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Preface

There is a canard that every textbook of algebraic topology either ends with
the definition of the Klein bottle or is a personal communication to J. H. C.
Whitehead. Of course, this is false, as a glance at the books of Hilton and
Wylie, Maunder, Munkres, and Schubert reveals. Still, the canard does reflect
some truth. Too often one finds too much generality and too little attention
to details.

There are two types of obstacle for the student learning algebraic topology.
The first is the formidable array of new techniques (e.g., most students know
very little homological algebra); the second obstacle is that the basic defini-
tions have been so abstracted that their geometric or analytic origins have
been obscured. I have tried to overcome these barriers. In the first instance,
new definitions are introduced only when needed (e.g., homology with coeffi-
cients and cohomology are deferred until after the Eilenberg—Steenrod axioms
have been verified for the three homology theories we treat—singular, sim-
plicial, and cellular). Moreover, many exercises are given to help the reader
assimilate material. In the second instance, important definitions are often
accompanied by an informal discussion describing their origins (e.g., winding
numbers are discussed before computing =,(S'), Green’s theorem occurs
before defining homology, and differential forms appear before introducing
cohomology).

We assume that the reader has had a first course in point-set topology, but
we do discuss quotient spaces, path connectedness, and function spaces. We
assume that the reader is familiar with groups and rings, but we do discuss
free abelian groups, free groups, exact sequences, tensor products (always over
Z), categories, and functors.

I am an algebraist with an interest in topology. The basic outline of this
book corresponds to the syllabus of a first-year’s course in algebraic topology



viii Preface

designed by geometers and topologists at the University of Illinois, Urbana;
other expert advice came (indirectly) from my teachers, E. H. Spanier and S.
Mac Lane, and from J. F. Adams’s Algebraic Topology: A Student’s Guide. This
latter book is strongly recommended to the reader who, having finished this
book, wants direction for further study.

I am indebted to the many authors of books on algebraic topology, with
a special bow to Spanier’s now classic text. My colleagues in Urbana, es-
pecially Ph. Tondeur, H. Osborn, and R. L. Bishop, listened and explained.
M.-E. Hamstrom took a particular interest in this book; she read almost the
entire manuscript and made many wise comments and suggestions that have
improved the text; my warmest thanks to her. Finally, I thank Mrs. Dee
Wrather for a superb job of typing and Springer-Verlag for its patience.

Joseph J. Rotman

Addendum to Second Corrected Printing

Though I did read the original galleys carefully, there were many errors that
eluded me. I thank all who apprised me of mistakes in the first printing,
especially David Carlton, Monica Nicolau, Howard Osborn, Rick Rarick,
and Lewis Stiller.

November 1992 Joseph J. Rotman

Addendum to Fourth Corrected Printing

Even though many errors in the first printing were corrected in the second
printing, some were unnoticed by me. I thank Bernhard J. Elsner and Martin
Meier for apprising me of errors that persisted into the the second and third
printings. I have corrected these errors, and the book is surely more readable
because of their kind efforts.

April, 1998 Joseph Rotman



To the Reader

Doing exercises is an essential part of learning mathematics, and the serious
reader of this book should attempt to solve all the exercises as they arise. An
asterisk indicates only that an exercise is cited elsewhere in the text, sometimes
in a proof (those exercises used in proofs, however, are always routine).

I have never found references of the form 1.2.1.1 convenient (after all, one
decimal point suffices for the usual description of real numbers). Thus, Theorem
7.28 here means the 28th theorem in Chapter 7.
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CHAPTER 0
Introduction

One expects algebraic topology to be a mixture of algebra and topology, and
that is exactly what it is. The fundamental idea is to convert problems about
topological spaces and continuous functions into problems about algebraic
objects (e.g., groups, rings, vector spaces) and their homomorphisms; the
method may succeed when the algebraic problem is easier than the original
one. Before giving the appropriate setting, we illustrate how the method
works.

Notation

Let us first introduce notation for some standard spaces that is used through-
out the book.

Z = integers (positive, negative, and zero).
Q = rational numbers.

C = complex numbers.

1 = [0, 1], the (closed) unit interval.

R = real numbers.

R" = {(x,,x,, ..., x,)Ix; € R for all i}.

R" is called real a-space or euclidean space (of course, R" is the cartesian
product of n copies of R). Also, R? is homeomorphic to C; in symbols, R? =~ C.
If x =(x,,..., x,) € R" then its norm is defined by |x|| = .1 x? (when
n = 1, then [x|| = |x|, the absolute value of x). We regard R" as the subspace
of R**! consisting of all (n + 1)-tuples having last coordinate zero.

"= {xeR": x| =1}.
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§" is called the s-sphere (of radius 1 and center the origin). Observe that
$* = R"*!(as the circle S' = R?); note also that the O-sphere S° consists of the
two points {1, — 1} and hence is a discrete two-point space. We may regard
S” as the equator of S™*':

§* =R*™INS™ = {(x,,..., Xass) € S** V1 X0, = O).

The north pole is (0,0, ..., 0, 1) € S*; the south pole is (0,0,...,0, —1). The
antipode of x = (x,, ..., X,,,) € S*is the other endpoint of the diameter having
one endpoint x; thus the antipode of x is —x = (—x,,..., —X,4;), for the
distance from —x to x is 2.

D*={xeR" x| s 1}.

D* is called the a-disk (or a-ball). Observe that S*"! = D" = R*; indeed $*~! is
the boundary of D* in R".

A* = {(x,,X;,..., Xy ) ER** :cach x, 2 0and ) x, = 1}.

A" is called the standard a-simplex. Observe that A° is a point, A! is a closed
interval, A? is a triangle (with interior), A? is a (solid) tetrahedron, and so on.
It is obvious that A* ~ D*, although the reader may not want to construct® a
homeomorphism until Exercise 2.11.

There is a standard homeomorphism from S* — {north pole} to R*, called
stereographic projection. Denote the north pole by N, and define o: S* — {N}
— R" to be the intersection of R” and the line joining x and N. Points on
the latter line have the form tx + (1 — t)N; hence they have coordinates
(txy, ..., tX,, tXosy + (1 — t)). The last coordinate is zero for t = (1 — x,,,)7";
hence

oa(x) = (tx,, ..., tx,),

where t = (1 — x,,,)”". It is now routine to check that ¢ is indeed a homeo-
morphism. Note that o(x) = x if and only if x lies on the equator $**.

Brouwer Fixed Point Theorem

Having established notation, we now sketch a proof of the Brouwer fixed point
theorem: if f: D" — D" is continuous, then there exists x € D* with f(x) = x.
When n = 1, this theorem has a simple proof. The disk D! is the closed interval
[—1, 1]; let us look at the graph of f inside the square D! x D'.

! It is an exercise that a compact convex subset of R" containing an interior point is homeomor-
phic to D* (convexity is defined in Chapter 1) it follows that A®, D*, and I" are homeomorphic.
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- a.n

ae ob

(-1, -1 (1. -1

Theorem 0.1. Every continuous f: D' — D' has a fixed point.

PROOF. Let f(—1) = aand f(1) = b. If either f(—1) = —1 or f(1) = |, we are
done. Therefore, we may assume that f(—1) =a > —landthat f(l) = b < |,
as drawn. If G is the graph of f and A is the graph of the identity function (of
course, A is the diagonal), then we must prove that GN A # (. The idea is to
use a connectedness argument to show that every path in D! x D' from a to
b must cross A. Since f is continuous, G = {(x, f(x)): x € D'} is connected [G
is the image of the continuous map D' — D! x D! given by x+s(x, f(x))].
Define A = {(x, f(x)): f(x) > x} and B = {(x, f(x)): f(x) < x}. Note thata € 4
and be B,so that 4 # ¥ and B # &. If GNA = ¥, then G is the disjoint
union

G=AUB.

Finally, it is easy to see that both 4 and B are open in G, and this contradicts
the connectedness of G. O

Unfortunately, no one knows how to adapt this elementary topological
argument when n > 1; some new idea must be introduced. There is a proof
using the simplicial approximation theorem (see [Hirsch]). There are proofs
by analysis (see [Dunford and Schwartz, pp. 467-470] or [Milnor (1978)])
the basic idea is to approximate a continuous function f: D* - D* by smooth
functions g: D* — D” in such a way that f has a fixed point if all the g do; one
can then apply analytic techniques to smooth functions.

Here is a proof of the Brouwer fixed point theorem by algebraic topology.
We shall eventually prove that, for each n > 0, there is a homology functor H,
with the following properties: for each topological space X there is an abelian
group H,(X), and for each continuous function f: X — Y there is a homomor-
phism H,(f): H,(X) - H,(Y), such that:

H.(g o f) = H.(g) o H\(/) (M

whenever the composite g o f is defined;
H,(1y) is the identity function on H,(X), )
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where 1, is the identity function on X;;
HD**)=0 foralln>1; (3)
H(S")#0 foralln>1. O]

Using these H,’s, we now prove the Brouwer theorem.

Definition. A subspace X of a topological space Y is a retract of Y if there is
a continuous map? r: Y — X with r(x) = x for all x € X; such a map r is called
a retraction.

Remarks. (1) Recall that a topological space X contained in a topological
space Y is a subspace of Y if a subset V of X is open in X if and only if
V = XN U for some open subset U of Y. Observe that this guarantees that
the inclusion i: X < Y is continuous, because i"'(U) = XN U is open in X
whenever U is open in Y. This parallels group theory: a group H contained
in a group G is a subgroup of G if and only if the inclusion i: H< G is a
homomorphism (this says that the group operations in H and in G coincide).

(2) One may rephrase the definition of retract in terms of functions. If
i: X < Y is the inclusion, then a continuous map r: Y — X is a retraction if
and only if

r°i=lx.

(3) For abelian groups, one can prove that a subgroup H of G is a retract
of G if and only if H is a direct summand of G; that is, there is a subgroup K
of G with KNH =0and K + H = G (see Exercise 0.1).

Lemma 0.2. If n > 0, then S" is not a retract of D***.

PROOF. Suppose there were a retraction r: D**! — $*; then there would be a
“commutative diagram” of topological spaces and continuous maps
D+t

/X

s — s
(here commutative means that r o i = 1, the identity function on S*). Applying
H, gives a diagram of abelian groups and homomorphisms:
H,(D"*")
H,(®i) / H,(r)
n H(S") —— H,
H,(S") D) (5"

2 We use the words map and function interchangeably.
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By property (1) of the homology functor H,, the new diagram commutes:
H,(r) o H,(i) = H,(1). Since H,(D**') = 0, by (3), it follows that H,(1) = 0. But
H,(1) is the identity on H,(S"), by (2). This contradicts (4) because H,(S") # 0.

(W]

Note how homology functors H, have converted a topological problem
into an algebraic one.

We mention that Lemma 0.2 has an elementary proof when n =0. It
is plain that a retraction r: Y — X is surjective. In particular, a retraction
r: D' — S° would be a continuous map from [—1, 1] onto the two-point set
{11}, and this contradicts the fact that a continuous image of a connected
set is connected.

Theorem 0.3 (Brouwer). If f: D" — D" is continuous, then f has a fixed point.

PROOF. Suppose that f(x) # x for all x € D*; the distinct points x and f(x) thus
determine a line. Define g: D* — $*~! (the boundary of D”) as the function

g(x)

assigning to x that point where the ray from f(x) to x intersects S*~'. Ob-
viously, x € $"~! implies g(x) = x. The proof that g is continuous is left as an
exercise in analytic geometry. We have contradicted the lemma. O

There is an extension of this theorem to infinite-dimensional spaces due to
Schauder (which explains why there is a proof of the Brouwer fixed point
theorem in [Dunford and Schwartz]): if D is a compact convex subset of a
Banach space, then every continuous f: D — D has a fixed point. The proof
involves approximating f — 1, by a sequence of continuous functions each of
which is defined on a finite-dimensional subspace of D where Brouwer's
theorem applies.

EXERCISES

*0.1. Let H bea subgroup of an abelian group G. If there is a homomorphismr: G + H
with r(x) = x for all xe H,then G = H@ ker r. (Hint: If y € G, then y = r(y) +
(y=r(»)
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0.2. Give a proof of Brouwer’s fixed point theorem for n = 1 using the proof of
Theorem 0.3 and the remark preceding it.

0.3. Assume, for n > 1, that H(S*) = Z if i = 0, n, and that H,(S") = 0 otherwise.
Using the technique of the proof of Lemma 0.2, prove that the equator of the
n-sphere is not a retract.

0.4. If X is a topological space homeomorphic to D*, then every continuous f: X — X
has a fixed point.

0.5. Let f,g: I =1 x I be continuous; let f(0) = (a, 0) and f(1) = (b, 1), and let g(0) =
(0, ¢) and g(1) = (1, d) for some a, b, c, d € L. Show that f{(s) = g(¢) for some s,
t e I; that is, the paths intersect. (Hint: Use Theorem 0.3 for a suitable map
I x I =1 x L) (There is a proof in [Machara}; this paper also shows how to
derive the Jordan curve theorem from the Brouwer theorem.)

0.6. (Perron). Let A = [a;] be a real n x n matrix with a; > 0 for every i, j. Prove
that A has a positive eigenvalue A; moreover, there is a corresponding eigenvector
x = (X},X3, ..., X,)(i.c., Ax = Ax) with each coordinate x; > 0.(Hint: First define
a:R" =R by o(x,, x3,..., x,) = Y.f=; X;, and then define g: A" - A*"! by
g(x) = Ax/o(Ax), where x € A*"' = R"is regarded as a column vector. Apply the
Brouwer fixed point theorem after showing that g is a well defined continuous
function.)

Categories and Functors

Having illustrated the technique, let us now give the appropriate setting for
algebraic topology.

Definition. A category ¥ consists of three ingredients: a class of objects, obj ¢;
sets of morphisms Hom(A, B), one for every ordered pair A, B € obj ¢; com-
position Hom(A, B) x Hom(B, C) - Hom(A4, C),denoted by(f, g)— g o f, for
every A, B, C € obj ¥, satisfying the following axioms:

(i) the family of Hom(A, B)’s is pairwise disjoint;
(ii) composition is associative when defined;
(iii) for each A4 € obj ¢, there exists an identity 1, € Hom(4, A) satisfying
1,0 f = fforevery f € Hom(B, A),all B € obj ¥,andg o 1, = gforevery
g € Hom(4, C),all Ce obj €.

Remarks. (1) The associativity axiom stated more precisely is: if f, g, h are
morphisms with either ho(go f) or (hog)o f defined, then the other is
also defined and both composites are equal.

(2) We distinguish class from set: a set is a class that is small enough
to have a cardinal number. Thus, we may speak of the class of all topological
spaces, but we cannot say the set of all topological spaces. (The set theory we
accept has primitive undefined terms: class, element, and the membership
relation €. All the usual constructs (e.g., functions, subclasses, Boolean opera-
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tions, relations) are permissible except that the statement x € A is always false
whenever x is a class that is not a set.)

(3) The only restriction on Hom(A4, B) is that it be a set. In particular,
Hom(A4, B) = & is allowed, although axiom (iii) shows that Hom(A, A4) # &
because it contains 1.

(4) Instead of writing f € Hom(A, B), we usually write f: 4 — B.

EXAMPLE 0.1. € = Sets. Here obj € = all sets, Hom(A, B) = {all functions
A — B}, and composition is the usual composition of functions.

This example needs some discussion. Our requirement, in the definition of
category, that Hom sets are pairwise disjoint is a reflection of our insistence
that a function f: A — B is given by its domain A, its target B, and its graph:
{all (a, f(a)): a€ A} = A x B. In particular, if 4 is a proper subset of B, we
distinguish the inclusion i: A « B from the identity 1, even though both
functions have the same domain and the same graph; i e Hom(A4, B) and
1, € Hom(A, A), and so i # 1,. This distinction is essential. For example, in
the proof of Lemma 0.2, H,(i) = 0 and H,(1,) # O when 4 = $"and B = D"*'.
Here are two obvious consequences of this distinction: (1) If B < B’ and
f:A— Band g: A — B are functions with the same graph (and visibly the
same domain), then g = i o f, where i: B & B’ is the inclusion. (2) One may
form the composite h o g only when target g = domain h. Others may allow
one to compose g: A — B with h: C » D when B = C; we insist that the only
composite defined here is h o i o g, where i: B < C is the given inclusion.

Now that we have explained the fine points of the definition, we continue
our list of examples of categories.

ExAMPLE 0.2. ¥ = Top. Here obj ¢ = all topological spaces, Hom(4, B) =
{all continuous functions A — B}, and composition is usual composition.

Definition. Let € and of be categories with obj € < obj . If A, Be obj ¢,
let us denote the two possible Hom sets by Homg(A, B) and Hom (A, B).
Then € is a subcategory of «of if Homy(A4, B) « Hom (A, B) for all A, Be
obj € and if composition in € is the same as composition in &f; that is, the
function Homg(A, B) x Homg(B, C) - Homy(A, C) is the restriction of the
corresponding composition with subscripts «.

ExampLE 0.2". The category Top has many interesting subcategories. First, we
may restrict objects to be subspaces of euclidean spaces, or Hausdorff spaces,
or compact spaces, and so on. Second, we may restrict the maps to be differ-
entiable or analytic (assuming that these make sense for the objects being
considered).

ExamPLE 0.3. ¢ = Groups. Here obj € = all groups, Hom(A4, B) = {all homo-
morphisms A — B}, and composition is usual composition (Hom sets are so
called because of this example).
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EXAMPLE0.4. € = Ab. Herc obj ¥ = all abelian groups, and Hom(4, B) = {all
homomorphisms A — B}; Ab is a subcategory of Groups.

ExampLE 0.5. € = Rings. Here obj € = all rings (always with a two-sided
identity element), Hom(4, B) = {all ring homomorphisms 4 — B that pre-
serve identity elements}, and usual composition.

ExaMPLE 0.6. ¢ = Top?. Here obj € consists of all ordered pairs (X, A), where
X is a topological space and 4 is a subspace of X. A morphism f: (X, A) —»
(Y, B) is an ordered pair (f,f’), where f: X - Y is continuous and fi = jf’
(where i and j are inclusions),

A
f’]
B

and composition is coordinatewise (usually one is less pedantic, and one says
that a morphism is a continuous map f: X — Y with f(A4) c B). Top? is called
the category of pairs (of topological spaces).

;‘.x

f

;‘Y'

’

ExampLe0.7. € = Top,. Here obj € consists of all ordered pairs (X, x,), where
X is a topological space and x, is a point of X. Top, is a subcategory of Top?
(subspaces here are always one-point subspaces), and it is called the category
of pointed spaces; x, is called the basepoint of (X, x,), and morphisms are called
pointed maps (or basepoint preserving maps). The category Sets, of pointed
sets is defined similarly.

Of course, there are many other examples of categories, and others arise
as we proceed.

EXERCISES

0.7. Let f € Hom(A, B) be a morphism in a category €. If f has a left inverse g
(9 € Hom(B, A) and go f = 1,) and a right inverse h (h e Hom(B, A) and
Soh=1;)theng=h.

0.8. (i) Let € be a category and let A € obj €. Prove that Hom(A4, A4) has a unique
identity 1.
(i) If € is a subcategory of ¢, and if 4 € obj ¥, then the identity of 4 in
Homg.(A, A) is the identity 1, in Hom(A, A).

*09. A set X is called quasi-ordered (or pre-ordered) if X has a transitive and
reflexive relation <. (Of course, such a set is partially ordered if, in addition, <
is antisymmetric.) Prove that the following construction gives a category €.
Define obj € = X;if x,y € X and x £ y, define Hom(x, y) = &; if x < y, define
Hom(x, y) to be a set with exactly one element, denoted by i}, f xSy <z,
define composition by i} o iy
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*0.10. Let G be a moanoid, that is, a semigroup with 1. Show that the following
construction gives a category €. Let obj € have exactly one element, denoted
by «; define Hom(e, #) = G, and define composition G x G — G as the given
multiplication in G. (This example shows that morphisms may not be functions.)

0.11. Show that one may regard Top as a subcategory of Top? if one identifies
a space X with the pair (X, &).

Definition. A diagram in a category € is a directed graph whose vertices are
labeled by objects of € and whose directed edges are labeled by morphisms
in €. A commutative diagram in € is a diagram in which, for each pair of
vertices, every two paths (composites) between them are equal as morphisms.

This terminology comes from the particular diagram

A A
1
B B

which commutes if go f = f' o g’. Of course, we have already encountered
commutative diagrams in the proof of Lemma 0.2.

_.

_—’

EXERCISES

*0.12. Given a category €, show that the following construction gives a category 4.
First, an object of .« is a morphism of €. Next, if f, g € obj .#, say, f: A - B
and g: C — D, then a morphism in .# is an ordered pair (h, k) of morphisms in
¢ such that the diagram

A B
C D

commutes. Define composition coordinatewise:

(', k') o (h, k) = (h’ o h, k' o k).

.

——

0.13. Show that Top? is a subcategory of a suitable morphism category (as con-
structed in Exercise 0.12). (Hint: Take € = Top, and let .4 be the corresponding
morphism category; regard a pair (X, A) as an inclusion i: 4 - X\)

The next simple construction is useful.

Definition. A congruence on a category € is an equivalence relation ~ on the
class { ) 4.s Hom(4, B) of all morphisms in ¢ such that:
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(i) f€ Hom(A, B) and f ~ f* implies f' € Hom(A4, B);
(i) f ~ f',g ~ g, and the composite g o f exists imply that

gof~gof.

Theorem 0.4. Let € be a category with congruence ~, and let [ ] denote the
equivalence class of a morphism f. Define €’ as follows:

obj € = obj €;
Homy.(4, B) = {{/): f € Hom(4, B)};
[a)elf)=[gof).
Then €' is a category.

PrOOF. Property (i) in the definition of congruence shows that ~ partitions
each set Home(A4, B), and this implies that Homy.(A, B) is a set; morcover,
the family of these sets is pairwise disjoint. Property (ii) in the definition of
congruence shows that composition in ¥’ is well defined, and it is routine to
see that composition in €’ is associative and that [1,] is the identity morphism
on A. a

The category €' just constructed is called a quotient category of €: one
usually denotes Homg-(A4, B) by [A, B].

The most important quotient category for us is the homotopy category
described in Chapter 1. Here is a lesser example. Let € be the category of
groups and let f, f' € Hom(G, H). Define f ~ f* if there exists a e H with
f(x) = af'(x)a”! for all x € G (one may say that f and f* are conjugate). It is
routine to check that ~ is an equivalence relation on each Hom(G, H). To
see that ~ is a congruence, assume that f ~ f, that g ~ g’, and that go f
exists. Thus fand f' € Hom(G, H), g and g’ €e Hom(H, K), there is a € H with
f(x) = af'(x)a"" for all x € G, and there is b € K with g(y) = bg’(y)b~" for all
y € H. It is easy to see that g(f(x)) = [g(a)blg’(f'(x))[g(a)b] ™! for all xe G,
that is, g o f ~ g’ o f'. Thus the quotient category is defined. If G and H are
groups, then [G, H] is the set of all “conjugacy classes” [ ], where f: G - H
is a homomorphism.

EXERCISE

0.14. Let G be a group and let € be the one-object category it defines (Exercise 0.10
applies because every group is a monoid): obj € = {s}, Hom(s, ) = G, and
composition is the group operation. If H is a normal subgroup of G, define x ~ y
to mean xy ' € H. Show that ~ is a congruence on € and that [+, s] = G/H
in the corresponding quotient category.

Just as topological spaces are important because they carry continuous
functions, so categories are important because they carry functors.
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Definition. If of and € are categories, a functor T: &f — ¢ is a function, that is,

(i) A €objof implies TA € obj €,
and
(ii) if f: A - A’is a morphism in o, then Tf: TA — TA’ is a morphism in €,
such that
(iii) if f, g are morphisms in o for which g o f is defined, then

T(g o f) = (Tg) o (Tf);
(iv) T(1,) = 1;, for every A € obj .

Our earlier discussion of homology functors H, can now be rephrased: for
each n > 0, we shall construct a functor H,: Top — Ab with H,(D"*!) = 0 and
H(S") # 0.

ExaMPLE 0.8. The forgetful functor F: Top — Sets assigns to each topological
space its underlying set and to each continuous function itself (“forgetting” its
continuity). Similarly, there are forgetful functors Groups — Sets, Ab —
Groups, Ab — Sets, and so on.

ExampLE 09. If € is a category, the identity functor J: € — € is defined by
JA = A for every object A and Jf = f for every morphism f.

ExampLE 0.10. If M is a fixed topological space, then T,,: Top — Top is
a functor, where T, (X)=X x M and, if f: X - Y is continuous, then
Tu(f): X x M = Y x M is defined by (x, m)— (f(x), m).

ExampLE 0.11. Fix an object A4 in a category €. Then Hom(A4, ): € — Sets
is a functor assigning to each object B the set Hom(4, B) and to each mor-
phism f: B — B’ the induced map Hom(4, f): Hom(4, B) - Hom(A4, B’) de-
fined by g f o g. One usually denotes the induced map Hom(A4, f) by f,.

Functors as just defined are also called covariant functors to distinguish
them from contravariant functors that reverse the direction of arrows. Thus
the functor of Example 0.11 is sometimes called a covariant Hom functor.

Definition. If of and ¥ are categories, a contravariant functor S: o —+ ¥ is a
function, that is,

(i) A € obj of implies SA € obj €,
and

(ii) if f: A = A’ is a morphism in &, then Sf: SA’ — SA is a morphism in €,
such that:
(iti) if f, g are morphisms in o for which g o f is defined, then

S(go f)=S(f) o S(gk
(iv) S(1,) = 15, for every A € obj .
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ExampLE 0.12. Fix an object B in a category ¥. Then Hom( , B): € — Sets
is a contravariant functor assigning to each object A the set Hom(4, B) and
to each morphism g: 4 - A’ the induced map Hom(g, B): Hom(A', B) —»
Hom(A, B) defined by h—hog. One usually denotes the induced map
Hom(g, B) by g*; Hom( , B)is called a contravariant Hom functor.

ExAMPLE 0.13. Let F be a field and let € be the category of all finite-dimensional
vector spaces over F. Define S: € —+ € by S(V) = V* = Hom(V, F)and Sf =
S*. Thus § is the dual space functor that assigns to each vector space V its
dual space V* consisting of all linear functionals on V and to each linear
transformation f its transpose f*. Note that this example is essentially a
special case of the preceding one, since F is a vector space over itself.

For quite a while, we shall deal exclusively with covariant functors, but
contravariant functors are important and will eventually arise.

When working with functors, one is forced to state problems in a form
recognizable by them. Thus, in our proof of the Brouwer fixed point theorem,
we had to rephrase the definition of retraction from the version using elements,
“r(x) = x for all x € X, to an equivalent version using functions: “ro i = 1,".
Similarly, one must rephrase the definition of bijection.

Definition. An equivalence in a category € is a morphism f: 4 — B for which
there exists a morphism g: B —+ A with fog=1gandgo f=1,.

Theorem 0.5. If of and € are categories and T: of — € is a functor of either
variance, then f an equivalence in &f implies that Tf is an equivalence in €.

PROOF. Apply T to the equations fog=1andgo f = 1. a

EXERCISES

0.15. Let of and € be categories, and let T: &/ — € be a functor of either variance.
If D is a commutative diagram in &, then T(D) (i.e., relabel all vertices and
(possibly reversed) arrows) is a commutative diagram in ¥.

0.16. Check that the following are the equivalences in the specified category: (i) Sets:
bijections; (ii) Top: homeomorphisms; (iii)) Groups: isomorphisms; (iv) Rings:
isomorphisms; (v) quasi-ordered set: all ij, where x < yand y < x;(vi) Top?: all
[:(X, A) = (X', A’), where f: X — X'is a homeomorphism for which f(A4) = A’;
(vii) monoid G: all elements having a two-sided inverse.

*0.17. Let € and o be categorics, and let ~ be a congruenceon €. If T: € - o is a
functor with T(f) = T(g) whenever f ~ g, then T defines a functor T": €' — &
(where € is the quotient category) by T'(X) = T(X) for every object X and
T'([f]) = T(f) for every morphism f.

0.18. For an abelian group G, let
tG = {x € G: x has finite order)
denote its torsion subgroup.
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(i) Show that ¢ defines a functor Ab — Ab if one defines 1(f) = f|tG for every
homomorphism f.
(i) I f is injective, then t(f) is injective.
(iii) Give an example of a surjective homomorphism f for which t(f) is not
surjective.
0.19. Let p be a fixed prime in Z. Define a functor F: Ab — Ab by F(G) = G/pG and
F(f): x + pGws f(x) + pH (where f: G — H is a homomorphism).
(i) Show that if f is a surjection, then F(f) is a surjection.
(ii) Give an example of an injective homomorphism f for which F(f) is not
injective.
*0.20. (i) If X is a topological space, show that C(X), the set of all continuous
real-valued functions on X, is a commutative ring with 1 under pointwise
operations:

f+gx—flx)+g(x) and f-g: x— f(x)g(x)

forall xe X.
(ii) Show that X — C(X) gives a (contravariant) functor Top — Rings.

One might expect that the functor C: Top — Rings of Exercise 0.20 is
as valuable as the homology functors. Indeed, a theorem of Gelfand and
Kolmogoroff (see [Dugundji, p. 289]) states that for X and Y compact
Hausdorfl, C(X) and C(Y) isomorphic as rings implies that X and Y are
homeomorphic. Paradoxically, a less accurate translation of a problem from
topology to algebra is usually more interesting than a very accurate one. The
functor C is not as useful as other functors precisely because of the theorem
of Gelfand and Kolmogorofl: the translated problem is exactly as complicated
as the original one and hence cannot be any easier to solve (one can hope only
that the change in viewpoint is helpful). Aside from homology, other functors
to be introduced are cohomology groups, cohomology rings, and homotopy
groups, one of which is the fundamental group.



CHAPTER 1
Some Basic Topological Notions

Homotopy

One often replaces a complicated function by another, simpler function that
somehow approximates it and shares an important property of the original
function. An allied idea is the notion of “deforming” one function into another:
“perturbing” a function a bit may yield a new simpler function similar to the
old one.

Definition. If X and Y are spaces and if f,, f, are continuous maps from X to
Y, then f, is hometopic to f,, denoted by f, =~ f,, if there is a continuous map
F: X x I - Y with

F(x,0) = fo(x) and F(x,1)= fi(x) forall xe X.

Such a map F is called a homotopy. One often writes F: f, = f, if one wishes
to display a homotopy.

If f,: X - Y is defined by f,(x) = F(x, t), then a homotopy F gives a one-
parameter family of continuous maps deforming f, into f,. One thinks of f,
as describing the deformation at time ¢.

We now present some basic properties of homotopy, and we prepare the
way with an elementary lemma of point-set topology.

Lemma 1.1 (Gluing lemma). Assume that a space X is a finite union of closed
subsets: X =\ Ji-, X,. If, for some space Y, there are continuous maps f;: X,— Y
that agree on overlaps (fi| X, X; = fIX,N X; for all i, j), then there exists a
unique continuous f: X — Y with f|X; = f; for all i.
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PRrOOF. It is obvious that f defined by f(x) = fi(x) if x € X, is the unique well
defined function X — Y with restrictions f| X, = f; for all i; only the continuity
of f need be established. If C is a closed set in Y, then

SfO=xn10=x)n 10
= X,nf70)
=X N o =Uno.

Since each f; is continuous, f;!(C) is closed in X,; since X, is closed in X,
i (C)is closed in X. Therefore f ~!(C) is closed in X, being a finite union of
closed sets, and so f is continuous. O

There is another version of the gluing lemma, using open sets, whose proof
is that of Lemma 1.1, mutatis mutandis.

Lemma 1.1’ (Gluing lemma). Assume that a space X has a (possibly infinite)
open cover: X =\ ) X. If, for some space Y, there are continuous maps f: X,— Y
that agree on overlaps, then there exists a unique continuous f: X — Y with
SiX, = f, for all i.

Theorem 1.2. Homotopy is an equivalence relation on the set of all continuous
maps X - Y.

PROOF. Reflexivity. If f: X — Y, define F: X x I = Y by F(x, t) = f(x) for all
xeXandalltel;clearly F: f ~ f.

Symmetry: Assume that f ~g, so there is a continuous F: X xI - Y
with F(x, 0) = f(x) and F(x, 1) = g(x) for all x € X. Define G: X x I = Y by
G(x,t) = F(x, 1 — 1), and note that G: g ~ f.

Transitivity: Assume that F: f ~gand G:g ~ h. Define H: X x I - Y by

F(x, 21) fost<i
G(x,2t—-1) fi<t<l.

Because these functions agree on the overlap {(x, 4): x € X}, the gluing lemma
applies to show that H is continuous. Therefore H: f ~ h.

H(x,t) = {

Definition. If f: X — Y is continuous, its homotopy class is the equivalence
class

[f] = {continuous g: X - Y: g = f}.
The family of all such homotopy classes is denoted by (X, Y].

Theorem1.3. Let f;: X » Yandg;: Y = Z, fori = 0, 1, be continuous. If f, ~ f,
and go = g,, then go o fo = g, © fyi that is, [go © fo] = [g, ° /1)

PROOF. Let F: f, =~ f, and G: g, =~ g, be homotopies. First, we show that
go°Jo=g,0fo. (%)
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Define H: X x I+ Z by H(x, t) = G(f,(x), t). Clearly, H is continuous; more-

over, H(x, 0) = G(fo(x), 0) = go(fo(x)) and H(x, 1) = G(fo(x), 1) = g,(fo(x)).
Next, observe that

K:giofo=g,°/; (v»s)
where K: X x I = Z is the composite g, o F. Finally, use (+) and () together
with the transitivity of the homotopy relation. O

Corollary 1.4. Homotopy is a congruence on the category Top.
ProoF. Immediate from Theorems 1.2 and 1.3. 0O

It follows at once from Theorem 0.4 that there is a quotient category whose
objects are topological spaces X, whose Hom sets are Hom(X, Y) = [X, Y],
and whose composition is [g]o [f] = [ge f].

Definition. The quotient category just described is called the homotopy cate-
gory, and it is denoted by hTop.

All the functors T: Top — & that we shall construct, where of is some
“algebraic” category (e.g., Ab, Groups, Rings), will have the property that f =~ g
implies T(f) = T(g). This fact, aside from a natural wish to identify homotopic
maps, makes homotopy valuable, because it guarantees that the algebraic
problem in & arising from a topological problem via T is simpler than the
original problem. Furthermore, Exercise 0.17 shows that every such functor
gives a functor hTop — «f, and so the homotopy category is actually quite
fundamental.

What are the equivalences in hTop?

Definition. A continuous map f: X — Y is a homotopy equivalence if there is
acontinuousmapg: Y = X withgo f ~ Iyand f o g ~ 1,. Two spaces X and
Y have the same homotopy type if there is a homotopy equivalence f: X — Y.

If one rewrites this definition, one sees that f is a homotopy equivalence if
and only if [f] e [X, Y] is an equivalence in hTop. Thus the passage from
hTop to the more familiar Top is accomplished by removing brackets and by
replacing = by ~.

Clearly, homeomorphic spaces have the same homotopy type, but the
converse is false, as we shall see (Theorem 1.12).

The next two results show that homotopy is related to interesting questions.

Definition. Let X and Y be spaces, and let y, € Y. The constant map at y, is
the function c: X = Y with ¢(x) = y, for all x € X. A continuousmap f: X -+ Y
is nullhomotopic if there is a constant map ¢: X — Y with f ~c.
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Theorem 1.5. Let C denote the complex numbers, let £, = C ~ R? denote the
circle with center at the origin 0 and radius p, and let f: Z, - C — {0} denote
the restriction to T, of z+z". If none of the maps f,' is nullhomotopic (n 2 1
and p > 0), then the fundamental theorem of algebra is true (i.e., every noncon-
stant complex polynomial has a complex root).

ProoF. Consider the polynomial with complex coefficients:
g2)=2"+a, ;2" ' + - +a,z +a,.
Choose p > max{1, Y i=3 la,|}, and define F: £, x I - C by

Fiz,)=2z"+ “f (1 —t)a,z'.
i=0

Itis obvious that F: g|Z, ~ £ if we can show that the image of F is contained
in C — {0}; that is, F(z, t) # O (this restriction is crucial because, as we shall
see in Theorem 1.13, every continuous function having values in a “contracti-
ble” space, e.g., in C, is nullhomotopic). If, on the contrary, F(z, t) = 0for some
te I and some z with |z| = p, then z* = — Y 123 (1 — 1)a,z". The triangle in-
equality gives

n-1 a1 -1
P< Y (1-0lalp'< Y lalp! S(Zb Ia‘I)p"".
i=0 i=0 i=

for p > 1 implies that p' < p"~*. Canceling p"~* gives p < Y4 layl, a con-
tradiction.

Assume now that g has no complex roots. Define G: £, x I - C — {0} by
G(z, t) = g((1 — 1)2). (Since g has no roots, the values of G do lie in C — {0}.)
Visibly, G: g|Z, ~ k, where k is the constant function at a,. Therefore g|Z, is
nullhomotopic and, by transitivity, f; is nullhomotopic, contradicting the
hypothesis. O

Remark. We shall see later (Corollary 1.23) that C — {0} is essentially the circle
S! = Z,; more precisely, C — {0} and S’ have the same homotopy type.

A common problem involves extending a map f: X — Z to a larger space

Y; the picture is
Y\
J \\ \g
R
X Z

—

/

Homotopy itself raises such a problem: if fy, f;: X — Z, then f; ~ f, if we can
extend foUf,;: X x {OJUX x {1} »Ztoallof X x L

Theorem 1.6. Let f:S"— Y be a continuous map into some space Y. The
Jollowing conditions are equivalent:
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(i) f is nullhomotopic;
(i) f can be extended to a continuous map D"** — Y;
(iii) if xo€ S" and k: S" - Y is the constant map at f(x,), then there is a
homotopy F: f =~ k with F(xq, t) = f(x,) forallt e L.

Remark. Condition (iii) is a technical improvement on (i) that will be needed
later; using terminology not yet introduced, it says that “F is a homotopy
rel{x,}".

PROOF. (i) = (ii). Assume that F: f =~ ¢, where ¢(x) = y, for all x € §". Define
g:D"*' > Y by

o0 = {yo if0< x| <4
F(x/tix), 2 — 2}ixl) if4<iixil < 1.

Note that all makes sense: if x # 0, then x/|x| € S*; if 4 < |x[| <1, then
2 —2|ix|l e Lif Ix{| = 4,then2 — 2||x|| = 1 and F(x/lix|l, 1) = c(x/Ix}}) = y,.
The gluing lemma shows that g is continuous. Finally, g does extend f: if
x € $°, then ||x}| = 1 and g(x) = F(x, 0) = f(x).

(ii) = (iii). Assume that g: D**' — Y extends f. Define F: $" x I - Y by
F(x,t) = g((1 — t)x + tx,); note that (1 — t)x + tx, € D**!, since this is just a
point on the line segment joining x and x,. Visibly, F is continuous. Now
F(x, 0) = g(x) = f(x) (since g extends f), while F(x, 1) = g(x,) = f(x,) for all
x € S"; hence F: f ~ k, where k: $" — Y is the constant map at f(x,). Finally,
F(xq,t) = g(xo) = f(xo)forallte L.

(iii) = (i). Obvious. O

Compare this theorem with Lemma 0.2. If Y = $"and f is the identity, then

Lemma 0.2 (not yet officially known!) implies that f is not nullhomotopic
(otherwise S$" would be a retract of D**!),

Convexity, Contractibility, and Cones

Let us name a property of D**! that was used in the last proof.

Definition. A subset X of R™ is convex if, for each pair of points x, y € X, the
line segment joining x and y is contained in X. In other words, if x, y € X,
thentx + (1 —t)ye X forallte L

It is easy to give examples of convex sets; in particular, I*, R®, D", and A"
are convex. The sphere S” considered as a subset of R**! is not convex.

Definition. A space X is contractible if 1, is nulthomotopic.

Theorem 1.7. Every convex set X is contractible.
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Proo¥. Choose x, € X, and define ¢: X — X by c(x) = x, for all x € X. Define
F:X xI-XbyF(x,t)=txo+ (1 —t)x.Itiseasytoseethat F: Iy, ~¢c. O

A hemisphere is contractible but not convex, so that the converse of
Theorem 1.7 is not true. After proving Theorem 1.6, we observed that Lemma
0.2 implies that S” is not contractible.

EXERCISES

1.1. Letx,,x, € X andlet f;: X — X fori = 0, 1 denote the constant map at x,. Prove
that f, ~ f, if and only if there is a continuous F: I — X with F(0) = x, and
F(1) = x,.

1.2. (i) If X =~ Y and X is contractible, then Y is contractible.
(i) If X and Y are subspaces of euclidean space, X = Y, and X is convex, show
that Y may not be convex.

*1.3. Let R: S' - S! be rotation by a radians. Prove that R ~ 1, where I is the
identity map of S*. Conclude that every continuous map f: S' — S' is homotopic
to a continuous map g: S' — S? with g(1) = 1 (where 1 = 2% ¢ §*).

1.4. (i) If X is a convex subset of R” and Y is a convex subset of R®, then X x Y is
a convex subset of R***.
(ii) If X and Y are contractible, then X x Y is contractible.

*15. LetX = {0} U{1,4,8...., 1/n,...} and let Y be a countable discrete space. Show
that X and Y do not have the same homotopy type. (Hint: Use the compactness
of X to show that every map X — Y takes all but finitely many points of X to a
common point of Y.)

1.6. Contractible sets and hence convex sets are connected.

1.7. Let X be Sierpinski space: X = {x, y} with topology {X. &, {x}}. Prove that X
is contractible.

1.8. (i) Give an example of a continuous image of a contractible space that is not
contractible.
(i) Show that a retract of a contractible space is contractible.

19. If f: X — Y is nullhomotopic and if g: Y — Z is continuous, then g o f is null-
homotopic.

The coming construction of a “cone” will show that every space can be
imbedded in a contractible space. Before giving the definition, let us recall the
construction of a quotient space.

Definition. Let X be a topological space and let X’ = {X;: j € J} be a partition
of X (each X;is nonempty, X = ] X, and the X; are pairwise disjoint). The
natural map v: X — X' is defined by v(x) = X;, where X; is the (unique) subset
in the partition containing x. The quotient topology on X' is the family of all
subsets U’ of X’ for which v~'(U’) is open in X.

