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Foreword

...both Gauss and lesser mathematicians may be justified in rejoic-
ing that there is one science [number theory] at any rate, and that
their own, whose very remoteness from ordinary human activities
should keep it gentle and clean.

— G. H. Hardy, A Mathematician’s Apology, 1940

G. H. Hardy would have been surprised and probably displeased with
the increasing interest in number theory for application to “ordinary human
activities” such as information transmission (error-correcting codes) and
cryptography (secret codes). Less than a half-century after Hardy wrote
the words quoted above, it is no longer inconceivable (though it hasn’t
happened yet) that the N.S.A. (the agency for U.S. government work on
cryptography) will demand prior review and clearance before publication
of theoretical research papers on certain types of number theory.

In part it is the dramatic increase in computer power and sophistica-
tion that has influenced some of the questions being studied by number
theorists, giving rise to a new branch of the subject, called “computational
number theory.”

This book presumes almost no background in algebra or number the-
ory. Its purpose is to introduce the reader to arithmetic topics, both ancient
and very modern, which have been at the center of interest in applications,
especially in cryptography. For this reason we take an algorithmic approach,
emphasizing estimates of the efficiency of the techniques that arise from the
theory. A special feature of our treatment is the inclusion (Chapter VI) of
some very recent applications of the theory of elliptic curves. Elliptic curves
have for a long time formed a central topic in several branches of theoretical
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mathematics; now the arithmetic of elliptic curves has turned out to have
potential practical applications as well.

Extensive exercises have been included in all of the chapters in order
to enable someone who is studying the material outside of a formal course
structure to solidify her/his understanding.

The first two chapters provide a general background. A student who
has had no previous exposure to algebra (field extensions, finite fields) or
elementary number theory (congruences) will find the exposition rather
condensed, and should consult more leisurely textbooks for details. On the
other hand, someone with more mathematical background would probably
want to skim through the first two chapters, perhaps trying some of the
less familiar exercises.

Depending on the students’ background, it should be possible to cover
most of the first five chapters in a semester. Alternately, if the book is used
in a sequel to a one-semester course in elementary number theory, then
Chapters III-VI would fill out a second-semester course.

The dependence relation of the chapters is as follows (if one overlooks
some inessential references to earlier chapters in Chapters V and VI):

Chapter I

Chapter 11

71N\

Chapter III Chapter V Chapter VI

Chapter IV

This book is based upon courses taught at the University of Wash-
ington (Seattle) in 1985-86 and at the Institute of Mathematical Sciences
(Madras, India) in 1987. I would like to thank Gary Nelson and Douglas
Lind for using the manuscript and making helpful corrections.

The frontispiece was drawn by Professor A. T. Fomenko of Moscow
State University to illustrate the theme of the book. Notice that the coded
decimal digits along the walls of the building are not random.

This book is dedicated to the memory of the students of Vietnam,
Nicaragua and El Salvador who lost their lives in the struggle against
U.S. aggression. The author’s royalties from sales of the book will be used
to buy mathematics and science books for the universities and institutes of
those three countries.

Seattle, May 1987

Preface to the Second Edition

As the field of cryptography expands to include new concepts and tech-
niques, the cryptographic applications of number theory have also broad-
ened. In addition to elementary and analytic number theory, increasing use
has been made of algebraic number theory (primality testing with Gauss
and Jacobi sums, cryptosystems based on quadratic fields, the number field
sieve) and arithmetic algebraic geometry (elliptic curve factorization, cryp-
tosystems based on elliptic and hyperelliptic curves, primality tests based
on elliptic curves and abelian varieties). Some of the recent applications
of number theory to cryptography — most notably, the number field sieve
method for factoring large integers, which was developed since the appear-
ance of the first edition — are beyond the scope of this book. However,
by slightly increasing the size of the book, we were able to include some
new topics that help convey more adequately the diversity of applications
of number theory to this exciting multidisciplinary subject.

The following list summarizes the main changes in the second edition.

e Several corrections and clarifications have been made, and many
references have been added.

e A new section on zero-knowledge proofs and oblivious transfer has
been added to Chapter IV.

e A section on the quadratic sieve factoring method has been added
to Chapter V.

o Chapter VI now includes a section on the use of elliptic curves for
primality testing.

o Brief discussions of the following concepts have been added: k-
threshold schemes, probabilistic encryption, hash functions, the Chor-
Rivest knapsack cryptosystem, and the U.S. government’s new Digital Sig-
nature Standard.

Seattle, May 1994



Contents

Foreword . . . . . . . . . . . . .00 a0 .V
Preface to the Second Edition . . . . . . . . . . . .. ... . ovil
Chapter I. Some Topics in Elementary Number Theory . . . . . L1
1. Time estimates for doing arithmetic . . . . . . . . . . . .1
2. Divisibility and the Euclidean algorithm . . . . . . . . . .12
3. CODGruences . . . . . . « « « v o e e e .19
4. Some applications to factoring . . . . . . . . . . . .. .27
Chapter II. Finite Fields and Quadratic Residues . . . . . . . . .31
1. Finite fields . . . . . . . . . ... ... ... .. .33
2. Quadratic residues and reciprocity . . . . . . . . . . . . 42
Chapter III. Cryptography . . . . . . . . . . . . . . . . .. . 54
1. Some simple cryptosystems . . . . . . . . . . .. .. . 54
2. Enciphering matrices . . . . . . . . . . . ... . 65
Chapter IV. PublicKey . . . . . . . . . . . .. ... ... . 83
1. The idea of public key cryptography . . . . . . . . . . . 83
22RSA . .. e . 92
3.Discretelog . . . . . ..o .97
4. Knpapsack . . . . .« . . ..o oo e e . 111
5. Zero-knowledge protocols and oblivious transfer . . . . . . 117
Chapter V. Primality and Factoring . . . . . . . . . . . . .. . 125
1. Pseudoprimes . . . . . . . . . . . ... . 126
2. Therhomethod . . . . . . . . . . . . .. ... .. . 138

3. Fermat factorization and factor bases . . . . . . . . . . . 143



X Contents

4. The continued fraction method . . . . . . . . . . . . .. 154
5. The quadratic sieve method . . . . . . . . . . . . . .. 160
Chapter VL. Elliptic Curves . . . . . . . . . . . .. .. ... 167
1.Basicfacts . . . . . . . . . . . . ... 167
2. Elliptic curve cryptosystems . . . . . . . . . . . . . .. 177
3. Elliptic curve primality test . . . . . . . . . . . . . .. 187
4. Elliptic curve factorization . . . . . . . . . . . . . . .. 191
Answers to Exercises . . . . . . . . ..o 00000 oL 200
Index . . . . . . . . .o 231

I

Some Topics in Elementary
Number Theory

Most of the topics reviewed in this chapter are probably well known to most
readers. The purpose of the chapter is to recall the notation and facts from
elementary number theory which we will need to have at our fingertips
in our later work. Most proofs are omitted, since they can be found in
almost any introductory textbook on number theory. One topic that will
play a central role later — estimating the number of bit operations needed
to perform various number theoretic tasks by computer — is not yet a
standard part of elementary number theory textbooks. So we will go into
most detail about the subject of time estimates, especially in §1.

1 Time estimates for doing arithmetic

Numbers in different bases. A nonnegative integer n written to the base b
is a notation for n of the form (dg_1dk—2 - - - d1do)s, where the d’s are digits,
i.e., symbols for the integers between 0 and b — 1; this notation means that
n=dg_1b*"1 +dg_obF "2+ .-+ dyb+do. If the first digit dx— is not zero,
we call n a k-digit base-b number. Any number between b*~1 and b* is a
k-digit number to the base b. We shall omit the parentheses and subscript
(---)» in the case of the usual decimal system (b = 10) and occasionally in
other cases as well, if the choice of base is clear from the context, especially
when we're using the binary system (b = 2). Since it is sometimes useful to
work in bases other than 10, one should get used to doing arithmetic in an
arbitrary base and to converting from one base to another. We now review
this by doing some examples.
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Remarks. (1) Fractions can also be expanded in any base, i.e., they
can be represented in the form (dx_1dk—2- " dido.d_1d_2-+*)p. (2) When
b > 10 it is customary to use letters for the digits beyond 9. One could also
use letters for all of the digits.

Example 1. (a) (11001001)2 = 201.

(b) When b = 26 let us use the letters A—7 for the digits 0—25,
respectively. Then (BAD)26=679, whereas (B.AD)g6 = 16—%.

Example 2. Multiply 160 and 199 in the base 7. Solution:

316
403
1254
16030
161554
Example 3. Divide (11001001); by (100111)2, and divide (HAPPY)26
by (SAD)zs.
Solution:
101 10811 KD ¥i5
100111 |T1001001 SAD |HAPPY
100111 GYBE
101101 QOLY
100111 CCAJ
110 MLP

Example 4. Convert 10® to the bases 2, 7 and 26 (using the letters
A—7 as digits in the latter case).

Solution. To convert a number n to the base b, one first gets the last
digit (the ones’ place) by dividing n by b and taking the remainder. Then
replace n by the quotient and repeat the process to get the second-to-last
digit d;, and so on. Here we find that

10° = (11110100001001000000); = (11333311)7 = (CEXHO)zs.

Example 5. Convert m = 3.1415926 -- - to the base 2 (carrying out the
computation 15 places to the right of the point) and to the base 26 (carrying
out 3 places to the right of the point).

Solution. After taking care of the integer part, the fractional part is
converted to the base b by multiplying by b, taking the integer part of the
result as d_1, then starting over again with the fractional part of what you
now have, successively finding d_2, d_3, .. .. In this way one obtains:

3.1415926 - - - = (11.001001000011111 - - -)p = (D.DRS- - -)26.

1 Time estimates for doing arithmetic 3

Number of digits. As mentioned before, an integer n satifying b1l <
n < bF has k digits to the base b. By the definition of logarithms, this gives
the following formula for the number of base-b digits (here “[ ]” denotes
the greatest integer function):

l
number of digits = [logbn] +1= [ ;;‘Z:] +1,
where here (and from now on) “log” means the natural logarithm loge.
Bit operations. Let us start with a very simple arithmetic problemn, the
addition of two binary integers, for example:

1111

1111000
+ 0011110
10010110

Suppose that the numbers are both k bits long (the word “bit” is short for

“binary digit”); if one of the two integers has fewer bits than the other, we

fill in zeros to the left, as in this example, to make them have the same

length. Although this example involves small integers (adding 120 to 30),

we should think of k as perhaps being very large, like 500 or 1000.

Let us analyze in complete detail what this addition entails. Basically,
we must repeat the following steps k times:

1. Look at the top and bottom bit, and also at whether there’s a carry
above the top bit.

2. If both bits are 0 and there is no carry, then put down 0 and move on.

3. If either (a) both bits are 0 and there is a carry, or (b) one of the bits
is 0, the other is 1, and there is no carry, then put down 1 and move
on.

4. If either (a) one of the bits is 0, the other is 1, and there is a carry, or
else (b) both bits are 1 and there is no carry, then put down 0, put a
carry in the next column, and move on.

5. If both bits are 1 and there is a carry, then put down 1, put a carry in
the next column, and move on.

Doing this procedure once is called a bit operation. Adding two k-bit
numbers requires k bit operations. We shall see that more complicated
tasks can also be broken down into bit operations. The amount of time a
computer takes to perform a task is essentially proportional to the number
of bit operations. Of course, the constant of proportionality — the number
of nanoseconds per bit operation — depends on the particular computer
system. (This is an over-simplification, since the time can be affected by
“administrative matters,” such as accessing memory.) When we speak of
estimating the “time” it takes to accomplish something, we mean finding
an estimate for the number of bit operations required. In these estimates
we shall neglect the time required for “bookkeeping” or logical steps other
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than the bit operations; in general, it is the latter which takes by far the
most time.

Next, let’s examine the process of multiplying a k-bit integer by an
£-bit integer in binary. For example,

11101
1101
11101
111010
11101
101111001

Suppose we use this familiar procedure to multiply a k-bit integer n
by an £-bit integer m. We obtain at most £ rows (one row fewer for each
0-bit in m), where each row consists of a copy of n shifted to the left
a certain distance, i.e., with zeros put on at the end. Suppose there are
¢ < £ rows. Because we want to break down all our computations into bit
operations, we cannot simultaneously add together all of the rows. Rather,
we move down from the 2nd row to the £'-th row, adding each new row to
the partial sum of all of the earlier rows. At each stage, we note how many
places to the left the number n has been shifted to form the new row. We
copy down the right-most bits of the partial sum, and then add to n the
integer formed from the rest of the partial sum — as explained above, this
takes k bit operations. In the above example 11101 x 1101, after adding the
first two rows and obtaining 10010001, we copy down the last three bits
001 and add the rest (i.e., 10010) to n = 11101. We finally take this sum
10010 + 11101 = 101111 and append 001 to obtain 101111001, the sum of
the ¢/ = 3 rows.

This description shows that the multiplication task can be broken down
into ¢ — 1 additions, each taking k bit operations. Since # — 1 < ¢ < ¥,
this gives us the simple bound

Time(multiply integer k bits long by integer £ bits long) < k.

We should make several observations about this derivation of an esti-
mate for the number of bit operations needed to perform a binary multipli-
cation. In the first place, as mentioned before, we counted only the number
of bit operations. We neglected to include the time it takes to shift the
bits in n a few places to the left, or the time it takes to copy down the
right-most digits of the partial sum corresponding to the places through
which n has been shifted to the left in the new row. In practice, the shifting
and copying operations are fast in comparison with the large number of bit
operations, so we can safely ignore them. In other words, we shall define a
“time estimate” for an arithmetic task to be an upper bound for the number
of bit operations, without including any consideration of shift operations,
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changing registers (“copying”), memory access, etc. Note that this means
that we would use the very same time estimate if we were multiplying a
k-bit binary expansion of a fraction by an ¢-bit binary expansion; the only
additional feature is that we must note the location of the point separating
integer from fractional part and insert it correctly in the answer.

In the second place, if we want to get a time estimate that is simple
and convenient to work with, we should assume at various points that we're
in the “worst possible case.” For example, if the binary expansion of m has
a lot of zeros, then ¢ will be considerably less than £. That is, we could
use the estimate Time(multiply k-bit integer by £-bit integer)< k - (number
of 1-bits in m). However, it is usually not worth the improvement (ie.,
lowering) in our time estimate to take this into account, because it is more
useful to have a simple uniform estimate that depends only on the size of
m and n and not on the particular bits that happen to occur.

As a special case, we have: Time(multiply k-bit by k-bit)< k2.

Finally, our estimate k¢ can be written in terms of n and m if we
remember the above formula for the number of digits, from which it follows
that k = [logan] + 1 < lfg-g—g+la.ndf= [logam] +1 < %99—’;‘+1.

Example 6. Find an upper bound for the number of bit operations
required to compute n!.

Solution. We use the following procedure. First multiply 2 by 3, then
the result by 4, then the result of that by 5,..., until you get to n. At the
(j — 1)-th step (j = 2,3,...,n — 1), you are multiplying j! by j + 1. Hence
you have n—2 steps, where each step involves multiplying a partial product
(i.e., j!) by the next integer. The partial products will start to be very large.
As a worst case estimate for the number of bits a partial product has, let’s
take the number of binary digits in the very last product, namely, in n!.

To find the number of bits in a product, we use the fact that the number
of digits in the product of two numbers is either the sum of the number of
digits in each factor or else 1 fewer than that sum (see the above discussion
of multiplication). From this it follows that the product of n k-bit integers
will have at most nk bits. Thus, if n is a k-bit integer — which implies that
every integer less than n has at most k bits — then n! has at most nk bits.

Hence, in each of the n—2 multiplications needed to compute n!, we are
multiplying an integer with at most k bits (namely j+1) by an integer with
at most nk bits (namely j!). This requires at most nk? bit operations. We
must do this n — 2 times. So the total number of bit operations is bounded
by (n — 2)nk? = n(n — 2)([logen] + 1)®. Roughly speaking, the bound is
approximately n2(logan)?.

Example 7. Find an upper bound for the number of bit operations
required to multiply a polynomial 3" a;z* of degree < n; and a polynomial
3" b;z? of degree < ny whose coefficients are positive integers < m. Suppose
Ng <ni.

Solution. To compute ), +j=v a;b;, which is the coefficient of z” in the
product polynomial (here 0 < v < n; + n) requires at most nz + 1 multi-
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plications and ny additions. The numbers being multiplied are bounded by
m, and the numbers being added are each at most m?2; but since we have
to add the partial sum of up to n2 such numbers we should take ngm? as
our bound on the size of the numbers being added. Thus, in computing the
coefficient of z¥ the number of bit operations required is at most

(n2 + 1)(logam + 1)+ nz(logz(n2m2) +1).

Since there are ny +ng + 1 values of v, our time estimate for the polynomial
multiplication is

(ny + ng + 1) ((n2 + 1)(logem + 1)% + na(loga(nam?) + 1)).

A slightly less rigorous bound is obtained by dropping the 1’s, thereby
obtaining an expression having a more compact appearance:

na(ny +nz2) [ (logm)?
log 2 log2

+ (logna + 2log m)) .

Remark. If we set n = n; > no and make the assumption that m > 16
and m > /nz (which usually holds in practice), then the latter expression
can be replaced by the much simpler 4n?(logam)2. This example shows that
there is generally no single “right answer” to the question of finding a bound
on the time to execute a given task. One wants a function of the bounds
on the imput data (in this problem, ni, ny and m) which is fairly simple
and at the same time gives an upper bound which for most input data is
more-or-less the same order of magnitude as the number of bit operations
that turns out to be required in practice. Thus, for example, in Example 7
we would not want to replace our bound by, say, 4n?m, because for large
m this would give a time estimate many orders of magnitude too large.

So far we have worked only with addition and multiplication of a k-bit
and an /-bit integer. The other two arithmetic operations — subtraction and
division — have the same time estimates as addition and multiplication,
respectively: Time(subtract k-bit from £-bit)< max(k,£); Time(divide k-
bit by £-bit)< kl. More precisely, to treat subtraction we must extend our
definition of a bit operation to include the operation of subtracting a 0-
or 1-bit from another 0- or 1-bit (with possibly a “borrow” of 1 from the
previous column). See Exercise 8.

To analyze division in binary, let us orient ourselves by looking at an
illustration, such as the one in Example 3. Suppose k > £ (if k < £, then
the division is trivial, i.e., the quotient is zero and the entire dividend is the
remainder). Finding the quotient and remainder requires at most k —£+1
subtractions. Each subtraction requires £ or £+ 1 bit operations; but in the
latter case we know that the left-most column of the difference will always
be a 0-bit, so we can omit that bit operation (thinking of it as “bookkeeping”
rather than calculating), We similarly ignore other administrative details,
such as the time required to compare binary integers (i.e., take just enough
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bits of the dividend so that the resulting integer is greater than the divisor),
carry down digits, etc. So our estimate is simply (k—£€+1)¢, which is < k€.

Example 8. Find an upper bound for the number of bit operations it
takes to compute the binomial coefficient ().

Solution. Since (*) = (,,",,), without loss of generality we may as-
sume that m < n/2. Let us use the following procedure to compute )=
=n(n—1)(n—2) - (n—m+1)/(2-3---m). We have m—1 multiplications fol-
lowed by m—1 divisions. In each case the maximum possible size of the first
number in the multiplication or division is n(n —1)(n—2)---(n —m+1) <
n™, and a bound for the second number is n. Thus, by the same argument
used in the solution to Example 6, we see that a bound for the total num-
ber of bit operations is 2(m — 1)m([logan] +1)2, which for large m and n is

essentially 2m?(logan)?.

We now discuss a very convenient notation for summarizing the situa-
tion with time estimates.

The big-O notation. Suppose that f(n) and g(n) are functions of the
positive integers n which take positive (but not necessarily integer) values
for all n. We say that f(n) = O(g(n)) (or simply that f = O(g)) if there
exists a constant C such that f(n) is always less than C-g(n). For example,
212 + 3n — 3 = O(n?) (namely, it is not hard to prove that the left side is
always less than 3n?).

Because we want to use the big-O notation in more general situations,
we shall give a more all-encompassing definition. Namely, we shall allow f
and g to be functions of several variables, and we shall not be concerned
about the relation between f and g for small values of n. Just as in the
study of limits as n — oo in calculus, here also we shall only be concerned
with large values of n.

Definition. Let f(ni, n2,...,n,) and g(ni, na,...,ny) be two func-
tions whose domains are subsets of the set of all r-tuples of positive inte-
gers. Suppose that there exist constants B and C such that whenever all
of the n; are greater than B the two functions are defined and positive,
and f(ni, ng,...,nr) < Cg(n1, na,...,nr). In that case we say that f is
bounded by g and we write f = O(g).

Note that the “=" in the notation f = O(g) should be thought of as
more like a “<” and the big-O should be thought of as meaning “some
constant multiple.”

Example 9. (a) Let f(n) be any polynomial of degree d whose leading
coefficient is positive. Then it is easy to prove that f(n) = O(n%). More
generally, one can prove that f = O(g) in any situation when f(r2)/g(n)
has a finite limit as n — oo.

(b) If € is any positive number, no matter how small, then one can
prove that logn = O(n®) (i.e., for large n, the log function is smaller than
any power function, no matter how small the power). In fact, this follows
because im0 2" = 0, as one can prove using 'Hopital’s rule.

ne
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(c) If f(n) denotes the number k of binary digits in n, then it follows
from the above formulas for k that f(n) = O(logn). Also notice that the
same relation holds if f(n) denotes the number of base-b digits, where b is
any fixed base. On the other hand, suppose that the base b is not kept fixed
but is allowed to increase, and we let f(n,b) denote the number of base-b
digits. Then we would want to use the relation f(n,b) = O(%%g—ﬁ).

(d) We have: Time(n - m) = O(logn - logm), where the left hand side
means the number of bit operations required to multiply n by m.

(e) In Exercise 6, we can write: Time(n!) = O((nlogn)?).

(f) In Exercise 7, we have:

Time(z a;zt - Z bjzj) = O(n1n2 ((logm)? + log(min(n, 'nz)))) .

In our use, the functions f(n) or f(ni, n2,...,n,) will often stand
for the amount of time it takes to perform an arithmetic task with the
integer n or with the set of integers ni, na,...,n, as input. We will want
to obtain fairly simple-looking functions g(n) as our bounds. When we do
this, however, we do not want to obtain functions g(n) which are much
larger than necessary, since that would give an exaggerated impression of
how long the task will take (although, from a strictly mathematical point
of view, it is not incorrect to replace g(n) by any larger function in the
relation f = O(g)).

Roughly speaking, the relation f(n) = O(n?) tells us that the function
f increases approximately like the d-th power of the variable. For example,
if d = 3, then it tells us that doubling n has the effect of increasing f by
about a factor of 8. The relation f(n) = O(log®n) (we write log®n to mean
(logn)?) tells us that the function increases a.pf)roxima.tely like the d-th
power of the number of binary digits in n. That is because, up to a constant
multiple, the number of bits is approximately logn (namely, it is within 1
of being logn/log 2 = 1.4427 log n). Thus, for example, if f(n) = O(log®n),
then doubling the number of bits in n (which is, of course, a much more
drastic increase in the size of n than merely doubling n) has the effect of
increasing f by about a factor of 8.

Note that to write f(n) = O(1) means that the function f is bounded
by some constant.

Remark. We have seen that, if we want to multiply two numbers of
about the same size, we can use the estimate Time(k-bit-k-bit)=0(k?). It
should be noted that much work has been done on increasing the speed
of multiplying two k-bit integers when k is large. Using clever techniques
of multiplication that are much more complicated than the grade-school
method we have been using, mathematicians have been able to find a proce-
dure for multiplying two k-bit integers that requires only O(k log k log log k)
bit operations. This is better than O(k?), and even better than O(k'*€) for
any € > 0, no matter how small. However, in what follows we shall always
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be content to use the rougher estimates above for the time needed for a
multiplication.

In general, when estimating the number of bit operations required to
do something, the first step is to decide upon and write down an outline
of a detailed procedure for performing the task. An explicit step-by-step
procedure for doing calculations is called an algorithm. Of course, there
may be many different algorithms for doing the same thing. One may choose
to use the one that is easiest to write down, or one may choose to use the
fastest one known, or else one may choose to compromise and make a trade-
off between simplicity and speed. The algorithm used above for multiplying
n by m is far from the fastest one known. But it is certainly a lot faster
than repeated addition (adding n to itself m times).

Example 10. Estimate the time required to convert a k-bit integer to
its representation in the base 10.

Solution. Let n be a k-bit integer written in binary. The conversion
algorithm is as follows. Divide 10 = (1010) into n. The remainder — which
will be one of the integers 0, 1, 10, 11, 100, 101, 110, 111, 1000, or 1001
— will be the ones digit do. Now replace n by the quotient and repeat the
process, dividing that quotient by (1010)2, using the remainder as d; and
the quotient as the next number into which to divide (1010)2. This process
must be repeated a number of times equal to the number of decimal digits in

n, which is l’—;’g—l%] +1 = O(k). Then we’re done. (We might want to take our

list of decimal digits, i.e., of remainders from all the divisions, and convert
them to the more familiar notation by replacing 0, 1, 10, 11,...,1001 by
0,1,23,...,9, respectively.) How many bit operations does this all take?
Well, we have O(k) divisions, each requiring O(4k) operations (dividing a
number with at most k bits by the 4-bit number (1010)2). But O(4k) is the
same as O(k) (constant factors don’t matter in the big-O notation), so we
conclude that the total number of bit operations is O(k) - O(k) = O(k?). If
we want to express this in terms of n rather than k, then since k = O(logn),
we can write

Time(convert n to decimal) = O(log*n).

Example 11. Estimate the time required to convert a k-bit integer n
to its representation in the base b, where b might be very large.

Solution. Using the same algorithm as in Example 10, except dividing
now by the £-bit integer b, we find that each division now takes longer (if
¢ is large), namely, O(k¢) bit operations. How many times do we have to
divide? Here notice that the number of base-b digits in n is O(k/£) (see
Example 9(c)). Thus, the total number of bit operations required to do all
of the necessary divisions is O(k/£) - O(k€) = O(k?). This turns out to be
the same answer as in Example 10. That is, our estimate for the conversion
time does not depend upon the base to which we’re converting (no matter
how large it may be). This is because the greater time required to find each
digit is offset by the fact that there are fewer digits to be found.
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Example 12. Express in terms of the O-notation the time required to
compute (a) n!, (b) () (see Examples 6 and 8).

Solution. (a) O(n2log?n), (b) O(m?log®n).

In concluding this section, we make a definition that is fundamental in
computer science and the theory of algorithms.

Definition. An algorithm to perform a computation involving integers
ni, Na, ...,y of k1, k2,. ..,k bits, respectively, is said to be a polynomial
time algorithm if there exist integers dy, da, . .., dr such that the number of
bit operations required to perform the algorithm is O(kdkg? -+ kdr).

Thus, the usual arithmetic operations +, —, X, + are examples of
polynomial time algorithms; so is conversion from one base to another.
On the other hand, computation of n! is not. (However, if one is satisfied
with knowing n! to only a certain number of significant figures, e.g., its
first 1000 binary digits, then one can obtain that by a polynomial time
algorithm using Stirling’s approximation formula for nl.)

FEzxercises

1. Multiply (212)3 by (122)s.

Divide (40122)7 by (126)7.

3. Multiply the binary numbers 101101 and 11001, and divide 10011001
by 1011.

4. In the base 26, with digits A—7Z representing 0—25, (a) multiply YES
by NO, and (b) divide JQVXHJ by WE.

5. Write e = 2.7182818-- - (a) in binary 15 places out to the right of the
point, and (b) to the base 26 out 3 places beyond the point.

6. By a “pure repeating” fraction of “period” f in the base b, we mean a
number between 0 and 1 whose base-b digits to the right of the point
repeat in blocks of f. For example, 1/3 is pure repeating of period 1
and 1/7 is pure repeating of period 6 in the decimal system. Prove that
a fraction ¢/d (in lowest terms) between 0 and 1 is pure repeating of
period f in the base b if and only if bf — 1 is a multiple of d.

7. (a) The “hexadecimal” system means b = 16 with the letters A-F

representing the tenth through fifteenth digits, respectively. Divide
(131B6C3)16 by (1A2F)6.
(b) Explain how to convert back and forth between binary and hex-
adecimal representations of an integer, and why the time required is
far less than the general estimate given in Example 11 for converting
from binary to base-b.

8. Describe a subtraction-type bit operation in the same way as was done
for an addition-type bit operation in the text (the list of five alterna-
tives).

N

9.

10.

11.

12.

13.

14.

15.

16.
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(a) Using the big- O notation, estimate in terms of a simple function of
n the number of bit operations required to compute 3" in binary.

(b) Do the same for n™

Estimate in terms of a simple function of n and N the number of bit
operations required to compute N"

The following formula holds for the sum of the first n perfect squares:

zn:jz =n(n+1)(2n +1)/6.
i=1

(a) Using the big-O notation, estimate (in terms of n) the number of
bit operations required to perform the computations in the left side of
this equality.

(b) Estimate the number of bit operations required to perform the
computations on the right in this equality.

Using the big-0 notation, estimate the number of bit operations re-
quired to multiply an 7 x n-matrix by an n x s-matrix, where all matrix
entries are < m.

The object of this exercise is to estimate as a function of n the number
of bit operations required to compute the product of all prime num-
bers less than n. Here we suppose that we have already compiled an
extremely long list containing all primes up to n.

(a) According to the Prime Number Theorem, the number of primes
less than or equal to n (this is denoted m(n)) is asymptotic to n/log n.
This means that the following limit approaches 1 as n — oo:
lim W”%’Ln. Using the Prime Number Theorem, estimate the number
of binary digits in the product of all primes less than n.

(b) Find a bound for the number of bit operations in one of the mul-
tiplications that’s required in the computation of this product.

(c) Estimate the number of bit operations required to compute the
product of all prime numbers less than n.

(a) Suppose you want to test if a large odd number n is a prime by
trial division by all odd numbers < /n. Estimate the number of bit
operations this will take.

(b) In part (a), suppose you have a list of prime numbers up to Vv,
and you test primality by trial division by those primes (i.e., no longer
running through all odd numbers). Give a time estimate in this case.
Use the Prime Number Theorem.

Estimate the time required to test if n is divisible by a prime < m.
Suppose that you have a list of all primes < m, and again use the
Prime Number Theorem.

Let n be a very large integer written in binary. Find a simple algorithm
that computes [ﬁ] in O(log®n) bit operations (here [ ] denotes the
greatest integer functicn).
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2 Divisibility and the Euclidean algorithm

Divisors and divisibility. Given integers a and b, we say that a divides b (or
“p is divisible by a”) and we write a|b if there exists an integer d such that
b = ad. In that case we call a a divisor of b. Every integer b > 1 has at least
two positive divisors: 1 and b. By a proper divisor of b we mean a positive- ¢
divisor not equal to b itself, and by a nontrivial divisor of b we mean a
positive divisor not equal to 1 or b. A prime number, by definition, is an
integer greater than one which has no positive divisors other than 1 and
itself; a number is called composite if it has at least one nontrivial divisor.
The following properties of divisibility are easy to verify directly from the
definition:

1. If a|b and c is any integer, then albc.

2. If a|b and b|c, then alc.

3. If a|b and ac, then alb£c.

If p is a prime number and « is a nonnegative integer, then we use the
notation p*||b to mean that p® is the highest power of p dividing b, i.e.,
that p|b and p>*1 fb. In that case we say that p* ezactly divides b.

The Fundamental Theorem of Arithmetic states that any natural num-
ber n can be written uniquely (except for the order of factors) as a product
of prime numbers. It is customary to write this factorization as a product of
distinct primes to the appropriate powers, listing the primes in increasing
order. For example, 4200 = 2% -3-5% - 7.

Two consequences of the Fundamental Theorem (actually, equivalent
assertions) are the following properties of divisibility:

4. If a prime number p divides ab, then either pla or plb.
5. If m|a and n|a, and if m and n have no divisors greater than 1 in
common, then mn|a.

Another consequence of unique factorization is that it gives a system-
atic method for finding all divisors of n once n is written as a product of
prime powers. Namely, any divisor d of n must be a product of the same
primes raised to powers not exceeding the power that exactly divides n.
That is, if p*||n, then pP||d for some 3 satisfying 0 < 8 < c. To find the
divisors of 4200, for example, one takes 2 to the 0-, 1-, 2- or 3-power, mul-
tiplied by 3 to the 0- or l-power, times 5 to the 0-, 1- or 2-power, times
7 to the 0- or 1- power. The number of possible divisors is thus the prod-
uct of the number of possibilities for each prime power, which, in turn, is
a+1. That is, a number n = p'p3? - - - p has (eq +1)(a2 +1) -+ (e +1)
different divisors. For example, there are 48 divisors of 4200.

Given two integers a and b, not both zero, the greatest common divisor
of a and b, denoted g.c.d.(a,b) (or sometires simply (a,b)) is the largest
integer d dividing both a and b. It is not hard to show that another equiv-
alent definition of g.c.d.(a, b) is the following: it is the only positive integer
d which divides @ and b and is divisible by any other number which divides
both a and b.
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If you happen to have the prime factorization of a and b in front of you,
then it’s very easy to write down g.c.d.(a, b). Simply take all primes which
occur in both factorizations raised to the minimum of the two exponents.
For example, comparing the factorization 10780 = 22 -5 7% - 11 with the
above factorization of 4200, we see that g.c.d.(4200, 10780) = 22.5-7 = 140.

One also occasionally uses the least common multiple of a and b, de-
noted l.c.m.(a, b). It is the smallest positive integer that both a and b divide.
If you have the factorization of a and b, then you can get l.c.m.(a, b) by tak-
ing all of the primes which occur in either factorization raised to the rmazi-
mum of the exponents. It is easy to prove that l.c.m.(a,b) = |ab|/g.c.d.(a,b).

The Euclidean algorithm. If you're working with very large numbers,
it’s likely that you won'’t know their prime factorizations. In fact, an impor-
tant area of research in number theory is the search for quicker methods of
factoring large integers. Fortunately, there’s a relatively quick way to find
g.c.d.(a,b) even when you have no idea of the prime factors of a or b. It’s
called the Euclidean algorithm.

The Euclidean algorithm works as follows. To find g.c.d.(a,b), where
a > b, we first divide b into a and write down the quotient ¢; and the
remainder r1: @ = q1b + 1. Next, we perform a second division with b
playing the role of a and r, playing the role of b: b = gar1 + r2. Next,
we divide o into 71: 1, = gare + r3. We continue in this way, each time
dividing the last remainder into the second-to-last remainder, obtaining
a new quotient and remainder. When we finally obtain a remainder that
divides the previous remainder, we are done: that final nonzero remainder
is the greatest common divisor of a and b.

Example 1. Find g.c.d.(1547, 560).

Solution:

1547 = 2 - 560 + 427
560 = 1-427 + 133
427=3-133 + 28
133=4-28+21

28=1-21+7.

Since 7|21, we are done: g.c.d.(1547,560) = 7.
Proposition 1.2.1. The Euclidean algorithm always gives the greatest
common divisor in a finite number of steps. In addition, for a > b

Time(finding g.c.d.(a,b) by the Euclidean algorithm) = O(log®(a)).

Proof. The proof of the first assertion is given in detail in many ele-
mentary number theory textbooks, so we merely summarize the argument.
First, it is easy to see that the remainders are strictly decreasing from one
step to the next, and so must eventually reach zero. To see that the last
remainder is the g.c.d., use the second definition of the g.c.d. That is, if any
number divides both a and b, it must divide r;, and then, since it divides
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b and 7, it must divide ro, and so on, until you finally conclude that it
must divide the last nonzero remainder. On the other hand, working from
the last row up, one quickly sees that the last remainder must divide all of
the previous remainders and also a and b. Thus, it is the g.c.d., because the
g.c.d. is the only number which divides both a and b and at the same time
is divisible by any other number which divides a and b.

We next prove the time estimate. The main question that must be
resolved is how many divisions we're performing. We claim that the re-
mainders are not only decreasing, but they’re decreasing rather rapidly.
More precisely:

Claim. 7,2 < rJ >

Proof of claim. FlI‘St if rj <l r], then immediately we have 712 <
Tip1 < rJ So suppose that 74, > 21'] In that case the next division
gives: rj =1-7j11 +7j42, and 80 742 =75 — Tj41 < 37, as claimed.

We now return to the proof of the time estimate. Smce every two steps
must result in cutting the size of the remainder at least in half, and since
the remainder never gets below 1, it follows that there are at most 2- [logga]
divisions. This is O(log a). Each division involves numbers no larger than
a, and so takes O(log?a) bit operations. Thus, the total time required is
O(log a)-O(log®a) = O(log®a). This concludes the proof of the proposition.

Remark. If one makes a more careful analysis of the number of bit
operations, taking into account the decreasing size of the numbers in the
successive divisions, one can improve the time estimate for the Euclidean
algorithm to O(log?a).

Proposition 1.2.2. Let d = g.c.d.(a,b), where a > b. Then there ezist
integers u and v such that d = ua + bv. In other words, the g.c.d. of two
numbers can be expressed as a linear combination of the numbers with in-
teger coefficients. In addition, finding the integers u and v can be done in
O(log3a) bit operations.

Outline of proof. The procedure is to use the sequence of equalities in
the Euclidean algorithm from the bottom up, at each stage writing d in
terms of earlier and earlier remainders, until finally you get to a and b. At
each stage you need a multiplication and an addition or subtraction. So it
is easy to see that the number of bit operations is once again O(loga).

Example 1 (continued). To express 7 as a linear combination of 1547
and 560, we successively compute:

7=28-1-21=28—1(133—4-28)
=5.28 —1-133 =5(427 - 3-133) — 1133
=5.427 — 16133 = 5 - 427 — 16(560 — 1 - 427)
= 21427 — 16 - 560 = 21(1547 — 2 - 560) — 16 - 560
=21 - 1547 — 58 - 560.

Definition. We say that two integers a and b are relatively prime (or
that “a is prime to b") if g.c.d.(a,b) = 1, i.e., if they have no common
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divisor greater than 1.

Corollary. If a > b are relatively prime integers, then 1 can be written as
an integer linear combination of a and b in polynomial time, more precisely,
in O(log3a) bit operations.

Definition. Let n be a positive integer. The Euler phi-function p(n) is
defined to be the number of nonnegative iitegers b less than n which are
prime to n:

<p(n)d:f‘{0 <b<n|gecd(bn)= 1}’.

It is easy to see that (1) = 1 and that ¢(p) = p — 1 for any prime p.
We can also see that for any prime power

o(p*) =p* —p* ! =p° (1 - l)-
p
To see this, it suffices to note that the numbers from 0 to p* — 1 which are
not prime to p® are precisely those that are divisible by p, and there are
p>~1 of those.

In the next section we shall show that the Euler o-function has a
“multiplicative property” that enables us to evaluate p(n) quickly, provided
that we have the prime factorization of n. Namely, if n is written as a
product of powers of distinct primes p?% then it turns out that p(n) is equal
to the product of the ¢(p®).

FEzxercises

1. (a) Prove the following properties of the relation p ||b (i) if p*||a and
PP||b, then p*+A||ab; (ii) if p*||a, p°||b and a < B, then p°||a & b.
(b) Find a counterexample to the assertion that, if p*||a and p%||b,
then p°|la + b.

2. How many divisors does 945 have? List them all.

3. Let n be a positive odd integer.
(a) Prove that there is a 1-to-1 correspondence between the divisors
of n which are < y/n and those that are > /n. (This part does not
require n to be odd.)
(b) Prove that there is a 1-to-1 correspondence between all of the divi-
sors of n which are > /7 and all the ways of writing n as a difference
s — t2 of two squares of noniegative integers. (For example, 15 has
two divisors 6, 15 that are > /15, and 15 =42 — 12 = 82 — 72))
(c) List all of the ways of writing 945 as a difference of two squares of
nonnegative integers.

4. (a) Show that the power of a prime p which exactly divides n! is equal
to [n/p] + [n/p?] + [n/P] + ---. (Notice that this is a finite surn.)
(b) Find the power of each prime 2, 3, 5, 7 that exactly divides 100!,
and then write out the entire prime factorization of 100!.
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(c) Let Sy(n) denote the sum of the base-b digits in n..Prove that the
exact power of 2 that divides n! is equal to n— S2(n). Find and prove a
similar formula for the exact power of an arbitrary prime p that divides
nl.

Find d = g.c.d.(360,294) in two ways: (a) by finding the prime .fa,ctf)r-
ization of each number, and from that finding the prime factorization
of d; and (b) by means of the Euclidean algorithm.

For each of the following pairs of integers, find their greatest common
divisor using the Euclidean algorithm, and express it as an integer
linear combination of the two numbers:

(a) 26, 19; (b) 187, 34; (c) 841, 160; (d) 2613, 2.171. '
One can often speed up the Euclidean algorithm slightly by allowing
divisions with negative remainders, i.e., 7j = gj+27j+1 = Tj+2 88 well as
Tj = gjt2Tj+1+Tj+2, Whichever gives the smallest Ti+2: In t}ns way we
always have rj12 < %Tj.{_l- Do the four examples in Exercise 6 using
this method. . '

(a) Prove that the following algorithm finds d = g.c.d.(a,b) in ﬁ.mtely
many steps. First note that g.c.d.(a,b) = g.c.d-(lal, b)), so t_:hat without
loss of generality we may suppose that a and b are positive. If a and
b are both even, set d = 2d' with &' = g.c.d.(a/2, b/2). If one of
the two is odd and the other (say b) is even, then set d = d' with
d' = g.c.d.(a, b/2). If both are odd and they are unequal, say a > b,
then set d = d' .with d’ = g.c.d.(a — b, b). Finally, if a = b, then set
d = a. Repeat this process until you arrive at the last case (when the
two integers are equal). o
(b) Use the algorithm in part (a) to find g.¢.d.(2613,2171) working in
binary, i.e., find

9.¢.d.((101000110101),, (100001111011)2)

(c) Prove that the algorithm in part (a) takes only O(log®a) bit oper-
ations (where a > b). .
(d) Why is this algorithm in the form presented above not necessarily
preferable to the Euclidean algorithm? ‘ .
Suppose that a is much greater than b. Find a big-O time estimate for
g.c.d.(a,b) that is better than O(loga). .
The purpose of this problem is to find a “best possible” estlmatg for thg
number of divisions required in the Euclidean algorithm. The Fibonacct
numbers can be defined by the rule f; = 1, fa = 1, fn.+1 = fn' +
fa—1 for n > 2, or, equivalently, by means of the matrix equation
(fn+1 fn ) — (1 ]-)n.

f n f n—1 10 .
(a) Suppose that a > b > 0, and it takes k diVlSl'Ol’lS to ﬁnd g.c.d.(a,b)
by the Euclidean algorithm (the standard version given in the text,
with nonnegative remainders). Show that a > fey2-

11.

12.

13.

14.
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(b) Using the matrix definition of f,, prove that

1+v5 , _1-v5

am — o™
_ of =
2 2

fa= 7

(c) Using parts (a) and (b), find an upper bound for k in terms of a.
Compare with the estimate that follows from the proof of Proposition
1.2.1.

The purpose of this problem is to find a general estimate for the time
required to compute g.c.d.(a,b) (where a > b) that is better than the
estimate in Proposition 1.2.1.

(a) Show that the number of bit operations required to perform a
divison a = gb+ r is O((logb)(1 + log q)).

(b) Applying part (a) to all of the O(log a) divisions of the form r;_; =
@i+17i + Tiy1, derive the time estimate O((log b)(log a)).

Consider polynomials with real coefficients. (This problem will apply
as well to polynomials with coefficients in any field.) If f and g are two
polynomials, we say that f|g if there is a polynomial h such that g =
fh. We define g.c.d.(f, g) in essentially the same way as for integers,
namely, as a polynomial of greatest degree which divides both f and
g. The polynomial g.c.d.(f,g) defined in this way is not unique, since
we can get another polynomial of the same degree by multiplying by
any nonzero constant. However, we can make it unique by requiring
that the g.c.d. polynomial be monic, i.e., have leading coefficient 1.
We say that f and g are relatively prime polynomials if their g.c.d. is
the “constant polynomial” 1. Devise a procedure for finding g.c.d.’s of
polynomials — namely, a Euclidean algorithm for polynomials — which
is completely analogous to the Euclidean algorithm for integers, and
use it to find (a) g.c.d.(z* + 2% + 1, 22 + 1), and (b) g.c.d.(z* — 4% +
622 — 4z + 1, 73 — 2% + z — 1). In each case find polynomials u(z) and
v(z) such that the g.c.d. is expressed as u(z) f(z) + v(z)g(z).

From algebra we know that a polynomial has a multiple root if and
only if it has a common factor with its derivative; in that case the
multiple roots of f(x) are the roots of g.c.d.(f, f'). Find the multiple
roots of the polynomial z4 — 223 — 22 + 2z + 1.

(Before doing this exercise, recall how to do arithmetic with complex
numbers. Remember that, since (a+bi)(a—bi) is the real number @2+ b?
one can divide by writing (c+di)/(a+bi) = (c+di)(a—bi)/(a® +b?).)
The Gaussian integers are the complex numbers whose real and imag-
inary parts are integers. In the complex plane they are the vertices of
the squares that make up the grid. If @ and 3 are two Gaussian inte-
gers, we say that | if there is a Guassian integer v such that § = a.
We define g.c.d.(a, ) to be a Gaussian integer § of maximum absolute
value which divides both « and B (recall that the absolute value |6]
is its distance from 0, i.e., the square root of the sum of the squares
of its real and imaginary parts). The g.c.d. is not unique, because we

, where a=
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can multiply it by 1 or +i and obtain another § of the same absolute
value which also divides o and 3. This gives four possibilities. In what
follows we will consider any one of those four possibilities to be “the”
g.c.d.

Notice that any complex number can be written as a Gaussian inte- ~

ger plus a complex number whose real and imaginary parts are each
between % and —%‘ Show that this means that we can divide one
Gaussian integer o by another one 8 and obtain a Gaussian integer
quotient along with a remainder which is less than B in absolute value.
Use this fact to devise a Euclidean algorithm which finds the g.c.d.
of two Gaussian integers. Use this Euclidean algorithm to find (a)
g.c.d.(5 + 6i, 3 — 2i), and (b) g.c.d.(7 — 11i, 8 — 197). In each case ex-
press the g.c.d. as a linear combination of the form ua + vB, where u
and v are Gaussian integers.

15. The last problem can be applied to obtain an efficient way to write
certain large primes as a sum of two squares. For example, suppose
that p is a prime which divides a number of the form b8 + 1. We want
to write p in the form p = ¢* + d? for some integers c and d. This is
equivalent to finding a nontrivial Gaussian integer factor of p, because
® + d? = (c + di)(c — di). We can proceed as follows. Notice that

Brl=(+1)0bt—b2+1), and bi-b*+1=(b"—1)"+b%

By property 4 of divisibility, the prime p must divide one of the two
factors on the right of the first equality. If p|b* + 1 = (b +i)(b— 1),
then you will find that g.c.d.(p, b+1) will give you the desired ¢+ di. If
plbt —b2+1 = ((b® — 1) +bi) (6% — 1) —bi), then g.c.d.(p, (b2 —1) +bi)
will give you your ¢+ di.

