an H-group if there are continuous
pointed maps m: X —' X v X and h: X —, X, and there are pointed homo-
topics:

v m)m (m v lx)m (co-associativity);

q1m

lx)m,

where c: X —, X is the constant map at x0.

Lemma 11.6.

(i) For every pointed space (Z, z0), the maps (11,12) and (q1, q2): Z v Z
Z x Z are equal to k, the inclusion

Z x fz0}U{z0} x x Z.
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(ii) if (X. is an H'—group with coinu!tiplicatu)n m, then the following
diagram commutes to hornotopv (i.e.. commutes in

m XvX

XxX.
(iii) if ( Y. is an H—group, with multiplication p. then the following diagram

commutes to homowpt:

y v V

NYxY Y.
(1

PROOF. (i) Both (JI.j2) and k make the following diagram commute

XvX

XxX
where i1. i2 are the injections; uniqueness gives (jJ.J2) = k.

A similar argument gives (q1. q,) = k. using the diagram

x v X

x x X.

(ii) This follows from q1 in q2m.
(iii) This follows from pj1

Lemma 11.7. The group objects in are the H—groups, and the cogroup
objects in arc the He-groups.
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PRoOF. Suppose that (G, 9o) is a group object in There is a commu-
tative diagram that surmounts the diagram of the identity axiom:

Gx{a} GxG,
[I x eJ

where Lifting to Top,, (1
x A2' The third homotopy in thedefinition exists because

the composite ew in the diagram for inverse must be the constant map G —. G

at g0. Since associativity holds, by hypothesis, G is an H-group.
The routine argument that H-groups are group objects in hTop1, (as well

as the dual result for cogroups and H'-groups) is left to the reader. 0
At last, here are the important examples.

Definition. If (X, x0) is a pointed space, then its loop space, denoted by
cl(X, x0), is the function space

fl(X, x0) = (X,

topologized as a subspace of X' (equipped with the compact-open topology).
One usually chooses w0, the constant path at x0, as the basepoint of fl(X, x0).

Although the loop space does depend on the choice of basepoint, we often
write fiX instead of fl(X, x0).

Theorem I 1.8. Loop space defines a funclor fi: hTop, — hTop,.

PROoF. By Theorem 0.4, it suffices to prove that there is a functor fi: Top, -.
Top, with 10 11 implying flf0 C�f1 (pointed homotopies). 1ff: X —. Y is a
pointed map, define fif: fiX -. flY by where w is a loop in X (at the
basepoint). As fiX is a subspace of X' and uif = f.IQX, it suffices to show
that f, is continuous. Consider the commutative diagram

X'xI f1xI YtxI

1
Ic

x

where the maps e are evaluations. Since I is compact Hausdorif, e and hence
ft are continuous, by Theorem 11.1(i). Therefore e(f, x 1) is continuous, and
so f, is continuous, by Corollary 11.2. That () so defined on objects and
morphisms of Top, is a functor is left as a routine exercise.
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Suppose that F: X x 1 -. Y is a pointed homotopy with F0 = and F1 =
f1. Define 'b: QX x I —. DY by (w, t) i—. F,w. It suffices to prove that (2)
is continuous. Define u:X' xix i—.X' xix I by (0, t, s) '—' (w, s,t) of
course, u is continuous. Consider the commutative diagram:

X'xIxI Y'xI

(exl)uI

F

'

The counterclockwise composite is continuous (since the evaluation is), hence
e('2) x I) is continuous; Corollary 11.2 now gives the result. 0
Theorem 11.9. If (X, x0) is a pointed space, then fIX is an H-group.

PROOF. Define p: (IX x (IX —' (lx by

(w,

where, as usual,

(w(2t)

(w'(2t — 1) � t � 1.
To see that M is continuous, consider the composite

eflXxQXxi
(remember that DX is a subspace of X1). On (IX x DX x [0, this com-
posite is equai to

eX
where is the first projection (IX x (IX —. (IX and q: t i—. 2t. Since this latter
map is continuous, so is e(p x 1); by Corollary 11.2, ,zIQX x (IX x [0, is
continuous. A similar argument shows that x (IX x 1] is con-
tinuous, hence p is continuous (because the two restrictions agree on the
overlap).

Let us prove homotopy associativity. To define G: (IX x (IX x (IX x I —.
QX,itsufficestodefineF:QX x (IX x (IX xix i—'X,tosetG F.and
to check that the image of F in X' actually lies in (IX. Let

w(4s/t + 1) if 0 � s � (t + 1)/4

F(w, w', OH, t, s) w'(4s — r — 1) if(t + 1)/4 � s � (t + 2)/4

Again, Corollary 11.2 shows that G is continuous and hence is a (pointed)
homotopy p(p x I) p(l x 4 (These formulas are, of course, similar to
those that show homotopy associativity of paths.)
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Let w0 be the constant map at x0; we must show that the maps
w'—'w.w0 and pj2: wi-+w0*w are each homotopic to the identity on

QX. Define F: QX x 1-fiX by (cx.,, t)t-iä),, where

(cx(2s/(t + 1)) if 0 � s � (1 + 1)/2
if(t + 1)/2 � s � 1.

Now F is Continuous because e(F x 1) is, and so F is the desired homotopy.
The argument for cot—. w0 * w is similar.

Finally, define fiX —* fiX by w(t)i—+w(1 — t); again, Corollary 11.2 can
be used to prove continuity. Define a horn otopy H: fiX x I —. fiX by defining
K:fZX xix I-. X;let

x0

co(2st)
K(w, t, s)

w(2—2s—t)

x0

Again, continuity is proved by Corollary 11.2; details of the (now familiar)
proofs are left to the reader. Hence w *-+ p(co, is nullhomotopic, and
a similar argument shows that w) is nullhomotopic.

The homotopies are just those that arose in Theorem 3.2; the extra feature
is their continuity as maps of function spaces. Note that we use both * and h:

Tops (not merely Top) is needed so that is defined (the loops must be loops
at the same point); hTop,, is needed so that the axioms for a group object are
satisfied.

Recall that Hom(X, Y) in the homotopy category is denoted by [X, Y].
We use the same notation for Hom(X, Y) in when X and Y are pointed
spaces.

Corollary 11.10. For any pointed space X, [ , fiX] is a (contravariant) functor
from hTop1 into Groups. If Y is a pointed space, and ci [1]. [g] [Y, fiX),
then their product is p([f], [g]) = [fig].
PROOF. By Lemma 11.7, fiX is a group object in Theorem 11.4 shows
that [ , fiX] is group valued; the proof of this last theorem also exhibits the
multiplication in [Y, fiX]. 0

Here is a related construction. Recall that if G: Z —. X1, then Z x Y —' X
is defined by Gt'(z, y) = G(z)(y). In particular, G is a function (even a
bijection)Hom(Z, X') —. Hom(Z x I, X). Let X and Z be pointed spaces (with
respective basepoints x0, z0), and replace X' by its subspace fl(X, x0). This
means that we restrict attention to those G such that G(z0) is the constant
loop at x0 and such that G(z)(0) = x0 = G(z)(l). Therefore, for all z e Z and
all t 1,
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0) = 1) = x0 = t);

that is, sends (Z x I) U x 1) into x0. These remarks suggest the
following definition.

Definition. If (Z, 20) is a pointed space, then the suspension of Z, denoted by
EZ, is the quotient space

= (Z x x I)U({z0} x I)),

where the identified subset is regarded as the basepoint of

There is another notion of suspension in topology, namely, the double cone:
the quotient space of Z x I in which Z x {0} is identified to a point and
Z x { I } is identified to another point.

double cone on Z.

The suspension ZZ just defined is often called the reduced suspension to
distinguish it from the double cone. The picture of ZZ is thus the following
one with all points on the dashed line identified.

(reduced) suspension

Z x 1, denote the corresponding element of by [z, t]. Abuse
notation and write = [z, 0) = [z, 1] = t] for all z E Z and t E I.

Theorem 11.11. Suspension defines a functor Z: —'

PROOF. By Theorem 0.4, it suffices to show that E is a functor on Top1 for
which 10 J implies (pointed homotopies). It is routine to show
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that I is a functor on Top,, for f: Z -. Y, we define If: EZ —. IY by
[z, t] '—. [f(z), t]. That If0 If1 follows easily from Corollary 8.10. 0

One can define a comultiplication, a co-identity, and a co-inverse on every
I(Z, and one can show that IZ is always an H'-group. However, there is
an intimate relationship between I and (they form an adjoint pair of
functors) that will allow us to see this painlessly.

If d is a category, we sometimes write Homd(A, A') to denote the Horn
set in d.

D r itjoa. Let F: and G: d be functors The ordered pair (F, G)
is an adjoint pair if, for each object A in d and each object C in %', there is a
bijection

= C) -. GC),

which is natural in each variable; that is, the following diagrams commute for

(Ff)
C) C)

I! 1:
Homd(A, GC) GC)

C) C')

TI
GC) ' Hom,(A, GC').

In short, r is a natural equivalence _) - G_) (it
one makes the only reasonable definition of a functor of two variables). The
reason for the name "adjoint" is quite formaL If V is an inner product space
and 1ff: V -, V is a linear transformation, then its adjoint is a linear trans-
formation g: V —. V such that (fr, w) = (v, gw) for all vectors v, w E V.

Sets by F = — x Y, and define G: Sets Sets by G Hom( Y, ). For sets
A, C, define Hom(A x Y, C)-i Hom(A, Hom(Y, C)) by G'-.G', the
associate of 6. It is routine to check that ( x Y, Hom(Y, )) is an adjoint
pair.

11.6. Let d = = Top. If Y and C are spaces, then Hom(Y, C) =
CT, and one can use the exponential law to show that ( x Y, ( )") is an
adjoint pair when Y is locally compact Hausdorif.



Loop Space and Suspension 331

EXERCISES

*11.15. Let .& = = Ab. For any abelian group Y, show that (—0 Y, Hom(Y, ))
is an adjoint pair.

11.16. Let F: Ab —, Sets be the forgetful functor (Example 0.8), and let G: Sets —. Ab
be the "free" if X is a set, then GX is the free abelian group having
basis X; if f: X -, Y is a function, then Gf: GX -. GY is the homomorphism
obtained from f by extending by linearity. Prove that (G, F) is an adjoint pair.

•11.17. If (F, G) is an adjoint pair, then F preserves coproducts and G preserves
products.

Exercise 11.17 is a special case of the main property of adjoint pairs: there
is a notion of limit (inverse limit) and colimu (direct limit); if(F, G) is an adjoint
pair, then F preserves colimits and G preserves limits (see [Rotman (1979),
pp. 47, 55]). Examples of limits are products, puilbacks (defined below), ker-
nels, nested intersections, and completions; examples of colimits are coprod-
ucts, pushouts, cokernels, and ascending unions.

Once we recall how suspension arose, the next result is almost obvious.

Theorem 11.12. (L, is an adjoint pair of functors on bTop,.

PitooF. If X and Y are pointed spaces, defme

by [F] [F'], where F' is the associate of F. Now is well defined,
because if H: EX x 1-4 Y is a (pointed) homotopy from F0 to F1, say, then
H': X x I -. flY, if continuous, is a (pointed) homotopy from F to But
Theorem 11.1(u) shows that continuity of H implies that of H'. Each is
a bijection (its inverse is [G] i—. [Gb]); we leave the routine check that the
required diagrams commute to the reader. 0

As we remarked earlier, there arc various consequences of adjointness;
for example, Exercise 11.17 gives E(X v Y) = EX v ZY and Q(X x Y) =
fiX x flY.

Corollary 11.13. IfX Is a pointed space, then EX is a cogroup object in

PROOF. For every pointed space Y, adjointness gives a bijection r =
[ZX, Y] —, [X, flY), namely, where f is the associate off.
Since flY is a group object in [X, flY] is a group. We use r to define
a group structure on [LX, Y): if [f3, [g] e [ZX, Y], then their product is

[p(f', g')J = [f' sg].
Note that is now an isomorphism of groups.

We claim that the functor [LX, ] is group valued; if so, then the result
follows from Theorem 11.4. It remains to prove that if q,: Y —. Y' is a pointed
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map, then is a homomorphism. Consider the commutative diagram (in
the definition of adjointness):

[LX, Y] ' [LX, Y']

TI
[XJIYJ [X,flY'].

Now fir —, flY' is a special map (see Exercise 11.11) because
= for all w, w'eflX. It follows from Exercise 11.11(u)

that is a homomorphism, and the diagram above now shows that
is a homomorphism (because the vertical maps are isomorphisms). 0

Remark. Here is an explicit formula for the comultiplication m: LX —.
v LX. In the proof of Theorem 11.4', we saw that mis the product off1

and J2 in the group [LX, LX v LX]. where j1 and j2 are the injections
LX -, LX v LX. If we regard EX v LX as a subspace of LX x LX (as in
Exercise 11.3), then j1([x, tJ) = ({x. :), s) and j2(fx, t]) = (s, fr But it
was shown in Corollary 11.13 that the product of and j2
Recall that j1": X Q(LX v LX) is given by = ([x, ],.), there is a
similar formula for Therefore,

ç([x, 2t],.) if 0 � t �
m([x, :3) =

((., [x, 2: — 1]) t � 1.

The comultiplication on the suspension LX is thus obtained by "pinching".

In particular, for X = S., the comultiplication m: LS LS v £5. may be
viewed as the map —' v which identifies the equator to a point.

8
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The result linking this discussion to homotopy groups is that ES"
for all n � 0. Explicit homeomorphisms can be given: see [Spamer, p. 42]
or [Whitehead, p. 107], but we prefer another proof that we learned from
M. Ramachandran.

Definition. Let X be a locally compact Hausdorif space, and let x denote a
point outside X. Then the one-point compaclification of X, denoted by

X the topology consisting of all open sets
of X together with all sets of the form (X — K) U }, where K is a compact
subset of X. We choose as the basepoint of

*11.18. The one-point compactification of R' is S for all n � I. (Hint: Stereographic
projection.)

*11.19. IfJ = [0, 1), then I".

*11.20. If X is a compact Hausdorif space and A is a closed subset, then, in Top1,,

X/A

Definition. If X and Y are pointed spaces, then their smash product, denoted
by X Y (some authors write X # Y), is the pointed space

X A Y = (X x Y)/(X v Y)

(where X v Y is regarded as a subspace of X x Y as in Exercise 11.3).

The smash product does depend on the basepoint. For example, if 0 is
chosen as basepoint of I, then I A I is homeomorphic to I x I (one identifies
two adjacent sides of I x I). On the other hand, if is chosen as basepoint of
I, then I A I is homeomorphic to the wedge of four copies of I x I.

Lemma 11.14. If X is a locally compact Hausdorff pointed space, then

EX X A S'.

PROOF. Since X is locally compact Hausdorif, the map I x exp: X x I —.
X x St is an identification, by Lemma 8.9. If v: X x S1 —. X A is the
natural map, then h = v(l x exp) is also an identification (Exercise 1.10). But
it is easy to check that (X x 1)/ker 1* = LX, and so the result follows from
Corollary 1.10. 0
Lemma 11.15. If X and Y are locally compact Hausdorff spaces, then

A x

where, in each case, is chosen as basepoint of the one-point

PROOF. By definition, A = x v Since the numera-
tor is compact and the denominator is closed, Exercise 11.20 shows that
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A is the one-point compactification of x — v But

x x Y)U({cc} x x

while Exercise 11.3 shows that

v = x x {cr}).

Their difference is thus X x Y, as desired. (J

Theorem 11.16. ES" for all n � 0.

PROOF (M. Ramachandran). If n = 0, the result is easy and is left to the reader.
tin> 1, then Exercise 11.18 and the above lemma give

ES" = 5" A S1 = (R")°° A (R" X = = 0

Corollary 11.17. S" is a cogroup object in hTop, for all n � 1.

PROOF. Each such sphere is a suspension. 0

EXERCISES

11.21. ProvethatStm A 1.

11.22. Prove that I" A I where the origin is taken as the bascpoint oil" and 0
is the basepoint oil. (Hint: Use Exercise 11.19.)

Homotopy Groups

For each pointed space X, we know that

= [S'. X],

where (1, 0) is the basepoint of S'.

Convention. For every n � 0, regard = (1,0, ..., 0) E as the basepoint
of S".

Definition. For every pointed space (X, x0) and every n � 0,

x0) = [(5", se), (X, x0)].

We shall usually abbreviate x0) to When n � 2, ,r(X) is called
a (higher) homotopy group. Of course, is a functor with domain

Theorem 11.18. For every pointed space X, ir0(X) is a pointed set, and is
agroupforalln� 1.
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PROOF. That [(S°. 1), (X, x1,)J coincides with n0(X) as defined in Chapter 1 is

left to the reader; the basepoint of n0(X) is the path component containing
the basepoint of X. If n � 1, then the result is immediate from Corollary 11.17
and Theorem 11.4'. 0

What is the product of [f], [g] e if m: S is the comulti-
plication (pinching), then

[1] * [g] = ([f], [g})[m] = [(f, g)m].

Suppose that X happens to be an H-group, with multiplication p: X x X —. X.
Then Theorem 11.4 also equips it,,(X) with a group structure, namely,

[1] ° [g] = [p]([f], [g]) = [p(f, g)J.

Theorem 11.19. If Q is an H'-group and P is an H-group, then the group
operations on [Q, P] determined by the comultiplicatlon m of Q and by the
multiplication p of P coincide.

PROOF. Let f, g: Q -+ P. By Lemma 11.6, the following diagram commutes to
homotopy:

QvQ fvg PvP

_jkN\

QxQ fxg PxP P.

But the multiplication determined by m is [f] * [g] = [(f, g)m] = [V(f v g)m)
(Exercise 11.6), and that determined by p is {fJ o [g] = [p(f, g)] =
[p(f x g)AJ. Hence [f] * [g] = [f] 0 [g]. 0
Theorem 11.20. If X is a pointed space, then

for all 1 � k � n — 1 (where Qk is the composite of fl with itself k times). In
particular, (f n � 2,

PROOF. flR(X) = [SR, X] = [E"S°, X]

= L.�kX] = nIX] = 0
Corollary 11.21. If X is a pointed space, then is abelian for all n � 2.

PROOF. By the theorem, n � 2. But £Y'X is a loop
space, hence is an H-group, and hence is an H-space. By Theorem 3.20,

is abelian. 0
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The lunctors it,, are defined on hTop, (with values in Sets, when n = 0, in
Groups when n = 1, and in Ab when n � 2). Such functors can be viewed as
functors on Top,, which satisfy the (pointed) homotopy axiom: if there is a
pointed homotopy f g of pointed maps, then the induced maps f, and g,
are equal.

If n � 2, it is plain that = 0 means that n,(X) is the trivial group; we
extend this notation to the case n = 1. Also, we write ,t0(X) = 0 to mean that
ir0(X) has only one element (i.e., x is path connected).

The following result is important even though it is easy.

Theorem 11.22 (Dimension Axiom). If X is a singleton, then x.jX) = 0 for all
n � 0.

PROOF. There is only one function from 5" into X, namely, the constant
function, and so [S', XJ has only one clement. 0

There is a down-to-earth description of the multiplication in eschew-
ing functors and cogroup objects, which is a straightforward generalization
of the multiplication in ir,(X). We have already proved (in Corollary 11.13)
that if [f], [gJ E (LX, fl, then their product is [f sg), where f': X —'
(1 is the associate off In more detail, elements of LX have the form [x, t],
where x X and t e 1 1ff: LX -.. Y, then f# is given by f#(x) = f([x, :1);

the star multiplication is the multiplication of paths in the ioop space QY. This
discussion applies to n,(X) = [5', X] upon recalling that S" =

Definifion. Let 1' be the cartesian product of n copies of 1, and let I"
((ri

If n � 1, then Exercise 11.20 shows that (1' — (one-point corn-
pactification). But 1 — 1' R', and (R')° 5'; therefore i'/I' 5"; choose
homeomorphisms 0 = 0,: PIt' 5". If n � 2 we prove that there is a homeo-
morphism = I'/I' ES'' with

q,: [Ii, ..., :,]i—.(O...1[t1, t,],

where [r1, ..., t,J is the image of(t1, ..., t,) in PIt'. Recall the identities I' =
x x I) and x x 1) (I"'/t'') x I, and consider

the diagram

(r1/I'1) x = :' (Fl-i
rxi

= i"iI'

Ox!

= x I S"t x I
=

x I x I)U(S'1 x I)
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where v and are the natural maps. Define h = x 1). Now 0 x I is an
identification, by Lemma 8.9, and so h is an identification, by Exercise ItO.
Corollary 1.10 thus gives a homeomorphism making the following diagram
commute

x I)

x x 1)/ker h), and this says that qr [L
[8[t 'N_Il' t.1. as desired.

Each function f: (Ia. I") (X, x0) induces a pointed map f: P/Is -. X;
moreover, Corollary 8.10 shows that if f, g are two such maps which are
homotopic rd then there is a pointed homotopy f Therefore, there is
a bijection

b: [(IN, ta'), (X, x0)] *), (X, x0)] = x0)

given by {fJ p—. This bijection equips [(Is, Is), (X, x0)J with a group
structure: if f, g: (P. —. (X, x0), define f + g: (I', I') —. (X, x0) by

— if 0 � t, �
(1 + g)(r, —

• ... — I) � t,, �

To see that [f] + [g] defined as [f + g] actually gives a group isomorphic
to x0), it suffices to show that b([f + g]) = b([f])*b([g]). But
b([fJ) = where is defined on all [O[t i,..., E

Our earlier discussion therefore shows that * } corresponds to
and

(fip')t
= ..., ..., —1)

= f([z, en—I' —])

as desired.
If n = 2. we may picture f + g schematically:

0

The following figure in which the shaded regions are constant (from [White-
head, p. 1251) suggests a direct argument, using the above formula for! + g,
that multiplication in it2(X) (and in all higher is abelian.
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Y7//iW///A VJ//A 1 nA I

There are two obvious questions. If X is path connected, are its homotopy
groups independent of the choice of basepoint? If X and Y are path connected
spaces having the same homotopy type, do X and Y have the same homo.
topy groups? As is true for fundamental groups, the answers are positive, but
the proofs are more involved here.

Definition. If X is a space, then a local system of groups is a family of groups
{T(x): x X} and a family of homomorphisms (T(4)): T(q,(O)) —' T(q(l))I
every path q} such that:

(i) jf4 q? ret I, then T(q) = T(ço');
(ii) if 1,,, is the constant path at x, then is the identity map on T(x)

(iii) if q,, are paths in X with q(l) = then

Denote the fundamental groupoid of X (see Theorem 3.2) by fl(X). In
Exercise 3.9, this groupoid was made into a category: define objects to be the
points of X, and define morphisms to be the path classes. A local system is
just a functor T: fl(X) —, Groups (condition (i) guarantees that T is well
defined on morphisms). Since every morphism in fl(X) is an equivalence (the
inverse of [q,J is [q,']), every T(4)) is an isomorphism. We are going to see
that if X is path connected, then there is a local system on X with T(x) =

x) for all x X.

Definition. Let F: P x I -. X be a free homotopy. If 0 = (0, ..., 0) denotes the
origin in P. then = F(0, ) is a path in X; we say that F is a homotopy
along If F(u, t) = (p(t) for all u E then we say that F is a level homotopy
along

There is a retraction

r:P x I—.(P x xl)
(when n = 2, the right side is a box without a top). Regard P x I as imbedded
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in and let p be a point above an interior point of P x { 1 }; for example,
let If yeP xi, define r(y) to be the point where the line
from pto y intersects (P x {O}) U (1 x I). Call r a stereographic retraction.

In a similar manner, one sees that there is a retraction

R:P xix I—.(F xix xix I).
Notation. Let Q(X, x0) denote the set of all maps a: (P, —0 (X, x0).

If is a path in X from x0 to x1, and if a e Q(X, x0), define
L':(I"x {O))U(1 x I)-.Xby

ifuEl'
and

L'(u, t) = if u e 1' and t e I

(the formulas agree on I' x because ix E Q(X, x0)). Then

L = L'r

isa level homotopy along q with L( ,O) = ix (where r: I' x i-. (P x {O})U
(1 x I) is a stereographic retraction).