Itiseasy tosec that v: X — X'is a continuous map when X' has the quotient
topology. There are two special cases that we wish to mention. If 4 is a subset
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of X, then we write X/A for X', where the partition of X consists of A together
with all the one-point subsets of X — A (this construction collapses 4 to a
point but does not identify any other points of X; therefore, this construction
differs from the quotient group construction for X a group and 4 a normal
subgroup). The second special case arises from an equivalence relation ~ on
X; in this case, the partition consists of the equivalence classes, the natural
map is given by v: x — [x] (where [x] denotes the equivalence class containing
x), and the quotient space is denoted by X/~. The natural map is always a
continuous surjection, but it may not be an open map [see Exercise 1.23(iii)].

ExaMpLE 1.1. Consider the space I = [0, 1] and let A be the two-point subset
A = {0, 1}. Intuitively, the quotient space I/A4 identifies 0 and 1 and ought to
be the circle S*; we let the reader supply the details that it is.

ExAMPLE 1.2. As an example of the quotient topology using an equivalence
relation, let X =1 x I

.1

Y

a.n

1 X1

(0, 0) > (1,0)

and define (x, 0) ~ (x, 1) for every x € 1. We let the reader show that X/~ is
homeomorphic to the cylinder S' x 1. As a further example, suppose we define
a second equivalence relation on I x I by (x,0) ~ (x, 1) for all xeI and
©,y)~(1,y) for all yeI. Now I x I/~ is the torus S' x S* (first one has a
cylinder and then one glues the circular ends together).

ExampLE 1.3. If h: X — Y is a function, then ker 4 is the equivalence relation
on X defined by x ~ x’ if h(x) = h(x'). The corresponding quotient space is
denoted by X/ker h. Note that, given h: X — Y, there always exists an injection
@: X/ker h = Y making the following diagram commute:

X—oY

N/

X/ker h,
namely, ¢([x]) = h(x).

If h: X - Y is continuous, it is a natural question whether the map
@: X/ker h — Y of Example 1.3 is continuous.



Convexity, Contractibility, and Cones 21

Definition. A continuous surjection f: X — Y is an identification if a subset U
of Y is open if and only if f ~*(U) is open in X.

EXAMPLE 1.4. If ~ is an equivalence relation on X and X/~ is given the
quotient topology, then the natural map v: X — X/~ is an identification.

EXAMPLE 1.5. If f: X = Y is a continuous surjection that is either open or
closed, then f is an identification.

ExaMpLE 1.6. If f: X — Y is a continuous map having a section (i.c., there is
a continuous s: Y - X with fs = 1;), then f is an identification (note that f
must be a surjection).

Theorem 1.8. Let f: X — Y be a continuous surjection. Then f is an identifica-
tion if and only if, for all spaces Z and all functions g: Y = Z, one has g
continuous if and only if gf is continuous.

x -,z
f\./]
Y

PRrROOF. Assume f is an identification. If g is continuous, then gf is con-
tinuous. Conversely, let gf be continuous and let V be an open set in Z. Then
(gf) (V) = f'(g""(V)) is open in X; since f is an identification, g~*(V) is
open in Y, hence g is continuous.

Assume the condition. Let Z = X /ker f, let v: X — X/ker f be the natural
map, and let ¢: X/ker f — Y be the injection of Example 1.3. Note that ¢ is
surjective because f is. Consider the commutative diagram

X —— X/ker f.
N
Y
That ¢~!f = v is continuous implies that ¢! is continuous, by hypothesis.

Also, ¢ is continuous because v is an identification. We conclude that ¢ is a
homeomorphism, and the result follows at once. O

Definition. Let f: X — Y be a function and let y € Y. Then f~*(y) is called the
fiber over y.

If f: X = Y is a homomorphism between groups, then the fiber over 1 is
the (group-theoretic) kernel of f, while the fiber over an arbitrary point y is a
coset of the subgroup ker f. More generally, fibers are the equivalence classes
of the equivalence relation ker f on X.
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Corollary 1.9. Let f: X — Y be an identification and, for some space Z, let
h: X — Z be a continuous function that is constant on each fiber of f. Then
hf ~': Y — Z is continuous.

v

Moreover, hf ~! is an open map (or a closed map) if and only if h(U) is open (or
closed) in Z whenever U is an open (or closed) set in X of the formU = f~'f(U).!

ProoOF. That h'is constant on each fiber of f implies that hf !: Y — Z is a well
defined function; hf ! is continuous because (hf ~*)f = h is continuous, and
Theorem 1.8 applies. Finally, if V is an open set in Y, then f ~!(V) is an open
set of the stated form: f~}(V) = £ ~Yf(f ~!(V)); the result now follows easily.
O

Remark. If 4 is a subset of X and h: X — Z is constant on A, then h is constant
on the fibers of the natural map v: X —+ X/A.

Corollary 1.10. Let X and Z be spaces, and let h: X — Z be an identification.
Then the map @: X [ker h — Z, defined by [x]+ h(x), is a homeomorphism.

PROOF. It is plain that the function ¢: X/ker h — Z is a bijection; ¢ is con-
tinuous, by Corollary 1.9. Let v: X — X/ker h be the natural map. To see that
@ is an open map, let U be an open set in X/ker h. Then h~'o(U) = v-}(U) is
an open set in X, because v is continuous, and hence ¢(U) is open, because h
is an identification. O

EXERCISES

*1.10. Let f: X — Y be an identification, and let g: Y — Z be a continuous surjection.
Then g is an identification if and only if gf is an identification.

*1.11. Let X and Y be spaces with equivalence relations ~ and o, respectively, and
let f: X —» Y be a continuous map preserving the relations (if x ~ x’, then
f(x)o f(x’)). Prove that the induced map f: X/~ — Y/o is continuous;
moreover, if f is an identification, then so is f.

1.12. Let X and Z be compact Hausdorff spaces, and let h: X — Z be a continuous sur-
jection. Prove that ¢: X/ker h — Z, defined by [x] - h(x), is a homeomorphism.

! Recall elementary set theory: if f: X — Y is a function and U < im f, then ff ~*(U) = U and
U < f~Yf(U); in general, there is no equality U = f ~'f(U).
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Definition. If X is a space, define an equivalence relation on X x Iby (x, t} ~
(x’, ') if t = t' = 1. Denote the equivalence class of (x, t) by [x, t]. The cone
over X, denoted by CX, is the quotient space X x I/~.

One may also regard CX as the quotient space X x I/X x {1}. The identi-
fied point [x, 1] is called the vertex; we have essentially introduced a new point
v not in X (the vertex) and joined each point in X to v by a line segment.

v

This picture is fine when X is compact Hausdorfl, but it may be misleading
otherwise: the quotient topology may have more open sets than expected.?

ExampLE 1.7. For spaces X and Y, every continuous map f: X xI-» Y
with f(x, 1) = y,, say, for all x € X, induces a continuous map f: CX — Y,
namely, f:[x, t]— f(x,t). In particular, let f:S" x I -+ D"*! be the map
(u, t)— (1 — t)u; since f(u, 1) = O for all u € S*, there is a continuous map
f: CS* = D**! with [y, t]+— (1 — t)u. The reader may check that f is a homeo-
morphism (thus D**! is the cone over $* with vertex 0).

EXERCISES

*1.13. Forfixed t withO < t < 1, prove that x+ [ x, t] defines a homeomorphism from
a space X to a subspace of CX.
1.14. Prove that X +— CX defines a functor Top — Top (the reader must define the
behavior on morphisms). (Hint: Use Exercise 1.11.)

Theorem 1.11. For every space X, the cone CX is contractible.
PRrOOF. Define F: CX x 1 -+ CX by F([x, t],s) =[x, (1 — s)t + s5]. O
Combining Theorem 1.11 with Exercise 1.13 shows that every space can

be embedded in a contractible space.

2 Let X be the set of positive integers regarded as points on the x-axis in R?; let C'X denote the
subspace of R? obtained by joining each (n, 0) € X 10 v = (0, 1) with a linc scgment. There is a
continuous bijection CX — C'X, but CX is not homeomorphic to C' X (see [Dugundji, p. 127]).
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The next result shows that contractible spaces are the simplest objects in
hTop.

Theorem 1.12. A space X has the same homotopy type as a point if and only if
X is contractible.

ProoFr. Let {a} be a one-point space, and assume that X and {a} have the
same homotopy type. There are thus maps f: X — {a} (visibly constant) and
g: {a} = X (with g(a) = xo € X, say) withgo f ~ Iy and f o g = I, (actually,
Sog=1y,) But gf(x) = g(a) = x, for all x € X, so that g o f is constant.
Therefore 1, is nullhomotopic and X is contractible.

Assume that 1, ~ k, where k(x) = x4 € X. Define f: X — {x,} as the con-
stant map at x, (no choice!), and define g: {x,} = X by g(x,) = x,. Note that
fog=1,and that go f = k = 14, by hypothesis. We have shown that X
and {x,} have the same homotopy type. a

This theorem suggests that contractible spaces may behave as singletons,
especially when homotopy is in sight.

Theorem 1.13. If Y is contractible, then any two maps X — Y are homotopic
(indeed they are nullhomotopic).

PROOF. Assume that 1, =~ k, where there is y, € y with k(y) = yoforall ye Y.
Define g: X — Y as the constant map g(x) = yoforallxe X. If f: X - Y is
any continuous map, we claim that f ~ g. Consider the diagram

X—Y—/]Y.

ll
Since 1y ~ k, Theorem 1.3 gives f = lyo f~ko f=g. O

If X is contractible (instead of Y), this result is false (indeed this result is
false for X a singleton). However, the result is true when combined with a
connectivity hypothesis (Exercise 1.19). This hypothesis also answers the
question whether two nullhomotopic maps X — Y are necessarily homotopic
(as they are in Theorem 1.13).

Paths and Path Connectedness

Definition. A path in X is a continuous map f: I —» X. If f(0) = aand f(1) = b,
one says that f is a path froma to b.

Do not confuse a path f with its image f(I), but do regard a path as a
parametrized curve in X. Note that if f is a path in X from a to b, then
g(t) = f(1 — t) defines a path in X from b to a (of course, g(I) = f(I)).
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Definition. A space X is path connected if, for every a, b € X, there exists a path
in X fromato b.

Theorem 1.14. If X is path connected, then X is connected.

Proor. If X is disconnected, then X is the disjoint union X = AU B, where A
and B are nonempty open subsets of X. Choose ae 4 and b € B, and let
f:1 - X be a path from a to b. Now f(I) is connected, yet

S =(ANfMUBNf)
displays f(I) as disconnected, a contradiction. O

The converse of Theorem 1.14 is false.

ExAMPLE 1.8. The sin(1/x) space X is the subspace X = 4UG of R?, where
A={0,y): -1 <y<1}and G = {(x,sin(1/x)): 0 < x < 1/2n}.

It is easy to see that X is connected, because the component of X that con-
tains G is closed (components are always closed) and A is contained in the
closure of G. Exercise 1.15 contains a hint toward proving that X is not path
connected.

EXERCISES

*1.15. Show that the sin(1/x) space X is not path connected. (Hint: Assume that
f:1- X is a path from (0, 0) to (1/2x,0). If 1, = sup{treL: f(t) € A}, thena =
f(to) € A and f(s) ¢ A for all s > t,. One may thus assume that there is a path
g:1— X with g(0) € A and with g(r) € G for all t > 0.)

1.16. Show that $” is path connected for all n > 1.

1.17. If U < R"is open, then U is connected if and only if U is path connected. (This
is false if “open” is replaced by “closed™: the sin(1/x) space is a (compact) subset
of R%)
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1.18. Every contractible space is path connected.

*1.19. (i) A space X is path connected if and only if every two constant maps X — X
are homotopic.
(ii) If X is contractible and Y is path connected, then any two continuous maps
X — Y are homotopic (and each is nullhomotopic).

1.20. Let 4 and B be path connected subspaces of a space X. If ANB # & is path
connected, then AU B is path connected.

*1.21. If X and Y are path connected, then X x Y is path connected.
*1.22. If f: X — Y iscontinuous and X is path connected, then f(X) is path connected.

Let us now analyze path connectedness as one analyzes connectedness.

Theorem 1.15. If X is a space, then the binary relation ~ on X defined by“a ~ b
if there is a path in X from a to b” is an equivalence relation.

PROOF. Reflexivity: If a € X, the constant function f: I - X with f(¢) = a for
allt eI is a path from a to a.

Symmetry: If f:1 - X is a path in X from a to b, then g: I — X defined by
g(t) = f(1 — t)is a path from b to a.

Transitivity: If f is a path from a to b and g is a path from b to ¢, define
h:1— X by

_ffey  ifose<i
h(t) = {g(2t —1) ifsts<i.

The gluing lemma shows that h is continuous. O

The reader has probably noticed the similarity of this proof to that of
Theorem 1.2: homotopy is an equivalence relation on the set of all continuous
maps X — Y. This will be explained in Chapter 12 when we discuss function
spaces.

Definition. The equivalence classes of X under the relation ~ in Theorem 1.15
are called the path components of X.

We now can see that every space is the disjoint union of path connected
subspaces, namely, its path components.

ExeRrcises

*1.23. (i) The sin(1/x) space X has exactly two path components: the vertical line A
and the graph G.
(ii) Show that the graph G is not closed. Conclude that, in contrast to com-
ponents (which are always closed), path components may not be closed.
(ili) Show that the natural map v: X — X/A is not an open map. (Hint: Let U



Paths and Path Connectedness 27

be the open disk with center (0, 4) and radius 4; show that v(X N U) is not
open in X/A (=[0, £]))
*1.24. The path components of a space X are maximal path connected subspaces;

moreover, every path connected subset of X is contained in a unique path
component of X.

1.25. Prove that the sin(1/x) space is not homeomorphic to 1.
Let us use this notion to construct a (simple-minded) functor.

Definition. Define n,(X) to be the set of path components of X. If f: X = Y,
define ny(f): mo(X) = no(Y) to be the function taking a path component C of
X to the (unique) path component of Y containing f(C) (Exercises 1.24 and
1.22).

Theorem 1.16. n,: Top — Sets is a functor. Moreover, if f = g, then ny(f) =
7o(g).

PRroOOF. It is an easy exercise to check that n, preserves identities and composi-
tion; that is, n, is a functor.

Assume that F: f ~ g, where f, g: X = Y. If C is a path component of X,
then C x Iis path connected (Exercise 1.21), hence F(C x I)is path connected
(Exercise 1.22). Now

(€)= F(C x {0}) = F(C x 1)
and

g(C) = F(C x {1}) = F(C x I};

the unique path component of Y containing F(C x I) thus contains both f(C)
and g(C). This says that ny(f) = n,(g). O

Corollary 1.17. If X and Y have the same homotopy type, then they have the
same number of path components.

PROOF. Assume that f: X -+ Y and g: Y — X are continuous with go f =~ 1,
and fog =~ 1;. Then ny(g o f) = ny(1y) and no(f © g) = ne(1y), by Theorem
1.16. Since 7, is a functor, it follows that n,(f) is a bijection. 0O

Here is a more conceptual proof. One may regard n, as a functor hTop —
Sets, by Exercise 0.17. If f: X — Y is a homotopy equivalence, then [ ] is an
equivalence in hTop, and so ny([f]) (which is my(f), by definition) is an
equivalence in Sets, by Theorem 0.5.

=g is not a very thrilling functor since its values lic in Sets, and the only
thing one can do with a set is count it. Still, it is as useful as counting ordinary
components (which is how one proves that S! and I are not homeomorphic
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(after deleting a point)). =, is the first (zeroth?) of a sequence of functors. The
next is n;, the fundamental group, which takes values in Groups; the others,
7y, Wy, ..., are called (higher) homotopy groups and take values in Ab (we
shall study these functors in Chapter 11).

Definition. A space X is locally path connected if, for each x € X and every
open neighborhood U of x, there is an open V with x € ¥ < U such that any
two points in V can be joined by a path in U.

Corollary 1.19 will show that one can choose V so that every two points
in V can be joined by a path in V; that is, V is path connected.

EXAMPLE 1.9. Let X be the subspace of R? obtained from the sin(1/x) space
by adjoining a curve from (0, 1) to (&, 0). It is easy to see that X is path
connected but not locally path connected.

Theorem 1.18. A space X is locally path connected if and only if path components
of open subsets are open. In particular, if X is locally path connected, then its
path components are open.

PROOF. Assume that X is locally path connected and that U is an open subset
of X. Let C be a path component of U, and let x € C. There is an open V with
x € V < U such that every point of V can be joined to x by a path in U. Hence
each point of V lies in the same path component as x, and so ¥ = C. Therefore
C is open.

Conversely, let U be an open set in X, let x € U, and let V be the path
component of x in U. By hypothesis, V is open. Therefore X is locally path
connected. a

Corollary 1.19. X is locally path connected if and only if, for each x € X and
each open neighborhood U of x, there is an open path connected V with
xeVcUl.

PRrOOF. If X is locally path connected, then choose V to be the path component
of U containing x. The converse is obvious. ]

Corollary 1.20. If X is locally path connected, then the components of every
open set coincide with its path components. In particular, the components of X
coincide with the path components of X.

PROOF. Let C be a component of an open set U in X, and let {A,: je J} be
the path components of C; then C is the disjoint union of the A;: by Theorem
1.18, each A4, is open in C, hence each 4 is closed in C (its complement being
the open set, which is the union of the other A’s). Were there more than one
A, then C would be disconnected. O
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Corollary 1.21. If X is connected and locally path connected, then X is path
connected.

PROOF. Since X is connected, X has only one component; since X is locally
path connected, this component is a path component. a

EXERCISES

#1.26. Alocally path connected space is locally connected. (Recall that a space is locally
coanected if every point has a connected open neighborhood.) (Hint: A space is
locally connected if and only if components of open sets are open.)

1.27. If X and Y are locally path connected, thensois X x Y.

*1.28. Every open subset of a locally path connected space is itself locally path
connected.

Definition. Let 4 be a subspace of X and let i: 4 & X be the inclusion. Then
A is a deformation retract of X if there is a continuous r: X — A such that
roi=1l,andior~1,,

Of course, every deformation retract is a retract. One can rephrase the
definition as follows: there is a continuous F: X x I = X such that F(x, 0) = x
for all xe X, F(x,1)e A for all xe X, and F(a, 1) = a for all a€ A (in this
formulation, we have r(x) = F(x, 1)). The next result is immediate.

Theorem 1.22. If A is a deformation retract of X, then A and X have the same
homotopy type.

Corollary 1.23. S is a deformation retract of C — {0}, and so these spaces have
the same homotopy type.
ProOF. Write each nonzero complex number z in polar coordinates:

z=pe”, p>0, 0<60<2n
Define F: (C — {0}) x I - C — {0} by

F(pe®,t) = [(1 — 1)p + 1]e".

It is clear that F is never 0 and that F satisfies the requirements making
S' = {€": 0 < 0 < 2n} a deformation retract of C — {0}. 0

EXERCISES

*1.29. For n 2 1, show that $* is a deformation retract of R**! — {0}.

1.30. For n 2 1, show that S" is a deformation retract of the “punctured disk”
D! — {0).
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*1.31. Leta=(0,...,0, 1)and b = (0, ..., 0, — 1) be the north and south poles, respec-
tively, of S”. Show that the equator S*~! is a deformation retract of $* — {a, b},
hence $*~! and S™ — {a, b} have the same homotopy type.

1.32. Assume that X, Y, and Z are spaces with X < Y. If X is a retract, then every
continuous map f: X — Z can be extended to a continuous map f: Y = Z,
namely, f = fr, where r: Y — X is a retraction. Prove that if X is a retract of Y
and if f, and f, are homotopic continuous maps X — Z, then fo=1i.

Definition. Let f: X — Y be continuous and define?
M,=(X xD]] Y)/~,

where (x, t) ~ yif y = f(x) and ¢t = 1. Denote the class of (x, t) in M, by [x, t]
and the class of y in M, by [y] (so that [x, 1] = [f(x)]). The space M, is called
the mapping cylinder of f.

EXERCISES

1.33. If Y is a one-point space, then f: X — Y must be constant. Prove that the
mapping cylinder in this case is CX, the cone on X.

1.34. (i) Define i: X — M, by i(x) = [x,0] and j: Y = M, by j(y) = [y]. Show that
i and j are homeomorphisms to subspaces of M,.
(ii) Definer: M, — Y by r[x,t] = f(x)forall(x, )€ X x Iand r[y] = y. Prove
that r is a retraction: rj = 1,.
(iii) Prove that Y is a deformation retract of M,. (Hint: Define F: M, x I - M,
by

F([x,1),9)=[x,(1 —s)t +s] ifxeX,t,sel

F([y) 9 =[y] ifyeY,sel)

(iv) Show that every continuous map f: X — Y is homotopic to r o i, where i is
an injection and r is a homotopy equivalence.

> If A and B are topological spaces, then A || B denotes their disjoint union topologized so that
both 4 and B are open sets.



CHAPTER 2
Simplexes

Affine Spaces

Many interesting spaces are constructed from certain familiar subsets of
cuclidean space, called simplexes. This brief chapter is devoted to describing
these sets and maps between them.

Definition. A subset A4 of euclidean space is called affine if, for every pair of
distinct points x, x’ € A, the line determined by x, x’ is contained in A.

Observe that affine subsets are convex (convexity requires only that the
line segment between x and x’ lies in the set). Note also that, by default, ¥
and one-point subsets are afline.

Theorem 2.1. If {X;: j € J} is a family of convex (or affine) subsets of R", then
() X, is also convex (or affine).

PrOOF. Immediate from the definitions. 0

It thus makes sense to speak of the convex (or affine) set in R" spanned by
a subset X of R" (also called the convex hull of X), namely, the intersection of
all convex (or affine) subsets of R* containing X. We denote the convex set
spanned by X by [X] (note that [X] does exist, for R" itself is affine, hence
convex). It is hopeless to try to describe arbitrary convex subsets of R": for
example, for every subset K of S!, the set D> — K is convex. Even closed
convex sets exist in abundance. However, we can describe [ X] for finite X.

Definition. An affine combination of points p,, p,, ..., p,in R"is a point x with
X=1opo + 1Py + " + lyPm;
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where Y Lot = 1. A convex combination is an affine combination for which
t; > 0foralli

For example, a convex combination of x, x' has the form tx + (1 — )x’ for
tel

Theorem 2.2, If py,p,,...,Pm € R* then[po, P, - .., Pm]), the convex set spanned
by these points, is the set of all convex combinations of py, p,, ..., Pm-

PROOF. Let S denote the set of all convex combinations.

[Pos ---» Pm] = S: It suffices to show that S is a convex set containing
{Pos --., P} First, if we set t; = 1 and the other t; = 0, then we sce that p;e S
for every j. Second, let @ = Y a;p; and p =Y b,p; € S, where a,, b, > 0 and
Y.a,=1=Y b. Weclaim that ta + (1 — t)f € S for t € I. Now

L]
ta+(1-0)p= :zo (ta, + (1 — 0)b]p;.
This is a convex combination of p,, ..., P., hence lies in S:

0 Yla+(1-nb)=tYa+(1-0Yb=t+(1~-0)=1

(ii) ta; + (1 — t)b, = 0 because each term is nonnegative.

S < [Ppos ---» Pm]): If X is any convex set containing {py, ..., Pm}, We show
that S c X by inductiononm > 0.If m = 0, then S = {p, } and we are done.
Let m>0.1ft;>0and Y ¢, =1,is p=Y t,p, in X? We may assume that
to # 1 (otherwise p = p, € X); by induction,

t, t
= X
1 (1 - ‘o)pl o (1 - ‘o)p.e

(for this is a convex combination), and so

Pp=1topo + (1 —to)g€ X,
because X is convex. 0O

Corollary 2.3. The affine set spanned by {po, p;, ..., Pm} < R" consists of all
affine combinations of these points.

PROOF. A minor variation of the proof just given. a

Definition. An ordered set of points { po, p;, ..., Pm} < R"is affine independent
if {Py — Pos P2 — Pos ---» Pm — Po} is a linearly independent subset of the real
vector space R".

Any linearly independent subset of R" is an affine independent set; the
converse is not true, because any linearly independent set together with the
origin is affine independent. Any one point set { p, } is affine independent (there
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are no points of the form p, — p, with i # 0, and (J is linearly independent);
a set {po, p;} is affine independent if p, — p, # O, that is, if p, # po; a set
{Po» P1, P2} is affine independent if it is not collinear; a set {po, p,, P2, P3} is
affine independent if it is not coplanar.

Theorem 2.4. The following conditions on an ordered set of points {Po, Py, - -+ Pm}
in R* are equivalent.

(i) {Po» P1s.--» Pm} is affine independent;
@) if {SoSy,---»5m} = R satisfies Y mos,p; =0 and Y fuos, =0, then s, =
S| == S. = 0;
(iii) each x € A, the affine set spanned by {po, p;, ..., Pm}» has a unique expres-
sion as an affine combination:

x = ‘: up; and i =1
i=0 i=0
PROOF. (i) = (ii). Assume that } s, = 0 and that } s,p; = 0. Then
i Sipi = i Sipi — (2 Si)Po o Z sdpi — Po) = Z 5i{(Pi = Po)

i=0 i=0 i=0 i=0 i=]

(because p; — po = 0 when i = 0). Affine independence of {p,, ..., Pm} Bives
linear independence of {p, — Py, ..., Pm — Po}, hence s, =0fori=1,2,...,
m. Finally, ) s; = 0 implies that s, = 0 as well.

(ii) = (iii). Assume that x € A. By Corollary 2.3,

x= ) Lpu
°

where ) o1, = 1. If, also,

x = Z tl'pi'

i=0
where ) ot/ = 1, then

0=75 - t)p.
i=0

Since Y (1, = t;)) =Y t,— Y t;=1—1=0,it follows that ¢, — t; = 0 for all i,
and ¢t; = ¢; for all i, as desired.

(iii) = (i). We may assume that m # 0. Assume that each x € A has a unique
expression as an affine combination of p,, ..., p,.. We shall reach a contradic-
tion by assuming that {p, — po, ..., Px — Po} is linearly dependent. If so, there
would be real numbers r,, not all zero, with

0= z' r(Pi — Po)-

=

Let r; # 0; indeed, multiplying the equation by r ' if necessary, we may
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suppose that r; = 1. Now p; € 4 has two expressions as an affine combination
of Poy---» Pt

pj=1p;
p=-Y 'iPi"‘(l +Y "i)POs
i%) ih)
where 1 < i < m in the summations (recall that r; = 1). a

Corollary 2.5. Affine independence is a property of the set {po, ..., P} that is
independent of the given ordering.

ProoF. The characterizations of affine independence in the theorem do not
depend on the given ordering. a

Corollary 2.6. If A is the affine set in R" spanned by an affine independent set
{Pos---» Pm} then A is a translate of an m-dimensional sub-vector-space V of
R*, namely,

A=V+x°

Jfor some x4 € R".

PROOF. Let V be the sub-vector-space with basis {p, — p, ..., Pm — Po}, and
set Xo = Po- D

Definition. A set of points {a,, a,, ..., a;} in R" is in general position if every
n + 1 of its points forms an affine independent set.

Observe that the property of being in general position depends on n. Thus,
assume that {a,, a,, ..., a,} = R*isin general position. If n = 1, we are saying
that every pair {a,, q;} is affine independent; that is, all the points are distinct.
If n = 2, we are saying that no three points are collinear, and if n = 3, that no
four points are coplanar.

Let ry, 7y, ..., rw be real numbers. Recall that the (m + 1) x (m + 1)
Vandermonde matrix V has as its ith column [1,r, r?, ..., r™}; moreover,
det ¥ = [];<i(r. — ), hence V is nonsingular if all the r, are distinct. If one
subtracts column 0 from each of the other columns of V, then the ith column
(for i > 0) of the new matrix is

0,r,—ro,r2—rd,....r"—rl
If V* is the southeast m x m block of this new matrix, then det V* =det V
(consider Laplace expansion across the first row).

Theorem 2.7. For every k > 0, euclidean space R* contains k points in general
position.
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ProoF. We may assume that k > n + 1 (otherwise, choose the origin together
with k — 1 elements of a basis). Select k distinct reals r,, r,, ..., r,, and for each
i=12...,k define

a;=(r,r3....,m")eR".

We claim that {a,, a,, ..., a,} is in general position. If not, there are n + 1
points {a, , a;, ..., a; } not affine independent, hence {a;, — a,,a,, — a,, ...,
a; — a, } is lincarly dependent. There are thus real numbers sy, s,, ..., s, not
all zero, with

0= ZSj(a,’ -a)= (ZSI(r,J - ZS,(r,f -rd)..., Zs}(r;: —r)).

If V* is the n x n southeast block of the (n + 1) x (n + 1) Vandermonde
matrix obtained from r,, r,, ..., r;, and if ¢ is the column vector ¢ =
(sy, S2, - --» Sa), then the vector equation above is V*g = 0. But since all the r,
are distinct, V'* is nonsingular and ¢ = 0, contradicting our hypothesis that
not all the s; are zero. O

There are other proofs of this theorem using induction on k. The key
geometric observation needed is that R" is not the union of only finitely many
(proper) affine subsets (the reader may take this observation as an exercise).

EXERCISES

2.1. Every afline subset 4 of R* is spanned by a finite subset. (Hint: Choose a maximal
affine independent subset of A.) Conclude that every nonempty affine subset of
R* is as described in Corollary 2.6.

*2.2. Assume that n < k and that the vector space R" is isomorphic to a subspace of
R* (not necessarily the subspace of all those vectors whose last k — n coordinates
are 0). If X is a subset of R®, then the affine set spanned by X in R* is the same
as the affine set spanned by X in R*.

23. Show that S* contains an affine independent set with n + 2 points. (Hint:
Theorem 2.7.)

Definition. Let {p,, p,, ..., pn} be an affine independent subset of R", and let
A be the affine set spanned by this subset. If x € 4, then Theorem 2.4 gives a
unique (m + 1)-tuple (to, 1y, ..., t,) With Y ¢; =1 and x = Y Lo t,p,. The en-
tries of this (m + 1)-tuple are called the barycentric coordinates of x (relative
to the ordered set {po, Py, --., Pum})

In light of Exercise 2.2, the barycentric coordinates of a point relative to
{Pos P15 ---» Pm} = R" do not depend on the ambient space R".

Definition. Let {po, p;, ..., pw} be an affine independent subset of R*. The
convex set spanned by this set, denoted by [ po, P, - - ., Pa), is called the (affine)
m-simplex with vertices po, Py, ..., Pm
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Theorem 2.8. If {po, Py,.--» Pm} is affine independent, then each x in the
m-simplex [po, P15 ---» Pm] has a unique expression of the form

x=Yup, whereY t,=1andeacht, >0.

ProOOF. Theorem 2.2 shows that every x € [pg,..., Pn] is such a convex
combination. Were this expression not unique, the barycentric coordinates of
x would not be unique. O

Definition. If {p,, . .., p..} is affine independent, the barycenter of [py, .. ., Pm]
is(1/m + 1)(po + Py + " + Pu)-

Barycenter comes from the Greek barys meaning heavy; thus, barycenter
is just “center of gravity”. Let us consider some low-dimensional examples;
we assume that {p,, ..., p,} is affine independent.

ExampLE 2.1. [po] is a O-simplex and consists of one point, which is its own
barycenter.

EXAMPLE 2.2. The 1-simplex [po, p,] = {tpo + (1 — t)p,: t € I} is the closed
line segment with endpoints p,, p,. The barycenter 4(p, + p,) is the midpoint
of the line segment.

EXAMPLE 2.3. The 2-simplex [po, p,, p2] is a triangle (with interior) with
vertices po, P, , P2; the barycenter §(po + p, + p,) is the center of gravity (this
is easy to see in the special case of an equilateral triangle). Note that the three
edges are [po, p, 1, [Py, P2), and [po, p;]. Now [po, p,] is the edge opposite

P2

Po 14

p» and is the 1-simplex obtained by deleting p,. Thus, a point on this edge has
barycentric coordinates (¢, 1 — ¢, 0); that is, the coordinate t, is 0. More
generally, (¢,, t,, t,) lies on an edge if and only if one of its coordinates is zero
(after all, such points are convex combinations of the endpoints of their
respective edges).

EXAMPLE 2.4. The 3-simplex [po, P,, P2, P3] is the (solid) tetrahedron with
vertices poy, Py, P2, P3- The triangular face opposite p; consists of all those
points whose ith barycentric coordinate is zero.
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ExampLE 2.5. For i =0, 1, ..., n, let ¢, denote the point in R"*' having
(cartesian) coordinates all zeros except for 1 in the (i + 1)st position. Clearly,
{eo. €y, ..., €,} is affine independent (it is even linearly independent). Now
[eo €15 - - -» 5] consists of all convex combinations x = Y te,. In this case, bary-
centric and cartesian coordinates (¢, ¢,, ..., t,) coincide, and [e,, e,, ..., €,]
= A", the standard n-simplex.

The next definition gives names to what was seen in the examples.

Definition. Let [po, Py, - --» Pu] be an m-simplex. The face opposite p, is

[po....,p‘,.... p.] = {Z‘IPI: ‘j 2 O’Z‘I = l, and “ = 0}

(circumflex “ means “delete™). The boundary of [p,, Py, ..., Pu] is the union
of its faces.

Clearly, an m-simplex hasm + 1faces. Foranintegerkwith0 <k <m - 1,
one sometimes speaks of a k-face of [po, p;, - .., Pn), Damely, a k-simplex
spanned by k + 1 of the vertices { po, p;, - - ., Pm}- In this terminology, the faces
defined above are (m — 1)-faces.

The following theorem will be needed when we discuss barycentric sub-
division.

Theorem 2.9. Let S denote the n-simplex [po, ..., Pa).
(1) If u,veS, then ||u — v) < sup, ju — p;ll.
(ii) diam S = sup,; | p; — p,Il.
(iii) If b is the barycenter of S, then |b — p,|| < (n/n + 1) diam S.
PROOF. (i) v = Y t,p,, where t, > 0 and ) ¢, = 1. Therefore
fu—ol = fu =3 tpll = 1T tdu — 3 tipil
<Yulu—pli<¥ e St:p flu—pl = 5':1) flu — pyll.

(ii) By (i), fu — p;ll < sup; lip, — pill-
(iii) Since b= (1/n + l)ip,, we have

b~ pill =

|

<(/m+1)3 Ip-pl
j=o

T (U/n + np,—p,]] -
J=0

3 (1/n+ 1)p,— (i (1/n + 1)):»“
Jj=0 Jj=0

3 (1/n + 1)(p, - p,)il
Jj=0

<(n/n + l)s‘qu kp,— pill  (for ip; — p,ll = O when j = i)

= (n/n + 1) diam S. O
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Affine Maps

Definition. Let {p,, p, ..., P»} = R" be afline independent and let A denote
the affine set it spans. An affine map T: 4 — R* (for some k > 1) is a function
satisfying

T(Z 4yp) = Z t;T(p))

whenever Y t; = 1. The restriction of T to [po, p;,--., Pa] is also called an
affine map.

Thus affine maps preserve affine combinations, hence convex combina-
tions. It is clear that an affine map is determined by its values on an affine
independent subset; its restriction to a simplex is thus determined by its values
on the vertices. Moreover, uniqueness of barycentric coordinates relative to
{Po»-.-, Pm} shows that such an affine T exists, since the formula in the
definition is well defined.

Theorem 2.10. If [py, ..., p,] is an m-simplex, [q,, - .., q,] an n-simplex, and
f:{Pos--++ Pm} = [Q0s ---» a) any function, then there exists a unique affine
map T: [po, ..., Pm] = [90. ---, a1 With T(p)) = f(p) fori =0, 1,...,m.

ProoF. Define T(3t;p;) = Y t,f(p;), where ) t;p, is a convex combination.
Uniqueness is obvious. O

EXERCISES

*24. If T:R"—R* is affine, then T(x) = A(x) + y,, where 1: R" =+ R* is a linear
transformation and y, € R* is fixed. (Hint: Define y, = T(0).

2.5. Every affine map is continuous.
*2.6. Prove that any two m-simplexes are homeomorphic via an affine map.

*2.7. Give an explicit formula for the affine map 0: R — R carrying [s,, s,] = [t;, t5]
with 0(s;) = ¢;, i = 1, 2. In particular, give a formula for the affine map taking
[32, 212] onto [0, 100]. (Hint: 6(x) = Ax + x4, by Exercise 2.4.)

*28. Let A = R" be an affine set and let T: A — R* be an affine map. If X < 4 is
affine (or convex), then T(X) < R* is affine (or convex). In particular, if a, b are
distinct points in A and if Z is the line segment wilth endpoints a, b, then T(¢)
is the line segment with endpoints T(a), T(b) if T(a) # T(b), and T(¢) collapses
to the point T(a) if T(a) = T(b).

29. If {po, P1,---» Pm} is affine independent with barycenter b, then {b, p,,...,
Bis .-, Pm} (ic., delete p,) is affine independent for each i.

*2.10. Show that, for 0 <i<m, [po,-.., pw] is homeomorphic to the cone
Clpos---» Bis - - - » Pm] With vertex p,.

*2.11. Give an explicit homeomorphism from an n-simplex [p,, ..., p.] to D*. (Hint:
Any n-simplex is homeomorphic to A* by Exercise 2.6, and A" =~ D" by radial
stretching.)



CHAPTER 3
The Fundamental Group

The first functor we have constructed on Top (actually, on hTop), namely, n,,
takes values in Sets; it is of limited use because it merely counts the number
of path components. The functor to be constructed in this chapter takes values
in Groups, the category of (not necessarily abelian) groups. The basic idea is
that one can “multiply” two paths f and g if f ends where g begins.

The Fundamental Groupoid

Definition. Let f, g: I = X be paths with f(1) = g(0). Definea path f ¢ g: 1 =+ X
by

_ffen  if0stsi
(f+9)0) = {g(2t —1) ifdstsl.

The gluing lemma shows that f = g is continuous (for f(1) = g(0)), and so
Jf »gisapathin X. Our aim is to construct a group whose elements are certain
homotopy classes of paths in X with binary operation [ f][g] = [ f #g]. Now
if we impose the rather mild condition that X be path connected, then con-
tractibility of I implies that all maps I — X are homotopic (Exercise 1.19(ii));
thus, there is only one homotopy class of maps. Since groups of order 1 carry
little information, we modify our earlier definition of homotopy.

Definition. Let A « X and let f,, f;: X — Y be continuous maps with f|4 =
JilA. We write

foxfirel 4
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if there is a continuous map F: X x I - Y with F: f; ~ f, and
F(a,t) = fo(a) = fi(a) forallae Aandalltel

The homotopy F above is called a relative homotopy (more precisely, a
homotopy rel A4); in contrast, the original definition (which may be viewed as
a homotopy rel A = @) is called a free homotopy. We leave to the reader the
routine exercise that, for fixed 4 = X, homotopy rel 4 is an equivalence
relation on the set of continuous maps X — Y.

Definition. Let I = {0, 1} be the boundary of I in R. The equivalence class of
a path f: 1 — X rel 1 is called the path class of f and is denoted by [f].

No confusion should arise from using the same notation for the homotopy
class of a path as for its path class, because we have remarked that the (free)
homotopy class is always trivial.

Theorem 3.1. Assume that f,, f,, o, g1 are paths in X with
fox=firell and go=~g,rell
If fo(1) = £,(1) = go(0) = g,(0), then fysgo = fy»g, rel L.

Remark. In path class notation, if [fo] =[f,] and [go] =[g,], then
[fo*90] = [f1 *9,] (assuming that the stars are defined).

PROOF. If F:fy ~ f, rell and G: g, ~ g, rel |, then one checks easily that
H:1 x I — X defined by

F(2t, s) ifo<t<i4
H@, 5) = {6(22 —1,9 ifd<e<l
is a continuous map (the gluing lemma applies because both functions agree
on {4} x I) that is a relative homotopy fo *go =~ f, *g, rel L. O
EXERCISES

*3.1. Generalize Theorem 1.3 as follows. Let A < X and B < Y be given. Assunie that
Jo» f1: X = Y with fu]|A = f,]A and f|(4) < B for i = 0.1; assume gy, g,: Y = Z
with go|B = g,|B.If fo = f, rel A and g, = g, rel B, then gg o fo = g, of, rel A.

*32 (i) If f: I - X is a path with f(0) = f(1) = x, € X, then there is a continuous
f':8' = X given by f'(e2**) = f(t). If f, g: 1 - X are paths with f(0) =
f(1) = xo = g(0) = g(1) and if f ~grell, then f' =g rel{1} (of course,
1=¢%€S").
(i) If f and g are as above, then f =~ f, rell and g =~ g, rel | implies that
J'sg’ = fisg)rel{l}.

3.3. Using Theorem 1.6, show (with the notation of Exercise 3.2) that if f and g are
paths with g constant, then f* =~ g’ rel{1} if and only if there is a free homotopy
['=g.



The Fundamental Groupoid 41

Definition. If /: I — X is a path from x, to x,, call x, the origin of f and write
xo = a(f); call x, the end of f and write x, = w(f). A path fin X is closed at
x if a(f) = xo = w(f).

Observe that if f and g are paths with f ~ g rel 1, then a(f) = a(g) and
w(f) = w(g); therefore we may speak of the origin and end of a path class and
write a[ f] and w[ f].

Definition. If p € X, then the constant function i,: I = X with i (¢) = p for all
tel is called the constant path at p. If f:1— X is a path, its inverse path
S~ 1— X is defined by t+— f(1 — ¢).

EXERCISES

*34. Let o: A2 - X be continuous, where A? = [e,, ;. €,].

€

g
Cd

o 0y €

Define ¢y: I — A? as the affine map with £,(0) = e, and ¢,(1) = e,; similarly,
define ¢, by ¢,(0) = e, and g,(1) = e,, and define ¢, by &,(0) = e, and g,(1) = e,.
Finally, define o, = oo g fori =0, 1, 2.

(i) Prove that (6, * 6;*) » 0, is nullhomotopic rel 1. (Hint: Theorem 1.6.)