Example. The prime 12277 divides the second factor in the product
20 + 1 = (202 + 1)(20% — 20% + 1). So we find g.c.d.(12277, 399 + 207):

12277 = (31 — 2i)(399 + 205) + (—132 + 1784),
399 + 20i = (=1 — i)(—132 + 1784) + (89 + 664),
—132 + 178i = (2i)(89 + 661),

so that the g.c.d. is 89 + 664, i.e., 12277 = 89> + 667

(a) Using the fact that 196+ 1 = 2-13%-181-769 and the Euclidean al-
gorithm for the Gaussian integers, express 769 as a sum of two squares.
(b) Similarly, express the prime 3877, which divides 15 + 1, as a sum
of two squares.

(c) Express the prime 38737, which divides 2% + 1, as a sum of two
squares.
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Basic properties. Given three integers a, b and m, we say that “a is con-

gruent to b modulo m” and write a = b mod m, if the difference a — b is

divisible by m. m is called the modulus of the congruence. The following
properties are easily proved directly from the definition:

1. (i) a = a mod m; (ii) a = b mod m if and only if b = a mod m; (iii)
if a = b mod m and b = ¢ mod m, then a = ¢ mod m. For fixed m,
(i)—(iil) mean that congruence modulo m is an equivalence relation.

2. For fixed m, each equivalence class with respect to congruence modulo
m has one and only one representative between 0 and m — 1. (This
is just another way of saying that any integer is congruent modulo
m to one and only one integer between 0 and m — 1.) The set of
equivalence classes (called residue classes) will be denoted Z/mZ. Any
set of representatives for the residue classes is called a complete set of
residues modulo m.

3. Ifa=bmod mand c =d modm, then axc = b+d mod m and
ac = bd mod m. In other words, congruences (with the same modu-
lus) can be added, subtracted, or multiplied. One says that the set of
equivalence classes Z/mZ is a commutative ring, i.e., residue classes
can be added, subtracted or multiplied (with the result not depend-
ing on which representatives of the equivalence classes were used), and
these operations satisfy the familiar axioms (associativity, commuta-
tivity, additive inverse, etc.).

4. If a = b mod m, then a = b mod d for any divisor d|m.

5. If a = bmod m, a =bmodn, and m and n are relatively prime, then
a = b mod mn. (See Property 5 of divisibility in §1.2.)

Proposition 1.3.1. The elements of Z/mZ which have multiplicative
inverses are those which are relatively prime to m, i.e., the numbers a for
which there exists b with ab = 1 mod m are precisely those a  for
which g.c.d.(a,m) = 1. In addition, if g.c.d.(a,m) = 1, then such an inverse
b can be found in O(log3m) bit operations.

Proof. First, if d = g.c.d.(a,m) were greater than 1, we could not have
ab = 1 mod m for any b, because that would imply that d divides ad — 1
and hence divides 1. Conversely, if g.c.d.(a,m) = 1, then by Property 2
above we may suppose that a < m. Then, by Proposition 1.2.2, there exist
integers u and v that can be found in O(log3m) bit operations for which
ua + vm = 1. Choosing b = u, we see that m|1 — ua = 1 — ab, as desired.

Remark. If g.c.d.(a,m) = 1, then by negative powers a™" mod ™m we
mean the n-th power of the inverse residue class, i.e., it is represented by
the n-th power of any integer b for which ab = 1 mod m.

Example 1. Find 160~ mod 841, i.e., the inverse of 160 modulo 841.

Solution. By Exercise 6(c) of the last section, the answer is 205.

Corollary 1. If p is a prime number, then every nonzero residue class
has o multiplicative inverse which can be found in O(log3p) bit operations.
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We say that the ring Z/pZ is a field. We often denote this field Fy, the
“field of p elements.”

Corollary 2. Suppose we want to solve a linear congruence aT =
b mod m, where without loss of generality we may assume that0 < a,b<m.
First, if g.c.d.(a,m) = 1, then there is a solution To which can be found in
O(log®m) bit operations, and all solutions are of the form = = zo +mn for
n an integer. Nezt, suppose that d = g.c.d.(a,m). There ezists a solution if
and only if d|b, and in that case our congruence is equivalent (in the sense
of having the same solutions) to the congruence d'z = b mod m] where
o =a/d, ¥ =b/d, m' =m/d.

The first corollary is just a special case of Proposition 1.3.1. The second
corollary is easy to prove from Proposition 1.3.1 and the definitions. As
in the case of the familiar linear equations with real numbers, to solve
linear equations in Z/mZ one multiplies both sides of the equation by the
multiplicative inverse of the coefficient of the unknown.

In general, when working modulo m, the analogy of “nonzero” is often
“prime to m.” We saw above that, like equations, congruences can be added,
subtracted and multiplied (see Property 3 of congruences). They can also
be divided, provided that the “denominator” is prime to m.

Corollary 3. If a = b mod m and ¢ = d mod m, and if g.cd.(c,m) =1
(in which case also g.c.d.(d,m) = 1), then ac™! = bd~! mod m (where ¢!
and d~! denote any integers which are inverse to ¢ and d modulo m).

To prove Corollary 3, we have c(ac™! — bd™?) = (acc™ — bdd~1) =
a—b = 0 mod m, and since m has no common factor with ¢, it follows that
m must divide ac™! — bd™!

Proposition 1.3.2 (Fermat’s Little Theorem). Let p be a prime. Any
integer a satisfies P = a mod p, and any integer a not divisible by p
satisfies aP~' = 1 mod p.

Proof. First suppose that p fa. We first claim that the integers
0a, la, 2a, 3a, ...,(p— 1)a are a complete set of residues modulo p. To see
this, we observe that otherwise two of them, say ia and ja, would have to
be in the same residue class, i.e., ia = ja mod p. But this would mean that
p|(i — j)a, and since a is not divisible by p, we would have pl|i — j. Since 1
and j are both less than p, the only way this can happen is if ¢ = j. We
conclude that the integers a, 2a, ..., (p—1)a are simply a rearrangement of
1,2,...,p— 1 when considered modulo p. Thus, it follows that the product
of the numbers in the first sequence is congruent modulo p to the product
of the numbers in the second sequence, i.e., a®~!(p— 1)! = (p — 1)! mod p.
Thus, p|((p — 1)!(a?~* — 1)). Since (p — 1)! is not divisible by p, we have
p|(aP~! — 1), as required. Finally, if we multiply both sides of the congru-
ence a?~! = 1 mod p by a, we get the first congruence in the statement of
the proposition in the case when a is not divisible by p. But if a is divisible
by p, then this congruence a? = a mod p is trivial, since both sides are
= 0 mod p. This concludes the proof of the proposition.
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Corollary. If a is not divisible by p and if n = m mod (p — 1), then
a™ = a™ mod p.

Proof of corollary. Say n > m. Since p — 1|n — m, we have n = m +
¢(p—1) for some positive integer c. Then multiplying the congruence aP~! =
1 mod ng by itself ¢ times and then by a™ = a™ mod p gives the desired
result: a™ = a™ mod p.

Example 2. Find the last base-7 digit in 21000000

Solution. Let p = 7. Since 1000000 leaves a remainder of 4 when divided
by p — 1 = 6, we have 21000000 = 24 — 16 = 2 mod 7, so 2 is the answer.

Proposition I.3.3 (Chinese Remainder Theorem). Suppose that we want
to solve a system of congruences to different moduli:

T = a; mod my,

T =a2 mod ma,

T = a, mod m,.

Suppose that each pair of moduli is relatively prime: g.c.d.(mi, m;) =1
for i # j. Then there erists a simultaneous solution z to all of the con-
gruences, and any two solutions are congruent to one another modulo
M=mimsy---mg.

Proof. First we prove uniqueness modulo M (the last sentence). Sup-
pose that z’ and z”’ are two solutions. Let £ = z’ — z”/ Then = must be
congruent to 0 modulo each m;, and hence modulo M (by Property 5 at
the beginning of the section). We next show how to construct a solution z.

Define M; = M/m, to be the product of all of the moduli ezcept for the
i-th. Clearly g.c.d.(m;, M;) =1, and so there is an integer N; (which can be
found by means of the Euclidean algorithm) such that M;N; =1 mod m,.
Now set z =}, a;M;N;. Then for each i we see that the terms in the sum
other than the i-th term are all divisible by m;, because m;|M; whenever
j # 1. Thus, for each i we have: z = a; M;N; = a; mod m;, as desired.

Corollary. The Euler phi-function is “multiplicative] meaning that
p(mn) = p(m)p(n) whenever g.c.d.(m,n) = 1.

Proof of corollary. We must count the number of integers between 0
and mn — 1 which have no common factor with mn. For each j in that
range, let j; be its least nonnegative residue modulo m (i.e.,, 0 < j; <m
and j = j; mod m) and let j2 be its least nonnegative residue modulo n
(i-e., 0 < j2 < n and j = j; mod n). It follows from the Chinese Remainder
Theorem that for each pair j;, j2 there is one and only one j between O and
mn—1 for which j = j; mod m, j = j; mod n. Notice that j has no common
factor with mn if and only if it has no common factor with m — which is
equivalent to j; having no common factor with m — and it has no common
factor with n — which is equivalent to j2 having no common factor with
n. Thus, the j's which we must count are in 1-to-1 correspondence with
the pairs jj, jo for which 0 < j; < m, g.cd.(j1, m) = 1; 0 < j» < n,
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g.c.d.(jz, n) = 1. The number of possible ji’s is @(m), and the number of
possible jg's is (n). So the number of pairs is ¢(m)¢(n). This proves the
corollary.

Since every n can be written as a product of prime powers, each of
which has no common factors with the others, and since we know the for-
mula ¢(p*) = p*(1 - %), we can use the corollary to conclude that for

— 102 Q.
n=p; Do ...prr‘

=0 (1= 2 (- 2 (= 2) =103

! pln

As a consequence of the formula for ¢(n), we have the following fact,
which we shall refer to later when discussing the RSA system of public key
cryptography.

Proposition 1.3.4. Suppose that n is known to be the product of two
distinct primes. Then knowledge of the two primes p, q is equivalent to
knowledge of p(n). More precisely, one can compute o(n) from p, q in
O(logn) bit operations, and one can compute p and q from n and p(n) in
O(log®n) bit operations.

Proof. The proposition is trivial if n is even, because in that case we
immediately know p = 2, ¢ = n/2, and ¢(n) = n/2 —1; so we suppose
that n is odd. By the multiplicativity of ¢, for n = pq we have p(n) =
(p—1)(g—1) = n+1—(p+q). Thus, p(n) can be found from p and q using
one addition and one subtraction. Conversely, suppose that we know n and
(), but not p or q. We regard p, ¢ as unknowns. We know their product
n and also their sum, since p+ ¢ = n+ 1 —¢(n). Call the latter expression
2b (notice that it is even). But two numbers whose sum is 2b and whose
product is n must be the roots of the quadratic equation 22 —2bz+n=0.
Thus, p and ¢ equal b + v/b2 — n. The most time-consuming step is the
evaluation of the square root, and by Exercise 16 of § L.1 this can be done
in O(log®n) bit operations. This completes the proof.

We next discuss a generalization of Fermat’s Little Theorem, due to
Euler.

Proposition 1.3.5. If g.c.d.(a, m) =1, then a?™) =1 mod m.

Proof. We first prove the proposition in the case when m is a prime
power: m = p% We use induction on a. The case a = 11is precisely Fermat’s
Little Theorem (Proposition 1.3.2). Suppose that a > 2, and the formula
holds for the (o — 1)-st power of p. Then a?* T P"7? = 1 4 p*~1b for some
integer b, by the induction assumption. Raising both sides of this equation
to the p-th power and using the fact that the binomial coefficients in (1+z)P
are each divisible by p (except in the 1 and z® at the ends), we see that
P T equal to 1 plus a sum with each term divisible by p* That is,
a®(®™) _ 1 is divisible by p®, as desired. This proves the proposition for
prime powers.
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Finally, by the multiplicativity of ¢, it is clear that a?(™) = 1 mod p*
(simply raise both sides of a?®®) = 1 mod p* to the appropriate power).
Since this is true for each p*||m, and since the different prime powers have
no common factors with one another, it follows by Property 5 of congruences
that a®?(™) = 1 mod m.

Corollary. If g.c.d.(a, m) =1 and if n’ is the least nonnegative residue
of n modulo p(m), then a™ = a® mod m.

This corollary is proved in the same way as the corollary of Proposition
1.3.2.

Remark. As the proof of Proposition 1.3.5 makes clear, there’s a smaller
power of a which is guaranteed to give 1 mod m: the least common multiple
of the powers that give 1 mod p* for each p*|lm. For example, al? =
1 mod 105 for a prime to 105, because 12 is a multiple of 3 —1, 5 — 1 and
7 — 1. Note that ¢(105) = 48. Here is another example:

Example 3. Compute 21900000 o4 77.

Solution. Because 30 is the least common multiple of ¢(7) = 6 and
©(11) = 10, by the above remark we have 2%° = 1 mod 77. Since 1000000 =
30-33333+ 10, it follows that 21000000 = 910 = 23 mod 77. A second method
of solution would be first to compute 21900900 mod 7 (since 1000000 =
6 - 166666 + 4, this is 2¢ = 2) and also 21909000 o4 11 (since 1000000 is
divisible by 11 —1, this is 1), and then use the Chinese Remainder Theorem
to find an z between 0 and 76 which is = 2 mod 7 and = 1 mod 11.

Modular exponentiation by the repeated squaring method. A ba-
sic computation one often encounters in modular arithmetic is finding
b™ mod m (i.e., finding the least nonnegative residue) when both m and
n are very large. There is a clever way of doing this that is much quicker
than repeated multiplication of b by itself. In what follows we shall assume
that b < m, and that whenever we perform a multiplication we then im-
mediately reduce mod m (i.e., replace the product by its least nonnegative
residue). In that way we never encounter any integers greater than m? We
now describe the algorithm.

Use a to denote the partial product. When we’re done, we’ll have a
equal to the least nonnegative residue of b™ mod m. We start out with
a = 1. Let ng, n1,...,ng_1 denote the binary digits of n, i.e., n = no +
2ny +4ng + --- + 28" Ing_;. Each n; is 0 or 1. If ng = 1, change a to b
(otherwise keep a = 1). Then square b, and set by = b* mod m (i.e., by is
the least nonnegative residue of b> mod m). If n; = 1, multiply a by b,
(and reduce mod m); otherwise keep a unchanged. Next square by, and set
by = b? mod m. If na = 1, multiply a by by; otherwise keep a unchanged.
Continue in this way. You see that in the j-th step you have computed
b; = b* mod m. If n; =1, i.e,, if 27 occurs in the binary expansion of n,
then you include b; in the product for a (if 27 is absent from n, then you do
not). It is easy to see that after the (k — 1)—st step you’ll have the desired
a = b™ mod m.
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How many bit operations does this take? In each step you have either
1 or 2 multiplications of numbers which are less than m? And there are
k — 1 steps. Since each step takes O(log?(m?))= O(log®m) bit operations,
we end up with the following estimate:

Proposition 1.3.6. Time(b" mod m) = O((log n)(log?m)).

Remark. If n is very large in Proposition 1.3.6, you might want to
use the corollary of Proposition 1.3.5, replacing n by its least nonnegative
residue modulo @(mn). But this requires that you know o(m). If you do know
¢(m), and if g.c.d.(b,m) = 1, so that you can replace n by its least nonneg-
ative residue modulo @(m), then the estimate on the right in Proposition
1.3.6 can be replaced by O(log>m).

As a final application of the multiplicativity of the Euler o-function,
we prove a formula that will be used at the beginning of Chapter IL

Proposition 1.3.7. 3, ¢(d) = n.

Proof. Let f(n) denote the left side of the equality in the proposition,
i.e., f(n) is the sum of y(d) taken over all divisors d of n (including 1 and
n). We must show that f(n) = n. We first claim that f(n) is multiplica-
tive, i.e., that f(mn) = f(m)f(n) whenever g.c.d.(m,n) = 1. To see this,
we note that any divisor djmn can be written (in one and only one way)
in the form d; - d2, where dj|m, da|n. Since g.c.d.(dr,d2) = 1, we have
o(d) = @(d1)p(dz), because of the multiplicativity of . We get all possible
divisors d of mn by taking all possible pairs di, d2 where d, is a divisor
of m and ds is a divisor of n. Thus, f(mn) = X4, m 2dgin p(d1)e(dz) =
(Edllm <p(d1)) (Zdzln cp(dg)) = f(m)f(n), as claimed. Now to prove the
proposition suppose that n = p$t - -por is the prime factorization of n.
By the multiplicativity of f, we find that f (n) is a product of terms of
the form f(p®). So it suffices to prove the proposition for p% i.e., to prove
that f(p®) = p But the divisors of p* are p’ for 0 < j < a, and s0
f™) =i 0p@) =1+ Y (P — pi~1) = p% This proves the proposi-
tion for p% and hence for all n.

Exzercises
1. Describe all of the solutions of the following congruences:

(a) 3z =4 mod T,
(b) 3z = 4 mod 12;
(c) 9z = 12 mod 21;

(d) 27z = 25 mod 256;
(e) 27z = 72 mod 900;
(f) 103z = 612 mod 676.

2.  What are the possibilities for the last hexadecimal digit of a perfect
square? (See Exercise 7 of §1.1.)

3.  What are the possibilities for the last base-12 digit of a product of two
consecutive positive odd numbers?

10.

11.

12.

13.

14.
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Prove that a decimal integer is divisible by 3 if and only if the sum of
its digits is divisible by 3, and that it is divisible by 9 if and only if the
sum of its digits is divisible by 9.

Prove that n® — n is always divisible by 30.

Suppose that in tiling a floor that is 8 ft x 9 ft, you bought 72 tiles at
a price you cannot remember. Your receipt gives the total cost before
taxes as some amount under $100, but the first and last digits are
illegible. It reads $70.67. How much did the tiles cost?

(a) Suppose that m is either a power p* of a prime p > 2 or else
twice an odd prime power. Prove that, if 22 = 1 mod m, then either
=1 mod mor z = -1 mod m.

(b) Prove that part (a) is always false if m is not of the form p* or 2p%
and m # 4.

(c) Prove that if m is an odd number which is divisible by r different
primes, then the congruence 2 = 1 mod m has 27 different solutions
between 0 and m.

Prove “Wilson’s Theorem,” which states that for any prime p: (p—1)! =
—1 mod p. Prove that (n —1)! is not congruent to —1 mod n if n is not
prime.

Find a 3-digit (decimal) number which leaves a remainder of 4 when
divided by 7, 9, or 11.

Find the smallest positive integer which leaves a remainder of 1 when
divided by 11, a remainder of 2 when divided by 12, and a remainder
of 3 when divided by 13.

Find the smallest nonnegative solution of each of the following systems
of congruences:

(a)z=2mod 3 (b) z=12mod 31 (c) 19z =103 mod 900

=3 mod5 T = 87 mod 127 10z = 511 mod 841
T =4 mod 11 T = 91 mod 255
T =5 mod 16

Suppose that a 3-digit (decimal) positive integer which leaves a re-
mainder of 7 when divided by 9 or 10 and 3 when divided by 11 goes
evenly into a six-digit natural number which leaves a remainder of 8
when divided by 9, 7 when divided by 10, and 1 when divided by 11.
Find the quotient.

In the situation of Proposition 1.3.3, suppose that 0 < a; < m; < B for
all j, where B is some large bound on the size of the moduli. Suppose
that r is also large. Find an estimate for the number of bit operations
required to solve the system. Your time estimate should be a function
of B and r, and should allow for the possibility that r is either very
large or very small compared to the number of bits in B.

Use the repeated squaring method to find 387 mod 103.
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15.

16.

17.

18.

19.

20.

21.

22.

23.
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In exact integer arithmetic (rather than modular arithmetic) does the
repeated squaring method save time? Explain, using big-O estimates.
Notice that for a prime to p, aP~2 is an inverse of a modulo p. Suppose
that p is very large. Compare using the repeated squaring method to
find aP~2 with the Euclidean algorithm as an efficient means to find
a~! mod p when (a) a has almost as many digits as p, and (b) when a
is much smaller than p.

Find ¢(n) for all m from 90 to 100.

Make a list showing all n for which ¢(n) < 12, and prove that your list
is complete.

Suppose that n is not a perfect square, and that n—1 > ¢(n) > n—n?/?
Prove that n is a product of two distinct primes.

If m > 8 is a power of 2, show that the exponent in Proposition 1.3.5
can be replaced by ¢(m)/2.

Let m = 7785562197230017200 = 2¢-3%-5%-7-11-13-19-31-37-41-
61-73-181.

(a) Find the least nonnegative residue of 6647352 mod m.

(b) Let a be a positive integer less than m which is prime to m.
First, find a positive power of a less than 500 which is certain to give
a~! mod m. Next, describe an algorithm for finding this power of a
working modulo m. How many multiplications and divisions are needed
to carry out this algorithm? (Reducing a number modulo m counts as
one division.) What is the maximum number of bits you could en-
counter in the integers that you work with? Finally, give a good esti-
mate of the number of bit operations needed to find a~! mod m by
this method. (Your answer should be a specific number — do not use
the big-O notation here.)

Give another proof of Proposition 1.3.7 as follows. For each divisor d of
n, let Sy denote the subset (actually a so-called “subgroup”) of Z/nZ
consisting of all multiples of n/d. Thus, Sq has d elements.

(a) Prove that Sy has o(d) different elements = which generate Sa,
meaning that the multiples of z (considered modulo n) give all elements
of Sd.

(b) Prove that every element of z generates one of the Sy, and hence
that the number of elements in Z/nZ is equal to the sum (taken over
divisors d) of the number of elements that generate Sgq. In light of part
(a), this gives Proposition 1.3.7.

(a) Using the Fundamental Theorem of Arithmetic, prove that

I —

all primes p

=

diverges to infinity.
(b) Using part (a), prove that the sum of the reciprocals of the primes
diverges.
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(c) Find a sequence n; approaching oo for which limj.__.oo—”é:-’_ll =1
and a sequence n; for which liqum%ﬁﬁ =0. J

24. Let N be an extremely large secret intege; used to unlock a missile sys-
tem, i.e., knowing N would enable one to launch the missiles. Suppose
you have a commanding general and n different lieutenant generals.
In the event that the commanding general (who knows N) is incapac-
itated, you want the lieutenant generals each to have enough partial
information about N so that any three of them (but never two of them)
can agree to launch the missiles.
(a) Let p1,...,pn be n different primes, all of which are greater than
YN but much smaller than v/N. Using the p;, describe the partial
information about N that should be given to the lieutenant generals.
(b) Generalize this system to the situation where you want any set
of k (k > 2) of the lieutenant generals, working together, to be able
to launch the missiles (but a set of £ — 1 of them can never unlock
the system). Such a set-up is called a k-threshold system for sharing a
secret.

4 Some applications to factoring

Proposition 1.4.1. For any integer b and any positive integer n, b" — 1 is
divisible by b — 1 with quotient b" 1 4+b""2 4+ ... 4 b2+ b+ 1.

Proof. We have a polynomial identity coming from the following fact: 1
is a root of z™ — 1, and so the linear term z — 1 must divide ™ — 1. Namely,
polynomial division gives % —1 = (z— 1)(z" ' + 2" 2 +.- -+ 22 +z +1).
(Alternately, we can derive this by multiplying z by z"~! +z" "2 + --- +
z2 + z + 1, then subtracting 2" + 2" 2 + ... + 2% + z + 1, and finally
obtaining ™ — 1 after all the canceling.) Now we get the proposition by
replacing z by b.

A second proof is to use arithmetic in the base b. Written to the base
b, the number ™ — 1 consists of n digits b — 1 (for example, 106 — 1 =
999999). On the other hand, b”~! + 5”72 + ... + b% + b + 1 consists of
n digits all 1. Multiplying 111---111 by the 1-digit number b — 1 gives
G-1)b-1)b-1)---(b-10b-1)(b—1)p =b" - 1.

Corollary. For any integer b and any positive integers m and n, we
have b™ — 1 = (b™ — 1)(b™(™=1) 4 pm™(n=2) 4 ... 4 p2™ 4 p™ 4- 1),

Proof. Simply replace b by b™ in the last proposition.

As an example of the use of this corollary, we see that 23° —1 is divisible
by 2° —1 = 31 and by 27 — 1 = 127. Namely, we set b = 2 and either
m=5n=Torelsem=7,n=>5.

Proposition 1.4.2. Suppose that b is prime to m, and a and ¢ are positive
integers. If b* = 1 mod m and b° = 1 mod m, and if d = g.c.d.(a,c), then
b? =1 mod m.
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Proof. Using the Euclidean algorithm, we can write d in the form
ua + ve, where u and v are integers. It is easy to see that one of the two
numbers u, v is positive and the other is negative or zero. Without loss of
generality, we may suppose that u >0, v < 0. Now raise both sides of the
congruence b® = 1 mod m to the u-th power, and raise both sides of the
congruence b¢ = 1 mod m to the (—v)-th power. Now divide the resulting
two congruences, obtaining: pev—<(—v) = 1 mod m. But au + cv = d, so the
proposition is proved.

Proposition 1.4.3. If p is a prime dividing b" —1, then either (i) p|b?—1
for some proper diisor d of n, or else (i) p=1 modn. Ifp>2andn is
odd, then in case (i) one has p =1 mod 2n.

Proof. We have b™ = 1 mod p and also, by Fermat’s Little Theorem,
we have b»~! = 1 mod p. By the above proposition, this means that b4 =
1 mod p, where d = g.c.d.(n, p— 1). First, if d < n, then this says that
p|bd — 1 for a proper divisor d of n, i.e., case (i) holds. On the other hand,
if d = n, then, since d|p — 1, we have p = 1 mod n. Finally, if p and n are
both odd and n |p — 1 (i.e., we're in case (ii)), then obviously 2n|p—1.

We now show how this proposition can be used to factor certain types
of large integers.

Examples

1. Factor 211 —1 = 2047. If p| 2!! — 1, by the theorem we must have
p = 1 mod 22. Thus, we test p = 23, 67, 89,... (actually, we need go
no farther than v/2047 = 45.---). We immediately obtain the prime
factorization of 2047: 2047 = 23 - 89. In a very similar way, one can
quickly show that 23 — 1 = 8191 is prime. A prime of the form 2™ —1
is called a “Mersenne prime.”

9. Factor 312 — 1 = 531440. By the proposition above, we first try the
factors of the much smaller numbers 3! =1, 32 -1, 33—1, 3*—1, and
the factors of 36 — 1 = (3% — 1)(3% + 1) which do not already occur in
33 _ 1. This gives us 2% - 5- 7 - 13. Since 531440/(2* - 5-7-13) = 73,
which is prime, we are done. Note that, as expected, any prime that
did not occur in 3¢ — 1 for d a proper divisor of 12 — namely, 73 -
must be = 1 mod 12.

3. Factor 235 — 1 = 34359738367. First we consider the factors of 2¢ —1
for d = 1, 5, 7. This gives the prime factors 31 and 127. Now (2% -
1)/(31 - 127) = 8727391. According to the proposition, any remaining
prime factor must be = 1 mod 70. So we check 71, 211, 281,..., looking
for divisors of 8727391. At first, we might be afraid that we’ll have
to check all such primes less than v/8727391 = 2954. - - -. However, we
immediately find that 8727391 = 71 -122921, and then it remains to
check only up to v/122921 = 350.---. We find that 122921 is prime.
Thus, 235 — 1 = 31- 71 - 127 - 122921 is the prime factorization.
Remark. In Example 3, how can one do the arithmetic on a calculator
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that only shows, say, 8 decimal places? Simply break up the numbers into
sections. For example, when we compute 233 we reach the limit of our
calculator display with 226 = 67108864. To multiply this by 2° = 512,
we write 235 = 512 - (67108 - 1000 + 864) = 34359296 - 1000 + 442368 =
34359738368. Later, when we divide 235 —1 by 31-127 = 3937, we first divide
3937 into 34359738, taking the integer part of the quotient: [g%%%;_s_s
8727. Next, we write 34359738 = 3937 - 8727 + 1539. Then

34359738367 (3937 - 8727 + 1539) - 1000 + 367

3937 3937
1539367
=872
8727000 + 3937
= 8727391.

Ezxercises

1. Give two different proofs that if n is odd, then b +1 = (b+1)(b™"! —
b"=2 4 ...+ b%> — b+ 1). In one proof use a polynomial identity. In the
other proof use arithmetic to the base b.

2. Prove that if 2" — 1 is a prime, then n is a prime, and that if 2™ +1
is a prime, then n is a power of 2. The first type of prime is called a
“Mersenne prime,” as mentioned above, and the second type is called
a “Fermat prime.” The first few Mersenne primes are 3, 7, 31, 127; the
first few Fermat primes are 3, 5, 17, 257.

3. Suppose that b is prime to m, where m > 2, and a and c are positive
integers. Prove that, if b* = —1 mod m and b° = £1 mod m, and if
d = g.c.d.(a,c), then b = —1 mod m, and a/d is odd.

4. Prove that, if p|b™ + 1, then either (i) p| b4 + 1 for some proper divisor
d of n for which n/d is odd, or else (ii) p = 1 mod 2n.

5. Let m =22 +1=1677721T.

(a) Find a Fermat prime which divides m.
(b) Prove that any other prime is = 1 mod 48.
(c) Find the complete prime factorization of m.

6. Factor 3'° —1 and 324 — 1.

7. Factor 5% — 1.

8. Factor 10° —1, 10° —1 and 108 — 1.

9. Factor 233 — 1 and 22! - 1.

10. Factor 215 — 1, 230 — 1, and 260 — 1.

11. (a) Prove that if d = g.cd.(m,n) and a > 1 is an integer, then

ged(a™—1,a"—1)=a? -1

(b) Suppose you want to multiply two k-bit integers a and b, where k
is very large. Let £ be a fixed integer much smaller than k. Choose a set
of m;, 1 <1i < r, such that £ < m; < £ for all i and g.c.d.(mi,m;) =1
for i # j. Choose r = [4k/£f + 1. Suppose that a large integer such as
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a is stored as an r-tuple (ay, ..., a), where a; is the least nonnegative
residue of @ mod 2™ — 1. Prove that a, b and ab are each uniquely
determined by the corresponding r-tuple, and estimate the number of
bit operations required to find the r-tuple corresponding to ab from
the r-tuples corresponding to a and b.
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I1

Finite Fields and Quadratic
Residues

In this chapter we shall assume familiarity with the basic definitions and
properties of a field. We now briefly recall what we need.

1.

A field is a set F with a multiplication and addition operation which
satisfy the familiar rules — associativity and commutativity of both
addition and multiplication, the distributive law, existence of an ad-
ditive identity 0 and a multiplicative identity 1, additive inverses, and
multiplicative inverses for everything except 0. The following examples
of fields are basic in many areas of mathematics: (1) the field Q con-
sisting of all rational numbers; (2) the field R of real numbers; (3) the
field C of complex numbers; (4) the field Z/pZ of integers modulo a
prime number p.

A vector space can be defined over any field F by the same properties
that are used to define a vector space over the real numbers. Any
vector space has a basis, and the number of elements in a basis is
called its dimension. An extension field, i.e., a bigger field containing
F, is automatically a vector space over F. We call it a finite extension if
it is a finite dimensional vector space. By the degree of a finite extension
we mean its dimension as a vector space. One common way of obt aining
extension fields is to adjoin an element to F: we say that K = F(a) if
K is the field consisting of all rational expressions formed using a and
elements of F.

Similarly, the polynomial ring can be defined over any field F. It is de-
noted F[X]; it consists of all finite sums of powers of X with coefficients
in F. One adds and multiplies polynomials in F[X] in the same way as
one does with polynomials over the reals. The degree d of a polynomial
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is the largest power of X which occurs with nonzero coefficient; in a
monic polynomial the coefficient of X d is 1. We say that g divides f,
where f, g € F[X], if there exists a polynomial A € F[X] such that
f = gh. The irreducible polynomials f € F[X] are those that are not
divisible by any polynomials of lower degree except for constants; they
play the role among the polynomials that the primes play among the
integers. The polynomial ring has unique factorization, meaning that
every monic polynomial can be written in one and only one way (except
for the order of factors) as a product of monic irreducible polynomials.
(A non-monic polynomial can be uniquely written as a constant times
such a product.)

An element o in some extension field K containing F is said to be
algebraic over F if it satisfies a polynomial with coefficients in F. In
that case there is a unique monic irreducible polynomial in F[X ] of
which « is a root (and any other polynomial which a satisfies must be
divisible by this monic irreducible polynomial). If this monic irreducible
polynomial has degree d, then any element of F(c) (i-e., any rational
expression involving powers of a and elements in F) can actually be
expressed as a linear combination of the powers 1,a,a?,..., %! Thus,
those powers of o form a basis of F(a) over F, and so the degree of
the extension obtained by adjoining ¢ is the same as the degree of
the monic irreducible polynomial of a. Any other root o' of the same
irreducible polynomial is called a conjugate of o over F. The fields
F(a) and F(c') are isomorphic by means of the map that takes any
expression in terms of a to the same expression with a replaced by o
The word “isomorphic” means that we have a 1-to-1 correspondence
that preserves addition and multiplication. In some cases the fields
F(a) and F(a') are the same, in which case we obtain an automorphism
of the field. For example, v/2 has one conjugate, namely —V/2, over Q,
and the map a+bv/2 — a—by/2 is an automorphism of the field Q(V2)
(which consists of all real numbers of the form a + bv/2 with a and b
rational). If all of the conjugates of a are in the field F(a), then F(a)
is called a Galois extension of F.

The derivative of a polynomial is defined, using the nX m=1 rule (not as
a limit, since limits don’t make sense in F unless there is a concept of
distance or a topology in F). A polynomial f of degree d may or may
not have a root r € F, i.e., a value which gives 0 when substituted in
place of X in the polynomial. If it does, then the degree-1 polynomial
X —r divides f; if (X —r)™ is the highest power of X —r which divides
f, then we say that r is a root of multiplicity m. Because of unique
factorization, the total number of roots of f in F, counting multiplicity,
cannot exceed d. If a polynomial f € F[X] has a multiple root r, then
r will be a root of the greatest common divisor of f and its derivative
f'(see Exercise 13 of §1.2).

Given any polynomial f(X) € F[X], there is an extension field K of
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F such that f(X) splits into a product of linear factors (equivalently,
has d roots in K, counting multiplicity, where d is its degree) and such
that K is the smallest extension field containing those roots. K is called
the splitting field of f. The splitting field is unique up to isomorphism,
meaning that if we have any other field K’ with the same properties,
then there must be a 1-to-1 correspondence KK’ which preserves
addition and multiplication. For example, Q(V?2) is the splitting field
of f(X) = X2 — 2, and to obtain the splitting field of f(X) = X° -2
one must adjoin to Q both ¥/2 and /=3.

7. If adding the multiplicative identity 1 to itself in F never gives 0, then
we say that F has characteristic zero; in that case F contains a copy
of the field of rational numbers. Otherwise, there is a prime number
p such that 1+ 1+ --- + 1 (p times) equals 0, and p is called the
characteristic of the field F. In that case F' contains a copy of the field
Z/pZ (see Corollary 1 of Proposition 1.3.1), which is called its prime
field.

1 Finite fields

Let F, denote a field which has a finite number ¢ of elements in it. Clearly
a finite field cannot have characteristic zero; so let p be the characteristic of
F,. Then F, contains the prime field F, = Z/pZ, and so is a vector space
— necessarily finite dimensional — over F,. Let f denote its dimension as
an F,—vector space. Since choosing a basis enables us to set up a 1-to-1
correspondence between the elements of this f-dimensional vector space
and the set of all f-tuples of elements in F,, it follows that there must be
pf elements in F,. That is, ¢ is a power of the characteristic p.

We shall soon see that for every prime power ¢ = p/ there is a field of
q elements, and it is unique (up to isomorphism).

But first we investigate the multiplicative order of elements in F'g, the
set of nonzero elements of our finite field. By the “order” of a nonzero
element we mean the least positive power which is 1.

Existence of multiplicative generators of finite fields. There are ¢ — 1
nonzero elements, and, by the definition of a field, they form an abelian
group with respect to multiplication. This means that the product of two
nonzero elements is nonzero, the associative law and commutative law hold,
there is an identity element 1, and any nonzero element has an inverse. It is
a general fact about finite groups that the order of any element must divide
the number of elements in the group. For the sake of completeness, we give
a proof of this in the case of our group Fy.

Proposition I1.1.1. The order of any a € Fy divides ¢ — 1.

First proof. Let d be the smallest power of a which equals 1. (Note
that there is a finite power of a that is 1, since the powers of a in the finite
set F; cannot all be distinct, and as soon as a‘ = a for j > i we have
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ai=t = 1) Let § = {1, a, a%,...,a%" !} denote the set of all powers of g,
and for any b € F} let bS denote the “coset” consisting of all elements of
the form ba’ (for example, 1S = S). It is easy to see that any two cosets
are either identical or distinct (namely: if some bia® in by S is also in by,
i.e., if it is of the form bpa?, then any element bia® in by S is of the form to
be in byS, because bja’ = bjaia’ ~ = bpa?+i~%). And each coset contains
exactly d elements. Since the union of all the cosets exhausts F7, this means
that F; is a disjoint union of d-element sets; hence d|(g — 1).

Second proof. First we show that a?~! = 1. To see this, write the
product of all nonzero elements in F,. There are ¢ — 1 of them. If we
multiply each of them by a, we get a rearrangement of the same elements
(since any two distinct elements remain distinct after multiplication by a).
Thus, the product is not affected. But we have multiplied this product
by ad~L Hence a9~! = 1. (Compare with the proof of Proposition 1.3.2.)
Now let d be the order of g, i.e., the smallest positive power which gives
1. If d did not divide g — 1, we could find a smaller positive number r —
namely, the remainder when ¢ — 1 = bd + 7 is divided by d — such that
a = @9-1-%¢ — 1. But this contradicts the minimality of d. This concludes
the proof.

Definition. A generator g of a finite field Fy is an element of order ¢— 1;
equivalently, the powers of g run through all of the elements of Fy.

The next proposition is one of the very basic facts about finite fields.
It says that the nonzero elements of any finite field form a cyclic group, i.e.,
they are all powers of a single element.

Proposition I1.1.2. Every finite field has a generator. If g is a generator
of Fy, then ¢’ is also a generator if and only if g.c.d.(j, ¢ — 1) =11In
particular, there are a total of ¢(q — 1) different generators of Fy.

Proof. Suppose that a € F, has order d, i.e., a® = 1 and no lower
power of a gives 1. By Proposition IL.1.1, d divides ¢ — 1. Since a® is the
smallest power which equals 1, it follows that the elements a, a2,...,a% =1
are distinct. We claim that the elements of order d are precisely the ¢(d)
values @/ for which g.c.d.(j,d) = 1. First, since the d distinct powers of a all
satisfy the equation z¢ = 1, these are all of the roots of the equation (see
paragraph 5 in the list of facts about fields). Any element of order d must
thus be among the powers of a. However, not all powers of a have order
d, since if g.c.d.(j,d) = d’ > 1, then a’ has lower order: because d/d’ and
j/d' are integers, we can write (a?)(#/%) = (a%)} /4" = 1. Conversely, we now
show that a/ does have order d whenever g.c.d.(j,d) = 1. If j is prime to d,
and if a7 had a smaller order d” then a?" raised to either the j—th or the
d—th power would give 1, and hence a?” raised to the power g.c.d.(j,d) =1
would give 1 (this is proved in exactly the same way as Proposition 1.4.2).
But this contradicts the fact that a is of order d and so a?’ # 1. Thus, o’
has order d if and only if g.c.d.(j,d) = 1.

This means that, if there is any element a of order d, then there are
exactly o(d) elements of order d. So for every d|(g — 1) there are only two
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possibilities: no element has order d, or exactly ¢(d) elements have order d.

Now every element has some order d|(¢ — 1). And there are either 0 or
¢(d) elements of order d. But, by Proposition 1.3.7, Zdl(q—-l) e(d)=q—-1,
which is the number of elements in F;. Thus, the only way that every
element can have some order d|(g— 1) is if there are always ¢(d) (and never
0) elements of order d. In particular, there are (g — 1) elements of order
¢—1; and, as we saw in the previous paragraph, if g is any element of order
g— 1, then the other elements of order ¢ — 1 are precisely the powers g’ for
which g.c.d.(§, ¢ — 1) = 1. This completes the proof.

Corollary. For every prime p, there ezists an integer g such that the
powers of g ezhaust all nonzero residue classes modulo p.

Example 1. We can get all residues mod 19 from 1 to 18 by taking
powers of 2. Namely, the successive powers of 2 reduced mod 19 are: 2, 4,
8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1.

In many situations when working with finite fields, such as F, for some
prime p, it is useful to find a generator. What if a number g € F7 is chosen
at random? What is the probability that it will be a generator? In other
words, what proportion of all of the nonzero elements consists of generators?
According to Proposition II.1.2, the proportion is ¢(p — 1)/(p — 1). But
by our formula for ¢(n) following the corollary of Proposition 1.3.3, this
fraction is equal to the [[(1 — 1), where the product is over all primes £
dividing p — 1. Thus, the odds of getting a generator by a random guess
depend heavily on the factorization of p — 1. For example, we can prove:

Proposition 11.1.3. There ezists a sequence of primes p such that the
probability that a random g € F7 is a generator approaches zero.

Proof. Let {n;} be any sequence of positive integers which is divisible
by more and more of the successive primes 2, 3, 5, 7,... as j — 00.
For example, we could take n; = j!. Choose p; to be any prime such that
p; = 1 mod n;. How do we know that such a prime exists? That follows from
Dirichlet’s theorem on primes in an arithmetic progression, which states: If
n and k are relatively prime, then there are infinitely many primes which are
= k mod n. (In fact, more is true: the primes are “evenly distributed” among
the different possible k mod n, i.e., the proportion of primes = k mod n is
1/¢p(n); but we don’t need that fact here.) Then the primes dividing p; —1
include all of the primes dividing n;, and so —’%ﬁl—l < Mprimes oin; (1 = )
But as j — 0o this product approaches [Ty primes ¢ (1~ %), which is zero
(see Exercise 23 of §1.3). This proves the proposition.

Existence and uniqueness of finite fields with prime power number of
elements. We prove both existence and uniqueness by showing that a finite
field of g = pf elements is the splitting field of the polynomial X7 — X. The
following proposition shows that for every prime power ¢ there is one and
(up to isomorphism) only one finite field with ¢ elements.

Proposition I11.1.4. If F, is a field of ¢ = pf elements, then every
element satisfies the equation X9 — X = 0, and F, is precisely the set
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of roots of that equation. Conversely, for every prime power ¢ = pf the
splitting field over F,, of the polynomial X9 — X is a field of q elements.

Proof. First suppose that Fy is a finite field. Since the order of any
nonzero element divides g — 1, it follows that any nonzero element satisfies
the equation X! = 1, and hence, if we multiply both sides by X, the
equation X9 = X. Of course, the element 0 also satisfies the latter equation.
Thus, all g elements of Fy are roots of the degree-g polynomial X9 — X.
Since this polynomial cannot have more than g roots, its roots are precisely
the elements of F,. Notice that this means that Fq is the splitting field of
the polynomial X9 — X, that is, the smallest field extension of Fp which
contains all of its roots.

Conversely, let ¢ = p/ be a prime power, and let F be the splitting
field over F, of the polynomial X? — X. Note that X7 — X has derivative
gX9 ! —1 = —1 (because the integer g is a multiple of p and so is zero
in the field F); hence, the polynomial X7 — X has no common roots with
its derivative (which has no roots at all), and therefore has no multiple
roots. Thus, F must contain at least the g distinct roots of X? — X. But
we claim that the set of g roots is already a field. The key point is that
a sum or product of two roots is again a root. Namely, if a and b satisfy
the polynomial, we have a? = a, b9 = b, and hence (ab)? = ab, ie., the
product is also a root. To see that the sum a+b also satisfies the polynomial
X9 — X =0, we note a fundamental fact about any field of characteristic
p:

Lemma. (a + b)? = a? + b? in any field of characteristic p.

The lemma is proved by observing that all of the intermediate terms
vanish in the binomial expansion Y7_g (%)a?™’ b, because p!/(p — 7)!5! is
divisible by p for 0 < j < p.

Repeated application of the lemma gives us: a? + b = (a + b)P, a? +
b’ = (aP + bP)P = (@a+b)P,..., a? +b? = (a+b)?% Thus, if a? = a and
b? = b it follows that (a+b)? = a+b, and so a +b is also a root of X7 —X.
We conclude that the set of g roots is the smallest field containing the roots
of X% — X, i.e., the splitting field of this polynomial is a field of g elements.
This completes the proof.

In the proof we showed that raising to the p-th power preserves addition
and multiplication. We derive another important consequence of this in the
next proposition.

Proposition IL.1.5. Let F, be the finite field of ¢ = pf elements, and let
o be the map that sends every element to its p-th power: o(a) = af Then o
is an automorphism of the field Fy (a 1-to-1 map of the field to itself which
preserves addition and multiplication). The elements of Fq which are kept
fized by o are precisely the elements of the prime field Fp. The f-th power
(and no lower power) of the map o is the identity map.

Proof. A map that raises to a power always preserves multiplication.
The fact that o preserves addition comes from the lemma in the proof of
Proposition II.1.4. Notice that for any j the j-th power of o (the result of
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repeating o j times) is the map a — a” . Thus, the elements left fixed by
o7 are the roots of X? — X. If j = 1, these are precisely the p elements of
the prime field (this is the special case ¢ = p of Proposition II.1.4, namely,
Fermat’s Little Theorem). The elements left fixed by of are the roots of
X7 — X, ie., all of Fy. Since the f-th power of o is the identity map, &
must be 1-to-1 (its inverse map is o/~ : ar— a?’™"). No lower power of &
gives the identity map, since for j < f not all of the elements of F, could
be roots of the polynomial X7 — X. This completes the proof.

Proposition I11.1.6. In the notation of Proposition II.1.5, if o is any
element of Fy, then the conjugates of o over Fp (the elements of Fq which
satisfy the same monic irreducible polynomial with coefficients in Fp, ) are
the elements o7 (@) = a”.

Proof. Let d be the degree of Fp(a) as an extension of F,. That is,
Fy(a) is a copy of Fpa. Then a satisfies X?" — X but does not satisfy
X? — X for any j < d. Thus, one obtains d distinct elements by repeatedly
applying o to a. It now suffices to show that each of these elements satisfies
the same monic irreducible polynomial f(X) that a does, in which case they
must be the d roots. To do this, it is enough to prove that, if a satisfies
a polynomial f(X) € Fp[X], then so does o Let f(X) = 3 a; X7, where
aj € Fp. Then 0 = f(a) = 3" ajod Raising both sides to the p-th power
gives 0 = Y (a;ja?)P (where we use the fact that raising a sum a + b to the
p-th power gives aP + bP). But a;’ = a;, by Fermat’s Little Theorem, and
so we have: 0 = 3" a;(a?)? = f(aP), as desired. This completes the proof.

Explicit construction. So far our discussion of finite fields has been
rather theoretical. Our only practical experience has been with the finite
fields of the form F, = Z/pZ. We now discuss how to work with finite
extensions of Fp. At this point we should recall how in the case of the
rational numbers Q we work with an extension such as Q(\/ﬁ) Namely,
we get this field by taking a root a of the equation X 2 _ 2 and looking at
expressions of the form a + ba, which are added and multiplied in the usual
way, except that a? should always be replaced by 2. (In the case of Q(v?2)
we work with expressions of the form a + ba + ca?, and when we multiply
we always replace o® by 2.) We can take the same general approach with
finite fields.