Definition. If q, is a path in X from x0 to x1, then

Q(X, x0)—o Q(X, x1)

is defined by

,1).

Lemma 11.23.Letoç$eQ(X,x0).

(i) Let ç, be a closed path ut X at x0, and let F: a fi be a level homotopy
along q,. If is nullhomo:opic rd I, then

a $ ret t'.

(ii) Assumethat ço,ço' are pathslnXfromx0tox1andthat F:x
homotopy along (p'. If q, ret I, then

ret I'.

PRooF. (i) Let I x I -. X be a homotopy rd I showing that is null-
homotopic thus, for all t, s E I,

p(t, 0) = 87(t) and p(t, 1) = p(O, s) = p(1, s) = x0.

Define h: (P x I x {0)) U (I' x I x I)-.. X by

h(ut,0)=F(u,t) ifuePandtEI;
h(u,t,s)=j4t,s) ifuEI'andt,s€I
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(note that these formulas agree on the overlap IN x I x (O} because F is a level
homotopy).

Define H: P x Ix 1—iX by H = hR (where R:PxIx 1—.(I' x Ix (O}fli
(IN x I x I) is the retraction defined before this lemma), and define K: P x I —.

Xby

K(u,t)= H(u,4t—l,l)

One checks easily that the formulas agree on the overlaps P x } and
P x Moreover, for u

K(u, 0) = H(u, 0,0) = F(u, 0) = a(u)

and

K(u, l)=H(u, l,O)=F(u, l)=/1(u),

and for u I",

K(u, t) = x0.

(ii) Define K: P x I —' X by

K( t)
— JL(u, 1 — 2:) if 0 � t �

(both formulas agree on (u, with common value 8(u) the map L = L'r
has been defined before this lemma). Now K: ç1(z) fi is a level homotopy
along * q,'. Since s q? is nulihomotopic ret I, the first part gives

0

Theorem 11.24. lix is path connected, then there is a local system T: 11(X) -.
Grasps with T(x) = x,(X, x) for all x X, hence

x0) ltN(X, x1)

for all x0, x1 e X.

PROOF. We have already observed that every homomorphism T(q) in a local
system must be an isomorphism therefore, if q, is a path in X from x0 to x1,
then T(4,): x0) itN(X, x1).

Define T(q)): tN(X, x0) -. n1(X, x1) by

[8)1—' [q,,(a)J.

To see that T(q) is a well defined function, assume that F: ais a homotopy
rd that is, F is a level homotopy along the constant path eat x0. Combining
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F with the level homotopy L: p along (p gives a level homotopy
a along e * (p. Since e * (p ret I, Lemma 11.23(11) gives

ret
To see that T(tp) is a homomorphism, it suffices to prove that * /3)
(a) * ret where /3 Q(X, x11) and q is a path with = x.,,; by

Lemma II .23(u), it suffices to prove that there is a level homotopy a * /3

along If L1: a and L2: 11 are the level
homotopies along q, define G: I" x I .-+ X by

G
fL . . . , t) if 0 � �

(t1,
— — 1, t) � 1.

If = then (t1 , . . . , = (t . . . , ç_1, 1) and (t . . .,

21,, — 1) = (ti, . ., 0) I": it follows that both formulas give the same
value for each t I, namely, q.i(t), and so G is well defined. But G: a*fl

is a level homotopy along p, as desired.
We now verify the conditions in the definition of local system. If (p

p' rd I, then, for all a Q(X, x0), we have a (a) along Lemma II .23(u)
gives rel I", that is, T((p) = T(Ip'). If the constant path at x0,
then e14, (a) hence T(e) is the identity. Finally, if t,1' is a path in X with
ifr(O) = (p(1), then there are level homotopies a along (p and
Ifr#(p#(a)) along Together, there is a level homotopy along
(p * ,fr. Lemma 11.23(11) gives ((p * (a)) rel that is, T(q *

fl

Lemma 11.25. Let f, g: X X be maps, and let F:f g be a free hotnotopy;
x0 a X, denote the path F(x0, ) from f(x0) to g(x0) by (p. Then there is a

commutative diagram

x0)

ltn(X, g(x0)).

PROOF. If a a Q(X, x0), then G: P x I —pX defined by

G(u, t) = F(a(u), t)

is a level homotopy along (p with G:fct ga. By Lemma 11.23(u),
ga rel and this says that the diagram commutes.

Corollary 11.26. 1ff: X Y is a homotopy equiva!evce, then ir,(X, x0)
it,,(Y,f(x0)) is an isomorphism.

PROOF. Repeat the argument of Theorem 3.10, using Lemma 11.25.
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Coroflary 11.27. Let X and Y be path connected spaces having the same
homotopy type. Then, for every x0 e X and Yo E Y,

x0) Yo).

PROOF. If f: X —, Y is a homotopy equivalence, then ir(X, x0) —.

ir,,(Y,f(x0)) is an isomorphism, by Corollary 11.26. But
it,,(Y, Yo)' by Theorem 11.24. 0
Corollary 11.28. If X is contractible, then ,r,(X, x0) = 0 for all n � 0.

PROOF. Immediate from Corollary 11.27 and the dimension axiom, Theorem
11.22. 0

Here is a direct proof of this last result. If X is contractible, then Theorem
1.13 says that every map f: —, X is (freely) nulihomotopic; in particular,
every pointed map f: (Se, -. (X, x0) is nullhomotopic. By Theorem 1.6,
there is a pointed homotopy from f to the constant map at x0, hence (1] = 0
in x0).

Remark. The fundamental group acts on the homotopy groups. If (X, x0)
is a pointed space, if (q,] e ,r1(X, x0), and if ['x] x0), then define
[q,] . [of] = x0), where is the map occurring in the local
system of Theorem 11.24. If n � 2 (so that x0) is an abelian group), then
this action shows that x0) is a x0)-module, where x0)
denotes the integral group ring of the fundamental group. If n = 1, this
action is conjugation by

Call a space X n-almple if the action of n1(X, x0) on x0) is trivial,
i.e., each [q] E irL(X, x0) acts as the identity; simply connected spaces and
H-spaces are n-simple for every n. If X is n-simple, then ((5", sj, (X, x0)] =
[5", X], i.e., the pointed homotopy classes in coincide with the
(unpointed) homotopy classes in hTop. See (Maunder, p. 266].

Theorem 11.29. If(X, p) isa covering space of X, then

—.

is an isomorphism for all n � 2.

PRooF. Recall that if [f] ,r,(g) = [5", g1, then = [pfj. To see that
is surjective, take (f] e and consider the diagram

S.'
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Since n � 2, S'. is simply connected (Corollary 7.6), and so the lifting criterion
(more precisely, Corollary 10.14) provides a pointed map f: SN —' with
pf = f; therefore = [1].

To see that is injective, suppose that [pf] = [p]'1], wheref, SN

are pointed maps. Then pf and the covering homotopy theorem
(Theorem 10.5) says that their liftings are homotopic, that is, [./'J =

0
1'beorem � 2.

PROOF. Since (R, exp) is a covering space of S', Theorem 11.29 applies and
gives ir1(S') for all n � 2. But K is contractible, so that the result
follows from Corollary 11.28. 0

Since iz1(S1) = Z, all the homotopy groups of S1 are known. (One also
knows that ,E'.(SN) = Z for every n � I (see [Maunder, p. 288]).) This is the
exception; one does not even know all ,r,,(SN) for n � 2! (It is a theorem of
Serre that when it is odd, n,,(S") is finite for p n, and when n is even, ,r,(S")
is finite except for p = it and p = 2rz — 1; moreover, is a 1g. abelian
group of rank 1.) The only finite simply connected CW complexes all of whose
homotopy groups are known are contractible.

Theorem 1131.110< q <it, then tq(S") = 0, and #0.

PROOF. By Theorem 7.5, every continuous map f: SN —. S" is (freely) null-
homotopic; now apply Theorem 1.6.

1ff: X .-. Y is (freely) homotopic to a constant, then —'

(homology!) is the zero map for every it > 0. Now the identity map I = 1g..

induces the identity isomorphism on H(S"); since the latter group is
nonzero, I • 0, and so 1 is not (freely) homotopic to a constant; a fortiori,
there is no pointed homotopy from ito a constant. Therefore [1] [SN, SN] =

is nontrivial. 0
EXAMPLE 11.7. There are path connected spaces X and Y having the same
homotopy groups that are not of the same homotopy type; indeed X and Y
can have different homology groups. Let rn> n> 1, let X = x SN, and
let Y = RI" x Stm. Now n1(X) Z/2Z it1(Y) (since n2(RP") Z/2Z, by
Corollary 10.1l),whileirq(X) � 2becauseStm x SNisauniver-
sal covering space of each (so that Theorem 11.29 applies). On the other hand,
if mis even and it is odd, then the Künneth formula (Theorem 9.37) shows that

= 0 # (In Example 11.14, we shall exhibit two spaces with
the same homology groups and with different homotopy groups.)

11.23. If fi: (X, x0) (V. is freely nulihomotopic, then the induced homomorphism
n'.(X, x0) —. RJ,(Y, Yo) is trivial.
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11.24. Prove that if X and Yare pointed spaces, then, for alln � 2,

(direct sum of abelian groups). Conclude that the higher homotopy groups of
the torus are trivial. (Hint: Use Exercise 11.17: Q(X x Y) flX x

11.25. Prove that n,(S") xq(RP") for all q � 2.
11.26. Let X be a contractible locally path connected space, and let G be a group

acting properly on X. Prove that 0 for all n � 2. (Hint: Use
Theorem 10.54.)

11.27. Let X and Ybeobjectsinacategory,andlet sandobebinaryoperationson
Hom(X, Y) such that:
(1) there is a common two-sided identity e E Hom(X, Y), that is, for all

fe Hom(X, Y),

e.f = f.e = I = e of foe;

(ii) for all a,b, c, d e Hom(X, Y),

(a.b)o(c.d) = (aoc).(bed).

Prove that s and o coincide and that each is commutative. (Hint: To show
that f * g = fog, evaluate (fee) * (e o 9) in two ways; to prove commu-
tativity, evaluate (e o g) • (fo e).) Recall that identity (ii) arose in the proof
of Theorem 10.42.

11.28. (1) If Q is an J1'-group and P is an H-space, then EQ. P] is an abelian
group. (Hint: If p: P x P -. P is the multiplication and m: Q -. Q v Q
is the comultiplication, then define [f] *(g] = (p(f, g)] and [f] o (g3
[(f, g)m]. Show that (e) is a common two-sided identity (where e is the
constant map), and condition (ii) of Exercise 11.27 by evaluating
both sides on elements.)

(ii) If X and Y are pointed spaces, prove that [L2X, fl is an abelian group.
(Remark: This gives a second proof of Corollary 11.21. Groups of the form
[LX, Y] are called track group..)

11.29. For every pointed space X, show that there is a homomorphism L:
given by (1] (Xi, is called the

11.30. If X and Y are compact pointed polyhedra, then (Y, xj is countable. (Hint:
Use thesimplicial approximation theorem.) Conclude that for every compact
polyhedron X, is countable for every it � 0.

Exact Sequences

Let (X, x0) be a pointed space, and let A be a subspace of X containing x0 (so
that there is an inclusion (A, x0) c. (X, x0), which is a pointed map). As in
homology, there are relative homotopy groups ita(X, A), connecting homo-
morphisms fla(X, A) -. ir,,_1(A), and an exact sequence
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-. -. —. A)—.

For small n, and A) are merely pointed sets (not groups), so that
we must define exactness again.

Definition. A sequence of pointed sets and pointed functions

(X', L (X, XO)

is exact In Sets, if imf = ker g, where ker g =

If the pointed sets are groups (with identity elements as basepoints) and if
the pointed maps are homomorphisms, then this definition is the usual defini-
tion of exactness. The basepoint, which is often an annoyance, is now essential.

There are computational proofs of the exact homotopy sequence using the
description of as homotopy classes of maps with domain (P. 1)(see [Fuks
and Rokhlin, Chap. 5], [Hilton (1953), Chap. 1V], or [Whitehead, p. 162]).
We present a proof in the categorical style (elaborating the proof in [Dold
(1966)]), which simultaneously gives the exact sequence of a fibration.

The appropriate notion of exactness in hTop, corresponds to a familiar
result in algebra. A sequence

of abelian groups and homomorphisms is exact if and only if the sequence

0 Hom(G, A') —' Hom(G, A) -. Hom(G, K)
is exact for every abelian group G.

Definition. A sequence of pointed spaces and pointed maps

—4 + i K, —+ XA_l

is exact in bTop, if the induced sequence

is an exact sequence in Sets, for every pointed space Z.

Definition. 1ff: (X, x0) —, (Y, Yo) is a pointed map, then its mapping fiber is
the pointed space

Mf= {(x,w)€X x Y':co(O)=y0andw(1)=f(x)}

(the basepoint is (x0, w0), where is the constant path at

The elements of MI are ordered pairs (x, w), where cv is a path in Y from
Yo to f(x). The subspace of Mf consisting of all such ordered pairs of the
form (x0, cv) is just the loop space more precisely, there is an injec-
tion k: C1(Y, Yo) —. Mf given by coi-.(x0, cv). There is also an obvious map



346 11. Homotopy Groups

f': Mf —. X, namely, the projection (x, w)i—' x. Both k and f' are pointed
maps, and there is thus a sequence (which will be seen to be exact in

ftf k 1' 1

The construction of Mf can be repeated for f'; it is a certain subspace of
Mf x X', namely,

Mf'={(x,oi,fl)€XxY'xX':w(O)=y0,w(1)=f(x),
fl(O) = x0, = f'(x, cu) = x};

there is an injectionj: Q(Y, Yo) — Mf' given by

j: cv, p0),

where is the constant path at x0.

Notation. If fi: I —' Xis a path and ifs el, then is the path defined by

= fl(st).

In particular, if fi is a path in X, then

(fi'),(t) = =fl(l — st).

(Note that (f31)1(t) = — = —

we shall use only the former construction

Lemma 11.32. Let f: (X, x0) —s(Y, Yo) be a pointed map, let f': Mf —, X be
the pointed map (x, and let j: fl(Y, yo)— MI' be the pointed injection
coi—+(x0, cv, Then fl(Y, Yo) is a pointed deformation retract of Mf', hence
[jJ: fl(Y, Yo) -. Mf' Is an equivalence in

PROOF. We define a continuous map F: Mf' x I -. Mf' such that

F(x, cv, fi, 0) = (x, cv, fl),

F(x,w,fl, l)ejfl(Y,y0),

F(x0, w0, fib, s) = (x0, (Un, Pb)

for all (x, cv, fi) e Mf' and all s e L Build F in two stages. The first stage F1
merely begins at(x, cv, fi) and ends at (x, W*W1, fi), where w1 is the constant
path at f(x). The second stage F2 is given by the formula

F2(x, cv, fi, s) = (fi(l — s),

It is easy to see that im F2 Mf', that F2(x, cv, fi, 0) = (x, cv * w1, fi), and
that F2(x,w, /3, 1) = (x0, wsf/r', /30)ejfl(Y, Yo)- Hence F defined by F =
F1 * F2 has all the desired properties; in particular, (x0, w0, fib) does stay
fixed throughout the homotopy because = cv0 (equal, not merely
homotopic). 0
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Lemma 11.33. 1ff: X -. Y is a pointed map, then the following diagram Is
commutative in

çjy kIM! 1X 1iY

______

ij

______

11

______ ______

11

Mf 1,.Mf' lMf X Y

where I: QX -. QX is the homeomorphism andj' is defined below.

PRooF. The second square commutes in Top1 (and hence commutes in
recall that k: czp-.(x0, w), where w is a loop in Y at Yo' thatj: coi—.(x0, w, flu,,)
for any path w in Y with = y,, and that f: (x, w, fl)i—'(x, w). A simple
evaluation shows that f'j = k.

Here are the definitions of the maps in the first square. If $ is a loop in X
at x0, then flf: w0, g9, y0) (where is the constant loop at
the basepoint of Mf), and ftm: (x, w, fi, y)i— (x, w, fi) (where)' is a suitable path
in Mf). Hencej(()f): and f'j'i: $—.(x0, w0,

Define F:Q(X,x0)x I—. Mf'by

F(g9, s) = (fl(1 — s),ffi1_,, (fl_1)),

where /3((1 — s)t) and )1(t) = fl(l — st). Note that F is a continu-
ous map taking values in Mf, that F($, 0) = (x0,ffl, fl0), and that F(fl, 1) =
(x0, fi), as desired. 0
Remark. Note that [J] and [j') are equivalences in by Lemma 11.32;
since i is a homeomorphism. [j'i] = [j'J[i] is also an equivalence in

The next result wifl be used in proving that the rows in the diagram of
Lemma 11.33 are exact in

Lemma 11.34. Letf(X, x0)—.(Y, Yo) be a pointed map, and let q: Mf—' Y be
defined by q: (x, w)i—.w(1). Then f is nullhomotopic rd x0 Ef and only jf there
exists a pointed map making the following diagram commute:

Mf

x 1'y.

Paoor. If I is nulihomotopic rd x0, then there is a continuous map
F:X xl—. YwithF(x,O)= y0forallxeX,F(x, 1)= f(x)forallxeX,and
F(x0, t) = Yo for all t 1. Define ço: X -. Mf by
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where F,: I —. Y is given by F,(t) = F(x, t). It is a simple matter to see that
is a pointed map with = f.

Conversely, assume that such a map q, exists thus 4)(x) = (2(x), w,) E
Mfc X x Y'; that p is a pointed map gives = (x0, w0), so that =
wi,, the constant path at Yo; commutativity of the diagram gives w,(1) = f(x).
Define F: X x I — Y by F(x, t) = w,(t). Another simple check shows that F
is a pointed homotopy w0 f. D

Lemma 1135.1ff: X -, Y is a pointed map, then the sequence

MJLXJ-.Y
is exact in

PROOF. Consider the sequence in Sets5 (where Z is any pointed space):

[Z, Mf] [Z, XJ [Z, Y).

The basepoint in [Z, 1') is the class of the constant map, so that the "kernel"
off, consists of all maps h: Z -. X with fh nulihomotopic.

c ken,: Define Mf- M(ff')by
MI x c A' x x )" because if': Mi- Y). It is easy to see that the
diagram

M(ff')

Mf

commutes, hence if' is nullhomotopic, by Lemma 11.34. It follows that ff'g
is nuilbomotopic for every [g] E [Z, Mf], as desired.

ken, c Assume that [g] e EZ, A') and that fg is nullhomotopic,
say, F:fg c rel x0, where c is the constant map at x0. The map Z -.
M(fg) in the proof of Lemma 11.34. namely, = (z, F,), makes the following
diagram commute:

M(fg)

Now M(fg) Z x Y', and it is easy to see that the restriction, call it r, of
g x 1: Z x X x Y' is a map M(fg) -. M(f). Thus rQ: Z —' Mf, and one
sees at once that f'rQ = g. Hence [g] as desired. 0
Corollary 11.36. 1ff: A' —. I is a pointed map, then the sequence

_f- ,f. 1' I—'Mf —'Mf-—s.X-—.Y

is exact in bTop,,.
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PROOF. Iterate Lemma 11.35. 0

Corollary 11.37. 1ff: X -. Y is a pointed map, then the sequence
k

is exact in

PROOF. Consider the diagram in bTop, (of Lemma 11.33):

fiX 'flY 'MI -'X

I I I I I
Mf" 'Mf' iMf 'X

This diagram commutes (Lemma 11.33), the vertical maps are equivalences
(Lemma 11.32), and the bottom row is exact (Corollary 11.36). Apply the
functor [Z, Ito this diagram (for any pointed space Z) to obtain a similar
diagram in A diagram chase shows that the top row is exact in
hence the top row of the original diagram is exact in 0

The next lemma will allow us to extend the sequence of Corollary 11.37 to
the left

Lemma 1 1.3S. If X' -. X —. X" is an exact sequence in then so Is the
"looped" sequence

PROOF. Use the adjointness of (Z, fi): for every pointed space Z, there is a
commutative diagram in which the vertical functions are pointed bijections:

X') XJ - [2Z, X"]

1. 1 I
[Z, fix'] (Z, fix] [Z, fiX'].

The top row is exact, by hypothesis, and so it follows that the bottom row is
exact as well. 0

Theorem 11.39 (Puppe Sequence). 1ff: X -. Y is a pointed map, then the
following sequence is exact in

fl2 Y
k 'X sY

(of course, fl°X = X and X =
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By Corollary 11.37, the sequence

QX-.QY-.Mf--.X-. Y
is exact in and by Lemma 11.38, the looped sequence

112X

is exact in Since these sequences overlap, they may be spliced together
to form a longer exact sequence. The result now follows by induction. 0
Remark. There is another Puppe sequence, dual to this one. A sequence of
pointed spaces and pointed maps

—. xa —. xju_i

is caHed coexact in if the induced (reversed) sequence

is exact in Sets, for every pointed space Z. In place of the mapping fiber Mf
of a pointed map f: X -+ Y, one works with the mapping cone Cf defined as
follows. First define the (reduced) cone cX as the smash product X A 1, and
note that X can be identified with the closed subspace {[x., 11: x 6 X}; then
Cf is defined as the space obtained from Y by attaching cX via f: Cf =
cX Y. One pictures Cf as a (creased) witch's hat:

the cone cX surmounts the 'bnm" Y, and points in the shaded area are
identified by [x, I] = 1(x) for all x e X. (One can show that this geometric
construction corresponds to the algebraic mapping cone given in Chapter 9.)
Using suspension in place of loop space, one obtains the coexact Puppe
sequence (see [Atiyah], [Dyer], or [Spanier, p. 369]):

This sequence is important, but it is less convenient for us than the sequence
we have presented: its various constructions involve quotient spaces instead
of subspaccs, and so all maps and homotopies require more scrutiny to ensure
that they are well defined and continuous.

Corollary 11.40. Let (X, x0) be a pointed space, let A be a subspace of X
containing x0, and let i: A L X be the inclusion. Then there is an exact sequence



Exact Sequences 351

in

—.
(D.k)e)

[S°. O_"(Mi)] —. -

ir1(X) —' [S°, Mi] —' it0(A) —.

PROOF. Apply the functor [S°, ] to the Puppe sequence of the inclusion
1: A c. X, and recall that = 0

This corollary is actually the long homotopy sequence once we replace
the terms [S°. (T�"Mi] [S, Mi] = for n � 0, by something more
manageable. We also want a good formula for the "connecting homomor-
phism" [S°. O!'Mi] —,

Definition. Let (X, x0) be a pointed space. A pointed pair is an ordered pair
(X, A) (often written (X, A, x0)) in which A is a subspace of X that contains x0.

Of course, the inclusion A c-. X is a pointed map when (X, A) is a pointed
pair.

Definition. Let (X, A, x0) and (Y, B, be pointed pairs. A pointed pair map
f: (X, A) -, (Y, B) is a pointed map f: X -, Y with 1(A) c B. 1ff, g: (X, A)-'
(Y, B), then a pointed pair hoinotopy F:f g isa continuous map F: X x I—. Y
with

F(x, 0) = f(x) and F(x, 1) = g(x) for all x X,

F(x0, t) Yo forailt el,

F(A x 1) B.

Definition. If(Y, B) and (X, A) are pointed pairs, then

[(Y, B, Yo), (X, A, x0)]

is the set of all (pointed pair) homotopy classes of pointed pair maps fi:
(Y, B, Yo) .-' (X, A, x0). We often suppress basepoints and write [(Y, B), (X, A)].

There is an obvious basepoint in [(Y, B), (X, A)], namely, the class of the
constant map at x0; thus [(Y, B), (X, A)] may be regarded as a pointed set.

Definition. Let s,, = (1, ..., 0,0) e be the common basepoint of and of
For n � I, the relative homotopy group of the pointed pair(X, A) is

it,(X, A, x0) = [(D', S"', s4_1), (X, A, x0)]

(we usually abbreviate A, x0) to A)).