(i) Prove that (g, * ;") + 63! is nullhomotopic rel 1.
(ili) Let F:I x I — X be continuous, and define paths a, B, y, 4 in X as

indicated in the figure.
B8
>
TA A6
N
«

Thus, a(t) = F(t, 0), B(t) = F(t, 1), y(t) = F(0, t), and 5(t) = F(1,¢t). Prove
thata ~yeBedtrell
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*3.5. Let fo = f, rel L and g, ~ g, rel 1 be paths in X and Y, respectively. If, for i = 0,
1, (fi» 9)) is the path in X x Y defined by t+—»(fi(t), g,(1)), prove that (fp, go) =~
(f1,9,) rel i

*36. (i) If f~grell then f~! ~ g~} ret I, where f, g are paths in X.
(ii) If f and g are paths in X with w(f) = «(g), then

(feg)'=gTle st
(ili) Give an example of a closed path f with f« f~! % f~1a f.
(iv) Show that if a(f) = p and f is not constant, then i s f # f.

Exercise 3.6 shows that it is hopeless to force paths to form a group under
» unless we can somehow identify, for example, f » f ™! with f~! » f(of course,
there are other obstacles as well). The next theorem shows that replacing paths
by path classes resolves most problems.

Theorem 3.2. If X is a space, then the set of all path classes in X under the (not
always defined) binary operation [ f1[g] = [ f * g] forms an algebraic system
(called a groupoid) satisfying the following properties:

(i) eachpathclass[f]lhasanorigina[f]=pe Xandanendw[f] =q¢€ X,
and

(101 =0f1=1Sf1060
(i) associativity holds whenever possible;
@iii) if p=a[f]and g = w[f], then

I =] and [f7'10S1= (i)

PROOF. (i) We show only that i, s f ~ frel I; the other half is similar.

0, 1)

(1, 1)

(0, 0)

¢.0 (1,0

—

s

First, draw the line in I x I joining (0, 1) to (4, 0); its equation is 2s = 1 — ¢.
For fixed ¢, define 6,: [(1 — ¢)/2, 1] — [0, 1] as the affine map matching the
endpoints of these intervals. By Exercise 2.7,
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_s—(1—1)2

%) =11 —o2

Define H: I x I - X by
Hs, 1) = {x; if2s<1—1t ((s,¢t)eshaded triangle)
TUGE) = f(Rs -1+ /(1 +1) if2s21—1

One sees easily that H is continuous (using the gluing lemma),! that
H:i,» f ~ f, and that I remains fixed during the homotopy.
(ii) To prove associativity, use the picture below.

FNE
(S0

r ! \g\h

0 1 3
2 4

First, draw the slanted lines in I x I and write their equations. On each of the
three pieces, construct a continuous function whose formula is, for each fixed
t, the affine map from the bottom Oth interval (e.g., from [0, 4]) to the upper
tth interval (e.g., to [0, (2 — t)/4]). It suffices to show that the continuous map
obtained by gluing maps together, as in part (i), is a homotopy f (g h) ~
(f #g)+ h rel 1, and this is routine.

(iii) We show only that fs f~! ~ i, rel 1; the other half is similar. One
proceeds as in the first two cases, subdividing I x I; here are the formulas.
Define H:1 x I - X by

_[f@s1-1) ifo<s<i
His,n= {1(2(1 —-5(1—-1) ift<s<l.

That H is the desired relative homotopy is left to the reader. O

The groupoid in Theorem 3.2 is not a group because multiplication is not
always defined; we remedy this defect in the most naive possible way, namely,
by restricting our attention to closed paths. See [Brown] for uses of groupoids

in topology.

I x 1 is divided into two pieces: a triangle and a quadrilateral. The affine maps on cach tth
interval give the formula for a function of two variables defined on the quadrilateral; this formula
is used to show that this function is continuous.
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Definition. Fix a point x, € X and call it the basepoint. The fundamental group
of X with basepoint x, is

7,(X, xo) = {[f): [f] is a path class in X with a[ f] = x, = w[f]}
with binary operation

[f1lgl =[S +g].

Theorem 3.3. n,(X, x,) is a group for each xy € X.

ProoF. This follows at once from Theorem 3.2. (]

The Functor n,

We have been led to the category Top of pointed spaces and pointed maps
that we introduced in Chapter 0. Recall that a morphism f: (X, x,) — (Y, o)
is a continuous map f: X — Y preserving the basepoint: f(x,) = yo. In Top,,
one usually chooses 0 as the basepoint of I and 1 as the basepoint of S'.

Theorem 3.4. n,: Top, — Groups is a (covariant) functor. Moreover, if h,
k: (X, xo) = (Y, yo) and h ~ k rel{x,}, then m,(h) = =, (k).

Proor. If [ f] € n,(X, x,), define =, (h) by [ ]+ [h o f]. Note that the com-
posite ho f: I — Y is defined, is continuous, and is a closed path in Y at y,;
thus [h o f] € n,(Y, yo). Also, m, (h) is well defined: if f ~ f' rel |, thenhof ~
h o f’ rel I (Exercise 3.1). If f and g are closed pathsin X at x,, then evaluation
of both sides shows that there is equality (not merely homotopy)

ho(fsg)=(hof)s(hog),

it follows that x, (h) is a homomorphism.

It is routine to check that n, preserves composition and identities in Top,,,
so that =, is indeed a functor.

Finally, Exercise 3.1 shows that h ~ k rel{x,} impliesthat ho f ~ k o frel |
whenever f is a closed path in X at xo. Thus [h o f] = [k o f] for all such f;
that is, n,(h) = m, (k). 0

Remarks. (1) One usually writes h, instead of m,(h) and calls h, the map
induced by h.

(2) We have shown that h, = k, if there is a relative homotopy h ~ k
rel{x,}. We have not shown that h, = k, if there is a free homotopy h ~ k
(between pointed maps h and k), and this may not be true (we shall return to
this point in Lemma 3.8).

(3) There is a category appropriate to the fundamental group functor ;.
Define the pointed homotopy category, hTop,, as the quotient category arising
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from the congruence of relative homotopy: if fo, f;: (X, xo) = (Y, y0), then
fo = f; rel{x,}. The objects of hTop, are pointed spaces (X, x,), morphisms
(X, xo) = (Y, y,o) are relative homotopy classes [ f], where f: (X, xo) = (Y, yo)
is a pointed map, and composition is given by [h][f] = [hof] (when h, f
can be composed in Top,). By Exercise 3.2, each closed path f: (I, 1) = (Y, y,)
may be viewed as a pointed map f”: (S*, 1) - (Y, y,). If Hom sets in hTop,, are
denoted by [(X, xo), (Y, ¥o)], then [ f]— [ f'] is a bijection

nl(yv }'o) :; [(S" l)s (Y’ .Vo)]-

Using Exercise 3.2(ii), one may introduce a multiplication in the Hom set,
namely, [ f'J1[g’] = [(f * g)'], and the bijection is now an isomorphism. There-
fore m, is an instance of a covariant Hom functor (Example 0.11). Roughly
speaking, the fundamental group of a space Y is just the set of morphisms
S! — Y. We shall elaborate on this theme when we introduce the higher
homotopy group functors =, (which, roughly speaking, are the morphisms of
§" into a space). These remarks are designed to place =, in its proper context,
to whet the reader’s appetite for the n,’s, and to indicate that paying attention
to categories is worthwhile. On the other hand, we must say that the funda-
mental group was invented and used (by Poincaré) 50 years before anyone
dreamt of categories!

Let us return to properties of fundamental groups. The next result shows
that one may as well assume that spaces are path connected.

Let x, be a basepoint of a space X, and let 4 be a subspace of X containing
X,; the inclusion j: (4, xo) « (X, x,) is a pointed map, and hence it induces a
homomorphism j,: n,(4, xo) = 7,(X, x,), namely, [ f]+[jf] (where fis a
closed path in A4 at x,). The path jf is the path f now regarded as a path in
X. It is possible that f is not nullhomotopic in 4, yet f (really, jf) is null-
homotopic in X (e.g., take X to be a contractible space containing A—the
cone CA will do for X); the extra room in X may allow f to be contracted to
a point in X even though this is impossible in A. The homomorphism j, may
thus have a kernel.

Theorem 3.5. Let x, € X, and let X, be the path component of X containing x.
Then

7, (X0, Xo) = 7, (X, Xo).

PROOF. Let j: (X, xo) & (X, xo) be the inclusion. If [ f] € ker j,, then jf ~
crell, where c:1 - X is the constant path at x,. If F:IxI—X is a
homotopy, then F(0,0) = x,; as F(I x I) is path connected, it follows that
F(I x I) c X,. Itis now a simple matter to see that f is nullhomotopic in X,.
Hence j, is injective. To see that j, is surjective, observe thatif f:1 —+ X is a
closed path at x,, then f(I)  X,. Be fussy and define f': I — X, by f'(t) =
S(¢) for all ¢ € I; note that jf* = f. O
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What happens when the basepoint is changed?

Theorem 3.6. If X is path connected and x¢, x, € X, then
1, (X, xo) = 7, (X, x,).

PRrOOF. Let y be a path in X from x, to x,. Define ¢: n,(X, xo) - n,(X, x,)
by [f1—[y"'1[f][y] (note that the multiplication occurs in the groupoid
of X). Using Theorem 3.2, one sees easily that ¢ is an isomorphism (with
inverse [g]— [y1[g1[v' ] a

It follows that the fundamental group of a space X is independent of the
choice of basepoint when X is path connected.

Let us establish notation. In a cartesian product H x K, there are two
projections: p: H x K —+ H and q: H x K —» K defined by p(h, k) = h and
q(h, k) = k. Also,ifa: L - H and B: L — K are functions from some set L, then
there is a function (a, #): L - H x K defined by (2, B)(x) = (x(x), B(x)). Of
course, po(a, f) =aand go (a, B) = B.

H x K

/ :
\ 9
a L p
If the sets are groups and the functions are homomorphisms, then (a, f) is a

homomorphism; if the sets are topological spaces and the functions are
continuous, then (a, B) is continuous.

H K

—————X

Theorem 3.7. If (X, x,) and (Y, y,) are pointed spaces, then
(X x Y, (xo, ¥o)) = my(X, xo) x m,(Y, yo).

PROOF. Let p: (X x Y, (xo, yo)) = (X, Xo) and ¢: (X x Y, (xo, yo)) = (¥, yo) be
the projections. Then (p,, q,): 7, (X x Y, (xo, ¥o)) = 7, (X, x0) x 7,(Y, yo) is
a homomorphism. In more detail, if f: I - X x Y is a closed path at (x,, yo),
then (p,, 4,): [f1—(Po[ /). 4, LS = ((pf], [4/]). We show that (p,, q,) is
an isomorphism by displaying its inverse. Let g be a closed path in X at x,,
and let h be a closed path in Y at y,; define 8: n,(X, x,) x n,(Y, yo) =
1, (X x Y, (xo, yo)) by

8:(Lgl, (kD) [(g, W],
where (g, h): I = X x Y is defined by t+— (g(t), h(t)); Exercise 3.5 shows that
0 is well defined. It is routine to check that (p,, q,) and 8 are inverse. O

Remark. Often it is not enough to know that two groups are isomorphic; one
needs to know an explicit isomorphism. For example, we shall use the isomor-
phisms (p,, q,) and @ in the proof of Theorem 3.20.
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EXERCISES
3.7. If X is the sin(1/x) space, prove that z,(X, xo) = {1} for every xo € X.

*3.8. Give an example of a contractible space that is not locally path connected.
(Hint: Take the cone on a suitable space.)

*39. Let X be a space. Show that there is a category € with obj ¢ = X, with
Hom(p, q) = {all path classes [ f] with z[ f] = p and w[f] = g}, and with
composition Hom(p, g) x Hom(q, r) = Hom(p, r) defined by ([f].[g])—
[f «g]. Show that every morphism in € is an equivalence.

3.10. If(X, x,) is a pointed space, let the path component of X containing x, be the
basepoint of ny(X); show that x, defines a functor Top, — Sets, (pointed sets).

*3.11. If X = {x,) is a one-point space, then =, (X, x,) = {1}.

Choosing a basepoint in X is only an artifice to extract a group from a
groupoid. On this minor point, we have constructed new categories Top, and
hTop,; eventually, we shall sec that we have not overreacted. Nevertheless,

these constructions raise an honest question: Do spaces having the same
homotopy type have isomorphic fundamental groups?

Lemma 3.8. Assume that F: ¢, ~ @, is a (free) homotopy, where ¢;. X = Y is
continuous for i = 0, 1. Choose x, € X and let / denote the path F(xy, )inY
Srom @y(x,) to @,(x,). Then there is a commutative diagram

1,(X, Xo) —2 7,(Y, ¢,(Xo))
%. w

1, (Y, @o(xo)),
where y is the isomorphism [g]+—[Asge i ')

PROOF. Let f: I — X be a closed path at x,, and define G: 1 x I = Y by

G(t, s) = F(f(t), ).

Note that G: ¢, o f = ¢, o f (of course, ¢, o f and ¢, o f are closed paths in
Y at ¢y(x,) and @,(x,), respectively). Consider the two triangulations of the
square I x I pictured below.

! 1
3 3

d ¢
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Define a continuous map H: I x I — I x I by first defining it on each triangle
and then invoking the gluing lemma. On each triangle (2-simplex), H shall be
an affine map; it thus suffices to evaluate H on each vertex (observe that
agreement on overlaps is automatic here). Define H(a) = H(q) = a, H(b) =
H(p) = B; H(c) =y; H(d) = 6; H(r) = p. By Exercise 2.8, the vertical edge
[a, q] collapses to «, and the vertical edge [b, p] collapses to . Also, [q, d]
goes to [a, 6], [d, c] goes to [4, ¥, and [c, p] goes to [y, B]. The map J =
Go H:1 x I - Y is easily seen to be a relative homotopy;

Jiggof =(As(pyof))si™ rell.

Therefore @o,[f]=[¢oof]=[~%¢, of »i™'] (using homotopy associa-
tivity). On the other hand, Y, [f]=y[p,0f]1=[Aeg,0f+27"], as
desired. a

This lemma shows that freely homotopic maps ¢, and ¢, may not induce
the same homomorphism between fundamental groups, because they differ by
the isomorphism .

Corollary 3.9. Assume that ¢;: (X, xo) = (Y, yo), for i =0, 1, are freely homo-
topic.

(1) o4 and @, are conjugate; that is, there is [1] € n,(Y, yo) with 0o [ f] =
(Ao (L DA for every [f] € my(X, xo).
(ii) If n,(Y, yo) is abelian, then o, = @y 4.

PRrOOF. In the notation of the lemma, we have ¢q(xo) = yo = 9,(xo), and the
path in Y is now a closed path at y,; therefore [4] lies in (Y, y,). The path
class [A» ¢, » f » 7' ], which can always be factored in the groupoid of Y, now
factors in the group 7, (Y, y,):

[As@,0f+47' ) = [A1[g, o f1[27"]
= [Aey (LD

This proves (i), and the second statement is immediate from this. 0O

Theorem 3.10. If B: X — Y is a homotopy equivalence, then the induced homo-
morphism B,: n,(X, xo) = 7, (Y, B(x,)) is an isomorphism for every x, € X.

PRrROOF. Choose a continuous map a: Y —» X withaof =~ 1yand foa =~ 1,.
By the lemma, the lower triangle of the diagram below commutes.

ﬂ' (Y. B(Xo ))

a

<
A

(af),

(X, Xg) et 1, (X, aB(¥())

N

7 (X, xg)

BN
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Since ¥ is an isomorphism, it follows that (af), is an isomorphism. Now the
top triangle commutes because =, is a functor: (af), = «,p,. It follows that
B, is injective and «, is surjective. A similar diagram arising from fa =~ 1,
shows that B, is surjective; that is, B, is an isomorphism. ]

Corollary 3.11. Let X and Y be path connected spaces having the same homotopy
type. Then, for every xo € X and y, € Y, we have

7, (X, xo) = 7,(Y, yo)-

PRrOOF. The theorem gives n, (X, x,) = n,(Y, B(x,))if B: X — Y is a homotopy
equivalence, and Theorem 3.6 shows that the isomorphism class of either side
is independent of the choice of basepoint. a

Corollary 3.12. If X is a contractible space and x, € X, then
(X, xo) = {l}

ProoF. Corollary 3.11 and Exercise 3.11. (This result also follows from
Theorem 1.13.) O

Definition. A space X is called simply connected if it is path connected and
(X, xo) = {1} for every x, € X.

According to this definition, all simply connected spaces are path con-
nected; that is, both n, and =, are trivial. The reader should be aware that
some authors allow simply connected spaces that are not path connected; this
means that every path component is simply connected in our sense.

Remark. In complex variables, one calls an open connected subset U of €
(= CU{o0}, homeomorphic to $2) simply connected if its complement is
connected. This agrees with our definition, but it requires some work to prove
it: ny (U, uo) = {1} if and only if $* — U is connected.

We have just shown, in Corollary 3.12, that contractible spaces are simply
connected. The converse is false; for example, we will see eventually that S” is
simply connected whenever n > 2, yet these spheres are not contractible.

Here is another consequence of Theorem 3.10.

Corollary 3.13. If B: (X, x},) — (Y, yo) is (freely) nullhomotopic, then the induced
homomorphism B,: n,(X, xo) = n,(Y, y,) is trivial.?

PRrOOF. If k: X — Y is a constant map at y,, say, then it is easy to see that
ky: i (X, xo) = my (Y, y,) is trivial (k,[f]=[kof], and ko f is a constant

21f G and H are groups, a homomorphism ¢: G — H is called trivial if ¢(x) = 1 for all x € G,
where 1 is the identity element of H.
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path). Suppose that f =~ k, as in the hypothesis. By Lemma 3.8, there is an
isomorphism ¢ with Y8, = k,; it follows that B, = 'k, is trivial. 0O

my(S")

We have yet to exhibit a space that is not simply connected, that is, a space
with a nontrivial fundamental group. Since n,(X, x,) consists of relative
homotopy classes of maps S' — X, the space X = S! suggests itself for
consideration.

EXERCISE

3.12. If =,(Y, yo) # {1} for some pointed space (Y, y,), then =,(S*, 1) # {1}. (Hint:
Otherwise 1 is nullhomotopic, where Ig is the identity map on S?, and this
implies that f = fo 15 is nullhomotopic for every closed path fin Y at y,.)

To compute =, (S*, 1), let us view S* as the set of all complex numbers z
with ||z|| = 1. One feels that z+— z2, which wraps I around S twice, ought not
to be homotopic to the constant map z+ z° = 1, and so we seek a way to
distinguish these two functions (of course, we must even distinguish their
homotopy classes). Recall from complex variables that these functions can be
distinguished by a certain line integral called the winding number:

dz
w(f) = 5; n
(here f: (1, 1) > (S*, 1) is a parametrization of the circle by some “nice”, e.g.,
differentiable, function f). Evaluate W(f) by rewriting f(t) = exp f{(t) for some
real-valued function f [exp s denotes e2**]. With this rewriting, one can
convert the line integral into an ordinary integral via the substitution z =
£(¢) = exp f(t). Thus dz = z2=if*(¢) dt and

1 [dz 1. _ -
W(f)=5";§;7=jof(t)dt—f(l)—f(o)-

For example, let f(t) = e**™ be the function wrapping I around S* |m| times
(counterclockwise if m > 0 and clockwise if m < 0). Here we may let f(t) = mt,
and so

w(f) = f(1) - f(0)=

(Note that there are other possible choices for f; namely, f(t) = mt + k for any
fixed integer k. This multitude of choices is easily explained: f is essentially
log f, and the complex logarithm is not single-valued.) Here is the point of
these remarks. Investigation of n,(S?) in the spmt of the winding number
suggests constructing maps f: I — R with f(f) = e2®%® (for every closed path
f in S'); moreover, attention should be paid to f(1)and f (0).
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Lemma 3.14. Let X be a compact convex subset of some R, let f: (X, xo) =
(S*, 1) be continuous, let to € Z, and let exp t denote e*". Then there exists a
unique continuous f: (X, xo) = (R, t,) withexp f = f.

(R’ ‘o)

e
7’

H Ve
) i exp
7’
Ve
7’

(x' x()) _I_' (sl» 1)

Remarks. (1) f is called a lifting of f.
(2) In order that exp f(xo) = f(xo) = 1, t, must be an integer.

PROOF. Since X is compact metric, f must be uniformly continuous. There is
thus £ > 0 such that whenever {|x — x’|| <¢, then || f(x) — f(x')} <2 (we
choose 2 = diam S! to guarantee that f(x) and f(x’) are not antipodal, i..,
J(x)f(x’)"! # —1). Now X bounded implies the existence of a positive integer
n with ||x — x,jl/n < eforall x € X.

For each x € X, subdivide the line segment having endpoints x, and x
(which is contained in X by convexity) into » intervals of equal length using
(uniquely determined) points xo, Xy, ..., X,=x. Thus [x;—x;,,| =
llx — xoll/n < & hence f(x;)"*f(x;+,) # —1. Foreachjwith0 <j < n — 1, the
function g;: X — S* — { —1} defined by

g(x) = f(xj)-lf(xj-ﬂ)

is easily seen to be continuous (for multiplication S* x S! — S! and inversion
S! — S are continuous); note that g,(x,) = 1 for all j. Since S' is a multi-
plicative group, there is a “telescoping product” in S*:

Jx) = f(xo)[f(x0) S (x,)I0S(x1) 7 f(x2)] - [ (Xu-r) 7 S(x4)]
= f(x0)g0(x)g,(X)" " - gu-1(x).

Now the restriction of exp to (—4, 4) is a homeomorphism from (—4,4)
to S' — {—1}; let us call its inverse A (actually, A = (1/2xi) log); note that
A(1) = 0. Since im g; = ' — {—1} for all j, each A o g is defined and con-
tinuous. Define f: X — R by
S(x) = to + Ago(x)) + A(gy(x)) + - + A(ga-y (x)).

Now f is continuous (it is a sum of continuous functions), fxo) = to
(because g,(x,) = 1 for all j and A(1) = 0), and exp f = f (because exp is a
homomorphism).

To prove uniqueness of f, assume that §: X + R is a continuous function
with exp § = f and §(x,) = to. Define h: X - R by h(x) = f(x) — g(x); it is
clear that h is continuous. Now

exp h(x) = exp(f(x) — §(x)) = exp f(x)/exp g(x) = 1,
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because exp f = f = exp §. But exp: R — S! is a homomorphism with kernel
Z. Therefore h: X — R is integer-valued. Since X is connected (it is convex),
it follows from the discreteness of Z that h is constant. Finally, h(x,) =
f(xo) — d(x0) = to — to = 0 shows that the constant is zero; that is, f = §.
O

Corollary 3.15. Let f: (I, 1) = (S*, 1) be continuous.

(i) There exists a unique continuous f:1— R withexp f = f and f(0) =
(i) If g: @, 1) = (S*, 1) is continuous and f ~ g rel I, then f ~ jrel 1 (where
exp § = g and §(0) = 0); moreover, f(1) = §(1).

PrOOF. (i) This follows from the lemma because I is compact convex.

(ii) Note that I x I is compact convex; choose (0, 0) as a basepoint. If
F:1 x I S' is a relative homotopy, F: f ~ g rel I, then the lemma provides
a continuous map F:I x I - R with exp F = F and with F(0, 0) = 0. We
claim that F: f ~ j rel I; that is, the homotopy F can be lifted. If ¢,: I — R is
defined by ¢,(t) = F(t, 0), then exp ¢,(t) = exp F(t, 0) = F(t, 0) = f(t); since
©o(0) = F(0, 0) = 0, uniqueness of lifting gives ¢, = f. Define 6,: 1 —» R by
6o(t) = F(0, t); a similar argument shows that 6, is the constant function
6o(¢) = 0; it follows that F(0, 1) = 0. Define ¢,: I+ R by ¢,(t) = F(t, 1); as
above, exp ¢,(t) = F(t, 1) = g(t) and ¢,(0) = F(0, 1) =0, hence ¢,(t) =
Finally, define6,: 1 » R by 0, (1) = F(1, t). Now exp 0, is the constant functlon
¢ with value f(1), and 6,(0) = f(1). Therefore the constant function at f} (1) is
a lifting of ¢, and uniqueness gives 6, (t) = f(1)for all t € I. Hence §(1) = f(1)
and F is a relative homotopy F: f ~ g rel 1. m]

Part (i) of this corollary shows that differentiable functions f, g: (I, ) -
(S*, 1) which are hom_otopic~rell have the same winding number: W(f) =
W(g) because (1) — f(0) = f(1) = §(1) = §(1) — §(0).

Definition. If f: (I, I) — (S, 1) is continuous, define the degree of f by

degf = f(1),
where f is the unique lifting of f with f(0) =

Observe that exp fay= f(1) = 1 hence f{(1) lies in the kernel of the homo-
morphism exp, namely, Z. Thus, deg f € Z for every f: (I, f) = (S, 1). Also, if
f(2) = 2™ (more precisely, if f(t) = exp(mt)), we saw above that f (1) = m; this
explains the term degree.

Theorem 3.16. The function d: n,(S*, 1) = Z given by [ f]+deg f is an iso-
morphism. In particular, deg(f » g) = deg f + deg g.

Proov. First, Corollary 3.15(ii) shows that d is a well defined function. Second,
d is a surjection because, for each m € Z, the function f(z) = z™ has degree m
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(as we have just observed above). Assume that deg f = 0, where f is a closed
path in §! at 1. Thus f(1) = 0, which says that f is a closed path in R at 0.
Now exp: (R, 0) - (S*, 1) induces a homomorphism =, (R, 0) — n,(S?, 1) with
[f1~ [expf] = [f]. But R contractible implies that =, (R, 0) = { 1}, so that
§ f ]1=1and [f] = 1 (the identity element of n,(R!, 1)). It remains to show
that d is a homomorphism, for then we can conclude that ker d is trivial and
d is injective.

Assume that f and g are closed paths in S! at 1 of degrees m and n,
respectively. To compute deg( f * g), we must find a path h: I - R withexp h =
f +g and with h(0) = 0; then deg(f = g) = h(1). Let § be the lifting of g with
§(0) = 0. Define j: T — R by 7(t) = m + §(t), so that 7 is a path in R from m to
m + n. Now let f be the lifting of f with f(0) = 0 (and f(1) = m). Then f s J is
a path in R with (f «7)(0) = 0 and (f + 7)(1) = m + n. We claim that f+jisa
lifting of f = g:

z oo fexpf2) if0s<es<d
exp(f * 7)) = {cxp jet-1) ifist<t

Now exp f(s) = f(s) for sel, because f is a lifting of f; also, exp j(s) =
exp(m + §(s)) = e**™ exp §(s) = g(s), because me Z and § is a lifting of
g (incidentally, this shows that 7 is the lifting of g with $(0) = m). Hence
exp(f*7) = f »g. Therefore

deg(feg)=(f+7(1)=m+ n=degf + degg.

It follows that d:n,(S',1)—=Z is a homomorphism and hence is an
isomorphism. O

Corollary 3.17. S! is not simply connected.

Corollary 3.18. Two closed paths in S* at 1 are homotopic rel 1 if and only if
they have the same degree.

PROOF. If f ~ g rel |, then deg f = deg g, for we have already shown that
d: n,(S', 1) > Z is well defined. Conversely, deg f = deg g implies that [ f] =
[g] because d is injective. a

Theorem 3.19 (Fundamental Theorem of Algebra). Every nonconstant poly-
nomial with complex coefficients has a complex root.

PrOOF. Let Z, denote the circle in C of radius p and center at the origin and,
forn > 1,let f: £, = C — {0} be the restriction to £, of z+» z*. By Theorem
1.5, it suffices to prove that f is not (freely) nullhomotopic. Consider the
composite h: S + £, -+ C — {0} — S*, where the maps are z+» pz, z+» 2%, and
2+ z/|Iz||; one checks that h(z) = z". Were f;* nullhomotopic, then it would
follow that h is nullhomotopic. Corollary 3.13 now says that h,: x,(S*, 1) -
m,(S", 1) is trivial. In particular, h,[exp] = [h exp] = [exp"] is trivial; that is,
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exp” is nullhomotopic rel £, and so exp® has degree 0. But we know that exp"
has degree n > 1, and this is a contradiction. O

There are other proofs of the fundamental theorem of algebra (one of the
simplest is E. Artin’s variation of a proof by Gauss, which requires only two
facts, both following from the intermediate value theorem: every positive real
number has a positive square root; every real polynomial of odd degree has
a real root (see [Jacobson, p. 293]). The proof of Theorem 3.19, however, still
illustrates that the ideas we are developing are powerful. Later, we shall
investigate methods of computing fundamental groups, one of which (covering
spaces) generalizes the computation of =, (S', 1) just given. We shall also see
that n,(X, x,) may not be abelian; indeed, given any group G, there exists a
space X with n,(X, xo) = G.

EXERCISES

3.13. Letu: (I, f) = (S*, 1) be the closed path ¢+ exp(t). Show that [u] is a generator
of n,(S*, 1).

*3.14. If fis aclosed pathin S' at 1 and if m € Z, then t+ f(¢)" is a closed path in S*
at 1 and

deg(f™) =mdeg f.

3.15. Let f: (1, 1) = (S*, a) be a closed path in S! at a = exp(a). Define degree f =
degree R o f, where R: S' — S! is rotation by —2na radians. Prove that two
closed paths f and g in S* (with f(0) = a and g(0) = b) are homotopic (with
closed paths at every time ¢ of the homotopy) if and only if they have the same
degree. (Hint: Corollary 3.18, Exercise 1.3, and Theorem 1.6.)

3.16. Compute n,(T, t,), where T is the torus S* x S*.
3.17. Prove that S! is not a retract of D3,
3.18. Prove the Brouwer fixed point theorem for continuous maps D? — D3.

3.19. Let f be a closed path in S* at 1.
(i) If f is not surjective, then deg f = 0.
(i) Give an example of a surjective f with degf = 0.

*3.20. Let X be a space with basepoint x,, and let {U;: j € J} be an open cover of X
by path connected subspaces such that:
(i) xo € U, for all j;
(i) U;N U, is path connected for all j, k.
(It follows that X is path connected.) Prove that n,(X, x,) is generated by the
subgroups im i;,, where i;: (U, xo) & (X, x,) is the inclusion. (Hint: If f: 1 - X
is a closed path in X at x5, use a Lebesgue number of the open cover
{f'(Up):jeJ}ofl)

*3.21. If n > 2, prove that $* is simply connected. (Hint: Use Exercise 3.20 with the
open cover {U,, U,} of S*, where U, is the complement of the north pole and
U, is the complement of the south pole.)

3.22. If n > 2, then $* and S* do not have the same homotopy type.
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Definition. A topological group is a group G whose underlying set is equipped
with a topology? such that;

(i) the multiplication map u: G x G — G, given by (x, y)~ xy, is continuous
if G x G has the product topology;
(ii) the inversion map i: G — G, given by x+— x~}, is continuous.

Both R* (under addition) and S* (under multiplication) are topological
groups.

EXERCISES

*3.23. Let G be a topological group and let H be a normal subgroup. Prove that G/H
is a topological group, where G/H is regarded as the quotient space of G by the
kernel of the natural map.

*3.24. Let G be a simply connected topological group and let H be a discrete closed
normal subgroup. Prove that =n,(G/H, 1) = H. (Hint: Adapt the proof of
Theorem 3.16 with exp: R — S replaced by the natural map v: G — G/H, and
with the open neighborhood (—4,4) of 0 in R replaced by a suitable open
neighborhood of the identity element 1 in G.) (Remark: If G is T, then every
discrete subgroup of G is necessarily closed.)

3.25. Let GL(n, R) denote the multiplicative group of all n x n nonsingular real
matrices. Regard GL(n, R) as a subspace of R*, and show that it and its
subgroups are topological groups.

3.26. A discrete normal subgroup H of a connected topological group G is contained
in the center of G (i.c., each h € H commutes with every x € G), hence is abelian.
(Hint: Fix h € H and show that ¢: G — H defined by ¢(x) = xhx~'h~! is con-
stant.) Conclude that n,(G/H, 1) is abelian when G is simply connected and H
is a discrete closed normal subgroup.

The next result is a vast generalization of the conclusion of the last exercise.

Definition. A pointed space (X, x,) is called an H-space (after H. Hopf) if there
is a pointed map m: (X x X, (xo, Xo)) = (X, x,) such that each of the (neces-
sarily pointed) maps m(x,, ) and m( , x,) on (X, x,) is homotopic to
1y rel{x,}. One calls x, a homotopy identity.

Clearly, every topological group X with identity x, and multiplication m
is an H-space (one even has equality instead of relative homotopy).

To help us evaluate the induced map m(x,, ),, let us restate the definition
of H-space so that it is phrased completely in terms of maps. If k: X — X is
the constant map at x, and (k, Ix): X =+ X x X is the map x+—(x,, x), then
m(x,, ) is the composite m o (k, 15). Similarly, m( , x,) is the composite

3 One often assumes as part of the definition that G has some separation property. It is known
(see [Hewitt and Ross, p. 70]) that if G is Ty, then it is completely regular.
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mo (1y, k). In an H-space, therefore, each of these composites is homotopic
to lx rel{XO}.

Recall an elementary property of direct products of groups: if x € G and
ye H,thenin G x H,

(x, D, y) = (x, y) = (I, y)(x, 1),

where 1 denotes the identity element in H and 1’ denotes the identity element
of G.

Theorem 3.20. If (X, x,) is an H-space, then n,(X, x,) is abelian.

PRrROOF. In Theorem 3.7, we have proved that 0: n,(X, xo) x m,(X, xo) —
(X x X, (xq, Xo)), defined by ([ f1, [9])— [(/, 9)],is an isomorphism, where

(f, g)is the path in X x X given by t+—(f{(t), g(t)). Choose [ 1], [gle =, (X, x,).
Now

[g] = (mo(k, 1y)),[g] (definition of H-space)
=my(k, 1x),[g] (m, is a functor)
=m,[(k, 1x)og] (definition of induced map)
m,[(kg, g)]
m,0([kg), [g)) (definition of 6)
= m,08(e, [g]).
where e = [k] is the identity element of 7, (X, x,). Similarly,
[f1=m0((f] e)

because m o (1, k) = 1y rel{x,}. Since m,0: m,(X, xo) % 7,(X, xo) — 7,(X, X)
is a homomorphism, we have

my0(Lf], [9]) = m,0((e, [9])(([S], )
=m,0((e, [g1))m,0((Lf], &) = [g][S].

If instead one factors ([ /], [g]) = ([/], e)(e, [g]), one obtains m 6([ /], [g]) =
[f1[g]- We conclude that [g][f] = [f][g], hence n,(X, x,) is abelian.

O

Corollary 3.21. If G is a topological group, then (G, e) is abelian.

The contrapositive of this last corollary is also interesting. If X is a space
with n,(X, x,) not abelian (eventually we shall see such X), then there is no
way to define a multiplication on X making it a topological group. Indeed
one cannot even equip such an X with the structure of an H-space.

We have seen that computing the fundamental group of a space yields
useful information, but this computation, even for S!, is not routine. In other
chapters we shall develop techniques to facilitate this work.



CHAPTER 4
Singular Homology

Holes and Green’s Theorem

For each n > 0, we now construct the homology functors H,: Top — Ab that
we used in Chapter 0 to prove Brouwer's fixed point theorem. The question
we ask is whether a union of n-simplexes in a space X that “ought” to be the
boundary of some union of (n + 1)-simplexes in X actually is such a boundary.
Consider the case n = 0; a O-simplex in X is a point. Given two points x,,
x, € X, they “ought” to be the endpoints of a 1-simplex; that is, there ought
to be a path in X from x, to x,. Thus, Hy(X) will bear on whether or not X
is path connected. Consider the case n = 1. Let X be the punctured plane

oI
ZIN

¥

R? — {0}, and let «, B, y be the 1-simplexes as drawn; aU Uy “ought” to
bound the triangular 2-simplex, but the absence of the origin prevents this;
loosely speaking, X has a “one-dimensional” hole in it. (Of course, aU Uy
would not bound the triangular 2-simplex if X were missing a small line seg-
ment through the origin, or even if X were missing a small neighborhood of
the origin. When we say “one-dimensional” hole, we speak not of the size of
the hole but of the size of the possible boundary. One must keep one’s eye on
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the doughnut and not upon the hole!) H, (X) will describe the presence of such
holes. We shall also see a close relation between H,(X)and n,(X, x,); after all,
the hole prevents one from deforming the closed path a + 8+ to a constant.

Better insight into homology is provided by Green’s theorem from
advanced calculus. Let D be an open disk in R? with a finite number of points
2y, 23, ..., 2, deleted. Assume that there are closed curves y, y,, ..., ¥, in D as
pictured below.

Here each y, is a simple closed curve (it does not intersect itself as does, say, a
figure 8) having z, inside and the other z’s outside; all the y, are inside y. If y is
oriented counterclockwise and each y, is oriented clockwise, then Green’s
theorem asserts, with certain differentiability hypotheses on these curves and
on functions P, Q: D — R, that

J-de+Qdy+j de+Qdy+---+J. Pdx + Qady
Y 041

B 2Q oP
‘f. .f(a‘a) dx dy,

where R is the shaded region in the picture. One is tempted to, and does, write
the sum of the line integrals more concisely as

f Pdx + Qdy.
yHY Hec by,

Moreover, instead of describing how the orientations align, one could instead
use signed coeflicients to indicate this. If we no longer demand that the curves
be simple and allow each y, to wind around z,; several times, we may even
admit Z-linear combinations of closed curves in D.

Green’s theorem arises when one considers whether, given two points q,
b e D, a line integral [, P dx + Q dy is independent of the path g in D from a
tob. Ifais a second pathin D from ato b, is s P dx + Q dy = [, P dx + Q dy?
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(Such paths a and B are examples of chains.) Plainly, for y =  — a (proceed
from a to b via B and then return to a backward via a, i.e, y = f+a”! in the
multiplicative notation of Chapter 3), the two line integrals have the same
value if and only if j ,P dx + Q dy = 0. We are thus led to closed paths (which
are examples of cycles), and Green's theorem tells us to consider finite unions
of oriented closed curves; algebraically, we consider formal Z-linear com-
binations of cycles. If we now restrict our attention to “exact” function pairs
(P, Q) (there exists a function F: D -+ R with dF/ox = P and dF/dy = Q,
hence 0Q/0x = dP/dy), then the theorem asserts that the line integral van-
ishes if its oriented curves form the boundary of a two-dimensional region R
in D.

One is thus led to consideration of oriented curves, closed oriented curves,
and boundary curves (certain finite unions of oriented closed curves). The
following equivalence relation on the set S, (D) = {all Z-linear combinations
of oriented curves in D} is suggested: if a, § € S, (D), define a ~ B if |, P dx +
Q dy = [, P dx + Q dyfor all exact function pairs (P, Q). Such linear combina-
tions « and B are called homologous (agreeing); equivalence classes of such
linear combinations are called homology classes. It is known that two line
integrals {, P dx + Q dyand [ P dx + Q dy agree in value for every exact pair
(P, Q) (i.e., x and B are homologous) precisely when a — B is a boundary. Thus
integration is independent of paths lying in the same homology class. There
are higher-dimensional analogues of this discussion: Stokes’s and Gauss’s
theorems in two and three dimensions; more generally, there is a version for
integration on differentiable manifolds.*

Free Abelian Groups

Let us proceed to the formal definitions: but first, some algebra.

Definition. Let B be a subset of an (additive) abelian group F. Then F is free
abelian with basis B if the cyclic subgroup {b) is infinite cyclic for each b e B
and F =}, .3 <b) (direct sum).

A free abelian group is thus a direct sum of copies of Z. A typical element
x € F has a unique expression

x =Y myb,

where m, € Z and almost all m, (all but a finite number of m,) are zero.

Bases of free abelian groups behave as bases of vector spaces; one can
construct a (unique) homomorphism if one knows its behavior on a basis;
moreover, one can “do anything” to a basis.

! Further discussion of Green's theorem is in the first section of Chapter 12 on differential forms.
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Theorem 4.1. Let F be free abelian with basis B. If G is an abelian group and
@: B > G is a function, then there exists a unique homomorphism ¢: F — G with
@) = ¢(b) forallbe B.

(ii) Every abelian group G is isomorphic to a quotient group of the form
F/R, where F is a free abelian group.

Proor. (i) Each x € F may be written x = ) myb; define ¢(x) = Y m,q(b).
Uniqueness of the expression for x shows that ¢ is a well defined homo-
morphism. Finally, ¢ is unique, because two homomorphisms agreeing on a
set of generators—namely, B—must be equal.

(ii) Foreach x € G, choose an infinite cyclic group Z, having generator b,,
say. It follows that F =Y, ,GZ, is a free abelian group with basis B =
{b,: x € G}. Define a function ¢: B — G by ¢(b,) = x. Since ¢ is surjective, it
follows that the homomorphism § is surjective. By the first isomorphism
theorem, G = F/R, where R = ker ¢. ]

Definition. The construction of ¢ from ¢ is called extending by linearity.
Usually one abuses notation and denotes ¢ by ¢ as well.

Part (ii) of the theorem suggests a way of describing abelian groups.

Definition. An abelian group G has generators B = {x;: j € J} and relations
A = {r:keK} if F is the free abelian group with basis B, if Ac F (ie,
cach r, is a linear combination of the x; with integer coefficients), and if
G = F/R, where R is the subgroup of F generated by A. We say that (B|A) is
a presentation? of the abelian group G.

Of course, an abelian group G has many presentations. The existence
question for free abelian groups is essentially settled by the definition: one can
exhibit a free abelian group with a basis of any cardinality merely by forming
the direct sum of the desired number of copies of Z. Here is a sharper version
of the existence theorem.

Theorem 4.2. Given a set T, there exists a free abelian group F having T as a
basis.

2 Later we shall define presentalions of groups thal may not be abelian.
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PrOOF. If T = @, define F = 0. Otherwise, for each t € T, define a group Z,
whose elements are all symbols mt with m € Z and with addition defined by
mt + nt = (m + n)t. It is easy to see that Z, is infinite cyclic with generator t.
The group F =Y, 1 Z, is free abelian with basis the set of all | T|-tuples b,,
where b, has all coordinates zero save for a 1 as its tth coordinate. The theorem
is proved by first using a scissors to cut out all b,’s from F and then replacing
each b, by t itself. (One can be more fussy here if one wishes.) |

In our discussion of Green’s theorem, we formed Z-linear combinations of
curves; Theorem 4.2 allows one to add and subtract curves without fear.

There is an analogue for free abelian groups of the dimension of a vector
space.

Theorem 4.3. Any two bases of a free abelian group F have the same cardinal.