Example 2. To construct Fg we take any monic quadratic polynomial in
F3[X] which has no roots in F3. By trying all possible choices of coefficients
and testing whether the elements 0,1 € F3 are roots, we find that there
are three monic irreducible quadratics: X241, X2+ X — 1. If, for example,
we take @ to be a root of X2+ 1 (let’s call it ¢ rather than a — after all,
we are simply adjoining a square root of —1), then the elements of F'g are
all combinations a + bi, where a and b are 0, 1, or —1. Doing arithmetic in
Fy is thus a lot like doing arithmetic in the Gaussian integers (see Exercise
14 of §1.2), except that our arithmetic with the coefficients a and b occurs
in the tiny field F3.
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Notice that the element ¢ that we adjoined is not a generator of Fg,
since it has order 4 rather than g — 1 = 8. If, however, we adjoin a root a of
X% - X —1, we can get all nonzero elements of Fg by taking the successive
powers of a (remember that a® must always be replaced by a + 1, since
asatisfies X2 = X +1):al =, =a+1,a® = —a+1,0* = -1,
o =-a,a®=—-a-1,0 =a-1, a® = 1. We sometimes say that
the polynomial X2 — X — 1 is primitive, meaning that any root of the
irreducible polynomial is a generator of the group of nonzero elements of
the field. There are 4 = (8) generators of F§, by Proposition IL.1.2: two
are the roots of X2 — X —1 and two are the roots of X2+ X —1. (The second
root of X2 — X —1 is the conjugate of a, namely, o(a) = a® = —a+1.) Of
the remaining four nonzero elements, two are the roots of X 2 +1 (namely
+i = +(a + 1)) and the other two are the two nonzero elements +1 of F3
(which are roots of the degree-1 monic irreducible polynomials X —1 and
X +1).

In general, in any finite field Fg, ¢ = pf, each element a satisfies a
unique monic irreducible polynomial over F,, of some degree d. Then the
field F,(a) obtained by adjoining this element to the prime field is an
extension of degree d that is contained in F,. That is, it is a copy of the
field Fpa. Since the big field Fps contains Fj4, and so is an F,qa—vector
space of some dimension f! it follows that the number of elements in Fs
must be (p%)f’, i.e., f = df’ Thus, d|f. Conversely, for any d|f the finite
field Fpe is contained in F,, because any solution of X P = X is also a
solution of X?’ = X. (To see this, note that for any d’, if you repeatedly
replalce X by X7 on the left in the equation X =X , you can obtain
X" = 1.) Thus, we have proved:

Proposition I1.1.7. The subfields of F,; are the Fpa for d dividing f.
If an element of F; is adjoined to F,, one obtains one of these fields.

It is now easy to prove a formula that is useful in determining the
number of irreducible polynomials of a given degree.

Proposition IL1.8. For any ¢ = p/ the polynomial X7 — X factors in
F,[X] into the product of all monic irreducible polynomials of degrees d
diwviding f.

Proof. If we adjoin to F, a root a of any monic irreducible polyno-
mial of degree d|f, we obtain a copy of Fp«, which is contained in Fp;.
Since « then satisfies X9 — X = 0, the monic irreducible must divide that
polynomial. Conversely, let f(X) be a monic irreducible polynomial which
divides X9 — X. Then f(X) must have its roots in Fy (since that’s where
all of the roots of X% — X are). Thus f(X) must have degree dividing f, by
Proposition I1.1.7, since adjoining a root gives a subfield of Fq.. Thus, the
monic irreducible polynomials which divide X7 — X are precisely all of the
ones of degree dividing f. Since we saw that X? — X has no multiple fac-
tors, this means that X7 — X is equal to the product of all such irreducible
polynomials, as was to be proved.
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Corollary. If f is a prime number, then there are (pf —p)/f distinct
monic irreducible polynomials of degree f in Fp[X ].

Notice that (pf —p)/f is an integer because of Fermat’s Little Theorem
for the prime f, which guarantees that pf = pmod f. To prove the corollary,
let n be the number of monic irreducible polynomials of degree f. According
to the proposition, the degree-p/ polynomial X »’ _ X is the product of n
polynomials of degree f and the p degree-1 irreducible polynomials X —a
for a € Fp. Thus, equating degrees gives: pf = nf + p, from which the
desired equality follows.

More generally, suppose that f is not necessarily prime. Then, letting
ng denote the number of monic irreducible polynomials of degree d over
Fp, we have ny = (pf — Y. dng)/f, where the summation is over all d<f
which divide f.

We now extend the time estimates in Chapter I for arithmetic modulo
p to general finite fields.

Proposition I1.1.9. Let F,, where ¢ = pf, be a finite field, and let
F(X) be an irreducible polynomial of degree f over Fy. Then two elements
of Fy can be multiplied or divided in O(log®q) bit operations. If k 1is a
positive integer, then an element of Fq can be raised to the k-th power in
O(log klog®q) bit operations.

Proof. An element of F,, is a polynomial with coefficients in F, = Z/pZ
regarded modulo F(X). To multiply two such elements, we multiply the
polynomials — this requires O( f 2) multiplications of integers modulo p (and
some additions of integers modulo p, which take much less time) — and
then divide the polynomial F(X) into the product, taking the remainder
polynomial as our answer. The polynomial division involves O(f) divisions
of integers modulo p and O(f 2) multiplications of integers modulo p. Since
a multiplication modulo p takes O(log®p) Dbit operations, and a division
(using the Euclidean algorithm, for example) takes O(log®p) bit operations
(see the corollary to Proposition 1.2.2), the total number of bit operations is:
O(f%log*p + f log®p) = O((f logp)®) = O(log*q). To prove the same result
for division, it suffices to show that the reciprocal of an element can be found
in time O(log®g). Using the Euclidean algorithm for polynomials over the
field F, (see Exercise 12 of § 1.2), we must write 1 as a linear combination of
our given element in Fy (i.e., a given polynomial of degree < f) and the fixed
degree-f polynomial F(X). This involves O(f) divisions of polynomials of
degree < f, and each polynomial division requires O( f2log?p + flog®p) =
O(f2log®p) bit operations. Thus, the total time required is O(f3log®p) =
O(log®q). Finally, a k-th power can be computed by the repeated squaring
method in the same way as modular exponentiation (see the end of §1.3).
This takes O(log k) multiplications (or squarings) of elements of Fg, and
hence O(log klog3q) bit operations. This completes the proof.

We conclude this section with an example of computation with poly-
nomials over finite fields. We illustrate by an example over the very small-
est (and perhaps the most important) finite field, the 2-element field
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F, = {0, 1}. A polynomial in F;[X] is simply a sum of powers of X.
In some ways, polynomials over F, are like integers expanded to the base
p, where the digits are analogous to the coefficients of the polynomial. For
example, in its binary expansion an integer is written as a sum of powers of
2 (with coefficients 0 or 1), just as a polynomial over F is a sum of powers
of X. But the comparison is often misleading. For example, the sum of any
number of polynomials of degree d is a polynomial of degree (at most) d;
whereas a sum of several d-bit integers will be an integer having more than
d binary digits.

Example 3. Let f(X) = X*+ X3+ X2+1,g=X3+1 € F3[X]. Find
g.c.d.(f, g) using the Euclidean algorithm for polynomials, and express the
g.c.d. in the form u(X)f(X) + v(X)g(X).

Solution. Polynomial division gives us the sequence of equalities below,
which lead to the conclusion that g.c.d.(f, g) = X +1, and the next sequence
of equalities enables us, working backwards, to express X + 1 as a linear
combination of f and g. (Note, by the way, that in a field of characteristic
2 adding is the same as subtracting, i.e., a —b=a+b—2b=a+b) We
have:

f=(X+1)g+(X*+X)
g=X+D)(X2+X)+ (X +1)

X2+ X =X(X+1)

and then
X+1=g+(X+1)(X*+X)
=g+ (X +1)(f+ (X +1)g)
=(X+1)f+ (X2)g.
Ezxercises

1. For p = 2,3,5,7, 11,13 and 17,<find the smallest positive inte-
ger which generates F, and determine how many of the integers
1,2,3,...,p—1 are generators.

2. Let (Z/p®Z)* denote all residues modulo p* which are invertible, i.e.,
are not divisible by p. Warning: Be sure not to confuse Z/p*Z (which
has p® — p®~! invertible elements) with Fpe (in which all elements
except 0 are invertible). The two are the same only when o = 1.

(a) Let g be an integer which generates F, where p > 2. Let a be
any integer greater than 1. Prove that either g or (p + 1)g generates
(Z/p*Z)* Thus, the latter is also a cyclic group.

(b) Prove that if @ > 2, then (Z/2%Z)* is not cyclic, but that the
number 5 generates a subgroup consisting of half of its elements, namely
those which are = 1 mod 4.

3. How many elements are in the smallest field extension of Fs which
contains all of the roots of the polynomials X2+ X +1 and X3+X +17

10.

11.

12.

13.
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For each degree d < 6, find the number of irreducible polynomials over
F; of degree d, and make a list of them.

For each degree d < 6, find the number of monic irreducible polyno-
mials over F3 of degree d, and for d < 3 make a list of them.

Suppose that f is a power of a prime £. Find a simple formula for the
number of monic irreducible polynomials of degree f over F,.

Use the polynomial version of the Euclidean algorithm (see Exercise
12 of §1.2) to find g.c.d.(f, g) for f, g € Fp[X] in each of the following
examples. In each case express the g.c.d. polynomial as a combination
of f and g, i.e., in the form d(X) = u(X)f(X) + v(X)g(X).

(@) f=X3+X+1,9g=X*+X+1,p=2

B f=X04+ X5+ X4+ X3+ X2+ X+1,9g=X"+X*+X +1,
p=2

(c) f=X3_X+1)g=X2+1)p=3;
d)f=X4+X4+X-X2-X+1,9=X>+X>+X+1,p=3;
(e) f = X5+88z4+73X3+83X2+51X +67, g = X3+97X2+40X +38,
p = 101.

By computing g.c.d.(f, f') (see Exercise 13 of §1.2), find all multiple
roots of f(X) = X"+ X5+ X4 - X3 -X?-X +1¢€ F3(X] inits
splitting field.

Suppose that o € Fj2 satisfies the polynomial X 2 + aX + b, where
a,beF,.

(a) Prove that o also satisfies this polynomial.

(b) Prove that if a ¢ Fp, then a = —a — of and b= ot

(c) Prove that if @ ¢ F,, and ¢, d € F, then (ca+d)P+! = d?—acd+bc?
(which is € Fp).

(d) Let i be a square root of —1 in Fg2. Use part (c) to find (2+ 3¢)'*!
(i.e., write it in the form a + bi, a,b € Fy9).

Let d be the maximum degree of two polynomials f, g € Fp[X]. Give
an estimate in terms of d and p for the number of bit operations needed
to compute g.c.d.(f, g) using the Euclidean algorithm.

For each of the following fields Fg, where ¢ = pf find an irreducible
polynomial with coefficients in the prime field whose root « is primitive
(i.e., generates F}), and write all of the powers of a as polynomials in
a of degree < f: (a) Fy; (b) Fg; (c) Far; (d) Fos.

Let F(X) € F2[X] be a primitive irreducible polynomial of degree f. If
a denotes a root of F(X), this means that the powers of a exhaust all
of F3;. Using the big-O notation, estimate (in terms of f) the number
of bit operations required to write every power of « as a polynomial in
o of degree less than f.

(a) Under what conditions on p and f is every element of F,; besides
0, 1 a generator of F;,?

(b) Under what conditions is every element # 0, 1 either a generator
or the square of a generator?
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14. For any fixed p, show that there is a sequence ¢; = pfr of powers of p
such that the probability that a random element of F,; is a generator
of F;_ approaches 0 as j — oo. :

15. Which polynomials in F,[X] have derivative identically zero?

16. Let o be the automorphism of F, in Proposition I1.1.5. Prove that the
set of elements left fixed by o7 is the field F,q, where d = g-.c.d.(4, f)-

17. Prove that if b is a generator of F}. and if d|n, then " -1/ (P*-1) g
a generator of F;d.

2 Quadratic residues and reciprocity

Roots of unity. In many situations it is useful to have solutions of the
equation z" = 1. Suppose we are working in a finite field F;. We now
answer the question: How many n-th roots of unity are there in F,?

Proposition I1.2.1. Let g be a generator of Fy. Then ¢’ is an n-th root
of unity if and only if nj = 0 mod q — 1. The number of n-th roots of unity
is g.c.d.(n, ¢—1). In particular, F has a primitive n-th root of unity (i.e.,
an element & such that the powers of & Tun through n n-th roots of unity)
if and only if n| ¢ — 1. If € is a primitive n-th root of unity in Fy, then &
is also a primitive n-th root if and only if g.c.d.(j, n) = 1.

Proof. Any element of F; can be written as a power g’ of the generator
g. A power of g is 1 if and only if the power is divisible by ¢ — 1. Thus,
an element ¢/ is an n-th root of unity if and only if nj = 0 mod q — 1.
Next, let d = g.c.d.(n, ¢— 1). According to Corollary 2 of Proposition 1.3.1,
the equation nj = 0 mod q — 1 (with j the unknown) is equivalent to
the equation 3j = 0 mod 9;—1. Since n/d is prime to (¢ — 1)/d, the latter
congruence is equivalent to requiring j to be a multiple of (¢ — 1)/d. In
other words, the d distinct powers of g(4~1)/¢ are precisely the n-th roots
of unity. There are n such roots if and only if d = n, i.e., n| ¢ — 1. Finally,
if n does divide g — 1, let £ = g{9=1)/" Then ¢’ equals 1 if and only if n|j.
The k-th power of &7 equals 1 if and only if kj = 0 mod n. It is easy to see
that &7 has order n (i.e., this equation does not hold for any positive k < n)
if and only if j is prime to n. Thus, there are ¢(n) different primitive n-th
roots of unity if n| ¢ — 1. This completes the proof.

Corollary 1. If g.c.d.(n, g—1) = 1, then 1 is the only n-th root of unity.

Corollary 2. The element —1 € Fy has a square root in F, if and only
ifg=1 mod 4.

The first corollary is a special case of the proposition. To prove Corol-
lary 2, note that a square root of —1 is the same thing as a primitive 4-th
root of 1, and our field has a primitive 4-th root if and only if 4| ¢ — 1.

Corollary 2 says that if ¢ = 3 mod 4, we can always get the quadratic
extension Fg2 by adjoining a root of X 241, i.e., by considering “Gaussian
integer” type expressions a + bi. We did this for ¢ = 3 in the last section.
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Let us suppose, for example, that p is a prime which is = 3 mod 4.
There is a nice way to think of the field F,2 which generalizes to other
situations. Let R denote the Gaussian integer ring (see Exercise 14 of §1.2).
Sometimes we write R = Z+ Zi, meaning the set of all integer combinations
of 1 and i. If m is any Gaussian integer, and a@ = a + bi and 8 = c + di
are two Gaussian integers, we write o = 3 mod m if a — 3 is divisible by
m, i.e., if the quotient is a Gaussian integer. We can then look at the set
R/mR of residue classes modulo m; just as in the case of ordinary int egers,
residue classes can be added or multiplied, and the residue class of the result
does not depend on which representatives were chosen for the residue class
factors. Now if m = p + 0i is a prime number which is = 3 mod 4, it is not
hard to show that R/pR is the field Fp.

Quadratic residues. Suppose that p is an odd prime, i.e., p > 2. We are
interested in knowing which of the nonzero elements {1, 2,...,p—1} of F,
are squares. If some a € F} is a square, say b? = a, then a has precisely two
square roots +b (since the equation X 2 _ @ = 0 has at most two solutions
in a field). Thus, the squares in F}, can all be found by computing b2 rnod p
forb=1,2 3,...,(p — 1)/2 (since the remaining integers up to p — 1
are all = —b for one of these b), and precisely half of the elements in Fj
are squares. For example, the squares in Fy; are 12 = 1, 22 = 4, 3% =9,
42 = 5, and 5% = 3. The squares in F,, are called quadratic residues modulo
p. The remaining nonzero elements are called nonresidues. For p = 11 the
nonresidues are 2, 6, 7, 8, 10. There are (p — 1)/2 residues and (p — 1)/2
nonresidues.

If g is a generator of F,, then any element can be written in the form g
Thus, the square of any element is of the form g’ with j even. Conversely,
any element of the form g7 with j even is the square of some element,
namely +g7/2.

The Legendre symbol. Let a be an integer and p > 2 a prime. We
define the Legendre symbol (:7) to equal 0, 1 or —1, as follows:

a 0, ifpla;
(—) ={ 1, ifaisa quadratic residue mod p;
p —1, if a is a nonresidue mod p.

Thus, the Legendre symbol is simply a way of identifying whether or not
an integer is a quadratic residue modulo p.
Proposition II.2.2.

(g) = a® /2 mod p.

Proof. If a is divisible by p, then both sides are = 0 mod p. Suppose
p fa. By Fermat’s Little Theorem, in F, the square of a®-1/2 is 1, so

aP~D/2 jtself is +1. Let g be a generator of F};, and let a = g¢ As we saw,

a is a residue if and only if j is even. And a®P~1/2 = gi(P~1/2 js 1 if and
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only if j(p — 1)/2 is divisible by p — 1, i.e., if and only if j is even. Thus,
both sides of the congruence in the proposition are £1 in Fp, and each side
is +1 if and only if j is even. This completes the proof.

Proposition I1.2.3. The Legendre symbol satisfies the following proper-
ties:

(a) (;‘—,) depends only on the residue of a modulo p;
(b) (2)=(2)(3) )

(c) for b prime to p, (5‘—:-:—) = (%)

@ (3)=1nd (3) = (-)@- D/

Proof. Part (a) is obvious from the definition. Part (b) follows from
Proposition I1.2.2, because the right side is congruent modulo p to a®-1/2.
b(P=1)/2 = (ab)P=1)/2 as is the left side. Part (c) follows immediately from
part (b). The first equality in part (d) is obvious, because 12 =1, and the
second equality comes from Corollary 2 of Proposition II.2.1 (or by taking
a = —1 in Proposition II.2.2). This completes the proof.

Part (b) of Proposition II.2.3 shows that one can determine if a number
a is a quadratic residue modulo p, i.e., one can evaluate (%), if one factors
a and knows the Legendre symbol for the factors. The first step in doing
this is to write a as a power of 2 times an odd number. We then want to
know how to evaluate (%)

Proposition I1.2.4.

(g) _ (_1)(p2_1)/8 _J1 %fps +1 mod 8;
p ~1 if p=+3 mod 8.

Proof. Let f(n) = (—1)("2‘1)/8 for n odd, f(n) = 0 for n even. We
want to show that (%) = f(p). Of the various ways of proving this, we
shall use an efficient method based on what we already know about finite
fields. Since p? = 1 mod 8 for any odd prime p, we know that the field Fp2
contains a primitive 8-th root of unity. Let £ € F2 denote a primitive 8-th
root of 1. Note that £ = —1. Define G = Z;=0 f(H)&. (G is an example
of what is called a Gauss sum.) Then G = £ — €3 — €5 + & = 2(£ - &%)
(because &5 = €3¢ = —¢ and ¢7 = —¢%), and G* = 4(&? - 264 + €5) = 8.
Thus, in Fp2 we have

o - G0t (e - ()

by Proposition I1.2.2 and Proposition I1.2.3(c). On the other hand, using
the definition of G, the fact that (a +b)? = a? +b? in F 2, and the obvious
observation that f(§)? = f(j), we compute: G? = 277:0 F(5)€P3. Notice
that f(j) = f(p)f(pj), as we easily check. Then, making the change of
variables j' = pj (i.e., modulo 8 we have j' running through 0,...,7 when
7 does), we obtain:
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7 7
G =" @i = f(p) Y F(1)E = f(p)G.

Jj=0 3'=0

Comparing the two equalities for GP gives the desired result. (Notice that
we can divide by G, since it is not 0 in Fp2, as is clear from the fact that
its square is 8.)

Next, we must deal with the odd prime factors of a. Let g stand for
such an odd prime factor. Warning: for the remainder of this section, g will
stand for an odd prime distinct from p, not for a power of p as in the last
section.

Since a can be assumed to be smaller than p (by part (a) of Proposition
11.2.3), the prime factors ¢ will be smaller than p. The next proposition —
the fundamental Law of Quadratic Reciprocity — tells us how to relate
() to (B). The latter Legendre symbol will be easier to evaluate, since we
can immediately replace p by its least positive residue modulo g, thereby
reducing ourselves to a Legendre symbol involving smaller numbers. The
quadratic reciprocity law states that (2) and (2) are the same unless p and
q are both = 3 mod 4, in which case tﬁey are tlile negatives of one another.
This can be expressed as a formula using the fact that (p —1)(¢ —1)/4 is
even unless both primes are = 3 mod 4, in which case it is odd.

Proposition I1.2.5 (Law of Quadratic Reciprocity). Let p and g be two
odd primes. Then

—(2) ifp=qg=3mod4
(%):(—1)(17—1)(4—1)/4(%’): (g()‘l) ;tier:ise‘ me

Proof. There are several dozen proofs of quadratic reciprocity in print.
We shall give a particularly short proof along the lines of the proof of
the last proposition, using finite fields. Let f be any power of p such that
pf =1 mod g. For example, we can always take f = ¢— 1. Then, as we saw
at the beginning of the section (Proposition I1.2.1), the field Fps contains
a primitive g-th root of unity, which we denote £. (Remember that g here
denotes another prime besides p; it does not denote pf.) We define the
“Gauss sum” G by the formula G = Zg;g({;){i In the next paragraph we
shall prove that G2 = (—1)(¢~1)/2q. Before proving that lemma, we show
how to use it to prove our proposition. The proof is very similar to the
proof of Proposition I1.2.4. We first obtain (using the lemma to be proved
below):

GP = (G*P-D2G = ((—1)(q—1)/2q)(”"1)/2G

= (=1)@-D-D/4gr-1/2G = (_1)(P—1)(q—1)/4(g)g7
p

by Proposition I1.2.2 with a replaced by g (recall that we're working in a
field of characteristic p, namely F,;, and so congruence modulo p becomes



46 1II. Finite Fields and Quadratic Residues

equality). On the other hand, using the definition of G, the fact that (a +
b)P = a® + b? in Fs, and the obvious observation that (L = (%), we
compute:
A § YAV
=3 (e =25
j;) 0/ P ZY
by parts (b) and (c) of Proposition II.2.3. Pulling (2) outside the summation
and making the change of variables j/ = pj in the summation, we finally
obtain: GP = (g)G. Equating our two expressions for G? and dividing by G
(which is possible, since G? = +q and so is not zero in F,s), we obtain the
quadratic reciprocity law. Thus, it remains to prove the following lemma.
Lemma. G? = (—1)@1)/2¢g,
Proof. Using the definition of G, where in one copy of G we replace the
variable of summation j by —k (and note that the summation can start at
1 rather than 0, since (2) = 0), we have:

o=l . ~ 4. 971lg1 kN
o= 2 Q@)= E RO
g—1g-1 j2k

= (-1 Z( ) gi=k)
q

=1 k=1

where we have used Part (d) of Proposition I1.2.3 to replace (‘Tl) by
(~=1)(@=1/2 and for each value of j we have made a change of variable
in the inner summation k «— kj (i.e., for each fixed j, kj runs through the
residues modulo q as k does, and the summands depend only on the residue
modulo g). We next use part (c) of Proposition I1.2.3, interchange the order
of summation, and pull the (%) outside the inner sum over j. The double
sum then becomes Zk(%) > £3(1=k) Here both sums go from 1 to ¢ — 1,
but if we want we can insert the terms with j = 0, since that simply adds
to the double sum ) k(%), which is zero (because there are equally many
residues and nonresidues modulo g). Thus, the double sum can be written
Zi;(%) Z;;é £3(1=k) But for each k other than 1, the inner sum vanishes.
This is because the sum of the distinct powers of a nontrivial (# 1) root of
unity &' is zero (the simplest way to see this is to note that multiplying the
sum by &' just rearranges it, and sq the sum multiplied by £ — 1 is zero).
So we are left with the contribution when k = 1, and we finally obtain:

g—1
G? = (—1)a-D/2 (.(1;) Z§0 = (1)~ D/2g,
=0

This completes the proof of the lemma, and hence also the proof of the Law
of Quadratic Reciprocity.
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Example 1. Determine whether 7411 is a residue modulo the prime
9283.

Solution. Since 7411 and 9283 are both primes which are = 3 mod 4,
we have (Z31) = —(2283) = —(1272) by part (a) of Proposition I1.2.3. Since
1872 = 24-32. 13, by part (c) of Proposition II.2.3 we find that the desired
Legendre symbol is —(%). But we can now apply quadratic reciprocity
again: since 13 = 1 mod 4 we find that —(533;) = —(H42) = —(F) = -1
In other words, 7411 is a quadratic nonresidue.

One difficulty with this method of evaluating Legendre symbols is that
at each stage we must factor the number on top in order to apply Proposi-
tion I1.2.5. If our numbers are astronomically large, this will be very time-
consuming. Fortunately, it is possible to avoid any need for factoring (except
taking out powers of 2, which is very easy), once we prove a generalization
of the quadratic reciprocity law that applies to all positive odd integers,
not necessarily prime. But we first need a definition which generalizes the
definition of the Legendre symbol.

The Jacobi symbol. Let a be an integer, and let n be any positive odd
number. Let n = p* - - - p2 be the prime factorization of n. Then we define

the Jacobi symbol (£) as the product of the Legendre symbols for the prime

factors of n: 4 g e
=G G

A word of warning is in order here. If (2) = 1 for n composite, it is not
necessarily true that a is a square modulo n. For example, (&) = (2)(2) =
(=1)(=1) = 1, but there is no integer z such that = = 2 mod 15.

We now generalize Propositions I1.2.4-5 to the Jacobi symbol.

Proposition I1.2.6. For any positive odd n we have (%) = (-1)(*-1)/8

Proof. Let f(n) denote the function on the right side of the equal-
ity, as in the proof of Proposition II.2.4. It is easy to see that f(ning) =
f(n1) f(ng) for any two odd numbers n; and ny. (Just consider the different
possibilities for n; and ny modulo 8.) This means that the right side of the
equality in the proposition equals f(p1)™ - - f(pr)*r = (Z)> -+ (Z)=" by
Proposition I1.2.4. But this is (%), by definition.

Proposition I1.2.7. For any two positive odd integers m and n we have
() = (~)(m-DC-D/A(2),

Proof. First note that if m and n have a common factor, then it follows
from the definition of the Legendre and Jacobi symbols that both sides are
zero. So we can suppose that g.c.d.(m,n) = 1. Next, we write m and n
as products of primes: m = pi;pa---pr and n = ¢192 - ¢s. (The p’s and
¢’s include repetitions if m or n has a square factor.) Ifi converting from
(2)= H”(%) to (&)= Hi,j(%l{) we must apply the quadratic reciprocity
law for the Legendre symbol rs times. The number of (—1)’s we get is
the number of times both p; and g; are = 3 mod 4, i.e., it is the product
of the number of primes = 3 mod 4 in the factorization of m and in the
factorization of n. Thus, (2) = (Z) unless there are an odd number of
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primes = 3 mod 4 in both factorizations, in which case (2) = —(%). But
a product of odd primes, such as m or n, is = 3 mod 4 if and only if it
contains an odd number of primes which are = 3 mod 4. We conclude that)
(2) = (%) unless both m and n are = 3 mod 4, as was to be proved. This
gives us the reciprocity law for the Jacobi symbol.

Example 2. We return to Example 1, and show how to evaluate the
Legendre symbol without factoring 1872, except to take out the power of
2. By the reciprocity law for the Jacobi symbol we have

1872\ ¢ 16 \ 117\ _ . (7411\ (40
(7411) - _(7411) (7411.) B ( 117 ) - (117)’
and this is equal to —(25)(135) = (37) = (B1) = (3)=-1

Square roots modulo p. Using quadratic reciprocity, one can quickly
determine whether or not an integer a is a quadratic residue modulo p.
However, if it is a residue, that does not tell us how to find a solution to
the congruence z? = a mod p — it tells us only that a solution exists. We
conclude this section by giving an algorithm for finding a square root of a
residue a once we know any nonresidue n.

Let p be an odd prime, and suppose that we somehow know a quadratic
nonresidue 7. Let a be an integer such that () = 1. We want to find an
integer z such that 22 = a mod p. Here is how we proceed. First write p—1
in the form 2° - s, where s is odd. Then compute n’ modulo p, and call
that b. Next compute a(*t1)/2 modulo p, and call that 7. Our first claim is
that r comes reasonably close to being a square root of a. More precisely,
if we take the ratio of 72 to a, we claim that we get a 2°!-th root of unity
modulo p. Namely, we compute (for brevity, we shall use equality to mean
congruence modulo p, and we use a~! to mean the inverse of a modulo p):

(@12 =@ =PI/ = (E) =1.
p/

We must then modify r by a suitable 2*-th root of unity to get an = such
that z2/a is 1. To do this, we claim that b is a primitive 2*-th root of unity,
which means that all 2¢-th roots of unity are powers of b. To see this, first we
note that b is a 2%-th root of 1, because b2” = n?"® = nP~1 = 1. If b weren’t
primitive, there would be a lower power (a divisor of 2%) of b that gives 1.
But then b would be an even power of a primitive 2*-th root of unity, and
so would be a square in F}. This is impossible, because (%) =(2)=-1
(since s is odd and n is a nonresidue). Thus, b is a primitive 2*-th root
of unity. So it remains to find a suitable power b, 0 < j < 2%, such that
z = bir gives the desired square root of a. To do that, we write j in binary
as j = jo+2j1+4j2+--+ 22=24__5, and show how one successively
determines whether jo, ji,.-. is 0 or 1. (Note that we may suppose that
j < 2271 since 2" = 1, and so j can be modified by 2%~ to give
another j for which b r is the other square root of a.) Here is the inductive
procedure for determining the binary digits of j:
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1. B.a.ise (r?/a) to the 2%~2-th power. We proved that the square of this
is 1. Hence, you get either +1. If you get 1, take jo = 0; if you get —1,
take jo = 1. Notice that jo has been chosen so that ((b°r)?/a) is a
22=2_th root of unity.

2. Suppose you've found jo, ..., jk—1 such that (bfo+2ir+-+2"""ik-17)2/q
is a 2°~%~1_th root of unity, and you want to find jx. Raise this number
to half the power that gives 1, and choose jj according to whether you
get +1 or —1:

2a—k—2

(e

a

then take  jx = {2 , Trespectively.

We easily check that with this choice of ji the “corrected” value comes
closer to being a square root of a, i.e., we find that (blo+2i1++2%x )2 /g
is a 2°7%=2_th root of unity.

When we get to k = @ — 2 and find j,—2, we then have

(blo+2it 42 a2 fg = 1

i.e., bir is a square root of a, as desired.

Example 3. Use the above algorithm to find a square root of a = 186
modulo p = 401.

Solution. The first nonresidue is n = 3. We have p — 1 = 2% . 25,
and so b = 3% = 268 and r = a'® = 103 (where we use equality to
denote congruence modulo p). After first computing a~! = 235, we note
that r?/a = 98, which must be an 8-th root of 1. We compute that 98* = —1,
and so jo = 1. Next, we compute (br)2/a = —1. Since the 2-nd power of
this is 1, we have j; = 0, and then jo = 1. Thus, j = 5 and the desired
square root is b%r = 304. A

Remarks. 1. The easiest case of this algorithm occurs when p is a
prime which is = 3 mod 4. Thena = 1, s = (p—1)/2, so (s+1)/2 = (p+1)/4,
and we see that £ = r = a(P+1)/4 is already the desired square root.

2. We now discuss the time estimate for this algorithm. We suppose
that we start already knowing the information that n is a nonresidue. The
steps in finding s, b, and r = a(**1)/2 (working modulo p, of course) take at
most O(log3p) bit operations (see Proposition 1.3.6). Then in finding j the
most time-consuming part of the k-th induction step is raising a number to
the 2°~%~2_th power, and this means a — k — 2 squarings mod p of integers
less than p. Since a — k — 2 < «, we have the estimate O(a log?p) for
each step. Thus, since there are a — 1 steps, the final estimate is O(log®p +
a?log®p) = O(log?p(log p + a?)). At worst (if almost all of p— 1 is a power
of 2), this is O(log*p), since a < logap = O(log p). Thus, given a nonresidue
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modulo p, we can extract square roots mod p in polynomial time (bounded
by the fourth power of the number of bits in D).

3. Strictly speaking, it is not known (unless one assumes the validity

of the so-called “Riemann Hypothesis”) whether there is an algorithm for
finding a nonresidue modulo p in polynomial time. However, given any
€ > 0 there is a polynomial time algorithm that finds a nonresidue with
probability greater than 1 — e. Namely, a randomly chosen number n, 0 <
n < p, has a 50% chance of being a nonresidue, and this can be checked
in polynomial time (see Exercise 17 below). If we do this for more than
loga(1/€) different randomly chosen n, then with probability > 1 — € at
least one of them will be a nonresidue.

Exercises

1. Make a table showing all quadratic residues and nonresidues modulo
p for p=3, 5,7, 13, 17, 19.

2. Suppose that p|22* + 1, where k > 1.

(a) Use Exercise 4 of §1.4 to prove that p =1 mod 2k+1
(b) Use Proposition 11.2.4 to prove that p = 1 mod 2k+2
(c) Use part (b) to prove that 2'° + 1 is prime.

3. How many 84-th roots of 1 are there in the field of 113 elements?

4. Prove that (‘72)=1ifp510r3mod8,and (:pz =-lifp=dor
7 mod 8.

5. Find (1%) using quadratic reciprocity.

6. Find the Gauss sum G = g;}(%){j (here £ is a g-th root of 1 in Fpys,
where pf = 1 mod ¢) when:

(b) g=5,p=19, f =2, £ =2~ 4, where i is a root of X% +1;
(c) q=T7,p=13, f =2, =4+, where  is a 00t of X2 -2.

7. Let m = a* +1, a > 2. Find a positive integer = between 0 and m/2
such that z2 = 2 mod m. Use this to find V2 in F, when p is each of
the following: the Fermat primes 17, 257, 65537; p = 41 = (3* +1)/2,
p = 1297, and p = 1201. (Hint: see the proof of Proposition I1.2.4.)

8. Let p and g be two primes with ¢ = 1 mod p._ Let £ be a primitive p-th
root of unity in Fy. Find a formula in terms of £ for a square root of
(:pl)p in Fy. N

9. (a) Let m = aP — 1, where p is an odd prime and a > 2. Find a positive
integer = between 0 and m/2 such that 2= :pl—)p mod m. Use this
to find \/5 in Fa,, \/—_7 in Fia7, \/ﬁ in Fgig1, and \/j in Fig3.

(b) If ¢ = 27 — 1 is a Mersenne prime, find an expression for the least
positive integer whose square is = (ZPi)p mod q.
10. Evaluate the Legendre symbol ( %%) (a) using the reciprocity law only

for the Legendre symbol (i.e., factoring all numbers that arise), and (b)

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.
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without factoring any odd integers, instead using the reciprocity law
for the Jacobi symbol.
Evaluate the following Legendre symbols:
(@ () ®) &) (© () @ () (©) (weomsams)s € Goid)s
( ) (43691

65537 /"

(a) Let p be an odd prime. Prove that —3 is a residue in F,, if and only
if p=1 mod 3.

(b) Prove that 3 is a quadratic nonresidue modulo any Mersenne prime
greater than 3.

Find a condition on the last decimal digit of p which is equivalent to
5 being a square in F,.

Prove that a quadratic residue can never be a generator of F.

Let p be a Fermat prime.

(a) Show that any quadratic nonresidue is a generator of Fj.

(b) Show that 5 is a generator of F, except in the case p = 5.

(c) Show that 7 is a generator of F, except in the case p = 3.

Let p be a Mersenne prime, let ¢ = p? and let i be a root of X2+1 =0,
so that Fy = Fy(3).

(a) Suppose that the integer a® + b® is a generator of F. Prove that
a + bi is a generator of Fy.

(b) Show that either 4 + 4 or 3 4 2¢ will serve as a generator of F'5,,.

Let p be an odd prime and a be an integer between 1 and p — 1.
Estimate in terms of p the number of bit operations needed to compute
(2) (a) using the reciprocity law for the Jacobi symbol, and (b) using
Proposition I1.2.2 and Proposition 1.3.6.

(a) Let p be an odd prime, and let a, b, c be integers with p Ja.
Prove that the number of solutions z € {0, 1, 2,...,p — 1} to the
congruence az? + bz 4+ ¢ = 0 mod p is given by the formula 1 + (’,—3—),
where D = b% — 4ac is the discriminant.

(b) How many solutions in Fg3 are there to each of the following equa-
tions: (i) 22 + 1 = 0; (ii) % + z + 1 = 0; (iii) 22 + 21z — 11 = 0; (iv)
24+z2421=0;(v)z? -4z -13=07?

(c) How many solutions in Fg; are there to each of the equations in
part (b)?

Let p = 2081, and let n be the smallest positive nonresidue modulo p.
Find n, and use the method in the text to find a square root of 302
modulo p.

Let m = p{* ---p% be an odd integer, and suppose that @ is prime
to m and is the square of some integer modulo m. Your object is to
find z such that 22 = a mod m. Suppose that for each j you know a
nonresidue modulo pj, i.e., an integer n; such that (%:—) =-1.

(a) For each fixed p = p; and a = a;, suppose you use the algorithm
in the text to find some z¢ such that z2 = a mod p. Show how you can
then find some z = xg+z1p+- - -+ Zo—1p* ! such that 22 = a mod p*.
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21.

22.

23.
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(b) Describe how to find an z such that z? = a mod m.

The technique in parts (a)-(b) of this exercise is known as “lifting” a
square root from Fp, (1 <j <) to Z/mZ.

In the text we saw that if n is an odd prime and g.c.d.(b,n) = 1, then

pn=1/2 = (%) mod . ()

The purpose of this exercise is to show that, if n is an odd composite
integer, then the relation (x) is false for at least 50% of all b for which
g.cd.(byn)=1.

(a) Prove that if () is true for b; and is false for by, then it is false for
the product byby. Use this to prove that if () is false for even a single
b, then the number of b’s for which it is false is at least as great as the
number of b’s for which it is true.

(b) If n is divisible by the square of a prime p, show how to find an
integer b prime to n such that b(~1/2 is not = £1 mod n.

(c) If n is a product of distinct primes, if p is one of those primes, and
if b has the property that (%) = —1 and b = 1 mod n/p, prove that ()
fails for b. Then show that such a b always exists.

Explain why the following probabilistic algorithm gives a square root
of a modulo p: Choose t in F, at random until you find ¢ such that
t2 — q is a nonsquare modulo p. Let a denote the element v/ t2—-ain
the quadratic extension Fy2. Then compute b = (¢ + a)P+t1)/2_ Show
that b is in F, and has the property that b* = a.

Suppose that p is a prime = 1 mod 4, and suppose you have found
a quadratic nonresidue n. Describe an algorithm for expressing p as a
sum of two squares p = ¢ + d? that takes time O(log®p).
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Cryptography

1 Some simple cryptosystems

Basic notions. Cryptography is the study of methods of sending messages
in disguised form so that only the intended recipients can remove the dis-
guise and read the message. The message we want to send is ca.lle.d the
plaintext and the disguised message is called the ciphertezt. The plaintext
and ciphertext are written in some alphabet (usually, but not always, they
are written in the same alphabet) consisting of a certain number N of let-
ters. The term “letter” (or “character”) can refer not only to the familiar
A—7Z, but also to numerals, blanks, punctuation marks, or any other sym-
bols that we allow ourselves to use when writing the messages. (If we don’t
include a blank, for example, then all of the words are run together, and
the messages are harder to read.) The process of converting a plaintext t.o
a ciphertext is called enciphering or encryption, and the reverse process is
called deciphering or decryption. .

The plaintext and ciphertext are broken up into message units. A mes-
sage unit might be a single letter, a pair of letters (digraph), a trlple c?f
letters (trigraph), or a block of 50 letters. An enciphering transformation is
a function that takes any plaintext message unit and gives us a ciphertext
message unit. In other words, it is a map f from\'p_he set P of all possi.ble
plaintext message units to the set C of all possible ciphertext message }1n1ts.
We shall always assume that f is a 1-to-1 correspondence. That is, given a
ciphertext message unit, there is one and only one plaintext message unit
for which it is the encryption. The deciphering transformation is the map
f~! which goes back and recovers the plaintext from the ciphertext. We
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can represent the situation schematically by the diagram

pLcilp.

Any such set-up is called a cryptosystem.

The first step in inventing a cryptosystem is to “label” all possible
plaintext message units and all possible ciphertext message units by means
of mathematical objects from which functions can be easily constructed.
These objects are often simply the integers in some range. For example,
if our plaintext and ciphertext message units are single letters from the
26-letter alphabet A—Z, then we can label the letters using the integers
0,1, 2,..., 25, which we call their “numerical equivalents.” Thus, in place
of A we write 0, in place of S we write 18, in place of X we write 23, and so
on. As another example, if our message units are digraphs in the 27-letter
alphabet consisting of A—Z and a blank, we might first let the blank have
numerical equivalent 26 (one beyond Z), and then label the digraph whose
two letters correspond to z, y € {0, 1, 2,..., 26} by the integer

27z +y€ {0, 1,..., 728}.

Thus, we view the individual letters as digits to the base 27 and we view
the digraph as a 2-digit integer to that base. For example, the digraph
“NO” corresponds to the integer 27 - 13 + 14 = 365. Analogously, if we
were using trigraphs as our message units, we could label them by integers
729z+27y+z € {0, 1,...,19682}. In general, we can label blocks of k letters
in an N-letter alphabet by integers between 0 and N* —1 by regarding each
such block as a k-digit integer to the base N.

In some situations, one might want to label message units using other
mathematical objects besides integers — for example, vectors or points on
some curve. But for the duration of this section we shall use integers.

Examples. Let us start with the case when we take a message unit
(of plaintext or of ciphertext) to be a single letter in an N-letter alphabet
labeled by the integers 0, 1, 2, ..., N—1. Then, by definition, an enciphering
transformation is a rearrangement of these IV integers.

To facilitate rapid enciphering and deciphering, it is convenient to have
a relatively simple rule for performing such a rearrdngement. One way is to
think of the set of integers {0, 1, 2,..., N — 1} as Z/NZ, and make use of
the operations of addition and multiplication modulo N.

Example 1. Suppose we are using the 26-letter alphabet A—Z with
numerical equivalents 0—25. Let the letter P € {0, 1,..., 25} stand for a
plaintext message unit. Define a function f from the set {0, 1,..., 25} to
itself by the rule

P+3, ifz<23,

fP) = {P-—23, if z > 23.
In other words, f simply adds 3 modulo 26: f(P) = P + 3 mod 26. The
definition using modular arithmetic is easier to write down and work with.
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Thus, with this system, to encipher the word “YES” we first convert to
numbers: 24418, then add 3 modulo 26: 1721, then translate back to let-
ters: “BHV.” To decipher a message, one subtracts 3 modulo 26. For exam-
ple, the ciphertext “ZKB” yields the plaintext “WHY.” This cryptosystem
was apparently used in ancient Rome by Julius Caesar, who supposedly
invented it himself.

Example 1 can be generalized as follows. Suppose we are using an
N-letter alphabet with numerical equivalents 0, 1,..., N —-1. Let bbea
fixed integer. By a shift transformation we mean the enciphering function f
defined by the rule C = f(P) = P+bmod N. Julius Caesar’s cryptosystem
was the case N = 26, b = 3. To decipher a ciphertext message unit C €
{0, 1,..., N — 1}, we simply compute P = fYC)=C—-bmod N.

Now suppose that you are not privy to the enciphering and deciphering
information, but you would nevertheless like to be able to read the coded
messages. This is called breaking the code, and the science of breaking codes
is called cryptanalysis.

In order to break a cryptosystem, one needs two types of information.
The first is the general nature (the structure) of the system. For example,
suppose we know that the cryptosystem uses a shift transformation on single
letters of the 26-letter alphabet A—Z with numerical equivalents 0—25,
respectively. The second type of information is knowledge of a specific choice
of certain parameters connected with the given type of cryptosystem. In our
example, the second type of information one needs to know is the choice
of the shift parameter b. Once one has that information, one can encipher
and decipher by the formulas C = P+ b mod N and P=C —bmod N.

We shall always assume that the general structural information is al-
ready known. In practice, users of cryptography often have equipment for
enciphering and deciphering which is constructed to implement only one
type of cryptosystem. Over a period of time the information about what
type of system they’re using might leak out. To increase their security,
therefore, they frequently change the choice of parameters used with the
system. For example, suppose that two users of the shift cryptosystem are
able to meet once a year. At that time they agree on a list of 52 choices of
the parameter b, one for each week of the coming year.

The parameter b (more complicated cryptosystems usually have several
parameters) is called a key, or, more precisely, the enciphering key.

Example 2. So suppose that we intercept the message “FQOCUDEM”,
which we know was enciphered using a shift transformation on single letters
of the 26-letter alphabet, as in the example above. It remains for us to find
the b. One way to do this is by frequency analysis. This works as follows.
Suppose that we have already intercepted a long string of ciphertext, say
several hundred letters. We know that “E” is the most frequently occurring
letter in the English language. So it is reasonable to assume that the most
frequently occurring letter in the ciphertext is the encryption of E. Suppose
that we find that “U” is the most frequently occurring character in the
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ciphertext. That means that the shift takes “E”’=4 to “U”=20, i.e., 20 =
44 b mod 26, so that b = 16. To decipher the message, then, it remains for

us to subtract 16 (working modulo 26) from the numerical equivalents of
“FQOCUDEM”:

“FQOCUDEM” =516142203412
15024124131422 = “PAYMENOW”.

In the case of a shift encryption of single letters of a 26-letter alphabet,
it is not even necessary to have a long string of ciphertext to find the most
frequently occurring letter. After all, there are only 26 possibilities for b,
and one can simply run through all of them. Most likely, only one will give
a message that makes any sense, and that b is the enciphering key.

Thus, this type of cryptosystem is too simple to be much good. It is
too easy to break. An improvement is to use a more general type of trans-
formation of Z/NZ, called an affine map: C = aP +b mod N, where a and
b are fixed integers (together they form the enciphering key). For example,
working again in the 26-letter alphabet, if we want to encipher our mes-
sage “PAYMENOW?” using the affine transformation with enciphering key
a=7T, b=12, we obtain: 15024124131422 +— 131224181425610 =
“NMYSOZGK".

To decipher a message that was enciphered by means of the affine map
C = aP + b mod N, one simply solves for P in terms of C, obtaining
P = a'C + b mod N, where o’ is the inverse of a modulo N and b’ is
equal to —a~!b. Note that this works only if g.c.d.(a, N) = 1; otherwise,
we cannot solve for P in terms of C. If g.c.d.(a, N) > 1, then it is easy
to see that more than one plaintext letter will give the same ciphertext
letter, so we cannot uniquely recover the plaintext from the ciphertext. By
definition, that is not an enciphering transformation: we always require that
the map be 1-to-1, i.e., that the plaintext be uniquely determined from the
ciphertext. To summarize, an affine cryptosystem in an N-letter alphabet
with parameters a € (Z/NZ)* and b € Z/NZ consists of the rules:

C =aP +bmod N, P=d'C+b mod N,

where
o' =a"'in (Z/NZ), b = —a"'b.