This definition reminds us of characteristic maps and suggests that CW
complexes are convenient for homotopy theory. Note that ir1(X, A, x0) does
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have genuine interest; for example, ,r1(X, A, x0) = 0 means that every path w
in X with w(l) = x0 and w(0) e A is nulihomotopic in X (by a pointed pair
hornotopy).

Since there is a homeomorphism SR_i) —. (P. 1), one can also describe
1EN(X, A) as [(P. jR), (X, A)]. Moreover, using Corollary 8.10. one sees at once
that horn otopy groups are special cases of relative ones:

[(LY', (X, x0)] = [(D"/S"1, s), (X, x0)] = [(S", s), (X, x0)J = lrR(X, x0).

Therefore one can identify the absolute group x0) with the relative group
lrN(X, x0, x0).

Calling lrN(X, A) a group does not make it one; indeed ic1(X, A) has no
obvious group structure and it is merely a pointed set (with basepoint the
class of the constant function). The next lemma will be used to identify
[S°, (rMi] = [SN, Mi] with A), where i: A X is the inclusion.

Lemma 11.41.2 Let s,, = (I, .. ., 0, 0) and 0 = (0, ..., 0) be points of There
is a continuous map F: x I —' such that

F(z,0)=z
F(u,t)=u
F(0, 1) =

Remark. Thus F is a pointed pair homotopy where = F(z, 1).

PROOF. Regard each point in SR as being connected to 0 by an elastic radius.
The homotopy consists of pulling 0 toward (along the radius). The picture
at time r is thus

Sn

0

Lemma 11.42. Let (X, A) be a pointed pair, and let i: A C-. X be the inclusion.
Then there is a bijection 0 and a commutative diagram

2 Cogniscenti will note that this lemma allows us to avoid reduced cones cS".
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[S°. (r(M,)]

0

A)

wherej5 is induced by the inclusionj: (X, x0, x0) -i (X, A, x0) (after ident (lying
the absolute group x0) with the relative group ir,,÷1(X, x0, x0)) and
d:

PROOF. First, adjointness of (L, aliows us to replace [S°, C�"Mi] with
[5", MIJ. Next, if h: S" —e Mi we must define a map h: S") —' (X, A).
NowMi={(a,cu)eA x X':w(O)=x0andw(l)=a}.HenceforeachueS",
h(u) = (a,,, co,J, where w,, E X' is such that co,,(O) = x0 and co,,(1) — a,, e A; also,
ifs (= s,,)is the basepoint of 5", then h(s) = (x0, w0), where is the constant
path at x0. If p: Mi—. X1 is the projection (a, w)i—.w, then ph: 5"—' X' is a
continuous map; by Theorem 11.1 (ii), the map 5" x 1 —. X defined by (u, t) '—'
w,,(t) is continuous. But each z e can be written z = tu. where t E I and
u E 5", and this factorization is unique for t 0. It follows that there is a
continuous map -. X defined by h(tu) = w,,(t) (note that h(O) is defined
andisx0,becauseh(O) = u,,(0)= x0forallueS").Nowh(u)= co,,(I)= a,,EA,
and h(s) = w0(3) = x0, so that h: 5")—. (X, A)isa map of pointed pairs.
Finally, define 0: [5", MJ —. A) by 0([h]) = [hJ.

We claim that 0 does not depend on the choice of h e [h). Suppose that
h' E [hj and that F: 5" x I —, Mi is a pointed homotopy displaying h h'.
Thus

F(u, 0) = h(u) and F(u, I) = h'(u) for all u

F(.,s)=(x0,w0) forailsel.
For each u e 5" and s I, let the second coordinate of F(u, s) be denoted by
to,,,. As above, each F,: S" —. Mi defines a continuous map F,: 5") —.

(X, A), and hence a continuous map G: LY" x I —. X, namely, G(z, s) =
hence G(z, s) = G(tu, s) = co,,,(t). It is routine to check that G is a pointed pair
homotopy h h'. Therefore 0 is a well defined function.

To show that 8 is a bijection, we construct its inverse. Let fi: (1)"", 5")—.
(X, A) be a pointed map, and assume further that $(0) = x0 (the basepoint of

is not 0 but s,, e 5"). If u 5", define to,, e by w,,(t) = Now w,,(O) =
/1(0) = x0, by our assumption. while w,,(t) = /3(u) E A; thus (/3(u), to,,) E Mi. It
is routine to check that S" —. Mi, defined by to,,), is a continuous
pointed map. Next, if y: (IY'1', 5") .-+ (X, A) is any pointed map, then Lemma
11.41 shows that there is a pointed pair homotopy y and = x0. We
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leave as an exercise that [/1] does not depend on the choice of fi in [fi],
and that both composites of this function with 9 are identities.

Adjointness of Q) gives a commutative diagram:

[S°
((rk).,

[5° [S°. C1",4]

1. 1 1

[Se, [5", Mi] [S", A].

As there are now explicit (and simple) formulas for each function, it is straight-
forward to see that the diagram in the statement commutes. 0
Theorem 11.43 (Homotopy Sequence of a Pair). If(X, A) is a pointed pair, then
there is an exact sequence

d
— —, —, A) —. n,,(X) —'"

Moreover, d: A) x.,(A) is the map [fi] '—' [PIS"], while the other maps
are induced by inclusions.

PROOF. Immediate from Corollary 11.40 and Lemma 11.42. 0
Corollary 11.44. A) isa group for aim � 2, and it is an abehan group for
all it �

The bijection 9: [5", Mi] —. ir,,÷1(X, A) is used to equip A) with
a group structure when [S", Mi] is a group. But [5", MI] = x1(Mi) is a group

0
What is the group multiplication in the relative homotopy group A)?

Recall that 5" P/I", and we saw (just after Theorem 11.22) that one can view
the elements of the "absolute" homotopy group = IS", X] as being
represented by continuous maps f: (P. 1") -. (X, x0). Now and
one can show that elements of A) can be represented by continuous
maps

x I)U(P x A, x0)

moreover, the multiplication (really, addition, since most homotopy groups
are abelian) is the same as in the absolute case:

— Jf(t1, ...g tg,g 2ti,+1) ISO � �
t1, — 1) il4 � � 1.

Theorem 11.45. Letf: (X, A)-.(Y, B) be a map of pointed pairs. Then there is
a commutative diagram with exact rows:
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—. n2(X, A) —. ,t1(X) —. x1(X, A) —. ,r0(A)

1. i I
,z2(Y, B) —, —e it1(Y) —e x1(Y, B) —. ic0(B) -. ir0(Y).

PROOF. The easy verification is left to the reader. 0

11.31. If r: X —. A is a retraction, then there are isomorphisms, for all n � 2,

A).

(Hint: See Exercise 5.14(u).)

11.32. LetBc Ac
(X, A, B)

-. A) —. B).-. ir,(X, B)—. A)-.

(Hint: Use remark (3) after Theorem 5.9.)

11.33. For every pointed space X. X)= Ofor all n � 1.

Fibrations

Covering spaces arose from examining the proof that ,r1(S1) = Z; fibrations
arise from examining a key property of covering spaces (which occurs in other
interesting contexts). It will be seen that determine exact homotopy
sequences (the proof of exactness is an application of the Puppe sequence).
A theorem of Milnor states that there is an analogue of the Eilenberg—
Steenrod axioms for homology that characterizes the homotopy groups.

Definition. Let E and B be topological spaces (without chosen basepoints). A
mapp:E-eBhasthcbomotopylifgproywithrespecttoaspaceXif
for every two maps f: X -. E and G: X x I —. B for which pf Gi (where

i: X—X x Iisthemapxi—i(x,O)),thereexistsacontinuousmapC: Xx I—E
making both triangles below commute.

X "p

Xx('
G

If one defines f: X —e B by f(x) = G(x, 0), then f is a lifting off; if one
defines g: X —. B by g(x) = G(x, 1), then G is a homotopy f g. The map
is a where = 1)is a lifting ofg. Thus, iff g and if
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f has a lifting j then the homotopy can be lifted, hence ghas a lifting with
I
Definition. A map p: E -. B is called a fibration (or Hurewicz fiber space) if it
has the homotopy lifting property with respect to every space X. If b0 e B,
then p'(b0) = F is called the fiber.

We do not assert that different fibers of a fibration are homeomorphic,
because this is not true (Exercise 11.38); however, Theorem 11.47 shows that
all fibers do have the same homotopy type.

EXAMPLE 11.8. Every covering projection p: —' X is a fibration (Theorem
10.5) having a discrete fiber.

EXAMPLE 11.9. ffE = B x F, then the projection p: E B defined by(b, x)i-. b
(where b e B and x F) is a libration with fiber F. To see this, consider the
commutative diagram

X 1'BxF

Xxi B,
G

anddefineC:X x I—B x x F-.F
is the projection (b, x) x.

EXAMPLE 11.10. A fiber bundle p: E -. B with B paracompact is a fibration
(see [Spanier, p. 96J for definitions and proof).

EXERCISES

11.34. If B is a singleton, then every map p: E —' B is a fibration.

11.35. II p: E —. B has the homotopy lifting property with respect to a singleton, then
every path w in B with w(O) e im p can be lifted to E.

11.36. If p: E -. B and q: B—' B' are fibrations, then qp: E —' B' is a fibration.

11.37. 1,2,thenp1 x p2:E1 x E2—'B1 x B2isa
fibration.

11.38. (i) Let E be the (two-dimensional) triangle in R2 having vertices (0,0), (0, 1),
and (1, 0):

E —II, defined by (x, is a fibration. (Hint: 1ff: X —' E
and G: X x I —'1 satisfy p1 = Gi, where 1: xu—.(x, 0), define C: X x I— E
by
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C(x, t) = (G(x, t), min{I — G(x, t), qf(x)}),

whereq: E-+Iisthemap(x,y)i—.y.)
(ii) Show that the fibers in this case are not homeomorphic.

We are going to use the Puppe sequence to show that every fibration gives
rise to an exact sequence of homotopy groups, for virtually all the work has
already been done. Afterward, however, we shall weaken the notion of fibra-
tion, and we shall give a functor-free proof (independent of the next proof)
that there is also an exact sequence in this more general case.

If B is a pointed space with basepoint b0, then every map p: E B can be
viewed as a pointed map lithe basepoint of E is any point in the fiber over b0.

Lemma 11.46. Let p: (E, x0) —. (B, b0) be a fibration with fiber F = p'(b0).
Then F and the mapping fiber Mp have the same homotopy type.

PROOF.3 Recall that Mp = {(x, w) E E x B1: w(O) = b0 and w(l) = p(x)}, and
there is a commutative diagram

Mp
q

where p': (x, w) i—' x, q: (x, w) '—' w, and d: oil—' w(l).
If x e F and w0 is the constant path at b0, then (x, E Mp; define

A: F —' Mp by x 1—' (x, w0). We now construct a homotopy inverse of A. Con-
sider the map G: Mp x I —' B defined by

G(x,co,c)=w(1 —t)

(G is continuous, being the composite of the continuous maps (x, w, t)i—i
(x, w, I — I — — indeed G shows that pp' is nulihomo-
topic.) Since p: E —. B is a fibration, there is a map Mp x I —, E making the
following diagram commute:

Mp

MpxI B.
G

Hence w, 0) = p'(x, w) = x and w, s) = G(x, w, s) = co(l — s) for

3The proolshows that the conclusion holds if p: E —. B has the bomotopy lilting property with
respect to the mapping Aber Mp.
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all (x, w) e Mp and all s e I. In particular, w, I) = w(O) = b0, so that
(x. a,, 1) defines a continuous map y: Mp —' F.

It is easy to see that x 1) is a map F x I —, F (because x 1):

(x, w0(1 — s) = h0) that is a homotopy 1F y).. For the other
composite suppose that there were a map J: Mp x I —. B' such that, for

hasf(x,w,s): — s),J(x,w,O)=w,and
J(x, w, I) = w0. Then (x, w, a, s), J(x, w, s)) is a map Mp x I —, Mp
that is a homotopy 'Mp Finally, one such J is given by J(x, a,, s): t '—'

w(t(l — s)).

Theorem 11.47. Let p: E B be a fibration and let b0, h1 E B. If B is path
conneced, then the fibers (b0) and (b1 have the same hoinotopy type.

PROOF. For I = 0. 1. let Mp denote the mapping fiber of p for the basepoint
e B (our previous notation does not display the dependence on the base-

point). Since B is path connected, there is a path 2 in B from b1 to b0, and it is
easy to see that (e, w)i—'(e. A * w) is a homotopy equivalence M0p — M1 p. The
result now follows from the lemma. 0

Theorem 11.48 (Homotopy Sequence of a Fibration). If p: E —* B isa flbration
with fiber F, then there is an exact sequence

PROOF. By Lemma 11.46, Mp and F have the same homotopy type; by
Corollary 11.26, [Se, Mp] {S", F] for all n � 0. The result now follows by
applying [S°. ] to the Puppe sequence of p (and using adjointness of(Z, Q)).

0

Remarks. (1) Theorem 11.48 implies Theorem 11.29, for a covering projection
is a fibration having a discrete fiber F, hence = 0 for all n � 1.

(2) In view of Exercise 11.24, the exact sequence arising from the projection
of a product onto a factor is not interesting.

There is an unpoirited version of the mapping fiber which is useful.

Definition. Let p: E B be a map. Then the fiber product is the space

Fp= x B':w(l)=p(x)}.

Of course, the mapping fibcr Mp is a subspace of Fp.
The fiber product and the mapping fiber are special cases of a general

(categorical) construction.

Definition. Let p: E B and q: D —. B be morphisms in a category. A solution
is an ordered triple (X,f, g), where f: X E and g: X —* I) are morphisms
such that qg = pf; that is, the following diagram commutes:
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A pullback is a solution (Z, r, s) that is "best" in the following sense: for any
solution (X,f, g), there exists a unique morphism 0: X —. Z giving commu-
tativity of the diagram

1/
E 'B

Pullback is the dual of pushout.

EXERCISES

11.39. If the pullback of iwo morphisms p: E B and q: D —. B exists, then it is unique
to equivalence.

11.40. In Top, the pullback or p: E —. B and q: B'-. B (where q: is Fp.
(Hint: Definer: Fp -. E by(x, w)i—x and 5: Fp -. B' by(x, w)i—"o.)

11.41. For every pointed map p: £ B, show that Mp is a pullback in Tops.

11.42. Define A: E -. Fp by 2(x) = (x, wi), where is the constant path at p(x) define
Fp -. E by (x, 0)u—.x. Show that 1 and that Ap 1, hence ). is a

homotopy equivalence.

11.43. (Hwewicz). Let p: (E, e0) -. (B, b0) be continuous, and define iz: Fp -. B by
(x, a) i—. w(O). Show that n is a fibration with fiber Mp. (Hint: To construct a map

X x I -. Fp, it suffices to find a commutative diagram

Xxi

11.44. Every map h: X —. Y is the composite h = irA, where A is an injection that is a
homotopy equivalence and ir is a Fibration. (Hint: Consider X —. Fh -. Y.)

We merely mention a dual notion (see Dold (1966) for a discussion of the
duality).

Definition. A pair (X, A) has the homotopy extension pioperty with respect to
aspace Yif,foreverymapf:X x {O}—. YandeverymapG:A xl-. Ywith
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G(a, 0) f(a, 0) for every a e A, there exists a map F: X x I —, Y making the
following diagram commute:

xxt
F

XXCO)LJAXI
fOG

The inclusion i: A c-. x is called a cofibration4 if (X, A) has the homotopy
extension property with respect to every space 1'.

EXAMPI.E 11.11. If X is a CW complex and A is a CW subcomplex, then
1: A c-. X is a coflbration (Theorem 8.33).

It can be shown (see [Spaniel, p. 97]) that if g: A -+ X isa cofibration and
if A and X arc locally compact HausdorfL then for every space Y, the map
g: -. is a flbration. In particular, if X is a locally compact CW complex
and A is a CW subcomplex, then the restriction map yx

—, Y4 is a fibration.
We now proceed to the generalized notion of fibration mentioned earlier.

Definitlea. A map p: E -, B is a weak fibration (or Serve fiber space) if it has
the homotopy lifting property with respect to every cube n � O(by defini-
tion, 10 is a singleton).

11.45. isthesetolpositive
integers, define

LU (Ix{l/n})
a. Z•

E -. I, defined by (x, y)p-. x, is a weak fibration. (Hint: One
can cover homotopies G: X x I -. I for every path connected space X.)

(ii) Show that p' (1) and p_I (0) do not have the same homotopy type (Exercise
1.5). Use Theorem 11.47 to conclude that p: E —.1 is not a flbration. (Here

4More generally, one says that any mapg: A -. X (where A is not necessarily a subapace of X)
is a cofibranon if the definition above is modified to read G(a, 0) = f(g(a). 0) for every a E A'.
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is an explicit homotopy that cannot be covered. Let X = p (1), let f: X —,

E be the inclusion, and let G: X x I —. I be a homotopy from the constant
function at I to the constant function at 0.)

Theorem 11.49. A weak fibration p: E B has the homotopy 4fting property
with respect to every CW complex X.

PROOF. Since a CW complex has the weak topology determined by its skele-
tons, it suffices to prove that there exists a map for every n � 0, making
the following diagram commute:

1'
/

///

X X and are appropriate
restrictions. We prove this by induction on n. Let n = 0. For each x
there exists a continuous map {x} x 1 -. E with 0) = f0(x) and =
G0, because p: E B is a weak fibration. Because is discrete, the function

x I -. E given by t) = t) is continuous. Assume now that
n > 0 and that .j: x I E exists; let e be an n-cell in X, and let

(D", (e U be the characteristic map of e. Consider the
diagram

(17 x

17x1 'B,
x I)

where x {0} = jD, and x I = x 1) (note that h is well
defined because the two functions agree on the overlap x {0}). There is
a homeomorphism of the pairs I") and (LV' x 1, 17 x {0} U x 1)
therefore the given homotopy lifting property provides a Continuous map

LV' x I E making the above diagram commute. It is now routine to check
that e x I -. E defined by r) = Ye(U, t), where x and u IV' satisfies

= x, is a well defined continuous function giving commutativity of the
diagram

— I

ëxl iB.
G
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All the maps as e varies over all n-cells in X, may be assembled5 to form
a function x 1—. E with = g,. It is easy to see that
and that makes the appropriate diagram commute; finally, is continuous
because its restriction to every closed cell in x I (namely, i x {O}, e x { I },
and e 1)15 continuous. 0

The proof of the exactness of the homotopy sequence of a fibration p: E —, B
was based on the Puppe sequence of p. The coming proof of the exactness of
the homotopy sequence of a weak fibration p: E —, B with fiber F is based on
the sequence of the pair (E, F), that is, on the Puppe sequence of the inclusion
Ft. E.

Theorem 1150 (Serre). Let p: E —. B bea weak fibrarion with fiber F =
for some b0 B. Then it1(E, F) —. n � I, where
p'j = p andj: (E, x0) (E, F) is the inclusion.

Remark. If n � 2, p, is an isomorphism because p5 is a homomorphism; if
n = I, however, F) has no obvious group structure.

PROOF. An easy induction on n shows that the dashed arrow exists making
both triangles commute (because p: E -. B is a weak fibration)

,/
p,

I" iB.
Suppose that [g) b0); we may regard gas a map of pairs g: (l's, l's)

(B, b0). Choose e0 F and define f: 10 -. E by f(s) = e0. The first paragraph
shows that there exists a map G: —' E with pG = g. Since g(I's) = tb0}, it
follows that G(IR) F, hence G: (l's, l's) (E, F). Therefore [9] e ir,(E, F),
p,,([GJ) = (g], and p5 is swjective.

Assume that f: (DR. S"') —'(E. F) is such that p1 (more precisely, the
map —. B induced by pf) is nullhomotopiq we claim that I is null-
homotopic. There is a homotopy of pointed pairs G: (DR x I, x I)
(B, b0)with G(z, O)= pf(z)and G(z, 1) = b0lorallz D"Considerthediagram

(DR x x J)
h -. E

I

A

D'sxI '8,

A (amdy Ic I} of subsets of a topological spaca X is beaDy finite if each XE X has a
neighborhood meeting only finitely many B,; if each B, is closed, then it is easy to see that B,

is also closed; moreover there is a gluing lemma for a locally finite closed cover of a space.
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where h(z, 0) = f(:) for all z e and h(u, i) = x0. where x0 a F is the base-
point of E, u a Se'. and t I. Note that Ii is well defined (i.e.. li(u, 0) = x0 for
all t) and that the diagram commutes. Since x x

x x I—. Emaking
both triangles commute. The map is easily seen to be a homotopy of pointed
pairs C:f g. where g: —* F. But this says that [f] = [g] is in the image

F) F) under the map induced by inclusion. Since F) = 0.

by Exercise 11.33, ii follows that [f] = 0. as desired.
If,z � 2, then F) is a group and is a homomorphism. The argument

above shows that ker p5 is trivial and so p5 is injective. Finally, let n = I. and
assume that [ft], [12] a ir1(E, F) and that = in ir1(B). For i = I.
2j: (1, I) (E. F) is a path withJ(O) = x0. the basepoint in E; let h = * f2.
Since ph is nulihomotopic. it follows that h is nulihomotopic. But j; *
hence as desired. D

Theorem 11.51. (Homotopy Sequence of a Weak Fibration). Let p: E —. B
he a weak jThration. Choose basepoints x9 a E and h0 = p(x0) a B. so that
F = is the fiber. there is an exact sequence

PRooF. In the exact sequence of the pair (E, F), replace the relative homotopy
group F) with n � the map ir,,(E) is the composite
p'5)5 = p5. wherej: (E, x0) —, (E, F) is the inclusion and p': (E, F) (B, b0) is
the map p regarded as a map of pairs. 0

One needs examples of weak fibrations in order to use this last result. Here
is the most useful generalization of covering spaces.

Definition. A locally trh'ial bundle with fiber F is a map p: E —. B for which
there is an open cover of B and homeomorphisms

V x

for all ye I such that

pp1,.(v, x) = r for all (t'. x) E V x F.

The open sets VE . are called coordinate neighborhoods.

In a locally trivial bundle, all fibers (i.e., all subspaces of E of the form p'(h))
are homeomorphic to F.

EXAMPLE 11.12. Every covering space p: 2 X is a locally trivial bundle. Note
first that the fibers p1(x0), as x0 varies over X, are homeomorphic discrete
spaces, any one of which we may denote by F. Define the coordinate neighbor-
hoods to be the admissible open sets. Thus, if V is admissible and x0 E V. then

= U
6
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where F = and S, is the sheet over V containing y. Finally, define
V x F —' p1(V) by (v, y)i.-.(plS,)'(v); it is easy to see that Pv is a homeo-

morphism and that y) = v.

EXAMPLE 11.13. Let B and F be topological spaces, let E = B x F, and let
p: E —' B be the projection (b, x)i—+b, where b B and x F. Then p: E — B
is a locally trivial bundle. Indeed, p: E -+ B is called a trivial bundle.

Theorem 1132. A locally trivial bundle p: E B with fiber F is a weak
ftbrat ion.6

PROOF. Consider the commutative diagram

1

I
' B.

a

The family of open sets of the form G1 (V), where V ranges over the coordinate
neighborhoods, is an open cover of the compact metric space P4•'. If A is the
Lebesgue number of this cover, then any subset A of P4' of diameter < A lies
in some G'(V), that is, G(A) V. Triangulate P(say, by iterated barycentric
subdivision) so that every simplex has diameter <A/2; choose points
O=t0<z1 <<t,,,=1

that diam(o x [ti, < A for every and every j. It follows that,
for each c and j, there exists a coordinate neighborhood V = with
G(a x [ti, t141J) c V.

Let L denote the simplicial complex of the triangulation of P. and let
denote its k-skeleton. We prove by induction on k � 0 that there exist con-
tinuous maps giving commutativity of

4E

4
x [0, t1J B

and with &k+i extending (we abuse notation and denote restrictions of i,
and G by the same letters).