ProOOF. Recall that any two bases of a vector space V (over any field) have the
same cardinal. If V is finite-dimensional, this is standard linear algebra. If V
is infinite-dimensional, one uses Zorn's lemma to prove that bases of V exist,
and one then uses a set-theoretic fact (the family of all finite subsets of an
infinite set A has the same cardinal as A) to prove invariance of the cardinal
of a basis.

Now let A and B be bases of F. For a fixed prime p, it is easy to see
that the quotient group F/pF is a vector space over Z/pZ and that the
cosets {a + pF:ae A} form a basis. Thus dim F/pF = card A. Similarly,
dim F/pF = card B, hence card A = card B. a

Definition. If F is a free abelian group with basis B, then
rank F = card B.

Theorem 4.3 shows that rank F is well defined; that is, it does not depend
on the choice of basis B. Exercise 4.2 below shows that the vector space
analogy is a good one: free abelian groups are characterized by their rank as
vector spaces are characterized by their dimension.

One can now define the rank of an arbitrary abelian group G.

Definition. An abelian group G has (possibly infinite) rank r if there exists a
free abelian subgroup F of G with

(i) rank F =r;
(ii) G/F is torsion.

Such free abelian subgroups do exist. Define a subset B of G to be indepen-
dent if )’ m;b, = 0 implies each m, = O (where m, € Z and b, € B). It is easy to
see that the subgroup generated by an independent subset B is free abelian
with basis B. If F is the subgroup generated by a maximal independent subset
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(which exists, by Zorn’s lemma), then F is free abelian and G/F is torsion. One
can prove that the rank of F depends only on G (Exercise 9.32), so that the
rank of G is indeed well defined.

EXERCISES

4.1. Let F be free abelian with basis B. If B is the disjoint union B = | J B,, then
F =Y F,, where F, is free abelian with basis B,. Conclude that each y € F has a
unique expression y = ) y,, where y, € F; and almost all y, = 0.

*4.2. Prove that two free abelian groups are isomorphic if and only if they have the
same rank.

*4.3. For a given space X, define S,(X) to be the free abelian group with basis all paths
o: 1 = X, and let Sy(X) be the free abelian group with basis X.
(i) Show that there is a homomorphism &,: 5,(X) — So(X) with 8,6 = a(1) -
o(0) for every path g in X.
(ii) If x,, xo € X, show that x, — x, € im J, if and only if x,, x, lic in the same
path component of X.
(iii) If o is a path in X, then o € ker 3, if and only if ¢ is a closed path. Exhibit
a nonzero clement of ker 2, that is not a closed path.

The Singular Complex and Homology Functors

Exercise 4.3(ii) indicates that we are proceeding toward a definition that
appears to capture the informal ideas discussed at the beginning of this
chapter: x, — x, ought to be the boundary of a curve in X, but it may not be
unless x,, x, lie in the same path component of X. In preparation for the
general definition, recall that Green’s theorem suggests looking at oriented
curves.

Definition. An orientation of A" = [e,, e,, ..., €,] is a linear ordering of its
vertices.

An orientation thus gives a tour of the vertices. For example, the orienta-
tion e, < e, < e, of A? gives a counterclockwise tour.

€

O

€ €
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Itis clear that two different orderings can give the same tour; thuse, < e; <e,
and e, < e, < ¢, and e, < ¢, < e, all give the counterclockwise tour, while
the other three orderings (orientations) give a clockwise tour.

If n = 3, the reader should see that there are essentially only two different
tours, corresponding to the left-hand rule and right-hand rule, respectively.

Definition. Two orientations of A" are the same if, as permutations of
{eo, €1, - .., €}, they have the same parity (i.e., both are even or both are odd);
otherwise the orientations are opposite.

Given an orientation of A", there is an induced orientation of its faces
defined by orienting the ith face in the sense (—1)'[e,, ..., é;, ..., €,], Where
—[eos.--» &, ..., e,] means the ith face (vertex e; deleted) with orientation
opposite to the one with the vertices ordered as displayed. For example,
assume that A? is oriented counterclockwise.

€

O

€q €

The Oth face of A? is [&,, e,, e,] = [e,, e,], and it is oriented from e, to e,;
the first face [eo, é,, ;] = [eo, €;] is oriented in the opposite direction:
—[eo, €21 = [e2, €o] is oriented from e, to e,; the second face is [e,, e, ]. It
is plain that these orientations of the edges are “compatible” with the orienta-
tion of A%,

The boundary of A? is

Les, e2]U[eo, e2JU[eg, €1] = [&o, €,, 21U [eo, é,, ,1U [eo, €y, 8, ].
The oriented boundary of A? is
[0, €1, €2]U —[eo, 8y, e,1U[eo, €y, 8,] = [e,, e,]U [e;, €06 U [0, €, .

More generally, the boundary of A" = [e,, ..., €,]is | Ji=o[€os -+ & -- ., €]
and the oriented boundary of A" is | Jiao(—1)'[eg, - .-, &; ..., €,].

For the moment, denote the ith face of A2 by ¢,, where i = 0, 1, 2. Applying
the homomorphism 0, (see Exercise 4.3) to the oriented boundary, we see that

O1(e0 — &1 +€2) = (e; — €;) — (e2 — &) + (e, — o) =0,

and gy — &, + &, € ker d,; on the other hand, ¢, + ¢, + ¢, ¢ ker 0, (one thus sees
that orientations are important). At last, here are the important definitions.
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Definition. Let X be a topological space. A (singular) a-simplex in X is a
continuous map g: A" = X, where A" is the standard n-simplex.

Since A! is a closed interval (A! ~ I), a singular 1-simplex in X is essentially
a path in X; since A° is a one-point set, a singular 0-simplex may be identified
with a point in X.

Definition. Let X be a topological space. For each n > 0, define S,(X) as the
free abelian group with basis all singular n-simplexes in X; define S_,(X) = 0.
The elements of S,(X) are called (singular) n-chains in X.

Of course, S,(X) essentially agrees with the construction in Exercise 4.3
whenn=0andn=1.

The oriented boundary of a singular n-simplex o: A® — X ought to be
Yi=0(~1)(olleq, -- -, &, ..., €,]). A technical point arises: we prefer that this
be a singular (n — 1)-chain; it is not because the domain of o|[e,, ...,é;, ...,€,]
is not the standard (n — 1)-simplex A*~!. This is easily remedied. For each n
and i, define the ith face map

g=¢en A" A

to be the affine map taking the vertices {eg,...,e,-;} to the vertices
{egs-.., &, ..., €.} preserving the displayed orderings:

€0 (Los -vvs ta=g ) (0, 0y ..y tyy);
€ (Los s tamy)(tos oo es =1, 0y 8y ..., tey) i L

(The superscript n indicates that the target of ¢! is A".) For example, there are
three face maps e: A' = A% gy: [e, €,] = [e1, €2 ; €;: [eo, €] — [eo, €2;
€3: [eo, €,] — [eg, €,].
Definition. If 6: A* — X is continuous and n > 0, then its boundary is
b= §. (—1faef € 5,-, (X%
if n = 0, define 50 = 0.
Note that if X = A" and §: A* — A" is the identity, then
(%) = ; (—1)e.

Theorem 4.4. For each n > 0, there is a unique homomorphism 0,: S,(X) —
Sa-1(X) with 8,0 = Y 1o (— 1) o€, for every singular n-simplex o in X.

PRrOOF. Use the formula for d,0 and extend by linearity. O
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The homomorphisms 4,: S,(X) — S,-,(X) are called boundary operators.
Strictly speaking, one ought to write 8 since these homomorphisms do
depend on X; however, this is rarely done. We have constructed, for each X,
a sequence of free abelian groups and homomorphisms

e §YX) =2 5, (X) e —— 5, () =2 5,(X) 200,

called the singular complex of X ; it is denoted by (S, (X), d) or, more simply,
by S, (X).

Lemma 4.5. If k < j, the face maps satisfy

gtlep =eftlel, i AT AT

PROOF. Just evaluate these afline maps on every vertexe;forO <i<n — 1.
O

For example, e3e3 maps e e, e,; e, — e, e4; and e, e;— ¢, (the
image is thus the 2-face [e,, 3, e,] of A%); e§ed: egrsep—e,; e, e, €5;
and e, ey e . If k < j, the image of ¢, is the (n — 1)-face of A**! obtained
by deleting vertices e; and e,; when k > j, the image deletes vertices ¢;and e, ..
Theorem 4.6. For all n > 0, we have 6,0,,, = 0.

PROOF. Since S, ., (X) is generated by all (n + 1)-simplexes o, it suffices to show
that dde = 0 for each such o.

ddo = 6(2}: (- l)fct:,"”)
=Y (—1)**ce* ¢
Jk
=Y (=1)* o el + Y (— 1) 0 g
Jsk k<)
=Y (=" o el + Y (—1)**0ef* e, by Lemma4.5.
jsk k<j
In the second sum, change variables: set p=k and g =j — 1; it is now
Y pse(—1P*4* 1 oen* el Each term o¢]*! ] occurs twice, once in the first sum
with sign (—1)’** and once in the second sum with (opposite) sign (— 1)/***,

Therefore terms cancel in pairs and dde = 0. 0O

Definition. The group of (singular) a-cycles in X, denoted by Z,(X),? is ker 4,;
the group of (singular) s-boundaries in X, denoted by B,(X), is im 4,,,.

Clearly, Z,(X) and B,(X) are subgroups of S,(X) for all n > 0; but more is
true.

3 From the German Zykel.
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Corollary 4.7. For every space X and for every n > 0,
B\(X) = Z(X) < S,(X).

Proor. If g € B,(X), then B = 8,,,a for some « € S,,,(X). But then 3,(8) =
0,0,+,2 = 0, by Theorem 4.6, and 8 € Z,(X). a

We have now made our earlier discussion precise: an n-cycle corresponds
to those sum (unions) of oriented n-simplexes in X that ought to constitute
the boundary of some union of (n + 1)-simplexes in X. Returning to the
example of the punctured plane given at the beginning of this chapter, we see
that « + B + y is a 1-cycle in X. It is intuitively clear (but not so obvious to
prove) that « + B + y is not a 1-boundary (because the obvious candidate for
the two-dimensional region it should bound is not a 2-simplex in X, lacking
as it does the origin).

To detect “holes” in a space X, one should consider only cycles that are
not boundaries; boundaries are “trivial” cycles. Indeed, Green’s theorem also
suggests this, for the line integral {, P dx + Q dy (where (P, Q) is an exact pair)
is zero when y is a union of oriented curves comprising the boundary of a
region R in the space D. We are led to the following definition.

Definition. For each n > 0, the nth (singular) homology group of a space X is
Z,(X) _ kerd,
B(X) imd,,,’

The coset z, + B,(X), where z, is an n-cycle, is called the homology class of z,,
and it is denoted by cls z,.

H,(X) =

Our next aim is to show that each H, is actually a functor Top — Ab.
If f:X —Y is continuous and if o: A* — X is an n-simplex in X, then
foo:A"— Y is an n-simplex in Y. Extending by lincarity gives a homo-
morphism f,: S,(X) — S,(Y), namely,

fe(X m,0)=3 m,(foo), wherem,eZ.
This notation is careless, for f, does depend on n. In fact there is one such
[, forevery n > 0.
Lemmad8.Iff: X — Yiscontinuous, thend,fy = f,0,;thatis, for everyn > 0
there is a commutative diagram

S X) —2 5., (%)

1

S.(Y) L’ n-I(Y)-
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Remark. Not content with omitting subscripts on the maps f,, we have
omitted superscripts on the boundary maps d, as well (these maps do depend
on the spaces X and Y). This casual attitude is customary and necessary, for
a jumble of indices, aside from being cumbersome, can mask a simple idea or
a routine calculation. When the abbreviated symbol may cause confusion,
however, we shall restore decorations as required.

PRrooF. It suffices to evaluate each composite on a generator o of S,(X). Now
Selo = f.-(Z (—1)og)
=Y (= D'fyloe) = 3 (—1)'f(og).
On the other hand,
A g0 = d(fo) = Y (—1)(fo)e,. O

Lemma 4.9. If f: X — Y is continuous, then for every n > 0,
J#(Z(X)) = Z(Y) and [f,(B,(X)) = B,(Y).
ProoOF. If a € Z,(X), then da = 0. Therefore df ya = f,0a = f,(0) = 0, and

feaekerd, = Z,(Y). If Be B,(X), then B =0y for some y€ S,,,(X), and
JeB =S40y =0fyy€imd,,, = B(Y). ]

Theorem 4.10. For eachn > 0, H,: Top — Ab is a functor.
Proor. We have already defined H, on objects X: H,(X) = Z(X)/B(X). If
f: X - Y is continuous, define
H,(f): H(X) - H\(Y)
by z, + B,(X)— f4(2,) + B,(Y), where z, € Z,(X); that is,
H,(f):cls z,—cls f4(z,).

There are some details to check. First, z, being an n-cycle in X implies that
S# 2. 1s an n-cycle in Y, by Lemma 4.9. Second, this definition is independent
of the choice of representative because f,(B,(X)) < B,(Y): if b, € By(X),
then f,(z, + b,) + BJ(Y) = fu(2,) + f4(b,) + B,(Y) = fu(z,) + B(Y). The
remaining details—H,(f) is a homomorphism, H,(1y) is the identity homo-
morphism, and H,(gf) = H,(g)H,(f)—are all easy consequences of the defini-
tion of H,. a

Corollary 4.11. If X and Y are homeomorphic, then H,(X) = H,(Y) foralln > 0.
Proor. Theorem 0.5. 0

Each homology group H,(X) is thus an invariant of the space X; in
particular, rank H,(X)is an invariant of X for each n > 0.
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Definition. For each n > 0, rank H,(X) is called the nth Betti number of X.

If H,(X) is free abelian, then it is characterized by its rank; otherwise, there
is more information contained in the homology group.

Dimension Axiom and Compact Supports

Before giving the first properties of the homology functors, we caution the
reader. Many proofs, even of geometrically “obvious” facts, will seem too long
(and too algebraic). One reason for this is our decision to define H, as above,
using singular theory. The advantages of this theory are the following: H,(X)
is defined for every topological space X, that is, H, is defined on all of Top;
it is very easy to define induced maps and to prove that H, is a functor. One
disadvantage, as we have just said, is that some proofs appear too fussy and
formal; another great disadvantage is that it is usually difficult to compute
H,(X) for specific X. If we limit attention to spaces X that are polyhedra or
CW complexes (these terms are defined later), then there are other definitions
of H, (the simplicial theory and the cellular theory) for which H,(X) is easier
to calculate. The disadvantages of the other two theories are that they apply
only to these special spaces and that induced maps are more complicated to
define. These theories* will be presented along with a theorem of Eilenberg
and Steenrod, which axiomatizes homology functors on the subcategory of
(compact) polyhedra and which shows that the various theories agree on this
subcategory. Once all this is known, the reader may then select the particular
theory that is most convenient for a problem at hand. We have no such
freedom of choice now, however, and so all our proofs are in singular style
until Chapter 7. Thus warned, the reader should not be discouraged as we set
forth the details of (singular) homology.

Theorem 4.12 (Dimension Axiom).® If X is a one-point space, then H,(X) = 0
Joralln > 0.

PRrROOF. For each n > 0, there is only one singular n-simplex o,: A" - X,
namely, the constant map. Therefore S,(X) = {a,), the infinite cyclic group
generated by o,. Let us now compute the boundary operators:

anal = ‘io (— l)id',,ﬁ‘ = [‘-io (— l)‘] Op-1s

(for o,¢; is an (n — 1)-simplex in X, and g,-, is the only such). It follows that

4 There are homology theories other than the three we have mentioned here; these three are the
most popular.

3 The reason for this name will be explained in Chapter 9.
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{0 if nis odd
0,0, =

o,-; if niseven and positive.

Therefore d, = 0 when n is odd, and 4, is an isomorphism when n is even and
n > 0. Assume that n > 0, and consider the sequence

Suea (X) =y $,(X) —20 5,4 (X).

If n is odd, then d, = 0 implies that S,(X) = ker 3, = Z,(X); also J,4, is an
isomorphism (n + 1 is even), hence is surjective, and so S,(X) =im 0,,, =
B,(X). Thus H(X) = Z,(X)/B,(X)=0. If n> 0 is even, then d, is an iso-
morphism, hence injective, and so Z,(X) = ker ¢, = 0. It follows that H,(X) =
Z,(X)/B,(X) = 0 in this case as well. a

Definition. A space X is called acyclic if H,(X) =0 foralln > 1.
The dimension axiom shows that every one-point space is acyclic.

EXERCISES

*44. If X = ¢, then H,(X) = Oforall n > 0. (Hint: The free abelian group with empty
basis is the trivial group {0}.)

4.5. If X is a one-point space, then Hy(X) = Z.
*4.6. For each fixed n = 0, show that S,: Top — Ab is a functor.

The next result will allow us to focus on path connected spaces.

Theorem 4.13. If {X,: A € A} is the set of path components of X, then, for every
n>0,

H,(X) = ; H.(X,).

Remark. The elements of a direct sum ) G, are those “vectors” (g,;) having
only finitely many nonzero coordinates.

Proor. If y =) m,0, € S,(X), then Exercise 1.24 shows that each im g; is
contained in a unique path component of X; we may thus write y = Y y,,
where y, is the sum of those terms in y involving a simplex o; for which
im g, c X,. Itiseasy to see that, for each n, the map y s (y,) is an isomorphism
S.(X) = Y, S.(X,). Now y is a cycle if and only if each y, is a cycle: since
0y, € S,-1(X,) (because im o = X, implies im o¢, = X, ), the assumption 0 =
dy = Y dy, implies dy, = O for all A (because an element in the direct sum
Y S.-1(X,) is zero if and only if all its coordinates are zero). It follows that the
map 6,: H,(X) — Y H,(X,), given by cls y— (cls y,), is well defined. To see that
6, is an isomorphism, we exhibit its inverse. Define ®,: " H,(X,) = H,(X) by
(cls y;)—cls(Y y,); it is routine to check that both composites are identities.
O
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EXERCISES

4.7. Compute H,(S°) foralln > 0.
4.8. Compute H (X) for all n > 0, where X is the Cantor set.

Of course, the computation of H,(X), even when X is path connected, is
usually difficult. However, one can always compute Hy(X).

Theorem 4.14.

(i) If X is a nonempty path connected space, then Hy(X) = Z. Moreover, if
Xo, X, € X, then cls x, = cls x, is a generator of Hy(X).
(i) For any space X, the group Hy(X) is free abelian of rank = card A, where
{X,: A € A} is the family of path components.
(iii) If X and Y are path connected spaces and f: X — Y is continuous, then
fo: Ho(X) = Hy(Y) takes a generator of Hy(X) to a generator of Hy(Y).

PRrOOF. (i) Consider the end of the singular complex
7 7
8,(X) —— So(X) ——0.

As 9, is zero, Zy(X) = ker 0, = Sy(X); therefore every O-chain in X is a
0-cycle (in particular, cls x € Hy(X) for every x € X). A typical O-cycle is thus
Y exm.x, where m, € Z and almost all m, = 0. We claim that

By(X) = {} m.x € So(X): Y, m, = 0}.

If this claim is true, then define 8: Zo(X) = Z by Y m,x— Y m,.Itisclear that
0is a surjection with kernel B,(X), and so the first isomorphism theorem gives
Hy(X)=Z.

Let us prove the claim. Let y = Y k., m;x; € So(X), and assume that )" m, =
0. Choose a point x € X (X # &), and choose a path g; in X from x to x; for
each i (X is path connected). Note that 9,0, = g;(e,) — g(eg) = x; — x (we
have identified I = [0, 1] with A' = [e,, ¢,]). Now Y m,q, € S,(X), and

an(z mo)) = Z m;0,(a;) = Z my(x; — x) = Z mx; — (Z m)x =y,

since Y m; = 0. Therefore y =Y mx; = ,(} m;0,) € By(X). Conversely, if

y € Bo(X), then y = 8,(}_ n;t;), where n; € Z and 1, is a 1-simplex in X. Hence
Y= Z "j(Tj(el) - Tj(eo)),

so that each coefficient n; occurs twice and with opposite sign. Thus the sum

of the coefficients is zero.

Let x,, x, € X. There is a path ¢ in X from x4 to x,, and x; — x, =
0,0 € By(X); this says that x, + By(X) = xo + By(X), that is, cls xo = cls x,.
Finally, if cls y is a generator of Hy(X), where y = Y m;x;, then 6(y) = Y m; =
+ 1. Replacing y by —7y if necessary, we may assume that ) m; = 1. If x, € X,
then y = x4 + (y — xo); since y — xq € By(X) (its coeflicient sum is zero), we
have cls y = cls x,, as desired.
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(i) Immediate from Theorem 4.13 and part (i) of this theorem.
(iii) Immediate from part (i). (]

Compare the functors n, and H, : 7(X) is the set of path components of
X ; Hy(X) carries exactly the same information and builds a free abelian group
from it.

In Theorem 4.32, we shall give a geometric characterization of 1-cycles in
a space X.

Lemma 4.15. Let A be a subspace of X with inclusion j: A < X. Then
ja: Sa(A) = S,(X) is an injection for every n = 0.

PROOF. Let y =) m,0; € S,(A); we may assume that all g; are distinct. If
yekerj,, then0=j,Y mo, =) myjo a).Sincej o g, differs from o, only in
having its target enlarged from A4 to X, it follows that all j o g; are distinct.
But S,(X) is free abelian with basis all n-simplexes in X; it follows that every
m;=0andy=0. O

This lemma is invoked often, usually tacitly.

Definition. If { = Y m,q, € S,(X), with all m; # 0 and all ¢, distinct, then the
support of {, denoted by supp {, is { ) 6,(A").

It is clear that supp { is a compact subset of X, since it is a finite union of
compact subsets.

Theorem 4.16 (Compact Supports). If cls { € H,(X), then there is a compact
subspace A of X withcls { €im j,, where j: A < X is the inclusion.

PROOF. Let A = supp {. If { = ) m,0;, then for each i we may write g, =
joi, where o: A" — A. Define y = ) m;0; € S,(A). Now j, 0y = dj,y=0{ =0
(because { is an n-cycle in X); since j, is an injection, it follows that dy = 0,
that is, y is an n-cycle in 4. Therefore cls y € H,(4) and j, cls y = cls {. (]

Corollary 4.17. If X is a space for which there exists an integer n > 0 with
H,(A) = O for every compact subspace of X, then H,(X) = 0.

Proor. If cls { € H,(X), then the theorem provides a compact subspace 4 of
X (with inclusion j: A < X) and an element cls y € H,(A) with j, cls y = cls {.
But H,(A) = 0, by hypothesis, hence cls y = 0, and hence cls { = 0. O

The next technical result will be used in proving the Jordan curve theorem.

Theorem 4.18. Let X = | J5., X? with X? < X?*! for all p (call the inclusion
maps AP: XP < X and @P: XP < XP*'). If every compact subspace A of X is
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contained in some XP, then cls { € H,(X) is zero if and only if there exist p and
cls {’ € H,(XP) with

Aclsl =cls{ and o@fcls{ =0.
xp+l

Xxr X

AP

Proor. Sufficiency is obvious, for A?*! o ¢? = 17, hence 0 = A5*!(p2 cls {') =
Abclsl =cls{.

Conversely, assume that cls { = 0 in H,(X). Thus { = Y m,q, € 5,(X), and
there exists B = Y ;1 € S,+,(X) with 88 = {. Define A = supp { Usupp B,°
and choose p with A = XP. As in the proof of Theorem 4.16, there are
n-simplexes oj: A" — X7 and (n + 1)-simplexes t;: A"*! — X7 for all i, k with
o, = A’g] and T, = APt}; moreover, if {' = m,o;, then {’' is an n-cycle in
X? and AZcls {’ = cls {. On the other hand, if ' = ZC,‘t;,, then dp4 ' =
05 0B = @5 {'; thatis, @2 cls {’ = 0in H,(X**'). a

Theorem 4.18 and Corollary 4.17 are instances of a more general result:
each homology functor H, preserves “direct limits” over a directed index set
(see [Spanier, p. 162]).

The Homotopy Axiom

Our next goal is to show that H,(f) = H,(g) for all n whenever f and g are
homotopic. First, we present a preliminary resuit.

Theorem 4.19. If X is a bounded convex subspace of euclidean space, then
H,(X) = 0 for all n > 1. In particular, H,(D*) = 0 for all n > 0 and all k.

Remarks. (1) If X # &, then Theorem 4.14 shows that Hy(X) = Z.
(2) This theorem will be used to prove a stronger result, Corollary 4.25,
which replaces “convex subspace of euclidean space” by “contractible space”.

Proor. Choose a point b € X. For every n-simplex o: A" — X, consider the
“cone over ¢ with vertex b” (recall that Exercise 2.10 shows that an affine
simplex is the cone over any one of its faces with opposite vertex). Define an
(n + 1)-simplex b.g: A"*! - X as follows:

¢ Actually, it is easy to see that supp { < supp B, so that one may take A = supp B.
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b ifto= l
(b.o')(to, tl’ ceey tl*l) =

tl tu«ﬂ .
tob+(l !o)ﬂ'(l_to,...,l—to) lrl()#l

(here (to, t;, - .., t,4,) are barycentric coordinates of points in A"*!). Note that
to = 1 implies that (to, ..., t,+;) = (1,0, ..., 0); moreover, b. o is well defined
because (1 — t,)™* Y121 t, = 1 (hence the argument of ¢ lies in A") and X is
convex. A routine argument shows that b. ¢ is continuous.

Define c,: S,(X) = S,.,(X) by setting c,(¢6) = b. s and extending by linear-
ity. We claim that, for all n > 1 and every n-simplex ¢ in X,

au-ﬂcn(o) =0 = Cpy a,.(ﬂ'). (‘)

(If one ignores signs, formula (*) says that the (oriented) boundary of the cone
on ¢ is the union of ¢ with the cone on the boundary of . We illustrate this
when ¢ is a 2-simplex.

€

Here g is represented by [e,, e,, ,]; the cone b. o is the tetrahedron, and the
boundary of this tetrahedron is o together with the three faces [b, e,, e, ],
[b, eo, €21, and [b, e,, e,], each of which is the cone on a face on 6.)
If formula () holds, then the theorem follows easily. If y € S,(X), then
extending by linearity gives
y = dey + cdy;

if y is a cycle, that is, dy = 0, then y = dcy € B,(X). Hence Z,(X) = B,(X), and
H,(X)=0.

To verify (»), let us first compute the faces of c,(6) = b.o.Ifn > 1 andi = 0,
then

((b.0)ed* )(tgy -..r 1) = (b.0)(0, to, ..., t,) = a(tg, ..., t,).
If0<i<n+1,then
((b.0)e!* ) tos - -» t) =(b.0)(tos . -s 81y, 0, sy ...\ L)
If, in addition, t, = 1, then
(b.0)(1,0,...,0) = b;
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if to # 1, then the right side above is equal to

L tiy J tn
l_t LXEX] s Vy 9y
fob +( °)o(l-t°’ 1—1¢, 0 1—1t, l—to)
t t,
=tob+(l_to)08?_l(l:to,...,l—to)

= Cp-1 (0’8;‘.1)([0, eesy t.).
In conclusion, after evaluating each side on (¢, ..., t,),
n+l nt+l

(c,0)es™ =0 and (c,0)e!™! = c,-,(0el-,) ifi>0.

Taking alternating sums,

n+l

a+l
Oy4164(0) = ‘Z;) (- l)‘(cna)el =0+ ‘Zl (—1e -1(0€iy)
=0~ ¥ (~1Vey(08)
j=0

=0 —Cpy (,‘-‘u:‘o (- l)’ae,)

= 0 — Cp-10,0. O
Definition. The homomorphism c, is called the cone construction.

Corollary 4.20.
(i) Let X be convex and let y = Ym0, € S\(X). If b € X, then

_fy—>b.oy ifn>0
"“’""{(zm,)b—y ifn=0.

(ii) If y is an n-cycle and n > 0, then
o(b.y) = d(cyy) = -
Remark. Part (ii) may be regarded as an integration formula.

ProoF. (i) For n > 0, the formula has just been proved above. When n = 0,
consider first a O-simplex o (which we identify with its image x € X). The
definition b.o: A' = X is

(b.o)®)=tb+ (1 —t)x.
Therefore, if one identifies g; with its image x;,
ab.y) =03 mb.a) =Y mab.a)

= Z myb — x;) = (z m)b — y.
(ii) Immediate from part (i). O
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Lemma 4.21. Assume that f, g: X — Y are continuous maps and that there are
homomorphisms P,: S,(X) — S, ,,(Y) with

f# —gs = a:ﬂlpn + Pn-lau'

ity nvl

A

——)S,,.,(Y)—> S (Y)—)s,, V) —>,

Then, for alln > 0, H,(f) = H,(g).

PROOF. By definition, H,(f): z + B,(X)— fu(2) + B,(Y), where dz = 0. But
(fe —94)2= (0P + Pd)z =0'Pze B|(Y),

and so f4(2) + B\(Y) = g4(2) + B(Y); that is, H,(f) = H,(¢g). ]

Remark. The equation in the statement of the lemma makes sense whenn = 0,

for S_,(X) was defined to be zero, hence P_,: S_,(X) — So(Y) must be the zero
map.

Lemma 4.22. Let X be a space and, fori =0, 1, let A¥: X = X x 1 be defined
by x> (x,i). If HJA5)= H(Af): H(X)— H(X x 1), then H,(f)= H,(g)
whenever f and g: X — Y are homotopic.
PROOF. If F: X x I - Y is a homotopy f =~ g, then
f=FA} and g=Fi}
Therefore
H(f) = H(FA3) = H(F)H,(A5)

= H,(F)H(A{) = H(FA) = H,(g). 0O
Theorem 4.23 (Homotopy Axiom). If f, g: X — Y are homotopic, then
H,(f) = H,(g) foralln > 0.

PrROOF. By Lemma 4.22, it suffices to prove that H (1Y) = H,(AY) for all
n > 0; by Lemma 4.21, it suffices to construct homomorphisms PX: §,(X) —»
Sa+1(X x I) with

Mo — AJs = 8,0 PX + PX,4,. (1)

We propose proving the existence of such homomorphisms PX for all spaces
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X by induction on n > 0. In order to prove the inductive step (and realizing
that we must define PX on a basis of the free abelian group S§,(X)), we
strengthen the inductive hypothesis as follows. For all spaces X, there exist
homomorphisms PX: S,(X) = S,,,(X x I) satisfying (1) and the following
“naturality condition™: the following diagram commutes for every simplex
o: A" X:

S, -2 5,0 x 1)
°, (e x1),

S:(X) — Saer(X x T3

that is,
(0 x 1)4P¥" = Pla,. 2
(Recall that ¢ x 1: A" x I = X x Iis defined by (x, t)+ (a(x), t).)
Let n = 0. Begin by defining PX, = 0 (there is no choice here because
S_1(X) = 0). Now A° = {e,}; given o: A® — X, define PJ(c): A' - X x 1 by

t(a(eo), t), and then define PY: So(X) — S,(X x I) by extending by linearity.
To check Eq. (1), it suffices to evaluate on a typical basis element o:

8,Pfa = (a(eo) 1) — (o(eo) 0) = Af 0 d — A 00 = A{ 4 (0) — A3 u(o);
that is (since PX, = 0),
0, Pf + PXdy = ifs — X34
To check the naturality condition (2), consider the diagram
5a(8%) —2 5,80 x 1)

o, (e x1),

SoX) —— SiX x D).

(']

There is only one O-simplex in A°, namely, the identity function 6 with
é(eo) = e,. To check commutativity, it suffices to evaluate each composite on
d; note that each result is a map A! —» X x L Identify (1 — t)e, + te, € A!
with ¢, and evaluate:

P¥a4(8) = P§(0 o 6) = PJ(0): t—(a(eo), t);
(6 x 1), P3°(6): t— (o x 1),((eo), 1) = (0 x 1) 4(eo, t) = (a(eo), 1),

as desired.
Assume that n > 0. We shall sometimes write A instead of A* for the
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remainder of this proof. Were Eq. (1) true, then (1%, — A8, — P2.,3,)(»)
would be a cycle for every y € S,(X). This is indeed so.

0(Ate — AQp — Pi-10,) = 2040, — 4340, — 8,P,0, (Lemma 4.8)
= lf# On— )-3' O — (lf# - 13# - Pf-za.-x)a.
(by induction)
=0 (since dd = 0).

If 6: A" — A" is the identity map, then § € §,(A"); it follows that (A}, —
A8, — P2,0,)(6) € Z,(A" x I). But A" x I is convex, so that Theorem 4.19
gives H (A" x I) = 0 (because n > 0); therefore Z,(A" x I) = B,(A" x I), and
there exists f,,; € Sp+1(A" % I) with

a-#lﬂni'l = (lf# - )'3# - P:—lau)(s)-
Define PX: S,(X) = S..,(X x I), for any space X, by
PX(0) = (o x D (Bas1)

(where ¢ is an n-simplex in X), and extend by linearity.
Before checking Eqs. (1) and (2), observe that,fori = 0,1 and forg: A" = X
an n-simplex in X, we have

x DA =Afa: A"+ X x 1 3)
[if y € A", then
(6 x DAR(Y) = (@ x )(y, i) = (a(y), ) = 4 (@(M)].
To check Eq. (1), let o: A® — X be an n-simplex in X.

0441 PX(0) = Op11 (0 X 1)4(Brsy)

=(0 X 1) 0,4y(fasy) (Lemma 4.8)

=(0 x 1)4(134 — 254 — Pi-10,)() (definition of B,,,)

=(0 x DA} — (0 x 1)A§ — (6 x 1), P, 3,(8) (since A, (6) = A{)

= (0 x 1)A% — (¢ x 1)A3 — PX,0,0,(6) (Eq.(2)for P,_,)

Afo — Afo — PX,0,04(5) (Eq.(3)and Lemma 4.8)
= (Af — 43 — PX,3,)(0) (since ,(6) = o).

To check the naturality equation (2), let t: A" — A" be an n-simplex in A"
Then for every a: A* = X,

(@ x 1) PX1) = (6 x 1)yt x 1)g(Brs1) = (0T X 1) (Brss)s
while
Ploy(t) = Pl (01) = (o1 x 1)4(Bars)s
as desired. a
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Remarks. (1) If X = A" and o = 6, the identity map in A" then one can give
a geometric interpretation of f,,,. Recall that PX(6) = (¢ x 1)4(B,+,); in
particular, P2(6) =(J x 1) 4(Brs1) = Ba+1, since J x 1 is the identity on A" x L.
Now B,,, = P3(8) is, in no obvious way, a linear combination of simplexes
because A* x Iis a prism (hence the letter P) which is not triangulated.

by by

a9 a

ap a

a

If A* = [e,, ..., e,], define a, = (e;,, 0) and b, = (e,, 1) for 0 < i < n. A formula
for B,., turns out to be

N+l — ‘z}) (— l)‘[ao’ ceey Gy bb bl+ls seey bn]’ (4)

where the brackets denote the affine map A"*! — A" x I taking the vertices
{€o, .-, €441} to the vertices {aq, ..., a; b, ..., b,} preserving the displayed
orderings. Aside from signs, formula (4) does triangulate the prisms. For
example, A! x 1 is divided into two triangles [a,, bo, b,] and [a,, a,, b,].

by by

ap a,

After drawing in dotted lines in A? x I pictured above, one sees three tetra-
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hedra: [a,, by, by, b, ], [aq, a4, by, b, ], and [ay, a, a,, b,]. One thus views
P(o) as the “triangulated prism over ¢”. The geometric interpretation of
OP + PO = 1, 4, — Ay is: the (oriented) boundary oP of the solid prism with-
out P9, the prism on the boundary, is the top and bottom (we ignore signs
when being descriptive).

(2) One could prove Theorem 4.23 using the explicit formula (4) for B,,,,
but the proof is no shorter and one must always be alert that signs are correct.

(3) The construction of the sequence of homomorphisms P, has been
axiomatized (and will appear again); it is called the method of acyclic models,
and we shall discuss it in Chapter 9.

We now draw the usual consequence of the homotopy axiom: the homo-
logy functors induce functors on the homotopy category; we may regard H,
as a functor hTop — Ab.

Corollary 4.24. If X and Y have the same homotopy type, then H,(X) = H,(Y)
Jor all n > 0, where the isomorphism is induced by any homotopy equivalence.

We now generalize Theorem 4.19.

Corollary 4.28. If X is contractible, then H,(X) = 0 for all n > 0.

PROOF. X has the same homotopy type as a one-point space; apply Corollary
4.24 and the dimension axiom, Theorem 4.12. 0O
EXERCISES
49. (i) Using the explicit formula for B,,,, show that
an+|ﬁn4>| = (;..A‘ - Aéﬁ - Pn‘-lau)(é)

forn=0andn=1.
(ii) Give an explicit formula for Pj(0), where o: A' — X is a 1-simplex.

*4.10. Prove that P, is “natural™ if f: X — Y is continuous, there is a commutative
diagram

SuX) — s 50X x 1)
fn] (f x ”0
S.AY) — Sea(Y x D)

*4.11. If X is a deformation retract of Y, then H,(X) = H,(Y) for all n > 0. In fact, if
it X — Y is the inclusion, then H,(i) is an isomorphism.

4.12. Compute the homology groups of the sin(1/x) space.
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The Hurewicz Theorem
There is an intimate relation between n, and H,.
Lemma 4.26. Let n: A' — 1 be the homeomorphism (1 — t)e, + te,—t. There is
a well defined function
o: 1, (X, xo) = H,(X)
given by
[f1—cls fn,

where f:1— X is a closed path in X at x,.

Proor. It is plain that fiy is a 1-simplex in X, so that fiy € §,(X). Indeed,
e Z,(X), for 9,(fn) = fule,) — fu(eo) = f(1) — f(0) =0, because f is a
closed path; thus cls fy € H,(X). In particular, if u: I = S! is defined by t+—
e2™, then un is a l-cycle in S'. We saw in Exercise 3.2 that there is a map
f': S' = X making the following diagram commute (f is a closed path in X):

[ %, st

S S
X;

hence f’ induces a homomorphism f;: H,(S') - H,(X), namely, cls(}_ m;0;)—
cs(Y m(f’ o a))). It follows that

cls fp = cls f'un = f, cls un € Hy(X).

Now assume that g is a closed path in X at x, with f ~ g rel I; by Exercise
3.2, we have f’ ~ g'. The homotopy axiom (Theorem 4.23) thus gives

cls fn = f, clsun = g, cls un = cls gn.
Therefore ¢ is well defined. 0O

Lemma 4.26 may be paraphrased: homotopic closed curves in X must be
homologous.

Definition. The function ¢: n,(X, xo) = H,(X) of Lemma 4.26 is called the
Hurewicz map.

Theorem 4.27. The Hurewicz map ¢: n,(X, xo) = H,(X) is @ homomorphism.

PrOOF. Let f and g be closed paths in X at x,. Define a continuous map
a: A? - X as indicated by the following picture.
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In more detail, first define ¢ on A2: a(1 — ¢, ¢, 0) = f(t); 6(0, 1 — ¢, £) = g(t);
a(1 —t,0,t) = (f*+g)(t). Now define o on all of A? by setting it constant on
the line segments with endpoints a=a(t)=(1 —¢,¢,0) and b= b(t) =
((2 — 1)/2, 0, t/2), and constant on the line segments with endpoints ¢ = ¢(t) =
0,1—t1t) and d=4d(t)=((1 —)/2,0,(1 + t)/2). It is easy to see that
a: A% — X is continuous, that is, ¢ € S,(X). Moreover, do = o¢, — 0¢, + 0¢;.
But ogy(t) =a(0,1 —t,t) =g(t), o¢, = f+g, and o¢, = f, so that do =
g — [ +g + f. Therefore

o:[f1lg) =[S+gl—cls(fegn=cls(f +gm=clsfn+clsgn. O
EXERCISES

*4.13. Prove that the Hurewicz map ¢ is “natural”. If h: (X, xo) = (Y, yo) is a map of
pointed spaces, then the following diagram commutes:

h.
M(x» x0) — (Y, yo)
¢l [‘P
H(X) —— H(Y).

*4.14. If f is a (not necessarily closed) path in X, prove that the 1-chain f is homo-
logous to —f~!. (Hint: Use Theorem 4.27 and Exercise 3.4 with the picture
below.)

fef r!

-~
7

f

*4.15. Let X be a space and let a, B, y be (not necessarily closed) paths in X such that
a s B=yis defined and is a closed path. Prove that, in H,(X),
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cls@sfsy)=cls(e+ f+y)=clsa+cls g +clsy.
(Hint: Use Theorem 4.27 and Exercise 3.4 with maps A? — X suggested by

N N .)

asf (a'lﬁ-‘r

Lemma 4.28 (Substitution Principle). Let F be a free abelian group with basis
B, let x4, x,, ..., X, be a list of elements of B, possibly with repetitions, and
assume that

x
moxo = zl m;x,, wherem, e Z.
i=

If G is any abelian group, and if yo, y,, ..., yx € G is a list such that x; = x;
implies y, = yj, then mgyo = Y 'y my, in G.

ProoF. Define a function f: B — G by f(x;) = y,fori =0,1,...,k,and f(x) =0
otherwise (f is well defined by hypothesis). By Theorem 4.1, there is a homo-
morphism f: F — G extending f. But

0= f(moxo - Z m;x;) = myy, — Z my,. ]

A key ingredient in the next proof is that if 6: A2 = X is a 2-simplex, then
o|A? is nullhomotopic (Theorem 1.6), and hence 0]A2 ~ (a¢,) » (0¢,) ™~  (0¢;)
is nullhomotopic (Exercise 3.4).

Theorem 4.29 (Hurewicz” Theorem). If X is path connected, then the Hurewicz
map @: n,(X, xo) = H,(X) is a surjection with kernel n,(X, x,Y, the commu-
tator subgroup of n,(X, x,). Hence

7 (X, xo)/my (X, x0) = H\(X).

PRrooOF. To see that ¢ is a surjection, consider a 1-cycle { = } m,q,in X; hence
0=0,()= z my(oi(e,) — ay(eq)),

an equation among the basis elements X of the free abelian group So(X). Now
X path connected implies that, for each i, there are paths in X, say, y, from x,
to a,(e,) and §; from x, to g;(e,).