As a special case of the affine cryptosystems we can set a = 1, thereby
obtaining the shift transformations. Another special case is when b = 0:
P = aC mod N, C = a 'P mod N. The case b = 0 is called a linear
transformation, meaning that the map takes a sum to a sum, i.e., if C is
the encryption of P, and C; is the encryption of P, then C; + Cj is the
encryption of P; + P, (where, of course, we are adding modulo V).

Now suppose that we know that an intercepted message was enciphered
using an affine map of single letters in an N-letter alphabet. We would like
to determine the enciphering key a, b so that we can read the message. We
need two bits of information to do this.
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Example 3. Still working in our 26-letter alphabet, suppose that we
know the most frequently occurring letter of ciphertext is “K”, and the sec-
ond most frequently occurring letter is “D”. It is reasonable to assume that
these are the encryptions of “E” and “I”, respectively, which are the two
most frequently occurring letters in the English language. Thus, replacir}g
the letters by their numerical equivalents and substituting for P and C in
the deciphering formula, we obtain:

10a’ + b’ = 4 mod 26,
3a’ + b =19 mod 26.

We have two congruences with two unknowns, o' and b’. The quickest way
to solve is to subtract the two congruences to eliminate 5. We obtain Ta' =
11 mod 26, and o’ = 77111 = 9 mod 26. Finally, we obtain b’ by substituting
this value for o’ in one of the congruences: b’ = 4 — 10a’ = 18 mod 26. So
messages can be deciphered by means of the formula P = 9C + 18 mod 26.

Recall from linear algebra that n equations suffice to find n unknowns
only if the equations are independent (i.e., if the determinant is nonzero).
For example, in the case of 2 equations in 2 unknowns this means that the
straight line graphs of the equations intersect in a single point (are not par-
allel). In our situation, when we try to cryptanalyze an affine system from
the knowledge of the two most frequently occurring letters of ciphertext,
we might find that we cannot solve the two congruences uniquely for o’ and
b'.

Example 4. Suppose that we have a string of ciphertext which we know
was enciphered using an affine transformation of single letters in a 28—1et'ter
alphabet consisting of A—Z, a blank, and ?, where A—Z have numerical
equivalents 0—25, blank=26, 7=27. A frequency analysis reveals that the
two most common letters of ciphertext are “B” and “?”, in that order. Since
the most common letters in an English language text written in this 28-
letter alphabet are “ ” (blank) and “E”, in that order, we suppose that “B”
is the encryption of “ ” and “?” is the encryption of “E”. This leads to the
two congruences: o’ + b’ = 26 mod 28, 27a’ + b = 4 mod 28. Subtracting
the two congruences, we obtain: 2a’ = 22 mod 28, which is equivalent to
the congruence a’ = 11 mod 14. This means that a' = 11 or 25 mod 28, and
then & = 15 or 1 mod 28, respectively. The fact of the matter is that both
of the possible affine deciphering transformations 11C + 15 and 25C + 1
give © ” and “E” as the plaintext letters corresponding to “B” and “‘?”,
respectively. At this point we could try both possibilities, and see whlf:h
gives an intelligible message. Or we could continue our frequency analysis.
Suppose we find that “I” is the third most frequently occurring letter f’f
ciphertext. Using the fact that “T” is the third most common letter in
the English language (of our 28 letters), we_obtain a third congruence:
8a’ + b’ = 19 mod 28. This extra bit of information is enough to determine

which of the affine maps is the right one. We find that it is 11C + 15.
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Digraph transformations. We now suppose that our plaintext and ci-
phertext message units are two-letter blocks, called digraphs. This means
that the plaintext is split up into two-letter segments. If the entire plaintext
has an odd number of letters, then in order to obtain a whole number of
digraphs we add on an extra letter at the end; we choose a letter which
is not likely to cause confusion, such as a blank if our alphabet contains a
blank, or else “X” or “Q” if we are using just the 26-letter alphabet.

Each digraph is then assigned a numerical equivalent. The simplest
way to do this is to take zN +y, where z is the numerical equivalent of the
first letter in the digraph, y is the numerical equivalent of the second letter
in the digraph, and N is the number of letters in the alphabet. Equivalently,
we think of a digraph as a 2-digit base-N integer. This gives a 1-to-1 corre-
spondence between the set of all digraphs in the N-letter alphabet and the
set of all nonnegative integers less than N2 We described this “labeling” of
digraphs before in the special case when N = 27.

Next, we decide upon an enciphering transformation, i.e., a rearrange-
ment of the integers {0, 1, 2,..., N? —1}. Among the simplest enciphering
transformations are the affine ones, where we view this set of integers as
Z/N?*Z, and define the encryption of P to be the nonnegative integer less
than N? satisfying the congruence C = aP + b mod N2 Here, as before,
a must have no common factor with N (which means it has no common
factor with N?2), in order that we have an inverse transformation telling
us how to decipher: P = a/C + b mod N2, where @' = a~! mod N?
b = —a~'b mod N? We translate C into a two-letter block of ciphertext
by writing it in the form C = z'N +y; and then looking up the letters with
numerical equivalents =’ and ¥/

Example 5. Suppose we are working in the 26-letter alphabet and using
the digraph enciphering transformation C = 159P + 580 mod 676. Then the
digraph “NO” has numerical equivalent 13 - 26 + 14 = 352 and is taken to
the ciphertext digraph 159 - 352 + 580 = 440 mod 676, which is “QY” The
digraph “ON” has numerical equivalent 377, and is taken to 359=“NV”
Notice that the digraphs change as a unit, and there is no relation between
the encryption of one digraph and that of another one that has a letter in
common with it or even consists of the same letters in the reverse order.

To break a digraphic encryption system which uses an affine transfor-
mation C = aP+bmod N? we need to know the ciphertext corresponding to
two different plaintext message units. Since the message units are digraphs,
a frequency analysis means counting which two-letter blocks occur most
often in a long string of ciphertext (of course, counting only those occur-
rences where the first letter begins a message unit, ignoring the occurrences
of the two letters which straddle two message units), and comparing with
the known frequency of digraphs in English language texts (written in the
same alphabet). For example, if we use the 26-letter alphabet, statistical
analyses seem to show that “TH” and “HE” are the two most frequently
occurring digraphs, in that order. Knowing two plaintext—ciphertext pairs
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of digraphs is often (but not always) enough to determine a and b.

Example 6. You know that your adversary is using a cryptosystem with
a 27-letter alphabet, in which the letters A—Z have numerical equivalents
0—25, and blank=26. Each digraph then corresponds to an integer between
0 and 728 = 272 — 1 according to the rule that, if the two letters in the
digraph have numerical equivalents z and y, then the digraph has numerical
equivalent 27z + y, as explained earlier. Suppose that a study of a large
sample of ciphertext reveals that the most frequently occurring digraphs are
(in order) “ZA” “IA” and “IW” Suppose that the most common digraphs in
the English language (for text written in our 27-letter alphabet) are “E "
(i.e., “E blank”), “S  “ T” You know that the cryptosystem uses an affine
enciphering transformation modulo 729. Find the deciphering key, and read
the message “NDXBHO” Also find the enciphering key.

Solution. We know that plaintexts are enciphered by means of the rule
C = aP + b mod 729, and that ciphertexts can be deciphered by means of
the rule P = o/C + b mod 729; here a, b form the enciphering key, and
a' b form the deciphering key. We first want to find o’ and b/ We know how
three digraphs are deciphered, and, after we replace the digraphs by their
numerical equivalents, this gives us the three congruences:

6750’ + b = 134 mod 729,
216a’ + b’ = 512 mod 729,
238a’ + b’ = 721 mod T729.

If we try to eliminate b’ by subtracting the first two congruences, we arrive
at 4590’ = 351 mod 729, which does not have a unique solution a’ mod 729
(there are 27 solutions). We do better if we subtract the third congruence
from the first, obtaining 437a’ = 142 mod 729. To solve this, we must find
the inverse of 437 modulo 729. By way of review of the Euclidean algorithm,
let’s go through that in detail:

729 = 437 + 292
437 =292 + 145

202 =2-145+2
145=72-2+1
and then
1=145-72-2

=145 — 72(292 — 2 - 145)
=145 145 — 72 - 202

= 145(437 — 292) — 72 - 292
= 145 - 437 — 217 - 292

= 145 - 437 — 217(729 — 437)
= 362 - 437 mod 729.
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Thus, ¢’ = 362 - 142 = 374 mod 729, and then b’ = 134 — 675 - 374 =
647 mod 729. Now applying the deciphering transformation to the digraphs
“ND” “XB” and “HO” of our message — they correspond to the integers
354, 622 and 203, respectively — we obtain the integers 365, 724 and 24.
Writing 365 = 13-27+ 14, 724 = 26-27+22, 24 = 0-274 24, we put together
the plaintext digraphs into the message “NO WAY" Finally, to find the
enciphering key we compute a = a’ ~! =374~ = 614 mod 729 (again using
the Euclidean algorithm) and b= —a’~'0' = —614 - 647 = 47 mod 729.

Remark. Although affine cryptosystems with digraphs (i.e., modulo
N?) are better than the ones using single letters (i.e., modulo N), they also
have drawbacks. Notice that the second letter of each ciphertext digraph
depends only on the second letter of the plaintext digraph. This is because
that second letter depends on the mod-N value of C = aP + b mod N?
which depends only on P modulo N, i.e., only on the second letter of the
plaintext digraph. Thus, one could obtain a lot of information (namely,
a and b modulo N) from a frequency analysis of the even-numbered let-
ters of the ciphertext message. A similar remark applies to mod-N' k affine
transformations of k-letter blocks.

Ezercises

1. In certain computer bulletin-board systems it is customary, if you want
to post a message that may offend some people (e.g., a dirty joke), to
encipher the letters (but not the blanks or punctuation) by a trans-
lation C = P + b mod 26. It is then easy to decipher the text if one
wants to, but no one is forced to see a message that jars on the nerves.
Decipher the punchline of the following story (use frequency analysis
to find b): At an international convention of surgeons, representatives
of different countries were comparing notes on recent advances in reat-
taching severed parts of the body. The French, Americans and Russians
were being especially boastful. The French surgeon said, “We sewed a
leg on an injured runner, and a year later he placed in a national
1000-meter race.” “Using the most advanced surgical procedures,” the
Russian surgeon chimed in, “we were able to put back an athlete’s
entire arm, and a year later with the same arm he established a new
world record for the shot put.” But they all fell silent when the Amer-
ican, not to be outdone, announced that “Jr frjrq n fzvyr ba n ubefr’f
off, naq n Irne yngre vg jof ryrpgrq Cerfvqrag!” (Note: We are using
a 26-letter alphabet, but we have inserted blanks and punctuation for
ease of reading.)

2. Using frequency analysis, cryptanalyze and decipher the following mes-
sage, which you know was enciphered using a shift transformation of
single-letter plaintext message units in the 26-letter alphabet:

PXPXKXENVDRUXVTNLXHYMXGMAXYKXJN
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XGVRFXMAHWGXXWLEHGZXKVBIAXKMXQM.
In the 27-letter alphabet (with blank=26), use the affine encipher-
ing transformation with key a = 13, b = 9 to encipher the message
“HELP ME.”
In a long string of ciphertext which was encrypted by means of an
affine map on single-letter message units in the 26-letter alphabet,
you observe that the most frequently occurring letters are “Y” and
“V” in that order. Assuming that those ciphertext message units
are the encryption of “E” and “T”, respectively, read the message
“QAOOYQQEVHEQV”.
You are trying to cryptanalyze an affine enciphering transforma-
tion of single-letter message units in a 37-letter alphabet. This al-
phabet includes the numerals 0-9, which are labeled by themselves
(i.e., by the integers 0-9). The letters A—7 have numerical equiva-
lents 10—35, respectively, and blank=36. You intercept the ciphertext
“OH7F86BB46R36270266BBY” (here the O’s are the letter “oh”, not
the numeral zero). You know that the plaintext ends with the signature
“007” (zero zero seven). What is the message? ’
You intercept the ciphertext “OFJ DFOHFXOL”, which was enciphered
using an affine transformation of single-letter plaintext units in the 27-
letter alphabet (with blank=26). You know that the first word is “I ”
(“I” followed by blank). Determine the enciphering key, and read the
message.
(a) How many different shift transformations are there with an N-letter
alphabet?
(b) Find a formula for the number of different affine enciphering trans-
formations there are with an N-letter alphabet.
(c) How many affine transformations are there when N = 26, 27, 29,
307
A plaintext message unit P is said to be fized for a given enciphering
transformation f if f(P) = P. Suppose we are using an affine enci-
phering transformation on single-letter message units in an N-letter
alphabet. In this problem we also assume that the affine map is not a
shift, i.e., that a # 1.
(a) Prove that if N is a prime number, then there is always exactly
one fixed letter.
(b) Prove (for any N) that if our affine transformation is linear, i.e., if
b = 0, then it has at least one fixed letter; and that, if N is even, then
a linear enciphering transformation has at least two fixed letters.
(c) Give an example for some N of an affine enciphering transformation
which has no fixed letter.
Now suppose that our message units are digraphs in an N-letter al-
phabet. Find a formula for the number of different affine enciphering
transformations there are. How many are there when N = 26, 27, 29,
307

1 Some simple cryptosystems 63

10. You intercept the ciphertext message “PWULPZTQAWHEF’, which you

11.

12.

know was encrypted using an affine map on digraphs in the 26-letter
alphabet, where, as in the text, a digraph whose two letters have nu-
merical equivalents x and y corresponds to the integer 26z +y. An ex-
tensive statistical analysis of earlier ciphertexts which had been coded
by the same enciphering map shows that the most frequently occurring
digraphs in all of that ciphertext are “IX” and “TQ’} in that order. It
is known that the most common digraphs in the English language are
“TH” and “HE’ in that order. :

(2) Find the deciphering key, and read the message.

(b) You decide to have the intended recipient of the message inca-
pacitated, but you don’t want the sender to know that anything is
amiss. So you want to impersonate the sender’s accomplice and reply
“GOODWORK”. Find the enciphering key, and determine the appro-
priate ciphertext.

You intercept the coded message “DXM SCE DCCUVGX ”, which
was enciphered using an affine map on digraphs in a 30-letter alpha-
bet, in which A—Z have numerical equivalents 0—25, blank=26, ?=27,
1=28, '=29. A frequency analysis shows that the most common di-
graphs in earlier ciphertexts are “M ”, “U ”, and “IH” in that order.
Suppose that in the English language the most frequently occurring
digraphs (in this particular 30-letter alphabet) are “E ", “S 7, and
“ T”, in that order.

(2) Find the deciphering key, and read the message.

(b) Find the enciphering key, and encrypt the message “YES I'M JOK-
ING!”

The same techniques apply, of course, if one is using some other al-
phabet besides the Latin alphabet. For example, this exercise uses the

" Russian alphabet (it is not necessary, or even helpful, to know Russian

or the Cyrillic alphabet in order to do this exercise). Use the following
numerical equivalents for the Cyrillic alphabet:

A B BT I EEUX 3 U U
0 1 2 3 4 5 6 7 8 9 10

K O M H O OO P C T VY @&
1 12 13 14 15 16 17 18 19 20 21

X I Y IO WD H b 9 0 4
22 23 24 25 26 27 28 29 30 31 32

Suppose that you intercept the coded message “IIHTW’, which was
enciphered using an affine map on digraphs in the above 33-letter al-
phabet. A frequency analysis of earlier ciphertext shows that the most
frequently occurring ciphertext digraphs are “IlA” and “bIT"} in that
order. Suppose it is known that the two most frequently occurring
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13.

14.

15.
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digraphs in the Russian language are “HO” and “ET" Find the deci-
phering key, and write out the plaintext message.

Recall from Exercise 8 that a fized plaintext message unit is one that
the given enciphering transformation keeps the same. Find all fixed
digraphs for the enciphering transformation in Exercise 11.

By the product (or composition) of two cryptosystems, we mean the
cryptosystem that results from enciphering a plaintext using the first
cryptosystem and then treating the resulting ciphertext as plaintext
for the second cryptosystem, i.e., encrypting a second time using the
second system. More precisely, we must assume that the set Cy of ci-
phertext message units for the first cryptosystem is contained in the set
of plaintext message units for the second system. Let fi and f2 be the
enciphering functions; then the product cryptosystem is given by the
enciphering function f = fy o fi. If we let I (for “intermediate tex )
denote a ciphertext message unit for the first system, and let I=0C
denote the set of intermediate texts, then the product cryptosystem
can be represented schematically by the composite diagram:

plur e, .

Prove that:

(a) The product of two shift enciphering transformations is also a shift
enciphering transformation.

(b) The product of two linear enciphering transformations is a linear
enciphering transformation.

(c) The product of two affine enciphering transformations is an affine
enciphering transformation.

Here is a slightly more complicated cryptosystem, in which the plain-
texts and ciphertexts are written in different alphabets. We choose an
N-letter alphabet for plaintexts and an M-letter alphabet for cipher-
texts, where M > N. As usual, we regard digraphs in the N-letter
alphabet as two-digit integers written to the base N, i.e., as integers
between 0 and N2 — 1; and we similarly regard digraphs in the M-
letter alphabet as integers between 0 and M 2 _ 1. Now choose any
integer L between N2 and M?: N? < L < M? Also choose integers
a and b with g.c.d.(a, L) = 1. We encipher a plaintext digraph P us-
ing the rule C = aP + b mod L (in which C is taken to be the least
nonnegative residue modulo L which satisfies the congruence). (Here
the set P of all possible digraphs P consists of all integers from 0 to
N2 —1; but the set C of all possible ciphertext digraphs C in the larger
alphabet is only part of the integers from 0 to M 2 — 1, in fact, it is
the subset of the integers less than L that arises from applying the
enciphering rule to all possible plaintext digraphs.) Suppose that the
plaintext alphabet is the 27-letter alphabet (as in Exercise 3), and the
ciphertext alphabet is the 30-letter alphabet in Exercise 11. Suppose
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that L = 853. Further suppose that you know that the two most fre-
quently occurring plaintext digraphs “E ” and “S ” have encryptions
“FQ” and “LE”, respectively. Find the deciphering key, and read the
message “YAVAOCH'D!”

16. Continuing along the lines of Exercise 15, here is an example of how
one can, without too much extra work, create a cryptosystem that is
much harder to break. Let f; be one cryptosystem of the type described
in Exercise 15, i.e., given by the rule fi(P) = a1P + b, mod L1, and
let f, be a second cryptosystem of the same type. Here the N and M
are the same, but the a’s, b’s and L’s are different. We suppose that
L, > L. We then construct the product of the two cryptosystems (see
Exercise 14), i.e., we encrypt a plaintext message unit P by successively
applying the two rules:

IEa1P+b1 mod Ll,
C = aol + by mod Lo.

(In the first rule I is the nonnegative integer less than L, that satisfies
the congruence, and in the second rule C is less than L,.) Because the
moduli L; and L are different, Exercise 14(c) does not apply, and this
product cryptosystem is not generally an affine system. Here we sup-
pose that the two alphabets of M and N letters are always the same,
but we are free to frequently change our choice of the parameters a,,
by, L1, ag, by, Lo, subject, of course, to the conditions: N2 < Ly <
Ly < M2, g.c.d.(ay, L) = 1, g.c.d.(az, L2) = 1. Thus, the enciphering
key consists of the six-tuple of parameter values {a1, b1, L1, az, b2, Lo}.
Let the plaintext and ciphertext alphabets be as in Exercise 15, con-
sisting of 27 and 30 letters, respectively. If the enciphering key is
{247, 109, 757, 675, 402, 881}, explain how to decipher, and decipher
the message “DIRAJKCTN"

2 Enciphering Matrices

Suppose we have an N-letter alphabet and want to send digraphs (two-
letter blocks) as our message units. In §1 we saw how we can let each
digraph correspond to an integer considered modulo N?, i.e., to an element
of Z/N?Z. An alternate possibility is to let each digraph correspond to a
vector, i.e., to a pair of integers (:) with z and y each considered modulo
N. For example, if we're using the 26-letter alphabet A—Z with numerical
equivalents 0—25, respectively, then the digraph NO corresponds to the
vector (ii) See the diagram at the top of the next page.

We picture each digraph P as a point on an N x N square array. That
is, we have an “zy-plane,” except that each axis, rather than being a copy
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DO NO

Z/NZ

ND

Z/NZ

of the real number line, is now a copy of Z/NZ. Just as the real zy-plane
is often denoted R2 this N x N array is denoted (Z/NZ)?

Once we visualize digraphs as vectors (points in the plane), we then
interpret an “enciphering transformation” as a rearrangement of the Nx N
array of points. More precisely, an enciphering map is a 1-to-1 function from
(Z/NZ)? to itself.

Remark. For several centuries one of the most popular methods of
encryption was the so-called “Vigeneére cipher.” This can be described as
follows. For some fixed k, regard blocks of k letters as vectors in (Z/N Z)k
Choose some fixed vector b € (Z/NZ)* (usually b was the vector corre-
sponding to some easily remembered “key—-word” ), and encipher by means
of the vector translation C = P + b (where the ciphertext message unit C
and the plaintext message unit P are k-tuples of integers modulo N). This
cryptosystem, unfortunately, is almost as easy to break as a single-letter
translation (see Example 1 of the last section). Namely, if one knows (or
can guess) N and k, then one simply breaks up the ciphertext in blocks of
k letters and performs a frequency analysis on the first letter in each block
to determine the first component of b, then the same for the second letter
in each block, and so on.

Review of linear algebra. We now review how one works with vectors
in the real zy-plane and with 2 x 2-matrices with real entries. Recall that,
given a 2 X 2 array of numbers

(a b> and a vector in the plane (z)
c d y

(we shall write vectors as columns), one can apply the matriz to the vector
to obtain a new vector, as follows:
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(2 8) ()= (270)

For a fixed matrix, this function from one vector to another vector is called
a linear transformation, meaning that it preserves sums and constant mul-
tiples of vectors. Using this notation, we can view any set of simultaneous
equations of the form az +by =e, czx+dy = fas equivalent to a single
matrix equation AX = B, where A denotes the matrix

(2 o)

X denotes the vector of unknowns (;), and B denotes the vector of con-

stants (;) Stated in words, the simultaneous equations can thus be in-
terpreted as asking to find a vector which when “multiplied” by a certain
known matrix gives a certain known vector. Thus, it is analogous to the
simple equation az = b, which is solved by multiplying both sides by a~!
(assuming a # 0). Similarly, one way to solve the matrix equation AX = B
is to find the inverse of the matrix A, and then apply A~! to both sides to
obtain the unique vector solution X = A™'B.
By the inverse of the matrix A we mean the matrix which multiplies

by it to give the identity matrix

10

01

(the matrix which, when applied to any vector, keeps that vector the same).
But not all matrices have inverses. It is not hard to prove that a matrix

(2)

has an inverse if and only if its determinant D =45 ad — be is nonzero, and
that its inverse in that case is

1(d -b\_(D'd -D

D\-c a ) \-D7'¢ D'a )’
There are three possibilities for the solutions of the system of simultaneous
equations AX = B. First, if the determinant D is nonzero, then there
is precisely one solution X = (:) If D = 0, then either there are no
solutions or there are infinitely many. The three possibilities have a simple
geometric interpretation. The two equations give straight lines in the zy-
plane. If D # 0, then they intersect in exactly one point (z, y). Otherwise,
they are parallel lines, which means either that they don’t meet at all (the
simultaneous equations have no common solution) or else that they are
really the same line (the equations have infinitely many common solutions).
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Next, let us suppose that we have a bunch of vectors X, = (’;;), cee,

Xi = (Z:), arranged as the columns of a 2 X k-matrix. Then we define the
matrix product

AX=(a b zy ... Tk - a1 +byr ... a:z:k+byk)
c d Y1 - Yk ef \exi+dy, ... czp+dyx)’
i.e., we simply apply the matrix A to each column vector in order, obtaining
new column vectors. For example, the product of two 2 x 2-matrices is:

a b\ (d V\ _ [ad+bc ab+bd

c d) (c’ d’) “\ea +dc b +dd )’
Similar facts hold for 3 x 3-matrices, which can be applied to 3-dimensional
column-vectors, and so on. However, the formulas for the determinant and
inverse matrix are more complicated. This concludes our brief review of
linear algebra over the real numbers.

Linear algebra modulo N. In §1, when we were dealing with single
characters and enciphering maps of Z/NZ, we found that two easy types
of maps to work with were:

(a) “linear” maps C = aP, where a is invertible in Z/NZ,

(b) “affine” maps C = aP + b, where a is invertible in Z/NZ.

We have a similar situation when our message units are digraph-vectors.
We first consider linear maps. The difference when we work with (Z/N Z)?
rather than Z/NZ is that now instead of an integer a we need a 2 x 2-matrix,
which we shall denote A. We start by giving a systematic explanation of
the type of matrices we need.

Let R be any commutative ring, i.e., a set with multiplication and
addition satisfying the same rules as in a field, except that we do not require
that any nonzero element have a multiplicative inverse. For example, Z/NZ
is always a ring, but it is not a field unless V is prime. We let R* denote
the subset of invertible elements of R. For example, (Z/NZ)* = {0 < j <
N|g.cd.(j,N)=1}.

If R is a commutative ring, we let Ma(R) denote the set of all 2 x 2-
matrices with entries in R, with addition and multiplication defined in the
usual way for matrices. We call M2(R) a “matrix ring over R”; M (R) itself
is a ring, but it is not a commutative ring, i.e., in matrix multiplication the
order of the factors makes a difference.

Earlier in this section, the matrices considered were the case when
R = R is the ring (actually, field) of real numbers. Recall that a matrix

(2 4)

with real numbers a, b, ¢, d has a multiplicative inverse if and only if the
determinant D = ad — bc is nonzero, and in that case the inverse matrix is
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D-d -D7'b
-D'¢ D7la )’
We have a similar situation when we work over an arbitrary ring R.
Namely, suppose that

A= (‘; 3) € My(R)

and D = det(A) =qe5 ad — be is in R* Let D' denote the multiplicative
inverse of D in R. Then

D-'d -D ' a b
-D"1¢ D7la c d

and we obtain the same result

(D—l(dg 9 D‘l(—2b+ad))

(6 %)
(6 %)

if we multiply in the opposite order. Thus, A has an inverse matrix given
by the same formula as in the real number case:

4o (D =D
“\-D'¢ D'a )’

Example 1. Find the inverse of

7 8

Solution. Here D = 2-8 —3-7 = —5 = 21 in Z/26Z. Since
g.c.d.(21,26) = 1, the determinant D has an inverse, namely 21~1 = 5.

Thus,
A1 = 5.8 —5-3\ (40 -15)_(14 11
“\-5.7 5.2 )7 \-=3 10 /)7 \17 10"

14 11\ /2 3\ _ (105 130\ _ (1 0
We check that (17 10> (7 8) = (104 131) = (0 1)' Here,

since we are working in Z/26Z, we are using “=" to mean that the en-
tries are congruent modulo 26.
Just as in the real number case, a 2 X 2-matrix

(2 )

A= (2 3) € My(Z/261).
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with entries in a ring R can be multiplied by a column-vector (z) with

z, y € R to get a new vector (;:)

g\ _(a b\ (z\_[az+by
v ) \c d)\y) \ex+dy)’
This gives a “linear map” from vectors to vectors, meaning that a linear

combination (k"””'k’”), where k; and ko are in the ring R, is taken to

, , kiy1+kayz
(’;i:}i’;;:?) The only difference with the situation earlier in our review of
1 2

linear algebra is that now everything is in our ring R rather than in the
real numbers.

We shall want to apply all of this when our ring is R = Z/NZ. The next
proposition will be stated in that case, althouéi\ the analogous proposition
is true for any R. \

Proposition II1.2.1. Let

d

The following are equivalent:

(a) g.c.d.(D,N)=1;

(b) A has an inverse matriz;

(¢) ifz and y are not both 0 in Z/NZ, then A(Z) #();
(d) A gives a 1-to-1 correspondence of (Z/N Z)? with itself.

Proof. We already showed that (a)==(b). It suffices now to prove that
(b)==(d)==(c)=(3)

Suppose that (b) holds. Then part (d) also holds, because A1 gives
the inverse map from (Zi) to (’;) Next, if we have (d), then (;) # (J) implies
that A(’y’) # A(%) = (5), and so (c) holds. Finally, we prove (c)=>(a) by
showing that (a) false = (c) false. So suppose that (a) is false, and set
m = g.c.d.(D,N) > 1 and let m’ = N/m. Three cases are possible.

Case (i). If all four entries of A are divisible by m, set G) = (ﬁ:), to
get a contradiction to (c).

Case (ii). If a and b are not both divisible by m, set G = (;’::3')
Then

A()=(28) ()= (o) = (om) =)
y ¢ d am’ —cbm’ + dam/ Dm/ 0)’
because m|D and so N = mm/|Dm!

Case (ii). If c and d are not both divisible by m, set (7) = _d;':;,), and
proceed as in case (ii). These three cases exhaust all possibilities. Thus, (a)
false implies (c) false. This completes the proof of Proposition 111.2.1.

Example 2. Solve the following systems of simultaneous congruences:

A=(Z b)GMQ(Z/NZ) and set D = ad — bc.
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(a)
2z + 3y = 1 mod 26,
Tz + 8y = 2 mod 26;

(b)
z + 3y =1 mod 26,
7z + 9y = 2 mod 26;

(c)

z + 3y = 1 mod 26,
Tz 4+ 9y = 1 mod 26.

Solution. The matrix form of the system (a) is AX = B mod 26, where
A is the matrix in Example 1, X = (;), and B = (3). We obtain the unique

solution
= A1 = 14 11 1) _ 10
X=A B_(17 10) (2>_(11 mod 26.

The matrix of the systems (b)—(c) does not have an inverse modulo 26, since
its determinant is 14, which has a common factor of 2 with 26. However, we
can work modulo 13, i.e., we can find the solution to the same congruence
mod 13 and see if it gives a solution which works modulo 26. Modulo 13

T @een0

(where (3) = (3) in part (b) and (1) in part (c)). This gives G = (3) and
(g) mod 13, respectively. Testing the possibilities modulo 26, we find that
in part (b) there are no solutions, and in part (c) there are two solutions:
z=26, y="Tand z =19, y=20.

Another way to solve systems of equations (preferable sometimes, espe-
cially when the matrix is not invertible) is to eliminate one of the variables
(e.g., in parts (b) and (c), one could subtract 7 times the first congruence
from the second).

To return to cryptography, we see from Proposition I11.2.1 that we can
get enciphering transformations of our digraph-vectors by using matrices
A € My(Z/NZ) whose determinant has no common factor with N:

A= (i Z) , D = ad — be, g.cd.(D,N)=1.

Namely, each plaintext message unit P = (Z) is taken to a ciphertext
C = (%) by the rule
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s e ()-(290)

To decipher a message, we simply apply the inverse matrix:

A-lap_ a1 . 2\ _( D' -D7'b) (7
P=A"AP=AC, ie., (y>_<—D‘lc D‘1a><y"

Example 3. Working in the 26-letter alphabet, use the matrix A in
Example 1 to encipher the message unit “NO.”
Solution. We have:

2 3 13 68 16
AP = (7 8) (14) - (203) - (21)’

and so C = AP is “QV.” -

Remark. To encipher a plaintext sequence of k digraphs P = Py P,P; - -+
Py, we can write the k vectors,as columns of a 2 x k-matrix, which we also
denote P, and then multiply the 2 x 2-matrix A by the 2 x k-matrix P to
get a 2 X k-matrix C = AP of coded digraph-vectors.

Example 4. Continue as in Example 3 to encipher the plaintext
“NOANSWER.” -

Solution. The numerical equivalent of “NOANSWER?” is the sequence
of vectors (13) (%) (33) (5;). We have

C= AP = 2 3 13 0 18 4\ (68 39 102 59
7 8 14 13 22 17/ \ 203 104 302 164
_ (16 13 24 7
~\21 0 16 8)’
i.e., the coded message is “QVNAYQHL.”
Example 5. In the situation of Examples 3—4, decipher the ciphertext

“FWMDIQ.”
Solution. We have:

Ca-ia_ (14 11\ (5 12 8
P=4 C‘(u m)(m 3 m)

0 19 2 “ »
= (19 0 10) = “ATTACK.

As in §1, suppose that we have some limited information from which
we want to analyze how to decipher a string of ciphertext. We know that
the “enemy” is using digraph-vectors in an N-letter alphabet and a linear
enciphering transformation C = AP. However, we do not have the encipher-
ing “key” — the matrix A — or the deciphering “key” — the matrix Al
But suppose we are able to determine two pairs of plaintext and ciphertext
digraphs: C; = AP, and C; = AP,. Perhaps we learned this information
from an analysis of the frequency of occurrence of digraphs in a long string
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of ciphertext. Or perhaps we know from some outside source that a certain
4-letter plaintext segment corresponds to a certain 4-letter ciphertext. In
that case we can proceed as follows to determine A and A~} We put the
two columns P; and P together into a 2 X 2-matrix P, and similarly for
the ciphertext columns. We obtain an equation of 2 x 2-matrices: C = AP,
in which C and P are known to us, and A is the unknown. We can solve
for A by multiplying both sides by P~

A=APP'=CP™%
Similarly, from the equation P = A~1C we can solve for A7!:
A"l =PC7L.

Example 6. Suppose that we know that our adversary is using a 2x2
enciphering matrix with a 29-letter alphabet, where A—Z7 have the usual
numerical equivalents, blank=26, ?7=27, !=28. We receive the message

“GFPYJP X?UYXSTLADPLW,”

and we suppose that we know that the last five letters of plaintext are our
adversary’s signature “KARLA.” Since we don’t know the sixth letter from
the end of the plaintext, we can only use the last four letters to make two
digraphs of plaintext. Thus, the ciphertext digraphs DP and LW correspond
to the plaintext digraphs AR and LA, respectively. That is, the matrix P
made up from AR and LA is the result of applying the unknown deciphering
matrix A~! to the matrix C made up from DP and LW:

0o 11y _ ,,(3 1
(17 0 ) =4 (15 22) )
Thus,

g (0 1my(3 1 tofo0 1\ (3 13\ _ (21 19
TA\17T o0 15 22 “\17 0 23 7 /) \22 18)’
and the full plaintext message is

21 19 6 15 9 26 27 24 18 11 3 11
22 18 5 24 15 23 20 23 19 0 15 22

18 17 10 26 19 13 14 28 0 11
19 8 4 0 26 14 13 10 17 0

= “STRIKE AT NOON!KARLA.

Remark. In order for this to work, notice that the matrix P forred by
the two known plaintext digraphs must be invertible, i.e., its determinant D
must have no common factor with the number of letters N. What if we are
not so fortunate? If we happen to know another ciphertext-plaintext pair,
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then we could try to use that pair of columns in place of either the first or
second columns of P and C, hoping to obtain then an invertible matrix.
But suppose we have no further information, or that none of the known
plaintext digraphs give us an invertible matrix P. Then we cannot find
A~1 exactly. However, we might be able to get enough information about
A-! to cut down drastically the number of possibilities for the deciphering
matrix. We now illustrate this with an example. (For more on this, see the
exercises at the end of the section.)

Example 7. Suppose we know than our adversary is using an enci-
phering matrix A in the 26-letter alphabet. We intercept the ciphertext
«“WKNCCHSSJH,” and we know that the first word is “GIVE.” We want
to find the deciphering matrix A~! and read the message.

Solution. If we try to proceed as in Example 6, writing

«, My 6 21
P=“GIVE —<8 4>,

22 13

o 2), and A~!=PC!

C=“WKNC” = (

we immediately run into a problem, since det(C) = 18 and g.c.d.(18,26) =
2. We can proceed as follows. Let A denote the reduction modulo 13
of the matrix A, and similarly for P and C. If we consider these ma-

trices in Ma(Z/13Z), we can take C™! (more precisely, '5_1), because
g.c.d.(det(C), 13) = 1. Thus, from P = A"'C we can compute

o1 a1 (6 8Y (9 0\ _[(2 4
4 =PC _<8 4)(10 2) ‘(3 2)‘

Since the entries of A~ which are integers mod 26, must reduce to

(3 3)

modulo 13, it follows that there are two possibilities for each entry in the
matrix A~ More precisely,

Al = (:2,) ‘;) +134;,

where A; € M(Z/2Z) is a 2 x 2-matrix of 0’s and 1’s. That leaves 24 =16
possibilities. However, in the first place, since A~1 is invertible, its deter-
minant must be prime to 26, and hence also prime to 2 (i.e., odd). This
consideration rules out all but 6 possibilities for A;. In the second place,
when we substitute
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2 4
<3 9 ) + 134,
for A~! in the equation

(22 13)_(6 21
(5 5)-6%)

(this means entry-by-entry congruence mod 26), we eliminate all but 2
possibilities, namely,

10 11
w-(i9) = ()
(15 4 15 17

A ‘(16 15) or (16 15)‘

Attempting to decipher with the first matrix yields “GIVEGHEMHP,”
which must be wrong. Deciphering with the second matrix

-1 15 17
AT = (16 15)

leads to “GIVETHEMUP.” So that must be correct. Although a certain
amount of trial and error is involved, it’s better than running through all
157,248 possibilities for a deciphering matrix A~ € M»(Z/26Z)"

Remark. In Example 7 it would perhaps be more efficient to adjust the
entries in at by multiples of 13 so that they become divisible by 2, i.e.,
to define A; by writing:

Al = ( 2 4) +134;.

ie.,

16 2

Then one can obtain information on A; by working modulo 2, since we now
have A;C = P mod 2.

Affine enciphering transformations. A more general way to encipher a
digraph-vector P = (;) is to apply a 2 x 2-matrix A = (*}) € Mz(Z/NZ)
and then add a constant vector B = (}):

C=AP+ B,

(2)=(2 D)+ (5)=(=rats):

This is called an “affine” map, and is analogous to the enciphering function
C = aP + b that we studied in §1 when we were using single-letter message

ie.,
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units. Of course, as before, we are using “=" to mean the corresponding
entries are congruent mod N.

The inverse transformation that expresses P in terms of C can be found
by subtracting B from both sides and then applying A~! to both sides:

P=A"'C-A"'B.

This is also an affine transformation P = A’C + B! where A’ = A™! and
B’ = —A~1B. Notice that we must assume that A is an invertible matrix
in order to be able to decipher uniquely.

Suppose we know that our adversary is using an affine enciphering
transformation of digraph-vectors with an N-letter alphabet. To determine
A and B (or to determine A’ = A™! and B’ = —A™'B), we need at least
three digraph pairs. Suppose we know that the ciphertext digraphs C}, Ca,
Cj correspond to the plaintext digraphs Py, Pz, Ps:

P =AC j— B
P, = AlCQ +B
P = A'Cs + B

To find A’ and B’ we can proceed as follows. Subtract the last equation
from the first two, and then make a 2 x 2-matrix P from the two columns
P, — P; and P,— P; and a 2 x 2-matrix C from the two columns C; —C3 and
Ca — C3. We obtain the matrix equation P = A’C, which can be solved for
A’ (provided that C is invertible) as we did in the case of linear enciphering
transformations. Finally, once we find A’ = A~} we can determine B’ from
any of the above three equations, e.g., B’ = P — A'Ch.

Ezercises

1. Use frequency analysis to decrypt the following message, which was
encoded in the 26-letter alphabet using a Vigenére cipher with a 3-
letter key-word. Do this in the following way. To find the first letter of
the key-word, work with the sequence consisting of every third letter
starting with the first. Do not assume that the most frequently oc-
curring letter is necessarily the ciphertext for “E”. List the four most
frequently occurring letters, and try out the possibility that each one
in turn is the encryption of “E”. If one of the other three frequently
occurring letters would then have to be the encryption, say, of “2”
or “Q”, then you know that you made a wrong choice for “E”. By
an elimination process, find the letter that must be “E” and then the
key-word letter which produces that translation. In this way find the
key-word and decipher the message:
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AWYVPQCTBLWYLPASQJWUPGBUSHFACELDLLDLWLBWAFAHS
EBYJXXACELWCJTQMARKDDLWCSXBUDLKDPLXSEQCJTNWPR
WSRGBCLWPGJEZIFWIMJDLLDAGCQMAYLTGLPPJXTWSGFRM
VTLGUYUXJAIGWHCPXQLTBXDPVTAGSGFVRZTWTGMMVFLXR
LDKWPRLWCSXPHDPLPKSHQGULMBZWGQAPQCTBAURZTWSHQ
MBCVXAGJJVGCSSGLIFWNQSXBFDGSHIWSFGLRZTWEPLSVC
VIFWNQSXBOWCFHMETRZXLYPPJXTWSGFRMVTRZTWHWMFTB
OPQZXLYIMFPLVWYVIFWDPAVGFPJETQKPEWGCSSRGIFWB

2. Find the inverses of the following matrices mod N. Write the entries
in the inverse matrix as nonnegative integers less than N.

(@) (i g) mod5  (b) (}1 g) mod29  (c) (f 197) mod 26

40 0 197 62
(d) ( 0 21) mod 841 (e) (603 271) mod 841

In Exercises 3—5, find all solutions (;) modulo N, writing z and y as
nonnegative integers less than N.

5 @) c+4y=1mod9 ®) z+4y=1mod9
52+ 7y =1 mod 9 52+8y=1mod9
© z+4y=1mod9 (d) z+4y=0mod 9
5z +8y=2mod 9 5z + 8y =0 mod 9
& @) 17z + 11y = 7 mod 29 ) 17z + 11y = 0 mod 29
13z + 10y = 8 mod 29 13z + 10y = 0 mod 29
© 9z + 20y = 0 mod 29 ) 9z + 20y = 10 mod 29
16z + 13y = 0 mod 29 16z + 13y = 21 mod 29
9z + 20y = 1 mod 29
©) 16z + 13y = 2 mod 29
5.

480 + 971y = 416 mod 1111
207z + 398y = 319 mod 1111
© 480z + 971y = 0 mod 1111 (d) 480z + 971y = 0 mod 1111
297z + 398y = 0 mod 1111 208z + 398y = 0 mod 1111
480z + 971y = 648 mod 1111
(¢) 2087 + 398y = 1004 mod 1111

6. The Fibonacci numbers can be defined by the rule f; = 1, fo = 1,
f3 =2, fas1 = fn + fa—1 for n > 1, or, equivalently, by means of the
matrix equation

480z + 971y = 109 mod 1111

a
(a) 207z + 398y = 906 mod 1111

(b)
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10.

11.
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(f'n+1 fn ) — (1 1)n

f n f n—1 10

(see Exercise 10 of §.2). Using the matrix form of the definition, prove
that f, is even if and only if n is divisible by 3. More generally, prove
that f, is divisible by a if and only if n is divisible by b for the following
aand b: (a) a=2b=3; (b)a=3 b=4 (c)a=5,b=5 (d)
a=7,b=8 (e)a=8 b=6 (f)ja=11b=10.

You intercept the message “«SONAFQCHMWPTVEVY? which you
know resulted from a linear enciphering transformation of digraph-
vectors, where the sender used the usual 926-letter alphabet A—7Z with
numerical equivalents 0—25, respectively. An earlier statistical anal-
ysis of a long string of intercepted ciphertext revealed that the most
frequently occurring ciphertext digraphs were “KH” and “XW” in that
order. You take a guess that those digraphs correspond to “TH” and
“HE” respectively, since those are the most frequently occurring di-
graphs in most long plaintext messages on the subject you think is
being discussed. Find the deciphering matrix, and read the message.
You intercept the message «“ZRIXXYVBMNPO, which you know re-
sulted from a linear enciphering transformation of digraph-vectors in
a 27-letter alphabet, in which A—Z have numerical equivalents 0—25,
and blank=26. You have found that the most frequently occurring ci-
phertext digraphs are “PK” and “RZ” You guess that they correspond
to the most frequently occurring plaintext digraphs in the 27-letter
alphabet, namely, “E 7 (E followed by blank) and “S .” Find the
deciphering matrix, and read the message.

You intercept the message “IWGVIEX!ZRADRYD, which was sent
using a linear enciphering transformation of digraph-vectors in a 29-
letter alphabet, in which A—7Z have numerical equivalents 0—325,
blank=26, ?=27, !=28. You know that the last five letters of plain-
text are the sender’s signature “MARIA?

(a) Find the deciphering matrix, and read the message.

(b) Find the enciphering matrix, and, impersonating Maria’s friend Jo,
send the following reply in code: “DAMN FOG! JO?

In this exercise we are again working with the Cyrillic alphabet (see
Exercise 12 of the last section). We use a 34-letter alphabet, where in
addition to the numerical equivalents listed before we have blank=33.
Suppose that still the two most frequently occurring digraphs in Rus-
sian are taken to be “HO” and “ET” Meanwhile, we find that in a
long string of ciphertext the most frequently occurring digraphs are
“«}OT” and “UM” We know that the encryption uses a linear enci-
phering transformation of digraph-vectors in the 34-letter alphabet.
Read the intercepted message “CXHCbIIOHII3"

Prove that the product (see Exercise 14 of the last section) of a cryp-
tosystem with enciphering matrix A; € My(Z/NZ)* and a cryptosys-

12.

13.

14.

15.

16.
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tem with enciphering matrix Ay € M(Z/NZ)* is also a linear enci-
phering transformation.

In order to increase the difficulty of breaidng your cryptosystem, you
decide to encipher a digraph-vector in the 26-letter alphabet by first

applying the matrix
3 1
4 15)°

working modulo 26, and then applying the matrix

10 15
5 9)°

working modulo 29. (Note that applying two matrices in succession
while working with the same modulus is equivalent to applying a single
matrix, as shown in Exercise 11; but if you change modulus the two-
step encryption is much more complicated.) Thus, while your plaintexts
are in the 26-letter alphabet, your ciphertexts will be in the 29-letter
alphabet we used in Exercise 9.

(2) Encipher the message “SEND?

(b) Describe how to decipher a ciphertext by applying two matrices in
succession, and decipher “ZMOY”

Prove that if a non-invertible A € M2(Z/NZ) is used to encipher di-
graph vectors by means of the formula C = AP, then every ciphertext
one sends can be deciphered as coming from at least two different pos-
sible plaintexts. .

You intercept the message “S GNLIKD?KOZQLLIOMKUL.VY” (here
the blank after the S is part of the message). Suppose that a linear
enciphering transformation C = AP is being used with a 30-letter
alphabet, in which A—Z have the usual numerical equivalents 0—25,
blank=26, .=27, ,=28, 7=29. You also know that the last six letters of
the plaintext are the signature KARLA followed by a period. Find the
deciphering matrix A~! and the full plaintext message.

You intercept the message “KVW? TA!KJB?FVR .” (The blanks
after ? and R are part of the message, but the final . is not.) Yot know
that a linear enciphering transformation is being used with a 30-letter
alphabet, in which A—Z have numerical equivalents 0—25, blarik=26,
?=27, 1=28, .=29. You further know that the first six letters of the
plaintext are “C.LA.” Find the deciphering matrix A~ and the full
plaintext message.

Suppose that N = mn, where g.c.d.(m,n) = 1. Any A € M2(Z/NZ)
can be considered in Mz(Z/mZ) or M2(Z/nZ) by simply reducing the
entries modulo m or n. Let A and A denote the corresponding matrices
in My(Z/mZ) and M3(Z/nZ), respectively.