Let the projections V x F V and V x F —, F be denoted by and
respectively. If e e V (for a coordinate neighborhood V). then =

Since pqy(v, x) = v, however, if follows that = pe;

We remind the reader that a fiber bundle p: E —. B with B paracompact is a libration (Example
11.10).
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hence, for all e E V,

coy(pe, = e.

If u e Vert(L) = then there is a coordinate neighborhood V containing
G({u} x [0, b3]). Define hu: {u} x [0, t1] -÷ V c E by h"(u, t) = t),

f(u)). Now phw(u, t) = G(u, t), while 0) = co3,(G(u, 0), f(u)) =
p1,(pf(u), f(u)) = J(u). Since is discrete, one may glue these maps
together to obtain a continuous map h0: x [0, t] —' E; the induction
begins.

For the inductive step, let o be a (k + 1)-simplex in L, and let V be
a coordinate neigbborhood containing G(cr x [0, ti]). Since o an
obvious modification of a stereographic retraction Jk1'i x I x {0}) U

1 x I) gives a retraction a x [0, -.(a x x [0, t1)). Define

x x

by

x

by
hd(u, t) = t), t)),

for u E 0 and I E [0, ti]. We claim that x [0, t,J = x [0, t1] and
that the following diagram commutes

it
ax[0,tj]

G

Clearly, ph°(u, t) = t), stuff) = G(u, t), so that the lower triangle
commutes. If (u, t) (a x {O})U(d x [0, ti]), then r6(u, r) = (u, t). If (u, t) E

a x then G(u, t) = G(u, 0) = pf(u) and I) = f(u); hence ho(u,t) =
= f(u). If(u, t)e a x [0, ti], then G(u, t) = P&k(U, t)and

t) = hk(u, t); hence, t) = t), t)) = ik(U, 1), as

desired. Since simplexes in L intersect in lower dimensional faces, the gluing
lemma allows us to assemble all the maps to obtain a continuous map
hk+l: L(&+I) x [0, t —+ E, as desired. In particular, for k = n, there is a con-
tinuous map = making the following diagram commute.

P

Px[0,t1J
G

' B.
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Now repeat this construction with [t,, t2] playing the role of [ta, t,] (for
= 0)to obtain a map P x [t1, 12] -. E agreeing with on P x {t1 }. These

maps can be glued together to obtain a map P x [0, 2] —, E making the
appropriate diagram commute. Iterate to obtain = defined on P x
[0, tm] = P x I, as desired. 0

Recall the constructions of complex and quaternionic projective spaces
(Exercises 8.6 and 8.7). There is a map p: -. CP' given by

where = X2j÷j + Also, there is a map q: —, HP' given by

(x1, ..., = (h0, ..., [h0, ..., hj,
where It, is the quaternion x4,÷1 + + x4,÷3j + x4,44k.

Remark. The maps p and q are called Hopf fibr*tions.

Theorem 11.53. The Hopf fibrations p: C?' and q: —, HP are
locally trivial bundles with fiber S' and S3. respectively.

PRooF. We show that p is a locally trivial bundle; the proof for q is similar.
For eachj with 0 �j � n, define

each is open because its complement is the image of a (closed, hence) com-
pact subset of Define qj: x S1 -. p1 c by

çoj([Z0, ..., zn], u) = ...,

A short computation shows that if). e C and A 0, then u) =
u), hence is well defined. Since the inverse of is (easily seen

to be) the map p1 I' x St given by(z0, ..., ..., z,j, it
follows that is a homeomorphism. Since ..., ;], u) = [z0, ..., zj,
it follows that p is a locally trivial bundle. 0
Corollary 11.54.

(i) x,,(S3) all n � 3.
(ii) itn(S4) 1 � n � 6.

PROOF. (i) Recall Exercise 8.2: CP1 S2. Thus p: S3 S2 is a locally trivial
bundle with fiber S' and hence is a weak fibration. Therefore, by Theorem
11.30, = 0 for all n � 2, so that the exact homotopy sequence of a weak
fibration gives for all n � 3.

(ii) Recall Exercise 8.2: HP' S4. Thus q: S7 S4 is a locally trivial bundle
with fiber S3 and hence is a weak fibration. Therefore, by Theorem 11.31,

= 0 for all n � 6, and the result now follows from the exact homotopy
sequence. 0
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Corollary 11.55. n3(S2) 0.

PROOF. n3(S3) n3(S2), by Corollary 11.54, and ir3(S3) 0, by Theorem
11.31. 0

One knows that so that n3(S2) Z.

Remark. There is a nonassociative real division algebra called the Cayley
numbers with additive group R8; it can be used to construct a locally trivial
bundle h: —' S8 with fiber S' (see [Hilton (1953), p. 54] or [Steenrod,
p. 108]) (this map is also called a Hopf fibration).

EXAMPLE 11.14. There are spaces X and Y having isomorphic homology
groups but different homotopy groups (see also Example 11.7).

Let X = S2 v 5' and let Y = CP2. It is easy to see that
all n � 0 = Z for n = 0, 2 4 and H, = 0 otherwise). Since S' is a retract
of X, iz(54) is a retract (direct summand) of n4(X), and so ir4(X) 0. On the
other hand, since there is a locally trivial bundle —. with fiber S1.
Theorem 11.51 yields ltq(CP") for all q � 3 (for flq(S') = 0 for
all q � 2). In particular, ,r4(CP2) ir4(S5) = 0 (Theorem 11.31). Therefore
1E4(X) n4(Y).

Homotopy groups do not behave like homology groups: they need not
vanish in degrees above the dimension of the space. Indeed there is no exact
homology sequence of a fibration, and there is no excision for homoopy
groups. For example, R2 is a covering space of S' x S' with discrete fiber
Z x 7, and exactness of

x Z)—.H2(R2)--.H2(S' x x

would give 0 = H2(R2) H2(S1 x S'), which contradicts the fact that
H2(S' x S1) Z. To see that excision fails for homotopy, it suffices to show
that the Mayer—Vietoris sequence is not exact for homotopy groups. Write
S2 = A° U B°, where A is the complement of the north pole and B is the
complement of the south pole. Note that the equator S1 is a pointed defor-
mation retract of A (1 B (deform along longitudes; as usual, the basepoint is
(1, 0, 0)); it follows that fl B) for all n. The Mayer—Vietoris
sequence in homotopy would say that there is an exact sequence

that is, an exact sequence

—' ir3(S2) —.

Since ,t3(S1) = 0 = it2(S1), there is an isomorphism x3(A) e it3(B) x3(S2).
But both A and B are contractible, hence = 0 (Corollary 11.28),
and this contradicts 0.



368 11. Homotopy Groups

[Milnor (1956), p. 279] shows that there is an analogue for homotopy
groups of the Eilenberg—Steenrod theorem: there is a unique sequence of
functors —. Sets, where is the category of all pointed pairs of topo-
logical spaces, that is, all (X, A, x0), where x0 E A X, which satisfies the
Eilenberg—Steenrod axioms with excision replaced by the exact sequence
of a weak fibration, and with ir0(X, x0) the set of path components of X. Two

comments are needed. First, Milnor calls A0 —' A1 A2 -+ A3 exact in sets if
A0 and A3 singletons implies that f is a bijection (this definition is much
weaker than our definition "exact in Second, the precise statement of
the fibration axiom is: if B0 is a path component of B, if p: E —* is a weak
fibration, and if(B, A) is a pointed pair, then p1,: ir,(E, A) is a
bijection for all n � 1 (Theorem 1 1.51 is the special case B = B0 and A = {x0}).

EXERCISES

11.46. If p: E —. B is a weak fibration with fiber F, then n2(E, F) is an abelian group.

11.47. (I) If q � 3, then it4(CP")
(ii) If q � 4n + 2, then Rq(HP") nq_j(S3).

1148. If p: E —. B is a weak fibration with simply connected fibers, then ir1(E)
n1(B) is an isomorphism.

11.49. Prove that ,t2(S2) Z. (Hint: Use the Hopf libration p: S3 —. S2.)

11.50. Let 0(n) denote the or*hogoual group consisting of all n x n real matrices A
with A'A = E (A' is the transpose of A and E is the identity matrix). If en is the
(column) vector (0, ..., 0, 1), then is a unit vector in and hence lies in

Using the fact (see (Gray, p.89]) that p: 0(n) -+ (defined by A'—.
is a locally trivial bundle with fiber 0(n — I), show that ltq(0(fl — 1)) flq(0(fl))
for q <n — 2. Conclude, for fixed q and m, n � q + 2, that xq(O(n)) x4(O(m)).

* 11.51. If X is a convergent sequence with its limit and Y is a countable discrete space,
then X and Y do not have the same homotopy type (Exercise 1.5), Ha(X)

for all n � 0, and ,r,(X, x0) ,r0(Y, Yo) for all n � 0 and all basepoints
x0 C X afld Yo C Y.

A Glimpse Ahead

In Chapter 4, we constructed the Hurewicz map

ir1(X, x0) -' H1(X)

(singular homology), and we proved in Theorem 4.29 that q' induces an
isomorphism ,r1(X, xo),b H1(X), where ir1(X, xo)$b denotes the quotient
group of ir1(X, x0) modulo its commutator subgroup.

Let A" 5" be the natural map, where we identify 5" with the quotient
space Then is an n-cycle and cis is a generator of H1(S") = Z. If
we regard the elements of x0) as pointed homotopy classes (S", X], then
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the Hurewicz map

,t1(X, x0) —. HN(X)

is defined by Replacing the homology group by the
reduced homology group = H1(X, x0), one sees that is a natural
transformation -+ (both are functors Top,1, —. Ab). Call a space X
n-COnflected if x0) = 0 for all q � n.

Hmewlcz Theorem. If X is an n-connected space with n � 2, then Rq(X) = 0
for all q � n and the Hurewicz map is an isomorphism

x0) RN÷l(X).

A complete proof can be found in [Spanier, pp. 387—400); indeed a more
general version of the Hurewicz theorem for reLative homotopy groups and
relative homology groups is proved there. A shorter proof, but only for CW
complexes, can be found in [Bott and Tu, p. 225], [Maunder, pp. 322—328],
or [Whitehead, pp. 174—180]. Since is (n — 1)-connected, it follows at once
that flR(S) Z (this last isomorphism can be established without the Hure-
wicz theorem: e.g., see [Maunder, p. 288]).

Suppose that X is a CW complex, A is a CW subcomplex, and f: A —, V
is a continuous map. If e is an n-cell in X with é .4, then I è defines a certain
element c(f, e) of ;_1(Y), called its obstruction, and f can be extended to
.4 U e if and only if c(f, e) = 0. If one knew everything about homotopy groups,
then one could see whetherf extends to X by checking one cell at a time. This
same problem leads to cohomology groups H"(X, A; iv,,... 1(Y)) whose coefli-
cient groups are homotopy groups! See [Hu (1959)] or [Spanier, Chap. 8).

A point x0 E X is called nondegenerate if the inclusion {x0} C. x is a
cofibration. By Theorem 8.33, every 0-cell of a CW complex is nondegenerate;
indeed Lemma 8.30 shows that every point in a CW complex is nondegenerate.

Freudentbal Suspension Tbeorem. Let X be an (n — 1)-connected space hat'-
ing a nondegenerate basepoint. Then the suspension homomorphism ltq(X) _4
ltq+1(IX) is an isomorphism for all q � 2n — 2 and is a surjecrion for q =
2n — 1.

For a proof, see [Gray, p. 145] or [Whitehead, p. 369]. Specializing to
X = S" thus relates low-dimensional homotopy groups of and

Here is a theorem with a similar conclusion; it also gives a condition for
excision to hold for homotopy groups.

lUakers-Massey Theorem. Let X = U and let i: (X1, X1 fl X2) C.
(X1, X2) be the (excision) inclusion. If(X1, X1 flX2) is (n — 1)-connected and
(X2, X1 fl X2) is(m — 1)-connected, then i*: ,r4(X1, X1 fl X2) —. 7tq(X, X2) is an
isomorphism for q <m + n — 2 and is a surjection for q = m + n — 2.
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A proof can be found in [Gray, p. 143].

There is a hornotopy analogue of Theorem 8.41. Let X be a path connected
CW complex with CW subcomplex A. If A is k-connected and n1(X, A) = 0,

then ;(X, A) n1(X/A) for all I with 1 � I � k — 1. For a proof of a more
general result, see [Gray, p. 144].

The following theorem indicates the convenience of CW complexes (one
should expect good results because homotopy groups are concerned with
maps S" —* X, relative homotopy groups are concerned with maps (1)", S"') —'
(X, A), and CW complexes are constructed from relative homeomorphisms
(Di, —, (X, A)).

Whitehead Theorem.7 If X ard Y are connected CW complexes, and X —. Y
is a continuous map such that f,1,: ir1(X, x0) —' x,,( Y,f(x0)) is an isomorphism for
all n, then lisa homotopy equivalence (so that X and Y have the same homotopy
type).

Corollary. A connected CW complex X is contractible if and only nN(X) = 0

for all n.

If Y is a one-point space, then the (constant) map f: X —' Y induces iso-
morphisms between the trivial groups and

A proof of Whitehead's theorem is in [Maunder, p. 300]. Note that one
must assume that the isomorphisms are all induced by one continuous map
lest Example 11.7 give a counterexample. One must also assume that both
spaces X and Y are CW complexes: there is an example ([Maunder, p. 301])
of a path connected space X (a certain subspace of R2) that is not contractible
and for which = 0 for all n; also see Exercise 11.51.

There is an inductive way of "killing" homotopy groups that is an iterative
version of the construction of a universal covering space.

Theorem. Given a CW complex X and an integer n, there exists a CW complex
Y containing X as a CW subcomplex such that itq(X) itq( Y) for all q < n and
itq(Y) = 0 for all q � n.

A proof can be found in [Maunder, p. 303]. Using this theorem, one can
prove that if it1, it2, ... is a sequence of groups with ltN abelian for all n � 2
(actually, must be a Zit1-module for all n � 2), then there exists a connected
CW complex X with for all n � 1 (see [Whitehead, p. 216]). Thus
there are simply connected spaces whose higher homotopy groups can be any
preassigned abelian groups. Also, given any integer n � 1 and any group it
(abelian if n 2), there exists a connected CW complex K with IVA(K) = it and

After J. H. C. Whitchead, who invented CW complexes and proved many of the fundamental
theorems about them.
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= 0 for all q n. Such a space K is called an Eilenberg—Mac Lane space,
and it is denoted by K(x, n). If X is a CW complex having a contractible
universal covering space, then Theorem 11.29 show that X is a KØt, 1), where
it is the fundamental group of X; Riemann surfaces are examples of such spaces
X. For a fixed it and n, the Whitehead theorem can be used to prove that any
two K(it, n)'s have the same homotopy type. These spaces arise in studying
(contravariant) cohomology theory, for if X is a CW complex and G is an
abdian group, then G) [X, K(G, n)]. Now it follows from Theorem
11.20 that f�K(it, n) "is" K(ir, n + 1). One defines an (1-spectrum as a sequence
of pointed spaces n 0, and pointed maps s,,: EN.,.j such that

[X, —' [X, QEJ,] is a bijection for all CW complexes X. Since QEM
is an H-group, [X, QE,] and hence [X, can be regarded as a group
(indeed as an abelian group). The sequence of contravariant functors [ , Ej
is called a generalized cohomology theory; it satisfies all the Eilenberg—
Steenrod axioms save the dimension axiom, so that it is an extraordinary
cohomology theory. A theorem of E. H. Brown states that almost any extra-
ordinary cohomology theory arises from some (i-spectrum. For a discussion
of these ideas, see [Atiyah], [Dyer], and [Maunder, §8.4).

The homology groups of the Eilenberg—Mac Lane spaces K(ir, 1) are the
object of study of cobomology of groups (see [Brown]). The universal covering
space g of KØt, 1) exists (Theorem 10.38) and is a CW complex (Theorem
10.43). By definition, = 0, while it,(K(it, 1)) = 0 for all n � 2

(Theorem 11.29). It follows from the corollary to Whitehead's theorem that
X is contractible. Now it it1 (KØt, 1)) acts properly on .R, and the orbit space
X/ir is homeomorphic to K(ir, 1) (Lemma 10.49). But if G is an abelian group,
then there are isomorphisms

G) G)

(see [Mac Lane, p. 136]; the groups on the right-hand side are the cohomology
groups of the group it, and these are defined purely algebraically; the groups
on the left-hand side are cohomology groups of the space (with coefficients
in G) and are discussed in Chapter 12).

If X and Y are CW complexes with the same homology groups (H,(X)
H,( Y) for all n) and the same homotopy groups (it,(X) iv,( Y) for all ii), then
do X and Y have the same homotopy type? The answer is "no". However,
two CW complexes have the same homotopy type if and only if they have the
same homology groups, the same homotopy groups, and the same Postnikov
invariants.

After studying the fundamental group and computing it1 (S'), one can prove
the fundamental theorem of algebra; after studying homology, one can, after
computing prove interesting results about euclidean space. In Chapter
12, we shall study cohomology; after computing the cohomology of RP'
mod 2, we shall prove more nice theorems about euclidean space. What are
applications of homotopy groups?

Homotopy theory enters into solutions of problems, but usually not as the
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only ingredient of a proof. A real division algebra is a finite-dimensional real
vector space equipped with a bilinear multiplication having a two-sided
identity element and such that each nonzero element has a two-sided multi-
plicative inverse. Examples of real division algebras are the real numbers,
the complex numbers, the real quaternions, and an eight-dimensional non.
associative algebra called the Cayley numbers. It is a theorem of 3. F. Adams
that there are no other examples. To each element of ir2,,...1 (Se), one can
associate an integer called its 11opi invariant. It was known that if it2,,..1 (Sn)

contains no elements of Hopi invariant one, then there is no real division
algebra of dimension n; Adams proved that such elements exist only if n = 1,
2,4,8; see [Atiyah, p. 137] for a much simpler proof using K-theory. (Unfor-
tunately for our point, there is an equivalent statement involving "cohomology
operations", and Adams' proof contains only a bit of homotopy theory.)

Algebraic K-theory is an area using homotopy theory in an essential way;
here is one version of it. Let be an exact category; that is, is a full
subcategory of Ab that is closed under extensions: if

(1)

is an exact sequence with A, C E then B E Obj(%'). Grothendieck
defined an abelian group as the abelian group having generators Obj(%')
and relations A + C = B if there is an exact sequence (1). Later, in analogy
with topological K-theory, Bass invented a group K1 (v), the Whitehead group,
and he constructed a 5-term exact sequence involving K0(%') and K1(%').
Quillen then constructed groups K1('t') for all I � 0 agreeing with the earlier
groups when i = 0 and I = 1. To %' he first associated a new category the
Q-construction, he then took its classifying space which is a functorial
C W-complex, and then defined

=



CHAPTER 12

Cohomology

Cohomology is a contravariant version of homology. Although it is not
difficult to define, let us first give some background for it.

Differential Forms

Throughout this section, X shall denote an open connected subset of
R a Cm-function if its partial derivatives

exist for all k> 1. The family A(X) of all
on X is a commutative ring under pointwise operations: if cx, 13E A(X), then
cx + 13: x'—' cx(x) + (3(x) and cxj3: xi—. cx(x)/3(x); the unit is the constant function

I.

Definition. hA is a commutative ring with I, an A-module is an abeian group
M equipped with a scalar multiplication A x M -. M, denoted by (a, m) i—. am,
such that the following identities hold for all m, m' E M and a, a', I E A:

(i) a(m + m') = am + am';
(ii) (a + a')m = am + a'm;
(iii) (aa'),n = a(a'm);
(iv) lm = m.

If A = Z, then an A-module is merely an abelian group; if A is a field.
then an A-module is a vector space over A. The ring A itself can be
regarded as an A-module by taking scalar multiplication to be the given
multiplication of A.

Given A-modules M1, ..., forget the scalar multiplication for a
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moment, and form the direct sum of the abelian groups M1, ..., Then
M1 ® is an A-module, called the direct sum, if one defines
a(m1, ..., = (am1, ..., ama). In particular, the direct sum of n copies of
A. denoted by is called a free A-module. If e1 e is the n-tuple having
I in the ith position and zeros elsewhere, then it is easy to see that every
m e has a unique expression of the form

a1€A.

Definition. A subset ..., of is an A-basis if each me has a
unique expression of the form m = Eaibj with a1 e A.

Thus {e1, ..., is an A-basis of Let A = A(X), the ring of
Cr-functions on X c In A(X)°'1, rename e1 as dx1, so that each
m C has a unique expression of the form

m = ; dx1, ; e A(X).

For integration, one needs expressions of the form dx1 dx2 dx,,;
moreover, an expression of the form dx dx should be zero.

Definition. If M is an A-module and p � 0, then the pth exterior power of
M, denoted by NM, is the abelian group with the following presentation:

Generators: A x M x x M (p factors M).
Relations: For all a, a' e A and rn1, m e M,

(a,m1,...,m,+m,...,m,,)=(a,m1,...,m,,...,m,,)
+(a,m1,...,rn,...,m,,) foralli;

(a+a',m1,...,m,j=(a,m1,...,m,,)+(a',m1,...,m,,);
(aa', m1, ..., rn, ..., m,,) = (a, m1,..., a'm,, ..., m,,) for all I;

(a,m1,...,m,,)=0

If p = 0, then A°M = A, and if p = 1, then A'M M. If F is the free
abelian group with basis A x M x x M and if S is the subgroup of F
generated by the relations, then the coset (a, rn1, ..., m,,) + S is denoted by
am1 A A m,,. Thus every element of has an expression (not neces-
sarily unique) of the form A A where aj e A and m/ E M. It is
now plain that NM is an A-module, because we can multiply any element
by a e A (and the axioms will be satisfied).

Observe that m A m = 0 for all m e M. Hence, for in, in' e M,

0= (in + m') A (m + in')

=mA m 1-rn A rn' 1-rn' A rn+ m' A m'

= fll A rn' + m' A in.
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Therefore m' A m = —m A m' for all m, m' e M. A similar argument when
p � 2 shows that interchanging two factors of m1 A A reverses the
sigm

If M = is a free A-module, then is also a free A-module; indeed,

� n} is an A-basis of (see [Greub, p. 105]). Each element of

A A

where and I <12< Furthermore, ifp> n, then
A'M = 0. It follows that a basis of has binomial coefficient ()
elements.

Definition. If X is a connected open subset of R1 and if p � 0, write
= an element a) e is called a differential p-form

onX.

Definition. The exterior derivative _, (X) is defined induc-
tively. If e = A(X), then is a Cm-function, and

d°(cx) = i-i
ifp� 1, thenwetV(X) has the A A dx,,,and

d7(a)) = A dx1, A A dxi.

Note that one can rewrite with subscripts in ascending order by
repeated use of the identities A = 0 and dx1 A = —dxi A dxi.

A connected open set X in W thus determines a sequence of
homomorphisms

moreover, there is a straightforward computation showing that dd = 0. In
other words, this sequence is a complex; its homology groups are called the
de Rham cohomology of X (this discussion can be extended to differentiable
n-manifolds X; see [Bott and Tu] or [Warner]).

Consider the special case n = 3, so that the complex is

If (0 fl°(X), then w = cz(x, y, z), a on X, and

d°w = — dx + — dy + — dz,
ax öy öz

a 1-form resembling the gradient, grad If a) e fl'(X), then a) = dx +
fi dy + y dz, and a simple calculation (using dx1 A dx8 = 0 and A dx1 =
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—dx, A dxj) gives

fop fOy ap\ Oy\

a 2-form resembling curl cu. If w E Q2(X), then w = dy A dz ÷ p dz A dx
÷ p dx A dy, and

leA. Op Ov\d2w=I—+—+—JdxAdyAdz,
\t9x Oy OzJ

a 3-form resembling the divergence, div cu.
These are not mere resemblances. Since Q1(X) has an A(X)-basis

{dx, dy, dz}, d°w is grad cu when co is a 0-form; since fl2(X) has an
A(X)-basis {dx A dy, dy A dz, dz A dx}, d'ni is curl cu when cu is a 1-form;
since Q3(X) has an A(X)-basis {dx A dy A dz}, d2w is div w when w is a
2-form. That d1d° = 0 and d2d1 = 0 are therefore the familiar identities curl
grad =Oanddivcurl=0.