7 Although this result is due to Poincaré, there is a more general theorem of Hurewicz relating
homotopy groups and homology groups.
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0; (eo)

xO oi

Vi
o,(ey)

Choose y, = y, if g,(e,) = g)(e,); choose §; = J; if g;(e,) = g;(e,); choose y;, = §,
if o/(e;) = o)(eo). The substitution principle (for the list a,(e, ), 6,(eo), 5(e; ),
a,(eo), ... in the free abelian group S,(X) and for the list y, 1, 8,1, y,n, 621, ...
in S,(X)) gives the equation 0 = ) m,(n — y,n) in S, (X). Hence

Z momn + o, — yn) = Z mio; = ¢. (1)

But §,+0,n ' «y! is a closed path in X at x,, so that Exercise 4.14 and
Exercise 4.15 give

‘P(n [bean™ ey tI™) = Z mp[bean " eyt]
=Y mcls(dn + o, — yn) =cls .

We now compute ker ¢. For the remainder of this proof, abbreviate
n,(X, xo) to n. Since H,(X) is abelian, n’ = ker ¢. For the reverse inclusion,
assume that y is a closed path in X at x, with [y] € ker ¢; there are thus
2-simplexes 1;: A? — X with yn = 8,(}_ mt)) for n, € Z. If 1,¢; is denoted by 7,
then 62(1:,) =T — Tin + T2 and

m= Z n(tio — Ty + Tp2), ()

an equation among the basis elements of the free abelian group S;(X). It
follows that yn = 1, for some p = i and g € {0, 1, 2} (because yn also is a basis
clement). As in the first part of the proof, we use path connectedness to
construct auxiliary paths to make loops at x,. For each i, choose paths 4,, u;,
v; from x4 to 1,9(e0), Tis(ey), Tia(eo), respectively.

By

X0 Tio

Should any of the ends t,4(eo), T;5 (e, ), Ti2(e) be xq, choose the corresponding
A, u, v to be the constant path at x,; also, should 1,4(e5) = 7)0(eo), choose
A; = ; (and similarly for u, v). Assemble paths to obtain elements of = =
7y(X, xo). Define
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Lo =[A*ton ™ epy'];
L, = l:"i”»'u'l-l ‘”l-|];
L =[vistn '« 4]

The substitution principle when applied to Eq. (2) in S, (X) and the multiplica-
tive abelian group n/n’ gives an equation

qu = n (Zioiﬁ' Ezz)" Y
where bar denotes coset mod #’. Now L, = [a#* 7, * 8], where « and
are appropriate 4, y, v. Since 1,, = yn is a closed path at x,, the choice of

auxiliary paths shows that « and f are constant paths at x,; therefore L,, =
[tpen~'] = [¥]. Finally, we have in = that

LoLi'Liy = [Aistion et e ppe (tyn ™) o v taymton ™t 471
=[Aeton  e(tyn™ ) et e 4] =1,
by Exercise 3.4(i). It follows that L, = [J(Li L;' L,y = 1 in n/x’, hence
(7] = L,y =linn/n’; thatis, [y] e n'. O

As we mentioned earlier, two homotopic closed curves in a space X are
necessarily homologous (this is the statement that the Hurewicz map is well
defined). One can show that the converse is not true by giving a space X whose
fundamental group is not abelian (so that ¢ is not injective). An example of
such a space X is the figure 8.

X9

The closed paths a*f and f+a at x, are homologous, but they are not
homotopic(i.e.,a* f+a~! » 7! isnot nullhomotopicin X ; see Corollary 7.42.

Corollary 4.30. H,(S') ~ Z.
Corollary 4.31. If X is simply connected, then H,(X) = 0.

EXERCISE

4.16. If f: S! — S! is continuous, define degree f = m if the induced map f,: H,(S") -
H,(S") is multiplication by m. Show that this definition of degree coincides with
the degree of a pointed map (S*, 1) — (S, 1) defined in terms of =,(S", 1).
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The last result in this chapter is a geometric characterization of Z,(X).

Definition. A polygon in a space X is a 1-chain n = Y }.,0,, where g(e;) =
0;.1(eo) for all i (indices are read mod(k + 1)).

Theorem 4.32. Let X be a space. A 1-chainy = Y m;0, € S,(X) is a cycle if and
only if y is homologous to a linear combination of polygons.

Proor. Sufficiency is clear, for every polygon = is a cycle:

on = 3(2 g)= Z (oi(ey) — aileo)) = 0.

Conversely, let y =) m,0, be a cycle. If some m, < 0, then Exercise 4.14
says that m,o; is homologous to (—m;)o;!. We may thus assume that each
m; > 0. The proof proceeds by induction on }_m, > 0; the induction does begin
when Y m, = 0, for now y = 0. For the inductive step, we may assume each
m; > 0. Define E; = {0/(e,), d,(e,)} and define E = | ) E,. Since every closed
path ¢ is itself a polygon, we may assume that no g, is closed (otherwise, apply
induction to y — ;). Denote o,(e;) by x, and o;(e,) by x,, so that do, =
X, — X,.Since dy = 0and all m; > 0, there must be some g, occurring in y with
d/(eo) = x; [and so x, occurs with a negative sign in do, = a,(e;) — g,(eo)].
Define x, = o;(e, ). Iterate this procedure to obtain a sequence x,, x,, X3, ...
of points in E. Because E is a finite set, there exists a “loop” x,, Xp41, ..+ X
Xn+1 = X,; that is, there is a polygon n = Z’,‘.,a,,. Thus y — nis a 1-cycle to
which the inductive hypothesis applies. Therefore y — 7 and hence y is (homo-
logous to) a linear combination of polygons. a

Just as one may regard =, (X, x,) as (pointed) maps of S* into X, one can
define higher homotopy groups n,(X, x,) as pointed maps of $" into X. There
is a Hurewicz map =n,(X) — H,(X), and the question whether there is an analog
of Theorem 4.32 is related to the image of this map.

There are two more fundamental properties (axioms) of homology functors:
the long exact sequence and excision. Once we know these, we shall be able to
compute some homology groups and give interesting applications of this
computation. These properties, along with properties we already know, serve
to characterize the homology functors as well.



CHAPTER 5

Long Exact Sequences

The homology groups of a space X are defined in two stages: (1) construction
of the singular complex (S,(X), d) and (2) formation of the groups H,(X) =
ker d,/im 0,,,. The first stage involves the topology of X in an essential way,
for one needs to know the n-simplexes in X; the second stage is purely
algebraic. Let us now acquaint ourselves with the algebraic half of the defini-
tion in order to establish the existence of certain long exact sequences; these
are very useful for calculation because they display connections between the
homology of a space and the homology of its subspaces.

The Category Comp

Definition. A (chain) complex is a sequence of abelian groups and homo-
morphisms

. 0
bS5, s —, neZ,
such that 0,0,,, = 0 for each ne Z. The homomorphism 4, is called the
differentiation of degree n, and S, is called the term of degree n.

The complex above is denoted by (S, ) or, more simply, by S,. Observe
that the condition 4,d,,, = 0 is equivalent to
imd,,, < ker d,.

Of course, the singular complex (S, (X), d) is an example of a complex (in which
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all terms with negative subscripts are zero). We shall see examples of com-
plexes with negative subscripts in Chapter 12.

Definition. A sequence of two homomorphisms (of groups) A-j; B4 cis
exact at Bifim f = ker g. A sequence of abelian groups and homomorphisms
Suer 245, -2, §,
n+1 M | ~ Op-1

is exact if it is exact at each S, that is,im 0,,, = ker d, for alln € Z.

Itis clear that every exact sequence is a complex: equality (im = ker)implies
inclusion (im < ker).

EXERCISES

*5.1 (i) f0o—-4 4 B is exact, 1then fis injective (there is no need to label the only
possible homomorphism 0 — A).
(i) If B L c-0is exact, then g is surjective (there is no need to label the only
possible homomorphism C — 0).
(iif) If 0 — A = B — 0 is exact, then f is an isomorphism.
(iv) If0 - A4 -+ Ois exact, then 4 = 0.

*52. IfA 4 B%chpis exact, then f is surjective if and only if h is injective.
*5.3. A short exact sequence is an exact sequence of the form
0-44Bhco.
In this case, show that i4 ~ A and B/iA = C viab + iA+~s pb.

*54. I - —s R+l '—’Au_h.-.Bn_.Cn_'Al-l 'iz’Bu-l —C -
is exact and every third arrow h,: A, — B, is an isomorphism, then C, = 0 for
all n.

*5.5. () f0—+A—+B—C—0is a short exact sequence of abelian groups, then
rank B = rank A + rank C.(Hint: Extend a maximal independent subset of
A to a maximal independent subset of B.)
(i) fO—+A,+A,_,—>-— A, —+A,-0 is an exact sequence of (finitely
generated) abelian groups, then Y 7., (— 1) rank 4, = 0.

Definition. If (S,, 0) is a complex, then ker 4, is called the group of a-cycles
and is denoted by Z,(S,, d); im 4,,, is called the group of a-boundaries and is
denoted by B,(S,, 0). The ath homology group of this complex is

Hn(sn9 a) = ZA(S‘, a)/Bu(s.o a)'
Of course, we shall abbreviate this notation if no confusion ensues. If

2, € Z,, then z, + B, € H, is called the homology class of z, and it is denoted
by cls z,.
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Theorem 5.1. A complex (S,, ) is an exact sequence if and only if H,(S,, 0) = 0
for every n.

PRrooOF. Z, = B, if and only if ker 3, = im 4,,,. a

Thus the homology groups “measure” the deviation of a complex from
being an exact sequence. Because of this theorem, an exact sequence is also
called an acyclic complex.

Definition. If (S, &) and (S, ) are complexes, a chainmap f: (S,, &) — (S,, 9)
is a sequence of homomorphisms { f,: S, — S,} such that the following dia-
gram commutes:

. 4 4 4
Sn+1 g Sn v Op-1

LT

e sn+l —> sn > Sn-l * T,

Oay d,

that is, 8,f, = f,-18, for all ne Z. If f = {f,}, then one calls f, the term of
degree n.

If f: X = Yiscontinuous, then we saw in Lemma 4.8 that f induces a chain
map fu: S,(X) = S, (Y).

Definition. All complexes and chain maps form a category, denoted by Comp,
when one defines composition of chain maps coordinatewise: {g,} ¢ {f,} =

{gn° fu}.

The category Comp has the feature that, for every pair of complexes S, and
S,, Hom(S,, S,) is an abelian group: if f = { f,} and g = {g,} € Hom(S,, S,),
then f + g is the chain map whose term of degree n is f, + g,.

The reader may now show that there is a functor S,: Top - Comp with
X —(S,(X), d)and f+ f,. Also for each n € Z, there is a functor H,: Comp —
Ab with S,— H,(S,) = Z,(S,)/B,(S,) and with H,(f): cls z,+cls f,(z,) for
every chain map f:S, = S, (one proves that H,(f) is well defined, as in
Lemma 4.9, and one proves that H, is a functor, as in Theorem 4.10). One
usually writes f, instead of H,(f), again omitting the subscript n unless it
is needed for clarity. Obviously, each homology functor H,: Top — Ab (for
n > 0) is the composite of these functors Top - Comp — Ab; we have made
precise the observation that our original construction of H,(X) involves a
topological step followed by an algebraic one.

Theorem 5.2. For each n € Z, the functor H,: Comp — Ab is additive; that is, if
f,g € Hom(S,, S,), then H,(f + g) = H,(f) + H,(g).
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PROOF. A routine exercise. O

It follows easily that H,(0) = 0, where (the first) 0 denotes either the zero
complex (all terms S, zero) or the zero chain map (all terms £, zero).

The category Comp strongly resembles the category Ab in the sense that
one has analogues in Comp of the familiar notions of subgroup, quotient group,
first isomorphism theorem, and so on. It is important that the reader feel
as comfortable with a complex as with an abelian group. Here are the
constructions.

Subcomplex. Define (S',, 0) to be a subcomplex of (S,, d) if each S, is a
subgroup of S, and if each &, = 4,|S,. Here are two other descriptions: (1) the
following diagram commutes for all n:

A

S:: — IO

Sn T n—19
where i,: S, < S, is the inclusion map; (2) if i = {i,}, then i: S, — S, is a chain
map. (That all three descriptions are equivalent is left as an exercise.)
Quotient. If (S, ¢') is a subcomplex of (S,, ), then the quotient complex is
the complex

],
“-—oS,,/S;——'»S,,_,/S,',_, "

where 3,: s, + S, 8,(s,) + S, (3, is well defined because 9,(S,) < S,-,).
Kernel and Image. If f: (S,, d) — (S, @") is a chain map, then ker fis the
subcomplex of S,

---—-’kerﬁ,—a—"'vkcrﬁ,_, —,
where &, is (necessarily) the restriction d,|ker f,; im f'is the subcomplex of S,
'*-——»imf,,A'oim_ﬁ,_, _,

where A is (necessarily) the restriction ;' |im f.
Exactness. A sequence of complexes and chain maps
» AL A * L

q q-1 .
AL ——— AL »

is exact if im f9*! = ker f for every q. A short exact sequence of complexes
is an exact sequence of the form

05,545,550,
where 0 denotes the zero complex.

Here is the picture of a short exact sequence of complexes in unabbreviated
form.
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]
0 > Spey — Sy —2s S, > 0
a:ol a.ql la:tl
0 . s —, s . 0
& a P
7 ‘l'l pu—l "
0—— Sn-l > Sn—l v Sn—l + 0

This is a commutative diagram whose columns are complexes. By Exercise
5.8 below, its rows are short exact sequence of groups.

Intersection and Sum. Let S, and S, be subcomplexes of S,. Then S, NS
is the subcomplex of S, whose nth term is S,NS;, and S, + S is the sub-
complex of S, whose nth term is S, + S,.

Direct Sum. Let {(S2, 3*): 1€ A} be a family of complexes, indexed by a
set A. Their direct sum is the complex
ey sy e,
where 8, = Y,0}: Y si— Y, 8}(s?) for s} e S}. Note the special case A =
{1,2}.

An important example of a subcomplex arises from a subspace A of a space
X.If j: A < X is the inclusion, we saw in Lemma 4.15 that j,: S,(4) = S,(X)
is injective for every n. There is thus a short exact sequence of complexes

0= 5,(A) = S,(X) = S, (X)/S,(4) =0

that will be very useful. It is convenient to regard S, (A4) as being a subcomplex
of S,(X) (instead of being isomorphic to im j,). This is accomplished by
regarding every n-simplex g: A” —+ A as an n-simplex in X whose image
happens to be contained in A4, that is, by identifying o with jc.

One cannot form the intersection of two arbitrary sets; one can only form
the intersection of two subsets of a set. Let A, and A, be subspaces of a space
X. As above, regard S,(A4,) and S,(A,) as subcomplexes of S,(X). We claim
that S,(4,) N S,(A4,) = S,(4, N 4,). 1Y m,0, € 5,(4,)N S,(A4,), then each g, is
an n-simplex in X with im g, « A, and with im o; = A4,; hence each o; is an
n-simplex in X with im g, = 4, N A,, that is, ) m,0, € S,(4, N A;). For the
reverse inclusion, each n-simplex g in X withim o; = A, N A, may be regarded
as an n-simplex in either A, or 4,, and so o € S,(4,)N S,(A4,).

_’ZAS:+1
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Our last example here involves the decomposition of a space X into the
disjoint union of its path components: X = | ] X,. As above, each subspace
X, gives a subcomplex S,(X,) of S,(X). Each n-simplex o: A* - X actually
takes values in some X,; therefore a linear combination of n-simplexes in
X can be written, after collecting like terms, as a linear combination of
n-simplexes in various X,. It follows (with routine details left to the reader)
that 5,(X) = ¥, 5,(X,).

EXERCISES

*5.6. If (S,, 9) is a complex with 9, = 0 for every n € Z, then H,(S,) = S, for every
nel.

5.7. Prove that a chain map f is an equivalence in Comp if and only if each f; is an

isomorphism (one calls f an isomorphism).

*58. A sequence S, %S, %57 is exact in Comp if and only if 5.5 5,% 5 is
exact in Ab foreveryne Z.

5.9. (i) Recall that the natural map v: G — G/K (in Ab) is defined by v(g) = g + K.
If S, is a subcomplex of S,, show that v: S, — §,/S,, defined by v=
{va: S, — S,/Sa: v, is the natural map}, is a chain map whose kernel is S,
(v is also called the natural map).
(ii) Prove that the first isomorphism theorem holds in Comp. If /: S, — S is a
chain map, then there is an isomorphism

0:S,/ker f 5im f
making the following diagram commute (v is the natural map):
S, —L— imfeas
v (]
Su/ker f.

5.10. If S, and S are subcomplexes of S,, prove that the second isomorphism theorem
holds in Comp:

Su /Sy NS3) = (S, + SLYS;.

(Hint: Adapt the usual proof from group theory deriving the second isomor-
phism theorem from the first.)

*5.11. Prove that the third isomorphism theorem holds in Comp. If U, = T, c S, are
subcomplexes, then there is a short exact sequence of complexes

0-T,/U, 5 5S,/U, %5,/T, »0,
where i,: t, + U,—1t, 4+ U, (inclusion) and p,(s, + U,) = s, + T,.
*5.12. For every n, H(3', S3) = ¥, H,(S}). (See the proof of Theorem 4.13)

The next definition comes from Lemma 4.21.
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Definition. If f, g: (S,, ') = (S,, 0) are chain maps, then f and g are (chain)
homotopic, denoted by f ~ g, if there is a sequence of homomorphisms
{P,: S, — S,+,} such that, forallne Z,

Ons1 Py + Posy 0y = fo — ga

The sequence P = {P,} is called a chain homotopy.

A chain map f: (S,, 9') = (S,, 0) is called a chain equivalence if there exists
a chain map g: (S,, 9) = (S, 9') such that go f ~ I, and fog =~ 15,. Two
chain complexes are called chain equivalent if there exists a chain equivalence
between them.

The relation of homotopy is an equivalence relation on the set of all chain
maps S, = S,.
Theorem 5.3.
@) If f,g9: S, — S, are chain maps with f =~ g, then, for all n,
H,(f) = H,(g): H\(S,) — H,(S,).
(ii)* If f: S, = S, is a chain equivalence, then, for all n,
H,(f): H,(S,) - H,(S,)

is an isomorphism.

PROOF. (i) See the proof of Lemma 4.21.
(i) An immediate consequence of part (i) and the definitions. O

The next definition recalls the cone construction of Theorem 4.19.

Definition. A contracting homotopy of a complex (S,, d) is a sequence of
homomorphisms ¢ = {c,: S, = S,+,} such that forallne Z,

an+lcn + cn-lan = lS,,'

Plainly, a contracting homotopy is a chain homotopy between the identity
map of S, (namely, {15 _}) and the zero map on S,.

Corollary 5.4.2 If a complex S, has a contracting homotopy, then S, is acyclic
(i.e, H,(S,) = O for all n, i.e., S, is an exact sequence).

! The converse is almosi true. In Theorem 9.8, we shall prove that if S, and S, are chain complexes
each of whose lerms is free abelian and if f: S, —+ S, is a chain map with every H,(f) an
isomorphism, then f is a chain equivalence.

% The converse is lrue if each term S, of S, is free abelian (Theorem 9.4).
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PRrOOF. If 1 denotes the identity on S,, then Theorem 5.3 gives H,(1) =
H,(0) = 0 for all n. Since H, is a functor, H,(1) is the identity on H,(S,); it
follows that H,(S,) = 0. O

Indeed it is easy to see that a complex with a contracting homotopy is chain
equivalent to the zero complex.

Exact Homology Sequences

A fundamental property of the homology functors H, is that they are con-
nected to one another. To see this, let us first see how H, affects exactness.

Lemma §8.5. If 0 (S,, &) 4 (S, 0) L& (Sq, 0”) = 0 is a short exact sequence
of complexes, then for each n there is a homomorphism
d,: H,(S3) = H,-(Sy)
given by
cls zJ+—cls iy}, 0,p; ' zs.

PROOF.? Because i and p are chain maps, the following diagram commutes;
moreover, the rows are exact, by Exercise 5.8.

s i s, P L 0
al la a)
v
p '
0——5, . Sn- Sa

Suppose that z” € Z; s0 8"z" = 0. Since p is surjective, we may lift z” to s, € S,
and then push down to ds, € S,-,. By commutativity,

0Os, € ker(S,-, = S,_;) = im i
It follows that i~!ds, makes sense; that is, there is a unique (i is injective)
Su-1 € S, with is,_, = 0s,,.

Suppose that we had lifted z” to o, € S,. Then the construction above yields
Op-y € S, with ig,_, = da,. We also know that

3 This method of proof is called diagram chasing. It is really a simple technique, for each step is
essentially dictated, and so one proceeds without having to make any decisions.
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s, — o, € ker p = im(S, = S,),

so there is x, € S, with s,_;, — g._, = 0'x, € B,_,. There is thus a well defined
homomorphism

Z] - S,-1/B,y.
It is easy to see that this map sends B into 0 and that s,_, =i~'dp~'z" is

a cycle. Therefore the formula does give a map H,(S;) - H,-,(S,), as desired.
O

Definition. The maps d, of Lemma 5.5 are called connecting homomorphisms.

Theorem 5.6 (Exact Triangle). If 0 - (S,, d') 4, (S,, 9) LA (Se, 0")—=0 is a
short exact sequence of complexes, then there is an exact sequence

[N Pe " d " iy Pe »
= .(SI.)—’H.(S.)-’H.(s.)—’"._'(s.)—’" -l(s.)-’" -|(s.)-’“' N

Proor. The argument is routine, but we give the details anyway. The notation
below is self-explanatory and subscripts are omitted.

(1) im i, < ker p,.

This follows from p,i, = (pi), =0, = 0.

(2) ker p, cim i,.

Ifp,(z + B) = pz + B" = B", then pz = 0"s". But p surjective gives s” = ps,
so that pz = 0"ps = pds and p(z — ds) = 0. By exactness, there exists s’ with
is' = z — 0s. Note that s' € Z', for id’s’ = dis' = 0z — dds = 0 (z is a cycle).
Since i is injective, &'s’ = 0. Therefore

if(s"+B)=is"+B=z—0s+B=z+B.
(3) im p, < ker d.
dp,(z+ B)=d(pz + B")=i"'dp~'(pz) + B'.

As the definition of d is independent of the choice of lifting, we may choose
z=p~!(pz), hence i 'dp~'(pz) = i"'0z = 0.
4) kerd cim p,.

If dz” + B")= B, then x'=i"'dp~'z"€ B’ and x' = &s’. Now ix' =
i0's’ = dis' = dp~'z",so that d(p~'z" — is’) = 0,and p~' z” — is’ € Z. Therefore
Po(p'2" —is'+ By=pp~'z" —pis'+ B"=2" + B".

(5) imd < ker i,.
igd(z" + B") =i (i'dp~'z"+ B')=0dp~'z"+ B=B.
(6) keri, c imd.
If i ,(z' + B') = B, then iz’ = 0s, and 9"ps = pds = piz’ =0 and pse Z".
Butd(ps+ B")=i"'op~'ps+ B =i"'ds+ B =itiz +B=2+B. 0O
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Theorem 5.6 is called the Exact Triangle because of the mnemonic diagram,

H(S,) —2— H(S,)

Nz

H(Sy)

Theorem 5.7 (Naturality of the Connecting Homomorphism). Assume that
there is a commutative diagram of complexes with exact rows:

0 .5, —— 5, 25 » 0
s s l!'
0 -~ T, ; > T, q:T." -

Then there is a commutative diagram of abelian groups with exact rows:
J ‘. L d L] d "
= Hy(S)) = H(S,) 2+ H,(S;) —— Hy4(S,) — =
A A /S N

L H(T) == H(T) —= H(T}) — Hi(T) — -

Proor. Exactness of the rows is Theorem 5.6. The first two squares commute
because H, is a functor (e.g., fi = jf’ implies that f, i, = j, f,).

To see commutativity of the last square, we first set up notation: let
S, =(S,, 0) and let T, = (T,, A). If cls z" € H,(S), then p surjective implies
that cls z” = cls ps for some s. But now

fodclsz’ = fldclsps = f,clsi™'ds
=cls f'i"'ds = cls j~'fos (since jf’' = fi)
=cls j~'Afs (fis a chain map)
=d'clsqfs (sinced’ cls{" =clsj 'Aq™1{")
=d'cls f'ps=d'f]clsps=d'f] cls z". @]
As we remarked earlier, a subspace A of a topological space X gives rise
to a short exact sequence of complexes:
0 = S,(A) = Sy (X) = §,(X)/S,(4) 0.

We have already dubbed H,(S,(A4)) and H,(S,(X)) as H,(A) and H,(X),
respectively; we now give a name to the homology of the quotient complex.
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Definition. If 4 is a subspace of X, the nth relative homology group H,(X, 4)
is defined to be H,(S,(X)/S,(A)).

Theorem 5.8 (Exact Sequence of the Pair (X, A)). If A is a subspace of X, there
is an exact sequence
o+ o Hy(A) » Hy(X) = Hy(X, A) S H,_,(4) > -

Moreover,if f: (X, A)—= (Y, B)(i.e., f: X — Y is continuous with f(A)  B), then
there is a commutative diagram

<+ —— H(A) —— H,(X) —— H,(X, A) — H,_(A) —

] |

w — H,(B) — H\(Y) — H(Y,B) — H,_,(B) — -

where the vertical maps are induced by f.
ProoF. Immediate from Theorems 5.6 and 5.7. O

One now sees that the homology of a subspace A of X influences the
homology of X, because Exercises 5.1-5.4 may be invoked when applicable.

A tower of subspaces gives a long exact sequence of relative homology
groups.

Theorem 5.9 (Exact Sequence of the Triple (X, 4, 4')). If A c Ac X are
subspaces, there is an exact sequence

< = Hy(A, A') = Hy(X, A') > Hy(X, A) > H,_,(A, A) >+
Moreover, if there is a commutative diagram of pairs of spaces

(4, 4) — (X, A) — (X, 4)

(B,B) —— (Y,B) —— (Y, B),
then there is a commutative diagram with exact rows
°t = n(A’ A,) — Hn(xv A') — H,.(X, A) i Hn-—l(As A,) _—

|

*- — H\(B,B) — H,(Y,B) — H\(Y,B) — H,_,(B,B) — --.

PROOF. Apply Theorems 5.6 and 5.7 to the short exact sequences of complexes
given by the third isomorphism theorem (Exercise S.11):

0 = 5,(A4)/5,(A’) = S4(X)/S,(A’) = S,(X)/S,(4) = 0



Exact Homology Sequences 97

and
0 — S,(B)/S,(B’) = S4(Y)/S,(B') = §,(Y)/S,(B) = 0. O

Remarks. (1) If A = &, then we saw in Exercise 4.4 that S,(A) = 0. It follows
that H,(X, &) = H,(X), that is, absolute homology groups are particular
relative homology groups. Thus Theorem 5.8 is a special case of Theorem 5.9.

(2) We claim that, except for connecting homomorphisms, all homo-
morphisms in Theorems 5.8 and 5.9 are induced by inclusions.

Recall that Top? is the category whose objects are pairs (X, A) (where A4 is
a subspace of X), whose morphisms f:(X, A)— (Y, B) are continuous
functions f: X — Y with f(A) c B, and whose composition is ordinary com-
position of functions. Define a functor S,: Top? — Comp as follows. On an
object (X, A), define S, (X, A) = S,(X)/S,(A). To define S, on a morphism
J: (X, A) = (Y, B),note that theinduced chain map f,: S,(X) — S,(Y)satisfies
S +(S,(A)) < S,(B). It follows that f induces a chain map S,(f): S,(X)/S,(4) -
5.(Y)/S,(B), namely,

Tn + Sa(A)Hfi (?ll) + sn(B)o

where y, € S,(X). One usually denotes S,(f) by f,. That S, is a functor is
routine.
In Top?, there are inclusions

A, @) (X, @) 2 X, 4y

there are thus chain maps i, and j, that give a short exact sequence of com-
plexes (j, is the natural map!):

0— 5,(4, @) ~%+ 5,(X, @) 25 5,(X, 4) — 0.

Theorem 5.8 is the result of applying the exact triangle to this short exact
sequence of complexes. In a similar way, using the third isomorphism theorem,
one sees that Theorem 5.9 arises from the inclusions (in Top?)

(A, A) o (X, A) o (X, A).

(3) One can show that Theorem 5.8 implies Theorem 5.9. The proof is a
long diagram chase using the following commutative diagram.

H,(A) H,(X)

| l

H,(A, B) — H,(X, B) — H,(X, A)

7 )

H, B)y—=|H,_ ) |—H, 1, (X)
I 1

H,_,(A,B)—=H, _,(X.B)
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All maps are either connecting homomorphisms or are induced by inclusions;
the map H,(X, A) = H,_,(A, B) is defined as the composite i, d: H (X, A) -
H,_,(A) - H,_,(A, B). Full details can be found in [Eilenberg and Steenrod,
pp- 25-28]. One should note that this proof applies to any sequence of func-
tors T,: Top? — Ab that satisfies Theorem 5.8; that is, there is a long exact
sequence of a pair that has natural connecting homomorphisms.

(4) The following special case of Theorem 5.9 will be used in Chapter 8.

If (X, A, B) is a triple of topological spaces, then there is a commutative
diagram

Hy(X, A) —2— H,_,(4),

. f
d iy

Hu-l(A’ B)

where i: (4, &) — (A4, B) is the inclusion, where d is the connecting homo-
morphism of the pair (X, 4), and where d’ is the connecting homomorphism
of the triple (X, A, B).

To see this, just apply Theorem 5.9 to the following commutative diagram
of pairs and inclusions:

4, @) — (X, D) — (X, 4)
i 1
(A,B) —— (X,B) —— (X, A).

With Theorem 5.9 in mind, the reader can believe that the following
theorem will be useful.

Theorem 5.10 (Five Lemma). Consider the commutative diagram with exact
rows

Al —— Az ——'—’A3 > A‘ d As
lf; lfz \fs lf‘ lfs
B, + B, » B, » B, + Bs.

(i) If f; and f, are surjective and f is injective, then f, is surjective.
(ii) If f; and f, are injective and f, is surjective, then f, is injective.
(iii) If f,, fa, f4, fs are isomorphisms, then f, is an isomorphism.

PROOF. Parts (i) and (ii) are proved by diagram chasing; part (iii) follows from
the first two parts. 0

Having seen the proof of the exact triangle and having supplied the proof
of the five lemma, the reader should now be comfortable with proofs by
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diagram chasing. Although such proofs may be long, they are not difficult; at
each step, there is only one reasonable way to proceed, and so such proofs
almost write themselves.
The definition of the relative homology group H,(X, A) as H,(S,(X)/S,(A4))
is perhaps too concise. Let us put this group in a more convenient form.
Recall the definition of the quotient complex

S (X) G S(X) 4 S,(X)

S S,(A) S
where, for y € S,(X),
0y + Su(A)) = 8,7 + S,y (A).
Now
ker 8, = {y + S\(A): 8,7 € 5,_,(4)}
and

im 3,4, = {y + 5,(4): y €im 4,4, = B,(X)}.

Definition. The group of relative n-cycles mod A4 is
Z,(X, A) = {y € S\(X): 3,y € S, (A)}.
The group of relative n-boundaries mod 4 is
B,(X, A) = {y € 5,(X): y — ¥’ € B,(X) for some y’ € 5,(4)}
= B,(X) + S,(A).
It is easy to check that S (4) = B,(X, A) = Z,(X, A) = S,(X).

Theorem 5.11. For alln > 0,
H(X, A) = Z,(X, A)/B,(X, A).

PROOF. By definition,
H,(X, A) = ker 3,/im 0,.,.
But it is easy to see from our remarks above that
ker 0, = Z,(X, A)/S,(A)
and
im 0,4y = B,(X, 4)/S,(4).

The result now follows from the third isomorphism theorem (for groups). (J

EXERCISES

*5.13. If A is a subspace of X, then for every n 2> 0, S,(X)/S,(A) is a free abelian group
with basis all (cosets of) n-simplexes g in X for which im o ¢ A.
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*5.14. (i) Consider an exact sequence of abelian groups
cCypy— A= B, P C,— A, =B, P,
in which every third map i, is injective. Then
0— A, B P C —0

is exact for all n. (Hint: Exercise 5.2.)
(ii) If A is a retract of X, prove that for all n > 0,

H(X) = H,(A) ® H,(X, A).

(iii) If A is a deformation retract of X, then H (X, 4) = O for all n > 0. (Note:
G= H®K and G = H do not imply that K = 0.

5.15. Assume that 0 — S, — S, — S; — 0 is a short exact sequence of complexes. If
two of the complexes are acyclic, then so is the third one.

5.06. If f:(X,A)— (X', A’), then f,:8,(X)— S, (X') satisfies f,(Z,(X, A)) <
Z (X', A') and f,(B,(X, A)) < B (X', A').

5.17. If f: (X, A) - (X', A’), then the induced map f,: H,(X, A) —» H (X', A’) is given
by

Jo17 + B\(X, A)— [, () + B(X', A'),

where y € Z,(X, A).(The original definition of f, is not in terms of relative cycles
and relative boundaries.)

*5.18. If every face o¢; of an n-simplex g: A® — X has its values in 4 < X, then o
represents an element of Z,(X, A).

Exercise 5.18 gives a picture.

For example, a path ¢ in X is a 1-cycle if it is a closed path; it is a relative
1-cycle if it begins and ends in A. Observe, in this example, that if A = {x,},
then “cycle” and “relative cycle” coincide. This is actually true (almost) always.
First, we do a small computation.

Theorem 5.12. If X is path connected and A is a nonempty subspace, then
Hy(X, A) =

PROOF. Choose x, € A,and lety = Y m,x € Zy(X, A) = So(X). Since X is path
connected, for each x € X there is a “path” 5,: A = X with o,(e,) = x, and
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o,(e;) = x. Then Y m.0, € 5,(X), and

(X meo,) =Y mx — (X m)xo =7~ (X m)xo.
But y’ defined as (Y, m,)x, lies in So(A); hence y — y' = (3 m,6,) € By(X), and
s0 y € By(X, A). Therefore By(X, A) = Zy(X, A) and Hy(X, 4) = 0. O
Theorem 5.13. If {X,: A€ A} is the family of path components of X, then, for
eachn 2 0,

Hn(x’ A) = z Hn(xl’ A nxl)
a

PROOF. Use Exercise 5.12 and Theorem 4.13. O

Corollary 5.14. H,(X, A) is free abelian and
rank Hy(X, A) =card{ie A: ANX, = &}
(where {X,: 2 € A} is the family of path components of X).
PRrOOF. By Theorem 5.13, Hy(X, A) = Y Ho(X;, ANX,). If AN X, = &, then
Ho(X,, AN X,) = Hyo(X,;) = Z (by Theorem 4.14(i)). If, on the other hand,

ANX, # &, then Hy(X,;, ANX,)=0 (by Theorem 5.12, for X, is path
connected). O

Corollary 5.15. If X is a space with basepoint x,, then Ho(X, x,) is a free abelian
group of (possibly infinite) rank r, where X has exactly r + 1 path components.

PROOF. Since path components are pairwise disjoint, the path component X,
containing x, is unique, and so {xo}NX, = for all i# A,. Hence
Ho(X,, {xo} N X,;) = Z for all A # Ay, while Ho(X,_, xo) = 0. a
Theorem 5.16. Let X be a space with basepoint x,. Then

H\(X, xo) = H,(X)
Joralln> 1.

ProoF. By Theorem 5.8, there is an exact sequence
s n({xO}) = H(X) = H(X, xq) - H--l({xO}) -t

If n>2, then n—12>1, and the dimension axiom (Theorem 4.12) gives

H\({x0})=0= H,_,({xo}); hence H,(X)= H, (X, x,) for all n>2. To

examine the remaining case n = 1, let us look at the tail of the exact sequence:
h k

- = Hy({xo}) = Hy(X) % H,(X, x0) = Ho({xo}) = Ho(X) = Ho(X, x0) 0.

Since H,({xo}) = 0, the map g is injective; by Exercise 5.2, g is surjective (hence
is an isomorphism) if and only if h is injective. The map h has domain
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Hy({xo}) = Z and target the free abelian group Hy(X). If h # 0, then h must
be injective (if ker h # 0, then Hy(X) would contain a nontrivial finite sub-
group isomorphic to Z/ker h). Now im h = ker k, so that ker k # 0 implies
that im h # 0, hence h # 0, as desired. But k, being induced by inclusion, is
the map So(X)/Bo(X) = So(X)/Bo(X) + So(x0) [So(X) = Zo(X) = Zo(X, xo)]
given by y + By(X)—y + By(X) + So(xo), and so ker k = (By(X) + So(x0))/
By(X). The proof of Theorem 4.14 describes By(X) asall ) m x with ) m, = 0;
hence ker k # 0, and the proof is complete. O

For each n > 1, one may thus regard H, as a functor with domain Top,,
the category of pointed spaces.

Reduced Homology

The coming construction of reduced homology groups will allow us to avoid
the fussy algebra at the end of the proof of Theorem S5.16.

Definition. Let (S, (X), 9) be the singular complex of a space X. Define §_,(X)
to be the infinite cyclic group with generator the symbol [ ], and define
0o So(X) = 8_,(X)by Y m,x+—= (Y. m,)[ ]. The augmented singular complex
of X is -
a 0 I}
S.(X): -+ = 55(X) 3 8,(X) = So(X) = 8_,(X) - 0.

It is a quick calculation that d,d, = 0, so that the augmented singular
complex is in fact a complex (having §_, (X) = Z as a nonzero term of negative
degree).

There are several remarks to be made. First, the map d, has already
appeared (in the proof of Theorem 4.14(i)). Second, suppose that one defines
the empty set J as the standard (— 1)-simplex. For any space X, there is a
unique (inclusion) function @& — X, and so S_,(X) as defined above is rea-
sonable. Moreover, if one regards the boundary of a point x € X as empty,
then d, is obtained from dox = [ ] by extending by linearity.

Definition. The reduced homology groups of X are
A.(X)=H,S,(X),d, forallnz0.

Theorem 5.17. For alln > 0,
H/(X) = H (X, xo).

Proor. If n > 1, A,(X) = ker 4,/im d,,, = H,(X), so the result follows from
Theorem 5.16. If n = 0, the end of §,(X) gives a short exact sequence

0 - ker 8, & So(X) 3 3_,(X) - 0.



Reduced Homology 103

If @ € So(X) satisfies éoja) = |, thenitis easy to see* that So(X) = ker f.’o @ (2>
and {a) =Z. But 9,0, =0 implies that B,(X)=im 0, c ker d,. Since
So(X) = Zy(X), we have®

Ho(X) = So(X)/Bo(X) = (ker Jo @ {a))/Bo(X)
= (ker Go/Bo(X)) D Z = Hy(X) D Z.
Since H,(X) is free abelian, the result follows from Corollary 5.15. a

One can squeeze a bit more from this proof to improve Theorem 5.17 by
exhibiting a basis of Hy(X).

Corollary 5.18. Let {X,: A € A} be the family of path components of X, and let
x, € X, be a choice of points, one from each path component. If x4 € X lies in
X, then By(X) is free abelian with basis {cls(x; — xo): 4 # 40}.

PrOOF. We saw in the last proof that
So(X) = ker 6, ® (),

where a is any O-chain with J,(x) = 1; let us choose @ = x,. Since X is a basis
of Sp(X), we see that {x,} U Y is also a basis, where Y = {x — xo: x # Xo}.
We claim that Y is a basis of ker do, for which it now suffices to prove that
Y generates ker J,. As dy(x — x,) = 0, we see that Y < ker dq; furthermore, if
Y mx; € So(X) and Y m; = 0, then

Zmlxi = zmlxl - (Zmi)Xo = Zmz(xl — Xo)
(of course, we may delete x; — xo from the sum if x; = x,).

By(X) = ker 50/BO(X ) is a direct summand of Hy(X) = So(X)/Bo(X) =
(ker 3y + {xo))/Bo(X). By Theorem 4.14, {cls x,: 4 # Ao} U {cls x,} is a basis
of Ho(X). As above, {cls(x, — xo): 4 # 4o} U {cls x,} is also a basis of Ho(X);
since {cls(x, — xo): 4 # 4,} generates Hy(X), it is a basis. m]

We shall see that reduced homology has other uses than allowing us to
avoid algebraic arguments as in the proof of Theorem 5.16. For example, look
at Theorem 6.5 and its proof.

“ This is a special case of a more general result (Corollary 9.2):if 0 — K <. G — F — 0 is exact and
F is [ree abelian, then G = K @ F', where F* = F. Here we present a proof of this special case.
If x € ker 05N (&), then x = ma and Jy(x) = 0 = m, hence x = 0; if y € So(X), then Jo(y) = k,
say, and so y = (y — ka) + ka € ker , + (a).

SIf B,c A, for i = 1, 2, then (4, & A,)/(B, ® B,) = (A4,/B,) ® (A,/B,) (indeed the analogous
statement for any index set is true): define a map 0: A, @ A, — (A4,/B,) ® (A4,/B,) by (a,, a;)
(ay + By, a, + B,). Then 0 is surjective and ker 8 = B, @ B,; now apply the first isomorphism
theorem.
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EXERCISES
*5.19. If A < X, then there is an exact sequence
o+ = Hy(A) = By(X) = Hy(X, A) = B, () -,
which ends
+++ = Ho(4) — Ao(X) — Ho(X, A) 0.
(Hint: §,(X)/8,(4) = S,(X)/S,(4))
5.20. Show that H,(D?, §') = 0.

5.21. Assume that X has five path components. If CX is the cone on X, what is
H,(CX, X)?

5.22. What is H,(S", $°)?
5.23. Show that H,(X, X) = 0 for all n > 0.

There is a geometric interpretation of relative homology groups other than
Theorem 5.11. Recall that the quotient space X/A is obtained from X by
collapsing A to a point. For a large class of pairs, for example, for A a “nice”
subset of a polyhedron X, one can prove that H (X, A) = H,,(X [A) (see
Theorem 8.41). In this case, the exact sequence of Exercise 5.19 is

s+ = H(A) » A,(X) - A,(X/A) - A,_(A) - .

It turns out that the importance of relative homology groups is such that
the category of pairs, Top?, is more convenient than Top. Let us therefore give
the obvious version of homotopy in Top?.