(a) Prove that the map that takes A to the pair (4, A) is a 1-to-1 cor-
respondence between My(Z/NZ) and the set My(Z/mZ) x M2(Z/nZ)
of all pairs of matrices, one modulo m and one modulo 7.
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(b) Prove that the map in part (a) gives a 1-to-1 correspondence be-
tween the set My(Z/NZ)* of invertible matrices mod N and the set
M3(Z/mZ)* x May(Z/nZ)*

17. For p a prime, find the number of elements in My(Z/pZ)* in two ways,
and check that your answers agree:

(a) Count the number of solutions in Fp of the equation ad — bc = 0,

and subtract this from the number of elements in M2(Z/pZ).

(b) Any A € M2(Z/pZ)* must take (;) and (9) to two linearly inde-

pendent vectors, i.e., the first can be any nonzero vector, and then the

second can be any vector not a multiple of the first. Count the number
of possibilities.

18. Prove that a matrix in M(Z/p®Z) is invertible if and only if its re-
duction mod p in Mz(Z/pZ) is invertible. Then find the number of
elements in M(Z/p*Z)*

19. Using Exercises 16-18, find a formula for the number of elements in
Ma(Z/NZ)* Call this number @2(N). Recall the formula for the num-
ber (N) of elements in (Z/NZ)*: ¢(N) = NIl (1- %) Write your
formula for p2(N) in a similar form. How many possible 2 x 2 enci-
phering matrices A are there when N = 26, 29, 307

20. Let @i (V) denote the number of invertible k x k-matrices with entries
in Z/NZ. Guess a formula for ox(N). This formula is not hard to prove
by the method in Exercise 16(b).

Remark. The approach in Exercises 16-20 is typical of many proofs
and computations modulo N. Using a multiplicativity property, one first
reduces to the case of a prime power. Then, using a “lifting argument” (see
Exercise 20 of § I1.2 for another example of this), one reduces to the case of
a prime, i.e., we can then work in a field F,. Once we are working with a
field, we can more easily use our geometric intuition, as in Exercise 17(b)
above. All of linear algebra that we first learn over the real numbers goes
through word—for-word over any field. For example, a congruence of the
form az + by = ¢ mod p can be depicted by a “line” in the “plane” over the
field F,,; a second such congruence will either meet the first line in a single
point, be parallel to the first line, or else coincide with the first line. In the
case of congruences with a composite modulus N, on the other hand, there
are other possibilities, which occur when the determinant of the coefficient
matrix has a nontrivial common factor with N.

21. How many possible affine enciphering transformations are there for
digraphs in an N-letter alphabet? How many are there when N = 26,
29, 30?7

22. Suppose that you want to find a deciphering matrix A~t € My(Z/NZ)*
from the equation P = A~!C, where P and C are made up from
two known pairs of plaintext—ciphertext digraphs. Suppose that g.c.d.
(det(C), N) = p, where p is a prime dividing N only to the first power.
Let n = N/p.

(a) Find the number of possibilities for A~! you will be left with after

23.

24.

25.

2 Enciphering Matrices 81

solving the congruence P = A~1C mod n and after taking into account
that pJ det(A1).

(b) Suppose that p does not divide all of the entries in C. Describe how
to use the congruence P = A~'C mod p to further reduce the number
of possibilities for A~ How many possibilities are you now left with?
Example 8 and Exercise 15 illustrate this in the case p = 2.

You want to find a 2 x 2 enciphering matrix A modulo 30. You have
two plaintext/ciphertext digraph pairs (in a 30-letter alphabet), which
enables you to write AP = C mod 30, where

3 3 17 8

P = =
(B9 (7 3)
(a) Working modulo 10, write A in the form A = Ag + 104; mod 30,
where A; is an unknown matrix modulo 3 (whose entries are 0, 1 or 2)
and Ag is a matrix you know from your mod 10 computations. Choose
Ap so that all of its entries are between 0 and 29 and are divisible by
3.
(b) Working modulo 3, find the second column of the matrix A; .
(c) How many possibilities are there for the original matrix A7 List
them all.
Let

d

be the matrix of a linear enciphering transformation of digraphs in an
N-letter alphabet. By a fized digraph of A we mean a digraph vector P
whose corresponding ciphertext vector C is the same as P, i.e., AP =
P. In this problem we suppose that A is not the identity matrix. (After
all, there’s no point in considering the enciphering transformation that
doesn’t even make a half-hearted attempt to disguise anything.)

(a) Show that the digraph “AA”= (Q) is always fixed, and find a con-

dition on
a b
c d

which is equivalent to “AA” being the only fixed digraph.

(b) If N is a prime number and if “AA” is not the only fixed digraph,
prove that there are exactly N fixed digraphs.

You intercept the message

A= (‘c‘ b) € My(Z/NZ)*

“WUXHURWZNQR XVUEXU!JHALGQGJ?,

which you know was encoded using an affine transformation of vectors
(;) in an 841-letter alphabet. Here the numerical equivalent of a di-
graph is the number z = 29z + z2, where z; is the number of the first
letter and z5 is the number of the second letter in the digraph (the 29
letters are numbered as in Exercise 9). Thus, each block of four letters
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gives a column (w) the first two letters give the integer x and the next
two letters give y. You also know that the last 12 letters of the above
ciphertext correspond to the signature “HEADQUARTERS?
(a) Find the deciphering transformation and read the message.
(b) Find the enciphering transformation and make a coded message
that inpersonates headquarters and says “CANCEL LAST ORDERY
followed by two blanks and the signature “HEADQUARTERS?”

26. How many possible affine enciphering transformations are there in the
situation of Exercise 25 (with an 841-letter digraph alphabet)?

27. How many possible affine enciphering transformations are there for tri-
graphs (3-component vectors) in a 26-letter alphabet?

28. You intercept the message

“FBRTLWUGAJQINZTHHXTEPHBNXSW,”

which you know was encoded using a linear enciphering transformation
of trigraphs in the 26-letter alphabet A—7 with numerical equivalents
0—25. You also know that the last three trigraphs are the sender’s
signature “JAMESBOND.” Find the deciphering matrix and read the
message.
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IV
Public Key

1 The idea of public key cryptography

Recall that a cryptosystem consists of a 1-to-1 enciphering transformation f
from a set P of all possible plaintext message units to a set C of all possible
ciphertext message units. Actually, the term “cryptosystem” is more often
used to refer to a whole family of such transformations, each corresponding
to a choice of parameters (the sets P and C, as well as the map f, may
depend upon the values of the parameters). For example, for a fixed N-
letter alphabet (with numerical equivalents also fixed once and for all),
we might consider the affine cryptosystem (or “family of cryptosystems”)
which for each a € (Z/NZ)* and b € Z/NZ is the map from P = Z/NZ
to C = Z/NZ defined by C = aP +b mod N. In this example, the sets P
and C are fixed (because N is fixed), but the enciphering transformation f
depends upon the choice of parameters a, b. The enciphering transformation
can then be described by (i) an algorithm, which is the same for the whole
family, and (ii) the values of the parameters. The values of the parameters
are called the enciphering key Kg. In our example, Kg is the pair (a, b).
In practice, we shall suppose that the algorithm is publicly known, i.e., the
general procedure used to encipher cannot be kept secret. However, the
keys can easily be changed periodically and, if one wants, kept secret.

One also needs an algorithm and a key in order to decipher, i.e., com-
pute f~! The key is called the deciphering key Kp. In our example of the
affine cryptosystem family, deciphering is also accomplished by an affine
map, namely P = a~'C — a™!b mod N, and so the deciphering transfor-
mation uses the same algorithm as the enciphering transformation, except
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with a different key, namely, the pair (=} —a~'b). (In some cryptosys-
tems, the deciphering algorithm, as well as the key, is different from the
enciphering algorithm.) We shall always suppose that the deciphering and
enciphering algorithms are publicly known, and that it is the keys Kg and
Kp which can be concealed.

Let us suppose that someone wishes to communicate secretly using
the above affine cryptosystem C = aP + b. We saw in §1IL.1 that it is not
hard to break the system if one uses single-letter message units in an N-
letter alphabet. It is a little more difficult to break the system if one uses
digraphs, which can be regarded as symbols in an N 2_]etter alphabet. It
would be safer to use blocks of k letters, which have numerical equivalents
in Z/N*Z. At least for k > 3 it is not easy to use frequency analysis,
since the number of possible k-letter blocks is very large, and one will find
many that are close contenders for the title of most frequently occurring
k-graph. If we want to increase k, we must be concerned about the length
of time it takes to do various arithmetic tasks (the most important one
being finding a~! by the Euclidean algorithm) involved in setting up our
keys and carrying out the necessary transformations every time we send a
message or our friend at the other end deciphers a message from us. That
is, it is useful to have big-O estimates for the order of magnitude of time
(as the parameters increase, i.e., as the cryptosystem becomes “larger”)
that it takes to: encipher (knowing Kg), decipher (knowing Kp), or break
the code by enciphering without knowledge of Kg or deciphering without
knowledge of Kp.

In all of the examples in Chapter III — and in all of the cryptosystems
used historically until about fifteen years ago — it is not really necessary
to specify the deciphering key once the enciphering key (and the general
algorithms) are known. Even if we are working with large numbers — such
as N* with k fairly large — it is possible to determine the deciphering
key from the enciphering key using an order of magnitude of time which is
roughly the same as that needed to implement the various algorithms. For
example, in the case of an affine enciphering transformation of Z/N*Z, once
we know the enciphering key Kg = (a,b) we can compute the deciphering
key Kp = (a~! mod N¥, —a™'b mod N k) by the Euclidean algorithm in
O(log®(N*)) bit operations.

Thus, with a traditional cryptosystem anyone who knew enough to
decipher messages could, with little or no extra effort, determine the enci-
phering key. Indeed, it was considered naive or foolish to think that someone
who had broken a cipher might nevertheless not know the enciphering key.
We see this in the following passage from the autobiography of a well-known
historical personality:

Five or six weeks later, she [Madame d’Urfé] asked me if I
had deciphered the manuscript which had the transmutation pro-
cedure. I told her that I had.
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. “Without the key, sir, excuse me if I believe the thing impos-
sible.”

“Do you wish me to name your key, madame?”

“If you please.”

I then told her the key-word, which belonged to no language,
and I saw her surprise. She told me that it was impossible, for she
believed herself the only possessor of that word which she kept in
her memory and which she had never written down.

I could have told her the truth — that the same calculation
which had served me for deciphering the manuscript had enabled
me to learn the word — but on a caprice it struck me to tell her
that a genie had revealed it to me. This false disclosure fettered
Madame d’Urfé to me. That day I became the master of her soul,
and I abused my power. Every time I think of it, I am distressed
and ashamed, and I do penance now in the obligation under which
I place myself of telling the truth in writing my memoirs.

— Casanova, 1757, quoted in D. Kahn’s The Codebreakers

The situation persisted for another 220 years after this encounter be-
tween Casanova and Madame d’Urfé: knowledge of how to encipher and
knowledge of how to decipher were regarded as essentially equivalent in
any cryptosystem. However, in 1976 W. Diffie and M. Hellman discovered
an entirely different type of cryptosystem and invented “public key cryp-
tography.”

By definition, a public key cryptosystem has the property that someone
who knows only how to encipher cannot use the enciphering key to find
the deciphering key without a prohibitively lengthy computation. In other
words the enciphering function f: P — C is easy to compute once the
enciphering key Kg is known, but it is very hard in practice to compute
the inverse function f~!:C — P. That is, from the standpoint of realistic
computability, the function f is not invertible (without some additional
information — the deciphering key Kp). Such a function f is called a
trapdoor function. That is, a trapdoor function f is a function which is
easy to compute but whose inverse f~! is hard to compute without having
some additional auxiliary information beyond what is necessary to compute
f. The inverse f~! is easy to compute, however, for someone who has this
information Kp (the “deciphering key”).

There is a closely related concept of a one-way function. This is a
function f which is easy to compute but for which f~! is hard to compute
and cannot be made easy to compute even by acquiring some additional
information. While the notion of a trapdoor function apparently appeared
for the first time in 1978 along with the invention of the RSA public-key
cryptosystem, the notion of a one-way function is somewhat older. What
seems to have been the first use of one-way functions for cryptography was
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described in Wilkes’ book about time-sharing systems that was published in
1968. The author describes a new one-way cipher used by R. M. Needham
in order to make it possible for a computer to verify passwords without
storing information that could be used by an intruder to impersonate a
legitimate user.

In Needham’s system, when the user first sets his password,
or whenever he changes it, it is immediately subjected to the enci-
phering process, and it is the enciphered form that is stored in the
computer. Whenever the password is typed in response to a de-
mand from the supervisor for the user’s identity to be established,
it is again enciphered and the result compared with the stored
version. It would be of no immediate use to a would-be malefac-
tor to obtain a copy of the list of enciphered passwords, since he
would have to decipher them before he could use them. For this
purpose, he would need access to a computer and even if full de-
tails of the enciphering algorithm were available, the deciphering
process would take a long time.

In 1974, G. Purdy published the first detailed description of such a
one-way function. The original passwords and their enciphered forms are
regarded as integers modulo a large prime p, and the “one-way” map Fp —
F, is given by a polynomial f () which is not hard to evaluate by computer
but which takes an unreasonably long time to invert. Purdy used p =
264 _ 59, f(z) = 22T 0, 228 + aga® + aaz? + a4z + a5, where the
coefficients a; were arbitrary 19-digit integers.

The above definitions of a public key cryptosystem and a one-way or
trapdoor function are not precise from a rigorous mathematical standpoint.
The notion of “realistic computability” plays a basic role. But that is an
empirical concept that is affected by advances in computer technology (e.g.,
parallel processor techniques) and the discovery of new algorithms which
speed up the performance of arithmetic tasks (sometimes by a large factor).
Thus, it is possible that an enciphering transformation that can safely be
regarded as a one-way or trapdoor function in 1994 might lose its one-way
or trapdoor status in 2004 or in the year 2994.

It is conceivable that some transformation could be proved to be trap-
door. That is, there could be a theorem that provides a nontrivial lower
bound for the number of bit operations that would be required (“on the
average,” i.e., for random values of the key parameters) in order to figure
out and implement a deciphering algorithm without the deciphering key.
Here one would have to allow the possibility of examining a large number of
corresponding plaintext—ciphertext message units (as in our frequency anal-
ysis of the simple systems in Chapter III), because, by the definition of a
public key system, any user can generate an arbitrary number of plaintext—
ciphertext pairs. One would also have to allow the use of “probabilistic”
methods which, while not guaranteed to break the code at once, would be
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likely to work if repeated many times. (Examples of probabilistic algorithms
will be given in the next chapter.) Unfortunately, no such theorems have
been proved for any of the functions that have been used as enciphering
maps. Thus, while there are now many cryptosystems which empirically
seem to earn the right to be called “public key,” there is no cryptosystem
in existence which is provably public key.

The reason for the name “public key” is that the information needed
to send secret messages — the enciphering key Kg — can be made public
information without enabling anyone to read the secret messages. That is,
suppose we have some population of users of the cryptosystem, each one of
whom wants to be able to receive confidential communications from any of
the other users without a third party (either another user or an outsider)
being able to decipher the message. Some central office can collect the
enciphering key Kg, 4 from each user A and publish all of the keys in a
“telephone book” having the form

AAA Banking Company  (9974398087453939, 2975290017591012)
Aardvark, Aaron (8870004228331, 7234752637937)

Someone wanting to send a message merely has to look up the enciphering
key in this “telephone book” and then use the general enciphering algorithm
with the key parameters corresponding to the intended recipient. Only the
intended recipient has the matching deciphering key needed to read the
message.

In earlier ages this type of system would not have seemed to have
any particularly striking advantages. Traditionally, cryptography was used
mainly for military and diplomatic purposes. Usually there was a small,
well-defined group of users who could all share a system of keys, and new
keys could be distributed periodically (using couriers) so as to keep the
enemy guessing.

However, in recent years the actual and potential applications of cryp-
tography have expanded to include many other areas where communication
systems play a vital role — collecting and keeping records of confidential
data, electronic financial transactions, and so on. Often one has a large
network of users, any two of whom should be able to keep their commu-
nications secret from all other users as well as intruders from outside the
network. Two parties may share a secret communication on one occasion,
and then a little later one of them may want to send a confidential message
to a third party. That is, thie “alliances” — who is sharing a secret with
whom — may be continually shifting. It might be impractical always to be
exchanging keys with all possible confidential correspondents.

Notice that with a public key system it is possible for two parties to
initiate secret communications without ever having had any prior contact,
without having established any prior trust for one another, without ex-
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changing any preliminary information. All of the information necessary to
send an enciphered message is publicly available.

Classical vesus public key. By a classical cryptosystem (also called
a private key cryptosystem or a symmetrical cryptosystem), we mean a
cryptosystem in which, once the enciphering information is known, the
deciphering transformation can be implemented in approximately the same
order of magnitude of time as the enciphering transformation. All of the
cryptosystems in Chapter III are classical. Occasionally, it takes a little
longer for the deciphering — because one needs to apply the Euclidean
algorithm to find an inverse modulo N or one must invert a matrix (and
this can take a fairly long time if we work with k x k -matrices for k larger
than 2) — nevertheless, the additional time required is not prohibitive.
(Moreover, usually the additional time is required only once — to find Kp
— after which it takes no longer to decipher than to encipher.) For example,
we might need only O(log?B) to encipher a message unit, and O(log®B)
bit operations to decipher one by finding Kp from Kg, where B is a bound
on the size of the key parameters. Notice the role of big-O estimates here.

If, on the other hand, the enciphering time were polynomial in log B
and the deciphering time (based on knowledge of Kg but not Kp) were,
say, polynomial in B but not in log B, then we would have a public key
rather than a classical cryptosystem.

Authentication. Often, one of the most important parts of a message
is the signature. A person’s signature — hopefully, written with an idiosyn-
cratic flourish of the pen which is hard to duplicate — lets the recipient
know that the message really is from the person whose name is typed be-
low. If the message is particularly important, it might be necessary to use
additional methods to authenticate the communication. And in electronic
communication, where one does not have a physical signature, one has to
rely entirely on other methods. For example, when an officer of a corporation
wants to withdraw money from the corporate account by telephone, he/she
is often asked to give some personal information (e.g., mother’s maiden
name) which the corporate officer knows and the bank knows (from data
submitted when the account was opened) but which an imposter would not
be likely to know.

In public key cryptography there is an especially easy way to identify
oneself in such a way that no one could be simply pretending to be you. Let
A (Alice) and B (Bob) be two users of the system. Let fa be the enciphering
transformation with which any user of the system sends a message to Alice,
and let fz be the same for Bob. For simplicity, we shall assume that the
set P of all possible plaintext message units and the set C of all possible
ciphertext message units are equal, and are the same for all users. Let
P be Alice’s “signature” (perhaps including an identification number, a
statement of the time the message was sent, etc.). It would not be enough
for Alice to send Bob the encoded message fg(P), since everyone knows how
to do that, so there would be no way of knowing that the signature was not
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forged. Rather, at the beginning (or end) of the message Alice transmits
fBf1*(P). Then, when Bob deciphers the whole message, including this
part, by applying fg ! he finds that everything has become plaintext except
for a small section of jibberish, which is f;(P). Since Bob knows that the
message is claimed to be from Alice, he applies f4 (which he knows, since
Alice’s enciphering key is public), and obtains P. Since no one other than
Alice could have applied the function f;l which is inverted by f4, he knows
that the message was from Alice.

Hash functions. A common way to sign a document is with the help of
a hash function. Roughly speaking, a hash function is an easily computable
map f : z +— h from a very long input = to a much shorter output h
(for example, from strings of about 10° bits to strings of 150 or 200 bits)
that has the following property: it is not computationally feasible to find
two different inputs  and z’ such that f(z') = f(z). If part of Alice’s
“signature” consists of the hash value h = f(z), where z is the entire text
of her message, then Bob can verify not only that the message was really
sent by Alice, but also that it wasn’t tampered with during transmission.
Namely, Bob applies the hash function f to his deciphered plaintext from
Alice, and checks that the result agrees with the value h in Alice’s signature.
By assumption, no tamperer would have been able to change z without
changing the value h = f(z).

Key exchange. In practice, the public key cryptosystems for sending
messages tend to be slower to implement than the classical systems that are
in current use. The number of plaintext message units per second that can
be transmitted is less. However, even if a network of users feels attached
to the traditional type of cryptosystem, they may want to use a public
key cryptosystem in an auxiliary capacity to send one another their keys
K = (Kg, Kp) for the classical system. Thus, the ground rules for the
classical cryptosystem can be agreed upon, and keys can be periodically
exchanged, using the slower public key cryptography; while the large volume
of messages would then be sent by the faster, older methods.

Probabilistic Encryption. Most of the number theory based cryptosys-
tems for message transmission are deterministic, in the sense that a given
plaintext will always be encrypted into the same ciphertext any time it is
sent. However, deterministic encryption has two disadvantages: (1) if an
eavesdropper knows that the plaintext message belongs to a small set (for
example, the message is either “yes” or “no”), then she can simply en-
crypt all possibilities in order to determine which is the supposedly secret
message; and (2) it seems to be very difficult to prove anything about the
security of a system if the encryption is deterministic. For these reasons,
probabilistic encryption was introduced. We will not discuss this further or
give examples in this book. For more information, see the fundamental pa-
pers on the subject by Goldwasser and Micali (Proc. 14th ACM Symp. The-
ory of Computing, 1982, 365-377, and J. Comput. System Sci. 28 (1984),
270-299).
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Ezercises

Suppose that m users want to be able to communicate with one an-
other using a classical cryptosystem. Each user insists on being able to
communicate with each other user without the remaining m — 2 users
eavesdropping. How many keys K = (Kg, Kp) must be developed?
How many keys are needed if they are using a public key cryptosystem?
How many keys are needed for each type of cryptosystem if m = 10007
Suppose that a network of investors and stockbrokers is using public
key cryptography. The investors fear that their stockbrokers will buy
stock without authorization (in order to receive the commission) and
then, when the investor’s money is lost, claim that they had received
instructions (producing as evidence an enciphered message to buy the
stock, claiming that it came from the investor). The stockbrokers, on
the other hand, fear that in cases when they buy according to the
investor’s instructions and the stock loses money, the investor will claim
that he never sent the instruction, and that it was sent by an imposter
or by the stockbroker himself. Explain how this problem can be solved
by public key cryptography, so that when all of these sleazy people end
up in court suing one another, there is proof of who is to blame for
the reckless investing and consequent loss of money. (Suppose that, in
the case of a lawsuit between investor A and stockbroker B, the judge
is given all of the relevant enciphering/deciphering information — the
keys Ka = (KE,A, KD,A) and Kp = (KE,B, KD,B) and the software
necessary to encipher and decipher.)

Suppose that two countries A and B want to reach an agreement to ban
underground nuclear tests. Neither country trusts the other, in both
cases for good reason. Nevertheless, they must agree on a system of ver-
ification devices to be implanted at various locations on the territory of
the two countries. Each verification device consists of a sophisticated
seismograph, a small computer for interpreting the seismograph read-
ing and generating a message, and a radio transmitter. Explain how
public key cryptography can be used to enable all of the following (at
first glance seemingly contradictory) conditions to be met:

a. Country A insists on knowing the plaintext content of all messages
emanating from its territory, in order to be sure that the devices are
not used in coordination with espionage activities by Country B.

b. Country B insists that Country A cannot fabricate a message from
the devices which broadcast from its territory (i.e., a message saying
that everything’s OK, when in fact the seismograph has detected a
treaty violation).

c. Country A insists that, if Country B falsely claims to have received
notification from the device of a treaty violation, then any interested
third country will be able to determine that, in fact, no such message
was sent.
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d. Same as conditions a—c with the roles of the two countries reversed.
e. The verification devices in both countries must be identical, and
must be constructed jointly by scientists from both countries.

The purpose of this problem is to construct a long-distance coin flip
using any two-to-one trapdoor function. For example, suppose that
two chess players at distant parts of the world are playing chess by
mail or telephone and want a fair way to determine who plays white.
Or suppose that when making preparations for an international ice-
hockey match, representatives of the two teams decide to flip a coin
to see which country hosts the match, without having to arrange a
meeting (or trust a third party) to “flip the coin.”

By a system of two-to-one trapdoor functions, we mean an algorithm
which, given a key K of a suitable type, constructs a function f: P —
C such that every element c in the image of f has exactly two preimages
p1, P2 € P such that f(p;) = ¢; and an algorithm which, given a key
K p which “reverses Kg,” can find both preimages of any c in the irnage
of f. Here we assume that it is computationally infeasible to find Kp
knowing only Kg. Given an element p; € P, notice that one can find
the other element po having the same image if one knows both Kg and
Kp (namely, find both inverses of f(p1)); but we assume that, knowing
only Kg, one cannot feasibly compute the companion element po for
any p; at all.

Suppose that Player A (Aniuta) and Player B (Bjorn) want to use
this set-up to flip a coin. Aniuta generates a pair of keys Kg and Kp
and sends Kg (but not Kp) to Bjérn. Explain a procedure that has a
50%-50% chance of each player “winning” (give a suitable definition
of “winning”), and that has adequate safeguards against cheating.
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2RSA

In looking for a trapdoor function f to use for a public key cryptosystem,
one wants to use an idea which is fairly simple conceptually and lends itself
to easy implementation. On the other hand, one wants to have very strong
empirical evidence — based on a long history of attempts to find algorithms
for f~! — that decryption cannot feasibly be accomplished without knowl-
edge of the secret deciphering key. For this reason it is natural to look at an
ancient problem of number theory: the problem of finding the complete fac-
torization of a large composite integer whose prime factors are not known
in advance. The success of the so-called “RSA” cryptosystem (from the last
names of the inventors Rivest, Shamir, and Adleman), which is one of the
oldest (16 years old) and most popular public key cryptosystems, is based
on the tremendous difficulty of factoring.

We now describe how RSA works. Each user first chooses two extremely
large prime numbers p and ¢ (say, of about 100 decimal digits each), and
sets n = pq. Knowing the factorization of n, it is easy to compute p(n) =
(p—1)(¢g—1)=n+1-p—gq. Next, the user randomly chooses an integer
e between 1 and (n) which is prime to ¢(n).

Remark. Whenever we say “random” we mean that the number was
chosen with the help of a random-number generator (or “pseudo-random”
number generator), i.e., a computer program that generates a sequence of
digits in a way that no one could duplicate or predict, and which is likely
to have all of the statistical properties of a truly random sequence. A lot
has been written concerning efficient and secure ways to generate random
numbers, but we shall not concern ourselves with this question here. In
the RSA cryptosystem we need a random number generator not only to
choose e, but also to choose the large primes p and ¢ (so that no one
could guess our choices by looking at tables of special types of primes, for
example, Mersenne primes or factors of bk 4+ 1 for small b and relatively
small k). What does a “randomly generated” prime number mean? Well,
first generate a large random integer m. If m is even, replace m by m + 1.
Then apply suitable primality tests to see if the odd number m is prime
(primality tests will be examined systematically in the next chapter). If m
is not prime, try m+2, then m+4, and so on, until you reach the first prime
number > m, which is what you take as your “random” prime. According
to the Prime Number Theorem (for the statement see Exercise 13 of §1.1),
the frequency of primes among the numbers near m is about 1/log(m), so
you can expect to test O(logm) numbers for primality before reaching the
first prime > m.
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Similarly, the “random” number e prime to ¢(n) can be chosen by first
generating a random (odd) integer with an appropriate number of bits, and
then successively incrementing it until one finds an e with g.c.d.(e, p(1)) =
1. (Alternately, one can perform primality tests until one finds a prime
e, say between maz(p,q) and ¢(n); such a prime must necessarily satisfy
g.c.d.(e,o(n)) =1.)

Thus, each user A chooses two primes p4 and ¢4 and a random number
e4 which has no common factor with (pg — 1)(ga — 1). Next, A computes
na =paqa, ¢(na) =na+1—-pa—qa, and also the multiplicative inverse of
ea modulo p(n4): da d-—;fezl mod ¢(na). She makes public the enciphering

key Kg,a = (na, ea) and conceals the deciphering key Kp 4 = (na, da).
The enciphering transformation is the map from Z/nsZ to itself given by
f(P) = P4 mod ns. The deciphering transformation is the map from
Z/naZ to itself given by f~1(C) = C% mod n4. It is not hard to see that
these two maps are inverse to one another, because of our choice of d4.
Namely, performing f followed by f~! or f~! followed by f means raising
to the dsea-th power. But, because dqe4 leaves a remainder of 1 when
divided by ¢(na), this is the same as raising to the 1-st power (see the
corollary of Proposition 1.3.5, which gives this in the case when P has no
common factor with n4; if g.c.d.(P,n4) > 1, see Exercise 6 below).

From the description in the last paragraph, it seems that we are work-
ing with sets P = C of plaintext and ciphertext message units that vary
from one user to another. In practice, we would probably want to choose
P and C uniformly throughout the system. For example, suppose we are
working in an N-letter alphabet. Then let k < £ be suitably chosen positive
integers, such that, for example, N* and N* have approximately 200 dec-
imal digits. We take as our plaintext message units all blocks of k letters,
which we regard as k-digit base-N integers, i.e., we assign them numerical
equivalents between 0 and N* We similarly take ciphertext message units to
be blocks of £ letters in our N-letter alphabet. Then each user must choose
his/her large primes p4 and g4 so that ng = paga satisfies N¥ <ny < Nt
Then any plaintext message unit, i.e., integer less than N corresponds to
an element in Z/n4Z (for any user’s ny); and, since ngq < N* the image
f(P) € Z/n4Z can be uniquely written as an £-letter block. (Not all /-letter
blocks can arise — only those corresponding to integers less than n 4 for
the particular user’s n4.)

Example 1. For the benefit of a reader who doesn’t have a computer
handy (or does not have good multiple precision software), we shall sac-
rifice realism and choose most of our examples so as to involve relatively
small integers. Choose N = 26, k = 3, £ = 4. That is, the plaintext con-
sists of trigraphs and the ciphertext consists of four-graphs in the usual
26-letter alphabet. To send the message “YES” to a user A with enci-
phering key (na,ea) = (46927, 39423), we first find the numerical equiva-
lent of “YES,” namely: 24 - 262 + 4 - 26 + 18 = 16346, and then compute
1634639423 mod 46927, which is 21166 = 1-263 +5-26%+8-26+2 =“BFIC.”
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The recipient A knows the deciphering key (na,da) = (46927, 26767),
and so computes 2116626767 mod 46927 = 16346 =“YES.” How did user
A generate her keys? First, she multiplied the primes ps = 281 and
ga = 167 to get m4; then she chose ey at random (but subject to the
condition that g.c.d.(es,280) = g.c.d.(es,166) = 1). Then she found
da = e;l mod 280 - 166. The numbers pa, g4, da remain secret.

In Example 1, how cumbersome are the computations? The most time-
consuming step is modular exponentiation, e.g., 1634639423 mod 46927. But
this can be done by the repeated squaring method (see §1.3) in O(k%) bit
operations, where k is the number of bits in our integers. Actually, if we were
working with much larger integers, potentially the most time-consuming
step would be for each user A to find two very large primes pa and g4. In
order to quickly choose suitable very large primes, one must use an efficient
primality test. Such tests will be described in the next chapter.

Remarks. 1. In choosing p and g, user A should take care to see
that certain conditions hold. The most important are: that the two primes
not be too close together (for example, one should be a few decimal digits
longer than the other); and that p—1 and ¢ — 1 have a fairly small g.c.d.
and both have at least one large prime factor. Some of the reasons for
these conditions are indicated in the exercises below. Of course, if someone
discovers a factorization method that works quickly under certain other
conditions on p and g, then future users of RSA would have to take care to
avoid those conditions as well.

2. In §1.3 we saw that, when n is a product of two primes p and g,
knowledge of ¢(n) is equivalent to knowledge of the factorization. Let’s
suppose now that we manage to break an RSA system by determining a
positive integer d such that a®® = a mod n for all a prime to n. This
is equivalent to ed — 1 being a multiple of the least common multiple of
p — 1 and ¢ — 1. Knowing this integer m = ed — 1 is weaker than actually
knowing ¢(n). But we now give a procedure that with a high probability
is nevertheless able to use the integer m to factor n.

So suppose we know n — which is a product of two unknown primes
— and also an integer m such that a™ = 1 mod n for all a prime to
n. Notice that any such m must be even (as we see by taking a = -1).
We first check whether m/2 has the same property, in which case we can
replace m by m/2. If a™/? is not = 1 mod n for all a prime to n, then we
must have a™2 # 1 mod n for at least 50% of the a’s in (Z/nZ)* (this
statement is proved in exactly the same way as part (a) of Exercise 21 in
§11.2). Thus, if we test several dozen randomly chosen a’s and find that
in all cases a™/2 = 1 mod n, then with very high probability we have this
congruence for all a prime to n, and so may replace m by m/2. We keep
on doing this until we no longer have the congruence when we take half of
the exponent. There are now two possibilities:

(i) m/2 is a multiple of one of the two numbers p— 1, g — 1 (say, p — 1)

but not both. In this case a™/? is always = 1 mod p but exactly 50%
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of the time is congruent to —1 rather than +1 modulo g.

(ii) m/2 is not a multiple of either p — 1 or ¢ — 1. In this case a™?is=1
modulo both p and ¢ (and hence modulo n) exactly 25% of the time,
it is = —1 modulo both p and ¢ exactly 25% of the time, and for the
remaining 50% of the values of a it is = 1 modulo one of the primes
and = —1 modulo the other prime.

Thus, by trying a’s at random with high probability we will soon find
an a for which a™/2 —1 is divisible by one of the two primes (say, p) but not
the other. (Each randomly selected a has a 50% chance of satisfying this
statement.) Once we find such an a we can immediately factor n, because
g.cd.(n, a™?—-1) =p.

The above procedure is an example of a probabilistic algorithm. We
shall encounter other probabilistic algorithms in the next chapter.

3. How do we send a signature in RSA? When discussing authentica-
tion in the last section, we assumed for simplicity that P = C. We have
a slightly more complicated set-up in RSA. Here is one way to avoid the
problem of different n4’s and different block sizes (k, the number of letters
in a plaintext message unit, being less than £, the number of letters in a ci-
phertext message unit). Suppose that, as in the last section, Alice is sending
her signature (some plaintext P) to Bob. She knows Bob’s enciphering key
Kg g = (np,ep) and her own deciphering key Kp 4 = (na,da). What she
does is send foZI(P) ifng < np, or else f;lfB(P) ifng > np. That is, in
the former case she takes the least positive residue of P%4 modulo n4; then,
regarding that number modulo n g, she computes (P mod na)®® mod np,
which she sends as a ciphertext message unit. In the case n4 > npg, she
first computes P2 mod np and then, working modulo n 4, she raises this
to the d4-th power. Clearly, Bob can verify the authenticity of the message
in the first case by raising to the dp-th power modulo np and then to the
ea-th power modulo n4; in the second case he does these two operations
in the reverse order.

Ezercises

1. Suppose that the following 40-letter alphabet is used for all plaintexts
and ciphertexts: A—Z with numerical equivalents 0—25, blank=26,
=27, 7=28, $=29, the numerals 0—9 with numerical equivalents 30—
39. Suppose that plaintext message units are digraphs and ciphertext
message units are trigraphs (i.e., k = 2, £ = 3, 40> < n4 < 40° for all
n A)-

(a) Send the message “SEND $7500” to a user whose enciphering key
is (na,ea) = (2047, 179).

(b) Break the code by factoring n4 and then computing the deciphering
key (na,da).

(c) Explain why, even without factoring na, a codebreaker could find
the deciphering key rather quickly. In other words, why (in addition to
its small size) is 2047 a particularly bad choice for n4?
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Try to break the code whose enciphering key is (na,ea) = (536813567,
3602561). Use a computer to factor nq by the stupidest known algo-
rithm, i.e., dividing by all odd numbers 3, 5, 7,.... If you don’t have a
computer available, try to guess a prime factor of n4 by trying special
classes of prime numbers. After factoring na, find the deciphering key.
Then decipher the message BNBPPKZAVQZLBJ, under the assump-
tion that the plaintext consists of 6-letter blocks in the usual 26-letter
alphabet (converted to an integer between 0 and 26 — 1 in the usual
way) and the ciphertext consists of 7-letter blocks in the same alpha-
bet. It should be clear from this exercise that even a 29-bit choice of
n4 is far too small.

Suppose that both plaintexts and ciphertexts consist of trigraph mes-
sage units, but while plaintexts are written in the 27-letter alphabet
(consisting of A—Z and blank=26), ciphertexts are written in the 28-
letter alphabet obtained by adding the symbol ¥/” (with numerical
equivalent 27) to the 27-letter alphabet. We require that each user A
choose 4 between 273 = 19683 and 283 = 21952, so that a plaintext
trigraph in the 27-letter alphabet corresponds to a residue P modulo
na, and then C = P4 mod na corresponds to a ciphertext trigraph
in the 28-letter alphabet.

(a) If your deciphering key is Kp = (n,d) = (21583,20787), decipher
the message “YSNAUOZHXXH ” (one blank at the end).

(b) If in part (a)you know that ¢(n) = 21280, find (i)e = d~'mod p(n),
and (i) the factorization of n.

Show why the 35-bit integer 23360947609 is a particularly bad choice
for n = pq, because the two prime factors are too close to one another;
that is, show that n can easily be factored by “Fermat factorization” as
follows. Note that if n = pq (say p > q), thenn = (BE9)? — (B54)% Ifp
and ¢ are close together, then s = (p—g¢)/2 is small andt = (p+q)/2is
an integer only slightly larger than /n having the property that t?—n
is a perfect square. If you test the successive integers t > /n, you'll
soon find one such that n = t2 — s2 at which point you have p = t+s,
g =t —s. (See Exercise 3 of §1.2 and also §3 of Chapter V.)

Suppose that you have a quick algorithm (a probabilistic algorithm) for
solving the equation z* = a mod p for any prime p and any quadratic
residue a. For example, by trying random integers and computing the
Legendre symbol, with high probability we can find a nonresidue; then
we can apply the algorithm described in § I1.2. Suppose, however, that
there is no good algorithm for solving z2 = a mod n for a a square
modulo n and n = pq a product of two large primes, unless one knows
the factorization of n (in which case one can find a square root modulo
p and modulo g and then use the Chinese Remainder Theorem to
find a square root modulo n). Suppose that p and g are not both
=1 mod 4. Let Kg =n, and let Kp = {p, q} be its factorization. Let
P = C = (Z/nZ)*/ £ 1, which is the set of pairs (z, —z) of residues
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modulo n prime to n, where negatives are grouped with one another.
Let f:P — C be the map z — z% mod n. Show that this set-up is
an example of Exercise 4 in the last section. This gives us a way to
implement long-distance coin flips.

6. Let n be any squarefree integer (i.e., product of distinct primes). Let d
and e be positive integers such that de—1 is divisible by p—1 for every
prime divisor p of n. (For example, this is the case if de = 1 mod @(n).)
Prove that a% = a mod n for any integer a (whether or not it has a
common factor with n).

7. Prove the statements in Remark 2 about the percent of the time the
different congruences for a™/? occur in cases (i) and (ii).

References for §IV.2
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3. J. A. Gordon, “Strong primes are easy to find,” Advances in Cryptol-
ogy, Proceedings of Eurocrypt 84, Springer, 1985, 216-223.

3 Discrete log

The RSA system discussed in the last section is based on the fact that
finding two large primes and multiplying them together to get n is far easier
than going in the other direction (given n, finding the two primes). There
are other fundamental processes in number theory which apparently also
have this “trapdoor” or “one-way” property. One of the most important is
raising to a power in a large finite field.

When working with the real numbers, exponentiation (finding b* to a
prescribed accuracy) is not significantly easier than the inverse operation
(finding logy to a prescribed accuracy). But now suppose we have a finite
group, such as (Z/nZ)* or F; (with the group operation of multiplication).
Because of the repeated-squaring method (see §1.3), one can compute b”
for large z rather rapidly (in time which is polynomial in logz). But, if
we're given an element y which we know to be of the form b (we suppose
that the “base” b is fixed), how can we find the power of b that gives y, i.e.,
how can we compute z = logyy (Where here “log” has a different but analo-
gous meaning than before)? This question is called the “discrete logarithm
problem.” The word “discrete” distinguishes the finite group situation from
the classical (continuous) situation.
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Definition. If G is a finite group, b is an element of G, and y is an
element of G which is a power of b, then the discrete logarithm of y to the
base b is any integer z such that b° =y.

Example 1. If we take G = F}q = (Z/19Z)" and let b be the generator
2 (see Example 1 of §II.1), then the discrete logarithm of 7 to the base 2
is 6.

Example 2. In F§ with a a root of X 2_ X —1 (see Example 2 of § I1.1),
the discrete logarithm of —1 to the base a is 4.

At the end of this section we shall briefly discuss the present state
of algorithms to solve the discrete logarithm problem in finite fields. First
we describe several public key cryptosystems or special purpose public key
arrangements that are based on the computational difficulty of solving the
discrete logarithm problem in finite fields.

The Diffie-Hellman key exchange system. Because public key cryp-
tosystems are relatively slow compared to classical cryptosystems (at least
at our present stage of technology and theoretical knowledge), it is often
more realistic to use them in a limited role in conjunction with a classical
cryptosystem in which the actual messages are transmitted. In particular,
the process of agreeing on a key for a classical cryptosystem can be ac-
complished fairly efficiently using a public key system. The first detailed
proposal for doing this, due to W. Diffie and M. E. Hellman, was based on
the discrete logarithm problem.

We suppose that the key for the classical cryptosystem is a large ran-
domly chosen positive integer (or a collection of such integers). For example,
suppose we want to use an affine matrix transformation of pairs of digraphs

(see §II1.2)
C= (Ccl 2>P+ (;) mod N2,

where 0 < a, b, ¢, d, e, f < N? and P is a column vector consisting of the
numerical equivalents of two successive plaintext digraphs (i.e., altogether
a four-letter block) in an N-letter alphabet. Once we have a randomly
selected integer k between 0 and N'2 we can take a, b, ¢, d, ¢, f to be
the six digits in k written to the base N2 (We must check that ad — bc is
invertible modulo N2 i.e., that it has no common factor with N; otherwise
we choose another random integer k.)

We observe that choosing a random integer in some interval is equiv-
alent to choosing a random element of a large finite field of roughly the
same size. Let us suppose, for example, that we want to choose a random
positive k < N'2 If our finite field is a prime field of p elements, we sim-
ply let an element of F, correspond to an integer from 0 to p — 1 in the
usual way; if the resulting integer is larger than N2 we reduce it modulo
N12
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If our finite field is F,s, we first choose an F-basis of this field, so
that every element corresponds to an f-tuple of elements of F,; then such
an f-tuple gives an integer less than pf if we consider the coordinates as
digits of an integer written to the base p. Warning: This gives a 1-to-1
correspondence between F,; and Z/pZ={0,1,2,...,pf —1}. But these
two sets have a very different structure under addition and multiplication.
The first is a field, i.e., all of the pf — 1 nonzero elements have inverses,
while the second is a ring in which pf~! of the p/ elements (the multiples
of p) fail to have inverses.

We now describe the Diffie-Hellman method for generating a random
element of a large finite field F,. We suppose that g is public knowledge:
everyone knows what finite field our key will be in. We also suppose that g
is some fixed element of Fy, which is also not kept secret. Ideally, g should
be a generator of F; however, this is not absolutely necessary. The method
described below for generating a key will lead only to elements of F;, which
are powers of g; thus, if we really want our random element of Fj to have
a chance of being any element, g must be a generator.

Suppose that two users A (Aida) and B (Bernardo) want to agree
upon a key — a random element of F; — which they will use to encrypt
their subsequent messages to one another. Aida chooses a random integer
a between 1 and ¢ — 1, which she keeps secret, and computes g° € F,,
which she makes public. Bernardo does the same: he chooses a random b
and makes public g% The secret key they use is then g°®. Both users can
compute this key. For example, Aida knows g® (which is public knowledge)
and her own secret a. However, a third party knows only ¢* and gt If
the following assumption holds for the multiplicative group Fg, then an
unauthorized third party will be unable to determine the key.

Diffie-Hellman assumption. It is computationally infeasible to compute
g°® knowing only g° and g°.

The Diffie-Hellman assumption is a priors at least as strong as the
assumption that discrete logarithms cannot be feasibly computed in the
group. That is, if discrete logarithms can be computed, then obviously the
Diffie-Hellman assumption fails. Some people would conjecture that the
converse implication also holds, but that is still an open question. In other
words, no one can imagine a way of passing from ¢g* and g® to g® without
first being able to determine a or b; but it is conceivable that such a way
might exist.

Example 3. Suppose we're using a shift encryption of single—letter
message units in the 26-letter alphabet (see Example 1 of §IIL.1): C =
P + B mod 26. (We're using B rather than b to denote the shift key so as
not to confuse it with the b in the last paragraph.) To choose B, take the
least nonnegative residue modulo 26 of a random element in F53. Let g = 2
(which is a generator of Fs3). Suppose Aida picked at random a = 29, and
looked up Bernardo’s public 2°, which is, say, 12 € Fs3. She then knows
that the enciphering key is 122° = 21 € Fsg3, i.e., B = 21. Meanwhile, she
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has made public 22° = 45, and so Bernardo can also find the key B = 21 by
raising 45 to the b-th power (his secret exponent is b = 19). Of course, there
is no security in working with such a small field; an outsider could easily
find the discrete logarithm to the base 2 of 12 or 45 modulo 53. And in any
case there is no security in using a shift encryption of single-letter message
units. But this example illustrates the mechanics of the Diffie-Hellman key
exchange system.

The Massey—-Omura cryptosystem for message transmission. We sup-
pose that everyone has agreed upon a finite field F,, which is fixed and
publicly known. Each user of the system secretly selects a random integer e
between 0 and g — 1 such that g.c.d.(e,g — 1) = 1 and, using the Euclidean
algorithm, computes its inverse d = e lmodgqg—1,ie,de=1modq—1.
If user A (Alice) wants to send a message P to Bob, first she sends him
the element P°4. This means nothing to Bob, who, not knowing da (or
ea, for that matter), cannot recover P. But, without attempting to make
sense of it, he raises it to his ep, and sends P*4¢® back to Alice. The third
step is for Alice to unravel the message part of the way by raising to the
d4-th power; because P44¢4 = P (by Proposition II.1.1), this means that
she returns P¢® to Bob, who can read the message by raising this to the
dp-th power.

The idea behind this system is rather simple, and it can be generalized
to settings where one is using other processes besides exponentiation in
finite fields. However, some words of caution are in order. First of all, notice
that it is absolutely necessary to use a good signature scheme along with the
Massey—-Omura system. Otherwise, any person C who is not supposed to
know the message P could pretend to be Bob, returning to Alice P¢4°C; not
knowing that an intruder was using his own ec, she would proceed to raise
to the d4 and make it possible for C to read the message. Thus, the message
Peaes from Bob to Alice must be accompanied by some authentification,
i.e., some message in some signature scheme which only Bob could have
sent.