In advanced calculus, a 1-form o, is called closed if dw = 0, and it is called
exact if w = grad for some Ca-function In the language of cohomology,
closed 1-forms are I -cocycles and exact 1-forms are I -coboundaries. The name
"exact sequence" was suggested by this context, because every closed form is
exact if and only if the corresponding cohomology group is zero. Similar
remarks hold for 2-forms and 3-forms.

Consider the special case n =2; the complex of differentials is

If co is a 0-form, then cu is a y), and

Ifcu = P dx ÷ Q dy is a 1-form, then

Ady.

The special case n = 1 is also of interest. If co = x(x) is a 0-form, then
d°w = dx = (dcc/dx) dx.

Each differential p-form w on X has a unique expression

= dx,, A A dx,,,

where 1 � i1 <i2<•" and is a on X. Dif-
ferential forms are required for integration. A singular p-simplex o: A" —, X
determines n coordinate functions y e A", then rr(y) = (y), ..., a,(y)) e
X c Re). Given a p-form co and a singular p-simplex define

f w=J
a
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where w = oJ dxi, . . . if is differentiable and J is the Jacobian
and c,w = 0 otherwise (if p � 2, the right side is a multiple

integral). More generally, if c = E is a p-chain (k, Z), that is, c E
then

Jw=Ekifoi.

Thus every differential p-form w on X defines, via integration, a real-valued
function on In fact, integration gives a homomorphism —.

R), namely, a p-form w defines in Hom(S,(X), R).
There is a generalized Stokes theorem (see [Bott and Tu, p. 31]).

Theorem. If c is a (p + 1)-chain and w is a djferential p-form, then

dw= to.
Jc J&

The classical Stokes theorem is the special case n = 3 and p = 2,

Green's theorem is the case n = 2 and p = I; the fundamental theorem
of calculus is the case n = 1 and p = 0.

Cohomology Groups

For a fixed abelian group G, recall that Hom( , G): Ab Ab is a con-
travariant functor. if p: A -+ B is a homomorphism, then Hom(B, ()
Hom(A, G) is defined by fu-.frp (we have modified our usual notation by
using superscript # instead of i). Also, Hom( , G) is an additive functor,
hence q, is the zero map whenever p is (Exercise 9.12). Recall that differential
forms suggest the functor Horn ( , R), because, as we observed earlier, inte-
gration defines a homomorphism R).

Lemma 12.1. If 8) is the singular complex of a space X, then, for
every abelian group G,

o —' Hom(S0(X), G) -s-. G) Hom(S2(X), G)

is a complex (denoted by G)).

PROOF. For every n � 1,

— — —

Of course, the lemma holds if one begins with simplicial chains or with
cellular chains.

When F is a free abelian group with basis B, then the elements E

Hom(F, G) are easy to describe they correspond to functions B —.6. Plainly,
every homomorphism : F —' G determines the function conversely,
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Theorem 4.1 shows that every such function determines a unique homo-
morphism. In particular, Hom(S,(X), 6) corresponds to 6-valued functions
on the p-simplexes in X.

Some notational changes are needed because of the contravariance of
Hom( , G), for the differentiations in a complex (As, d) must Lower degrees
by 1; for all n, d1: A1 —. Applying Hom( , G) ô) gives

G) Hom(S,(X), 6) 6).-•••.
If we write Hom(S1(X), G) = and d_1, then our notation is con-
sistent with the definition of complex:

—.' A_1_1 t

and (As, d) is a complex all of whose nonzero terms have nonpositive degree.
It is now clear how to define cycles, boundaries, and homology:

H_,(Hom(S,(X), G)) = = ker d_1/im = ker

However, negative indices are inconvenient, and one eliminates signs by
raising indices. Thus we set

= A_1 and 51 = d_1;
that is,

= Hom(S.(X), 6), G) = ker and 5 =
We repeat the definition of 5: if f: —.6 is a homomorphism, then

51(f)

Because the complex G), 5) involves contravariant functors, all
the usual terms acquire the prefix "co".

Definition. Let 6 be an abelian group and let X be a space. If n � 0, then
the group of (singular) n-cochaIn5 in X with coefficients 6 is Hom(S(X), 6).
The group of ecocycles is ker 51 and is denoted by Z(X; G) the group of
iu-coboundarles is mi and is denoted by B(X; 6). The ,th
group of X with coefficients G is

H"(X; 6) Z1(X; G)/B"(X; 6) = ker S/im 511 = ker

An element of H"(X; 6) is a coset + B1(X; G), where is an n-cocycle; it is
called a cobomology class and it is denoted by cis

Theorem 12.2. For each fixed n � 0 and each abelian group G, cohomology is
a contravariant functor

H1( ;G):Top-Ab.
We have already defined If on objects. 1ff: X -, Y is continuous, then

f,: S,(X) —. is a chain map; that is, the following diagram commutes:
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S1(X) —' S1_1(X)

1. 1.'

SN(Y)

Applying the contravariant functor Hom( , G) gives the commutative diagram

Hom(S.(X), G) Hom(SN_l(X), G)

Ji. Ji#

Hom(SA(Y), G) 4 Hom(Sa_i(Y), G)

where f': h—. for every h: —. G. It is easy to see, as in Lemma 4.9,
that f#(ZR(Y; G)) Z"(X; G) and f#(BN(Y; G)) c B(X; G). Hence f in-
duces a homomorphism

f: Ha(Y; G) -. !r(X; G)

by

+ G) r(X; G)

G is a cocycle) that is, cis C'—'cls(Cf.).
It is routine to see that (fg) = g*f* and 1* = 1. 0

Theorem 12.3 (Dimension Axiom). If X is a one-point space, then

H,(X.G)=IG

PRooF. We saw in Theorem 4.12 that every S,1(X) Z, that 4, = 0 when n is
odd, and that 4, is an isomorphism when n is even and positive. It is now an
easy exercise to prove that G) = 0 for all p � 1.

Let us compute H°(X; G). The end of the singular complex is

S1(X) —' S0(X)—.O,

where S1(X) Z S0(X) and 4, = 0. Applying Hom( , G) gives

0 G) Hom(S1(X), G).

Therefore, since A) = 0,

H°(X; G) = ker A) = ker 8, = Hom(S0(X), G).

But Hom(Z, G) G (Example 9.2), so that H°(X; G) 0

Theorem 12.4 (Homotopy Axiom). If f, g: X —. Y are homotopic, then they
induce the same homomorphisms H"( Y; G) —' G) for all n � 0.
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PROOF. In the proof of Theorem 4.23, the problem was normalized to show
that A0, A1: X —. X x 1 induce the same homomorphisms on homology
groups (where A0: x i—.(x, 0) and A1: x —.(x, I)). This last fact was established
by constructing a chain homotopy P = (P.,: SN(X) -. S..,+1(Y)}, that is,

A1,

Applying the functor Hom( , G). however, shows that P' is a chain homo-
topy for )4' and the easy details are left to the reader. 0

We must do a bit of algebra before we can define relative cohomology
groups. The next property of the functor Hom( , G) is called left exactness

Lemma 123. Lee G be an abelian group. If A' A !. A" 0 is an exact
sequence of abelian groups, then there is an exact sequence

0 —. Hom(A", G) —. Hom(A, 0)—' Hom(A', G).

PROOF. p' is injective. Assume that f: A"—. G satisfies 0 p(f) = fp; thus
f annihilates im p. Since p is surjective, I = 0.

imp' ckeri'.lff:A'-.G,thcni'p'(f)=fpi=Obccausepi=O.
ker 1' c im p'. Assume that g: A —, G satisfies 0 = i'(g) gi. Define
A" —, G by g(a) if p(a) = a". Now is well defined, because if

p(a1) = a", then a — a1 e kerp = im i, and so a — a1 = i(a')for some a' E A'.
Therefore g(a—a1)=gi(a')=O, and so g(a)=g(a1). But
since = g(a) for all a A. 0

Even if we assume that i is injective. it does not follow that i' is surjective,
that is, applying Horn to a short exact sequence yields another short exact
sequence. If the short exact sequence is split, however, thcn Exercise 9.13 shows
that it does remain (split) exact after applying Hom( , G).

EXAMPLE 12.1. Let G = Z, and consider the exact sequence

0-. Z Q —+ Q/Z -.0.
Now i': Hom(Q, Z) —. Hom(Z, Z) cannot be surjective, because Hom(Q, Z) = 0
andHorn(Z,Z)=Z#0.

Coroliary 12.6. Let G be an abelian group.

(1) Hom(Z, G) G.
(ii) Hom(Z/mZ, G) G[rn) = {x G: mx = 0).
(iii) Hom(Z/mZ, Z/nZ) Z/dZ, where d = gcd{m, n}.

PROOF. (i) In Example 9.2, we saw that e: f '—.1(1) is an isomorphism
Hom(Z, G) Z G (which is a constituent of a natural equivalence).
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(ii) Apply Hom( , G) to the exact sequence

where the first map is multiplication by m, and the second map p is the natural
map. There is an exact sequence

0—' Hom(Z/mZ, G) —. Hom(Z, G) —' Hom(Z, G).

Hence Hom(Z/mZ, G) im p = ker m#. But is also multiplication by
m, and so the result follows from the commutative diagram

Hom(Z/mZ, G) Hom(Z, G) 'Hom(Z, G)

(iii) This is a consequence of part (ii), because (Z/nZ) [mJ Z/dZ. 0

Corollary 12.7. If A and B are known f.g. abelian groups, then Hom(A, B) is
also known.

PROOF. The fundamental theorem of f.g. abelian groups says that such a group
G is a direct sum

where F is free abeian of finite rank, C, is cyclic of order m,, and m3 1m21 ...
moreover, these summands are uniquely determined to isomorphism. By
Exercise 9.13, both functors Hom( , B) and Hom(A, ) preserve finite direct
sums, hence the determination of Hom(A, B) is reduced to the special case
when both A and B are cyclic, namely, Corollary 12.6. 0

Lemma 12.8. Let G be an abelian group and let A be a subspace of a space X.
For every n � 0, there is an exact sequence of abelian groups

o -, G) -, Hom(S,(X), G) -. Hom(S,,(A), G) 0.

Hence there is a short exact sequence of complexes

o —' G) -, G) G) -'0.

PROOF. By Exercise 5.13, Sfl(X)/Sfl(A) is a free abelian group. Hence 0 -+
SN(A) —. —' S$(X)/SN(A) -.0 is a split short exact sequence (Corollary 9.2
and Exercise 9.10), and so Exercise 9.13(1) shows that the sequence remains
exact alter applying Hom( , G). Finally, Exercise 5.8 shows that the sequence
of complexes is exact. 0

Definition. If A is a subspace of X and if G is an abelian group, then the nth
relative cobomology group with coefficients G is



382 12. Cohomology

H'(X, A; G) = H_, G)).

Recall that —. is defined by c +
+ S,(A). Therefore

H(X, A; G) =

Since there is a short exact sequence of complexes

0-. G) —' Hom(S1(X), G) G) — 0,

Lemma 5.5 applies at once to give a connecting homomorphism

d: H'(A; G) A; G).

Theorem 12.9 (Long Exact Sequence). If A is a subspace of X and if G is an
abehan group, there is an exact sequence

Moreover, the connecting homomorphisms are natural.

PRooIc Theorems 5.6 and 5.7. 0

Theorem 12.10 (Excision). Let X with X = U
Then the inclusion j: (Xi, X1 fl X2) c. (X, X2) induces isomorphisms for all
n � 0,

j': H'(X, X2; G)Z H(X1, X1 flX2; G).

PROOF. The straightforward adaptation of the proof of Theorem 6.17 is left to
the reader. 0

It has now been shown that all the obvious analogues of the Eilcnberg—
Steenrod axioms hold for cohomology.

'12.1. IfGisanabeliangroup, G) fl G),wherethegroup
on the right consists of all elements in the cartesian product under coordinate-
wise addition. (Hint: If the projection EA1 —. Aa is denoted by PA and if
1: -, 6, then f i—'(p1f)is an isomorphism.)

12.2. (i) If {XA: a A} is the set of path components of X, prove that, for every n � 0,

H'(X; G) fl H(XA; G).

(Hint: Use Exercise 12.1.)
(ii) If X is a nonempty path congecled space, then H°(X; G) G.
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12.3. II X and Y have the same homotopy type, then

H'(X; G) W(Y; G) for all n � 0.

12.4. State and prove the Mayer—Vietoris theorem for cohomology.

12.5. Compute H'(S"; G).

If X is a simplicial complex, then the two algebraic modifications (cohomol-
ogy and homology with coefficients) are defined as for the singular theory;
merely replace the complex of singular chains by the complex of
simplicial chains. Similarly, if X is a CW complex, replace by the
complex of cellular chains.

Universal Coefficients Theorems for Cohomology

The homology groups of a space X are defmed in two steps: a topological step
that involves setting up a chain complex in the singular case) and an
algebraic step that associates homology groups to a complex. Since cohom-
ology has been defined by modifying the algebraic half of the construction, it
should not be surprising that there is an algebraic way of relating homology
groups and cohomology groups.

There are two universal coefficients theorems for cohomology: the first
(Theorem 12.11) shows how HN(X; G) is determined by the second
(Theorem 12.15) shows how HN(X; G) is determined by H(X) = H(X; Z).

Just as an investigation of ker(A' ® G —. A 0 G) yields br, so does investi-
gation of coker(Hom(A, G) —' Hom(A', G)) yield Ext.

Definition. For each abelian group A, choose an exact sequence 0-. R F .-.
A —. 0 with F (and hence R) free abelian. For any abelian group G, define

Ext(A, G) = coker 1 = Hom(R, G)/i Hom(F, G).

Now Ext is actually a functor of two variables (having the same variances
as Horn), and it is independent of the choice of presentation 0 R -. F —.A -.0.
The "sophisticated" way we viewed Tor (in Chapter 9) can be adapted to give
the definition of Ext on morphisms; in the discussion there, apply the functor
Hom( , G) instead of the tensor product functor.

(The reader may want a less sophisticated description of Ext(A, G). Let
Z(A, G) be the abelian group of all functions f: G x G -+ A (under pointwise
addition) satisfying the following identities for all x, y, z G:

f(x, 0) = 0 = 1(0, x);

f(y,z)—f(x

f(x, y) = f(y, x).
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Let B(A, G) be the set of all functions g: G x G -. A of the form g(x, y) =
— a(x + y) + ct(x), where G —. A is a function with = 0. Then

B(A, G) is a subgroup of Z(A, G), and it can be shown that Ext(A, G)
Z(A, G)/B(A, G).)

Before we give the basic properties of Ext, we introduce a class of groups.

DefinidoaL An abelian group G is dh'isible if, for every x E G and every integer
n > 0, there exists ye G with fly = x.

EXAMPLE 12.2. The following groups are divisible:

Q R C; S1; Q/Z; R/Z.

Proofs of the following facts can be found in any book on homological
algebra.

[Ext I]. ItO—. A' -. A -. K -'0 is a short exact sequence, then there is an
exact sequence

0-. Hom(A, G) -. Hom(A. G) -. Hom(A', G) -. Ext(A, G) Ext(A, G) -. Ext(A', G) -.0.

(Ext I']. If 0 —. (3' —. G —. 6" —, 0 is a short exact sequence, then there is an
exact sequence

o -. Hom(A. G') -. Hom(A, G) -. Hom(A. G) -. Ezt(A, G) -. ExI(A. G) -. Ext(A, G) -, 0.

[Ext 2]. If F is free abelian, then

Ext(F, G) =0.

[Ext 2']. If D is divisible, then

Ext(A, D) = 0.

If {A1: j e J} is a family of abelian groups, then fl A1 is the abelian group
whose elements are all J-tuples (a1) under coordinatewise addition (thus, A1

is the subgroup of fl consisting of all J-tuplcs with only finitely many
nonzero coordinates). When the index set J is finite, = fl A1.

(Ext 3]. Ext(EAj, G) fl Ext(41, (3).
(Ext 3']. Ext(A, fl G1) Ext(A, Gd).
[Ext 4]. Ext(Z/mZ, G) (3/mG.

Using these properties, one can compute Ext(A, G) whenever A and G are
abelian groups.

Remark. The analogue of [Tor 5] (Tor(A, B) Tor(B, A)) is false for Ext; it
is easy to see that Ext(Z/mZ, Z) Ext(Z. Z/mZ), for example.
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Let A be an abelian group, and let 0—. R —' F —, A —, 0 be an exact sequence
with F free abelian. Since Ext(F, G) = 0, by [Ext 2], the exact sequence given
in [Ext 1] shows that Ext(A, G) coker(Hom(F, G) —, Hom(R, G)); we have
recaptured the definition of Ext.

There is a cohomology version of the universal coefficients theorem
(Theorem 9.32) that shows that the homology groups of a space determine
its cohomology groups; there is also a cohomology version of the Künneth
formula (Theorem 9.37).

We begin by constructing the "obvious" homomorphism fi: G))—.

G), where (Se, ö) is a chain complex and G is an abelian group.
Let q be an n-cocycle, that is, 4) E 6) and 0 = 5(q) = Now
q: —. G and 0 = q(im = Thus induces a homomorphism
S,,/B,, —, 6, and hence a homomorphism q?: = —. G, namely,

Moreover, if is an n-coboundary, that is, p = =
then induces the map; + = = 0 (because; is a cycle).
Thus there is a natural map

6)) —. G))

defined by

II: cis 4)I—i4',

where q'(; + BN) = 4)(z,3.

Theorem 12.11 (Dual Universal Coefficients).

(i) For every space X and every abelian group G, there are exact sequences for
all n � th

0—. 6)—i G) G) —.0,

where fi is the map defined above.
(ii) This sequence splits; that is, there are isomorphisms for all n � 0,

H"(X; G) G) G).

PRooF. One proves a more general result: is a free chain complex, then

HN(Hom(C*, G)) 6) G);

the theorem follows by specializing C,,, to
The proof of Theorem 9.32 can be adapted here: every occurrence there of

the (covariant) functor_ 0 G should be replaced by the contravariant functor
Hom( , G). The appearances of [Tor 1] and [For 2] are replaced by [Ext 1]
and [Ext 2], respectively. D

Corollary 12.12.11 F Is a field of characteristic zero (e.g., Q, R, or C), then, for
all n � 0,

F) Hom(H,,(X), F).
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Paocw. The additive group of a field F of characteristic zero is divisible. By
[Ext 2'], F) = 0. 0

Remark. One often abbreviates the notation for integral cohomology H(X; Z)
to H(X).

ExntclsEs

12.6. Let K be a finite simplicial complex, and ki be its simplicial chain
complex.

(1) Show that (free abelian group).
(Hint: The exact sequenee 0-. Z/B -. CR/B. -, CII/ZI. -.0 splits because
C.IZ,, is isomorphic to the free abelian group

(ii) Show that Z) Ext(H1(K), Z).
(lii) Consider the diagram

C,(K) C,,.1(K)NA
where differs from only in its target, and where is inclusion. If

is free abelian, prove that

r — ün a,' = un but issurjective because its cokernel
is isomorphic to Z), which is zero here.)

12.7. If A is an abelian group, then Hom(A, Z) #0 if and only if A has an infinite
cyclic direct summand. (Hint: Corollary 9.2.)

12.8. Show that H'(S; G) G) for all p � 0 and all n � 0.

12.9. (i) Prove that the direct sum and the direct product of (possibly infinitely
many) divisible groups is divisible.

(ii) Prove that a quotient group of a divisible group is divisible.

1110. Define the cheracter group elan abelian group G,denoted by G', by

— Hom(G, R/Z).

Prove that R/Z)

12.11. If X and Yare finite H'(X x Y).(Hint: Use the Künneth
formula (Theorem 9.37) and the adjoint isomorphism (Exercise 11.15).)

'12.12. (1) Prove that, when niseven,

up —0

H'(RPI = Z/2Z if p is even and 2 � p � n

L 0 otherwise.



Universal Coefficients Theorems for Cohomology 387

If it is odd, show that is as above except for p = n, when
H'(RP) = Z. (Hint: Usc Theorem 8.47.)

(ii) Prove that, for all it � 1,

H'(Rr; Z/2Z)= IZ/2Z ifO � p � it
(0 otherwise.

(This result does not depend on the parity of it.)

Theorem 12.11, the dual universal coefficients theorem, can be extended to
an algebraic Künneth theorem (if and are chain complexes, there is a
standard way of constructing a chain complex Ta)), but this is not
so interesting for us because the Eilenberg—Zilber theorem has no analogue.
Instead we present a purely cohomological universal coefficients theorem
(i.e., there is no mixture of homology and cohomology, as in Theorem 12.11)
and a Künneth formula based on it.

Definition. A chain complex is of finite type if each of its terms is f.g. A
space X is of finite type if each of its homology groups HR(X) is f.g.

Every compact polyhedron, more generally, every compact CW complex,
is a space of finite type; is a space of finite type that is not compact.

Lemma 12.13. If X is a space of finite type, then there exists a free chain
complex of finite type such that C,1 is chain equivalent to S,1(X).

PROOF. Let i',,: ZR(X) — HR(X) be the natural map. Since is f.g., there is
a f.g. subgroup of ZR(X), say necessarily free abelian, with F,:

F denote Define

CR=

and define dR: by

a') = (ci', 0)

for a e FR and a' e For each it, C, is a free abelian group of finite rank;
moreover,

= ker d,/im = = H,(X).

Let us construct a chain map f: —. Since is free abelian,
Theorem 9.1 provides a homomorphism h,: S,+1(X) with ô,+1h,(ci') = a'

for all ci' e Define f,,: C, —' S,,(X) by

f,(a, ci') = a + h,_1(ci'),

where ci E F, and a' E Now f, is a chain map:

ôf(ci, ci') = a(a + h,_1(a')) = øci + äh,_1(ci') = a',

because ci e F, c Z,(X) and the definition of h,.1. On the other hand,
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fd(rz, = f(a?, 0) =

It follows from Theorem 9.8 that I is a chain equivalence. 0

Lemma 12.14. If C, is a free chain complex of finite type, then there is an
isomorphism of chain complexes

Hom(C,, Z) ® G Hom(C,, G)

for every abelian group G.

PROOF. For each n, define

Z) 0 G Hom(C1, G)

by

p,(fØg): ci—.f(c)g

(note that f(c) Z, so that the right side makes sense). It is clear that is a
chain map. One proves that p,, is an isomorphism by induction on •

If this rank is 1, then Z, and the result follows from tht. -s
Z ® G = G and Hom(Z, G) = G. The inductive step follows from the identities

and
(BOG). 0

Before we proceed, note that if S1 and C1, are chain equivalent chain
complexes, then for every abelian group G, the chain complexes S, 0 G and
C, 0 G are chain equivalent, as are the chain complexes Hom(S,, G) and
Hom(C,, G).

l'beorem 12.15 (Universal Coefficients Theorems for Cohomology).

(i) If X is a space of [mite type and if G is an abelian group, then there is an
exact sequence for every n � 0

0-. H(X)Ø G H'(X; G) -. G)-' 0,
where

(cis z)® gi—.cls zg,

where zg: a i—. z(a)g for an n-simplex a in X (recall that z(a) Z).
(ii) This sequence splits; that is,

H'(X; G) 0 G G).