Definition. If f, g: (X, A) — (Y, B), then f ~ g mod A if there is a continuous
F:(XxLAxI)>(Y,BywithF;=fand F, =g.

This notion of homotopy mod A is weaker than the previous notion of
homotopy rel A, which requires that f|4 = g|A4 and also that F(a, t) remain
fixed for all a € A during the homotopy (i.e., for every time t). Now we require
only that F(a, t) € B for all a € A and all ¢ € I. Of course, the notions coincide
when B is a one-point space.

Here is the appropriate version of the homotopy axiom in Top?.

Theorem 5.19 (Homotopy Axiom for Pairs). If f, g:(X, A) = (Y, B) and
S ~gmod A, then foralln > 0,

H,(f) = H,(g): H.(X, A) — H,(Y, B).

Proor. If j: A & X is the inclusion, then Exercise 4.10 gives a commutative
diagram
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Sud) —s S, xT)

j‘l l(j x l)l

sn(x) —P"_. n+l(x X l)a
where P, is the nth term of the chain homotopy of Theorem 4.23. It follows
that P, induces a homomorphism P,: S,(X)/S,(A4) = S,+1(X % I)/S,+,(4 x I),
that is, P,: S,(X, A) = S,.,(X x I, A x ). The proof now proceeds exactly as
that of Theorem 4.23; it is left to the reader to show that the maps P, satisfy
0P + Pd = 1,, — %o, and hence comprise a chain homotopy. 0



CHAPTER 6
Excision and Applications

Excision and Mayer—Vietoris

The last fundamental property (or axiom) of homology is excision. We state
two versions. If A is a subspace of X, then 4 denotes its closure and 4° denotes
its interior.

Excision I. Assume that U ¢ A c X are subspaces with U c A°. Then the
inclusion i: (X — U, A — U) « (X, A) induces isomorphisms

iys H(X — U, A - U)3 Hy(X, A)
for all n.

Stated in this way, we see that one may excise (cut out) U without changing
relative homology groups.

A

@« >

X

Excision II. Let X; and X, be subspaces of X with X = X{U X3. Then the
inclusion j: (X, X, N X,) « (X, U X;, X;) = (X, X;) induces isomorphisms

j‘: Hn(xl’ xxnxz)'—"o Hn(xa XZ)
Sor all n.
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The second form is reminiscent of the second isomorphism theorem. Note
that both forms involve two subspaces of X.

Theorem 6.1. Excision I is equivalent to Excision I1.

PRrROOF. Assume Excision I, and let X = X{U X3. Define A =X, and U =
X — X,. First, we claim that U c 4°: X} < X, implies X — X, c X — X},
hence U = (X — X,) = X — X? (for the last set is closed); but X — X} =
(X3UX)) - X1=X;—X{cX;=A°Second, X - U=X-(X-X,)=
X, and A-U=X,-(X-X,)=X,N(X{y (where X{ =X —X,, the
complement of X). Thus the pair (X — U, A — U) is the pair (X,, X, N X,).
Finally, the pair (X, A) is the pair (X, X,). The inclusions coincide and hence
induce the same map in homology.

Assume Excision II, and let U c 4°. Define X, =4 and X, =X — U.
Now U c U c A°implies X — U > X — U > X — A°. Since X — U is open,
X -U=(X-U)°> X - A° Hence

XSUXS=(X —UPUA° (X — UPUA (X — A)UA° = X.
Finally, it is easy to see that (X, X, N X,;) = (X — U, A — U)and (X, X,) =
(X, A). a

Before we prove excision, let us see some of its consequences. We begin
with a general diagram lemma.

Lemma 6.2 (Barratt-Whitehead). Consider the commutative diagram with exact
rows

v A, — g P g, —
l L ' h, I Jamr
A, —— B —— G —— Ay — -
Ja 9 A,

in which every third vertical map h, is an isomorphism. Then there is an exact
sequence

’ n = ju dnh;' '
\B®A, B g e

VA, (i S)

Proo¥. The map (i,, f,) is defined by a,+(i,.a,, f,a,), and the map g, — j, is

defined by (b,, a,)— g.b, — j.a.. The proof of exactness is a diagram chase.
O

Theorem 6.3 (Mayer-Vietoris). If X,, X, are subspaces of X with X =
X1 U X3, then there is an exact sequence

‘o' . o_‘o
e e HAXy N ) B2 h8) ) @ B 2208 0 —2s B, (X, N ) — -,
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with iy, iy, g, j inclusions and D = dh_'q,, where h, q are inclusions and d is
the connecting homomorphism of the pair (X,, X, N X,).

ProoF. The following diagram of pairs of spaces commutes when all maps are
inclusions:

X, N Xz, @) —— (X;, @) —2— (X,, X, NX,)
iy g h
(X3, &) -5 X, 2) — (X X;)
By Theorem 5.9, there is a commutative diagram with exact rows:

‘l. (]
o e H(X,NX;) =2 H,(X,) —Ee HX,, X, N X;) == Ho (X, N ;) e o

S N

o (X2) T’ (X) T‘ H,(X, X,) rund Hy (X)) —— .

Excision II asserts that each h, is an isomorphism, so that Lemma 6.2 gives
the result at once. a

ExaMPLE 6.1. Here is an example of a space X = X, U X,, where X, and X,
are (closed) subspaces of X (but where X # X; U X3) in which the Mayer-
Vietoris theorem, and hence excision, fails.

Let X be the closed vertical strip in R? lying between the y-axis and the
line x = 1/2n. Define

X, ={0,y): =1 < y}U{(x,):0 < x < 1/2n and sin(1/x) < y};
define .
X, ={0,y):y < 1}U{(x, y): 0 < x < 1/2n and sin(1/x) > y}.

Note that X, UX, = X and that X, N X, is the sin(1/x) space. Were the
Mayer-Vietoris theorem true here, there would be an exact sequence

H,(X) = Ho(X, N X;) = Ho(X,) ® Ho(X2) = Ho(X) = 0.

Since X, X,,and X, are contractible, H,(X) = 0 and Hy(X) = Z = H,y(X,) for
i = 1, 2. There is thus an exact sequence of the form

0-ZAZ-ZDZ—~Z-0,
and this contradicts Exercise 5.5.

Corollary 6.4 (Mayer-Vietoris Theorem for Reduced Homology). If X,, X,
are subspaces of X with X = X;U X3 and X, N X, # O, then there is an exact
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sequence
o BX, N X5) - B(X,)® AyX,) = A(X) = B, (X, N X5) -
with induced maps as in Theorem 6.3. This sequence ends
«+ = Ho(X,) ® Ho(X3) = Ao(X) = 0.
ProoF. If x, € X, N X,, proceed as in Theorem 6.3 from the commutative
diagram of inclusions of pairs
(X,NX,, xo) —— (X;,x0) — (X3, X, NX,)

|

(X2, %) — (X,x) — (X, X,). O

EXERCISES

*6.1. Assume that X = AU B is a disconnection (A and B are nonempty open sets and
ANB = ). Then H (X) = H,(A)® H,(B) for all n > 0. (Hint: The inclusion
A < X is an excision here; or, use Theorem 4.13.)

6.2. If X = AU B is a disconnection, then H,(X, A) = H (B)for alln > 0.
*6.3. Assume that X = XjU X3 and Y = YU Yy; assume further that f: X -+ Y is
continuous with f(X,) c Y, fori = 1, 2. Then the following diagram commutes:

HX) — H,_,(X,NX;)

1

H.(Y) T n—-I(Yl n YZ)'
where g is the restriction of f and D, D’ are connecting homomorphisms of
Mayer-Vietoris sequences.

*6.4. Assume that X = X, U X, U X;, where each X; is open. If all X;, all three X;N X,
and X, N X, N X, are either contractible or empty, then H,(X) =0foralln > 2.
(Hint: Tterate Mayer- Vietoris.) (For a generalization to any open cover of X, see
[K. S. Brown, p. 166]. Also, see Corollary 7.27.)

Homology of Spheres and Some Applications

Theorem 6.5. Let S" be the n-sphere, where n > 0. Then

Z®Z ifp=0
HP(S°)= {0 :§Z>0;

if n> 0, then
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_JZ ifp=0orp=n
Hy(5%) = {0 otherwise.
Remark. Using reduced homology, we can state these formulas more concisely:
Z ifp=n
B, = {0 ifp#n.

Proor. We do an induction on n > 0 that H,,(S") is as claimed for all p > 0.
The formula holds if n = 0, by the dimension axiom (Theorem 4.12) and
Theorem 4.13; one can also use Exercise 6.1.

Assume that n > 0. Let a and b be the north and south poles of S”, let
X, = §* — {a}, and let X, = S" — {b}. Note that §" = X7 U X3 (because X,
and X, are open), that X, and X, are contractible, and that X, N X, = §* -
{a, b} has the same homotopy type as the equator $"~! (by Exercise 1.31).
Applying the Mayer-Vietoris sequence for reduced homology, we obtain an
exact sequence

Hp(xl)@ Hp(xz)"' Hp(sn)_’ Hp-l(xl nxz)—'ﬁp—t(xl)Q Hp—n(xz)-

Contractibility of X, and X, shows that the flanking (direct sum) terms are
both zero, and so

Hp(su) = Hp—l(xl nx2) = Hp—l(sn_l)t
by Corollary 4.24 (note that we are using n > 0 as well). By induction,

A,.,(S"')=Zif p—1=n—1 and 0 otherwise; therefore A,(S") = Z if
p = n and 0 otherwise. a

This theorem illustrates the value of reduced homology. Not only is the
“reduced” statement better, but the proof is shorter. Without reduced homo-
logy, the inductive step would divide into two cases: p — 1 > 0 (which would
proceed as above) and p — 1 = 0 (which would require an extra argument
involving free abelian groups as in the proof of Theorem 5.16).

We may now draw some conclusions.

Theorem 6.6. If n > 0, then S" is not a retract of D***.

ProoF. We have verified all the requirements for the proof of Lemma 0.2.
O

Theorem 6.7 (Brouwer Fixed Point Theorem). If f: D* — D" is continuous, then
there is x € D* with f(x) = x.

Proor. Theorem 0.3. a

Theorem 6.8. If m # n, then S™ and S" are not homeomorphic. Indeed they do
not have the same homotopy type.
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PROOF. If S™ and S” had the same homotopy type, then H,(S™) = H,(S") for
all p. (]

Theorem 6.9. If m # n, then R™ and R" are not homeomorphic.

Proor. If there is a homeomorphism f: R™ — R”, choose x, € R™ and obtain
a homeomorphism R™ — {x,} = R" — {f(x,)}. But R® — {x,} has the same
homotopy type as S™! (Exercise 1.29), which leads to a contradiction of
Theorem 6.8. O

Theorem 6.10. If n > 0, then S™ is not contractible.
ProoF. Otherwise S” would have the same homology groups as a point. [J

Using Exercise 3.21, we now have examples, namely, S" for n > 2, of simply
connected spaces that are not contractible.

Barycentric Subdivision and the Proof of Excision

The applications of Theorem 6.5 are not exhausted, but let us get on with the
proof of excision (more precisely, of Excision 1I); we begin with an algebraic
lemma.

If X, is a subspace of X, regard S,(X,) as the subcomplex of S,(X) whose
term of degree n is generated by all n-simplexes o: A" — X for which
o(A") < X,.

Lemma 6.11. Let X, and X, be subspaces of X. If the inclusion S,(X,) +
S.(X2) & S,(X) induces isomorphisms in homology, then excision holds for
the subspaces X, and X, of X.

PRrOOF. Applying the exact triangle to the short exact sequence
0= Sy (X1) + S,(X3) = So(X) = So(X)(Se(X,) + 5,(X3)) =0,

we obtain a long exact sequence in which every third arrow H,(i) is
an isomorphism (by hypothesis); it follows easily (Exercise 5.4) that
H (S (X)/(S(X,) + S,(X;)) = 0forall n.

Now consider the short exact sequence of complexes

LSX) S ) SuX) S o
Su(X2) Se(X3)  Su(Xy) + S,(X3)
The corresponding long exact sequence has every third term zero, so that H,( j)

is an isomorphism for every n.
Finally, consider the commutative diagram of complexes

0
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SK) kS0
5,\(X,NX;) Su(X2)’

¢ i

S.(X,) + S5,(X,)
S.(X3)
where k is induced by the inclusion (X,, X, N X,)« (X, X,) and ¢ is the
isomorphism of the second isomorphism theorem (recall that S (X, N X,) =
S,(X,)NS,(X,)). Now j¢ = k implies H,(j)H,(¢) = H,(k). We have just seen
that H,(j) is an isomorphism, while H,(¢) is an isomorphism because ¢/ is. It
follows that H,(k) is an isomorphism for all n, which is the statement of
Excision IL. 0

It thus remains to show that the inclusion S,(X,) + S,(X;) < S,(X)
induces isomorphisms in homology whenever X = XjU X35. This would
appear reasonable if every n-cycle in X were a sum of chains in X, and chains
in X,. However, an n-simplex ¢ in X may have its image in neither X, nor
X,. The idea is to subdivide A" into small pieces so that the restrictions of ¢
to these pieces do have images in either X, or X,. The forthcoming construc-
tion, barycentric subdivision, is important in other contexts as well; let us
therefore consider it leisurely.

We begin by examining (geometric) subdivisions of A® for small n. With an
understanding of these low-dimensional examples, we shall see how to define
(inductively) subdivisions of every A*; this definition will then be transferred
to subdivisions of n-simplexes in an arbitrary space X.

Now A° is a one-point set; we admit it cannot be divided further and define
A to be its own subdivision. Consider the more interesting A = [e,, €,]. A
reasonable way to subdivide A! is to cut it in half: let b be the midpoint of the
interval [e,, e,], that is, b is the barycenter of A!. Define the barycentric
subdivision of A’ to be the 1-simplexes [e,, b] and [b, e, ] and their faces. Let
us now subdivide the standard 2-simplex A2.

€,

€p €
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Subdivide the triangle A? as follows: first, subdivide each face (which is a
1-simplex) as above, using new vertices the barycenters by, b,, b,; second, let
b be the barycenter of A?; finally, draw the six new triangles illustrated above.
Here is one way to view this construction. We have adjoined new vertices by,
b,, by, b to the original vertices. Which triangles do we form using these seven
vertices? Note that each vertex is a barycenter of a face of AZ: the original
vertices e,, e,, e, are barycenters of O-faces (themselves); by, b,, b, are bary-
centers of 1-faces; b is the barycenter of A? itself. Each vertex may thus be
denoted by b°, where o denotes a face of A2, and {b*, b b} is a triangle
precisely when t < o (t is a proper face of g) and ¢ < p. There are thus 3!
triangles.

Definition. The barycentric subdivision of an affine n-simplex X", denoted by

Sd X", is a family of affine n-simplexes defined inductively for n > 0:

(i) Sdz° =z

(i) if @o, @1, ..., Pusy are the n-faces of =**! and if b is the barycenter of
Z"*! then Sd £"*! consists of all the (n + 1)-simplexes spanned by b and
n-simplexesinSd¢;,i =0,...,n + 1.

It is plain that Z" is the union of the n-simplexes in Sd Z*".

EXERCISES
6.5. Prove that Sd " consists of exactly (n + 1)! n-simplexes.

*6.6. (i) Every vertex b of Sd " is the barycenter of a unique face o of Z* (denoted by
b = b°).
(ii) Every n-simplex in Sd " has the form [b°°, b°,..., b°], where each g, is an
i-faceof Z"and 0y < 0, < *** < 0,.

Observe that even though an affine n-simplex may not be given with an
orientation (i.e., an ordering of its vertices), Exercise 6.6(ii) shows that each
n-simplex of Sd Z" comes equipped with an orientation.

Here is one last remark before we subdivide an arbitrary n-simplex
a: A" - X. Recall that we saw in Exercise 2.10 that an (affine) n-simplex
(Pos---» Pal is the cone over its ith face [po., ..., Bi» - - -, P.] With vertex p,.
This observation suggested the singular version, in a convex set, of the cone
b.ao over a singular n-simplex o with vertex b (see Theorem 4.19).

Definition. Let E be a convex set. Then barycentric subdivision is a homo-
morphism Sd,: S,(E) — S,(E) defined inductively on generators t: A* — E as
follows:

(i) If n =0, then Sdy(7) = 1;
(ii) if n > O, then Sd,(7) = (b,).Sd,-,(01), where b, is the barycenter of A".
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If X is any space, then the nth barycentric subdivision, for n > 0, is the
homomorphism Sd,: S,(X) — S,(X) defined on generators ¢: A" -+ X by

Sd.(ﬂ) = 6# Sdn(an)’
where 8": A" - A" is the identity map.

Observe that g: A" —» X induces o4: S,(A") = S,(X), so that Sd,(¢) =
0, Sd,(6%) does make sense and does lie in S,(X). It is easy to see that both
definitions of Sd,(¢) agree when X is convex. If Sd,(6") = Zm;t;, then Sd,(c) =
6,(Em;t,) = Zm,ot;; thus one may view the n-simplexes 7; as the smaller

simplexes subdividing A* and one may view the n-simplexes a7; as “restric-
tions” of ¢ to the 1, that subdivide the image of .

EXERCISES

6.7. (i) Give explicit formulas for Sd,(6") whenn =1and n = 2.
(it) Give explicit formulas for Sd_(6) whenever ¢ is an n-simplex in X and n = 1
andn=2.

*6.8. If f: X - Y is continuous, prove that Sd f, = f, Sd, that is, the following
diagram commutes for every n > 0:

5.6 —2 5,x)

)

S.(Y) —— S(Y).

Lemma 6.12. Sd: S,(X) — S,(X) is a chain map.

Proor. The proof is in two stages, according to the definition of Sd. Assume
first that X is convex and that 7: A®— X is an n-simplex. We prove, by
induction on n > 0, that

Sd,_,0,t=4,8d, 1.

Since Sd_, =0 (because S_,(X)=0) and J, = 0, the base step n =0 is
obvious. If n > 0, then

0, Sd, t = d,(t(b,).Sd,-,(4,7)) (definition of Sd)
= 8d,-, 0,7t — 1(b,). (05— Sd,-,)0,7)
(Corollary 4.20(i): o(b.y) =y — b.dy)
= S8d,-, 0,7 — t(b,).((Sds-20,-1)3,7) (induction)
=S8d,_,0,7 (90 =0).

Now let X be any space, not necessarily convex. If g: A"+ X is an
n-simplex, then
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0 Sd(o) = do, Sd(6") (definition of Sd)
= 06,08d(6") (o, is achain map)
=0, Sd 0(6") (A" isconvex)
=Sd 0,0(6") (Exercise 6.8)
=S8d do,(6") (o, is a chain map)
= Sd do (04(0") = o). |

What is z + B,(X)— Sd z + B,(X), the homomorphism induced by Sd in
homology?

Lemma 6.13. For each n 2 0, H,(Sd): H,(X) —» H,(X) is the identity.

Proor. It suffices (Theorem 5.3) to construct a chain homotopy between the
chain maps Sd and 1, the identity on S,(X): we want homomorphisms
T,: S,(X) = S,+;(X) such that 4,,, T, + T,-,0, = 1, — Sd,.

Again the proof is in two steps. Assume first that X is convex; let us do an
induction on n. If n = 0, define T;: So(X) — S,(X) as the zero map. If g is a
O-simplex, then

0=0T,c and 6—Sdo=0—-0=0.
Assume that n > 0. If y € 5,(X), then T,y should satisfy
oT,y=y—Sdy— T, 0.
Now the right-hand side is a cycle, because, using induction,
dy—Sdy—T,,0y)=0y—9Sdy— (1 —Sd - T,_,0)0y = 0.
Since X is convex, the “integration formula”, Corollary 4.20(ii), applies; define
Ly=b.(y-Sdy—T,_,)

and note that 0T,y =y —Sdy — T,_,dy.

The remainder of the proof proceeds as the second stage of the preced-
ing lemma. Let X be any space, not necessarily convex. If o: A® — X is an
n-simplex, define

T,(0) = 04 T,(6") € S,11(X),

where 8" is the identity on A", and extend by linearity. We leave as an exercise
that the T.'s constitute the desired chain homotopy. As a hint, one should
show first that if f: X — Y, then there is a commutative diagram

5.%) —L— 541
T, T,

SarrlX) —— Sena(¥).



116 6. Excision and Applications

Corollary 6.14. If ¢ > 0 is an integer and if z € Z,(X), then
cls z = cls(Sd* 2).

Proor. Since Sd induces the identity on H,(X), so does every composite
Sd z + B,(X)+—Sd? z + B,(X). a

If E is a subspace of a euclidean space, then a continuous map o: A® » E
was called affine (in Chapter 2) if a(} t;e;) =Y t,a(e;), where t; >0 and
Y t; = 1. Clearly, the identity 5": A" — A" is affine.

Definition. If E is a subspace of euclidean space, then an n-chain y =
Y. myo; € S,(E) is affine if each o; is affine.

EXERCISES

6.9. If o is affine, then so is its ith face o¢;; moreover, the vertex set of o¢;, the set of

all images of ey, e,, ..., €,, is contained in the vertex set of o. Conclude that oo
is affine whenever ¢ is affine.

6.10. If E is convex and o is affine, then so is the cone b. o, where b € E; moreover,
the vertex set of b.o is the union of {b} and the vertex set of 0. Conclude that
Sd ¢ is affine whenever ¢ is affine.

Definition. If E is a subspace of some euclidean space, and if y =
Y m;q; € S,(E), where all m; # 0, then

mesh y = sup {diam g;(A")}
i
(note that g;(A") is compact (because A" is) and hence has finite diameter).

Using Theorem 2.9, the reader may show that if E is a subspace of some
euclidean space and y is an affine n-chain in E, then mesh(Sd y) <
[n/(n + 1)] mesh y. Iteration gives the next result.

Theorem 6.15. If E is a subspace of some euclidean space and v is an affine
n-chain in E, then for all integers q > 1,

mesh Sd? y < (n/n + 1) mesh y.

This last theorem is fundamental; it says that the mesh of an affine chain,
for example, 6": A" = A*, can be made arbitrarily small by repeated barycen-
tric subdivision (lim_.., (n/n + 1)* = O because n/n + 1 < 1).

After this discussion of various features of barycentric subdivision, let us
return to the proof of excision. Recall that we have only to show that the
inclusion S (X,) + S,(X;) < S,(X) induces isomorphisms in homology when-
ever X = XU X3.
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Lemma 6.16. If X, and X, are subspaces of X with X = X{U X3, and if o is
an n-simplex in X, then there exists an integer q > 1 with

Sd? 5 € 5,(X,) + S,(X,).

PROOF. Since o: A" — X is continuous, {¢™!(X}), 67!(X3)} is an open cover of
A*. Since A" is compact metric, this open cover has a Lebesgue number 4 > 0:
whenever x, y € A" satisfy ||x — y|| < 4, then there is an i = 1, 2 with 67} (X7)
containing both x and y. Choose ¢ > 1 with (n/n + 1)? diam A" < A. Since the
identity 6": A" — A" is an affine n-simplex in A", Theorem 6.15 says that such
a choice of g forces

mesh Sd*(6") < 4.

If Sd*(6") = Y my1;, then diam 7,(A") < 4 for every j; hence 7,(A") < 67}(X7)
for some i=i(r) e {l,2}. Now Sd%c =g, Sd%(") = 6,Zmyz; = Y mo1y;
therefore a7/(A”) « X7 = X;(wherei = i(7))) for every j. After collecting terms,
Sd? o can be written y, + y,, where y, € S,(X,). O

Theorem 6.17 (Excision). If X = X§ U X3, then the inclusion j: (X,, X, N X,) «
(X, X,) induces isomorphisms, for all n > 0,

Hn(xl’ xl an) :’ Hu(xr XZ)

ProoF. By Lemma 6.11, it suffices to show that the maps
On: Hy(S4(X ) + S4(X3)) = Hy(S4(X)) = Hy(X)

induced by the inclusion S (X;) + S,(X;) < S,(X) are isomorphisms. If
y,€ S,(X)) fori= 1,2, and if y, + y, is a cycle in the subcomplex (hence in
S,(X)), then

0: [y, + v2)—cls(yy + 72),

where we denote the homology class in the subcomplex by [ ].

@ is surjective. Let cls z € H,(X). By Lemma 6.16, there is an integer g > 1
with Sdz =y, + y,, where y, € S,(X;) for i =1, 2. Since z is a cycle and
Sd* is a chain map, it follows that Sd?z =y, + y, is a cycle. Thereforc
[y, + 2] is an element of the nth homology group of the subcomplex, and
0([yy + 1)) = cls(y; + y,) = cls(Sd? 2) = cls z, by Corollary 6.14.

@ is injective. Suppose that [y; + y,] € ker 6; then cls(y, + y,) = 0, so there
is B € S,.,(X) with 8 =y, + y,. By Lemma 6.16, there is an integer g > 1
with Sd? B = B, + B,, where B, € S,,,(X;) for i = 1, 2. Hence (B, + B,) =
0Sd? B = Sd* 0p = Sd%(y, + y,) (because Sd? is a chain map). It follows
that [Sd%y, + y,)] = 0. However, we know only that cls Sd'y, + y,) =
cls(y, + y,); we do not yet know that [Sd(y; + y;)] = [¥; + 2]

By Exercise 6.8 applied to the inclusion map X, < X, one sees that
Sd: S,(X) = S,(X) carries S,(X;) into S,(X;) for i = 1, 2; hence Sd carries the
subcomplex S,(X,) + S,(X,)into itself. Moreover, the contracting homotopy
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{T,: S,(X) - S,+1(X)} of Lemma 6.13 restricts to contracting homotopies T
and T” of S,(X,) and S,(X,), respectively (inspect the definition). Therefore
¥, —Sd?y, =(T'0 + 0T')y, and y, — Sd? y, = (T"0 + dT")y,, hence

71 +7¥2—8d%y, +y2) =Ty, + T"0y, + 0(T'y, + T"y,).
T'dy, + T" 0y, = Td(y, + y,), because T' and T™ are restrictions of T, and so it is
0, since y, + y, is a cycle. Because d(T"y, + T"y,) € B,(S,(X,) + S,(X>)), it fol-

lows that [y, + y,] = [Sd%(y; + y,)]. But [Sd*(y, + 7,)] = [4(B, + B,)] = 0.
O

Having completed the proof of excision, we may now accept the Mayer—
Vietoris theorem and the calculation of the homology groups of the spheres.
We record two useful facts before giving more applications.

Lemma 6.18. Let X = X7U X3, let i: X,N X, < X; be inclusions for j=
1,2,and let cls z€ H(X, N X,). If H,,,(X) =0, then cls z = 0 if and only if
ijyclsz=0andi,, clsz=0.

ProoF. Consider the portion of the Mayer—Vietoris sequence
(i1es f24)
H,(X) Hy(X, N X;) =2 Hy(X,) @ H,(X,).

Since H,,,(X) = 0, the map (i, ,, i,,) is injective. Thus cls z = 0 if and only if
ij4 cls z=0in H,(X,) and i,, cls z = 0 in H,(X,). O

Lemma 6.19. Assume that X = X} U X3. Then each n-cycle z in X is homologous
to a cycle of the form y, + y,, where y, € S,(X;). Moreover, if D: H,(X)—>
H,._,(X,NX,) is the connecting homomorphism in the Mayer—Vietoris
sequence, then

D(cls z) = D(cls(y, + y,)) = cls(dy,).
Remark. Of course, one may interchange X, and X,.

Proor. That cls z = cls(y, + y,) has already been proved (in Theorem 6.17).
To see the last assertion, consider the diagram

Sa(X1)/S4(X, N X3)
h‘

S.(X) 22 S, (X,) + 5,(X,)/S,(X3),

where g, sends y, + y, into its coset mod S,(X), and h is the isomorphism
of the second isomorphism theorem; hence h' sends the coset y, + y, +
Sa.(X3) to y, + S,(X,NX,). The formula for D in Theorem 6.3 is D =
dh,'q,,so that D cls(y, + y,)isd(y, + S,(X, N X,)), where d is the connecting
homomorphism from the exact sequence

0 — S,(X, N X;) —5 8§, (X,) 25 S,(X,)/S,(X, N X;) — 0.
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Now d = i,,'9j,' (Lemma 5.5); thus one lifts y, + S,(X, N X,) to y,, pushes
down to dy,, and regards dy, as being in X, N X,. Hence D cls(y, + y,) =
cls(dy,) in H,_,(X, N X,). O

More Applications to Euclidean Space

Recall that if h: Z — Z is a homomorphism, then h is multiplication by some
integer m: h(n) = mn for all n € Z (indeed m = h(1)).

Definition. A continuous map f: §* — S" (where n > 0) has degree m, denoted
by d(f) = m,if f,: H,(S") = H,(S") is multiplication by m.

Recall that we discussed a notion of degree for maps f: S! — S! (denoted
by deg f) in terms of fundamental groups.

Theorem 6.20. If f: S* — S, then deg(f) = d(f).
ProoF. By Exercise 4.13, there is a commutative diagram
m (St 1) —E— ay (s, 1(1)
[ [
(s - A,(s"),

where ¢ is the Hurewicz map. Since =, (S') = Z is abelian, we know that ¢ is
an isomorphism (Theorem 4.29). Finally, use Exercise 3.14, which says that
one may view f,: m,(S*, 1) = n,(S*, f(1)) as multiplication by deg(f). 0

Lemma 6.21. Let f, g: S" — S" be continuous maps.

(i) d(g o f)=d(g)d(f).
(ii) d(15.) = 1.
(iii) If fis constant, thend(f) = 0.
(iv) If f = g, then d(f) = d(g).!
(v) If f is a homotopy equivalence, then d(f) = +1.

PROOF. All parts follows from the fact that H, is a functor defined on hTop
(and that H,(S") = Z); in particular, (iii) follows from the existence of a com-

! The converse is also true, and it is a theorem of Brouwer (see [Spanier, p. 398]). We know the
converse when n = 1 (Corollary 3.18). A theorem of Hopf (see [Hu (1959), p. 53]) generalizes this
by classifying all homotopy classes of maps X — S*, where X is an n-dimensional polyhedron, in
terms of the cohomology H*(X; Z).
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mutative diagram

S"—»S"

N/

{+}
where {#} is a one-point space. O

Using degrees, one may give another proof of Theorem 6.10: S* is not
contractible. Otherwise, 15. ~ c, where c: $" — S* is some constant map, and
these two maps would have the same degree, by Lemma 6.21(iv); but Lemma
6.21, parts (ii) and (iii), show that this is not so.

Computation of the degree of a map is facilitated if one has an explicit
generator of H,(S"). The next result exhibits a generator when n = 1.

Theorem 6.22. Let x = (—1,0)and y = (1, 0) € S, let o be the (northerly) path
in S* from y to x, and let t be the (southerly) path in S' from x to y. Then
o + tisa 1-cycle in S* whose homology class generates H,(S*).

PRrOOF. First, 6 + 7 is a 1-cycle, because
og+1)=00+dt=(x—y)+(y—x)=

Let n=(0,1) and s = (0, —1) be the north and south polcs let X, =

— {n} and X, = S* — {s}. Note that S* = X; U X3, each X; is contractible,
and X, N X, = S' — {n, s} consists of two disjoint open arcs L and R with
x € Land y € R. The Mayer-Vietoris theorem for reduced homology provides
exactness of

A, (X))@ H,(X,) - B,(8) 3 Ao(X, N X;) — Ho(X,) ® Ho(X,).

Now D is an isomorphism, because contractibility of X, and X, forces
both direct sums to be zero. Since X, N X, = LUR, Corollary 5.18 gives
Ho(X, N X,) infinite cyclic with generator cls(x — y). But Lemma 6.19 shows
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that D cls(c + 1) = cls dg = cls(x — y); it follows that cls(c + 1) generates
A,(8') = H,(S"). a

Remark. One can show that a (simple) closed path generates H,(S'), but we
need Theorem 6.22 as stated.

Definition. If x = (x,, ..., x,4+,) € $", its antipode is —x = (—x,,..., —Xp41)-
The antipodal map a = a"; S” — §” is defined by x+— —x.

Note that the distance from x to —x is 2, the diameter of S, so that —x is
indeed antipodal to x.

Theorem 6.23. If n > 1, then the antipodal map a": S* — S* has degree (— 1)"*!.

PROOF. As a preliminary step, we show, by induction on n, that the map
f:8"— 8" given by f(x,, ..., Xp4y) =(—X}, X3, ..., Xg4y) has degree —1.
Recall that the north pole of $" is (0,0, ..., 0, 1) and that the south pole is
©,o0,..., 1.

Let n = 1. Set X, = S' — {north pole} and X, = S' — {south pole}. By
Exercise 6.3, there is a commutative diagram from Mayer- Vietoris

Hy(S') —2— Ho(X,NX,)

Lo G

Hl(sl) —D—’ Ho(xl ﬂXz),

where g is the restriction of f (note that f(X;) = X, fori = 1, 2). Observe that
D is injective, for the preceding term in the Mayer-Vietoris sequence is
H,(X,)® H,(X,) = 0. By Theorem 6.22 and Lemma 6.19, cls(c + 1) is a
generator of H,(S'), and D(cls(¢ + 1)) = cls do = cls(x — y). Hence com-
mutativity of the diagram above gives

Df, cls(o + 1) = g, D cls(s + 1) = g, cls(x — y) = cls(g(x) — g(y))
= cls(y — x),
because f (and hence g) inierchanges x and y. But
cls(y — x) = —Dcls(e + 1) = D cls(— (¢ + 1)).

Since D is injective, we have f, cls(g + 1) = —cls(c + 1),and d(f) = — 1.

For the inductive step, we may assume that n > 2. Let X, = §" — {north
pole}, let X, = S" — {south pole}, and let i: S"~! < X, N X, be the inclusion
of the equator. Since $"™! is a deformation retract of X, N X,, we know that
iy: Hy-y(S""') = H,-y(X, N X,) is an isomorphism. If f* is the restriction of f
to S"7!, there is a commutative diagram
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HyS") —2— H,_,(X,NX;) «—>— H,_,(S"")
fo 9 fo

H,(8") —2— H,.,(X,NX;) —"— H,,(s"™).
Since n > 2, we know that D is an isomorphism (for the flanking terms in the
Mayer-Vietoris sequence are 0 because X, and X, are contractible). We thus
have f, = D7i, f,i,' D. By induction,d(f’) = — 1, so that f_ is multiplication
by — 1; the other factors cancel each other and so f, is also multiplication by
—1,thatis,d(f) = —1.

The next step shows that there is nothing magical about changing the
sign of the first coordinate: if f;: S* — S” is defined by fi(x,, ..., X,4;) =
(Xys ooy —Xjs ---» Xps1), We claim that d(f)) = —1 also. If h: S — S" is the
homeomorphism of S* interchanging the first and ith coordinates, then f; =
hfh. Using Lemma 6.21, we see that

d(f)) = d(hfh) = (d()*d(f) = (d(h)*(—1).
As d(h) = +1 (since h is a homeomorphism), we have d(f}) = — 1.
Finally, observe that the antipodal map a" is the composite
a"= fof3 farrs
so that d(a") = (—1)"*!, as desired. O

Another proof of this theorem is given as Corollary 9.24.

Theorem 6.24.

@) If f: S" = S" has no fixed points, then f is homotopic to the antipodal map
a=a".
(ii) If g: S" —= S" is nullhomotopic, then g has a fixed point.

PROOF. (i) We can give a homotopy explicitly. Define F: $* x I — §" by

(1 — na(x) + tf(x)
(1 = ta(x) + tf ()

The right-hand side is a unit vector (hence lies in S") as long as (1 — t)a(x) +
tf(x) # 0. Were this zero, then we would have

J(x) = (=1 = t)/t)a(x).

Taking the norm of each side, noting that | f(x)]| = 1 = [la(x)|l, we see that

(1 — t)/t = 1; therefore f(x) = —a(x). But, by definition, a(x) = —x, so that
f(x) = x, a contradiction.

(i) If g has no fixed points, then g =~ a, by part (i), and so d(g) = d(a) =

+ 1 (Lemma 6.21). But g nullhomotopic implies that d(g) = 0, a contradiction.

0

F(x,t)=
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Theorem 6.25. If f: S2" — S2", then either f has a fixed point or some point is
sent to its antipode.

PRrOOF. Assume that f has no fixed points. By Theorem 6.24, f ~ a"; by
Theorem 6.23,d(f) = (—1)>"*! = — 1. Suppose that f(x) # —xforall x € S*".
If we define g(x) = — f(x), we see that g has no fixed points, and so —f =
g =~ a*". It follows that f ~ —a?" = |l and d(f) = 1, a contradiction. [J

This result is false for odd-dimensional spheres; for example, rotation
p: S! = S! about the origin through almost any angle has neither fixed points
nor points sent into antipodes. More generally, regard a point x € $**™! asan
n-tuple (z,, ..., z,) of complex numbers, and define f: §2"~! — §2""! by

(2150 2)—(p2y, P23y ..., P2,),

where p: S' — S! is a suitable rotation.

Theorem 6.26. There is no continuous f: S*" — S2* such that x and f(x) are
orthogonal for every x.

PROOE. If f(x,) = — x, for some x,, then their inner product (x,, f(x,)) = — 1,
contradicting the hypothesis that (x,, f(xs)) = 0. Hence f sends no point to
its antipode, so that f must have a fixed point, say, x,. But then x, is
orthogonal to itself, contradicting ||x,|| = 1. O

Theorem 6.26 is false for S!; indeed it is false for every odd-dimensional
sphere. If x € 2"}, then x = (x;, X3, ..., X2,-1, X5,); define f: §2"~1 — §2%~1
by

[ixr(=x3, Xy, —Xgy X35.-05 — X34y X29-1)-

Definition. A vector field on S™ is a continuous map f: S™ — R™*! with f(x)
tangent to S™ at x for every x € S™; one says that f is nonzero if f(x) # O for
all x.

Corollary 6.27 (Hairy Ball Theorem). There exists no nonzero vector field on
s,

Proor. If f: §2" — R2"*! is a nonzero vector field, then g: $2* — §2” defined
by x+— f(x)/lf]l is a continuous map with g(x) tangent to S2" at x for every x.
O

A function f: S™ — R™*! may be viewed as a family of vectors with f(x)
attached to S™ at x (thus S™ is a “hairy ball”). If we say that a hair is “combed”
if it lies flat, that is, if it is tangent to the sphere, then Theorem 6.27 can be
interpreted as saying that one cannot comb the hair on an even-dimensional
sphere.
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Definition. A continuous map g: S™ — S" is called antipodal if ga™ = a"g, that
is, if g(—x) = —g(x) for all x € S™.

An antipodal map g thus carries the antipode of x to the antipode of g(x).
Hence, if y = —x, then g(y) = —g(—y), that is, g maps antipodal pairs into
antipodal pairs. Note that the antipodal map a”: S" — §” is antipodal.

EXERCISES

*6.11. If y: A! — S" is a “path” with y(e,) = —y(e,), then (1 + a%)7 is a 1-cycle in S™.
(Note: By “path™ we mean that ¢ has domain A' = [—1, 1] instead of 1)

*6.12. If y is a 1-chain in S*, then
(1 +a%)(1—al)y=0.
*6.13. If B is a 1-chain in S*, then
(1 +a%)(1 +a%)B =201 +af)B.

*6.14. If o is the northerly path in ! from y = (1, 0)toa'(y) = (— 1, 0), then (1 + al)o
is a 1-cycle whose homology class generates H,(S"). (Hint: Theorem 6.22.)

Theorem 6.28. If m > |, there exists no antipodal map g: S™ — S'.

PrROOF (after J. W. Walker). Assume that such a map g exists. Let
y=(1,0)e S! and let ¢ be the northerly path in S! from y to a'(y) =
(—1,0). Choose a point x, € S™ and let 4 be a path in S™ from x, to
— x,. Finally, choose a path fin S* from g(x,) to y. Now

6—gui+f—af
is a 1-cycle in S*, for its boundary is
(a'y — y) = (g(—xo) — g(xo)) + (y — g(xo)) — (@'y — a'g(x,)) = 0

(because g is antipodal). Let 8 =1 + a),. Since cls 6o is a generator of
H,(S"), by Exercise 6.14, there is some integer m with

cls(6 —ggi+ f—a'f)=mcls bo.
On the other hand, applying 8 to this equation gives
cls(6c — 0g 42) = 2mcls Oo
(using Exercises 6.12 and 6.13). Therefore
cls(@o) = cls(Bg . 4) in H,(S')/2H,(S")

(where bar denotes coset mod 2H,(S')). As cls(fs) is a generator
of H,(S!), it follows that cls(fs) and cls(?)m) are nonzero in
H,(S")/2H,(S"); therefore cls(8g, 4) # 0 in H,(S"). But g is antipodal, so that
0g,A=(1+al,)g,A=g,(1+a%)L Since (1 +aT)d is a l-cycle in S™,
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Exercise 6.11, we must have cls((1 + al)2) #0 in H,(S™). As m > 1, this
contradicts H,(S™) = 0. O

Corollary 6.29 (Borsuk—Ulam). Given a continuous f: S — R?, there exists
x € §2 with f(x) = f(~—x).

PROOF. If no such x exists, define g: 2 — S* by
g(x) = (f(x) = f(=x)/f(x) = f(—=x)Il.

Clearly, g is an antipodal map, and this contradicts the theorem. O

Remark. In Chapter 12, we shall prove the more general version of Theorem
6.28 and its corollary: if m > n, then there is no antipodal map S™ — $"; if
Sf: 8™ — R", then there exists x € S™ with f(x) = f(—x).

EXERCISES

6.15. Prove directly that if f:S' = R is continuous, then there exists x € S* with
Sx) = f(=x).

6.16. Prove that there is no homeomorphic copy of S2 in the plane R2. This result says
that a map of the earth cannot be drawn (homeomorphically) on a page of an
atlas. (Remark: This result remains true if “2” is replaced by “n™; it follows from
the general Borsuk-Ulam theorem.)

Corollary 6.30 (Lusternik—Schnirelmann). If 2 = F, U F, U F,, where each F,
is closed, then some F; contains a pair of antipodal points.

PROOF. If a: §2 —+ §2 is the antipodal map x+— — x, then we may assume that
a*(F,)NF, = & = a*(F,)N F,, or we are done. By the Urysohn lemma, there
are continuous maps g;: S = I, for i = 1, 2, with g,(F,) = 0 and g,(aF)) = 1.
Define f: S2 -+ R? by

J(x) = (g4(x), g2(x)).