In the second place, it is important that, after a user such as B or C
has deciphered various messages P, and so knows various pairs (P, Pe4),
he cannot use that information to determine e4. That is, suppose Bob
could solve the discrete log problem in F}, thereby determining from P
and P°4 what e4 must be. In that case he could quickly compute da =
ezl mod ¢ — 1 and then intercept and read all future messages from Alice,
whether intended for him or not.

The ElGamal cryptosystem. We start by fixing a very large finite field
F, and an element g € Fy (preferably, but not necessarily, a generator). We
suppose that we are using plaintext message units with numerical equiv-
alents P in F,. Each user A randomly chooses an integer a = a4, say in
the range 0 < a < ¢ — 1. This integer a is the secret deciphering key. The
public enciphering key is the element g* € F ;.

To send a message P to the user A, we choose an integer k at random,
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and then send A the following pair of elements of F:
(¢*, Pg™*).

Notice that we can compute g** without knowing a, simply by raising g*
to the k-th power. Now A, who knows a, can recover P from this pair by
raising the first element g* to the a-th power and dividing the result into
the second element (or, equivalently, raising g* to the (g — 1 — a)-th power
and multiplying by the second element). In other words, what we send A
consists of a disguised form of the message — P is “wearing a mask” g°*
— along with a “clue,” namely g*, which can be used to take off the mask
(but the clue can be used only by someone who knows a).

Someone who can solve the discrete log problem in F, breaks the cryp-
tosystem by finding the secret deciphering key a from the public enciphering
key g In theory, there could be a way to use knowledge of g* and g° to
find g®* — and hence break the cipher — without solving the discrete log
problem. However, as we mentioned in our discussion of the Diffie-Hellman
key exchange system, it is conjectured that there is no way to go from I
and g* to g°F without essentially solving the discrete logarithm problem.

The Digital Signature Standard. In 1991 the U.S. government’s Na-
tional Institute of Standards and Technology (NIST) proposed a Digital
Signature Standard (DSS). The role of DSS is expected to be analogous
to that of the much older Data Encryption Standard (DES), i.e., it is sup-
posed to provide a standard digital signature method for use by government
and commercial organizations. But while DES is a classical (“private key”)
cryptosystem, in order to construct digital signatures it is necessary to use
public key cryptography. NIST chose to base their signature scheme on the
discrete log problem in a prime finite field. The DSS is very similar to a sig-
nature scheme that was originally proposed by Schnorr (see the references
below). It is also similar to a signature scheme of ElGamal (see Exercise 9
below). We now describe how the DSS works.

To set up the scheme (in order later to be able to sign messages), each
user Alice proceeds as follows: (1) she chooses a prime ¢ of about 160 bits
(to do this, she uses a random number generator and a primality test);
(2) she then chooses a second prime p that is =1 (mod q) and has about
512 bits; (3) she chooses a generator of the unique cyclic subgroup of Fy

of order ¢ (by computing 9 ~1/% (mod p) for a random integer go; if this
number is # 1, it will be a generator); (4) she takes a random integer T
in the range 0 < < ¢ as her secret key, and sets her public key equal to
y = g* (mod p).

Now suppose that Alice wants to sign a message. She first applies a
hash function to her plaintext (see §1), obtaining an integer h in the range
0 < h < g. She next picks a random integer k in the same range, computes
g* (mod p), and sets r equal to the least nonnegative residue modulo g of
the latter number (i.e., g* is first computed modulo p, and the result is then



102 IV. Public Key

reduced modulo the smaller prime q). Finally, Alice finds an integer s such
that sk = h + zr (mod q). Her signature is then the pair (r,s) of integers
modulo q.

To verify the signature, the recipient Bob computes u; = s~'h (mod q)
and us = s~'r (mod ¢). He then computes g*1y** (mod p). If the result
agrees modulo ¢ with r, he is satisfied. (Note that g“1y“? = g’—‘(h"'z’) =
g* (mod p).)

This signature scheme has the advantage that signatures are fairly
short, consisting of two 160-bit numbers (the magnitude of g). On the other
hand, the security of the system seems to depend upon intractability of the
discrete log problem in the multiplicative group of the rather large field Fy.
Although to break the system it would suffice to find discrete logs in the
smaller subgroup generated by g, in practice this seems to be no easier than
finding arbitrary discrete logarithms in F}. Thus, the DSS seems to have
attained a fairly high level of security without sacrificing small signature
storage and implementation time.

Algorithms for finding discrete logs in finite fields. We first suppose
that all of the prime factors of ¢—1 are small. In this case we sometimes say
that ¢ — 1 is “smooth.” With this assumption there is a fast algorithm for
finding the discrete log of an element y € F to the base b. For simplicity, we
shall suppose that b is a generator of F;. We now describe this algorithm,
which is due to Silver, Pohlig and Hellman.

First, for each prime p dividing ¢ — 1, we compute the p-th roots of
unity rp ; = Bia-1/P for j =0,1,...,p— 1. (As usual, we use the repeated
squaring method to raise b to a large power.) With our table of {rp ;} we
are ready to compute the discrete log of any y € F;. (Note that, if b is
fixed, this first computation needs only be done once, after which the same
table is used for any y.)

Our object is to find z, 0 < z < ¢—1, such that b* = y. If q—1 = pr“
is the prime factorization of ¢ — 1, then it suffices to find x mod p* for each
p dividing ¢ — 1; from this z is uniquely determined using the algorithm
in the proof of the Chinese Remainder Theorem (Proposition 1.3.3). So we
now fix a prime p dividing ¢ — 1, and show how to determine x mod p®.

Suppose that £ = Zo+Z1p+ - -+ ZTa—1p*"! (mod p*) with 0 < z; < p.
To find zo we compute y(9=1/P. We get a p-th root of 1, since y9~! = 1.
Since y = b?, it follows that y(4=1/P = p#(a=1/P = p=o(a-V/P =, . . Thus,
we compare y(9~1)/P with the {r, ;}o<;j<p and set zo equal to the value of
j for which y(@=1/P = ;.

Next, to find z;, we replace y by y; = y/b®. Then y; has discrete
log z —zg = T1p + - - Ta—1p*" ' (mod p*). Since y; is a p-th power, we
have y§<I—l)/P =1 and ,ygq—l)/P2 — b(ar—:z:o)(q-—l)/p2 — b(21+1‘2P+~~')(q—-1)/p -

b*1(@a-1)/P =y, . . So we can compare y§"‘”/”’ with {r, ;} and set z; equal
2
to the value of j for which y{7" /" =r_ .

It should now be clear how we can proceed inductively to find all zo, z,
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..., Ta—1. Namely, for each i = 1,2,...,0 — 1 set

X i-1
Y = y/bﬂ-‘o+11p+ +Ti-1p ,

which has discrete log congruent mod p* to z;p*+: - +Zo_1p*L. Sincey; is

a p-th power, we have yl(q—l)/p‘ —1and %(«1—1)/11'+1 — pl@tziript)a=1)/p
(g=1)/p**?

= p%(a-D/P = 1, ... So we set z; equal to the value of j for which y;
=Tp,j-

When we are done we will have z mod p®. After doing this for each
p|g — 1, we finally use the Chinese Remainder Theorem to find z.

This algorithm works well when all of the primes dividing ¢ — 1 are
small. But clearly the computation of the table of {r} ;} and the comparison

of the ygq_ D/2 Gith this table will take a long time if ¢ — 1 is divisible by
a large prime. (By “large” we mean of at least about 20 digits. Ifplg —1is
smaller than about 1020, then one can combine the Silver—Pohlig-Hellman
algorithm with Shanks’ “giant step — baby step” method; see pp. 9, 575—
576 of Knuth, Vol. 2.)

Example 4. Find the discrete log of 28 to the base 2 in F3; using the
Silver-Pohlig-Hellman algorithm. (2 is a generator of F3;.)

Solution. Here 37 — 1 = 22 - 32. We compute 2'8 = 1 (mod 37), and
$0 T90 = 1, 721 = —1. (For p = 2, always {rz;} = {£1}.) Next, 236/3 =
26, 2236/3 = 10 (mod 37), and so {rs;} = {1, 26, 10}. Now let 28 =
2% (mod 37). We first take p = 2 and find = mod 4, which we write as
o + 2z1. We compute 28%%/2 = 1 (mod 37), and hence zo = 0. We then
compute 28%/4 = —1 (mod 37), and hence z; = 1, ie., 2 = 2 (mod 4).
Next we take p = 3 and find = mod 9, which we write as zo + 3Z1. (Of
course, for each p the z; are defined differently.) To find zo, we compute
2836/3 = 26 (mod 37), and so zo = 1. We then compute (28/2)%/° = 14% =
10 (mod 37); thus, z, = 2, and soz = 1+2-3 =7 (mod 9). It remains
to find the unique = mod 36 such that z = 2 (mod 4) and ¢ = 7 (mod 9).
This is = 34. Thus, 28 = 2% in F3;.

The index—calculus algorithm for discrete logs. The reader may want
to skip this subsection for now, or read it lightly, and come back to it for a
closer examination while reading §V.3, since the index—calculus algorithm
for computing discrete logs in finite fields has much in common with the
factor—base method for factoring large integers.

Here we shall suppose that ¢ = p" is a fairly large power of a small
prime p, and b is a generator of F. The index—calculus algorithm finds for
any y € Fj the value of £ mod g — 1 such that y = b°.

Let f(X) € Fp[X] be any irreducible polynomial of degree n; then
F, is isomorphic to the residue ring F,[X]/f(X). Any element a € Fq =
F,[X]/f(X) can be written (uniquely) as a polynomial a(X) € Fp[X] of
degree at most n— 1. In particular, our base b = b(X) is such a polynomial.
The “constants” are the elements of F, C Fyq.
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We first note that b’ = b(a=1)/(P=1) is 3 generator of F} (see Exercise 17
of §I1.1). Thus, we immediately know the discrete logs to the base b of these
constants once we solve the discrete log problem in F} (to the base b'). But
we have assumed that p is small, and so a table of such discrete logs can
easily be constructed. In the important special case p = 2, in fact, the only
nonzero constant is 1, whose discrete log to any base is 0. In what follows
we shall suppose that we can easily find the discrete log of a constant.

For the rest of this section we shall let ind(a(X)) (from the word
“index”) denote the discrete log of a(X) € F} to the base b(X). The base
b(X) is fixed throughout the discussion, and so will not be indicated in the
notation.

There are two basic stages of the index—calculus algorithm. The first
stage is called a “precomputation,” because it does not depend on the ele-
ment y(X) € F; whose discrete log we ultimately want to determine. It has
only to be carried out once, and can then be used for many computations of
various discrete logs to the fixed base b(X). (Recall that there was also an
analogous precomputation stage in the Silver-Pohlig-Hellman algorithm,
namely, the compilation of the table of {rp ;}.)

We first choose a subset B C F, which will serve as our “basis.”
Usually B consists of all monic irreducible polynomials over F, of degree
< m, where m < n is determined in some optimal way so that the set B has
a suitable size h = #(B) of intermediate magnitude between p = #(F;)
and g = p" = #(F,). The precomputation stage consists in determining
the discrete logs of all a(X) € B, as follows.

Choose a random integer ¢ between 1 and g — 2, and compute b* € F,
i.e., compute the polynomial ¢(X) € Fp[X] of degree < n such that

e(X) =b(X)t mod f(X).

(Here one uses the repeated squaring method, at each step reducing mod-
ulo f(X).) Factor out the leading coefficient ¢y from ¢(z), and determine
whether or not the resulting monic polynomial can be written as a product
of the a(X) € B, i.e., whether or not ¢(X) can be written in the form

aX)=r¢co H a(X)%ee.
a€B

One way to determine this is to run through all a(X) € B and divide ¢(X)
successively by a(X)®e (where a.q is the highest power of a(X) which
divides ¢(X) in Fp[X]). If the constant co is all that remains after dividing
by powers of all of the a(X) € B, then ¢(X) has the above form; otherwise,
start over again at the beginning of this paragraph with a different random
integer t. (A second way — in some cases quicker — to determine whether
¢(X) factors into a product of a(X) € B is simply to factor c¢(X) using
an algorithm for factoring elements of F,[X]. For a description of a good
algorithm for this purpose (due to Berlekamp), see Volume II of Knuth,
§4.6.2.)
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Now suppose that we have found a ¢(X) = b(X)? mod f(X) which
has the desired type of factorization. Taking the discrete log of both sides
of the above equality, we obtain

ind(c(X)) — ind(co) = Z ac aind(a(X)),
aEB

where equality here should be interpreted as congruence modulo g—1 (since
the discrete log is defined only modulo g — 1). The left side of this equality
is known, since ind(c(X)) = t and the discrete logs of constants are as-
sumed to be known. The coefficients c. 4 on the right are also known. The
unknowns are the h values ind(a(X)), a(X) € B, on the right.

Thus, we have obtained a linear equation in Z/(q — 1)Z with h un-
knowns. Now suppose we continue to choose random integers ¢ until we
obtain a large number of different c¢(X)’s which factor into a product of
a(X)’s. As soon as we obtain h independent congruences of the type

t —ind(co) = Z acqind(a(X)) mod g —1
a€B

(here “independent” means that the determinant of the coefficient matrix
{ac,.q} is prime to g — 1), then we can solve the system for the unknowns
modulo g — 1. (See §IIL.2 for a discussion of linear algebra modulo N =
g — 1.) This completes the first stage of the index—calculus algorithm. The
precomputation has given us a large “data-base,” namely the discrete logs
of all a(X) € B, from which to compute any discrete log we are interested
in.

Before proceeding to a description of the second stage of the index-
calculus algorithm, we should comment on the choice of m, which was not
specified when we described B C F,[X] as the set of all monic irreducible
polynomials of degree < m. The size h of the set B grows rapidly as m in-
creases. For example, if m is prime, then we saw (Corollary to Proposition
I1.1.8) that in degree m alone there are (p™ — p)/m monic irreducible poly-
nomials. Since we are required to find at least h different ¢(X)’s which give
us the h x h system of independent linear congruences in the h unknowns
ind(a(X)), and then we have to solve the system, it would be helpful if h
were not too large, i.e., if m were not too large. On the other hand, if m is
small, then a “typical” monic polynomial cy 1¢(X) of degree < n—1 is not
likely to factor into a product of a(X) of degree < m; it is more likely to
have at least one irreducible factor of degree > m. That is, if m is small,
it will take us an inordinate amount of time to make even a single lucky
random choice of ¢ for which ¢(X) = b(X)t mod f(X) has the desired type
of factorization. Thus, m must be not too small, though quite a bit smaller
than n. The optimal choice of m — depending, of course, on p and n —
requires a lengthy analysis of probabilities and time estimates, which go
beyond the scope of this book. For example, when p = 2 and n = 127, the
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best choice turns out to be m = 17 (in which case h = 16510). The value
q = 2?7 is a popular choice, because #(Fji2r) = 2127 _ 1 is a Mersenne
prime.

We now return to the index—calculus algorithm, and describe the fi-
nal stage. Here we suppose that y(X) € Fy is the element whose dis-
crete log we wish to compute, and that stage one has already given us
the values of ind(a(X)) for all a(X) € B. We again choose a random ¢
between 1 and ¢ — 2, and compute y; = yb, i.e., the unique polynomial
y1(X) € Fp[X] of degree < n satisfying y1(X) = y(X)b(X)t mod f(X).
As in the first stage of the algorithm, we test whether y1(X) factors
into a constant yo times a product of powers of a(X), a(X) € B. If
not, we choose another random ¢, and so on, until we finally have an
integer ¢ such that y;(X) = yo[[,cpa(X)*. As soon as this happens,
we are done, because ind(y) = ind(y1) — t, by the definition of yi; and
ind(y1) = ind(yo) + 3 aaind(a(X)), in which we know all of the terms on
the right. This completes the description of the index—calculus algorithm.

It should be mentioned that in the popular case p = 2, an improved
method due to D. Coppersmith has significantly speeded up the process of
finding discrete logs. For this reason, a discrete log cryptosystem using F3.
is no longer regarded as secure unless 7 is of the order of 1000. Despite this,
these fields Fon remain popular because they lend themselves to efficient
programming. For a good survey (covering what was known as of 1985),
the reader is referred to A. Odlyzko’s article (see References below).

If ¢ = p" is an odd prime power which is k bits long, it turns out
that, roughly speaking, the order of magnitude of time needed to solve
the discrete log problem in Fy is comparable to what is needed to factor
a k-bit integer. That is, from an empirical point of view, the discrete log
problem seems to be about as difficult as factoring (though no one has been
able to prove a theorem to this effect). In fact, when we discuss factoring
algorithms and time estimates for them in the next chapter, we will see that
one of the fundamental methods of factoring large integers bears a striking
resemblance to the index—calculus algorithm for finding discrete logs.

Thus, at this point it is too early to say whether the public key cryp-
tosystems of the RSA type (based on the difficulty of factoring integers) or
the discrete log cryptosystems will eventually prove to be the more secure.

/
{

1
FEzercises

Note: Exercises 4, 6, 7(c) and 8 should be attempted only if you have the

use of a computer with multiple precision arithmetic programs. (All that is

really needed is a program for computing a® mod m for very large integers

a, b and m; recall that a~! mod p can be computed by taking aP~2)

1. If one has occasion to do a lot of arithmetic in a fixed finite field F,
which is not too large, it can save time first to compose a complete
“table of logarithms.” In other words, choose a generator g of Fq and
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make a 2-column list of all pairs n, g™ as n goes from 1 to ¢ — 1; then
make third and fourth columns listing all pairs a, logga. That is, list
the elements a of F, in some convenient order in the third column,
and then run down the first two columns, putting each n in the fourth
column next to the a which is g™ For example, to do this for F'g (see
Example 2 in §11.1), we choose g = a to be a root of X2 -~ X — 1, and
make the following table:

n g" a logga
1 a 1 8
2 a+l -1 4
3 —a+l1 a 1
4 -1 a+1 2
5 - a-1 7
6 —-a-1 —a 5
7T a-1 —a+1 3
8 1 -a-1 6

Then multiplication or division involves nothing more than addition
or subtraction modulo q — 1 and looking at the table. For example, to
multiply o —1 by —a—1, we find the two numbers in the third column,
add the two corresponding logarithms: 7+ 6 = 5 mod 8, and then find
the answer —¢ in the second column next to 5.

(a) Make a log table for F3;, and use it to compute 16 - 17, 19 - 13,
1/17, 20/23.

(b) Make a log table for F§, and use it to compute the following (where
a is a root of X3 4+ X + 1; your answers should not involve any higher
power of a than a?): (a+1)(@®+a), (@? +a+1)(a?+1), 1/(a®+1),
af(a? +a+1).

At first glance, it may seem that we could use the cyclic group
(Z/p*Z)* (see Exercise 2(a) in §IL1) instead of F; as a setting for
the discrete logarithm problem. However, the discrete log problem for
(Z/p*2Z) for o > 1 turns out to be essentially no more time-consuming
(even if « is fairly large) than for o = 1 (i.e., Fp). More precisely,
using the same technique that is given below in this exercise, one can
prove that, once one solves the discrete log problem modulo p, going
the rest of the way (i.e., solving it modulo p*) takes polynomial time in
log(p®) = alog p. (Recall that no algorithm is known which solves the
discrete log problem modulo p for large p in polynomial time in log p;
and experts doubt that such an algorithm exists.) In this exercise, we
show that in the case p = 3 there’s a straightforward algorithm which
solves the discrete log problem modulo 3% in time which is polynomial
in a.

Thus, suppose we take g = 2 (it is easy to show that 2 is a generator of
(Z/3*Z)* for any o), we have some integer a not divisible by 3, and we
want to solve the congruence 2° = a mod 3% Prove that the following
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algorithm always finds = and takes polynomial time in o, and estimate
(using the O-notation) the number of bit operations required to find
z:

(i) Show that the discrete log problem is equivalent to the congruence
with @ moved to the left (i.e., 2%a = 1). Next, show that without loss of
generality we may assume that a = 1 mod 3 and z is even. Thus, we can
replace our original congruence with the congruence 4%a = 1 mod 3%
(ii) Write z = o +3z1+-- .+3%~2z,_,, where the z; are base-3 digits.
Take z_; = 0. Then the congruence

4mo+3zx+...+3j—2z‘j-ga =1 mod 3j (*)j

holds for j = 1. Set g1 = 4. In the course of the algorithm as
a by-product we will compute g; = 437" mod 3%. Set a1 = a,
and for j > 1 define a; to be the least positive residue mod 3% of
4eo+3z1++3 7?3524 we will compute a; below as we go along.

(iii) Suppose that j > 1 and we have found Zo, ..., Z;j-3 such that the
congruence ()j—1 holds (i.e., (¥) with j —1in place of j). Further
suppose that we have computed g;—1 = 437" mod 3* and also aj-1.
First set z;_2 equal to (1 — aj—1)/3'~! modulo 3. (Notice that a;_, =
1 mod 37~1 because of (x);—1.) Next, compute a; = g;p’_'lzaj_l mod 3%
Finally, if j < a, compute g; by raising g;1 to the 3-rd power, working
modulo 3%

(iv) When you reach j = a, you're done.

You and your friend agree to communicate using affine enciphering
transformations C = AP + B mod N (see Examples 3 and 4 in §1IL1,
where lowercase letters a and b were used for the coefficients of the
transformation). Your message units are single letters in the 31-letter
alphabet with A—Z corresponding to 0—25, blank=26, .=27, 7=28,
1=29, '=30. You regard the key Kg = (4, B) as an element A + Bi
in the field of 312 elements (where i denotes a square root of —1in
that field). You also agree to exchange keys using the Diffie-Hellman
system, and to choose g = 4 + 4. Then you randomly choose a secret
integer a = 209. Your friend sends you her g*=1+19.

(a) Find the enciphering key. f
(b) What element of Fge1 must you send your friend in order that she
can also find the key?

(c) Find the deciphering transformation.

(d) Read the message “BUVCFIWOUJTZ!H.”

You receive the ciphertext “VHNEDOAM,” which was sent to you
using a 2 X 2 enciphering matrix

(2 )
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applied to digraphs in the usual 26-letter alphabet. The enciphering
matrix was determined using the Diffie-Hellman key exchange method,
as follows. Working in the prime field of 3602561 elements, your corre-
spondent sent you g® = 983776. Your randomly chosen Diffie-Hellman
exponent ¢ is 1082389. Finally, you agree to get a matrix from a key
number K g € Faggas61 by writing the least nonnegative residue of Kg
modulo 264 in the form a-26% +b-262 +c- 26 +d (where a, b, ¢, d are
digits in the base 26). If the resulting matrix is not invertible modulo
26, replace Kg by Kg + 1 and try again. Take as the enciphering ma-
trix the first invertible matrix that arises from the successive integers
starting with Kg.

(a) Use this information to find the enciphering matrix.

(b) Find the deciphering matrix, and read the message.

Suppose that each user A has a secret pair of transformations f4 and
f;l from P to P, where P is a fixed set of plaintext message units.
They want to transmit information securely using the Massey-Omura
technique, i.e., Alice sends fa(P) to Bob, who then sends fp(fa(P))
back to her, and so on. Give the conditions that the system of fa’s
must satisfy in order for this to work.

Let p be the Fermat prime 65537, and let g = 5. You receive the mes-
sage (29095, 23846), which your friend composed using the ElGamal
cryptosystem in Fj, using your public key g% Your secret key, needed
for deciphering, is a = 13908. You have agreed to convert integers in
F, to trigraphs in the 31-letter alphabet of Exercise 3 by writing them
to the base 31, the digits in the 312—, the 31— and 1— place being the
numerical equivalents of the three letters in the trigraph. Decipher the
message.

(a) Show that choosing ¥, with p = 22" 4+ 1 a Fermat prime is an
astoundingly bad idea, by constructing a polynomial time algorithm
for solving the discrete log problem in F} (i.e., an algorithm which is
polynomial in logp). To do this, suppose that g is a generator (e.g., 5
or 7, as shown in Exercise 15 of §I1.2) and for a given a you want to
find z, where 0 <z <p—-1= 22k, such that g° = a mod p. Write z in
binary, and pattern your algorithm after the algorithm for extracting
square roots modulo p that was described at the end of §II.2.

(b) Find a big-O estimate (in terms of p) for the number of bit opera-
tions required to find the integer z by means of the algorithm in part
(a).

(c) Use the algorithm in part (a) to find the value of k in Exercise 6.
Suppose that your plaintext message units are 18-letter blocks written
in the usual 26-letter alphabet, where the numerical equivalent of such
a block is an 18-digit base-26 integer (written in order of decreasing
powers of 26). You receive the message

(82746592004375034872957717, 164063768437915425954819351),



110 IV. Public Key

10.

11.

12.

which was enciphered using the ElGamal cryptosystem in the prime
field of 297262705009139006771611927 elements, using your public key
g% Your secret key is a = 10384756843984756438549809. Decipher the
message.

Here is a scheme (also due to ElGamal) for sending a signature using
a large prime finite field Fp. Explain why Alice can do all the steps
required to send her signature (in time polynomial in log p), why Bob
can verify that Alice must have sent the signature, and why the system
would fail if an imposter could solve the discrete logarithm problem in
F:.

V&?e suppose that a fixed p and a fixed g € F are publicly known. Each
user A also chooses a random integer a4, 0 < ag < p—1, which is kept
secret, and publishes y4 = g%4.

To send her signature — which is composed of message units with
numerical equivalents S in the range 0 < § < p—1— Alice first chooses
a random integer k prime to p—1. She computes r = g* mod p, and then
solves the following congruence for the unknown z: g° = y"r® mod p.
She sends Bob the pair (r, z) along with her signature S. Bob verifies
that g5 is in fact = y"r® mod p, and he is happy, secure in his confidence
that Alice did send the message S.

Using the Silver-Pohlig-Hellman algorithm, find the discrete log of 153
to the base 2 in Fg,. (2 is a generator of Fig;.)

(a) What is the percent likelihood that a random polynomial over Fg of
degree exactly 10 factors into a product of polynomials of degree < 27
What is the likelihood that a random nonzero polynomial of degree at
most 10 factors into such a product?

(b) What is the probability that a random monic polynomial over F3 of
degree exactly 10 factors into a product of polynomials of degree < 27
What is the probability that a random monic polynomial of degree at
most 10 factors into such a product?

For n > m > 1, let P,(n,m) denote the probability that a random
monic polynomial over F, of degree at most n is a product of irre-
ducible factors all of degree < m.

(a) Prove that for any fixed n and m, P(n, m) = limp_.co Pp(n,m)
exists and is strictly between 0 and 1.

(b) Find an explicit expression for P(n,2).
(c) Compute P(n,2) exactly for alln < 7.
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4 Knapsack

In this section we describe another type of public key cryptosystem, which is
based on the so-called “knapsack problem.” Suppose you have a large knap-
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sack which you are packing in preparation for a long hike in the wilderness.
You have a large number of items (say, k items) of volume v, i =0,..., k-1,
to fit into the knapsack, which holds a total volume V. Suppose that you
are an experienced knapsack packer, and can always fit items in with no
wasted space. You want to take the biggest load possible, so you want to
find some subset of the k items that exactly fills the knapsack. In other
words, you want to find some subset I c{1,...,k} such that Yicrvi=V,
if such a subset exists. This is the general knapsack problem. We shall fur-
ther assume that V and all of the v; are positive integers. An equivalent
way to state the problem is then as follows:

The knapsack problem. Given a set {v;} of k positive integers and an
integer V, find a k-bit integer n = (ep—1€k—2""" €1€0)2 (Where the €; € {0,1}
are the binary digits of n) such Z::ol €;v; = V, if such an n exists.

Note that there may be no solution n or many solutions, or there might
be a unique solution, depending on the k-tuple {v;} and the integer V.

A special case of the knapsack problem is the superincreasing knapsack
problem. This is the case when the v;, arranged in increasing order, have
the property that each one is greater than the sum of all of the earlier v;.

Example 1. The 5-tuple (2,3,7,15, 31) is a superincreasing sequence.

It is known that the general knapsack problem is in a very difficult
class of problems, called «NP-complete” problems. This means that it is
equivalent in difficulty to the notorious “traveling salesman problem.” In
particular, if the central conjecture in complexity theory is true, as most
everyone believes it is, then there does not exist an algorithm which solves
an arbitrary knapsack problem in time polynomial in k and log B, where
B is a bound on the size of V' and the v;.

However, the superincreasing knapsack problem is much, much easier
to solve. Namely, we look down the vj, starting with the largest, until we
get to the first one that is < V. We include the corresponding ¢ in our
subset I (i.e., we take ¢; = 1), replace V by V —v;, and then continue down
the list of v; until we find one that is less than or equal to this difference.
Continuing in this way, we eventually either obtain a subset of {v;} which
sums to V, or else we exhaust all of {v;} without getting V =3 ;e vi equal
to 0, in which case there is no solution. We now write the algorithm in a

more formal way that could be easily converted to a computer program.

The following polynomial time algorithm solves the knapsack problem
for a given superincreasing k-tuple {v;} and integer V:

1. Set W equal to V, and set j = k.

9. Starting with ej—; and decreasing the index of €, choose all of the €;
equal to 0 until you get to the first i — call it 4 — such that v;, < W.
Set €, = 1.

Replace W by W — v, set j = io, and, if W > 0, go back to step 2.
4. If W =0, you're done. If W > 0, and all of the remaining v; are > W,
then you know there is no solution n = (€x—1-+-€0)2 to the problem.

Notice that the solution (if there is one) is unique.

w
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Example 2. Let the v; be as in Example 1, and take V = 24. Then
working from right to left in our 5-tuple {2, 3,7, 15,31}, we see that €4 = 0,
€ = 1 (at which point we replace 24 by 24 — 15 = 9), €2 = 1 (at Whicli
point we replace 9 by 9 — 7 = 2), €, =0, ¢o = 1. Thus, n = (01101); = 13.

We now describe how to construct the knapsack cryptosystem (also
called the Merkle-Hellman system). We first suppose that our plaintext
message units have k-bit integers P as their numerical equivalents. For
examplle, if we’re working with single letters in the 26-letter alphabet, then
every letter corresponds to one of the 5-bit integer =
25 = (11001), in the usual way. gers from 0 = (00000)2 to

Next, each user chooses a superincreasing k-tuple {vo,...,vk-1}, an
integer m which is greater than Zf;ol v;, and an integer a prime to m
0 < a < m. This is done by some random process. For example, we coulci

choose an arbitrary sequence of k + 1 positive integers z;, 1 = 0,1, ...k,
less than some convenient bound; set vo = 29, v; = z; +Vi—1+vi—2+ -+
fori=1,...,k—1; and set m equal to zx + Zf;ol v;. Then one can choose

a ra.r_ldom positive ag < m and take a to be the first integer > ag that
is prime to m. After that, one computes b = a™! mod m (i.e: b is the
least positive integer such that ab = 1 mod m), and also computes the
k—t}lple {w;} defined by w; = av; mod m (i.e., w; is the least positive
residue of av; modulo m). The user keeps the numbers v;, m, a, and b
all secret, but publishes the k-tuple of w;. That is, the enciphering key is
K £ = {wo,...,Wk—1}. The deciphering key is Kp = (b,m) (which, along
with the enciphering key, enables one to determine {vy,...,Vk1})- ,

Someone who wants to send a plaintext k-bit message P = (ex—1€k—2
~~ke_1$o)2 to a user with enciphering key {w;} computes C = f(P) =
Y iz €wi, and transmits that integer.

To read the message, the user first finds the least positive residue V' of
bC modulo m. Since bC = Y ;bw; = Y €;v; mod m (because bw; = bav; =
v; mod m), it follows that V = ) ¢;v;. (Here we are using the fact that both
V <mand Y v < v; < m to convert the congruence modulo m to
equality.) It is then possible to use the above algorithm for superincreasing
knapsack problems to find the unique solution (ex—1---€p)2 = P of the
problem of finding a subset of the {v;} which sums exactly to V. In this
way we recover the message P.

Note that an eavesdropper who knows only {w;} is faced with the
knapsack problem C = Y e;w;, which is not a superincreasing problem
bef:ause the superincreasing property of the k-tuple of v; is destroyed wher;
v; is replaced by the least positive residue of av; modulo m. Thus, the above
algorithm cannot be used, and, at first glance, the unauthorized person
seems to be faced with a much more difficult problem. We shall return to
this point later.

Example 3. Suppose that our plaintext message units are single let-
ters with 5-bit numerical equivalents from (00000)2 to (11001),, as above.
Suppose that our secret deciphering key is the superincreasing 5-tuple
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in Example 1. Let us choose m = 61, a = 17; then b = 18 and the
enciphering key is (34, 51,58,11,39). To send the message ‘WHY’ our
correspondent would compute ‘W'= (10110)2 — 51 + 58 + 39 = 148,
‘H'= (00111); — 34 +51 + 58 = 143, Y’= (11000)2 +— 11 +39 = 50.
To read the message 148,143,50, we first multiply by 18 modulo 61, ob-
taining 41, 12,46. Proceeding as in Example 2 with V =41, V =12, and
V = 46, we recover the plaintext (10110)z, (00111)3, (11000)2.

Of course, as usual there is no security using single-letter message units
with such a small value of k = 5; Example 3 is meant only to illustrate the
mechanics of the system.

For a while, many people were optimistic about the possibilities for
knapsack cryptosystems. Since the problem of breaking the system isin a
very difficult class of problems (NP-complete problems), they reasoned, the
system should be secure.

However, there was a fallacy in that reasoning. The type of knapsack
problem C = Y €;w; that must be solved, while not a superincreasing knap-
sack problem, is nevertheless of a very special type, namely, it is obtained
from a superincreasing problem by a simple transformation, i.e., multiply-
ing everything by a and reducing modulo m. In 1982, Shamir found an
algorithm to solve this type of knapsack problem that is polynomial in k.
Thus, the original Merkle-Hellman cryptosystem cannot be regarded as a
secure public key cryptosystem.

One way around Shamir’s algorithm is to make the knapsack system

a little more complicated by using a sequence of transformations of the
form z +— az mod m for different a and m. For example, we might sim-
ply use two transformations corresponding to (a,m:) and (a2, m2). That
is, we first replace our superincreasing sequence {vi} by {wi:}, where w;
is the least positive residue of a1v; mod m,, and then obtain a third
sequence {u;} by taking the least positive residue u; = a2w; mod ma.
Here we choose random my, mz, a1 and a2 subject to the conditions
m > v, mp > kmy, and g.c.d.(a;,m1) = g.cd.(az,m2) = L
The public key is then the k-tuple of u;, and the enciphering function
isC = f(P) = Z;:ol €;u;, where P = (€g—1---€1)2. To decipher the ci-
phertext using the key Kp = (b1, m1,b2,m2) (where b = ai'l mod my
and by = ay ! mod mg), we first compute the least positive residue of bC
modulo ma, and then take the result, multiply it by by, and reduce modulo
m,. Since byC = 3 ;w; mod ma, and since mz > kmy > > wy, it follows
that the result of reducing boC mod mz is equal to >_ €;w;. Then when we
take by 3 e;w; mod m; we obtain 3" €v;, from which we can determine the
¢; using the above algorithm for a superincreasing knapsack problem.

At the present time, although there is no polynomial time algorithm
which has been proved to give a solution of the iterated knapsack problem
(i.e., the public key cryptosystem described in the last paragraph), Shamir’s
algorithm has been generalized by Brickell and others, who show that it-
erated knapsack cryptosystems are vulnerable to efficient cryptanalysis. In
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any case, after Shamir’s breakthrough, most experts lost confidence in the
security of a public key cryptosystem of this type.

Ag as yet unbroken knapsack. We now describe a method of message
tra.n§mlssxon based on a knapsack-type one-way function that uses poly-
nomials over a finite field. The cryptosystem is due to Chor and Rivest;
we shall describe a slightly simplified (and less efficient) version of thei11
construction.

Again suppose that Alice wants to be able to receive messages that
are k.-tuples of bits €g,...,€ex—1. (The number k is selected by Alice, as
described below.) Her public key, as before, is a sequence of positive inteéers
vo, ..., VUk—1, constructed in the way described below. This time Bob must
i:andz}%er not only the integer ¢ = ) €;v; but also the sum of the bits

= €5-

. {&lice constructs the sequence v; as follows. All of the choices described
in this paragraph can be kept secret, since it is only the final k-tuple
vo,‘ ...,Vg—1 that Bob needs to know in order to send a message. First
Alice chooses a prime power g = pf such that g — 1 has no large prime fa.c:
tors (in which case discrete logs can feasibly be computed in F?, see §3) and
such that both p and f are of intermediate size (e.g., 2 or 3 (ili,gits)‘ In the
1988 paper by Chor and Rivest the value ¢ = 197%* was suggested. Next
Alice chooses a monic irreducible polynomial F(X) € F,[X] of degree f ’
so that F, may be regarded as F,[X]/F(X). She also chooses a generator,
g of Fy, and an integer 2. Alice makes these choices of F), g, and z in some
random way. 7

Let t € F, = F,[X]/F(X) denote the residue class of X. Alice chooses
k to be any integer less than both pand f. For j = 0,...,k—1, she computes
thfa nonnegative integer b; < ¢ — 1 such that g% =t + j. (By assumption

Alice can easily find discrete logarithms in F.) Finally, Alice chooses at,
random a permutation 7 of {0,...,k — 1}, and sets v; equal to the least
nonnegative residue of by(;) + 2z modulo ¢ — 1. She publishes the k-tuple
(vo, ---,vk—1) as her public key.

Deciphering wo,rks as follows. After receiving ¢ and ¢’ from Bob, she
first computes g°~*¢ | which is represented as a unique polynomial G(j( ) e
F,[X l of degree < f. But she knows that this element must also be equal to
I gsa‘ =) = [[(t + =(5))%, which is represented by the polynomial [T(X +
7(5))%. Since both G(X) and [[(X +n(5))% have degree < f and represent
the same element modulo F(X), she must have

G(X) = [J(X +x()°,

from ‘which she can determine the ¢; by factoring G(X) (for which efficient
algorithms are available, see Vol. 2 of Knuth).
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Ezercises

1. For each of the following sequences and “yolurmes,” decide whether the
knapsack problem is superincreasing and how many solutions (if any)
it has: (a) {2,3,7,20,35, 69}, V = 45; (b) {1,2,5,9,20,49}, V = 73;
(c) {1,3,7,12,22,45}, V = 67; (d) {2,3,6,11,21,40}, V = 39; (e)
{4,5,10,30,50,101}, V = 186; (f) {3,5,8,15, 28,60}, V =43;

2. (a) Show that the superincreasing sequence with the smallest v;’s is

the one with v; = 2%
(b) Show that a superincreasing knapsack problem with v; = 2% always
has a solution n, namely n = V, and that for no other superincreas-
ing sequence does the corresponding knapsack problem always have a
solution.

3. Show that any sequence of positive integers {v;} with vi11 > 2v; for
all 4 is superincreasing.

4. Suppose that plaintext message units are single letters in the usual
96-letter alphabet with A—Z corresponding to 0—25. You receive the
sequence of ciphertext message units 14, 25, 89, 3, 65, 24, 3, 49, 89, 24,
41, 25, 68, 41, 71. The public key is the sequence {57,14, 3,24, 8} and
the secret key is b = 23, m = 61.

(a) Try to decipher the message without using the deciphering key;
check by using the deciphering key and the algorithm for a superin-
creasing knapsack problem.

(b) Use the above public key to send the message TENFOUR.

5. Suppose that plaintext message units are trigraphs in the 32-letter
alphabet with A—72 corresponding to 0—25, blank=26, ?7=27, 1=28,
=29, =30, $=31. You receive the sequence of ciphertext message units
152472, 116116, 68546, 165420, 168261. The public key is the sequence
{24038, 29756, 34172, 34286, 38334, 1824, 18255, 19723, 143, 17146,
35366, 11204, 32395, 12958, 6479}, and the secret key is b = 30966,
m = 47107. Decipher the message.

6. Suppose that plaintext message units are digraphs in the 32-letter al-
phabet of Exercise 5. You receive the sequence of ciphertext message
units 33219, 7067, 18127, 43099, 37953, which were enciphered using
a two-iteration knapsack system with public key {23161, 6726, 4326,

16848, 21805, 11073, 120, 15708, 2608, 341}. The secret key is by = 533,
my = 2617, by = 10175, mg = 27103. Decipher the message.
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5 Zero-knowledge protocols and oblivious transfer

“Zero knowledge” is the name of a cryptographic concept first developed in
the early 1980’s to deal with the following problem. Suppose someone wants
to prove that she has figured out how to do something — find a solution
to an equation, prove a theorem, solve a puzzle — while at the same time
conveying no knowledge about her proof or solution. Can this ever be done?
ﬂow can you convince someone that you have a solution without exhibiting
it? The somewhat surprising fact is that in many situations it is possible
to do this.

The “prover,” whom we shall call Picara, is the person with the solu-
tion; the “verifier” Vivales is the one who in the end must become satisfied
that Picara has a solution, while still not having the foggiest idea of what
that solution is.

In this section we shall first give a simple, visual example of a zero-
knowledge proof which is interactive (i.e., it requires communication back
and forth between Picara and Vivales). This example concerns map coloring
and does not use number theory. Then we give a second example: how to
prove that you have found a discrete logarithm without helping the verifier
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to know what it is. We next discuss a concept called “oblivious transfer,”
with which one can construct noninteractive zero-knowledge proofs. Finally,
we use oblivious transfer to give a zero-knowledge proof of factorization.

Map coloring. Our first example is the following. It is now known that
any planar map can be colored with 4 colors. Some maps can be colored
with 3 colors and others cannot. Suppose Picara is given a complicated
map, which after much effort she is able to find a way of coloring with only
3 colors (red, blue, green). How can she convince Vivales that she has done
this, without giving him a clue that would help him color the map?

We first translate this problem into the language of graphs.

Definition. A graph is a set V, whose elements are called “vertices,”
and a subset E of the set of all (unordered) pairs of elements of V. The
elements of E are called “edges.” An “edge” e = {u,v}, where u,v € V,
should be visualized as a line joining the vertices u and v.

Definition. We say that a graph is colorable by the colors r, b, g, if
there exists a function f : V — {r,b, g} such that no vertices joined by an
edge have the same color, i.e., {u,v} € E = flu) # f(v).

The 3-colorability problem consists in determining, given a graph,
whether or not it is colorable by 7, b, g.

To translate the map-coloring problem to a graph-coloring problem,
simply take V to be the set of countries (visualized now as points), and
“connect” two countries with an edge if and only if they have a common
boundary.

The 3-colorability problem has two nice properties which make it a
convenient choice for discussions of many questions: (1) it is easy to visu-
alize; and (2) it is NP-complete (see the discussion of the knapsack in §4).
The NP-completeness property implies that, if you have a zero-knowledge
verification of 3-colorability, then you can get a zero-knowledge verification
for any NP-problem by “reducing” it to 3-colorability.

However, this does not mean that, once a zero-knowledge verifica-
tion has been constructed for a certain NP-complete problem P, (say, 3-
colorability), it is then superfluous to construct a zero-knowledge proof for
another NP-problem Pz. On the contrary, in the process of reducing P, to
Py, one generally increases the size of the input data substantially. Thus, a
much more efficient zero-knowledge verification is likely to result by working
directly with P, rather than by reducing P, to P, and then using the earlier
verification of P;. For example, we shall later give a direct zero-knowledge
proof of possession of a discrete logarithm. It would be inefficient in the ex-
treme to construct such a zero-knowledge proof by first reducing possession
of a discrete log to 3-colorability of some graph. \

Zero-knowledge proof of 3-colorability. Suppose that Picara is given a
graph. We shall visualize the vertices as small balls containing little colored
lights and joined by bars wherever there is an edge. The light in each vertex
can flash either red, blue or green. Picara has (1) a device A which sets each
vertex to flash whichever of the three colors she chooses, and (2) a device B
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which, whenever a button is pushed, chooses a random permutation of the
three colors and then resets each vertex according to the permutation. For
example, if the device B chooses the transposition of red and blue, then it
goes to all vertices with blue lights, switches them to red lights, goes to all
vertices with red lights, switches them to blue lights, and leaves the vertices
with green lights alone. Vivales has no control over the device B and does
not even know which permutations it generates.

We further suppose that the lights inside the vertex balls are hidden
from view. However, whenever someone grabs onto the bar connecting two
vertices, the lights in those two vertices (and no others) become visible.

Now Picara has figured out a 3-coloring of the graph, and uses the
device A to set the vertices with the corresponding colors. Here is the
p}x;ocedure used to convince Vivales that she has been successful in doing
this:

1. Vivales is allowed to grab any one of the edge-bars, revealing the colors

of the two vertices at each end. He will see that those two vertices have

different colors, thereby giving a little bit of evidence that Picara has a

valid coloring (recall that “valid” means that no two adjacent vertices

have the same color).

Next, Picara pushes the button on B, permuting the colors.

Vivales may then grab another edge-bar.

4. Picara and Vivales repeat steps #2 and #3 in alternation, until Vivales
has tested all the bars (or, if he insists, until he has tested all the
bars several times — perhaps he suspects that Picara has cheated by
resetting the vertices on a bar that was tested earlier).

After a little thought, two things should be clear: (1) If Picara has
really not been able to 3-color the graph, she won’t be able to fool Vivales
— eventually step #3 will reveal adjacent vertices of the same color. (2)
Because of the random permutations of the colors, Vivales learns nothing
about the coloring, except for the fact that Picara has been successful. That
is, if he, too, now wants to 3-color the graph, it will be just as hard for him
to 3-color it after going through steps #1-4 above as it would have been
before.

To prove the claim that Vivales has learned nothing about the coloring,
one argues as follows. Suppose that a third person, Clyde, does not know
how to 3-color the graph but does know in advance which edge-bar Vivales
will grab. Then Clyde could produce the exact same result as Picara, i.e.,
the information Vivales receives from Clyde is indistinguishable from what
Picara would have given him. But Clyde could hardly be conveying anything
useful about 3-coloring the graph, since he himself does not know a 3-
coloring. We say that Clyde “simulates” the role of Picara. This argument
by simulation is the standard way to show that a certain protocol is really
a zero-knowledge proof.

Zero-knowledge proof of having found a discrete logarithm. As in §3,
suppose that G is a finite group containing N elements (whose group oper-

0
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ation will be written multiplicatively), b is aﬁxed element of G, and y is an

element of G for which Picara has found a discrete logarithm to the base b,

i.e., she has solved the equation b” =y for a positive integer x. She wants

to demonstrate to Vivales that she knows x without giving him a clue as to

what z is. We first suppose that Vivales knows the order N of the group.

Here is the sequence of steps performed by the two of them:

1. Picara generates a random positive integer € < N, and sends Vivales
b = be.

9. Vivales flips a coin. If it comes up heads, Picara must reveal e, and
Vivales checks that in fact b’ is b°.

3. If the coin comes up tails, then Picara must reveal the least positive
residue of z + e modulo N, at which point Vivales checks that yb' =
b=te.

4. Steps #1-3 are repeated until Vivales is convinced that Picara must
know the value z of the discrete logarithm.

Notice that if Picara does not know the value z of the discrete log,
then she will not be able to respond to more than one possible result of
the coin toss. If she has performed step (1) as she was supposed to, then
she can respond to heads — but not to tails — without knowing z. On the
other hand, if she anticipates tails and so in step (1) decides to send Vivales
b = b¢/y (so that in step (3) she can send him simply e instead of z + e),
then she will be in a jam if the coin comes up heads (since she does not
know the power of b that gives b').