Since X has finite type, Lemma 12.13 provides a free chain complex
C, of finite type with H,(C,) = II,(X). If A' = Hom(C,, Z), then Theorem
9.32 the universal coefficients theorem for homology, applies because A'
is a free chain complex. (The device of raising indices and changing their
sign converts the nonpositive chain complex Hom(C,, Z) into a nonnegative
one, A'; indices on homology groups are similarly changed, giving cohomol-
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ogy groups.) There is thus a split short exact sequence

0 HN(A*) 0 G HN(A* ® G) -, G) -.0.

Now Ha(A*) H'(Hom(C,, Z)) = H(Hom(S,(X), Z)) = H(X). Moreover,
by Lemma 12.14,

A' 06= Hom(C,, Z) ® G Hom(C,, 6) Hom(S,(X),

G) HR(X; 6), by Theorem 5.3. 0
Recall from Exercise 9.28 that S1(X) ® Y) is free abelian with basis

all symbols 0 where is an i-simplex in X and is a f-simplex in Y.

Definition. Let R be a commutative ring. If q e Hom(S,JX), R) and 0€
Hom(S1(Y), R), then define ® 0€ Hom(S,(X) 0 S,(Y), R) by

(q,(c30(;) ifi=rnandj=n
® = lo otherwise,

where the rigtit side is the product of two elements in the ring R.

Theorem 12.16 (Künneth Formula for Cohomology). If X and Y are spaces
of finite type, then there is a split short exact sequence

0-. W(X) 0 H(X x Y) -. Tor(H'(X), H'(Y)) -.0,
(+Ja p+q.+1

where cls 0 cls 0 is an Eilenberg—Zilber chain equi-
valenceS,(X x

PROOF. Since X and Y have finite type, Lemma 12.13 gives chain complexes
C, and E, of finite type chain equivalent to S,(X) and S,( Y), respectively. We
let the reader prove that there is a commutative diagram

H'(X) ® H1( Y) H'1'(X x Y)

1. I
H'4'(Hom(C,®E,,Z))

with vertical map isomorphisms (note that C, 0 E, is chain equivalent to
S,(X) 0 S,(Y)) it follows that we may work with the bottom row. However,
Theorem 9.36 applies at once, because both Hom(C,, Z) and Hom(E,, Z) are
free chain complexes (because C, and E, are of finite type). 0
Remark. If R is a commutative ring and A and B are R-modules, then there
is a teasor prodact over R, denoted by A B; it is defined as the quotient of
A 0 B by all relations of the form

(ra,b)=(a,rb) forallrcR,aeA,beB.
The abelian group A OR B is an R-module; in particular, A OR B is a vector
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space over R when R is a field. There is also a version of Tor(A, B), now
denoted by B), defined as ker I ® where 0—. c F A 0 is an
exact sequence of R-modules and F is a free R-module.

These constructions arise in cohomology as follows. If R is a field, then
each R) is a vector space over R and the differentiations are
R-linear transformations. It follows that cocycles and coboundaries are vector
spaces and hence that each R) is an R-vector space. It is natural to take
this fact into account. For example, if R is any field and V and W are
finite-dimensional R-vector spaces of dimensions m and n, respectively, then
one can prove that dim(V®R W) is inn; on the other hand, V® W (no
subscript R) is an infinite-dimensional R-vector space when R is the field of
real numbers.

There is an analogue of Theorem 12.16 for any principal ideal domain R:
if X and Y are spaces of finite type, then there is a split short exact sequence

0-' H'(X; R) H'(Y; R) x Y; R) -,

-, R), H'(Y; R)) -, 0.
p+qa+1

If R is a field (of any characteristic), it is known that W) = 0 for any
pair of R-vector spaces V and W; in this case, therefore, the homomorphism
a' is an isomorphism.

Cohomology Rings

The direct sum of all the cohomology groups of a space X with coefficients
in a commutative ring can be equipped with a functorial ring structure (this
is not so for homology groups). Here are some algebraic preliminaries.

Definition. A ring R is a graded nag if there are additive subgroups

R = R" (direct sum of additive groups);
(ii) RNRrn for all n, m � 0, that is, if x e andy R, then xy e

ExMIPLE 12.3. If A is a commutative ring, then the polynomial ring R = A [x)
is a graded ring lone sets R = {axa: a e A}.

12.4. If R = A[x1, ..., xi,] is the polynomial ring in several variables,
then R is a graded ring if one sets

Thus RR is generated by all monomials of total degree n.

EXAMPLE 12.5. If M is an A-module, then M is a graded ring if one
defines
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(m1A A A A A

A M is called the exterior algebra on M.

Definition. An element x in a graded ring R = R has degree n if x e
such elements are called homogeneous. A (two-sided) ideal I or a subring S is
called homogeneous if it is generated by homogeneous elements.

It is easy to see that an ideal I (or a subring 5) of a graded ring R = RN

is homogeneous if and only if! = E(' fl R")(S = R1)).

Warning! The definition of degree in a graded ring differs from the usual
definition in a polynomial ring. Both versions agree for monomials, but no
other polynomial is provided with a degree in the sense of graded rings. Note
also that the zero element has degree n for every n � 0.

The element 1 in R = R1 must be homogeneous of degree 0. If we assume

a1=e0a1+

hence elaN = 0 for all i � 1, and a1 = e0;, it follows that a = e0a for all a e R.
A similar argument shows that a = ae0 for every a E R, so that e0 is a two-sided
identity in R. But two-sided identities in a ring are unique, hence 1 = e0 e R°.

Lemma 12.17.11113 a homogeneous ideal in a graded ring R = R, then RI!
is a graded ring; indeed

RI! = (RN + 1)/I.

PROOF. Since I is homogeneous, I = (I fl R1). As abelian groups, R/I =
(R + I)/1(RM + 1)/i c

+ 1)/I (because I is an ideal), and (RRm + 1)/I c (R' + I)!!. 0
Every (commutative) ring R is an abelian group under its addition, so that

H(X; R) makes sense. We are going to make H(X; R) EH"(X; R) into a
graded ring by equipping it with a multiplication, called cup product. The
following technical lemma will be used in verifying elementary properties of
this multiplication.

Definition. If 0 � i � d, define (afilne) maps & —' by

(ta, ..., t1)is(t01.. ., 0, .. ., 0)

and

(t0, . .., t,)—+(0, ..., 0, t0, ..., t,).

One calls a front face and a back face.

A more complete notation for these maps, indicating their target, is )4' and
Note that )4 and 4 are both identities, while has image (1,0, ..., 0) =

and pg has image (0, ..., 0, 1) = remember that = [e0, ..., ej.
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1:

4+11
.' '4, — '0' ' — '.'O' ' '4

if 1 � I � d + 1, then

., = (t0, ..., 0, . ..,

Lemma 12.18.

(i) Ifef'1: b.' —. is the ith face map, then

= and =
4 — 4. 1d — .+*

— "+m "a' P,.s+k "'s — P'
p+1 •t:

— j ,41e1 I.,

in,
— � + 1;

( 4+1
4+1 q

— 1.

PRooF. Routine. Note, in the last identity in that the case i = d — q + 1
gives — = 1i4+1e0. 0
NotatioL Given a space X and an abelian group G, write

S(X, G) 6)

and

S(X,G)=.
a�O

Notatio.. If p e S'(X, G) and c S,,(X), write

(c, = q(c) E G.

There are two important special cases. If c' E Sa+t(X), then

(c', = (8c', g,);

iff: X -. Y is continuous and 6 Su(Y, R)

(c,f#(q,)) = (f,c,

In particular, if c is an n-simplex a, then

(a, f(ço)) (la,

Since S,(X) has a basis comprised of n-simplexes, e S'(X, G) is deter-
mined by all (a, q,) as a ranges over the continuous maps -. X.

Dellultion. Let X be a space, and let R be a commutative ring. If e
S(X, R), define their proüct QUO 6 S"(X, R) by
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(a, = 0)

for every (n + m)-simplex a in X, where the right side is the product of two
elements in the ring R.

Of course, cup product defines a function

S*(X, R) x S*(X, R) —. S*(X, R)

by defining

(E

where E S'(X, R) and E R).

Lemma 12.19. If X is a space and R is a commutative ring, then R) =
R) is a graded ring under cup product.

PROOF. To prove left distributivity, it suffices to show that p U (0 + =
q e S"(X, R) and E S"(X, R). Butilaisan(n + m)-

simplex,

(a, q U(0 + cli)) = 0 + cl')

= 0) + (ap,,,, ci')]

= (a, U 0) + (a, U

A similar calculation proves right distributivity.
To prove associativity, let p R), 0 e Sm(X, R), and '4' R). If

a is an (n + m + k)-simplex, then

(a, = ci')

and

(a, (q, U 0) U cli) = (a2,,+mA,,, ci').

These two products are equal, by Lemma 12.1 8(u).
DefineeeS°(X,R)by

(x, e) = I

for all x E X (recall that 0-simplexes in X are identified with the points of X).
It is easy to see that e is a (two-sided) identity in S(X, R), hence S*(X, R) is
a ring. It follows at once from the definition of cup product that S*(X, R) is
a graded ring. 0

The distributive laws give bilinearity of cup product S(X, R) x SS(X, R) _.
S*(X, R); one may, therefore, regard cup product as a map

U: S*(X, R) 0 S(X, R) -. S*(X, R).
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Lemma 12.20. 1ff: X X' is a continuous map, then

f#(c,uo)=f#(q,)Uf#(O).

Moreover, if e E S°(X, R) Is the unit ((x, e) = 1 for all x E X), and if e' e
S°(X', R) is defined by (x', e') = 1 for all x' X', then

f'(e') = e.

PROOF. It suffices to assume that (p E R) and 0 e S'(X', R). Now if a is
a (p + q)-simplex in X,

(o,f'(q,UO))=(fa, q,U0)

= f'q,)(arp4, f'O) = (a, I (p Uf0).
If x e X, then (x, f(e')) = (f(x), e') = 1. 0

Corollary 12.21. For a given commutative ring R, S( , R) is a contravariwu
functor from Top to Graded Rings.

PRoof. Immediate from Lemmas 12.19 and 12.20. 0

The ring R) has several disadvantages: its enormous size makes it
almost impossible to compute; it does not satisfy the homotopy axiom; and
it is "very" noncommutative. We shall now see that the ring structure on
S*(X, R) is inherited by H"(X; R) and that these defects of S(X, R)
disappear in passing to cohomology.

Lemma 12.22.11 (p S'(X, R) and 0 e R), then

5(q,U0)= .5çoUO +(—l)'(pUSO.

PROOF. Note that both sides have degree d = p + q + 1. If a is a d-simplex..

then

(a, &pU8 +(—lyq,US0)

= 0) + (— 50)

= 0) + (— 0)

p+I q+1
= (— 0) + (— IY'laA,, 0).

J—o

By Lemma 12.18(i), = = cA, and cpq÷jeo = =
apq. It follows that term p + 1 of the first sum cancels term 0 of the second
sum, and so the two sums equal
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p q-fl
( 0) ÷ ( 0).

1=0

On the other hand,

(c, qUO)

l)'(c1.

0)

= (— O)+ (—

q = p + 1. Lemma 12.18(iii) shows that this equals

p a

(— 0) + E ( P)(lhI4q+iEe_p, 0).
1= frp*1

But the index of summation in the second sum can be changed to j = i — p.

giving (— )(OILq+1 0), as desired. U

Theorem 12.23. For any commutative ring R, H( ; R) = ; R) is a
functor hTop —, Graded Rings.

PaoOF.Let Z*(X, R) = R)and B*(X, R) = > R). e Z" and
0 e then = 0 = 60, and

ö(q,U0)= öqUO +(—l)"q,Uö0 =

hence q' U 0 is a cocycle. it follows that Z* is a (homogeneous) subring of
S(X, R).

If q, e and 0 e then 6q 0 and 0 = for some R).

Hence

q U 0 q is a coboundary. It follows that
B* is a two-sided homogeneous ideal in Z. By Lemma 12.17, H*(X; R) =
Z*IB* is a graded ring. (Of course, multiplication in H* is given by

cis U cls 0 = cls(q U 0).)

That a continuous map f: X —, Y yields a ring homomorphism 1*: H*( Y; R) —.
H*(X; R), namely, f* cis q, = follows easily from Lemma 12.20.
Indeed the homotopy axiom for cohomology, Theorem 12.4, shows that this
ring map is independent of the choice of continuous map homotopic to f.

The reader may now easily show that H* is a (contravariant) fimctor. 0
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Definition. The multiplication H(X; R) ® H'(X; R) R(X; R) is also called
cup produci,' and one defines

cis p U cls 0 U 9).

Definition. If X is a space and R is a commutative ring, then the cobomology
ring with coefficients R is

H(X; R) = H'(X; R).
p�0

The following discussion will show that cup product is essentially the only
multiplication on H(X; R) which extends the "obvious" ring structure on
H°(X; R).

Definition. A diagonal approximation is an augmentation preserving natural
chain map x: —. 0

In more detail, the augmentation of is the homomorphism e: S0(X) -.
Z with e(x) = 1 for all x e X, and the augmentation of S,(X) 0 is the
homomorphism e': S0(X) 0 S0(X) —, Z with e'(x 0 y) = 1 for all x, y e X; the
condition is that =

Recall that an Eilcnberg-Zilber natural chain map C: x X) 0
S,,(X) satisfies C0: (x, y)i—.x 0 y for all x, ye X. It follows easily that Cd, is
a diagonal approximation for d: X —' X x X the diagonal (augmentation
preserving is thus a substitute for specifying The next result is that this
example is essentially the only diagonal approximation.

Theorem 12.24. Every two diagonal approximations are naturally chain homo-
topic, hence they induce the same homomorphisms in cohomology.

PROOF. Let ..t = {A': p � O} be a family of models in Top. That the functor
E: Top Comp with E(X) = is free with base in .t is contained in
Example 9.4; moreover, each A' is totally E-acyclic because it is contractible
and so all its reduced homology vanishes. In the proof of the Eilenberg-Zilber
theorem, it was shown that the functor F: Top x Top Coinp with F(X, Y) =
SJX)®S,(Y)isfree with basein thefamilyof all models .A' = {(A',A'):p � 0,

'A geometric interpretation of cup product on manifolds as intersection numbers" ran be Found

in [Dold (1972). VII *4]. [Greenberg and Harper, *31], [Munkres (1984), Chap. 8]. or [Scifert
and Threllall, Chap. X]. There is an interpretation in terms of differential torms which is part of
de Rhum's the de Rium complex of a differentiable manifold X (see
the lirsi section of this chapter), then H'(Q(X)) a H'(X; R) For sup 0 moreover. if we f)IX)
and 0/ e 04(X) are dosed differential then

clswUclsw' -cls(w A ci),

where W A 01 is the wedge product in the exterior algebra (see [Warner,
pp. 211—214]).
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q � O}; moreover, all such models arc totally It follows that the
functor G: Top —. Comp defined by G(X) = F(X, X) is free with base in .4'
and that all models in 4 are totally G-acycic. Corollary 9.13(1) applies at
once to show that every two diagonal approximations are naturally chain
homotopic. 0

Diagonal approximations —. ® suggest multiplications
on better, on the homology groups of these chain complexes, but the
arrow points in the wrong direction. Applying a contravariant functor corrects
this, and we shall soon see cup product emerge. This discussion will then
show that cup product is the unique multiplication on H(X; R) arising from
a diagonal approximation. (Incidentally, if a space X possesses a "nice" map

x X—iX(inplaceoftbediagonald:X--X x X),thenp.#:S.(X)Ø
-. does lead to a product in homology, where is a homotopy

inverse of an Eilenberg-Zilber natural chain equivalence. In particular, for
every H-space X, there is a graded ring structure on E,�0H,(X), called the
Poaitrjagin product.)

We seek a formula for an Eilenberg—Zilber map x Y) —* 0
S,(Y) (which will be specialized to the case Y = X). Now S0(X x Y)-.
S0(X) 0 Y) is given by (x, y) i-' x 0 y. To find let a: A1 X x Y be
continuous with a(e0) = (x0, Yo) and a(e1) = (x1, The map C1 must make
the following square commute:

S1(X x Y) S0(X x Y)

cii
(S1(X) 0 S0(Y)) (S0(X) 0 S1(Y))

D1
S0(X) 0 S0(Y),

where D1 is the usual differentiation on the tensor product e and fi e

Y), then 0 P) = 011 + (— lYa 0 Now we see that a =
— a(e0)) = Co((x1, Yi) — (x0, Yo)) = X1 0 Yi — X0 0 Yo If x' and

are the projections of X x Y onto X and Y, respectively, let us write a' =
and a" = ira for these I -simplexes in X and Y, respectively. A reasonable
guess is to set

for some x e X and y E Y. Since v3y = 0 = ox (because all 0-chains arc cycles),

D1C1(a) (cr'(e1) — o'(eo))Oy + xO(ole1) — a"(e0))

=(x1 — x0)®y + x®(y1 — Yo)•

Hence, if we define

= aI®yi +

then D1 Ci C00. The computation of 12(a), for a: A2 -. X x Y, is more corn-
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plicated. A reasonable guess is

= a'Øy + ct®fl + x®a",
where x X, y E 1', and a, /3 are 1-simplexes, and one can choose these so that
D2C2 (the reader is invited to do the calculation).

Theorem 12.25 (Alexander—Whitney). The map x Y) ®
defined by

= 0
where a: X x Y and a' = it'ci, a" = ir"a (and where ic', it" are the projec-
tions of X x Y onto X, Y, respectively), is a natural chain equivalence over
Co:(x,y)i—'x®y.

PZtOOF. If 'is, in fact, a natural chain map, then Corollary 9.13(u) gives the
result, for the hypotheses of that corollary were verified in the proof of the
Eilenberg—Zilber theorem.

Recall that both chain complexes may be regarded as functors Top x
Top Comp, and morphisms in Top x Top are ordered pairs of continuous
maps. It is routine to check naturality of that is, 1ff: X -. X' and g: Y -+
then the following diagram commutes:

x Y) c

(fxg),

x Y')

It remains to show that is a chain map. We normalize the problem. If
d: -+ x is the diagonal, and if a: —, X x 1' is an n-simplex, then

a = (a' )< a")d.

Suppose we prove that

= C5_10(d). (*)

Then

VC(a) = !X((a' x a")d)

= DC(u' x

= D(af, 0 (by naturality)

= ® a chain map)

® (by (*))



Cohomology Rings 399

x a'),8(d) (by naturality)

= x e),(d) ((a' x a"), is a chain map)

= Cö((a' x o")d) — as desired.

Let us now verify (a')
is an afline map with for all k, we shall

denote by (a(e0), c(e1), .., In particular, (e0, ..., e,) and =
(e11e1+1,...,e.).

Now

(note that the sign in the second sum is correct, because

..., 1)k(e1, ..., ..., = ..., ê,, ..., es)).

The portion of the first sum with j = i, namely,

cancels the portion of the second sum with j =4 namely,

Therefore

+
J> I

On the other hand, the definition of C(8d) is

=
(ôdyA, 0

Recall that (ôd)' = a',(8d), where a': x Li" -. a' is the projection on the first
factor. But 4 is a chain map, so that z',(öd) — ôa',(d) = öfr'd) = 8(6"), where
8" is the identity map on A" (for d is the diagonal map) Similar arguments
show that (8d)" = 8(8") and that e = = (where ej is the Jib face map
A'l
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For each j, Lemma 12. 18(iii) gives

= 0

= +
1<J i,.j

In our earlier notation,

= E (e0, ..., ej)®(ej, ..., e,)
£ <J

+
I

Hence = equals DC(d) computed earlier. 0
Definition. Define a function

S'(X, R) 0 S(Y, R) -. 0 R)

as follows. If 4 S(X, R) and 0 e S"( Y, R), then there isa function defined on
S(X, R) x S'(Y, R), namely, (q,, 0)i—. 00, where

ifi.=nandj=m
otherwise.

Since this function is bilinear (the proof of Lemma 12.19), ii defines a homo-
morphism ir on the tensor product.

Definition. The (external) product is the map

x Y,R).

Ifq, E S"(X, R) and 0 E S'( Y, R), then their cross product is denoted by

g,xO€S(Xx Y,R).
Of course, the cross product may be regarded as a map in cohomology

H*(X; R) 0 R) -, H(X x Y; R).

It is the map & of the Kiinneth formula, Theorem 12.16.

'12.13. Let f:X-.X' and g: 1-' 1" be continuous.
R), then (1 x g)(cls qi x cls 0) = 1' cls X cls 9.

'12.14. Show that the cross product is associative.

Theorem 12.26. Cup product is the composite

S'(X, R) 0 S'(X, R) -' 0 R) —. S'(X x X, R) —. S'(X, R).

PROOF. Let S'(X, R), let 0 e R), and let c be an (n + m)-simplex in
X. Then
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(a, 00) = (Cd,a, ® 0) = ® 0).

Now the Alexander—Whitney formula gives

(da)' = ieda and (da)" = it"da, where and it" are projections of
X x X onto the first and second factors, respectively. Since d: X —' X x X is
the diagonal, however, both it'd and it"d equal the identity on X. Hence

C(da) = ®

But q 00 vanishes off 0 S.,(X), so that

®6) = (a).,, 0 au.,,, 06)
= (a).., q,)(ap,,,, 0) = (a, qi U 9). 0

Corollary 12.27. If q e S'(X, R) and 0 then

qiUO = d#(q x 0).

PROOF. Immediate from the theorem and the definition of cross product. 0

Lemma 12.28. If (S1, ê) isa nonnegative chain complex, then the function

where a 5,, and fi is a natural chain equivalence.

PROOF. If D is the usual differentiation on the tensor product, then

Dt(a®fl)=(—lrD(pOa)=(—lraflOa
On the other hand,

tD(a®$)=

Since (— ir = (— it follows that Dt = U), that is, t is a chain map. It is
easy to see that i is a natural isomorphism. 0
Theorem 12.29 (Anticommutativity)2. If cls qi e R) and cls 9 e R),

2This result is more natural in Uglic of the de Rham theorem (see the previous footnote) which
shows that, for differentiable manifolds, cup product and wedge product (in the exterior algebra)
coincide.
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then

clsqUcls 8 = (— i)" clsOUcls q.

PRooF. Both and tld, are natural chain maps S,(X) —. S1,(X) 0
over (recall that 0 x). Since isa natural equivalence,
acyclic models (Theorem 9.12(iii)) implies that td, and are (naturally)
chain equivalent. We conclude, after applying Hom( , R), that both chain
maps induce the same mapincohomologycls = cis The result
now follows from Theorem 12.26, for cup product is just cis d

ExntclsEs

12.15. Show that every left or right homogeneous ideal in H(X; R) is a two-sided
ideaL

12.16. Show that the graded ring S(X, R) is not anticommutative in the sense of
Theorem 12.29.

* 12.17. If the additive group of H(X; R) has no elements of order 2, prove that if
fle H(X; R) has odd degree, then PUP —0.

12.18. Compute the ring H(RP2) = 11(RP2; Z).

12.19. Compute the ring K'(S).

Computations and Applications

There are not many general results helping one to compute cohomology rings
one such is Theorem 12.31 below.

Lemma 1L30.

(i) IfRandSarerings,zhenthereisaringsructureon R OS wfthmultiplication

(r 0 s)fr' 0 s') = rr' 0 ss',

where r,r'E Rands,s'eS.
(ii) If R and S are graded rings, then R 0 S is a graded ring with multiplication

® s1)(r 0 = (— 1)"r1r 0

where e E e and e Sq (of course,

R4®SJ).

PRooF. The formula for multiplication is well defined, since it is the composite

R®SOR®S ®®bR®R®S®S pØV

where t: S ØR -. R ØS is the map sØ ri—.r 0 s, and p and v are the given
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multiplications in R and S, respectively. Verification of the ring axioms is left
as a routine exercise. The graded case is also left to the reader, the sign is
present because of Lemma 12.28. 0

It can be shown that R ® S is the coproduct of R and S in the category of
rings (or the category of graded rings).

The sign in the definition of multiplication in the graded ring case forces
anticommutativity; without the sign, the elements r ® I and I 0 s commute.

EXAMPLE 12.6. If R and S are graded rings, then the two tensor products can
differ.