By Corollary 6.29, there exists x, € S? with f(xo) = f(— x,), that is, g,(xo) =
gi(—xo) for i = 1, 2. It follows that x, ¢ F, for i = 1, 2, because x € F, implies
that g,(xo) =0 and g,(—x,) =1 (for —x, = a?(x,) € a*F,). Since §2 =
F,UF,UF;, we must have x,€F;. A similar argument shows that
—Xxo ¢ F; UF,, hence —x, € F,, as desired. O

EXERCISES

6.17. If f: §? — R? satisfies f(—x) = — f(x) for all x, then there exists x, € S2 with
flxo) = 0.

6.18. Assume that there is no antipodal map S™ — S* for m > n. Prove that if
J: 8" = R, then there exists x, € S* with f(x,) = f(—x,).

6.19. Assume that there is no antipodal map S*® — S* for m > n. Prove that if S* is the
union of n + 1 closed subsets F,, F;, ..., F,.,, then at least one F; contains a pair
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of antipodal points. Prove that this conclusion is false if one replaces n + 1 by
n+2

We now prepare for the Jordan—-Brouwer separation theorem.

Definition. If r > 0, a (closed) r—cell ¢, is a homeomorphic copy of I, the
cartesian product of r copies of L. In particular, e, is a point.

Theorem 6.31. If S” contains an r-cell e,, then S" — e, is acyclic:
H,,(S" —e)=0 forallg.

PROOF. We prove the theorem by induction on r > 0. If r =0, then ¢, is a
point, S* — eq = R” (stereographic projection), and so $* — ¢, is contractible;
the result follows.

Suppose that r >0, let B=1""!, and let h:I" = B x I - ¢, be a homeo-
morphism. Define e’ = h(B x [0,4]) and e” = h(B x [4,1]). Then e, = e’ U
e” while e'Ne” = h(B x {}}) is an (r — 1)-cell. By induction, (S* —e')U
(S —e") = S" — (e’Ne") is acyclic. Since S" — e’ and S" — e¢” are open sub-
sets, Mayer-Vietoris for reduced homology gives exactness of

By (S"— (€'Ne”)) = B(S" — (e'Ue")) = B(S" ~ &)@ A (S — e) — A,(S* - (e'Ne”)).

The outside terms being zeroand §" — (e’ Ue”) = §” — ¢, give an isomorphism
A(S"—e)3 A(S"— ) A(S"—e").

Assume thatcls { € I:lq(S'I —¢,) and cls { # 0; we shall reach a contradiction.
Now Lemma 6.18 gives either iy, cls { # 0 or iy cls { # 0, where i’: S* — ¢, &
S§" —e'and i": S" — e, < S" — e” are inclusions. Assume that iy, cls { # 0, and
define E! = ¢’. We have thus constructed an r-cell E! c e, such that the
inclusion i: $* — e, < $* — E! satisfies i, cls { # 0. Repeat this construction
with B x 1 replaced by B x [0, 4] and with [0, 4] bisected. Iterating, we see
that there is a descending sequence of r-cells

e,DE'DEZD"'DE’DE’“D'“,

with E? = h(B x J?) (where J? < J?~! is a subinterval of length 27*), with
if cls{ #0 (where i®: S" — e, < S" — EP is inclusion), and with () E? an
(r — 1)-cell, namely, h(B x {point}).

We are going to apply Theorem 4.18. There is a commutative diagram with
all arrows inclusions:

S — Epﬂ
; V’ N:‘
S —e, Py S"— (N E?
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Since if cls { # 0 for all p, it follows that @2(if cls {) # O for all p. Now
assume that A is a compact subset of $* — (") E? = | J(S" — EP), an ascending
union of open sets in S*. This open cover of A has a finite subcover, that is,
A < S" — E” for some p. Theorem 4.18 now applies to give A%i% cls { # 0 in
A(S" — () E?) for all k. But A,(S" — () E®) = 0, by induction, because () E”
is an (r — 1)-cell, and we have reached a contradiction. Therefore cls { = 0,
that is, H(S" — ¢,) = 0, and S" — e, is acyclic. 0

Corollary 6.32. If e, is a closed r-cell in S”, then S" — e, is path connected.

Proor. Ay(S" — e,) = 0, and so Corollary 5.15 applies. 0

Theorem 6.33. Let s, be a homeomorphic copy of S in S™, where n > 0. Then
Hc(s"-s’)={z lfq:'l—"-—l

0 otherwise.

ProOOF. We do an induction on r. If r = 0, then s, consists of two points and
§” — s, has the same homotopy type as §*~! (think of s, as the north and
south poles, and deform §" — s, to the equator). Hence

A (S" — so) = Hy(S"™"),

and thisis 0 for g # n — 1,and Z for g = n — 1, as desired.

Assume that r > 0, and let ¢: §” — s, be a homeomorphism. Write S’ =
E*UE", where E* is the closed northern hemisphere and E~ is the closed
southern hemisphere. Note that E* NE~ = §"7!, the equator. If ¢’ = ¢(E*)
and e” = @(E™), then it is an easy exercise to show that ¢’ and e” are closed
r-cells in S™.

Define X, = §*" — ¢’ and X, = §" — e”; then X, and X, are open subsets
of $", hence X, U X, = X{ U X3. Furthermore,

X UX,=(§"-¢€)U(S"—e")=85"~-(e'Ne")=§"—5,,.
We also have
X\ NX,=8"-e)NES"—e")=S"—(e'Ue”) = 5" —35,.
There is an exact Mayer-Vietoris sequence
Bl =)D A (S =)= Ay (S =5, ) 2 A" —5,) = A(S" — &)@ A (S - €).
By Theorem 6.31, the flanking (direct sum) terms are 0, so that
A" —s,_) = H(S"—s,)
By induction,

Z ifg+l=n—-(r-1-1
0 otherwise,

Hqﬂ(s" = 8)= {
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and this gives

H"(S._s'):{z ifg=n—r—1

0 otherwise. a

Corollary 6.34. Let s, be contained in S". If r # n — 1, then S" — s, is path
connected, if r = n — |, then S* — s, has exactly two path components.

Proor. Compute Hy(S" — s,) by the theorem, and apply Corollary 5.15. 0O

We have shown that one cannot disconnect S” by removing a homeomorph
of a sphere of dimension < n — 2. Since S*" is the one-point compactification
of R*, it follows that one cannot disconnect R"* by removing s, withr < n — 2.

Definition. Let U be a subspace of a space X. An element x € X is a boundary
point of U if every neighborhood of x meets both U and X — U. The boundary
of U (or the frontier of U), denoted by U, is the set of all boundary points of U.

Clearly, U depends on the ambient space X; moreover, the closure UofU
is just UU U, while U open implies that U = U — U.

Theorem 6.35 (Jordan-Brouwer? Separation Theorem). If s,_, is a subspace
of S" that is homeomorphic to S*~*, then S* — s,., has exactly two components,
and s,_, is their common boundary.

PrOOF. Denote s,_, by s. By Corollary 6.34, S* — s has exactly two path
components, say, U and V. By Exercise 1.28, $* — s is locally path connected,
and so Corollary 1.20 shows that U and V are components; by Theorem 1.18,
U and V are open sets of S* — s and hence are open in S*.

Since V is open in S", $* — V = U Us is a closed set containing U; hence
Uc UUs,and so U = U — U = 5. A similar argument shows that ¥ cs.
For the reverse inclusion, let x € s and let N be an open neighborhood of x.
Clearly, N meets S* — U = V'Us; to show that x € U, it remains to prove that
N meets U. Now every nonempty open subset of S"~! contains an (open) subset
D whose complement is an (n — 1)-cell (because every open set contains a
homeomorph of R*™!); since s & $*, there exists a subset 4 of NNs with
s — A a closed (n — 1)-cell. By Theorem 6.31, Ay(S* — (s — 4)) = 0, hence
§" — (s — A) is path connected. If u e U and v € V, there exists a path f in
§" — (s — A)fromuto v. Since u and v lie in distinct path components of S* — s,
wemust have f(I)N A4 # &.But fNNA = f(I)Ns: f(I)N A = f(I)N s because
A c s; for the reverse inclusion,

2 The special case n = 2 is called the Jordan curve theorem; il was conjeclured by Jordan bul
proved by Veblen; Theorem 6.35 was laler proved by Brouwer.
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fMNs < fHNES ~ (s — 4)Ns < AN A.

Hence, if to = inf{t e I: f(t) e s}, then t, = inf{t e I: f(t) € A}. Thus f(t,) €
JOHNAc N.IfJ =[0,1,), then f(J) is a connected set containing u = f(0)
and with f(J) c fI)NS" — s = f(I)N(U U P); it follows that f(J) = U. There-
fore any open neighborhood of f(t,) in N meets U, as desired. A similar
argument using t, = sup{t € I: f(t) € s} shows that N meets Vaswell. [

If we regard S* = R"U{o0}, and if o ¢s,-,, then that component of
§* — s,-, containing o is called the outside of s,_,, and the other component
is called the inside. Is the inside of s,_, homeomorphic to an open ball (i.e.,
the interior of D*)? When n = 2, then s, is called a Jordan curve, and the
Schoenflies theorem gives an affirmative answer: the inside of a Jordan curve
is homeomorphic to the interior of D2. However, for n = 3, Alexander gave
an example (the “horned sphere”) showing that the inside need not be homeo-
morphic to an open ball (the interior of D) (see [Hocking and Young, p. 176]).
Alexander’s example can be modified to show the same phenomenon of bad
insides can occur for all n > 3.

Let us mention a famous example (the lakes of Wada), which comes very
close to the Jordan curve theorem. There exists a compact connected subset
K of R? whose complement R? — K has three components U,, U,, U, and
K=U fori=1,2, 3. Of course, K is not a Jordan curve, otherwise its
complement would have two components. (See [Kosniowski, p. 100] for
details of this example.)

Here is another important theorem of Brouwer.

Theorem 6.36 (Invariance of Domain). Let U and V be subsets of S* having a
homeomorphism h: U = V. If U is open, then V is open.

PROOF. Let y € V and let h(x) = y. Take a closed neighborhood N of x in U
with N = I* and N = §*"!; of course, h(N) = V. Now N and h(N) are closed
n-cells, so that Theorem 6.31 says that S” — h(N) is connected. On the other
hand, $* — h(N) has two components, by Theorem 6.35. Since

§" — h(N) = (5" = h(N)) U (h(N) — h(N))

and the two terms on the right are disjoint, nonempty, and connected, they
must be the components of S — h(N). It follows that each is openin $* — h(N);
in particular, h(N) — h(N) is open in S" — h(N) and hence is open in S*. But
y € h(N) — h(N) < V;since h(N)is the boundary of each component, it follows
that y is an interior point of V. Therefore, V is open in S". (]

For more applications to euclidean space, we recommend [Eilenberg and
Steenrod, Chap. XI].
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EXERCISES

6.20. Show that S* is not homeomorphic to any proper subspace of itself. (Hint: Use
compactness of S* and invariance of domain.)
*6.21. Prove invariance of domain if the ambient space S* is replaced by R".
*6.22. If invariance of domain holds with ambient space X, then show it holds with
any ambient space homeomorphic to X.
6.23. Show that invariance of domain does not hold with ambient space D".



CHAPTER 7
Simplicial Complexes

Definitions

We have been studying arbitrary spaces X using fundamental groups and
homology groups, and we have been rewarded with interesting applications
in the few cases in which we could compute these groups. At this point,
however, we would have difficulty computing the homology groups of a space
as simple as the torus T = S' x S; indeed S,(T) is uncountable for every
n > 0, so it is conceivable that H,(T) is uncountable for every n (we shall soon
see that this is not so). Many interesting spaces, as the torus, can be “tri-
angulated”, and we shall see that this (strong) condition greatly facilitates
calculation of homology groups. Moreover, we shall also be able to give a
presentation of the fundamental groups of such spaces.

In contrast to the singular theory, a g-simplex will once again be an honest
space (and not a continuous map with domain A%). Recall that if {v,, ..., v,}
is an affine independent subset of some euclidean space, then it spans the
g-simplex s = [v,,...,v,] consisting of all convex combinations of these
vertices.

Definition. If s = [v,, ..., v,] is a g-simplex, then we denote its vertex set by
Vert(s) = {vo, ..., v,}.

Definition. If s is a simplex, then a face of s is a simplex s’ with Vert(s’)
Vert(s); one writes s' <s. If s’ < s (i.e., Vert(s') & Vert(s)), then s’ is called a
proper face of s.

Definition. A finite simplicial complex K is a finite collection of simplexes in
some euclidean space such that:
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(i) if s € K, then every face of s also belongs to K;
(i) if s, t € K, then sN ¢ is either empty or a common face of s and of ¢.

We write Vert(K) to denote the vertex set of K, namely, the set of all
O-simplexes in K.

Definition. If K is a simplicial complex, its underlying space | K| is the subspace
(of the ambient euclidean space)

Kl=Us

se K

the union of all the simplexes in K.

Clearly, |K| is a compact subspace of some euclidean space. Note that if s
is a simplex in K, then |s| = s.

Definition. A topological space X is a polyhedron if there exists a simplicial
complex K and a homemorphism h: | K| = X. The ordered pair (K, h)is called
a triangulation of X.

EXAMPLE 7.1. The standard 2-simplex A? is contained in euclidean space R3.
Define K to be the family of all vertices and 1-simplexes of A? (i.e., K is the
family of all proper faces of A?). Then K is a simplicial complex whose
underlying space | K| is the perimeter of the triangle A2 in R3. If X = S', choose
distinct points a,, a,, a, € S?, and define a homemorphism h: |K| — S! with
h(e;) = a; for i =0, 1, 2, and with h taking each 1-simplex [e,, ¢;,,] (read
indices mod 3) onto the arc joining g, to a;,,. Then (K, h) is a triangulation
of S, and so S! is a polyhedron.

ExampLE 7.2. If K is the family of all proper faces of an n-simplex s, then there
is a triangulation (K, h) of S""!. Denote this simplicial complex K by s.
(Note that |K| is the boundary s ~ S*"!, so that our two dot notations are
compatible.)

ExaMpPLE 7.3. It is easy to give examples of finite collections of simplexes
satisfying condition (i) of the definition of simplicial complexes but not condi-
tion (ii).




Definitions 133

The simplexes s = [a, b, c] and t = [d, e, f] (and all their faces) do not com-
prise a simplicial complex because s, though a face of ¢, is not a face of s.
The space X = |s|U|t| is a polyhedron, but one needs another simplicial
complex to triangulate it; for example, K = {[a, b, d], [a,d, c], [d, e,f], and
all their faces} will serve.

ExaMpLE 7.4. Every g-simplex s determines a simplicial complex K, namely,
the family of all (not necessarily proper) faces of s. Clearly, |K| = s.If h: |[K| = 5
is the identity map, then s is a polyhedron (as it ought to be!).

ExAMPLE 7.5. Consider the square I x I with sides identified as indicated.

a & b
, |
< -
7
7
rd
7
7
7
7
AN 7 N
7
7
7
7
7
7
7
d < ¢

In detail, (¢, 0) is identified with (¢, 1) for each ¢ € 1, giving a cylinder, and (0, s)
is identified with (1, s) for each s € I, giving a torus. A triangulation of I x I
(e.g., insertion of the diagonal bd) may not give a triangulation of the torus
because, after the identification, the two distinct triangles (2-simplexes) abd
and bcd have the same vertex set. The following triangulation of I x I does
lead to a triangulation of the torus, hence the torus is a polyhedron.

/]

%

This triangulation of the torus has 18 triangles (2-simplexes), 27 edges
(1-simplexes), and 9 vertices; it is known that the minimum number of tri-
angles in a triangulation of the torus is 14 (see [Massey (1967), p. 34, Exercise
2] for an inequality implying this result).
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ExaMmpLE 7.6.! Other identifications of the boundary points of I x I lead to
other polyhedra.

< <
N pd
7 Y
Figure (i) Figure (ii)

The space obtained from Fig. (i) by identifying (¢, 0) with (I — ¢, 1) and (0, ¢)
with (1, 1 —¢) for all t €I is called the real projective plane RP2; the space
obtained from Fig. (ii) is called the Klein bottle. If one identifies all the
boundary to a common point, one obtains the sphere S2.

EXERCISES

7.1. Show that RP? is homemorphic to the quotient space of the disk D? after
identifying antipodal points.

7.2. Exhibit a compact connected subset of R? that is not a polyhedron.

7.3. Why does the following triangulation of I x I not give a triangulation of the
torus?

Definition. Let s be a g-simplex. If g = 0, define s° = s; if ¢ > 0, define s° =
s — § (see Example 7.2). One calls s° an open g-simplex.

Observe that a simplicial complex is the disjoint union of its open
simplexes.

It is plain that an open g-simplex s° is an open subset of s (it is its interior),
but if s lies in a simplicial complex K, then s° may not be an open subset of

! It will be shown that the homology groups obtained from I x I by “twisting”, for example, RP?
and the Klein bottle, have homology groups with elements of finite order. This is probably the
reason that torsion groups are so called. An etymology of twisting also appears in the discussion
of lens spaces in [Seifert and Threlfall, p. 220].
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|K|. For example, an open 1-simplex s° is an open interval; its endpoints are
pe

open

0-simplexes that are not open subsets of the (closed) 1-simplex spanned

by the endpoints. Similarly, an open 1-simplex is not an open subset of a
2-simplex.

Definition. Let K be a simplicial complex and let p € Vert(K). Then the star
of p, denoted by st(p), is defined by

In

st(p) = Ux s° < |K].

se
peVert(s)

the figure, st(p) consists of the open shaded region. One sees that st(p)

consists of all the open simplexes of which p is a neighbor.

EXERCISES

*74.

75.

7.6.

*7.7.

*1.8.

(i) If K is a simplicial complex and F is a subset of | K|, then F is closed if and
only if FNsis closed in s for every s € K.

(ii) If s is a simplex in K of largest dimension, then s° = s — § is an open subset
of |K|.

If K is a simplicial complex, then | K| is the disjoint union of all the open simplexes
s° with s € K. Conclude that each x € | K| lies in a unique open simplex.

Let K be a simplicial complex, let x € | K|, and let s° be the (unique) open simplex
with x € s°. If Vert(s) = {p,, ..., p,}, then x € st(p) if and only if p = p, for some
i=01,...,4q

(i) For each vertex p € Vert(K), prove that st(p) is an open subset of |[K| and
that the family of all such stars is an open cover of |K|.
(ii) If x € st(p), then the line segment with endpoints x and p is contained in st(p).

Let po, Py - --» Pa € Vert(K). Prove that {p,, ..., p,} spans a simplex of K if and
only if (V.o st(p) # .

Definition. If X is a simplicial complex, define its dimension, denoted by dim K,

to be
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dim K = sup {dim s}

36K

(of course, a g-simplex has dimension q).

The construction of polyhedra as quotient spaces of I x I raises an interest-
ing question. It is plain that there exists a simplicial complex—indeed a
collection of triangles in R3—which can be assembled to form a space home-
omorphic to the torus. It is less obvious, though not difficult, that such a
simplicial complex with fourteen 2-simplexes exists in R3. Now the Klein
bottle exists in R*, but it cannot be imbedded in R3. There is a general existence
theorem (see [Hurewicz and Wallman, p. 56]) that a finite simplicial complex
of dimension d always triangulates a subspace of R2¢*!; moreover, this result
is best possible: if K consists of all the faces of A2¢*2 having dimension < d,
then dim' K = d and K cannot be imbedded in R?¢ (see [Flores])(whend = 1,
this says that the complete pentagon cannot be imbedded in the plane, as one
knows from Kuratowski’s theorem characterizing planar graphs).

Theorem 7.1 (Invariance of Dimension). If K and L are simplicial complexes
and if there exists a homeomorphism f: |K| — |L|, then dim K = dim L.

Remark. It follows that one can define the dimension of a polyhedron X as
the common dimension of the simplicial complexes involved in triangulations
of X.

PROOF. Assume, on the contrary, that m = dim K > dim L = n (replacing f
by /! handles the reverse inequality). Take an m-simplex ¢ in K, and let
o° = g — ¢ be its interior. Now ¢° is an open set in | K|, by Exercise 7.4(ii).
Since f is a homeomorphism, f(c°) is open in |L|. There thus exists some p-
simplex zin L (of course, p < n < m) with f(6°) N ° = W, a nonempty open set
in | L| (for the stars of vertices form an open cover of |L|, by Exercise 7.7(i)).
Choose a homeomorphism @: A™ — o with ¢(A™) = ¢; then U, defined by
U = 'f~!(W), is an open subset of (A™)°. Since p < m, there exists an
imbedding g: A® — (A™)° such that im g contains no nonempty open subsets
of (A™)°. Both U and g(W) are homeomorphic subsets of (A™)°; as U is open
and g(W) is not, this contradicts invariance of domain (Theorem 6.36) as
modified by Exercises 6.21 and 6.22. 0O

Simplicial Approximation

If we want a category whose objects are simplicial complexes (and we do),
what are the morphisms?

Definition. Let K and L be simplicial complexes. A simplicial map ¢: K — L
is a function ¢: Vert(K) — Vert(L) such that whenever {p,, p,, ..., p,} spans
a simplex of K, then {¢(p,), @(p,), ..., ©(p,)} spans a simplex of L.
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Of course, repetitions among ¢(po), ..., @(p,) are allowed.

Theorem 7.2. If X consists of all simplicial complexes and all simplicial maps
(with usual composition), then X is a category, and underlying defines a functor
| |- — Top.

PRrOOF. It is routine to check that )" is a category; let us construct | |. On
objects, assign the space |K| to K. If ¢: K — L is a simplicial map, define
lel: |K) —|L) as follows. For each s € K, define f;: s — |L| as the afline map
determined by ¢|Vert(s) (Theorem 2.10). Condition (ii) of the definition of
simplicial complex implies that the functions f, agree on overlaps, so that the
gluing lemma 1.1 assembles them into a unique continuous function | K| — |L|,
denoted by |¢|. That we have defined a functor is left as an exercise. O

Definition. A map of the form |¢|: | K| — |L|, where ¢: K — L is a simplicial
map, is called piecewise linear.

There is no obvious functor Top — X", even if we confine our attention to
the subcategory of polyhedra. Given a continuous f: | K| — | L}, it may not be
true that f = || for some simplicial map ¢: after all, there are only finitely
many ¢’s. But we are flexible. Is it true that f ~ |¢| for some ¢? The answer
is still “no”; if K = L = {all proper faces of [po, p,, p,]}. then |K| = S' =~ |L|.
Since m,(S!) = Z, there are infinitely many nonhomotopic maps f: S* - §?,
while there are still only finitely many simplicial maps ¢: K — L. We shall
subdivide K (the same process as in the proof of excision) to obtain more (and
better) approximations by simplicial maps.

Definition. Let K and L be simplicial complexes, let ¢: K — L be a simplicial
map, and let f: | K| — |L| be continuous. Then ¢ is a simplicial approximation
to f if, for every vertex p of K,

f(st(p)) < st(o(p)).

It is easy to see that |@|(st(p)) = st(¢(p)). Thus we are saying that f behaves
like || in that it carries neighboring simplexes of p inside the union of the
simplexes near ¢(p).

EXERCISES

79. Let K and K’ be simplicial complexes, and let ¢: Vert(K) — Vert(K’) be a
function. Prove that ¢ is a simplicial map if and only if, whenever (| st(p;) # &,
then (\st(ep;) # . (Hint: Use Exercise 7.8.)

*7.10. Prove that a simplicial map ¢: K — L is a simplicial approximation to f: | K| =
|L] if and only if, whenever x € |K] and f(x) € s° (where s is a simplex of L), then
lel(x)es.

*1.11. If ¢: K — L is a simplicial approximation to f: |K| — |L|, then |¢]| ~ f.
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Our remarks about x,(S') show that, for a given triangulation, a con-
tinuous map need not have a simplicial approximation. Let us therefore
change the triangulation.

Definition. If s is a simplex, let b* denote its barycenter. If K is a simplicial
complex, define Sd K, the barycentric subdivision of K, to be the simplicial
complex with

Vert(Sd K) = {b*: se K}
and with simplexes [b%, b*, ..., b*], where the s, are simplexes in K with
S <5 < <5,

Recall that if s is a vertex of K, that is, s is a 0-simplex, then b* = s; therefore
Vert(K) = Vert(Sd K). It is easy to check axioms (i) and (ii) in the definition
of simplicial complex; using Exercise 7.13 below, one shows that [b*, ..., b%]
is a g-simplex.

ExAMPLE 7.7. If 6 = [Po, Py » P2], then Vert(Sd @) = {Ppo, Py, P2, bo» by, ba, b7}

Examples of 1-simplexes in Sd o are [p,, b,] and [p,, b°]; an example of a
2-simplex in Sd & is [ po, b,, b°]. Thus this is precisely the earlier construction
of Chapter 6.

EXERCISES

*7.12. (i) For every simplicial complex K, prove that |Sd K| = |K|.
(ii) Prove that there exists a simplicial map ¢: Sd K — K that is a simplicial
approximation to the identity |Sd K| — |K|. (Hint: Define ¢: Vert(Sd K) —»
Vert(K) so that ¢(b*) € Vert(s).)
(iii) If X is a polyhedron and x € X, there exists a triangulation (K, h) of X with
x = h(v) for some vertex v of K.

*7.13. If sp < sy < < s, are simplexes in some euclidean space, then {b*%, b*, ..., b%}
is affine independent.

7.14. Every open simplex of Sd K is contained in a unique open simplex of K.
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Definition. If K is a simplicial complex, then
mesh K = sup {diam(s)},

sek

where diam(s) denotes the diameter of s.

EXERCISES

*7.15. If mesh K = p and p € Vert(K), then diam(si(p)) < 2.

*7.16. If dim K = n, then
mesh Sd K < (n/n + 1) mesh K.

(Hint: Theorem 2.9.) Conclude that, forg > 1,
mesh Sd* K < (n/n + 1) mesh K.

Theorem 7.3 (Simplicial Approximation Theorem). If K and L are simplicial
complexes and if f: |K| — |L| is continuous, then there is an integer ¢ > 1 and a
simplicial approximation @:Sd* K — L to f.

PROOF. Let Vert(L) = {w;: j € J} and let {st(w;)} be the open cover of | L] by its
stars. Since f is continuous, { f ~! st(w;)} is an open cover of | K|. Since | K| is
compact metric, this cover has a Lebesgue number 4 > 0. By Exercise 7.16, we
can choose q large enough so that mesh Sd* K < 44, it follows from Exercise
7.15 that diam(st(p)) < 4 for every p € Vert(Sd* K).

Define ¢: Vert(Sd* K) — Vert(L) by ¢(p) = w;, where w;is some vertex with
st(p) = f1(st(w))) (w; exists, by definition of Lebesgue number; if there are
several choices, pick any one). It follows that f(st(p)) = st(w)) = st(e(p)), so
that we are done if we can show that ¢ is a simplicial map: if {po, ..., Pm}
spans a simplex in Sd? K, does {@(po), ..., ®(p.)} span a simplex in L? Now
Exercise 7.8 gives (o st(p;) # &, so that

@ # f(() st(p)) = () Sst(p)) = () st(@(po))-

Exercise 7.8 thus shows that {¢(p,), ..., ¢(p.)} spans a simplex of L. O
Corollary 7.4. Let K and L be simplicial complexes, and let f:|K|— |L| be
continuous. Assume that K' is a simplicial complex such that

@) IK'| = |K};

(ii) Vert(K) < Vert(K’);
(iif) mesh K’ is “small”.

Then there exists a simplicial approximation ¢: K' = L to f.

PROOF. The listed properties are the only properties of Sd* K used in the proof
of the theorem. O

Definition. A subcomplex L of a simplicial complex K is a simplicial complex
contained in K (i.c., s € L implies that s € K) with Vert(L) < Vert(K).
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Note that Sd K is not a subcomplex of K (nor is K a subcomplex of Sd K).

Definition. For any q > — 1, the g-skeleton of K, denoted by K'?, is the
subcomplex of K consisting of all simplexes s € K with dim(s) < q.

EXERCISES

*7.17. If : K — L is a simplicial map, then ¢(K?") c L for every q. Conclude that
dim K = n implies that im|¢| < |L™|.

7.18. If K is the n-skeleton of an (n + 1)-simplex, then |K| = S".

Theorem 71.5. If m < n, then every continuous map f: S™ — S" is nullhomotopic.

PrROOF. Let K be the m-skeleton of an (m + 1)-simplex, and let L be the
n-skeleton of an (n + 1)-simplex; we may regard f as a continuous map from
|K| into |L|. Let ¢:Sd? K — L be a simplicial approximation to f. Since
dim Sd? K = dim K = m, Exercise 7.17 gives im|¢| < |L*™|, and so |¢| is not
surjective. Hence im|¢| < [L| — {point}, which is contractible, and so |¢| is
nullhomotopic. But |¢| =~ f, hence f is nullhomotopic. O

Corollary 7.6. If n > 2, then S" is simply connected.

ProoF. The theorem shows that every continuous map f: S! — S" is null-
homotopic, and so the result follows from Theorem 1.6. O

We have already sketched a proof of this corollary in Exercises 3.20 and
3.21. The result does not follow, however, from the Hurewicz theorem and the
fact that H,(S") = 0 for n > 2 (one can conclude from these data only that
n,(S", 1)isits own commutator subgroup, and such groups do exist; e.g., every
nonabelian simple group is such a group).

Let us mention a famous problem. The Poincaré conjecture asks whether
a simply connected compact n-manifold having the same homology groups
as 8" is homeomorphic to S™. It is not too difficult to show that the conjecture
is true when n =2; for n > 5, the conjecture was solved affirmatively by
Smale in the 1960s; the case n = 4 was solved (affirmatively) in the 1980s by
Freedman. The familiar dimension 3 is thus the only open case.

Abstract Simplicial Complexes

We are going to define homology groups of a simplicial complex K (which
will turn out to be isomorphic to the homology groups of the space X = |K|
as defined in Chapter 4). This construction works in a simpler setting, which
we now describe.
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Definition.? Let V be a finite set. An abstract simplicial complex K is a family
of nonempty subsets of V, called simplexes, such that

(i) if v e V, then {v} € K;
(ii) f se Kand s’ c s, then s’ € K.

One calls V the vertex set of K and denotes it by Vert(K); a simplex s € K
having q + 1 distinct vertices is called a g-simplex.

Definition. If K and L are abstract simplicial complexes, then a simplicial map
@: K — L is a function ¢: Vert(K) — Vert(L) such that whenever {v,, ..., v,}
is a simplex in K, then {¢v,, ..., v,} is a simplex in L (of course, it is possible
that the latter list of vertices has repetitions).

Theorem 7.7. All abstract simplicial complexes and simplicial maps determine a
category, denoted by X ™.

PROOF. A routine check. ad

Equivalences in the category X#™ and in the category X are called
isomorphisms.

ExampLE 7.8. Every simplicial complex K determines an abstract simplicial
complex K* with the same vertex set: let each simplex s € K determine its
vertex set Vert(s) < Vert(K).

ExaMpPLE 7.9. Let X be a topological space, and let  be a finite open cover
of X. Define an abstract simplicial complex having vertices the open sets
in % and declare that open sets Uy, Uy, ..., U, in  form a simplex if
(f-o U, # . This simplicial complex is called the nerve of the open cover #
and is denoted by N(%).

ExaMPLE 7.10. Let G be a finite group. Define an abstract simplicial complex
Q,(G) whose vertex set consists of all nontrivial p-subgroups (for some fixed
prime divisor p of |G]) and with subgroups Py, Py, ..., P, forming a simplex if

(=0 P # {1}.

ExampLE 7.11. If K is an abstract simplicial complex, we construct its bary-
centric subdivision Sd K as follows (here Sd K is also an abstract simplicial
complex): define Vert(Sd K) = {simplexes o: 6 € K}; define a simplex in
Sd(K)to be a set {gy, 0y, ..., 6,} with oy < 0, < ' < 0, (where 6 < ¢’ means
oS o)

2 Here is the definition of a possibly infinite abstract simplicial complex K; let V be any set and
define K as a family of finite nonempty subsets of V satisfying properties (i) and (ii).
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The construction K +— K* in Example 7.8 defines a functor ¥~ — %™. The
next theorem says that there is a good way to reverse the procedure, obtaining
a simplicial complex from an abstract one.

Theorem 7.8. There is a functor u: X* — X such that K = u(K*) for all
K € obj X and L = (uL)* for every L € obj X ™.

ProOF. Let L be an abstract simplicial complex, and let V = Vert(L) =
{vo, vy, ..., v,}. Recall that the standard n-simplex A" has vertices
{eo, €1,..., e} . s ={v, ..., v; }isag-simplexin L, define|s| = (e, ..., e)
the g-simplex in A" spanned by the displayed vertices. Finally, define u(L) as
the family of all |s| for s € L. It is plain that u(L) is a simplicial complex; indeed
u(L) is a subcomplex of A".

It is easy to see that a simplicial map ¢: L — L' in 2™ (which is a certain
function ¢: Vert(L) — Vert(L')) corresponds to the obvious simplicial map
u(@): u(L) - u(L') (which is a certain function {e,,...,e,} = {eo, ..., €m}).
Moreover, one verifies quickly that u: X™ — 5 is a functor and that the
isomorphisms mentioned in the statement do exist. O

Definition. If L is an abstract simplicial complex, then a geometric realization
of L is a space homeomorphic to u(L)|.}

Corollary 7.9. Isomorphic abstract simplicial complexes have homeomorphic
geometric realizations.

PRroOF. Every functor (in particular, the composite #™ — X% — Top) preserves
equivalences. 0

As a result of Theorem 7.8, one usually does not emphasize the distinction
between simplicial complexes and abstract simplicial complexes. Henceforth,
we drop the adjective “abstract”, although we shall usually be thinking of the
simpler notion of abstract simplicial complex. We shall also not distinguish
between the categories )" and X™; either will be denoted by . Indeed some
authors do not bother to distinguish simplicial complexes from polyhedra!

Simplicial Homology

Definition. An oriented simplicial complex K is a simplicial complex and a
partial order on Vert(K) whose restriction to the vertices of any simplex in K
is a linear order.

3 The geometric realization of an infinite abstract simplicial complex can also be defined (see
Example 8.11); in general, it does not lie in any (finite-dimensional) euclidean space.
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Every linear ordering of Vert(K) makes K into an oriented simplicial
complex. For every simplicial complex K, the barycentric subdivision Sd K
is always oriented (see Exercise 6.6 (ii)).

We shall define homology groups of oriented simplicial complexes K;
eventually, we shall see that they coincide with the homology groups of | K|
(hence are independent of the partial order on Vert(K)).

Definition. If K is an oriented simplicial complex and g > 0, let C (K) be the
abelian group having the following presentation.

Generators: all (g + 1)-tuples (po, ..., p,) With p,e Vert(K) such that
{Po. ..., Py} spans a simplex in K.
Relations: (i) (po, ..., pg) = 0 if some vertex is repeated;
(li) (Po' LR pq) = (Sgn n)(Pgo' Px1s---» ptq)' where n is a per-
mutation of {0, 1, ..., g}.

Denote the element of C,(K) corresponding to (po, ..., Pg) by Po, ---» Pg)-
Of course, sgn n = + 1 (depending on the parity of n).

Lemma 7.10. Let K be an oriented simplicial complex of dimension m.

(1) C4(K) is a free abelian group with basis all symbols {pq, ..., py), where
{Pos ... Pq} spans a g-simplex in K and py < p, <*** < p,. Moreover,

(Pwv veey plq) = (sgn 1)< Pos - --» pq)-
(ii) C,(K)=0 forallq > m.

PROOF. (i) Define F, to be the free abelian group with basis all (g + 1)-tuples
(Po» - --» pg) Of vertices of K such that {p,, ..., p,} spans a simplex in K. If R,
is the subgroup of relations (as in the definition above), then F/R, = C (K).
But it is easy to see that there is a new basis of F, of the form B, U B, U B,,
where B, consists of all (¢ + 1)-tuples in F, with a repeated vertex, B, consists
of all (p,, ..., p,) With py < p; < -* < p,, and B, consists of all terms of the
form (po, ..., Pg) — (S8N 7)(Pros - - - » Pxg) Where 7 is a nonidentity permutation
of {0, 1, ..., q}. Itis now clear that R, (with basis B, U B,) is a direct summand
of F,. Therefore C(K) = F,/R, is free abelian as claimed.

(ii) If ¢ > m, then every (g + 1)-tuple (p,, - .., p,) of vertices, which spans a
simplex of K, must have a repeated vertex; hence (p,, ..., p;> = 0 in C,(K).

]

The reason for not defining C,(K) as described in the lemma will soon be
clear.

Definition. Define 9,: C,(K) = C,_,(K) by setting

3(<Por - D) = I);(—n%po. ceerBire e PO

(where p; means delete the vertex p,) and extending by linearity.
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Theorem 7.11. If K is an oriented simplicial complex of dimension m, then
ColK) = 0= Co(K) S+ = €,(K) & Co(K) » 0

is a chain complex.

PRrOOF. The argument of Theorem 4.6 can be used here to show that 99 = 0.
O
Definition.* If K is an oriented simplicial complex, then

Z (K) = ker d,, the group of simplicial g-cycles,

B,(K) = im J,.,, the group of simplicial g-boundaries,
and

H (K) = Z(K)/B,(K), the gth simplicial homology group.

We now associate an induced homomorphism to every simplicial map.

Definition. Let K and L be oriented simplicial complexes. If ¢: K —» L is a
simplicial map, define ¢ ,: C,(K) = C (L), for each g > 0, by

(P#(<po, LR P.,)) = <(P(po), ERRE ] (P(pq)>

Of course, if some vertex ¢(p;) is repeated, then the term on the right is
zero. Furthermore, the ordering of the vertices on the right side may not be
compatible with the orientation of L; our fussy definition of C,(K) (and C,(L))
thus allows ¢, to be defined. Better, it allows the next result to be proved.

Lemma 7.12. If ¢: K — L is a simplicial map, then ¢,: C(K)— C (L) is a
chain map; that is, 4,0 = 0@ .

Proor. The usual calculation, as in Lemma 4.8. O
Theorem 7.13. For each q > 0, H,: X" — Ab is a functor.

PrOOF. H (K) has already been defined on objects K. On morphisms ¢: K — L,
that is, on simplicial maps, define ¢,: H,(K) - H (L) by
@4 2 + B(K)> @ 4(2) + By(L).
That H,_ is a functor is routine. O
One wants to promote the definition of simplicial homology functors to

the subcategory of Top of polyhedra. One problem is the definition of f, when
f is a continuous map. Plainly, the simplicial approximation theorem will be

* This definition also makes sense for infinite oriented simplicial complexes.
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useful, and this will force comparison of Hy(K) and H,(Sd K). This complica-
tion is one reason that we presented the singular theory first.

Theorem 7.14. Let K be a (finite) oriented simplicial complex of dimension m.

(i) H,(K)is f.g. (finitely generated) for every q > 0.
(ii) Hy(K) =0 for all ¢ > m.
(iii) H.(K) is free abelian, possibly zero.

PROOF. (i) C,(K) is f.g., hence its subgroup Z(K) is f.g. (Theorem 9.3), and,
finally, its quotient H (K) is f.g.

(ii) Immediate from Lemma 7.10(ii).

(i) Since C,,,,(K) = 0, we have B, (K) = 0 and so H,(K) = Z,(K). But a
subgroup of a free abelian group is also free abelian (Theorem 9.3). d

Remark. If dim K = m, we do not assert that H,(K) # 0 (this may be false).
Moreover, if there are a, g-simplexes in K, then H (K) needs at most «,
generators.

We have just defined “absolute™ simplicial homology groups. If K is an
oriented simplicial complex and L is a subcomplex, then L is also oriented in
the induced orientation, namely, the partial order on Vert(L) inherited from
that on Vert K. It is easy to see that each C (L) is a subgroup of C,(K) and
that C,(L) is a subcomplex of C,(K).

Definition. If L is a subcomplex of an oriented simplicial complex K, then the
qth relative simplicial homology group is

Hy(K, L) = H(C,(K)/C,(L)).
Let (K, f) be any triangulation of S2; let V be the number of vertices, let E

be the number of edges (1-simplexes), and let F be the number of faces
(2-simplexes) in K. Euler’s famous formula is

V—E+F=2

this formula is a key ingredient in showing that the five Platonic solids
(tetrahedron, cube, octahedron, dodecahedron, and icosahedron) are the only
regular solids in R>. Let us now generalize Euler’s formula.

Definition. Let K be a simplicial complex of dimension m, and for each ¢ > 0,

let «, be the number of g-simplexes in K. The Euler—Poincaré characteristic
of K, denoted by x(K), is defined by

1K) =3 (~1ya,.
q=0
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Theorem 7.15. If K is an oriented simplicial complex of dimension m, then

x(K) = i (— 1) rank H,(K).

q=0

Remark. The Euler-Poincaré characteristic is the alternating sum of the Betti
numbers (once we show that H(K) = H,(|K]) for all g).

Proor. Consider the chain complex C,(K):
0— Ca(K) 25 Cary(K) — -+ — 1K) 2+ Co(K) — 0.

Each C,(K) is a (free abelian) group of rank «,. Of course, H (K)=
Z,(K)/B,(K) = ker 3,/im d,.,; Exercise 5.5 thus gives

rank H (K) = rank Z,(K) — rank B(K).

Note that rank B, (K) = 0(in fact B,(K) = 0). For each g > 0, there is an exact
sequence

0 —» Z,(K)— C,(K) 2 B,_,(K) — 0,
again Exercise 5.5 applies, and
a, = rank C,(K) = rank Z(K) + rank B,_,(K).

Hence

xK) = f‘b(— 1Ya, = io (—1Y(rank Z (K) + rank B,_,(K))
= a=

= i (—1) rank Z(K) + .z..: (—1) rank B,_,(K).
q=0

q=0

Changing index of summation in the last sum and using the fact that
rank B_,(K) = 0 = rank B, (K), we have

x(K)= fj (—1) rank Z(K) + i (—1)"*! rank B (K)
q=0

q=0

= i (—1)¥(rank Z (K) — rank B,(K))

q=0

= ¥ (=1 rank H/(K). 0

q=0
Remark. We have actually proved a more general result. If

€m0 Gt oy oy 0

is a chain complex in which each C, is a f.g. free abelian group of rank a;, then

3 (= 1)a, = ¥ (~1) rank H(C,).
=0

=0
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EXERCISES

7.19. Prove that

2 ifniseven

0 ifnisodd.