Further notice that the zero-knowledge property of this protocol can
be proved by a simulation argument. Namely, suppose that Clyde does not
know the discrete log of y to the base b but does know in advance how the
coin toss will go. Then Clyde can simulate the same steps as Picara (by
sending b’ = b° for heads and b’ = b°/y for tails), giving Vivales information
that is indistinguishable from what Picara would have given him. Clyde
cannot be telling Vivales anything useful for finding the discrete log, since
he himself has no idea what the discrete log is.

In the exercises we will examine the situation when Vivales does not
know N. For example, suppose that he knows that G = (Z/MZ)*, but he
does not know the factorization of M. (Recall that if M is a product of two
primes, then knowing its factorization is equivalent to knowing N = e(M),
see §1.3.) Then ideally Picara (or the simulator Clyde), who uses the value
of N in step (1), must avoid conveying to Vivales any information about N
(or else we don’t really have a “zero knowledge” proof). This might seem to
be too much to ask for, but one can insist that no more than a very small
amount of information be conveyed.

Oblivious transfer. An “oblivious transfer channel” from Picara to Vi-
vales is a system for Picara to send Vivales two encrypted packets of infor-
mation subject to the following conditions:

1. Vivales can decipher and read exactly one of the two packets;
9. Picara does not know which of the two packets he can read; and
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3. both Picara and Vivales are certain that conditions (1) and (2) hold.

At first glance, this might seem like an odd thing to want. However
such a channel turns out to be a fundamental concept in cryptographyj
We shall soon see how it can be used to construct a non-interactive zero-
knowledge proof. But before discussing this application to zero knowledge
we describe one way to obtain an oblivious transfer channel, based on thé
intractability of the discrete log problem. ,

More precisely, we suppose that we have a large finite field ¥, and
a fixed element b of the multiplicative group Fj such that, given bg and
bY, there is no computationally feasible way to find b%¥. Thi; is the Diffie-
Hellman assumption, which conjecturally holds if the discrete logarithm
problem is intractable in F; (see §3).

We further suppose that we have an easily computed (and easily in-
verted) map ¥ from our finite field to the Fa-vector space F} of n-tuples
of bits. Suppose that the image of this map contains all of F;"l (i-e., all
n-tuples whose last bit is 0). For example, if ¢ is a prime p, then we can
choose n so that 2"~! < p < 2", and map any element of F, —ie., any
nonnegative integer less than p — to its sequence of binary digits. )

We suppose that our message units are also n-tuples of bits, i.e., ele-

ments m € F. We finally suppose that an element C' € F?, fixed once and
for all, has been chosen so that no one knows its discrete lc;lga.rithm. (Recall
that we have assumed that the discrete log problem is intractable in F7.)
This element C might have been supplied by a “trusted Center,” or by Zm
agreed upon random procedure, or by an interactive construction in which
both Picara and Vivales participated.
. The oblivious transfer proceeds as follows. Vivales chooses a random
integer z, 0 < z < ¢ — 1, and also a random element i € {1,2}. In what
follows both z and i denote fixed integers in the range {1,...,q — 2} and
{1, 2}, respectively. Vivales sets 8; = b® and (3_; = C//b®. He then publishes
!:ﬁs “public key” (01, B2), while keeping z and % secret. Notice that Vivales
is assumed not to know the discrete logarithm of 33_; — which we shall
denote ' — because if he did, then he would know the discrete log of
C = f3;#3—;, contrary to assumption.

Now suppose that Picara has a message unit m; € F% from the first
packet and a message unit mg € F3 from the second packet. She chooses
two random integers 0 < y;, ¥2 < ¢ — 1, and sends to Vivales the following
two elements of F; and two elements of F3:

b, b o =my +P(BY),  ax=my+y(6).

(Here addition is in the Fa-vector space F3; this addition operation is also
known as “exclusive or.”) Picara keeps y; and y secret.

Since ¥ = (b¥), and Vivales knows both b¥ and z, he can easily
determine 9(8¥), and hence find m; = a; + ¥(B}*). However, if he wanted
to, find m3_;, he would have to find 37 = b= Ya—s knowing only b¥3-¢ and
b® but not y3_; or z’. This is impossible, by the Diffie-Hellman assumption.
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Notice that Picara can easily check that B2 = C, and thus be sure
that Vivales does not know the discrete logs o both elements of his public
key (B1,32)- Since it is in Vivales’ interest to get as much information as
possible, Picara can be sure that he does know the discrete log of one of the
two elements. But there is no way Picara can distinguish between 3; and
(32 for the purpose of determining which Vivales obtained as b® and which
as C/b®. Thus, both Vivales and Picara can be confident that the above
conditions (1) and (2) are fulfilled.

If a sequence of pairs (my,m2) are sent using the same (1, B2) (i.e.,
the same values of z and 1), then Picara does know that the element of the
pair (my, m2) that Vivales is deciphering (namely, m;) remains the same for
all pairs of message units in the sequence. If we want another sequence of
message units to be sent independently, then Vivales must randomly select
new values for z and i, and send a new public key (61, B2)-

Use of oblivious transfer for a non-interactive proof of factorization.
The idea conveyed by the term “non-interactive” can be summarized in the

form of a diagram
Center

v pN
Picara —  Vivales

Here the “trusted Center” can be thought of as a source of random bits,
which are sent simultaneously to Picara and Vivales (it is permissible for
the Center first to perform some arithmetic operations on the bits before
sending them). The combination of these bits and Picara’s reaction to them
__ what she sends Vivales — must be enough to convince Vivales (with an
exponentially decreasing chance that he’s being fooled) that she did what
she claims to have done.

The “non-interaction” means that in the course of the proof Vivales
does not communicate to Picara. However, it is permitted that at the very
beginning Picara has been given a long sequence of oblivious transfer pub-
lic keys (B1,B2) for Vivales, as described above. This is not counted as a
communication from Vivales to Picara. In fact, the same public keys are
available, as the word “public” suggests, for anyone to use who's playing
the role of Picara. And Picara can use the same sequence of public keys in
many different zero-knowledge proofs she sends to Vivales.

We now describe the procedure that Picara uses to convince Vivales
that she can factor an integer n = pg without giving him any information
about what its factors might be. We will use the fact that the ability to
take the square root modulo n = pg of an arbitrary number that has a
square root is equivalent to knowledge of p and ¢ (see Exercise 5 below).
The procedure is as follows:

1. The Center randomly generates an integer z, and sends Picara and

Vivales the least nonnegative residue of z2 modulo n; let us denote y

= z2 mod n.
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Picara finds the four square roots of y modulo n, namely, +z, +z”. She
a.r’bitra.rily chooses zp to be one of these four square roc;ts. ’ .
P;cara randomly picks an integer r and sends Vivales the integer s =
r? mod n. She sets m; = r mod n, ma = zor mod n, and sends these
two messages to Vivales by oblivious transfer.

Yiva.les is able to read exactly one of the two messages. He checks that
its square modulo n is s (if his random 4 is 1) or ys (if i = 2).

Steps 1-4 are repeated (with different public keys (81, B2)). If Picara
meets the test T times, then Vivales is satisfied (with certainty 1—2-7T)
that Picara really knows the factorization.

FEzxercises

1.

In’ the zero-knowledge proof of possession of a discrete logarithm, if
Plca.xra does not really know the discrete log, then what are the ocids
z(a,g)a"mst her successfully fooling Vivales for T repetitions of steps (1)-
In the zero-knowledge proof of possession of a discrete logarithm, sup-
pose that Vivales does not know the value of N. ’

(a) Explain how the protocol described in the text is not really “zero
knowledge.”

(b) How could Picara decrease the amount of information Vivales ob-
tains about the magnitude of N?

Suppose that Picara does not know N, and so in step (1) she chooses
a random e in some other range (e.g., e < B, where B is an upper
bound for the possible value of N), and in step (3) she sends simply
T + e rather than the least positive residue of z + e modulo N. Explain
why this is not a zero-knowledge proof. Why is the procedure followed
by Clyde not a valid simulation?

E?cplain how the zero-knowledge proof in the text for possession of a
discrete logarithm can be used for public key electronic identification.
(This means that Picara convinces Vivales that she really is Picara.)
Explain why being able to extract square roots modulo n = pgq is
essentially equivalent to knowing the factorization of n.

Can the same public key (81, B2) for oblivious transfer be used by sev-
?ral different people to give Vivales zero-knowledge proofs that they all
independently know the same factorization? Assume that each person
can eavesdrop on the transmissions of the others.

Using oblivious transfer, construct a non-interactive zero-knowledge
proof for possession of a discrete logarithm. (Suppose that the order
N of the group is known to everyone.)

The following scheme was recently proposed as a zero-knowledge pro-
tocol for Picara to use in order to demonstrate to Vivales that she
knows the factors p and q of an integer n, where n is known to be a
pr}?duct of two primes that are = 3 (mod 4). Find a basic flaw in the
scheme.
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Step 1. Vivales, who knows n, but not p and g, chooses an integer
at random. He computes the least nonnegative residue of z* modulo
n, and sends this number — which we denote y — to Picara.

Step 2. When Picara receives y, she computes a square root modulo
n (which is easy, since she knows the factorization of n; see Exercise 5
above). Of the four possible square roots, she chooses the unique one
which is a quadratic residue modulo both p and g. This must be the
least positive residue of z2 modulo n. She sends this integer to Vivales.
Step 3. Vivales checks that the number he received from Picara is in
fact the residue of z2 modulo n. He is then convinced that she can take
square roots modulo n, something that would have been impossible if
she didn’t know the factors of n.

9. Find the drawback of the following procedure for a zero-knowledge
proof of factorization. Suppose that n is the product of two primes p
and g. Suppose that a “trusted Center” supplies an unending sequence
of random squares modulo n, as in the text: y1,¥2,. . . For each of the
successive y;, Picara finds one of its square roots T;, and sends it to
Vivales, who verifies that z? = y (mod n).
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Primality and Factoring

There are many situations where one wants to know if a large number n
is prime. For example, in the RSA public key cryptosystem and in various
cryptosystems based on the discrete log problem in finite fields, we need to
find a large “random” prime. One interpretation of what this means is to
choose a large odd integer ng using a generator of random digits and then
test ng, ng + 2, ... for primality until we obtain the first prime which is
> ng. A second type of use of primality testing is to determine whether an
integer of a certain very special type is a prime. For example, for some large
prime f we might want to know whether 2f — 1 is a Mersenne prime. If
we're working in the field of 2f elements, we saw that every element 7 0, 1
is a generator of F}; if (and only if) 2f —1 is prime (see Ex.13(a) of § IL.1).

A primality test is a criterion for a number n not to be prime. If n
“passes” a primality test, then it may be prime. If it passes a whole lot
of primality tests, then it is very likely to be prime. On the other hand, if
n fails any single primality test, then it is definitely composite. But that
leaves us with a very difficult problem: finding the prime factors of n. In
general, it is much more time-consuming to factor a large number once it
is known to be composite (because it fails a primality test) than it is to
find a prime number of the same order of magnitude. (This is an empirical
statement, not a theorem; no assertion of this sort has been proved.) The
security of the RSA cryptosystem is based on the assumption that it is
much easier for someone to find two extremely large primes p and ¢ than it
is for someone else, knowing n = pq but not p or g, to find the two factors
in n. After discussing primality tests in §1, we shall describe three different
factorization methods in §§2-5.
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1 Pseudoprimes

Have you ever noticed that there’s no attempt being made to
find really large numbers that aren’t prime? I mean, wouldn’t you
like to see a news report that says “Today the Department of
Computer Sciences at the University of Washington announced
that 258:111,625,031 4 8 is even. This is the largest non-prime yet
reported.”

— bathroom graffiti, University of Washington

Un phénomene dont la probabilité est 1059 ne se produira donc
jamais, ou du moins ne sera jamais observé.

— Emile Borel, Les Probabilités et la vie

Let n be a large odd integer, and suppose that you want to determine
whether or not n is prime. The simplest primality test is “trial division.”
This means that you take an odd integer m and see whether or not it
divides n. If m # 1, n and m|n, then n is composite; otherwise, n. passes
the primality test “trial division by m.” As m runs through the odd numbers
starting with 3, if n passes all of the trial division tests, then it becomes
more and more likely that n is prime. We know for sure that n is prime
when m reaches y/n. Of course, this is an extremely time-consuming way
to test whether or not n is prime. The other tests described in this section
are much quicker.

Most of the efficient primality tests that are known are similar in gen-
eral form to the following one.

According to Fermat’s Little Theorem, we know that, if n is prime,
then for any b such that g.c.d.(b,n) = 1 one has

"' =1 mod n. (1)

If n is not prime, it is still possible (but probably not very likely) that (1)
holds.

Definition. If n is an odd composite number and b is an integer such
that g.c.d.(n,b) = 1 and (1) holds, then n is called a pseudoprime to the
base b.

In other words, a “pseudoprime” is a number n that “pretends” to be
prime by passing the test (1).

Example 1. The number n = 91 is a pseudoprime to the base b = 3,
because 3% = 1 mod 91. However, 91 is not a pseudoprime to the base 2,
because 2% = 64 mod 91. If we hadn’t already known that 91 is composite,
the fact that 29 % 1 mod 91 would tell us that it is.

Proposition V.1.1. Let n be an odd composite integer.

(a) n is a pseudoprime to the base b, where g.c.d.(b,n) =1, if and only if
the order of b in (Z/nZ)* (i.e, the least positive power of b which is

=1 mod n) divides n — 1. N
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(b) If n is a pseudoprime to the bases by and by (where g.c.d.(by, n) =
= g.c.d.(by,n) = 1), then n is a pseudoprime to the base b1ba and also
to the base byb; 1 (where by is an integer which is inverse to by modulo
n).

(c) Ifn fails the test (1) for a single base b € (Z/nZ)* then n fails (1) for
at least half of the possible bases b € (Z/nZ)*

Proof. Parts (a) and (b) are very easy, and will be left to the reader.
To prove (c), let {b1,b2,...,bs} be the set of all bases for which rz is a
pseudoprime, i.e., the set of all integers 0 < b; < n for which the congruence
(1) holds. Let b be a fixed base for which n is not a pseudoprime. If n were
a pseudoprime for any of the bases bb;, then, by part (b), it would be a
pseudoprime for the base b = (bb;)b; ! mod n, which is not the case. Thus,
for the s distinct residues {bb;, bz, ..., bbs} the integer n fails the test (1).
Hence, there are at least as many bases in (Z/nZ)* for which n fails to be
a pseudoprime as there are bases for which (1) holds. This completes the
proof.

Thus, unless n happens to pass the test (1) for all possible b with
g.c.d.(b,n) = 1, we have at least a 50% chance that n will fail (1) for a
randomly chosen b. That is, suppose we want to know if a large odd integer
n is prime. We might choose a random b in the range 0 < b < n. We first
find d = g.c.d.(b,n) using the Euclidean algorithm. If d > 1, we know that n
is not prime, and in fact we have found a nontrivial factor d|n. If d = 1, then
we raise b to the (n — 1)-st power (using the repeated squaring method of
modular exponentiation, see § .3). If (1) fails, we know that n is composite.
If (1) holds, we have some evidence that perhaps n is prime. We then try
another b and go through the same process. If (1) fails for any b, then we
can stop, secure in the knowledge that n is composite. Suppose that we try
k different b’s and find that n is a pseudoprime for all of the k bases. By
Proposition V.1.1, the chance that n is still composite despite passing the
k tests is at most 1 out of 2% unless n happens to have the very special
property that (1) holds for every single b € (Z/nZ)* If k is large, we can be
sure “with a high probability” that n is prime (unless n has the property of
being a pseudoprime for all bases). This method of finding prime numbers
is called a probabilistic method. It differs from a deterministic method: the
word “deterministic” means that the method will either reveal n to be
composite or else determine with 100% certainty that n is prime.

Can it ever happen for a composite n that (1) holds for every b7 In that
case our probabilistic method fails to reveal the fact that n is composite
(unless we are lucky and hit upon a b with g.c.d.(b,n) > 1). The answer is
yes, and such a number is called a Carmichael number.

Definition. A Carmichael number is a composite integer n such that
(1) holds for every b € (Z/nZ)*

Proposition V.1.2. Let n be an odd composite integer.

(a) If n is divisible by a perfect square > 1, then n is not a Carmichael
number.
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(b) If n is square free, then n is a Carmichael number if and only if

p —1|n — 1 for every prime p dividing n.

Proof. (a) Suppose that p?|n. Let g be a generator modulo p? i.e., an
integer such that g?P~1) is the lowest power of g which is =1 mod p% Ac-
cording to Exercise 2 of §I.1, such a g always exists. Let n' be the product
of all primes other than p which divide n. By the Chinese Remainder Theo-
rem, there is an integer b satisfying the two congruences: b = g mod p? and
b =1 mod n’. Then b is, like g, a generator modulo p?% and it also satisfies
g.c.d.(b,n) = 1, since it is not divisible by p or by any prime which divides
n'. We claim that n is not a pseudoprime to the base b. To see this, we notice
that if (1) holds, then, since p?|n, we automatically have ! =1 mod p2
But in that case p(p — 1)|n — 1, since p(p — 1) is the order of b modulo P2
However, n — 1 = —1 mod p, since p|n, and this means that n — 1 is not
divisible by p(p — 1). This contradiction proves that there is a base b for
which n fails to be a pseudoprime. ,

(b) First suppose that p — 1jn — 1 for every p dividing n. Let b be any
base, where g.c.d.(b,n) = 1. Then for every prime p dividing n we have:
b™~1 is a power of b*~% and so is = 1 mod p. Thus, "' —1 is divisible by all
of the prime factors p of n, and hence by their product, which is n. Hence,
(1) holds for all bases b. Conversely, suppose that there is a p such that
p — 1 does not divide n — 1. Let g be an integer which generates (Z/pZ)*.
As in the proof of part (a), find an integer b which satisfies: b = g mod p
and b = 1 mod n/p. Then g.c.d.(b,n) = 1, and "' = g™~ ! mod p. But
g"™~! is not = 1 mod p, because n — 1 is not divisible by the order p — 1
of g. Hence, b"~! # 1 mod p, and so (1) cannot hold. This completes the
proof of the proposition.

Example 2. n = 561 = 3- 11 - 17 is a Carmichael number, since 560 is
divisible by 3 —1, 11 — 1 and 17 — 1. In the exercises we shall see that this
is the smallest Carmichael number.

Proposition V.1.3. A Carmichael number must be the product of at
least three distinct primes.

Proof. By Proposition V.1.2, we know that a Carmichael number must
be a product of distinct primes. So it remains to rule out the possibility that
n = pq is the product of two distinct primes. Suppose that p <g. Then, if
n were a Carmichael number, we would have n — 1 = 0 mod g — 1, by part
(b) of Proposition V.1.2. But n — 1= plg—1+1)—1=p—-1modg-—1,
and this is not = 0 mod g — 1, since 0 < p — 1 < ¢ — 1. This concludes the
proof.

Remark. It was only very recently that it was proved (by Alford,
Granville, and Pomerance) that there exist infinitely many Carmichael
numbers. See Granville’s report in Notices of the Amer. Math. Soc. 39
(1992), 696-700.

Euler pseudoprimes. Let . be an odd integer, and let (%) denote the

Jacobi symbol (see §11.2). According to Proposition 11.2.2, if n is a prime
number, then
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B2 = (%) mod n @)

for any integer b. On the other hand, if n is composite, then Exercise 21 of
§I1.2 shows that at least 50% of all b € (Z/nZ)* fail to satisfy (2). From
these two facts we can obtain an efficient probabilistic test for whether or
not a large odd integer n is prime. We start with the following definition.

Definition. If n is an odd composite number and b is an integer such
that g.c.d.(n,b) = 1 and (2) holds, then n is called an Euler pseudoprime
to the base b.

Proposition V.1.4. If n is an Euler pseudoprime to the base b, then it
s a pseudoprime to the base b.

Proof. We must show that, if (2) holds, then (1) holds. But this is
obvious by squaring both sides of the congruence (2).

Example 3. The converse of Proposition V.1.4 is false. For example,
in Example 1 we saw that 91 is a pseudoprime to the base 3. However,
345 = 27 mod 91, so (2) does not hold for n = 91, b = 3. (Note that it
is easy to raise b to a large power modulo 91 if we know the order of b in
(Z/91Z)* since 3% = 1 mod 91, we immediately see that 3*5 = 3% mod 91.)
An example of a base to which 91 is an Euler pseudoprime is 10, since
10% = 10% = —1 mod 91, and (32) = —1.

Example 4. It is easy to see that any odd composite n is an Euler
pseudoprime to the base +1; in what follows we shall rule out these two
“trivial” bases b.

We can now describe the Solovay—Strassen primality test. Suppose that
n is a positive odd integer, and we would like to know whether n is prime
or composite. Choose k integers 0 < b < n at random. For each b, first
compute both sides of (2). Finding the left side b("~1)/2 takes O(log*n) bit
operations, using the repeated squaring method (Proposition 1.3.6); finding
the Jacobi symbol on the right also takes O(log3n) bit operations (see
Exercise 17 of §11.2). If the two sides are not congruent modulo n, then you
know that n is composite, and the test stops. Otherwise, move on to the
next b. If (2) holds for all k random choices of b, then the probability that
n is composite despite passing all of the tests is at most 1 /2% Thus, the
Solovay-Strassen test is a probabilistic algorithm which leads either to the
conclusion that n is composite or to the conclusion that it is “probably”
prime.

Notice that there are no Euler pseudoprime analogs of Carmichael
numbers: for any composite n, the test (2) fails for at least half of the
possible bases b.

Strong pseudoprimes. We now discuss one more type of primality test,
which is in one respect even better than the Solovay-Strassen test based on
the definition of an Euler pseudoprime. This is the Miller—Rabin test, which
is based on the notion of a “strong pseudoprime,” which will be defined
below. Suppose that n is a large positive odd integer, and b € (Z/nZ)"
Suppose that n is a pseudoprime to the base b, ie., ™1 =1 mod n.
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The idea behind the strong pseudoprime criterion is that, if we succes-
sively “extract square roots” of this congruence, i.e., if we raise b to the
((n — 1)/2)-th, ((n — 1)/4)-th,..., ((n — 1)/2°)-th powers (where t =
(n —1)/2° is odd), then the first residue class we get other than 1 must
be —1 if n is prime, because 1 are the only square roots of 1 modulo a
prime number. Actually, in practice one proceeds in the other direction,
setting n — 1 = 2°¢ with ¢ odd, then computing bt mod n, then (if that
is not = 1 mod n) squaring to get b* mod n, then squaring again to get
b?*t mod n, etc., until we first obtain the residue 1; then the step before
getting 1 we must have had —1, or else we know that n is composite.

Definition. Let n be an odd composite number, and write n — 1 = 2°¢
with ¢ odd. Let b € (Z/nZ)* If n and b satisfy the condition

either b =1 modn or

there exists 7, 0 < r < s, such that B¥t=—-1modn, (3)

then n is called a strong pseudoprime to the base b.

Proposition V.1.5. If n = 3 mod 4, then n is a strong pseudoprime to
the base b if and only if it is an Euler pseudoprime to the base b.

Proof. Since in this case s = 1 and t = (n — 1)/2, we see that n is
a strong pseudoprime to the base b if and only if p(=1/2 = 41 mod n.
If n is an Euler pseudoprime, then this congruence holds, by definition.
Conversely, suppose that b(®~1)/2 = +1. We must show that the +1 on the
right is (1—’1) But for n = 3 mod 4 we have £1 = (;nl), and so

() - (M) - (M) — 5D mod n,
n n n

as required. The next two important propositions are somewhat harder to
prove.

Proposition V.1.6. If n is a strong pseudoprime to the base b, then it
is an Euler pseudoprime to the base b.

Proposition V.1.7. If n is an odd composite integer, then n is a strong
pseudoprime to the base b for at most 25% of all 0 < b < n.

Remark. The converse of Proposition V.1.6 is not true, in general, as
we shall see in the exercises below.

Before proving these two propositions, we describe the Miller-Rabin
primality test. Suppose we want to determine whether a large positive odd
integer n is prime or composite. We write n—1 = 2°t with ¢ odd, and choose
a random integer b, 0 < b < n. First we compute b* mod n. If we get *1,
we conclude that n passes the test (3) for our particular b, and we go on to
another random choice of b. Otherwise, we square b* modulo n, then square
that modulo n, and so on, until we get —1. If we get —1, then n passes the
test. However, if we never obtain —1, i.e., if we reach b2 = 1 mod n while
b2" # —1 mod n, then n fails the test and we know that n is composite. If

n passes the test (3) for all our random choices of b — suppose we try k/

different bases b — then we know by Proposition V.1.7 that n has at most a
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1 out of 4% chance of being composite. This is because, if  is composite, then
at most 1/4 of the bases 0 < b < n satisfy (3). Notice that this is somewhat
better than for the Solovay-Strassen test, where the analogous estimate
is a 1 out of 2F chance (because there exist composite n which are Euler
pseudoprimes for half of all bases 0 < b < n, as we shall see in the exercises).

We now proceed to the proofs of Propositions V.1.6 and V.1.7.

Proof of Proposition V.1.6. We have n and b satisfying (3). We must
prove that they satisfy (2). Let n — 1 = 2°t with ¢ odd.

Case (i). First suppose that b* = 1 mod n. Then the left side of (2) is
clearly 1. We must show that (2) =1. But 1 = = (%) = (%) Since t
is odd, this means that (2) = 1.

Case (ii). Next suppose that b(n=1)/2 = _1 mod n. Then we must show
that (%) = —1. Let p be any of the prime divisors of n. We write p— 1 in
the formp—1= 28"t/ with ¢ odd, and we prove the following claim:

Claim. We have s’ > s, and

by _[-1, ifs'=s;
(;—)) 11, ifd>s.

Proof of the claim. Because b(*~1/2 = 2"t = —1 mod n, raising
both sides to the ¢’ power gives (b3 ¢')t = —1 mod n. Since p|n, the same
congruence holds modulo p. But if we had s’ < s, this would mean that
b2’," could not be = 1 mod p, as it must be by Fermat’s Little Theorem.
Thus, s’ > s. If s’ = s, then the congruence (6’ 7't')* = ~1 mod p implies
that (2) = p®-1/2 = 2" ¢ mod p must be —1 rather than 1. On the
other hand, if s’ > s, then the same congruence raised to the (2 —*)-th
power implies that (%) must be 1 rather than —1. This proves the claim.

We now return to the proof of Proposition V.1.6 in Case (ii). We write
n as a product of primes (not necessarily distinct): n = [1p. Let k denote
the number of primes p such that s’ = s when one writes p—1 = 2¢'t” with
#' odd. (k counts such a prime p with its multiplicity, i.e., a times if p%||n.)
According to the claim, we always have s’ > s, and (%) = H(%) = (=D~
On the other hand, working modulo 2**!, we see that p = 1 unless p is one
of the k primes for which s’ = s, in which case p = 1+2° Sincen = 1+2°t =
1+ 2° mod 2L we have 1 +2° = [[p = (1 + 2°)F = 1 + k2° mod 2°*!
(where the last step follows by the binomial expansion). This means that k
must be odd, and hence (%) = (~1)*¥ = —1, as was to be proved.

Case (iii). Finally, suppose that b "'t = —1 mod n for some 0 < 7 < s.
(We are using 7 — 1 in place of the r in (3).) Since then b"=1/2 = 1 mod n,
we must show that in Case (iii) we have (2) = 1. Again let p be any prime
divisor of n, and write p— 1 = 2t/ with ¢’ odd.

Claim. We have s’ > r, and

&-{i" §r3n
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The proof of this claim is identical to the proof of the claim in Case
(ii).

To prove the proposition in Case (iii), we let k denote the number of
primes p (not necessarily distinct) in the product n = []p for which the
first alternative holds, i.e., s’ = r. Then, as in Case (ii), we obviously have
(2) = (~1)%. On the other hand, since n = 1+ 2°t = 1 mod 271 and also
n=[]p= (1+27)* mod 27+ it follows that k must be even, i.e., (2) = 1.
This concludes the proof of Proposition V.1.6.

Before proving Proposition V.1.7, we prove a general lemma about the
number of solutions to the equation zF = 1 in a “cyclic group” containing m
elements. We already encountered this lemma once at the beginning of § I1.2;
the proof of the lemma should be compared to the proof of Proposition
I1.2.1.

Lemma 1. Let d = g.c.d.(k,m). Then there are ezactly d elements in
the group {g,9%, 9% ...,9™ = 1} which satisfy & = 1.

Proof. An element ¢/ satisfies the equation if and only if g'* = 1, i.e.,
if and only if m|jk. This is equivalent to: | jg, which, since m/d and k/d
are relatively prime, is equivalent to: j is a multiple of m/d. There are d
such values of 7, 1 < j < m. This proves the lemma.

We need one more lemma, which has a proof similar to that of Lemma
1.

Lemma 2. Let p be an odd prime, and write p—1 = 2't' with t' odd.
Then the number of = € (Z/pZ)* which satisfy ¥t = —1 mod p (where t
is odd) is equal to 0 if r > s’ and is equal to 2"g.c.d.(t,t') if r < &'

Proof. We let g be a generator of (Z/pZ)* and we write z in the form
¢/ with 0 < j < p— 1. Since g®~1/2 = —1 mod p and p — 1 = 2°'t/, the
congruence in the lemma is equivalent to: 2"tj = 2¢' =1t/ mod 2°'t/ (with
j the unknown). Clearly there is no solution if 7 > s’ — 1. Otherwise, we
divide out by the g.c.d. of the modulus and the coefficient of the unknown,
which is 27d, where d = g.c.d.(t,t’). The resulting congruence has a unique
solution modulo 2""%, and it has 2"d solutions modulo 2*'t/, as claimed.
This proves Lemma 2.

Proof of Proposition V.1.7. Case (i). We first suppose that n is divisible
by the square of some prime p. Say p*||n, & > 2. We show that in this
case n cannot even be a pseudoprime (let alone a strong pseudoprime) for
more than (n — 1)/4 bases b, 0 < b < n. To do this, we suppose that
b"~1 = 1 mod n, which implies that b"~! = 1 mod p% and we find a
condition modulo p? that b must satisfy. Recall that (Z/p®Z)* is a cyclic
group of order p(p — 1) (see Exercise 2 of §II.1), i.e., there exists an integer
g such that (Z/p*Z)* = {g,9% 9% ..,9°®~V}. According to Lemma 1,
the number of possibilities for b modulo p? for which »"~! = 1 mod p? is
d = g.c.d.(p(p — 1),n — 1). Since p|n, it follows that p fn — 1, and hence
p [d. Thus, the largest d can be is p— 1. Hence, the proportion of all b not
divisible by p? in the range from 0 to n which satisfy "' = 1 mod p? is
less than or equal to

1 Pseudoprimes 133

pol 1 L
pP—-1 p+1~ 4

Since the proportion of b in the range from 0 to n which satisfy =
1 mod n is less than or equal to this, we conclude that n is a pseudoprime to
the base b for at most 1/4 of the b, 0 < b < n. This proves the proposition
in Case (i). (Remark: This upper bound of 25% is actually reached in Case
(i) in the case when n =9, i.e., 9 is a (strong) pseudoprime for 2 out of the
8 possible values of b, namely, b = +1.)

Case (ii). We next suppose that n is the product of 2 distinct primes p
and q: n = pq. We write p—1 = 2%t with ¢ odd and g —1 = 2°"t" with ¢”
odd. Without loss of generality we may suppose that s’ < s”. In order for
an element b € (Z/nZ)* to be a base to which n is a strong pseudoprime,
one of the following must occur: (1) b* =1 mod p and b* = 1 mod g, or (2)
b2t = —1 mod p and b*"t = —1 mod q for some 7, 0 < r < s. According to
Lemma 1, the number of b for which the first possibility holds is the product
of g.c.d.(t,t') (the number of residue classes modulo p) times g.c.d-(t,t")
(the number of residue classes modulo g), which is certainly no greater than
#'t". According to Lemma 2, for each 7 < min(s’,s”) = s’ the number of b
for which b2t = —1 mod n is 27g.c.d.(t,t') - 27g.c.d.(t,t") < 47t't". Since
we have n —1 > ¢(n) = 98" +s" ¢4 it follows that the fraction of integers b,
0 < b < n, for which n is a strong pseudoprime is at most

P+t A+ 2+ 47
23' +s’ vt

I 4* -1
=2~ (1+ 5 =5).
If s” > &/, then this is at most 272*~1(2 + 4-) <2732 4+ § = , as desired.
On the other hand, if s’ = s”, then we note that one of the two inequalities
g.c.d.(t,t') < ¥, g.c.d.(t,t") < t” must be a strict inequality, since if we had
t|t and t|t, we could conclude from the congruence n—1=2°t =pg—1=
g—1mod t' that t'lg—1 = 2¢"¢" ie., t'|t”, and similarly t”|t} but this
would mean that ¢ = t” and p = ¢, a contradiction. Hence one of the two
g.c.d.’s is strictly less than ¢’ or t”, and so must be less at least by a factor
of 3 (since we're working with odd numbers). Thus, in this case we may
replace t't” by %t’ " in the above estimates for the number of b satisfying
each condition for n to be a strong pseudoprime to the base b. This leads
to the following upper bound for the fraction of integers b, 0 < b < n, for
which n is a strong pseudoprime:

1, g0 (2 4 1 1 1 1
_.2—2’ (-— —)<—-— -—= =< -,
32 373/ B 976 1
as desired. This completes the proof of the theorem in Case (ii).

Case (iii). Finally, we suppose that n is a product of more than 2
distinct primes: n = p1p2 - - - Pk, k > 3. We write p; — 1 = 2%¢; with Z; odd,
and we proceed exactly as in Case (ii). Without loss of generality, we may
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suppose that s; < s; is the smallest of the s;. We obtain the following upper
bound for the fraction of possible b’s for which n is a strong pseudoprime:

2k31 _ 1 2k _ 2 2k31
2—81—37“”—3k (1 —_——) < 2_k81( ’_“) =
+ ok _1 ) = 2k _ 1 + 2k — 1

2k — 2 1 <2_,c2’°—2 1
PR e R

because k > 3 in Case (iii). This concludes the proof of Proposition V.1.7.

Remarks. 1. In fact, in practice one does not have to choose a very
large number of bases b to be almost sure that n is prime if it is a strong
pseudoprime to each base b. For example, it has been computed that there
is only one composite number less than 2.5- 1019 — namely, n = 3215031751
— which is a strong pseudoprime to all four bases 2, 3, 5, 7.

_ 2.Itisnot entirely satisfactory to rely upon a probabilistic test. Despite
Emile Borel’s assurance, quoted at the beginning of the section, it would be
nice to have rapid methods to prove that a given n really is prime (especially,
if it is of some special practical or theoretical importance to know that the
particular n is prime). For example, suppose we knew that there is some
fairly small B (depending on the size of n) such that, if n is composite,
then there is some base b < B for which n is not a strong pseudoprime. If
we knew that, then in order to be absolutely sure that n is prime it would
suffice to test (3) only for the first B bases.

There is such a fact, but it depends upon an unproved conjecture
called the “Generalized Riemann Hypothesis.” The usual Riemann Hy-
pothesis is the assertion that all complex zeros of the so-called “Riemann
zeta-function” ((s) (which is defined to be the sum of the reciprocal s-th
powers when s > 1) which lie in the “critical strip” (where the real part of
s is between 0 and 1) must lie on the “critical line” (where the real part
of 5 is 1/2). The Generalized Riemann Hypothesis is the same assertion
for certain generalizations of {(s) called “Dirichlet L-series.” The following
fact, whose proof is beyond the scope of this book, shows that the Miller-
Rabin test (3) gives a deterministic primality test which takes polynomial
time (in logn), provided that one is willing to assume the validity of the
Generalized Riemann Hypothesis (GRH).

If the GRH is true, and if n is a composite odd integer, then n fails
the test (3) for at least one base b less than 2 log®n.

3. In the 1980’s an efficient deterministic primality test was developed
which, while strictly speaking not polynomial in logn, in practice can rou-
tinely prove primality of numbers of over a hundred decimal digits in a
matter of seconds (on current large computers). This method of Adleman-
Pomerance-Rumely and Cohen-Lenstra is based on the same ideas as the
primality tests considered above, except that it uses analogs of Fermat’s

— 2—k81 21—k S

1
4’

Little Theorem in extension fields of the rational numbers. A basic role .
is played by Gauss sums (certain types of which were introduced in §IL.2 |

in order to prove quadratic reciprocity) and the closely related “Jacobi
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sums.” A detailed discussion of their method would take us too far afield.
A thorough and readable account is given in the Cohen-Lenstra article in
Mathematics of Computation.

Ezxercises

1. (a) Find all bases b for which 15 is a pseudoprime. (Do not include the
trivial bases *1.)
(b) Find all bases for which 21 is a pseudoprime.
(c) Prove that there are 36 bases b € (Z/91Z)" (i.e., 50% of the possible
bases) for which 91 is a pseudoprime.
(d) Generalizing part (c), show that if p and 2p — 1 are both prime,
and n = p(2p — 1), then n is a pseudoprime for 50% of the possible
bases b, namely for all b which are quadratic residues modulo 2p — 1.

2. Let n be a positive odd composite integer, and let g.c.d.(b,n) = 1.
(a) Show that if p is a prime divisor of n and we set set n’ = n/p, then
n is a pseudoprime to the base b only if bv'~1 =1 mod p.
(b) Prove that no integer of the form n = 3p (with p >3 prime) can
be a pseudoprime to the base 2, 5 or 7.
(c) Prove that no integer of the form n = 5p (with p > 5 prime) can
be a pseudoprime to the base 2, 3 or 7.
(d) Prove that 91 is the smallest pseudoprime to the base 3.

3. Show that p? (with p prime) is a pseudoprime to the base b if and only
if 57~ = 1 mod p2

4. (a) Find the smallest pseudoprime to the base 5.
(b) Find the smallest pseudoprime to the base 2.

5. Let n = pq be a product of two distinct primes.
(a) Set d = g.c.d.(p — 1,¢ — 1). Prove that n is a pseudoprime to the
base b if and only if b% = 1 mod n. In terms of d, how many bases are
there to which n is a pseudoprime?
(b) How many bases are there to which n is a pseudoprime if ¢ = 2p+17
List all of them (in terms of p).
(c) For n = 341, what is the probability that a randomly chosen b
prime to n will be a base to which n is a pseudoprime?

6. Show that, if n is a pseudoprime to the base b € (Z/nZ)* then n is
also a pseudoprime to the base —b and to the base bl

7. (a) Prove that if n is a pseudoprime to the base 2, thensois N = 2"—1.
(b) Prove that if n is a pseudoprime to the base b, and if g.c.d.(b -
1,n) = 1, then the integer N = (b" —1)/(b— 1) is a pseudoprime to
the base b.
(c) Prove that there are infinitely many pseudoprimes to the base b for
b=2,3,5.
(d) Give an example showing that part (b) may be false if we omit the
condition g.c.d.(b—1,n) =1.
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8.

10.

11.

12.

13.
14.

15.

16.

17.

18.

Let b be any integer greater than 1, let p be an odd prime not dividing

b,b—1orb+1.Set n= (b2 —1)/(b*>—1).

(a) Show that n is composite.

(b) Show that 2p|n — 1.

(c) Show that n is a pseudoprime to the base b; conclude that for any

base b there are infinitely many pseudoprimes to the base b.

(a) Use the test (1) to show that 2047 = 2'! — 1 is composite.

(b) Explain why you should never test whether the Fermat number

22* 1 1 or the Mersenne number 2P — 1 is prime by checking (1) with
= 2. What about using the test (2) with b = 27 What about using

(3) with b = 2?

Suppose that m is a positive integer such that 6m + 1, 12m + 1 and

18m + 1 are all primes. Let n = (6m + 1)(12m + 1)(18m + 1). Prove

that n is a Carmichael number. Note. It is not known whether there are

infinitely many Carmichael numbers of the form n = (6m + 1)(12m +

1)(18m + 1), but heuristic arguments suggest that there are.

Show that the following are Carmichael numbers: 1105 = 5 - 13 - 17;

1729 = 7-13-19; 2465 = 5-17-29; 2821 = 7- 13- 31; 6601 = 7- 23 - 41;

29341 = 13- 37-61; 172081 = 7- 13- 31 - 61; 278545 = 5- 17- 29 - 113.

(a) Find all Carmichael numbers of the form 3pq (with p and g prime).

(b) Find all Carmichael numbers of the form 5pg (with p and g prime).

(c) Prove that for any fixed prime number 7, there are only finitely

many Carmichael numbers of the form rpg (with p and g prime).

Prove that 561 is the smallest Carmichael number.

Give an example of a composite number n and a base b such that

b(n=1)/2 = +1 mod n but n is not an Euler pseudoprime to the base b.

(a) Prove that if n is an Euler pseudoprime to the base b € (Z/nZ)",

th(-i‘n it is also an Euler pseudoprime to the base —b and to the base

b~

(b) Prove that if n is an Euler pseudoprime to the base b; and to the

base bq, then it is also an Euler pseudoprime to the base b = b1 ba.

Let n be of the form p(2p — 1), as in Exercise 1(d).

(a) Prove that n is an Euler pseudoprime for 25% of all possible bases

be (Z/nZ)*

(b) Find a class of numbers n of this type such that n is a strong

pseudoprime for 25% of all possible bases.

Let n be of the form (6m + 1)(12m + 1)(18m + 1), as in Exercise 10.

Prove that (a) if m is odd, then n is an Euler pseudoprime for 50% of

all possible bases b € (Z/nZ)*; and (b) if m is even, then n is an Euler

pseudoprime for 25% of all possible bases.

(a) Using the big-O notation, estimate the number of bit operations

required to perform the Miller-Rabin test on a number n enough times

so that, if n passes all the tests, it has less than a 1/m chance of being

composite (here n and m are very large).
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(b) Assuming the Generalized Riemann Hypothesis, estimate the num-

ber of bit operations required to perform the Miller-Rabin test on n

enough times to be sure that, if n passes all the tests, then it is prime.

19. (a) Prove that, if n is a pseudoprime to the base 2, then N =2" —1is
a strong pseudoprime and an Euler pseudoprime to the base 2.

(b) Prove that there are infinitely many strong pseudoprimes and Euler

pseudoprimes to the base 2.

90. Prove that, if n is a strong pseudoprime to the base b, then it is a
strong pseudoprime to the base b* for any integer k.

21. Let n be the Carmichael number 561.

(a) Find the number of bases b € (Z/561 Z)* for which 561 is an Euler

pseudoprime.

(b) Find the number of bases for which 561 is a strong pseudoprime,

and make a list of them.

22. Prove that if n is a prime power p*, where & > 1, then 7 is a strong
pseudoprime to the base b if and only if it is a pseudoprime to the base
b.

23. (a) Show that 65 is a strong pseudoprime to the base 8 and to the base
18, but not to the base 14, which is the product of 8 and 18 modulo
65.

(b) For any odd composite integer n, let (*) denote the assertion,

“Whenever n is a strong pseudoprime to the base b; and to the base

by it is a strong pseudoprime to the base b = byby” (in other words,

the strong pseudoprime property is preserved under multiplication of
bases). Prove that (x) holds if and only if n is a prime power or is

divisible by a prime which is = 3 mod 4.

24. (a) Prove that, if you find a b such that n is a pseudoprime but not a
strong pseudoprime to the base b, then you can quickly find a nontrivial
factor of n.

(b) Explain how to guard against this when choosing your n = pq in

the RSA cryptosystem.

Remark. In many primality tests, if a composite n happens to pass
some initial test and then fails a subsequent test, one not only learns that
n is composite, but at the same time one can quickly find a nontrivial
factor. Exercise 24 is an example of this: if n passes the pseudoprime test
to the base b and then fails the strong pseudoprime test to the base b, then
you can factor n. One can easily be misled into thinking that in this way
the primality tests can also be used for factorization. This is not the case.
Given a large composite number n (e.g., a product of two randomly selected
large primes), it is extremely unlikely that we would stumble upon a base
b for which n is a pseudoprime (see Exercise 5(a) above to get an idea
of the probability of stumbling upon such a b). Thus, the various refined
pseudoprime tests are useful only in convincing ourselves of the primality
of a number that really is prime; in practice, if we have a composite number
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that we want to factor, it will fail every single primality test we apply to
it, and the primality tests will not help us find a factor.
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2 The rho method

Suppose we know that a certain large odd integer n is composite; for ex-
ample, we found that it fails one of the primality tests in §1. As mentioned
before, this does not mean that we have any idea of what a factor of n
might be. Of the methods we have encountered for testing primality, only
the very slowest — trying to divide by the successive primes less than /n
— actually gives us a prime factor at the same time as it tells us that n
is composite. All of the faster primality test algorithms are more indirect:
they tell us that n must have proper factors, but not what they are.

The method of trial division by primes < /n can take more than
O(+/n) bit operations. The simplest algorithm which is substantially faster
than this is J. M. Pollard’s “rho method” (also called the “Monte Carlo”
method) of factorization.
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The first step in the rho method is to choose an easily evaluated map
from Z/nZ to itself, namely, a fairly simple polynomial with integex coef-
ficients, such as f(z) = z? + 1. Next, one chooses some particular value
T = zo (perhaps zo = 1 or 2, or perhaps it is a randomly generated inte-
ger) and computes the successive iterates of f: z1 = f(xo), z2 = f(f(Z0)),
z3 = f(f(f(z0))), etc. That is, we define

Tj+1 =f($j), j=0,1,2,....

Then we make comparisons between different z;’s, hoping to find two which
are in different residue classes modulo n but in the same residue class
modulo some divisor of n. Once we find such z;, zx, we have g.c.d.(z; —
Tk, n) equal to a proper divisor of n, and we are done.

Example 1. Let us factor 91 by choosing f(z) = z* + 1, zo = 1- Then
we have 71 = 2, 3 = 5, 3 = 26, etc. We find that g.c.d.(z3 — z2,n) =
g.c.d.(21,91) = 7, so 7 is a factor. Of course, this is a trivial example: we
could have found the factor 7 faster by trial division.

In the rho method it is important to choose a polynomial f(z) which
maps Z/nZ to itself in a rather disjointed, “random” way. For example,
we shall later see that f(z) must not be a linear polynomial, and in fact,
should not give a 1-to-1 map.

Let us suppose that f(z) is a “random” map from Z/nZ to itself, and
compute how long we expect to have to wait before we have two iterations
z; and zj such that z; — zx has a nontrivial common factor with n. We
do this by finding for a fixed divisor r of n (which, in practice, is not yet
known to us) the average (taken over all maps from Z/nZ to itself and
over all values zo) of the first index k such that there exists j < & with
z; = 7% mod 7. In other words, we regard f(z) as a map from Z/rZ to
itself and ask how many iterations are required before we encounter the
first repetition of values zx = z; in Z/rZ.

Proposition V.2.1. Let S be a set of T elements. Given a map f from
S to S and an element zo € S, let zj41 = f(z;) for j = 0,1,2,.... Let
A be a positive real number, and let £ =1+ [\/-27; ] Then the propottion
of pairs (f, zo) for which To,T1,...,Te are distinct, where f runs over all
maps from S to S and o Tuns over all elements of S, is less than e .