Let R = Z[x], polynomials over Z in one variable x, and let S = Z[y]. As
(ungraded) rings, R 0 S Z[x, y], polynomials over Z in two (commuting)
variables x and y (one identifies x with x ® 1 and y with 1 0 y). As graded
rings, however, R ® S consists of all polynomials over Z in two variables x
and y in which xy = —yx.

EXAMPLE 12.7. If M and N are abelian groups, then there is a graded ring
isomorphism of exterior algebras:

(see [Greub, p. 121]).

Theorem 1231.

(i) If X and Y are spaces, then cross product H*(X) 0 H*(X x Y)
is a homomorphism of graded rings.

(ii) If X and Y are spaces of finite type (for example, compact CW complexes)
with IJN(X) free abelian for all n � 0, then cross product is an isomorphism.

Remark. Recall that H*(X) = H(X; Z).

PROOF. The Künneth formula (Theorem 12.16) gives an exact sequence

0-. H'(X) 0 H"(X x Y) -, -.0

in which the map is the cross product. Now (ii) follows from (i) as follows.
If is free abelian for all n � 0, then Theorem 12.11 shows that
free abelian for all p � 0, and so the Tor term is zero.

To prove (i), let ip e R), E R), 8 E Y, R), and 0' Y, R);
let u = cis q,, u' = cis v = cls 8, and v' = cls 8'. It must be shown that

0 v)(u' ® v')) = 0 0 v').

To evaluate the left side, the definition of multiplication in tensor products
of graded rings gives

(u 0 v)(u'O v') = (—
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Since z'(u ® v) is the cross product u x v, it thus remains to prove that

(— x (vUtY) = (u x v)U(u' x v).

Now there is a commutative diagram

XxY Xx(XxY)xY

jixixi
X x (Y x X) x Y,

where X X x X is the diagonal xi—. (x, 4 and z: X x Y —. Y x X is the
map given by (x, y)i-.(y, x).

Using Corollary 12.27 and Exercise 12.14 (associativity of cross product).
we have

(u x v)U(u' x v') = x v x u' x v')

= (d1 x d1)*(1 x t x 1)(u x v x u' x v')

= (d5 x d1)(u x t(v x u') x v') (Exercise 12.13)

= x x u' x u x v') (Lemma 12.28)

x u') x xv')

= (—lr'(uuu') x (vUv'). 0
Remarks. (1) H(X) 0 H( Y) is always a subringofH(X x Y) if it is a proper
subring, then it cannot be an ideal because it contains the unit.

(2) Let R be a field. The version of the KÜnneth formula described after
the proof of Theorem 12.16 shows that if X and Y are of finite type,, if
cohomology groups over Z are replaced by coefficients R, and if 0 is replaced
by then cross product is necessarily an isomorphism.

Corollary 12.32. If T is an p-torus, that is, the cartesian product of r copies of
S', then the cohomology ring H*(T?) is isomorphic to the exterior algebra

A where denotes a free abelson group of rank r.

PROOF. We do an induction on r 1. When r = I, then the additive structure
of H(S') = H°(S l) H '(S') = Z Z. Choose generators I e H°(S') and
a E H'(S1) the multiplication is determined by I being the unit element and
a2 = O.Ifr> 1,thenT' = S' x Tr_l;Theorem 12.31
I1(S')® H*(r). By induction, H(T1) A(Z""). and so the result
follows from Example 12.7. 0

It follows that H'(T') is free abelian of rank the binomial coefficient (s).

Computation of cup products is diflicult let us therefore retreat from general
spaces to polyhedra. Recall the construction of simplicial homology. If K is
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an oriented simplicial complex (there is a partial order on Vert(K) whose
restriction to the vertex set of any simplex is a linear order), then =

where is defined as follows. The qth term Cq(K) is the free
abelian group with basis all symbols <Po' ..., pq>, where (po' ..., Pq} spans
a q-simplex of K and Po <Pi The differentiations aq: Cq(K)
Cq_1 (K) are the usual alternating sums:

In Theorem 7.22, we proved that More precisely, if
Jq C4(K) —e Sq(IKt) is defined by

i,(<po Pq>)=cl,

where a: —. 1K I
is the afline map i—e t.p1, then j is a chain map and

H*(Cui(K)) -. is an isomorphism. By Theorem 9.8, it follows that
j is a chain equivalence.

Definition. If K is an oriented simplicial complex and G is an abelian group,
then the simpliclal cohomology groups of K with coefficients 6 are defined by

G) = 6)).

Since C1,(K) and chain equivalent, it follows that 6)
and G) are chain equivalent and hence have the same cohomo-
logy groups (Exercise 9.14). Therefore simplicial cohomology groups are
independent of orientation.

Notation. If K is an oriented simplicial complex and R is a commutative ring,
define

C'(K, R) = Hom(C,,(K), R)

and

C*(K, R) = R).
n�o

Definition. If K is an oriented simplicial complex and R is a commutative ring,
define cup product as follows. If q e R) and U e C"(K, R), then

(<Po' ..., p1j,), = (<Po, ..., p,,>, ..., 0).

Theorem 12.33. Let K bean oriented simplicial complex and let R be a commuta-
tive ring.

(i) R) = R) inherits a ring structure from the cup product
on simplicial cochains.

(ii) The rings H*(K; R) and H(IKI; R) are isomorphic (via the chain equiva-
lence of Theorem 7.22).
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12.21. Show that S' v S2 v S3 and S1 x 52 do not have the same homotopy type.
12.22. Show that S' v STM is not a retract of S' x SM. where ni ii � I.

There are many difliculties in computing cohomology and cup product. At
the most basic level, it is not obvious how to construct cocycles (other than
coboundaries). Let us give a negative example in this regard. If F is a free
abelian group with a finite basis B, then there is a dual basis of Hom(F, Z)
consisting of all b for bE B. where b*: F —' Z is defined by

b(h) I and b(c) = 0 for all c E B — {b}.

If c = Em,l,i is a chain, then its dual is defined to be = It is easy
to see that the dual basis is a basis of the free abelian group Hom(F, Z); hence,
every cochain has a unique expression of the form CS. It is not true that the
dual of a cycle is a cocycle. Consider the following simple example:

:v:.
Clearly, z = <a. h> + <b, c> — <a, c) is a I-cycle. On the other hand, if
a = <a. c, d>, then

(a, c5z) = (öa, z)
= ((c, d> — <a, d) + <a, c>, zt) = —1;

therefore (a, # 0, so that 0 and is not a cocycle.
Let us illustrate how one can compute with simplicial cohomology.

EXAMPLE 12.9. As usual, triangulate the torus T = S1 x S1 by first triangu-
lating the square:

d c

C

V V
,JV7

d

Linearly order the vertices: t', c, d, e, f, g, h, 1, J.

Since H1(T) = Z I is frce abelian, Exercise 12.6 applies to give

B2(T, Z) = (q,a2: q' e Hom(B1(T), Z)}

= c

Every 2-cochain y in C2(T, I) has the form y = Ein1aP, where a1 is a
2-simplex. We claim that y = is a 2-coboundnry if its coefficient sum

L

t.

h

U
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ExERcisEs

12.21. Show that 51 v S2 v S3 and S' x S2 do not have the same homotopy type.
12.22. Show that S v S is not a retract of SN x where m, n � 1.

There are many difficulties in computing cohomology and cup product. At
the most basic level, it is not obvious how to construct cocycles (other than
coboundaries). I.et us give a negative example in this regard. If F is a free
abelian group with a finite basis B, then there is a dual basis of Hom(F, Z)
consisting of all b for b e B, where b: F —, Z is defined by

b*(b)= 1 and b*(c)=O forallceB—{b}.
If c = is a chain, then its dual is defined to be c = It is easy
to see that the dual basis is a basis of the free abelian group Hom(F, Z); hence,
every cochain has a unique expression of the form c. It is not true that the
dual of a cycle is a cocycle. Consider the following simple example:

:v;
Clearly, z = <a, b> + <b, c> — <a, c> is a 1-cycle. On the other hand, if
a = <a, c, d>, then

(a, öz*) = (Oa, z)
= (<c, d) — <a, d> + <a, c>, z) = —1;

therefore (a, ôz*) 0, so that ôz* # 0 and is not a cocycle.
Let us illustrate how one can compute with simplicial cohomology.

EXAMPLE 12.9. As usual, triangulate the torus T = S1 x 5' by first triangu-
lating the square:

d c
V V

a c

Linearly order the vertices: v, c, d, e, f, g, h, i, j.
Since H1(T) = Z Z is free abelian, Exercise 12.6 applies to give

B2(T, Z) = (P E Hom(B,(T), Z)}

= {cô2:cEB1(T)}.
Every 2-cochain y in C2(T, Z) has the form y = where is a

2-simplex. We claim that y = is a 2-coboundary if its coefficient sum

e

h

V

e

h

V
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m1is zero. Let r = <x, y, z> be a 2-simplex (with vertices ordered x <y < z).
By our observation above, a typical generator of B2(T, Z) is o(ar)5 =
(<ye z>t — <x, z> + <x, y>5)ô. If a = <u, v, w> (with u < v < w), then

(a, =

= (<v, w> — <u, w> + <u, v), <y, — <x, + <x, y>5).

It follows easily that (a, = 0 unless a and t have a common edge. Write
= where the are 2-simplexes. Since the dual basis behaves as

an orthonormal basis, m1 = (a1, But each edge oft is an edge of exactly
one other 2-simplex, and it occurs there with opposite orientation. Hence,
there are only four (oriented) 2-simplexes involved in the expression for (or)5,
namely, = <x, y, z>, <y, x, u>, <z, y, w>, and (x, z, v>.

Evaluating gives values rn = 3, — 1, — 1, and — 1; the coefficient sum is thus
0. Therefore, the coefficient sum of every 2-coboundary is zero.

We conclude that, for every 2-simplex a in 7', the 2-cocycle aS is not a
coboundary (all 2-cochains here are 2..cocycles) that is, cis as 0 in H2(T; Z).
Indeed, one can show that cis c is a generator of H2(T; Z). Note that if we
are interested only in finding some generator of H2(T; Z), then we can invoke
the universal coefficients theorem to see that H2(T; Z) Hom(H2(T), Z)
(since Ext(H1(T), Z) = 0 because H1(T) is free abelian).

EXAMPLE 12.10. We have already computed the cohomology ring of T (with
much algebra). Let us now give another proof of its most important feature:
there are two cohomology classes of degree 1 whose cup product is nonzero.

d c u

IL h

C.

v d c u
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Define 1 -chains

2=<e,h>+<g,h>+<g,j>+ <f,j>+<f,i>+<e,i>
and

/i= —<c,d)—<c,g>—<f,g>—<f,j>—<i,j>+<d,i).

Note that (&T, a) = 0 for all 2-simplexes a having no edges in common with
in fact, a simple calculation shows that (ôa, = 0 for every 2-simplex a,

hence is a cocycle. Similarly, one can show that is a cocycle.
Another easy calculation shows that

for example,

(<fe g, j>, U = (<fe g>, j>, = 1;

that (a, x U = 0 for every other 2-simplex a is left to the reader. By the
previous example,

cls U cis = cis U 13 = cls<f, Li, # 0 in H2(T; Z).

as desired.

We saw in Chapter 11 that if v: E B is a fibration with fiber F, then there
is a relation between the homotopy groups of E, B, and F given by the exact
sequence of a fibration. The cohomology rings of E, B, and F are also related,
by the Leray—Serre spectral sequence (there is also a spectral sequence relating
the homology groups). Specializing to fibrations with fiber 5' and coefficient
ring Z/2Z, one obtains the following result.

Theorem (Gysin Sequence). Let v: E —, B be a fibrat ion with fther 5', where
q � 0. Denote Z/2Z by 2.

(i) There is an exact sequence

Hk(B; Hk(E; 2)—#

(E; 2)—.

which begins

0—. H°(B; W'(B; H'(E; 111(B; 2)—'".

(ii) if cls e H°(B; 2) is the unit of the cohomology ring H(B; 2), write

= e) e H'"(B; 2)

is called the characteristic class of the fibration).

Then the map 2)—' Hk+l(B; 2), for all k � I, is given by

U P.
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(iii) If v': E' —. B' is another fibration with fiber and if the following diagram
commutes

E'

II,
B'

then f(fl5) =

For a proof without spectral sequences, see [Spanier, p. 260]; for a proof
with spectral sequences, see [Spanier, p.499] or [McCleary, p. 134].

Recall from Exercise 12.12(u) that Z/2Z) Z/2Z for all with
0 � k � n. Furthermore, the usual covering projection v: S" —. RI", which
identifies antipodal points, is a fibration (Theorem 10.5) with fiber S°.

Theorem 12.35. The cohomology ring H(RP'; Z/2Z) is isomorphic to the
polynomial ring (Z/2Z) [x] mod ulo the ideal in particular, If fl., is the
nonzero element of H' (RP; Z/2Z), then the nonzero element of Ht(RF'; Z/2Z)
(where I � k � m) is the cup product of fi, with itself k times.

The Gysin sequence of the fibration v: 5" -. Ri" with fiber S° is

2)— 2) H"(RP'; 2)—.

(again, we have denoted Z/2Z by 2). Since IP(S"; 2) = 0 unless k = 0 or k =
it follows that is an isomorphisin 1(0 < k <n — 1, is a surjection, and

is an injection. Now is always injective, so that is an isomorphism.
To see that is surjective (hence is an isomorphism), consider the "end" of
the Gysin sequence:

H'(RP'; 2)-. FP(S'; 2) ..!, H'(RP"; 2)—. H"''(RP'; 2).

Now H"(RP'; 2) = 0 because RI" is a polyhedron of dimension n; therefore
v': H'(S"; 2) .-. H'(RP'; 2) is surjective. As both groups have order 2, the map
v must be an isomorphism, hence v is an injection. Exercise 5.2 now implies
that is a surjection.

If fi, is the nonzero element of W (Ri"; 2), then fi, is the characteristic class
because is an injection. Now statement (ii) of the Gysin sequence is that

= fl, U It follows easily by induction that is the nonzero element
of if k � n. Since = 0, the structure of H(RP'; 2) is as stated. 0

'There are proofs of this theorem avoiding the Gysin sequcnre (all are long): ice [Wallace.
p. 127], (DoId (1972), p. 223], (Maunder. p. 348], or [Munkres (1984). 403).
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Corollary 12.36. Let n > m � I, and let f: RP" RP" be continuous. If fl,, is
the nonzero element of Ht(RP"'; Z/2Z), then f(fl,_) = 0.

PRoOF. Since f is a map of graded rings, it follows that = 0 or
f(fl_) = fl (for Z/2Z) has only two elements). In the latter case,

= Q'4", and this gives a contradiction because = 0 and
o

Theorem 12.37. If n > m � I, then RP" is not a retract of RPM.

PROOF. Let i: RI'" c-. RF" be (any) injection, and assume that there is some
retraction r: RI'tm RI", that is, ri = 1, the identity on RP". It follows that

= I, so that r: H(RP"; 2)-' 2) is an injection, and this con-
tradicts the corollary. 0

Ifn�m � RF"isgivenby[x01...,x,ji—'
[x0, ..., x,,,, 0, ..., 0] (where (x0, ..., x,,) e 5"' and [x0, ..., x,,] is the equiva-
lence class of (x0, ..., x,,) obtained by identifying antipodal points). The
following diagram commutes when i is the usual imbedding:

v1

where v', v are fibrations with fiber S°. namely, (x0, ..., x,,,)b—. [x0, ..., xe],
and i: 5"' c. S" is the imbedding (x0, ..., ..., x,, 0, ..., 0). Part (iii)
of the Gysin sequence thus says that

whenever I: RI" c.. Ri" is the usual imbedding.

*12.23. If n > m I and I: RP" c.. k? is the usual imbedding, then it is true that
i": H'(RP"; Z/2Z) -tm H'(RP; Z/2Z) is an isomorphism for all q � m.

*12.24. Let i: RP' —. RI" be the usual ünbedding, where n � 2, and let v: S' -+ RP'
be the fibration (x0, x1 [x0, x1]. Show that (I o v) is a nontrivial element of

*). (Recall Corollary 10.11 that n1(RP", .) Z/2Z and that RP' S'.)

Lemma 12.38. Let n > m � 1, an4 let f: RI"-. RI" be a continuous map. If
v: 5"' —. RI"" is the covering projection idenr(fying antipodal points, then there
exists a lifting f: RI" —.5"' (i.e., vf = f).
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S.

I

PROOF. By the lifting criterion, Theorem 10.13, it is enough to show that the
induced map s) —. i) is zero.

Urn = 1,thenRP = RP' = S1 andso,r1(RP1, Zsincex1(RP,
Z/2Z, it follows that = 0 in this case. We may therefore assume that in � 2.
Now f, the induced map in cohomology, satisfies = 0, by Corollary
12.36. Hence, if 1: RP' RPA is the usual imbedding,

= (fo

On the other hand, if j: RP1 c. RP" is the usual imbedding, then Exercise
12.23 shows that j'(fl_) # 0 (because in � 2). It follows that the maps j and
fo I from RP' to RI" are not homotopic. As RI'1 = S'. however, these maps
represent elements of it1(RP, s) ZI2Z (again, we use m � 2). As j is not
nullhomotopic (j(C1_) # 0), it follows that Jo I is nullhomotopic. By Exercise
12.24, the nontrivial clement of it1(RP,.) is [1 o v'}, and so f,,[i o v'] =
[fo i o v'] = 0, as desired (where v': S' —. RP1 is as in Exercise 12.24). 0

g(—x)= —g(x)forailxeS".

Remark. The special case m = 1 has been proved in Theorem 6.28.

PROOF. If such a map g exists, then there exists a continuous map I making
the following diagram commute:

S.

iv
Rr

where v', v are the covering projections. By the lemma, there is a lifting
f: RP -. S. with vf =1. Now consider the diagram

S.
I.,

V

,
S. iRr.
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Commutativity of the original diagram shows that both g and fv' are liftings
of fv': -

vg = fv' = vfv'.

Choose x0 E 5"; by definition, v(g(x0)) = v(—g(x0)), and so the (two-
point) fiber over v(g(x0)) consists of (±g(x0)}. Now the point fv'(x0) lies in
this fiber (because vfv'(x0) = fv'(x0) = vg(x0)), so that either fv'(x0) = g(x0) or
fv'(x0) = —g(x0). In the second case,

fv'(—x0) = Jv'(x0) = —g(x0) =

Hence, in either case, the liftings gand fv' agree at a point. The uniqueness
theorem, Lemma 10.3, gives g = fv'. But this is a contradiction: for every
xe SI', we have v'(—x) = v'(x), and so JV(—x) = fv'(x); on the other hand,
g(—x)=—g(x). (J

Corollary 12.40 (Borsuk—Ulam). 1ff: SI' -+ RI' is continuous and n � 1, then
there exists x e SI' with f(x) = f( — x).

PROOF. The case n = I was proved in Exercise 6.15, and so we may assume
that n � 2. If no such x exists, then the map g: S" —. SI'' given by

(x)—
f(x)—f(—x)

g
— [1(x) — f( —

is a well defined continuous map, and g(—x) = —g(x) for every x e 5", con-
tradicting the theorem. 0
EXERCISES

12.25. 1ff: S'—. RI' satisfies f(—x) = —f(x) for every XE SI', then there exists x0 e 5I'

with f(x0) = 0.

12.26. Prove that RI' contains no subspace homeomorphic to 5".

12.27. Prove the Lusternik —Schnirelmann theorem: if 5" is the union of n + 1 closed
subsets F1,..., ,,then at least one F1 contains a pair of antipodal points. (See
Corollary 6.30.)

Theorem 12.41 (Ham Sandwich Theorem). Let RI' contain n bounded Lebesgue
measurable subsets A1, ..., A,,. Then there exists a hyperplane that bisects every
A1, j = i, ..., n (i.e., half the measure of each lies on each side of the
hyperplane).

Remarks. (1) The name of the theorem comes from the case n = 3: given a
piece of white bread, a piece of rye bread, and a piece of ham, one can slice
the sandwich with one cut into two sandwiches, each having the same amounts
of white bread, rye bread, and ham.

(2) The alimentary example above is misleading, because the subsets
may intersect.
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PROOF. We begin with some elementary geometry. As usual, regard as
imbedded in as all (n ÷ 1)-tuples with last coordinate zero. Choose, once
and for all, a point ye R41 — R". If 0 is the origin and xc let xO denote
the line determined by x and 0. There is a one-parameter family of hyperplanes
perpendicular to xO; let m(x) denote that hyperplane in the family containing
y. Note that

ir(x) = x' + 3',

where x1 is the n-dimensional sub-vector-space of

Here are three observations.

x1 = {z (z, x) = O}.

(1) ir(x) (for ye ir(x) and y Re).

(2) x + .v and —x + y lie on different sides of it(x). First, ±x + it(x);
otherwise ±x + y = 2 ÷ yforsomezex';butthen ±x = zand(x, x)=
0, contradicting (x, x) = I. But y e is the midpoint of the line segment
joining x + y and —x + y).

(3) = ir(—x) (the lines xO and —xO coincide).

We now begin the proof proper. For each j with I � j � n, define uj: S" -. R
by setting uj(x) to be the measure of that portion of lying on the same side
of ir(x) as x + y (should all of lie on the other side, then = 0 =
where p is Lebesgue measure). That Uj is continuous follows from countable
additivity of Lebesgue measure: if x,,, —. x and ifs,,, is the "slab" between
and n(xm+j), then = 0.

Definef: —. IL" byf(x) = (u1(x),..., is continuous because each
Uj is continuous. By the Borsuk—Ulam theorem, there is x0 e S" with f(x0) =
f(—x0); that is, Uj(X0) = Uj(—X0) for j = 1, ..., ii. For every x e S". we have

Uj(X) + =

—x +
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this follows from (2), (3), and the additivity of p. Therefore Uj(X0) =
for) = 1, ..., n. Finally, the required hyperplane in W is just x(x0) fl (which
is a hyperplane in by (1)). 0

For an elementary proof of the Borsuk—Ulam theorem when n = 2. sec
[Kosniowski, p. 157); for elementary proofs of the ham sandwich theorem for
n = 2 and n = 3, see [Kosniowski, pp. 64, 159).

The last problem we consider is whether a sphere can be an H-space.

Definition. A graded co-ring is a graded abelian group B = with a
homomorphism c: B -. B ® B, called comukiplication, for which

c(B9)c B'®B'.
1+ f—p

Definition. A graded abelian group B = is a Hopf algebra over Z if

(i) B is a graded ring;
(ii) B is a graded co-ring;
(iii) the comultiplication c: B —. B 0 B is a homomorphism of graded rings.

Thus a Hopf algebra combines the two "dual" notions of graded ring and
graded co-ring, with axiom (iii) as a compatibility condition.

Definition. A co-unit of a graded co-ring B is a homomorphism a: B —. Z
making the following diagram commute:

B®Z B®B Z®B.

where land r are the isomorphisms defined by 1: b i—' b 0 1 and r: b '—. I ® b.

In the language of Chapter 11, a co-unit is a co-identity in the category of
graded rings (for it is easy to see that Z, the graded ring having Z in degree 0
and zero elsewhere, is an initial object).

Definition. A Hopf algebra B = B9 is connected if

(iv) B° is infinite cyclic with generator the unit e;
(v) the map a: B —. Z, defined by

a(e) = 1 and e

a co-unit.

Connected Hopf algebras arise naturally.
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Theorem 12.42. If X is a path connected H-space whose homology groups are
fg. free abelian groups, then HS(X) is a connected Hopf algebra over Z.

PROOF. As always, H*(X) is a graded ring under cup product Since X is
an H-space, there is a given continuous map p: X x X -. X. By Theorem
12.31, the hypotheses on X imply that cross product H*(X)0 H*(X)
H*(X x X) is an isomorphism of graded rings. If p is its inverse, define
C: H(X) H(X) ® H(X) as the composite

H*(X x 11(X) 0 H*(X).