7.20. Compute x(T), where T is the torus (see Example 7.5 above).

*7.21. f Bis a set, let F(B) denote the free abelian group with basis B.If B = B, UB,,
show there is an exact sequence

0 F(B, N B;) > F(B,) & F(B;) % F(B) 0,

x(S") = {

where i is the “diagonal” map x+(x, x) and p is the “subtraction” map
pi(x, y)—x —y.

Theorem 7.16 (Excision). If K, and K , are subcomplexes of a simplicial complex
K with K, UK, = K, then the inclusion (K,, K, N K,) « (K, K,) induces iso-
morphisms, for all ¢ > 0,

H/(K,,K,NK;) 3 H(K, K,).

ProoF. By Lemma 6.11, it suffices to show that the inclusion C,(K,) +
C.(K;) « C,(K) induces isomorphisms in homology. But this map is the
identity: C,(K,) + C,(K,) = C,(K). If Y. m,0,€ C,(K), where g; denotes a
g-simplex in K, then 0, € K = K, UK,; that is, g, € K, or g, € K,. One may
thus collect terms and write Y m,0, = y, + y,, where y, is the sum of all those
terms involving o; in K,, and y, is the sum of the other terms involving o,
necessarily in K,. O

Corollary 7.17 (Mayer-Vietoris). If K, and K , are subcomplexes of a simplicial
complex K with K, UK, = K, then there is an exact sequence

= Hey (K) = Hy(K  NK;3) = Hi(K,) @ Hy(K;) = H(K) = Hy_ (K, NKp) =

PROOF. Use the proof of Theorem 6.3; even the induced maps are the same.
(W}

Comparison with Singular Homology

We are now going to compare H,(K) with H,(|K|). To facilitate our work,
we introduce reduced simplicial homology groups by augmenting C,(K),
because it is more convenient to compare A, (K) (defined below) with A, (1K |).

Definition. If K is an oriented simplicial complex, define C_,(K) to be the
infinite cyclic group generated by the symbol ( ), define d,: Co(K) = C_,(K)
by Y m,{(p>++ (Y. m,){ ), and define the augmented complex

8(K) = 0 = CalK) 3 Cos (K) =+ = C1(KY S ColK) B € (K) 0.
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Finally, define reduced simplicial homology groups by
A,(K) = H,(C,(K)).

Essentially, reduced simplicial homology differs from ordinary simplicial
homology in that it recognizes & as the (unique) (— 1)-simplex.
EXERCISES
7.22. Forall g 2 1, H(K) = H(K); Ho(K) = Ay(K) ® Z. (Hint: See Theorem 5.17.)
7.23. Show that A_,(C,(K)) = 0.
Corollary 7.18. Let K be the simplicial complex consisting of all the faces of an

n-simplex whose vertex set is linearly ordered (so that |K| ~ A"). Then
A(K)=0 forallq>0.

q

ProOF. The statement is that the augmented complex C,(K) is an exact
sequence; we prove this by appealing to Corollary 5.4. Thus it suffices to
exhibit a contracting homotopy,

{hy: C(K) = C,iy(K), allg > —1}
so that
Og+1hy + hg_, 0, = 1,, the identity on C,(K). (*)

The construction of h is patterned after the cone construction in Theorem 4.19.

Let v, be the smallest vertex in the orientation. For ¢ = —1, define
h_,: C_,(K)—= Co(K) by { >+ {vy) and extending by linearity. For ¢ > 0,
define h,: Cy(K) = C,,1(K) by {pq, ..., P>+ <V, Po, - --, P;) and extending
by linearity. Note that the last value is 0 if v, = p,. It remains to verify Eq. (»).

-~

_ If g= —1, the desired formula is Joh_, = 1; this is clear because
Ooh1({ D) =0({vo>) =< )>.1fg =0,

hq—laq<po: coey pq> = h,,—l ‘go(— l)‘<p01 ceesBis oo s pq)
= .io(—l)"(vo, Pos s Bis -y Pg)-

On the other hand,
aqﬂhq(Po: crey Pq) = aq+1<vOa Pos -+ P.,)

=<Pos -+ Pg?> — ‘;(—l)i<”o: Pos--+s Bis ---5 Pd

Therefore (hd + h)({Po» - .-, Pg)) = {Pos---» Pg)- O
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Remarks. (1) If K is any oriented simplicial complex and if s is a simplex in
K, then the induced orientation on s is a linear ordering of Vert(s).

(2) Note how much simpler this proof is than the corresponding result for
singular homology. The next result is also simpler than its singular version,
and so we present it; however, we do not use it in the proof of Theorem 7.22.

Corollary 7.19. Let K consist of all the faces of an oriented n-simplex (so that
Vert(K) is linearly ordered), and let L be the subcomplex of all the proper faces
(so that |L| ~ S"~!). Then

A

)0 ifg#n—1
(L)_{Z ifg=n-1.

PRrOOF. Since L is a subcomplex of K, C,(L) is a subcomplex of C,(K), and so
there is a commutative diagram

0— 0 » Cooy(L) — - — G(L) — C4(L) — O

| |

0 — GIK) —= Go(K) == -+ — Co(K) — C.4(K) — 0,

where the vertical maps (for — 1 < g < n — 1) are identities. Now the bottom
row is an exact sequence, by Corollary 7.18. It follows easily that H,(L) =
A(K)=0 for all g <n— 1; moreover, A(L)=0 for all g>n—1, by
Theorem 7.14(ii).

Note that C,(K) = Z because K has only one n-simplex. Exactness of the
bottom row of the diagram thus gives

Z>C/(K)~imd, = kerd,_,.

On the other hand, A,_,(L)=kerd,_, (because C,(L)=0 implies that
B,_,(L) = im 8, = 0). We conclude that fl,_,(L) = Z, as desired. m]

The reader can readily construct an example of a simplicial complex K hav-
ing subcomplexes K, and K, with K=K, UK, such that |K|#|K,|°U|K,|°.
Nevertheless, excision and Mayer-Vietoris do hold for |K|, |K,|, and |K,};
this will follows from Theorem 7.16 and Corollary 7.18 once we prove that
H (K, K,) = H(IK|, |K,|). The next lemma is a special case of this extended
(singular) Mayer—Vietoris theorem that will be used to establish the general
case.

Lemma 7.20. Let K be a finite simplicial complex, and let s be a simplex of
highest dimension; define K, = K — {s} and K, = {s and all its proper faces}.
Then there is an exact Mayer—Vietoris sequence in singular homology

o= H(IK IN[K;|) = H(IK, ) @ H(IK2]) = H(IK]) = He_, (1K, | DK )) — -+



150 7. Simplicial Complexes

Proor. It suffices to prove excision here. Define V = s — {x}, where x is an
interior point of s. Then V is an open subset of |K,| (because s has highest
dimension), and |K, NK,| = |K,|N|K,] = |s] is a deformation retract of V
(deform along radii from x). There is a commutative diagram with exact rows
and with vertical arrows induced by inclusions:

© — H (K, NK,|) — H(IK;]) — H(IK,|,|IK,NK;|)) — -
1

== H((V)  — H(K;)) —  H(K,;,V) — -

Since |K, N K,| is a deformation retract of V, the inclusion is a homotopy
equivalence, hence it induces isomorphisms for all g. The five lemma now
shows that inclusion induces an isomorphism for all g

Hy (1K, K, INIK,) 2= H(IK,), V).

Let X, = |K,|UV. Note that X, N{K,| = (IK,|JUV)N|K,| = (IK,IN|K,)U
(VN|K,|) = V because |K,|N|K,| =|K,NK,|c V c|K,|. Furthermore,
|K;| = X} and, since |K,| — |K,| is an open subset of |K,]|, it follows that
{K,| — IK,] € |K,|°. Therefore X;U|K,|°=|K| and (singular) excision
holds: inclusion induces isomorphisms for all g

H(IK,), V) = H (IK|, |K,)).
Composing with the earlier isomorphisms gives the desired isomorphisms
H(IK,|, IK,|N|K,|) = H(|K|, 1K,|) forallg. a

Lemma 7.21. For each oriented simplicial complex K, there is a chain map
Jj=j%: C,(K)— S,(IK|) with each j, an injection. For every simplicial map
¢@: K = K', there is a commutative diagram

CK) —2, ¢k
i j
S(K)) —— S(UK).
lol,

Moreover, if K, and K, are subcomplexes of K as in Lemma 7.20, then there is
a commutative diagram

Hq(K) — q-—l(Kl nKZ)

Hy(IK|) —— H,_,(IK,NK5;]),

where the horizontal maps are connecting homomorphisms of Mayer—Vietoris
sequences.
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ProoF. Define j_;: C_,(K) = S_;(JK|) by ¢ >+~ [ ] and extending by lin-
earity. If ¢ > 0, define j: C,(K) = S,(IK]) by

j¢(<po: cery p¢>) =0,

where a: A? — |K| is the affine map ) t,e,— Y t,p,. The routine verifications
of the stated properties of j are left to the reader. O

Theorem 7.22. For every oriented finite simplicial complex K, the chain map
Ji Cu(K)— S.(IK}) (of Lemma 7.21) induces isomorphisms,® for all q 2 0,

AK) = A(K)).

Proor. We do an induction on the number N of simplexes in K. If N = 1,
then K = & and |K| = & (reduced homology recognizes & as a simplex),
and A,(K) = 0 = A,(IK]) in this case.

Assume that N > | and choose a simplex s e K of highest dimension.
As in Lemma 7.20, define

K,=K-{s} and K, = {sand all of its proper faces}.

Thus K, UK, = K and K, N K, = {all proper faces of s}. Note that the vertex
sets of K, and of K, N K, are each linearly ordered in the induced orientation.
Since each of K, and K, N K, have fewer than N simplexes (the alternative
is that K, = K — {s} = & and K =5, which must now be a 0O-simplex),
the inductive hypothesis says that the respective chain maps j induce iso-
morphisms for each g > 0:

Hq(Kl) :; Hq(IKll) and Hq(Kl nKZ) : Hq(lKl nKZI)'

There are two Mayer—Vietoris sequences, from Corollary 7.17 and Lemma
7.20, and the maps j between them give a commutative diagram with exact
rows, by Lemma 7.21.

A(K\NK,) = A(K)BA(K,) - B(K) = B,,(K,NK;) - A, (K)DA,-,(K,)
n.(lenKzl)-oﬂ.(lx.|)éﬂ.(|K,n-oﬂ.(fxn-oﬂ.-.(ué,nxzn-ﬂ -,ux,l)eéﬂ -1(1K3 )
By Corollary 7.18
R(K,)® B(K,) = By(K,);
similarly, since |K,| = s is contractible,

ALK\ ) ® Ay(IK,l) = By(IK, ).

Since all vertical maps are now induced by j, all save the middle one are known
to be are isomorphisms. But the five lemma (Theorem 5.10) applies to show
that the middle map j,: B,(K) - A,(|K)|) is also an isomorphism. O

$ jis actually a chain equivalence; this follows from Theorem 9.8.
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Corollary 7.23 (Alexander-Veblen). Let X be a polyhedron having triangula-
tions (K, h) and (K’, k). Then H,(K) = H(K’) for all ¢ 2 0.

Proor. By hypothesis, |K| = (K[ But H/(K)= H/(|K|) and H(K') =
H, (K1), by Theorem 7.22. 0

Corollary 7.24. If X is a polyhedron of dimension m, then

(i) H(X)isf.g. for everyq > 0;
(i) H(X) = 0 for all g > m;
(1ii) H(X) is free abelian.

ProoF. Immediate from Theorems 7.22 and 7.14. a

Corollary 7.25. (i) If K is an oriented simplicial complex, then H,(K) is inde-
pendent of the orientation.

(ii) If X is a polyhedron with triangulation (K, h), then the Euler-Poincaré
characteristic is independent of the triangulation.

ProoF. (i) H,(|K|) is independent of any ordering of Vert(K).
(ii) Combine Theorems 7.22 and 7.15. 0

One can now define x(X), the Euler—Poincaré characteristic of a poly-
hedron X as x(K), where there is a triangulation (K, h) of X.

One last comment before proceeding. First attempts to prove Corollary
7.23 were aimed at the polyhedron itself. For many years, one tried to prove
the Hauptvermutung (principle conjecture): if (K, h) and (L, g) are triangula-
tions of a polyhedron X, then there are subdivisions (not necessarily bary-
centric) K’ of K and L’ of L with K’ = L’. Were this true, there would be an
easy proof of the topological invariance of H,(K). The Hauptvermutung was
proved for n = 3 by Moise (in the 1950s), but in 1961 Milnor constructed
counterexamples to it for every n > 6.

The following notion is a substitute for homotopy in X"

Definition. Let ¢, : K — L be simplicial maps. Then ¢ is contiguous to y,
denoted by ¢ ~ ¢, if, for each simplex s = {p,, ..., p,} of K, there exists a
simplex s’ of L with both {@po, ..., ¥p,} and {¥p,, ..., ¥p,} faces of s’.

EXERCISES

7.24. Let ¢, ¢: K — L be contiguous.
(i) Prove that |@} =~ |¢|.
(ii) @4 = ¥,: Hy(K) = Hy(L) for all ¢ 2 O (Hint: Theorem 7.22.)

7.25. Give an example showing that contiguity may not be a transitive relation.
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Definition. Let (X, x,) and (Y, y,) be pointed spaces. Their wedge X v Y is
the quotient space of their disjoint union, X || Y in which the basepoints are
identified.

X0 =Yo

It is easy to see that if X and Y are polyhedra, thensois X v Y.

EXERCISES

*7.26. (i) Show that wedge is associative; thatis,(X v Y)v Zand X v (Y v Z) are
homeomorphic pointed spaces.
(i) If K, and K, are polyhedra, then for alln > 1,

"a(Kl v KZ) = Hu(Kl) e H-(Kz)
(Hint: Mayer-Vietoris, Corollary 7.17.)

(iii) Letm,,...,m, bea sequence of nonnegative integers. Prove that there exists
a connected polyhedron X of dimension n with H,(X) free abelian of
rank m, foreveryg=1,...,n

7.27. (i) If L is a subcomplex of K, prove that for all g > 0,
Hy(K, L) = H(IK|, |L).
(Hint: Five lemma and Theorem 7.22.)

(i)) There is an exact Mayer-Vietoris sequence in singular homology corre-
sponding to any pair of subcomplexes K, K, of a simplicial complex K for
which K = K, UK,, namely,

= HIK INIK;) — H(IK, ) @ Hy(IK 1) = H(IK]) = Hy-y (1K DK ) =0

*7.28. Let K be a simplicial complex and let p € Vert(K). Define the closed star of p
to be the subcomplex of K consisting of all the faces of those o in the star st(p).
Prove that the closed star of p is contractible. (Hint: Exercise 7.7(ii).).

The next result considers the question, generalizing the Mayer- Vietoris theo-
rem, of relating the homology of K to the homology of subcomplexes whose
union is K (also see [K. S. Brown, p. 166]).

Definition. A cover of a simplicial complex K is a family of subcomplexes
¥ ={L;:aeA}withK=|JL,.
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Definition. Let & = {L,: a € A} be a cover of a simplicial complex K. The
nerve of #, denoted by N(%), is the simplicial complex having vertices
Vert(N(£)) = A and with {ay,...,a,} a simplex if () L,, # & (sce Example
19)

Theorem 7.26 (Leray).® Assume that & = {L,: a € A} is a cover of a simplicial
complex K such that each L, and every finite intersection L, NL, N---NL,
is acyclic. Then

H(K) = H{(N(£))
Jorallg > 0.

PROOF. It suffices to construct a simplicial map f: Sd K —+ N(£) that induces
isomorphisms H,(Sd K) = Hy(N(Z)) (because Hy(K) = H,(Sd K)since |K| =
ISd K|). We view Sd K as an abstract simplicial complex, as in Example 7.11.
Linearly order the index set A4, say, 4 = {a,, ..., a,}. Define f: Vert(Sd K) -
Vert(N(Z)) = A as follows: for each simplex o € K, there exists L, witho e L,
(for £ is a cover of K); define f(0) = «a;, where «; is the first a for whicho € L,.
We claim that f is a simplicial map. If {g,, ..., 6,} is a simplex in Sd K, then
0y <0y < <0, thusg, < g foreveryi < g, hence oy € L, foreveryi <q.
Therefore { fo,, ..., fo,} is a simplex in N(&), for 5, € L,,N---NL,, and so
this intersection is nonempty.

The proof that f induces isomorphisms in homology is by induction on
n=|A|. If n = ], then N(£) is a point and K = L_ has the homology of a
point: Hy(L,) = 0 for all ¢ > 0 (K is acyclic because, by hypothesis, every L,
is acyclic). The result is thus obvious in this case.

Assume that 4 = {a,, ..., &,4, }. Define

K,=L,U---UL, and K,=L,
(thus &, = {L,,..., L, } is a cover of K, }; define
N, = N(&,).
Note that N, is a subcomplex of N(£), as is N, defined by
N, = closed star of a,,,, .

The construction of f shows that if s € K, then f(0) € {«,, ..., «,}. It follows
by induction that f]Sd K, induces isomorphisms H(Sd K,) 3 H,(N,).
Furthermore f|Sd L, induces isomorphisms Hy(Sd K,) = Hy(N,) because
K, =L, ,, hence 8d K,, is acyclic (by hypothesis) and N, is acyclic (by
Exercise 7.28).

There is an obvious cover of K, N K, namely, .4 = {M, ,..., M, }, where
M, is defined by M, = L, NL, , . Note that .4 has the property that each

It is proved in [Bott and Tu, p. 148] that if every finite intersection is contractible, then
=, (1K) = x,(N(£)).
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M,, and every finite intersection of them is acyclic. Since Sd(K,NK,) =
Sd K, NSd K,, it follows by induction that f]Sd(K, N K;) induces isomor-
phisms H,(Sd(K, NK,)) 5 H(N(4)). But it is easy to see that N(.#) =
N, NN, hence H,(N(4)) = H(N, N N,). Of course, Sd K = Sd K, USd K,
and N, UN, = N(&), so that we may apply Mayer-Vietoris (Corollary 7.17)
to assert exact of the rows in the following commutative diagram.

"q(ﬂlnpl) - .(ﬂ|)$ H.(ﬂz) ind H.(Sd K) - ".-l(ﬂl nﬂz) —-H —l(ﬂl)QHrl(ﬂz)
l l ! ! !
H(N,NN;) = H(N,) ® H,(N;) = H(N(Z)) - Ho (N, NN;) = Hy_(Ny)® H,- (N, );

here B, denotes Sd K, for i = 1, 2, and the vertical maps are induced by
restrictions of f. We have already seen that the four outside vertical maps are
isomorphisms, and so the five lemma gives f,: H,(Sd K) = H(N(Z)) an iso-
morphism for all g. (]

Definition. An acyclic cover of a simplicial complex is a cover satisfying the
hypotheses of Theorem 7.26.

Corollary 1.27. If &£ is an acyclic cover of a simplicial complex K, then
H/(K) = 0 for all g > dim N(£).

Remark. Compare Exercise 6.4.

EXERCISES

7.29. In the proof of Theorem 7.26, suppose that we define g: Sd K — N () as follows:
g(o) = a, where g € L, (but a may not be the first such index in the ordering of
A). Show that g and f are contiguous.

7.30. Let {M,L,,...,L,} be acover of a simplicial complex K such that (i) each L, is
acyclic, (i) M N L, is acyclic for each i, and (iii)L,N L, c M for all i # j. Prove
that H,(K) = H,(M).

Calculations

The significance of Theorem 7.22 is that one can compute homology groups
of polyhedra using simplicial homology. That this is valuable is clear from
Corollary 7.24, for we now know that H, (IK|) is always f.g., and this is
important because such groups are completely classified.

Fundamental Theorem. Let G be a f.g. abelian group.

(i) G = F ® T, where F is free abelian of finite rank r > 0 and T is finite.
(ii) T is a direct sum of cyclic groups, T = C, @ --- @ C,, with order C, = b,,
say, and with b,|b,|---|b, (b,|b, means “b, divides b,"). The numbers b,,
..., by are called the torsion coefficients of G.
(iii) rank F and the torsion coefficients are invariants of G, and two f.g. abelian
groups are isomorphic if and only if they have the same rank and the same
torsion coefficients.
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Let F and F’ be frec abelian groups with finite bases {x,, ..., x,} and
{x1, ..., Xu}, respectively. If h: F — F' is a homomorphism, then h(x,) =
Y d;x; with d;, € Z. Thus, given ordered bases of F and F', h gives anm x n
matrix D = [d;] over Z, where the ith column consists of the coefficients of
h(x,) in terms of the x;. In light of Theorem 4.1(i), h is completely determined
by this matrix.

Definition. A normal form is an m x n matrix N over Z such that

A 0O
""[o 0]’

where A is a diagonal matrix, say, A = diag{b,, b,, ..., b,}, with b, |b,|--- |b,.
(Zero rows or columns bordering A need not be present.)

There is an analogue of Gaussian elimination for matrices over Z. Define
three types of elementary row operation: (i) interchange two rows, (ii) multiply
arow by + 1, and (iii) replace a row by that row plus an integer multiple of
another row; there are three similar elementary column operations.

Theorem (Smith Normal Form). Every rectangular matrix D over Z can be
transformed, using elementary row and column operations, into a normal form;
moreover, this normal form is independent of the elementary operations and is
thus uniquely determined by D.

The proof of this theorem uses nothing more sophisticated than the division
algorithm in Z; indeed the usual proof is itself an algorithm (e.g., see
(Jacobson, p. 176]).

Theorem. For any oriented simplicial complex K, there is an algorithm to
compute H(K) for all q > 0.

For a proof, sce [Munkres (1984), p. 60].

Here is the algorithm. Each Ci(K) is a free abelian group equipped with a
(finite) basis of oriented g-simplexes. As above, each d,: C((K) - C,-,(K)
determines a matrix D, over Z (with entries 0, 1, —1). Let N, be the Smith
normal form of D,, let A, = diag{b{, ..., bf } be the diagonal block of N, let
¢ 2 0 be the number of zero columns of N,, and let r, > 0 be the number of
nonzero rows of N,. Then the gth Betti number of K is ¢, —r,,,, and the
torsion coefficients of H,(K) are those b1, ..., b}, if any that are distinct from 1.

Here is the reason that the algorithm computes Betti numbers. Regard each
integer matrix D, as a matrix of rational numbers. Then the rank of the matrix
D, is the rank of the abelian group B,_,(K) and the nullity of D, is the rank
of Z,(K). Therefore

rank H,(K) = rank Z(K) — rank B,(K) = nullity D, — rank D,,,.
In spite of this algorithm, one cannot in practice compute H (X) with its
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use because of the large number of g-simplexes in a triangulation (K, h) of X.
In short, the matrices D, are too big and the calculations are too long. One is
led to modify the definition of triangulation to obtain cellular decompositions
of a space, which are more useful (we shall soon give an algebraic method of
reducing the number of simplexes).

We illustrate these remarks by trying to compute H,(X) via simplicial
homology when X is either the torus or the real projective plane.

ExaMmpLE 7.12. In Example 7.5, we gave an explicit triangulation (K, h) of the
torus X with dim K = 2; moreover, if a, denotes the number of g-simplexes
in K, then a, = 18, a, =27, and a5 =9. It follows from Corollary 7.24
that H,(X) =0 for all ¢ > 2 and that H,(X) is free abelian. Since X is
path connected, Hyo(X)=Z. Now x(K)=9—-27+ 18 =0, so that 1 +
rank H,(X) = rank H,(X). To complete the computation using the algor-
ithm, we must examine the matrices of d, and d,; the first is 18 x 27 and the
second is 27 x 9. These matrices are too big! Even a minimal triangulation
having 14 triangles is not a significant improvement. These matrices will be
shrunk in Example 7.14.

Let us instead use a Mayer-Vietoris sequence to compute H,(X). Take two
circles a and b on the torus. Choose two overlapping open cylinders X, and

X,, each containing a and b, with X, UX, = X and such that X,NX, =
U, U U,, a disjoint union of two open cylinders with a = U, and b = U,. Note
that X,, X,, U,, and U, each have the homotopy type of a circle S'. There is
thus an exact sequence of reduced homology groups:

0 — Ay (X) - A,(U,UU) L B,(X,) @ A,(X3) » B, (X) — Ay(U,UU,) 0.

Since we know generators of H,(S'), we can abuse notation and write
A,(U,) =<a) and A,(U,) = ¢(b). Recall that if i,: U,UU,< X, and
iy: U,U U, & X, are inclusions, then the map f in the sequence is given by
cls z—(i,, Cls 2, i,, cls 2). In particular, i,,a and i, b are generators of
A,(X,) and i,,a and i, b are generators of A,(X,). It follows easily that f
cannot be injective; therefore A,(X) # 0. Furthermore, since A,(U,U U,) =
Z®Z, we must have A,(X)=Z (otherwise, imf is a subgroup of
B(X)®8,(X;)=Z®Z of rank 0, i, imf =0, and this is not so).
One can show that (Z @ Z)/im f = Z. Since H,(X) = Z ® (Z ® Z)/im f (see
footnote on page 103), it follows that A,(X) = Z @ Z. (A more sophisticated
argument showing that H,(X) = Z @ Z uses the Hurewicz theorem (Theorem
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4.29) since we know that
1n(X)=n,(S' x S)=n,(S) x n,(S')=ZDZ)

We agree that this proof is not satisfying, because it really does not use a
triangulation of X. See Example 7.14 for a better version.

ExAMPLE 7.13. Let X be the real projective plane RP? regarded as the quotient
space of D? by identifying antipodal points.

Note that dim K = 2, a;, = 10, a, = 15, and a = 6. Again, Hy(X) = Z, but
now x(X)=6— 15+ 10 = 1. It follows that rank H,(X) = rank H,(X). If
{=44,5) — (3,5) + (3,4), then it is easy to see that { is a cycle, that is,
3¢ = 0. To see that cls { # 0, assume that { = 3¢, where & = ) 19, m,0,. Com-
puting da, explicitly for each of the ten ¢, and comparing coefficients, one sees
that all the m, are equal; this leads to the contradiction that the coefficient of,
say, {4, 5) in the expression ¢¢ = { is even. If § is the 2-chain which is the
sum of all the 2-simplexes in K with signs chosen according to the orientations
above, then dp = 2{ (every edge inside D? occurs exactly twice as a face of a
2-simplex and with opposite orientations; hence only the edges on the circum-
ference survive). It turns out that H,(X) = Z/2Z (we have shown only that it
has an element, namely, cls {, of order 2), hence rank H,(X) = 0. It follows
that H,(X) = 0, since it is free abelian of rank 0. This example thus shows that
the top homology group may be zero and also that there may be torsion
coefficients. We shall complete this calculation in Example 7.15.

We have seen in Example 7.12 that the algorithm for computing homology
is impractical for a space as simple as the torus. The following technique is
more practical.

Definition. A subcomplex E;, of a chain complex E, is adequate if, for all ¢ > 0:

(i) if z € Z,, then there exists 2’ € Z, withz — 2" € B,;
(ii) if z’ € Z, and 2’ = dc for some c € E,.,, then there exists ¢’ € E,,, with
2' =adc'.
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(Of course, Z, and B, are cycles and boundaries of E,, and Z, and B; are cycles
and boundaries of E}.)

Lemma 7.28. If E, is an adequate subcomplex of E,, then, for every q, the map
z' + B, 2’ + B, is an isomorphism

H,(E,) 5 H(E,).

PROOF. Let 0: 2’ + B,+— 2z’ + B, be the “enlargement of coset” map; it is well
defined because B, = B,. Now ker 8 is (Z, N B,)/B,, and this is zero because
axiom (ii) says that Z N B, c B,. Finally, im0 =(Z; + B,)/B, = Z,/B,,
because axiom (i) says that Z; + B, = Z,. a

Definition. A chain complex E, is finitely based if each term E_ is a f.g. free
abelian group with a specified basis; the elements of the specified basis of E,
are called (algebraic) g-cells.

If K is a finite oriented simplicial complex, then C(K) is finitely based with
g-cells all symbols {po, ..., p,>, where p, < p, <'-- < p, and {po, ..., P}
spans a simplex in K.

Lemma 7.29. Let E, be a finitely based chain complex, and let o be a g-cell such
that ¢ = dt for some (q + 1)-cell t. If g is not involved in 0t' for any(q + 1)-cell
t' # 1, then one may remove ¢ and t leaving an adequate subcomplex E,.

ProoF. Let E,, be the free abelian group with basis all (g + 1)-cells t' # 1,
let E, be the free abelian group with basis all g-cells ¢’ # o, and let E, = E,
forall p # g, g + 1. It is easy to see that E, is a subcomplex of E, if we show
that im d,., , < E,.,. It suffices to see that there are no (q + 2)-cells ¢ with
dc = +1 + y, where tis not involved in y. If such a c exists, then 0 = +0 + dy
and g is involved in 8y, contrary to the hypothesis. It remains to check axioms
(i) and (ii) in each dimension.

Dimension g + 1. To check (i), let ze Z,,,. Is there 2’ e Z,,, withz — z' €
B,? Now z = mt + «, where m € Z and t is not involved in a. Since z is a cycle,
0 = 0z = mo + Oa, where (by hypothesis) ¢ is not involved in da. But 0 =
mo + dx is an equation relating basis elements, hence m = 0 = da. Thus
a€Z,,, and z — a = 0 € B,,,. To check (ii), assume that 2’ € Z,,, and 2’ = dc
forsomece E,,,.Since E,, = E.,, we have c € E_,,.

Dimension q. To check (i), let z € Z,, and write z = no + f, where ne Z
and o is not involved in B. Then 0 = 3z = ndo + df = 3P (because o = J1).
Therefore f € Z, and z — B = ng = ndt € B,. To check (ii), take z' € Z; with
2’ =dcforsomece E,,,;thusc =mt + ¢’'forme Z and ¢’ € E,,. Hence

Z2' = 0c = mdt + éc’ = mo + oc'.

Since ¢ is not involved in either dc’ or z', it follows that m = 0. ]
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Theorem 7.30 (Reduction). Let E, be a finitely based chain complex. Let o be
a g-cell involved in the boundary of precisely two (q + 1)-cells T, and t, and
with opposite sign; that is,

0ty,=0+c, and dty;=—0 +c,,

where g is involved in neither ¢, nor c,.
Then replacing t, and t, by t, + t, and deleting o yields an adequate
subcomplex.

Proor. Change the basis of E,,, by replacing t, by 1, + 1, and 1, by 1,;
change the basis of E, by replacing ¢ by ¢’ = ¢ + ¢,. We claim that this new
finitely based chain complex satisfies the hypotheses of Lemma 7.29. Note that
o' = 0t,. Let t be a (g + 1)-cell with t # t,. Either t =1, + 7, or 7 is an
original (g + 1)-cell. In the first case, dt = é(t, + 1,) = ¢, + ¢, and this does
not involve ¢’ because it does not involve ¢. In the second case, the hypothesis
says that dr does not involve o, and hence it does not involve ¢’ = ¢ + c,. It
follows from Lemma 7.29 that removal of t, and ¢’ leaves an adequate
subcomplex (note that t, was removed at the outset, being replaced by t,).
Finally, rewrite the basis of E_ in terms of the original basis. 0O

In Examples 7.5 and 7.6, certain spaces were constructed from the square
I x I by identifying various edges; the following discussion will compute the
homology groups of these spaces.

Let P be a polygon in the plane having m sides, with vertices ordered
counterclockwise, and let X be the quotient space of P that identifies certain
edges. The following triangulation of P induces a triangulation of X. Let A,

E
8 F
0
c G
D H

D be consecutive vertices of P. Insert an interior vertex 0 and new (boundary)
vertices B, C as illustrated, and draw the edges 04, 0B, 0C, 0D. Insert new
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vertices E on 04 and H on OD. Finally, draw EH, label the new vertices F and
G, and insert edges BE, CF, and DG. This triangulation should be repeated
for each sector of P. Now orient every triangle counterclockwise. Note that
the triangle 04D has been subdivided into nine triangles, so that P is sub-
divided into 9m triangles.

Let K denote this triangulation of X, and let C,(K) be the simplicial chain
complex of K. Then C,(K) has nonzero g-cells only for g < 2. We shall use
reduction (Theorem 7.30) to replace C,(K) by an adequate subcomplex having
fewer cells.

Apply reduction to remove successively the 1-cells corresponding to the
edges OF, 0G, BE, BF, CF, CG, DG (each lies on the boundary of exactly two
2-cells); the picture is now

Reduce by removing the O-cells B, C, F, G; now remove the 1-cell EH, and
then the O-cells E and H. What remains is

Now successively remove all but two of the radii, leaving
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Finally, remove the O-cell 0 (which lies on exactly two 1-cells), making the
broken line A0 + OD into a new 1-cell; reduce once again to eliminate this
1-cell (which lies on exactly two 2-cells).

In sum, we have arrived at an adequate subcomplex of C,(K) having at
most m O-cells (Example 7.14 shows that there can be fewer than m), at most
m 1-cells, and one 2-cell (the polygon itself).

EXAMPLE 7.14. Let X be the torus arising from identifying opposite edges of
a square P as follows.

a
v < v
b Ab
v < v
a

Note that, in this case, all the vertices (corners) of the square are identified to
a common vertex. The adequate subcomplex obtained above has chains

E;=(P), E,=<(a)®(b), Eo=<v),
and differentiations
oP=a-b—-—a+b=0,
da=v—v=0=3b, and Ov=0.

(The differentiations in a subcomplex are restrictions of the differentiations in
the original subcomplex.) We see that

Z,=(P), Z,=(a)@ ), Z,=<0v),

B, =0, B, =0, By, =0,
and we conclude that

H,=Z, H =128L, Hy=1Z.

Of course, this result agrees with Example 7.12. Note that a basis of H,(X)
consists of the two “obvious” circles.

EXAMPLE 7.15. Let X be the real projective plane RP?. Here are two pictures
(m=1andm=2)
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a
w < v
v v
by Ab
v P w
a a

For the first picture, the adequate subcomplex has chains
E, =(P), E,=(a), E;=<v),
and differentiations
OP=a+a=2a da=v—v=0 and Jv=0.

We conclude that

Z2,=0, Z,=(a), Z,=<v),

B,=0, B,=(2a), B,=0,
hence

H;=0, H =2/2Z, H,=1.

If we compute using the second picture, the adequate subcomplex has
chains

E;=(P), E,=<(a)@®b), Eo=<(v)®W)
and differentiations
0P=2a+b), da=w—v, db=v—w, dv=0=0w.

We cqﬁcludc that

Z,=0, Z,=<a+b) Z,=(vd>® W,

B, =0, B, =(2a+b)), By=<{(w-v),
and again

Hy;=0, H =2Z2Z, H,=1

(one needs a little algebra to see that H, is infinite cyclic: the homomorphism
Z, — Z defined by mv + nw— m + n is a surjection with kernel B,, and so the
first isomorphism theorem gives H, = Z,/B, = Z).

Remark. It is known (see [Massey (1967), Chap. 1]) that every compact
connected 2-manifold can be obtained by identifying edges of an even-sided
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polygon. The method of adequate subcomplexes is thus strong enough to
compute their homology groups.

EXERCISES
7.31. Show that the homology groups of the Klein bottle are
H,=0forp>2 H,=Z®(Z/2Z), and H,=1Z.

7.32. Let P be a polygon with k vertices vg, v,, ..., U,-; (Where we assume that v, is
adjacent to v, _, for all i (subscripts are read mod k)). Orient the edges in the
direction from v,_, to v,, and now identify all edges with one another. The
quotient space is called the k-fold dunce cap (when k = 2, the dunce cap is the
real projective plane).

A

Y
Y

Prove that the homology groups of the k-fold dunce cap are:
H,=0forp>22 H, =Z/kZ, H,=1

Fundamental Groups of Polyhedra

Let us turn our attention from the homology groups of a polyhedron to its
fundamental group. We begin by mimicking, in an atopological setting, our
carlier discussion of multiplication of paths.

Definition. An edge e = (p, g) in a simplicial complex K is an ordered pair of
(not necessarily distinct) vertices lying in a simplex of K; p is called the origin
of e and q is called the end of e.

Definition. An edge path o (of length n) in X is a finite sequence of edges,
a= e‘el"'e.,

whereend ¢, = origine,,, foralli = 1,2,...,n — 1. We call origin e, the origin
of a, denoting it by o(x), and we call end e, the end of a, denoting it by e(a).
An cdge path a is closed if o(a) = e(a). Ifa = e, e, and o’ = ¢} - e, are edge
paths with e(x) = o(«’) then their product is
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’ ’

o =€, "€e,e]" " Cm.
Clearly, the product of edge paths, when defined, is associative.

Notation. If e = (p, q) is an edge, then e™! = (g, p) (which is also an edge). If
a =e, e, is an edge path, then its inverse is a™! =¢;'---e;'. If e = (p, p),
then e is called a constant path and is denoted by i,,.

In order to force a group structure on edge paths, we must (as with
fundamental groups) impose an equivalence relation on them.

Definition. Two edge paths « and «’ in K are homotopic, denoted by a ~ o, if
one can be obtained from the other by a finite number of elementary moves
consisting of replacing one side of the following equation by the other:

B(p,q)(q.r)y = B(p,")y,
where {p, g, r} lie in a simplex of K, and B, y are (possibly empty) edge paths
in K.

EXaMPLE 7.16. If K is the 2-simplex [po, P1» P2, then the edge paths a =
(Po» P1)(P1» P2) and & = (p,, ;) are homotopic; if K" is the 1-skeleton of K,
then these edge paths are not homotopic in K'*'.

(7]

Po Py

EXERCISES

7.33. Homotopy is an equivalence relation on the set of all edge paths in K; the
equivalence class of a is denoted by [a] and is called a path class.

7.34. (i) Ifa ~ o', then o(x) = o(«') and e(a) = e(«’). Conclude that o[«] and e[a] are
well defined.
(i) fa >~ o', B~ B and e(a) = o( B), then af ~ a'§'. Conclude that [a][B] =
[«B] is well defined when e[a] = o[ 8]).

Let n(K) denote the set of all path classes in K.

Theorem 7.31. n(K) is a groupoid, that is, it is an algebraic system satisfying the
Jollowing axioms:
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(i) each path class [«] has an origin p and an end q, where p, q € Vert(K), and

(i,1(a] = («] = (=1 (i ]
(ii) associativity holds when defined;
(iii) [«][«™'] = [i,] and [a™'][«] = [i,].

PRrooF. Straightforward (much simpler than the analogous Theorem 3.2).
a

Definition. Fix a vertex p € Vert(K) and call it a basepoint. The edge path group
is

n(K, p) = {[a] € n(K): o[a] = p = e[a]}.
Theorem 7.32. The edge path group n(K, p) is a group.
ProoF. Immediate from Theorem 7.31. a

Definition. A simplicial complex K is connected if, for every pair of vertices p,
q € Vert(K), there exists an edge path in K from p to g.

EXERCISES

7.35. Show that the following are equivalent: K is connected; the 1-skeleton K'*’ is
connected; | K| is connected; | K| is path connected.

7.36. If K is connected and p,, p, € Vert(K), then (K, p,) = n(K, p,). (Hint: See the
proof of Theorem 3.6.)

7.37. If K is a connected simplicial complex with 2-skeleton K‘®, then =(K, p) =
n(K'?, p).

Let a = e, - e, be an edge path in K from p, to p., where e, = (p;-,, pi)
fori=1,..., m. Let I, denote I subdivided into m intervals of equal length;
more precisely, let I, be the simplicial complex with Vert(l,,) = {vo, v}, ..., U}
(so v, = i/m)and I-simplexes {v;.,, v;} fori = 1,...,m. Anedge path « of length
m defines a simplicial map a°: I, = K by a°(v,) = p,. Of course, |o°|: I = |K] is
an honest path in | K|, where |a°| is the piecewise linear map determined by a°.

EXERCISES

7.38. Define a relation R on Vert(K) by vRw if there exists an edge path in K from v
to w.
(i) Show that R is an equivalence relation on Vert(K).

(ii) For each x € Vert(K), define the compoaent of K containing x as the family
of all simplexes s € K with Vert(s) contained in the R-equivalence class of
x. Show that each component of K is a connected subcomplex and that K
is their disjoint union.

(ili) If x € Vert(K) and L is the component of K containing x, then
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n(K, x) = n(L, x).

*7.39. (i) If « and B are edge paths in K of lengths m and n, respectively, and if
¢(2) = o(B), then there are simplicial maps a°: I, = K and °: I, -+ K (as
above). Define a simplicial map y: I,,,, = K by y(r;)) = a°(p)for0<i<m
and y(v,,;) = f°(v)) for 0 < j < n. Show that (af)° = y.

(ii) If @ and B are edge paths in K with @ ~ 8, then |a°| ~ |8°| rel 1.

In the sequel, we drop the distinction between « and a°, and we shall regard
an edge path as a simplicial map when convenient.

Definition. An edge path a = e, - ¢, is reduced if no ¢; is a constant i, and if
e#e;) forallj=1,2,...,n— 1; acircuit is a reduced closed edge path.

Definition. A tree is a connected simplicial complex T with dim T < 1 and
which contains no circuits.

A tree of dimension 0 must have only one vertex.

EXERCISES

*740. Ifa = e, - ¢, is a closed edge path in K with o(a) = p = e(a), and if there is a
tree T in K containing every edge e, then [«] = 1 in n(K, p). (Intuitively, trces
are contractible, and every path in a contractible space is nullhomotopic.)

*7.41. Let T, and T; be trees in a simplicial complex K. If T, N T; is connected, then
T,UT,is a tree.

Lemma 7.33. Every tree T' in a connected simplicial complex K is contained in
atree T with Vert(T) = Vert(K); moreover, a tree T in K is maximal if and only
if Vert(T) = Vert(K).

PROOF. Suppose there is a vertex g € Vert(K) with g ¢ Vcrt(T’). Choose p €
Vert(T). Since K is connected, there is a (reduced) edge path «in K from p = p,
to g, say, @ = (p, p,)(P1, P2)*"* (P, 9). Since p e Vert(T’) and g ¢ Vert(T"),
there is a smallest i