As is a map of graded rings (Lemma 12.20), it follows that c is a homomor-
phism of graded rings, and so H'(X) is a Hopf algebra over Z. (Since every
space X has continuous maps X x X -. X, the connectedness of the Hopf
algebra must be the crucial point where the hypothesis that X is an H-space
is used.) Now X path connected implies that H°(X) Z it is easy to see that
the unit e is a generator (e is defined by (x, e) = 1 for all x E X).

Recall the definition of H-space. There is x0 X so that the following
diagram commutes to homotopy:

XxX

x x,

where k: X X is the constant map at x0,(k, xi—.(x0,x), and (1k, k), x'—.
(x, x0). Let I: {x0} c. X be the inclusion.

Since H( {x0 }) = H°( {x0 }), the map of graded rings i: H(X) —, H*({xo))
carries into 0 for all p > 0, while 1(cls e) = cis e0, the unit of H*({xo}),
by Lemma 12.20. We identify H({x0}) with land so i is the map that must
be shown to be a co-unit.

Consider the following subdivision of the defining co-unit diagram:

H(X) ® H(X)

1'
!1(X x X) H({x0})®H'(X)

where 1: ui—pu ® cis e0 and r: u cls e0 ® u. Since the composite is the
comultiplication c, it suffices to show that each triangle in the diagram
commutes (for then is a co-unit), Commutativity of the lower outside
triangles is plain, while commutativity of the other two lower triangles results
from applying the functor H* to the homotopy commutative diagram above.
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It remains to prove that k)5 = (1 ® 15)fl and r(k, = (i 0 l)$; SinCe

$ is the inverse of &, it suffices to prove that

k)etx' = 1 0 i and r(k, = 0 1.

Now ® 1 maps W(X) 0 H'(X) into HP({xo}) 0 and hence it is

zero when p > 0. If p = 0, it suffices to look at (i 0 l)(cls e 0 cls 0) (for X
path connected implies that cis e generates H°(X)), and

(IS® 1)(clseOclsO)=clsie®CISO

= cis e0 0 cls 9.

On the other hand, if q, is a p-cocycle and 9 is a q-cocycle, then
r(k, q 0 cls 6) = r(k, p x cls 8), by definition of cross pro-
duct. But (k, = d5(k x li)'. where d: X X x Xis the diagonal, so that
Exercise 12.13 gives

r(k, q' x cls 0) = rd(k5 cls p x cls 9).

It follows that this is zero for p > 0 (because k is a constant map). If p = 0, we
may again assume that = e, and now

rd(k5 cis e x cis 9) = rd(cls e x cls 6)

(for k: X —. X implies that k cis e = ds e). By Corollary 12.27,

rd5(cls e x cls 8) = r(cls eUcls 6)

= rcls 0 = clse0ØclsO,

as desired. A similar argument handles 1 0 1. 0

Remark. If one replaces Z by a field R throughout, then one obtains graded
R-algebras instead of graded rings and connected Hopf algebras over R
instead of over Z; the analogous result holds for any space X of finite type
(whose homology groups need not be free abelian).

Theorem 12.43 (Hopf). If n > 0 is even,4 then S is not an H-space.

PROOF. We know that H5(S") = H° H1, say, with generators e and x. It
suffices to show that H(S1) cannot be a connected Hopf algebra; let us assume
otherwise.

Now the corn ultiplication c: H5 0 H4 is a map of graded rings. Since
x has degree n,

c(x)=reOsx+ux®ve, r,s,u,veZ.

Ife: H —. Zis the co-unit, then (€0 1)c(x)= 1 Øxand(1 Ø€)c(x)= xØ 1.

'It is known that S is an H-space only for n = 0, 1,3, and 7.
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Since H° ® —' Z (given by ae ® '—+ ab) and ® H° —. Z (given by
bx ® ae i—p ab) are isomorphisms of abelian groups, I = rs uv. Since
re ® sx = e ® rsx = rse ® x, it follows that

c(x) = e ® x + x ® e.

Now xUx = 0 because its degree is 2n> n. and so c(xUx) = 0. But c is
multiplicative, so that

0 = c(x U x) = c(x)c(x)

=(eØx + x®e)(e®x+x®e)
= (e ® x)2 + (e ® .,c)(x ® e) + (x ® e)(e ® x) + (x ® e)2.

Recall that multiplication in H* ® satisfies

(a® b)(y ® z) = (— Uy) ® (b U z).

It follows that

(e ® x)2 = e ® (x U x) and (x ® e)2 = (x U x) ® e,

and each of these is zero because x U x = 0. Also

(x®e)(e®x)= x®x
because c has degree 0, while

(eøx)(x®e)=(—l)"x®x.
Since n is even, it follows from the above expansion of 0 = c(x U x) that
2x ® x = 0 in ® hence x ® x = 0. But x ® x # 0, by Exercise 9.34.
This contradiction completes the proof. 0

It follows, of course, that is never the underlying space of a topological
group (when n > 0).

You are now in the hands of [J. F. Adamsj.
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Notation

C complex numbers
I closed unit interval [0. lJ

Q rational numbers
K real numbers
Z integers
X closure of X (as subspace of a larger space)
X interior of X (as subspace of a larger space)

boundary of U (as subspace of a larger space)
IXI cardinal of a set X

euclidean n-space I

S" n-sphere I

n-disk 2

standard 2

1,4 identity function or identity morphism on A 6

obj objects in a category 6

Groups category of groups 7

Sets category of sets 7

Top category of topological spaces 7

Ab category of abelian groups 8

Top2 category of pairs (X, A), where X isa topological space and
AisasubspaceofX 8

Sets,1, category of pointed sets 8

Tops category of pointed topological spaces 8

map Hom(M, A) —' Uom(M. B) induced by f: A -. B 11

f* orf# map Hom(B, Hom(A, M)induced byf: A —. B 12

hTop homotopy category 16

X!A quotient space 20



424 Notation

map induced on fundamental group or in homology 44.
67
pointed homotopy category 44

8 alternating sum differentiation 143
singular chain complex 65
induced chain map 66

cls homology class of an n-cycle Zn 66. 87
Comp category of chain complexes 88

augmented singular chain complex 102
reduced homology 1Q2. 1471

Sd subdivision 113. 114. 138
1K I geometric realization or underlying space of a simplicial

complex K 197
all the proper faces of a simplex s

s° open simplex s —
st(p) star ofp L35

category of simplicial complexes 137
piecewise linear map between geometric realizations
induced by simplicial map g 137
q-skeleton of simplicial complex K 140
simplicial chain complex 144
Euler—Poincaré characteristic 145. 151. 221
augmented simplicial chain complex 147

XvY wedge
CP complex projective space 183
H quaternions 183
HP' quaternionic projective space 183

RI" real projective space 183
or X Y attaching space 184. 187

X ft Y coproduct or disjoint union 184, 196
q-skeleton of CW complex X 198
union of all cells in E', where (X, E) is a CW complex and
E'cE

W4(X) cellular chain complex 213
tr trace 249
A(f) Lefschetz number 250
(X, p) covering space 223

stabilizer of x 280
group of covering transformations 289

f # associate of a function f of two variables 313
fIX loop space of a pointed space X 326

suspension of a pointed space X 329
one-point compactitication 333

Mf mapping fiber 345
f* map induced in cohomology 379



Index

A
Absolute homology group 91
Abstract simplicial complex 141
Action

group on set or space 280
proper 310
transitive 280
without fixed points 311

Acyclic carriers 246
Acyclic complex 88
Acyclic cover 155
Acycic models 242
Acyclic space 69
Adams 418
Additive functor 239
Adequate subcomplex 158
Adjoint pair of functors 330
Admissible open set 213
Affine chains 116
AfTine combination 3.1
AtThie independent 32
Alline map 38
Afline simplex 35
Affine subset 31
Alexander horned sphere 129
Alexander—Veblen 152
Alexander—Whitney 398
Algorithm for homology 156
Almost all 59
Amalgam 119
ANR 212
Anticommutativity 401
Antipodal map 124. 252

the antipodal map 12.1

Antipode 2
Associate of function of two variables

313
Attaching a 2-cell, simplicial 178
Attaching an n-cell 187
Attaching map 184

simplicial 177
Augmentation of nonnegative complex

244
Augmentation preserving chain map 244
Augmented simplicial complex 148
Augmented singular complex 11)2

B
Back face 391
Barratt—Whitehead 101
Barycenter 36
Barycentric coordinates 35
Sarycentric subdivision 113. 11-4

abstract simplicial complex 141
simplicial complex 138

Base of free functor 239, 240
Basepoint 8.. 44

simplicial complex 166
Basis

free abeian group 59
free group 168
free module 314
of topology 296

Betti number 68
Bilinear function 253
Blakers-Massey 369
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Borsuk—IJiam 125.413.415 Closed path 41
Boundaries 82 Closed relation 181

relative 99 Closed star 153
simplicial 144 Closure finite 199
singular 65 Co-associativity 319

Boundary of simplex M Co-identity 319
Boundary operator 65 Co-inverse 320
Boundary points 128 Co-unit 415
Bouquet of circles 178 Coboundaries 378
Brody 226 Cochains 378
Brouwer 119 Cocycles 378
Brouwer fixed point theorem 5. 110. 252 Codiagonal 316
Brown 311 Coefficient group 231

Coexact sequence 350
Cofibration 212, 360

C Cogroup object 319
Category 6 Cohomology class 378

functor 230 Cohomology group with coefficients
homotopy 16 378
pairs 8 de Rham 376
pointed homotopy 44 integral 386
quotient 10 relative 381
small 230 simplicial 406

Cell = n—cell 186 Cohomology ring 396
algebraic 159 product 403
closed 126 real projective space 410

Cellular approximation theorem 227 simplicial 406
Cellular torus 404

chain complex 213 wedge 402
filtration 212, 213 Cokernel 238
map 213 Commutative diagram 9
space 213 Compact supports 71, 232

Chain complex 86 Compact-open topology 312
cellular 213 Compactly generated 203
finite type 387 Complex projective space 183
free 233 homology groups 192
nonnegative 242 Complex chain complex 86

Chain equivalence 92 acyclic 88
Chain equivalent 92 augmented singular 102
Chain homotopic 92 direct sum 90
Chain homotopy 92 finitely based 159
Chain map 88 quotient 89

augmentation preserving 244 simplicial 144
overf 238 simplicial augmented 148

Chains singular 65
affinell6 zero89
simplicial 144 Component
singular M path 26

Character group 386 simplicial complex 166
Characteristic class 409 Composition (in category) 6
Characteristic map I 85, 188, 198 Comultiplication
Circuit 162 cogroup object 319
Closed cell 126 Hopf algebra 413
Closed edge path 164 Cone 23
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Cone construction 74 D
Congruence (on category) 9 de Rham cohomology 315
Connected Hopf algebra 415 de Rham theorem 396
Connected simplicial complex 166 Deck transformation = covering trans.
Connected sum 195 formation 288
Connecting homomorphism 94 Deformation retract 29

cohomology 382 strong 209
naturality 95 Degree

Constant edge path 165 homogeneous element in graded ring
Constant map 16 391
Constant path 41 fundamental group 52
Contiguous 152 homology 119
Continuation 296 Diagonal approximation 396
Contractible 18 Diagonal map 315
Contracting homotopy 92 Diagonal of space 181
Contravariant functor 11 Diagram chasing 93
Contravariant Horn functor 12 Differential form 175
Convex 18 Differentiation 86
Convex combination 32 Dimension axiom
Convex hull of X = convex set cohomology 379

spanned by X 31 homology groups 68
Convex set spanned by X 31 homotopy groups 336
Coordinate neighborhoods 363 Dimension
Coproduct CW complex 204

in category 315 simplicial complex 136
of spaces 184, 196 Direct sum of complexes 90

Convariant functor 11 Direct summand 4
Covariant Horn functor 11 Disconnection 109
Cover (simplicial complex) 153 Discrete space: every subset is

acyclic 155 closed
Covering homotopy lemma 279 Disk 2
Covering homotopy theorem 217 Divisible abelian group 384
Covering projection 213 Dowker 207
Covering space 273 Dual basis 407

f-sheeted 282 Dual space functor 12
regular 283 Dual universal coefficients 385
universal 288 Dunce cap 164

Covering spaces, equivalent 308 homology groups 164
Covering transformation 28.8
Cross product 400
Crosscaps 195 E
Cup product 392, 396 E-acyclic object 242

simplicial 405 Edge 164
CW complex 198 Edge path 164

dimension 204 closed 164
finite 199 constant 165
skeleton 198 homotopy of 165

CW decomposition 198 inverse 165
CW space 198 length 164
CW subcomplex 200 reduced 167
CyclesSl Edgepathclass 165

relative 99 Edge path group 166
simplicial 144 Eilenberg—Mac Lane space 371
singular 65 Eilenberg—Stcenrod 231
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Eilenberg—Zilber 266 Fiber product 358
End Fibration 222. 356

edge path 164 weak 360
path 41 Filtration 212

Equator2 cellular 212, 213
Equivalence (in category) 12 Finite CW complex 199
Equivalent covering spaces 220. 308 Finite type
Euclidean space I chain complex 387
Euler—Poincaré characteristic 145. 146. space 387

152, 221 Finitely based complex 159
Evaluation map 313 Finitely presented group 172
Evenly covered 213 First isomorphism theorem for corn-
Exact sequence plexes 91

abelian groups 82 Five lemma 98
(chain) complexes 89 Flores 116
pointed homotopy category 345 Folding map 316
pointed sets 34 Forgetful functor 11
short 81 Free abelian group 59
split 234 Free chain complex 233

Exact sequence of pair Free functor 239, 240
homology 9.6 base 239, 240
homotopy 354 Free group 168, 305

Exact sequence of tripk Free homotopy 41)
homology 96 Free module 324
homotopy 355 Free product 173

Exact triangle 94 Free product with amalgamated sub-
Excision 1 11)6 group 119
Excision II 106 Freedman 141)
Excision Freudenthal suspension theorem 369

cellular 220 Front face 391
cohomology 382 Full subcomplex 173
simplicial 141 Functor 11
singular lfl additive 239

Exponential law 314 base of free 239, 240
Ext 383 contravariant Ii
Extending by linearity 61) contravariant Horn 12
Exterior algebra 391 covariant 11
Exterior derivative 315 covariant Horn LI
Exterior power 314 dual space 12
Extraordinary homology theory forgetful 11

232 free 239, 240
identity LI

Functor category 230
F Fundamental group 44
F-model set 239 circle 52
Face map 64 CW complex 227
Face lensspace3ll

simplex 32. 131 polyhedron 172
back 391 product 46
front 391 real projective plane 282
proper 131 surfaces 195

f.g. = finitely generated wedge 176
Fiber 21 Fundamental theorem of algebra 12. 53
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Fundamental theorem of f.g. abelian simplicial 144
groups 155 singular 66

with coefficients 257
Homology groups

G complex projective space 192
G-equivariant map = G-map 290 dunce cap 164
G-isomorphism 291 Klein bottle 194
G-map 290 lens space 226
G-set product 270

quaternionic projective space 192
right 281 real projective plane 158, 193
transitive 280 real projective space 224

Gelfand-Kolmogoroff [3 spheres 109
General position 34 torus 152. 193
Generators and relations wedge

abelian group 60 Homology theory 231
nonabelian group 169 extraordinary 232

Genus 195 Homomorphism, trivial 49
Geometric realization Homotopic 14

finite simplicial complex Homotopic edge paths 165
infinite simplicial complex [91 Homotopy 14

Gluing lemma chain 92
Graded ring contracting 92
Graph of relation 181 49Green's theorem level along! 338
Group object 318 pair 351Groupoid relative 40
Gysin seciuence 409 Homotopy axiom 25

pairs 104
H cohomology 379
if-group 324 Homotopy category 16
H-group 324 Homotopy class 15
H-space £5 Homotopy equivalence 16
Hairy ball theorem 123 Homotopy extension property 359
Ham sandwich theorem 413.415 Homotopy extension theorem 212
Handles 194 Homotopy group, relative 351
Hauptvermutung 152 Homotopy groups 334
Hirsch 3 spheres 343
Horn functor Homotopy identity £5

contravariant 12 Homotopy lifting property 355
covariant 11 Homotopy sequence

Homogeneous fibration 358
element 391 pair 354
ideal 391 triple 355
subring 391 weak fibration 363

Homology class 66. 81 Hopf 119
Homology group 81 Hopf algebra 415

absolute 92 connected 415
cellular 213 Hopf fibrations 366. 3.62
reduced simplicial 148 Hu 231
reduced singular 102 Hurewicz 359
relative simplicial 145 Hurewicz fiber space = fibration
relative singular 96 356
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Hurewicz map $1), 369 Lebesgue number: If Xis a compact
Hurewicz theorem $2. 369 metric space and is an open

cover of X, then there exists a posi-
tive number A such that every open
ball of radius less than A lies in

Identification some element of
Identity functor 11 Lefschetz fixed point theorem 250
Identity morphism Lefschetz number 250
Image subcomplex Left exactness 380
Independent Left G-set 281

affine 32 Length (edge path) 164
subset of abelian group 61 Lens space 225

Induced orientation fundamental group 311
infinite simplicial complex 191 homology groups 226

geometric realization 191 Leray 154
Infinite-dimensional real projective Level homotopy alongf 338

space 182 Lie group 302
homology groups 220 Lifting Si

Initial object 314 Lifting criterion 284
Injections 316 Lifting lemma 212
Integral cohomology groups 386 Local homeomorphism 213
Integration formula Local system 338
Intersection of subcomplexes 91) Locally compact 189
Invariance of dimension 136 Locally connected 29
Invariance of domain 130 Locally contractible 2)1
Inverse edge path 165 Locally finite 362
Inverse path Locally path connected 28
Isomorphic functors 228 Locally trivial bundle 363
Isomorphism Loop space 326

abstract simplicial complexes Lusternik—Schnirelmann 125.413
141

(chain) complexes 9J
homology theories 231 M

Isotropy subgroup = stabilizer 281) Maehara 6
Manifold 195
Map

affine3Sf-sheeted covering space
antipodal 121. 124. 252Jordan—Brouwer separation theorem
attaching 177, 184128
cellular 213
chain 8$. 238, 244

K constant 16
Kernel diagonal 315
Kernel subcomplex 89 face 64
Klein bottle 134 folding 316

homology groups 164. 194 G- 290

Kuratowski 136 natural 91

Künneth formula 269 pairs 8
cohomology 389 pointed S

Künneth theorem 268 simplicial 136
Mapping cone 236
Mapping cylinder 31)

L Mapping fiber 345
Lakes of Wada 129 Maximal tree 162
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Mayer—Vietons 101 P
cellular 220 Pairs, category of 8
reduced homology 14)8 map 8
simplicial 147 Path 24

Mesh [16 Path class 44)
simplicial complex 139 edge path class 165

Milnor 3. 152, 368 Path component 26
Models 239 Path connected 25
Module 373 Path
Moise 152 closed 41
Monodromy group 284 constant 41
Monodromy theorem 279 end 41
Monoid 9 inverse 41
Morphism 6 origin 41

identity 6 Perron 6
special 323 Piecewise linear 131

Multiplication (group object) 318 Poincaré 82
Multiplicity (covering space) 282 Poincare conjecture 144). 226

Pointed homotopy category 44
Pointed map 8

N Pointed pair 351
n-simple space 342 homotopy 351
Natural equivalence 228 map 351
Natural map [9 Pointed set 8

(chain) complexes 91 Pointed space 8
Natural transformation 228 Polygon 85
Naturality of connecting homomor- Polyhedral pair, compact 230

phism 95 Polyhedron 132
Naturally equivalent = isomorphic Presentation

228 nonabelian group 169
Nerve 141. 153 abelian group 60
Nonnegative chain complex 242 Prism 78
Norm I Product in category 315
Normal form 156 Projections 31.5
Normalizer 293 Projective space
Nullhomotopic 16 complex 183

quaternionic 183
real 183

o Properaction 310
Object 6 Proper face of simplex 131
Olum 176 Pullback 359
One-point compactification 333 Puppe sequence 349
Open simplex 135 contravariant 350
Opposite face 31 Pushout 174
Opposite orientation 63
Orbit 280
Orbit space 307 Q
Orientation of simplex 62 Quasi-ordered set 8

induced 61 Quaternionic projective space 183
Oriented simplicial complex 142 homology groups 192
Origin Quotient category 10

edge 164 Quotient (chain) complex 89
path 41 Quotient of simplicial complex 177

Orthogonal group 368 Quotient topology 19
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B Simplex 35
Rank affine 15

abelian group 61 open 135
free abelian group 61 singular 64
free group 169 standard 2

Real projective plane 134 Simplicial approximation 131
fundamental group 282 Simplicial approximation theorem [32
homology groups 158, 163, 193 Simplicial cohomology group 405

Real projective space 183 Simplicial cohomology groups 406
cohomology groups 386, 387 Simplicial cohomology ring 406
cohotnology ring 410 Simplicial complex 131
homology groups 224 abstract 141

Reduced edge path 161 infinite 197
Reduced homology groups oriented 142

singular 102 Simplicial map 136
simplicial [48 abstract simplicial complexes 141

Reduction lemma 160 Simply connected 49
Regular covering space 283 Sin space 25
Relative boundaries 99 Singular chains M
Relative cohomology group 38-1 Singular complex 65
Relative cycles 99 Singular simplex M
Relative homeomorphism 181 Skeleton
Relative homology group simplicial complex [40

simplicial 145 CW complex 198
singular 26 Smale 1.40

Relative homotopy 40 Small category 230
Relative homotopy group 351 Smash product 333
Retract 4 Space obtained by attaching cell 1.84

deformation 29 Special morphism 323
strong deformation 202 Sphere 1

Retraction 4 homology groups 109
stereographic 339 homotopy groups 343
strong deformation 209 Split exact sequence 234

Right G-set 281 Stabilizer 280
Standard simplex 2

S Star of vertex 1.35
Same homotopy type 16 Star, closed 153
Schauder 5 Stereographic projection 2
Schoenflies 122 Stereographic retraction 339
Second isomorphism theorem for corn- Strong deformation retract 209

plexes 91 Strong deformation retraction 209
Seifert—van Kampen 115 Subcategory 7

CW complexes 221 Subcomplex
Semilocally 1-connected 297 adequate 158
Serre 343, 362 chain complex 89
Serre fiber space = weak fibration 360 CW 200
Set6 full 173
Sheets 273 image 89
Short exact sequence kernel 89

abelian groups 87 simplicial complex 139
(chain) complexes 89 sum 90

Sierpinski space 19 intersection 90
Simple = n-simple 342 Subspace 4

Sum of subcomplexes 20
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Support 11
Surface groups 112. 195
Surfaces 195

fundamental group 195
Suspension 232

reduced 329
Suspension homomorphism 344, 369

T
Target 2
Tensor product 253

(chain) complexes 265
graded rings 402
over R 389
rings 402

Terminal object 314
Third isomorphism theorem for com-

plexes 91
Tietze 172, 227
Tietze extension theorem: If A is a

closed subspace of a normal space
I, then every continuous function
f: A-' I can be extended to X.

Topological group 55
br 259
Torsion coefficients 155
Torsion subgroup 12
Torus 123

cohomology ring 404
homology groups 162, 193

Totally E-acyclic 245
Trace 249
Track groups 344
Transitive action 280
Tree 167. 304

maximal
Triangulated polygon 177
Triangulation 132
Trivial homomorphism 49
Tube lemma 190

U
Underlying space 132
Universal coefficients

cohomology 388
dual 385
homology 261

Universal covering space 288
Urysohn lemma: If A and B are closed

disjoint subsets of a normal space
X, then there is a continuous func-
tionf: with IIA) = 0 and
f(B)= I.

Usual imbedding 411

V
van Kampen theorem = Seifert—van

Kampen theorem 175
Veblen [28
Vector field 123
Vertex of cone 23
Vertex set

simplex 131
simplicial complex 132

Vertices of simplex 35

w
Weak fibration 360
Weak topology 196
Wedge [96
Whitehead theorem 310
Winding number .50

Y
Yoneda lemma 230

z
Zero complex 89
Zero object 315
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