Proof. The total number of pairs is 7", because there are r choices
of zo, and for each of the r different z € S there are r choices of f(z). How
many pairs (f, o) are there for which o, z1, ..., are distinct? There are
r choices for zq, there are r — 1 choices for f(zo) = z1 (since this cannot
equal zg), there are 7 — 2 choices for f(z1) = 72, and so on, until f(z)
has been defined for z = zg,z1,...,%s—1. Then the value of f(x) for each
of the r — £ remaining z is arbitrary, i.e., there are rm—¢ possibilities for
those values. Hence, the total number of possible ways of choosing zo and
assigning the values f(z) so that x,...,z, are distinct is:
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I3
,’.r—l H(T - J)v
j=0

and the proportion of pairs having the stated property (i-e., the above
number divided by r"t1) is -

I ¢ .
rt1 r—j)= (l—l).
jl;[o( ) E .
The proposition states that the log of this is less than —\ (where £ =1+
[\/ 2Ar ] ). To prove the proposition, then, we take the log of the product on
the right, and use the fact that log(1—z) < —zfor0 <z <1 (geometrically,
this is simply the fact that the logarithm curve remains under the line which
is tangent to it at the point (1,0)). Using the formula for the sum of the
first £ integers, we have:

A . £ 2
_d j_-te+y £ (V2w
log(]l;];(l r)> < o =7 < < 2r ==

as required. This completes the proof of the proposition.

The significance of Proposition V.2.1 is that it gives an estimate for the
probable length of time of the rho method, provided that we assume that
our polynomial behaves like an average map from Z/rZ to itself. Before
explaining this estimate, we make a slight refinement of the rho method in
the interest of efficiency.

Recall that the tho method works by successively computing zx =
f(zk-1) and comparing zj with the earlier z; until we find a pair satisfying
g.cd.(zg — zj,n) = > 1. But as k becomes large, it becomes very time-
consuming to havé to compute g.c.d.(zx — z;,n) for each j < k. We now
describe a way to carry out the algorithm so as to make only one g-c.d.
computation for each k. First, observe that, once there is a kg and jo such
that zx, = x;, mod r for some divisor r|n, we then have the same relation
zx = z; mod r for any pair of indices j, k having the same difference
k —j = ko — jo- To see this, simply set k = ko +m, j = jo + m, and
apply the polynomial f to both sides of the congruence zx, = Tj, mod r
repeatedly, i.e., m times.

We now describe how the rho algorithm works. We successively com-
pute the z, and for each k we proceed as follows. Suppose k is an (h+1)-bit
integer, i.e., 2% < k < 2"*% Let j be the largest h-bit integer: j = 2k — 1.
We compare z with this particular z;, i.e., we compute g-cd.(zi — zj,n).
If this g.c.d. gives a nontrivial factor of n, we stop; otherwise we move on
to k+ 1.

This modified approach has the advantage that we compute only one
g.c.d. for each k. It has the disadvantage that we probably will not detect the
first time there is a ko such that g.c.d.(zk, —Zj,,n) = 7 > 1 for some jo < ko.
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However, before long we will detect such a pair z, z; whose difference has
a common factor with n. Namely, suppose that ko has h + 1 bits. Set
j=2h*1—1 and k = j+ (ko —jo), in which case j is the largest (h+ 1)-bit
integer and k is an (h+2)-bit integer such that g.c.d.(zx —z;,n) > 1. Notice
that we have k < 2h+2 = 4. 2P < dko.

Example 2. Let us return to Example 1 but compare each zx only
with the particular z; for which j is the largest integer < k of the form
2k — 1. Forn =91, f(z) = 22+ 1, 20 = 1 we have 2, = 2, 7, = 5,
T3 = 26 as before, and z4 = 40 (since 262 + 1 = 40 mod 91). Following
the algorithm described above, we first find a factor of n when we corpute
g.cd.(xqg — z3,n) = g.c.d.(14,91) = T.

Example 3. Factor 4087 using f(z) =2® + z+ 1 and zo = 2.

Solution. Our computations proceed in the following order:

T, = f(2) =7; g.cd.(x1 —To,n) = g.c.d.(7—2,4087) = 1;
Ty = f(7) = 57; g.c.d.(za — z1,n) = g.c.d.(57 — 7,4087) = |;
r3 = f(57) = 3307; g.c.d.(z3 — z1,n) = g.c.d.(3307 — 7, 4087) = 1;
T4 = £(3307) = 2745 mod 4087; g.c.d.(z4 — z3,n)

= g.c.d.(2745 — 3307,4087) = 1;
x5 = £(2745) = 1343 mod 4087; g.c.d.(zs — z3,7n)

= g.c.d.(1343 — 3307,4087) = 1;
T = f(1343) = 2626 mod 4087; g.c.d.(ze — 3,n)

= g.c.d.(2626 — 3307,4087) = 1:
z7 = f(2626) = 3734 mod 4087; g.c.d.(z7 — z3,n)

= g.c.d.(3734 — 3307, 4087) = 6L

Thus, we obtain 4087 = 61 - 67, and we are done.

Proposition V.2.2. Let n be an odd composite integer, and let 7 be
a nontrivial divisor of n which is less than /n (ie, T|n, 1 < 17 < y/n;
we suppose that we are trying to determine what v is). If a pair (f, zo)
consisting of a polynomial f with integer coefficients and an initial value
zo is chosen which behaves like an average pair (f, xo) in the sense of
Proposition V.2.1 (with f a map from Z/rZ to itself and zo an integer),

“then the tho method will reveal the factor r in O({/nlog®n) bit operations

with a high probability. More precisely, there ezists a constant C such that
for any positive real number X the probability that the tho method fails to
ﬁn;‘i a nontrivial factor of n in CV/X ¥/nlog®n bit operations is less than
e~

Proof. Let C; be a constant such that g.c.d.(y — z,n) can be computed
in C1log3n bit operations whenever y, z < n (see §1.3). Let C3 be a constant
such that the least nonnegative residue of f(z) modulo n can be computed
in Calog®n bit operations whenever z < n (see §L.1). If ko is the first
index for which there exists jo < ko with zx, = zj, mod r, then the rho
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algorithm as described above finds 7 in the k-th step, where k < 4ko.
(Strictly speaking, it could happen that zx — Z; has a larger g.c.d. with
n, ie., g.c.d.((zx — z;)/r, n/r) > 1; but the chance of a random integer
having nontrivial g.c.d. with n/r is small, especially if n is a product of a
small number of large primes. So we shall neglect this possibility, which at
worse would have the effect of requiring a slightly larger constant C' in the
proposition.)

Thus, the number of bit operations needed to find r is bounded by
4ko(Cilog®n +Cslog*n). According to Proposition V.2.1, the probability
that kg is greater than 1 + V27 is less than e~ If kg is not greater than
1 + v/2)r, then the number of bit operations needed to find r is bounded
by (here we use the fact that r < y/n):

4(1+ V2>r )(Cilogn + Calog®n) < 4(1+ V2V /) (Cilog®n + Chlog®n).

If we choose C slightly greater than 4/2(C; + C3) (so as to take care of
the added 1), we conclude, as claimed, that the factor r will be found in
CVX ¥nlog®n bit operations, unless we made an unfortunate choice of
(f, o), of which the likelihood is less than e~

Remarks. 1. The basic assumption underlying the rho method is that
polynomials can be found which behave like random maps in the sense of
Proposition V.2.1. This has not been proved. However, practical experience
factoring numbers by the rho method suggests that the “average” poly-
nomial behaves like the “average” map, and that some very simple poly-
nomials (the most popular one being f (z) = 2? + 1) have this “average”
property.

2. According to Proposition V.2.2, if we choose A large enough to have
confidence in success — for example, e~ is only about 0.0001 for A = 9
— then we know that for an average pair (f, Zo) we are almost certain to
factor n in 3C ¥/nlog3n bit operations.

Ezercises

In Exercises 1-4, use the rho method with the indicated f (z) and zg to
factor the given n. In each case compare zj only with the z; for which
j =2h — 1 (where k is an (h + 1)-bit integer).

1. 22-1,z9=2,n=9L

2. z?24+1,z0=1,n=2805L

3. z2-1,z0=5,n=7T03L

4 Btz+1l zo=1n=270L

5. Let S be a set containing 7 elements, and let the maps f in the pairs

(f, o) range over all bijections of the set S to itself (i.e., f is a 1-to-
1 correspondence between S and itself — no two z’s have the same
F(z)). As before, let z;41 = f(z;) for j = 0,1,2,.... For each pair
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(f, o), let k denote the first index such that there exists j < k for
which f(zx) = f(z;). Prove that

(a) k is at most 7, and for each value from 1 to r there is a 1/r
probability that k is that value;

(b) the average value of k is (7 +1)/2 (where the average is taken over
all pairs (f, o) with f a bijection).

6. Using Exercise 5, explain why a linear polynomial az + b should never
be chosen for f(z) in the rho method.

7. Suppose that you are using the rho method to factor a number which
has a prime divisor . You decide to choose f(z) = z? as your function
to be iterated. (This is a bad choice of f(z), as will become clear
below.) We are interested in determining the first value of k such that
zr = zp mod r for some £ < k, i.e., the first value of k such that
Zo,Z1,...,Zk are not all distinct modulo r. Suppose that you happen
to choose zo which is a generator of (Z/rZ)* Set r — 1 = 2°t, where ¢
is odd.

(a) Write a congruence modulo r —1 which is equivalent to zx = z¢ (equal-
ity means congruence modulo 7).

(b) Find the first values of k and ¢ for which the condition in (a) holds,
expressing them in terms of s and the binary expansion of the fraction
1/t.

(c) Roughly how large is k compared to r? Why is f(z) a bad choice of
function for the rho method?
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3 Fermat factorization and factor bases

Fermat factorization. As we saw earlier (see Exercise 3 of §1.2 and Exercise
4 of §IV.2), there’s a way to factor a composite number n that is efficient if
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n is a product of two integers which are close to one another. This method,
called “Fermat factorization,” is based on the fact that n is then equal to
a difference of two squares, one of which is very small.

Proposition V.3.1. Let n be a positive odd integer. There is a 1-to-
1 correspondence between factorizations of n in the form n = ab, where
a > b> 0, and representations of n in the form t* — s%, where s and t are
nonnegative integers. The correspondence is given by the equations
a+b a—b

) §= )

2 2

Proof. Given such a factorization, we can write n = ab = ((a+b)/2)* =
((a—b)/2)?, so we obtain the representation as a difference of two squares.
Conversely, given n = t2 — 52 we can factor the right side as (¢ + s)(t—s).
The equations in the proposition explicitly give the 1-to-1 correspondence
between the two ways of writing n.

If n = ab with a and b close together, then s = (a — b)/2 is small, and
so t is only slightly larger than \/n. In that case, we can find a and b by
trying all values for ¢ starting with [\/ﬁ ] + 1, until we find one for which
t2 — n = s? is a perfect square.

In what follows, we shall assume that n is never a perfect square, so
as not to have to worry about trivial exceptions to the procedures and
assertions.

Example 1. Factor 200819.

Solution. We have [\/200819] +1 = 449. Now 4492 — 200819 = 782,
which is not a perfect square. Next, we try t = 450: 450% —200819 = 1681 =
412 Thus, 200819 = 4502 — 41% = (450 + 41)(450 — 41) = 491 - 409.

Notice that if the a and b are not close together for any factorization
n = ab, then the Fermat factorization method will eventually find a and b,
but only after trying a large number of ¢ = [ﬁ] +1, [\/H] +2,.... There
is a generalization of Fermat factorization that often works better in such a
situation. We choose a small k, successively set ¢t = [Vkn] +1, [VEn] +2,
etc., until we obtain a t for which t2 — kn = 8% is a perfect square. Then
(t + s)(t — s) = kn, and so t + s has a nontrivial common factor with n
which can be found by computing g.c.d.(t + s,n).

Example 2. Factor 141467.

Solution. If we try to use Fermat factorization, setting t = 377, 378, ...,
after a while we tire of trying different t’s. However, if we try ¢ = [\/.?Tﬁ]
+1 = 652,... we soon find that 655° — 3 - 141467 = 682, at which point
we compute g.c.d.(655 + 68,141467) = 241. We conclude that 141467 =
241 - 587. The reason why generalized Fermat factorization worked with
k = 3 is that there is a factorization n = ab with b close to 3a. With k =3
we need to try only four #'s, whereas with simple Fermat factorization (i.e.,
k = 1) it would have taken thirty-eight t’s.

Factor bases. There is a generalization of the idea behind Fermat fac-
torization which leads to a much more efficient factoring method. Namely,

t= a=t+s, b=t-s.
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we use the fact that any time we are able to obtain a congruence of the
form t> = s? mod n with t # +s mod n, we immediately find a factor
of n by computing g.c.d.(t + s,n) (or g.c.d.(t — s,n)). This is because we
have n|t? — 52 = (t + s)(t — s), while n does not divide ¢t + s or t — s; thus
g.c.d.(t + s,n) must be a proper factor a of n, and then b = n/a divides
g.c.d.(t — s,n).

Example 4. Suppose we want to factor 4633, and happen to motice
that 1182 leaves a remainder of 25 = 52 modulo 4633. Then we find that
g.c.d.(118 + 5,4633) = 41, g.c.d.(118 — 5,4633) = 113, and 4633 = 41 - 113.
A skeptic might wonder how in Example 4 we ever came upon a number
such as 118 whose square has least positive residue also a perfect square.
Would a random selection of various b soon yield one for which the least
positive residue of b> mod n is a perfect square? That is very unlikely if n
is large, so it is necessary to generalize this method in a way that allows
much greater flexibility in choosing the b’s for which we consider b2 mod n.
The idea is to choose several b;’s which have the property that b? mod n is
a product of small prime powers, and such that some subset of them, when
multiplied together, give a b whose square is congruent to a perfect square
modulo n. We now give the details.

By the “least absolute residue” of a number @ modulo n we mean the
integer in the interval from —n/2 to n/2 to which a is congruent. We shall
denote this a mod n.

Definition. A factor baseis aset B = {p1,pq, ..., pn} of distinct primes,
except that p; may be the integer —1. We say that the square of an integer
b is a B-number (for a given n) if the least absolute residue b mod = can
be written as a product of numbers from B.

Example 5. For n = 4633 and B = {-1, 2, 3}, the squares of the three
integers 67, 68 and 69 are B-numbers, because 672 = —144 mod 4633,
682 = —9 mod 4633, and 69% = 128 mod 4633.

Let F% denote the vector space over the field of two elements which
consists of h-tuples of zeros and ones. Given n and a factor base B con-
taining A numbers, we show how to correspond a vector € € F% to every
B-number. Namely, we write b> mod n in the form H;-;l p?j and set the
Jj-th component €; equal to a; mod 2, i.e., €; = 0 if a; is even, and €; = 1
if a; is odd.

Example 6. In the situation of Example 5, the vector corresponding
to 67 is {1,0, 0}, the vector corresponding to 68 is {1,0,0}, and the vector
corresponding to 69 is {0,1,0}.

Suppose that we have some set of B-numbers b? mod n such that the
corresponding vectors €; = {1, . .., &} add up to the zero vector in Fj.
Then the product of the least absolute residues of b? is equal to a product
of even powers of all of the p; in B. That is, if for each ¢ we let a; denote
the l.east absolute residue of b2 mod n and we write a; = szl p;’"", we
obtain
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h
Hai = Hpjziaij)

Jj=1
with the exponent of each p; an even number on the right. Then the right
hand side is the square of []; p;.” with 7; = 3 Y; @ij- Thus, if we set
b = [];b mod n (least positive residue) and ¢ = []; p;’ mod n (least
positive residue), we obtain two numbers b and ¢, constructed in quite
different ways (one as a product of b;'s and the other as a product of p;’s)
whose squares are congruent modulo n.

It may happen that b = ¢ mod n, in which case we are out of luck,
and we must start again with another collection of B-numbers whose corre-
sponding vectors sum to zero. This will happen, for example, if we foolishly
choose b; less than 1/n/2, in which case all of the vectors are zero-vectors,
and we end up with a trivial congruence.

But for more randomly chosen b;, because 7 is composite we would
expect that b and ¢ would happen to be congruent (up to £1) modulo n
at most 50% of the time. This is because any square modulo n has 2" > 4
square roots if n has r different prime factors (see Exercise 7 of §1.3); thus
a random square root of b has only a 2 /2r < -;- chance of being either b or
—b. And as soon as we have b and ¢ with b? = ¢? mod n but b # +cmod n
we can immediately find a nontrivial factor g.c.d.(b+c,n), as we saw before.
Thus, if we go through the above procedure for finding b and ¢ until we find
a pair that gives us a nontrivial factor of n, we see that there is at most a
29—k probability that this will take more than k tries.

In practice, how do we choose our factor base B and our b;? One
method is to start with B consisting of the first h primes (or the first A—1
primes together with p; = —1) and choose random b;’s until we find several
whose squares are B-numbers. Another method is to start by choosing some
b;’s for which b? mod n (least absolute residue) is small in absolute value
(for example, take b; close to Vkn for small multiples kn; another way will
be explained in §4). Then choose B to consist of a small set of small primes
(and usually p; = —1) so that several of the b2 mod n can be expressed in
terms of the numbers in B.

Example 7. In the situation of Examples 5-6, we actually chose 67 and
68 because they are close to v/4633. After finding that 672 = —144 mod 4633
and 682 = —9 mod 4633, we saw that we can choose B = {-1,2,3}. As
we saw before, the vectors corresponding to by = 67 and by = 68 are
{1,0,0} and {1,0,0}, which add up to the zero vector. We compute b =
6768 mod 4633 = —77 and ¢ = 272 - 37 (we can ignore the power of —1 in
c), i-e., ¢ = 36. Fortunately, —77 # 436 mod 4633, and so we find a factor
by computing g.c.d.(=77 + 36,4633) = 41.

When can we be sure that we have enough b; to find a sum of €;
which is the zero vector? In other words, given a collection of vectors in
F%, when can we be sure of being able to find a subset of them which sums
to zero? To ask for this is to ask for the collection of vectors to be linearly
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fiependent over the field F. According to basic linear algebra (which applies
just as well over the field F» as over the real numbers), this is guaranteed
to occur as soon as we have h + 1 vectors. Thus, at worst we’ll have to
generate h + 1 different B-numbers in order to find our first example of
(IT;%:)* = ([1;p;")* mod n. (Example 7 shows that we may very well
obtain linearly dependent vectors sooner; in that case h = 3, and we were
able to stop after finding two B-numbers.) If h is large, we miéht not be able
to notice by inspection a subset of vectors which sums to zero; in that case
we must write the vectors as rows in a matrix and use the row-reductim;
technique of linear algebra to find a linearly dependent set of rows.

Example 8. Let n = 4633. Find the smallest factor-base B such that
the squares of 68, 69 and 96 are B-numbers, and then factor 4633.

Solution. As we saw before, 682 mod n and 692 mod n are products
of —1, 2, and 3; since 962 mod n = —50, the least absolute residues of all
three squares can be written in terms of the factor-base B = {-1,2,3,5}
We already computed the vectors e = {1,0,0,0} and e; = {6,1’ 6 0}‘
corresponding to 68 and 69, respectively. Since 962 = —50 mod 463,3 ’we
have e3 = {1,1,0,0}. Since the sum of these vectors is zero, we can t’;ake
b=68-69-96 = 1031 mod 4633 and ¢ = 2% - 3- 5 = 240. Then we obtain
g.c.d.(240 + 1031, 4633) = 41.

Examples 7 and 8 indicate how one might proceed systematically to
find several b; such that the least absolute residue b2 mod n is a product of
small primes. The likelihood that b2 mod n is a product of small primes is
greater if this residue is small in absolute value. Thus, we might successively
try integers b; close to Vkn for small integers k. For example, we might
choose [\/m and[ kn|+1lfork=1,2,.... ’

Example 9. Let us factor n = 1829 by taking for b; all integers of the
form [v1829k] and [v1829k] + 1, k = 1,2,..., such that b} Tiod n is a
product of primes less than 20. For such b; we write b7 mod n = [ p;¥
.":md tabulate the ;. After taking k = 1,2, 3,4, we have the following t]a.ble
in which the number at the top of the j-th column is p; and the entry ir;
the i-th row beneath p; is the power of p; which occurs in b2 mod n:

b; -1 2 3 5 7 11 13
42 1 - — 1 - - 1
43 -2 -1 - - -
61 - -2 -1 - -
74 1 - - - - 1 -
85 1 - - — 1 - 1
86 -4 -1 - - -

We now look for a subset of rows whose entries sum to an even nurnber
1r}1l each column. We see at a glance that the 2nd and 6th rows sum to
the evenrow — 6 — 2 — — — . This leads to the con

. gruence
(b - bg)? = (28/2 - 5%/2)2 mod m, i.e., (43 - 86)% = 40 mod 1829. But since
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43 - 86 = 40 mod 1829, we have found only a trivial relationship. Thus,
we have to look for another subset of rows which sum to a row of even
numbers. We notice that the sum of the first three rows and the fifth row
is 22222 — 2 ,and this gives the congruence (42-43-61- 85)2 =
(2-3-5-7-13) mod n, i.e., 1459* = 901? mod 1829. We conclude that a
factor of 1829 is g.c.d.(1459 + 901,1829) = 59.

Factor base algorithm. We now summarize a systematic method to
factor a very large n using a random choice of the b;. Choose an integer y of
intermediate size, for example, if n is a 50-decimal-digit integer, we might
choose y to be a number with 5 or 6 decimal digits. Let B consist of —1
and all primes < y. Choose a large number of random b;, and try to express
b? mod n (least absolute residue) as a product of the primes in B. Once you
obtain a large quantity of B-numbers b? mod n (w(y) + 2 is enough, where
7(y) denotes the number of primes < y), take the corresponding vectors in
F? (where h = m(y) + 1) and by row-reduction determine a subset of the
b; whose corresponding € ; sum to zero. Then form b = [[b; mod n and
¢ = []p}’ mod n, as described above. Then b2 = ¢ mod n. If b = £c mod n,
start again with a new random collection of B-numbers (or, to be more
efficient, choose a different subset of rows in the matrix of € ’s which sum
to zero, if necessary finding a few more B-numbers and their corresponding
rows). When you finally obtain b* = ¢® mod n and b # +c mod n, compute
g.c.d.(b+ ¢,n), which will be a nontrivial factor of n.

Heuristic time estimate. We now give a very rough derivation of an
estimate for the number of bit operations it takes to find a factor of a very
large n using the algorithm described above. We shall use several simplifying
assumptions and approximations, and in any case the result will only be a
probabilistic estimate. If we are very unlucky in our random choice of b;,
then the algorithm will take longer.

We shall need the following preliminary facts:

Fact 1 (Stirling’s formula). log(n!) is approximately nlogn —n.

By “approximately,” we mean that the difference grows much more
slowly than n as n — oco. This can be proved by observing that log(n!)
is the right-endpoint Riemann sum (with endpoints at 1,2, 3,...) for the
definite integral fln logrdz =nlogn — n + 1.

Fact 2. Given a positive integer N and a positive number u, the total
number of nonnegative integer N-tuples a; such that Zj=1 a; < u is the

binomial coefficient ([“];,'N ).

Here [ ] denotes the greatest integer function. Fact 2 can be proved by
letting each N-tuple solution ; correspond to the following choice of N
integers 3; from among 1,2,...,[ul + N.Let By = ey +1,and for j > 1
let Bj+1 = B;j + ajy1 + 1, Le,, we choose the §;'s so that there are o;
numbers between 8;_1 and §;. This gives a 1-to-1 correspondence between
the number of solutions and the number of ways of choosing N numbers
from a set of [u] + N numbers.
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Now, in order to estimate the time our algorithm takes, a crucial step
is to estimate the probability that a random number less than z will be a
product of primes less than y (where y is a number much less than z). To
do this, we first let u denote the ratio f—Zi—Z- That is, if z is an r-bit integer
and y is an s-bit integer, then u is approximately the ratio of digits 7 /s.

In the course of the computations, we shall want to make some simpli- -
fications by ignoring smaller terms. We shall do this under the assumption
that u is much smaller than y. We let m(y), as usual, denote the number of
prime numbers which are < y. Since (y) is approximately equal to y/logy,
by the Prime Number Theorem, we are also assuming that we are working
with values of u which are much smaller than 7(y). In a typical practical
application of the algorithm, we might take y, u, = of approximately the
following sizes:

y ~ 10° (so that m(y) ~ 7-10* and logy =~ 14);
u=8;
z ~ 10"

It is customary to let ¥(z,y) denote the number of integers < = which
are not divisible by any prime greater than y, i.e., the number of integers
which can be written as a product [] p?" < z, where the product is over
all primes < y and the a; are nonnegative integers. There is obviously a
1-to-1 correspondence between w(y)-tuples of nonnegative integers o; for
which []; p;"' < z and integers < z which are not divisible by any prime
greater than y. Thus, ¥(z,y) is equal to the number of integer solutions ¢;
to the inequality Z;’S’l) ajlogp; < logx, as we see by taking logarit hms.
We now observe that most of the p;’s have logarithms not too much less
than logy. This is because most of the primes less than y have almost
the same number of digits as y; only relatively few have many fewer digits
and hence a much smaller logarithm. Thus, we shall allow ourselves to
replace log p; by logy in the previous inequality. Dividing both sides of the
resulting inequality by log y and replacing log z/log y by u, we can say that
¥(z,y) is approximately equal to the number of solutions of the inequality
Y% <u.

We now make another important simplification, replacing the number
of variables 7(y) by y. This might appear at first to be a rather reckless
modification of our problem. And in fact, replacing m(y) by y does introduce
nontrivial terms; however, it turns out that those terms cancel, and the net
result is the same as one would get by a much more careful approximation of
¥(z,y). Thus, we shall suppose that ¥(z, ) is roughly equal to the number
of y-tuple nonnegative integer solutions to the inequality ELI a; <u.

But, by Fact 2 (with N = y), this means that ¥(z,y) is approximately
([“]: ¥). We now estimate log(!%ﬂ), which is the logarithm of the proba-
bility that a random integer between 1 and z is a product of primes < y.
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Notice that log z = ulogy, by the definition of u. We use the approximation
for ¥(z,y) and Fact 1: ‘

x, u !

o 22 (2
~ ([u] + y)log([u] +v) — ([u] +y)—

— ([u] log [u] — [u]) — (ylogy —y) —ulogy.

)—ulogy

We now make some further approximations. First, we replace [u] by wu.
Next, we note that, because u is assumed to be much smaller than y, we
can replace log(u + y) by logy. After cancellation we obtain

log(g,—(zﬁ) ~ —ulogu,

i.e.,
____!"(x,y) ~uTh
z
For example, this says that if z ~ 10% and y ~ 10° as above, then the
probability that a random number between 1 and z is a product of primes
< y is about 1 out of 8%

We are now ready to estimate the number of bit operations required to
carry out the factor base algorithm described above, where for simplicity we
shall suppose that our factor base B consists of the first h = w(y) primes,
i.e., all primes < y. To make our analysis easier, we shall suppose that B
does not include —1, and that we consider the least positive residue (rather
than the least absolute residue) of b? mod n.

Thus, we estimate the number of bit operations required to carry out
the following steps: (1) choose random numbers b; between 1 and n and
express the least positive residue of b2 modulo n as a product of primes
< y if it can be so expressed, continuing until you have m(y) + 1 different
b’s for which b2 mod n is written as such a product; (2) find a set (')f
linearly dependent rows in the corresponding ((w(y) + 1) x m(y))-matrix
of zeros and ones to obtain a congruence of the form b = mod n;
(3) if b = *c mod n, repeat (1) and (2) with new b; until you obtain
b2 = ¢2 mod n with b % *c mod n, at which point find a nontrivial factor
of n by computing g.c.d.(b+ ¢, n).

Assuming that the b2 mod n (meaning least positive residue of b?
modulo n) are randomly distributed between 1 and n, by the argument
above we expect that it will take approximately u* tries before we find a
b; such that b? mod n is a product of primes < y, where u = logn/logy.
We will later decide how to choose y so as to minimize the length of time.
The point is that choosing y large would make u* small, and so we would
frequently encounter b; such that b2 mod n is a product of primes < y.
However, in that case the factorization of b? mod n into a product involving
all of those primes — which we would have to do m(y) + 1 times — and
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then the row reduction of the matrix would all be very time consuining.
Conversely, if we choose y fairly small, then the latter tasks would be easy,
but it would take us a very long time to find any b;’s for which b? mod n
is divisible only by primes < y, because in that case u* would be very
large. So y should be chosen in some intermediate range, as a compromise
between these two extremes.

In order to decide how y should be chosen, we first make a very rough
estimate in terms of y (and n, of course) of the number of bit operations.
We then minimize this with respect to y (using first year calculus and some
simplifying approximations), and find our time estimate with y chosen so
that the time is minimized.

Suppose that n is an r-bit integer and y is an s-bit integer; then u is
very close to r/s. First of all, how many bit operations are needed for each
test of a randomly chosen b;? We claim that the number of operations is
polynomial in r and y, i.e., it is O(r'e**) for some (fairly small) integers
k and [. It takes a fixed amount of time to generate a random bit, and
so O(r) bit operations to generate a random integer b; between 1 and n.
Next, computing b? mod n takes O(r?) bit operations. We must then divide
b2 mod n successively by all primes < y which divide it evenly (and by any
power of the prime that divides it evenly), hoping that when we’re done
we’ll be left with 1. A simple way to do this (though not the most efficient)
would be to divide successively by 2 and by all odd integers p from 3 to y,
recording as we go along what power of p divides b2 mod n evenly. Notice
that if p is not prime, then it will not divide evenly, since we will have
already removed from b mod n all of the factors of p. Since a division of
an integer of < r bits by an integer of < s bits takes time O(rs), we see
that each test of a randomly chosen b; takes O(rsy) bit operations.

To complete step (1) requires testing approximately u*(7(y)+1) values
of b;, in order to find (y) + 1 values for which b2 mod n is a product of
primes < y. Since 7(y) ~ = = O(y/s), this means that step (1) takes
O(u*ry?) bit operations.

Step (2) then involves operations which are polynomial in y and r (such
as matrix reduction and finding b and ¢ modulo n). Thus, step (2) takes
O(y’r") bit operations for some integers j and h. Each time we perform
steps (1)—(2) there is at least a 50% chance of success, i.e., of finding that
b # +c mod n. More precisely, the chance of success is 50% if n is divisible
by only two distinct primes, and is greater if n is divisible by more primes.
Thus, if we are satisfied with, say, a 1 — 2759 probability of finding a non-
trivial factor of n, it suffices to go through the steps 50 times. Taking this
as good enough for all practical purposes, we end up with the estimate

0(50(u*r?y? + yirh)) = O(rhuty?) = O(rhutek®) = O(rh (r/s)™/2e*?),

for suitable integers h and k.
We now find y — equivalently, s — for which this time estimate is
minimal. Since 7, the number of bits in n, is fixed, this means minimizing
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(r/s)™/2€** with respect to s, or equivalently, minimizing its log, which is
Llogs + ks. Thus, we set .

T T
0= 5;(21092 + ks) = —;g(logg + 1) +h~-Tlogs + k,
i.e., we choose s in such a way that ks is approximately equal to 5 log %,
in other words, in such a way that the two factors in (r/s)"/*eF* are ap-
proximately equal. Because k is a constant, it follows from the above ap-
proximate equality that s* has the same order of magnitude as 7 log(r/s) =
r(logr —log s), which means that s has order of magnitude between /7 a.nd
/rlogr. But this means that log s is approximately %log T, a.nd so, making

the substitution log s =~ %log r, we transform the above relation to:

r i ~ ./~ logr
Oz—glogr + k; 1€, s~ 2% grT.

With this value of s, we now estimate the time. Since the two factors
(r/s)™/* and %% are approximately equal for our optimally chosen s, the

V2k /rlogr .
time estimate simplifies to O(e?**) = O(e ). Replacing the con-
stant v/2k by C, we finally obtain the following estimate for the number of
bit operations required to factor an r-bit integer n:

O(eC rlogr).

The above argument was very rough. We made no attempt to. j}ls-
tify our simplifications or bound the error in our approximat.e eq1'1aht1es.
In addition, both our algorithm and our estimate of its running time are
probabilistic.

Until the advent of the number field sieve very recently (see the remark
at the end of §5), all analyses of the running time of the best general-purpose

factoring algorithms known led to estimates of the form O (eCV"1°5’ .

In some cases, the estimates were proved rigorously, and in other cases
they relied upon plausible but unproved conjectures. The main difference
between the time estimates for the various competing algorithms was the
constant C in the exponent. In this respect the factoring problem has had
a history quite different from the primality problem considerec} in §1, where
improvements in running time (especially of deterministic primality teﬁ‘ts)
have been dramatic. For a detailed survey and comparison of the factoring
algorithms that were known in the early 1980’s, see Pomerance’s 1982 article
cited in the references below.

Remark. Since 7 = O(logn), the above time estimate can also be
expressed in the form

C y/lognloglogn
Time(Factor n) = O(e )
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Except for the number field sieve, all of the asymptotically fast general
factoring algorithms have conjectured running times of the above form with
C =1+ ¢ for € arbitrarily small.

Implications for RSA. Recall that the security of the RSA public key
cryptosystem (see § IV.2) depends upon the circumstance that factoring a
very large integer of the form n = pq is much more time consuming than
the various tasks which legitimate users of the system must perform, tasks
which are polynomial time or near-polynomial time (primality testing) as
functions of the number r of bits in n. We have just seen why time estimates

C/rl
of the form O(e s r) tend to arise when analyzing factoring algorithms.

Since a polynomial function of r can be written in the form O(e€ 9 7), we
see that for large r the time required for factorization is indeed much larger
than for polynomial time or near-polynomial time algorithms. (However, the

. . . . . C !
factoring algorithms with time estimate of the form O(e ¥ ' ) are better

for large r than the rho method, which has time estimate approximately
O(¥/n) = O(e°"), where C = 1 l0g2.)

Finally, we note that the question of replacing v/r logr in the exp onent
by a smaller function of 7 is not the only matter of practical importance in
evaluating the security of the RSA system. After all, a polynomial function

Cz 4/
of the number of bits r becomes much smaller than Cie rioar only when

r is large, and how large r must be taken depends strongly on the values of
the constants C; and C». So even the discovery of a factoring algorithm with
the same time estimate except with smaller constants would have practical
implications for the usability of the RSA public key cryptosystem.

FEzercises

1. Use Fermat factorization to factor: (a) 8633, (b) 809009, (c) 92296873,
(d) 88169891, (e) 4601.

2. Prove that, if n has a factor that is within ¢/n of \/n, then Fermat
factorization works on the first try (i.e., for t = [\/ﬁ] +1).

3. (a) Prove that if k = 2, or if k is any integer divisible by 2 but not by 4,
then we cannot factor a large odd integer n using generalized Fermat
factorization with this choice of k.

(b) Prove that if k¥ = 4, and if generalized Fermat factorization works
for a certain ¢, then simple Fermat factorization (with k£ = 1) would
have worked equally well.

4. Use generalized Fermat factorization to factor: (a) 68987, (b) 29895581,
(c) 19578079, (d) 17018759.

5. Let n = 2701. Use the B-numbers 522, 532 mod n for a suitable factor-
base B to factor 2701. What are the € ’s corresponding to 52 and
537

6. Let n = 4633. Use 68, 152 and 153 with a suitable factor-base B to
factor 4633. What are the corresponding vectors?
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7. (a) Prove that: logn! — (nlogn —n)= O(logn).
(b) Derive the more precise estimate: logn!— ((n+3)logn —n) = O(1).
(c) What is the expected value of log j for a randomly chosen integer
j between 1 and y?

8. (a) What is the probability that a randomly chosen set of k vectors in

7 is linearly independent (where k < n)?

(b) What is the probability that 5 randomly chosen vectors in F3 are
a basis?

9. Let n be an r-bit integer. By what factor does each of the expressions

rlogr

{/n (that appears in the time estimate for the rho method) and e
(that appears in the estimate for the factor base method) increase if n
increases from a 50-decimal-digit to a 100-decimal-digit integer?

10. (a) Suppose that f(s) is a positive monotonically decreasing function
and g(s) is a positive monotonically increasing function on an interval,
and suppose that f(so) = g(so). Prove that the function h(s) = f(s)+
g(s) “essentially” reaches its minimum at so, in the sense that the
minimum value of h(s) is between h(so) and 1 h(s0)-

(b) Suppose that f(s) > 1lisa monotonically decreasing function and
g(s) > 1 is a monotonically increasing function on an interval, and
suppose that f(sp) = g(so). Prove that the function h(s) = f(s)g(s)
“essentially” reaches its minimum at Sp, in the sense that the minimum
value of h(s) is between h(so) and /h(so)-

(c) Using part (b), show that the function h(s) = (r/s)"/* e on the
interval (0, ) (here k and r are positive constants) “essentially” reaches
its minimum when (r/s)™/* = e**.

References for § V.3

1. L.E. Dickson, History of the Theory of Numbers, Vol. 1, Chelsea, 1952,

p- 357.
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646.

4. C.Pomerance, “Analysis and comparison of some integer factoring al-
gorithms,” Computational Methods in Number Theory, Part I, Math-
ematisch Centrum (Amsterdam), 1982.
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4 The continued fraction method

In the last section, we saw that the factor-base method of finding a non-
trivial factor of a large composite integer n works best if one has a good
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method of finding integers b between 1 and n such that the least abso-
lute residue b2 mod n is a product of small primes. This is most likely to
occur if the absolute value of b> mod n is small. In this section we de-
scribe a method (originally due to Legendre) for finding many b such that
|62 mod n| < 24/n. This method uses “continued fractions,” so we shall
start with a brief introduction to the continued fraction representation of
a real number. Our account will describe only those features which wall be
needed here; the reader interested in a more thorough treatment of contin-
ued fractions should consult, for example, Davenport’s classic and readable
book (see the references at the end of the section).

Continued fractions. Given a real number z, we construct its continued
fraction expansion as follows. Let ag = [z] be the greatest integer not greater
than z, and set £g = = — ag; let a; = [1/zo], and set z; = 1/xg — a1 ; and
for i > 1, let a; = [1/z;_1], and set z; = 1/x;_) — a;. If/when you find
that 1/z;_; is an integer, you have z; = 0, and the process stops. It is not
hard to see that the process terminates if and only if z is rational (because
in that case the z; are rational numbers with decreasing denominators).

Because of the construction of ag, a1, ..., a;, for each ¢ you can write
1
T =ag+ R 1 )
a
1 A 1
a CECIRY
2 a; +;

which is usually written in a more compact notation as follows:

pas L 11 1
0T G+ aot az+  ait+azi

Suppose that z is an irrational real number. If we carry out the above
expansion to the i-th term and then delete z;, we obtain a rational number
b;/c;, called the i-th convergent of the continued fraction for z:

b; 1 1 1 1 1

C; a0 ai+ az+ az+ a1+ a;

Proposition V.4.1. In the above notation, one has:

b —ag. b1 _ agay+l. by _ aibi_1+bi_2 . .
(@) =92 o o T Gt toa fori>2;

(b) the fractions on the right in part (a) are in lowest terms, i.e., if b; =
a;bi—1 + bi_2 and ¢; = a;ici_1 + ci_2, then g.c.d.(bi,¢;) =1;
(C) bici_1 —bi1ci = (—l)i_l fO'I‘ 1> 1.

Proof. We define the sequences {b;} and {c;} by the relations in (a),
and prove by induction that then b;/c; is the i-th convergent. We will prove
this without assuming that the a; are integers, i.e., we will prove that for
any real numbers a; the ratio b;/c; with b; and ¢; defined by the forrmulas
in (a) is equal to ap + 3 -+ o It is trivial to check the beginning of the
induction (i = 0,1,2). We now suppose that the claim is true through the
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i-th convergent, and we prove the claim for the (i + 1)-th convergent. Note
that we obtain the (i 4+ 1)-th convergent by replacing a; by ai + 1/ain
in the formula that expresses the numerator and denominator of the i-th
convergent in terms of the (i — 1)-th and (i — 2)-th. That is, the (i 4+ 1)-th
convergent is '

(ai + I}J)b"-l +bi2  ag(aibin +bic2) +bic1 _ aiy1bi +bi1

— - b
(@i + 727)cim1 +cica air1(aici1 4 Cic2) +Cim1 @ig1Gi+Cimt

by the induction assumption. This completes the induction, and proves part

(a).
Part (c) is also easy to prove by induction. The induction step goes as
follows:

biy1ci — bicip1 = (@iprbi + bim1)ci — bi(@iprci + cim1) = bi-16i — biciy
= —(_l)i_l = (—1)i1

so part (c) for i implies part (c) for i+ 1. Finally, part (b) follows from part
(c), because any common divisor of b; and ¢; must divide (=1)*~%, which is
+1. This proves the proposition.

If we divide the equation in Proposition V.4.1(c) by cici—1, we find

that )

b; _ (=t

Ci Ci-1 CiCi—1 '
Since the ¢; clearly form a strictly increasing sequence of positive integers,
this equality shows that the sequence of convergents behaves like an al-
ternating series, i.e., it oscillates back and forth with shrinking amplitude;
thus, the sequence of convergents converges to a limit.

Finally, it is not hard to see that the limit of the convergents is the
number z which was expanded in the first place. To see that, notice that
£ can be obtained by forming the (i + 1)-th convergent with a4 replaced
by 1/z;. Thus, by Proposition V.4.1(a) (with i replaced by ¢ + 1 and aiyy
replaced by 1/z;), we have

s
-

i —

_ bifzitbio _ bi + zibi_1
ci/Ti+cio1 i+ Ticia

and this is strictly between b;_;/ci—1 and b;/c;. (To see this, consider the
two vectors u = (b;,c;) and v = (bj—1,¢i—1) in the plane, both in the same
quadrant; note that the slope of the vector u+z;v is intermediate between
the slopes of u and v.) Thus, the sequence b; /c; oscillates around z and
converges to .

Continued fractions have many special properties that cause them to
come up in several different branches of mathematics. For example, they
provide a way of generating “best possible” rational approximations to real
numbers (in the sense that any rational number that is closer to z than b;/c;
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must have a denominator larger than ¢;). Another property is analogous
to the fact that the decimal (or base-b) digits of a real number z repeat if
and only if z is rational. In the continued fraction expansion of z, we saw
that the sequence of integers a; terminates if and only if z is rational. It
can be shown that the a; become a repeating sequence if and only if z is a
quadratic irrationality, i.e., of the form z; + zo/n with z; and z, rational
and n not a perfect square. This is known as Lagrange’s theorem.
Example 1. If we start expanding /3 as a continued fraction, we obtain

111 1 11
Bt mamn

At this point we might conjecture that the a;’s alternate between 1 and
2. To prove this, let = equal the infinite continued fraction on the right
with alternating 1’s and 2’s. Then clearly £ = 1 + WW%H-_zT’ as we see by
replacing z on the right by its definition as a continued fraction. Simplify-
ing the rational expression on the right and multiplying both sides of the
equation by 2 + x gives: 2z + 2° = 3+ 2z, i.e., z = /3.

Proposition V.4.2. Let z > 1 be a real number whose continued fraction
ezpansion has convergents b;/c;. Then for all i: |b? — z2c?| < 2z.

Proof. Since z is between b;/c; and b;,1/ciy1, and since the absolute
value of the difference between these successive convergents is 1/c;ci+1 (by
Proposition V.4.1(c)), we have

bi b; 1
I8 - 2’| = cllo = 2o+ 2| < ——(z+ (@ + —)).
c [ CiCit1 CiCit1
Hence,
|62 — z2¢2| —2:1,-<2a,-(—1+—f“'—"—+——cl2 ) <2z(-1+ %4 1)
Ciy1 2wciy, Ci+1 Gl
< 29:(—1 + 51‘) =0.

Cit+1

This proves the proposition.

Proposition V.4.3. Let n be a positive integer which is not a perfect
square. Let b;/c; be the convergents in the continued fraction expansion of
V/n. Then the residue of b? modulo n which is smallest in absolute value
(i.e., between —n/2 and n/2) is less than 2/n.

Proof. Apply Proposition V.4.2 with £ = /n. Then b7 = b? —
nc? mod n, and the latter integer is less than 2,/n in absolute value.

Proposition V.4.3 is the key to the continued fraction algorithm. It
says that we can find a sequence of b;’s whose squares have small residues
by taking the numerators of the convergents in the continued fraction ex-
pansion of \/n. Note that we do not have to find the actual convergent : only
the numerator b; is needed, and that is needed only modulo n. Thus, the
fact that the numerator and denominator of the convergents soon become
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very large does not worry us. We never need to work with integers larger

than n? (when we multiply integers modulo n).

We now describe in sequence how the continued fraction algorithm
works. All we do is use the factor-base method in §3, except with Proposi-
tion V.4.3 replacing random choice of the b;’s.

Continued fraction factoring algorithm. Let n be the integer to be
factored. All computations below will be done modulo 7, i.e., products and
sums of integers will be reduced modulo n to their least nonnegative residue
(or least absolute residue in step (3)). First set by =1,bp =ag=[vn],
and zo = /i — ao. Compute b3 mod n (which will be b — n). Next, for
i=1,2,... successively:

1. Seta;= [1/$,'_1] and then z; = l/x,‘__l — Q4.

2. Set b; = aibi_1 + bi_o (reduced modulo n).

3. Compute b? mod n. After doing this for several 7, look at the numbers in
step 3 which factor into + a product of small primes. Take your factor
base B to consist of —1, the primes which occur in more than one of the
b2 mod n (or which occur to an even power in just one b? mod n). Then
list all of the numbers b2 mod n which are B-numbers, along with the
corresponding vectors € ; of zeros and ones. If possible, find a subset
whose vectors sum to zero. Set b = [ b; (working modulo n and taking
the product over the subset for which 3 €; = 0). Set c = [1p}’, where
p; are the elements of B (except for —1) and v; = 33 a5 (with the
sum taken over the same subset of 4; see §3). If b # +c mod 7, then
g.c.d.(b+c,n) is a nontrivial factor of n. If b = £¢ mod n, then look for
another subset of i such that 3 €; = 0. If it is not possible to find any
subset of i such that 3 €; = 0, then you must continue computing
more a;, b;, and b? mod n, enlarging your factor base B if necessary.
Remark. In order to be able to compute ¢ = [] p}j, it is efficient if for

each B-number b2 mod n we record the vector o ={..,j,...}; rather

than €;, which is simply @; reduced modulo 2.

Example 2. Use the above algorithm to factor 9073.

Solution. We first make a list of successive a;’s and b;’s (where b; is
the least nonnegative residue modulo n of a;b;_1 + bi_2), along with the
corresponding least absolute residue modulo n of b%:

1 0 1 2 3 4
a; 9% 3 1 26 2
b; 95 286 381 1119 2619

b2 modn —48 139 -7 87 =27

Looking at the last line of the table, we see that it is reasonable to set B =
{-1,2,3,7}. Then b? mod n is a B-number for i = 0,2, 4. The corresponding
vectors @; are, respectively, {1,4,1,0}, {1,0,0,1}, and {1,0,3,0}. The sum
of the first and third is zero modulo 2. So let us choose b = 95 - 2619 =
3834 mod 9073, and ¢ = 2% - 32 = 36. Thus, 38342 = 362 mod 9073.
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Since 3834 # +£36 mod 9073, we obtain the nontrivial factor g.c.d.(3834 +
36,9073) = 43. Thus, 9073 = 43 - 211.

Example 3. Factor 17873.

Solution. As in Example 2, we start out with a table

1 0 1 2 3 4 5
a; 133 1 2 4 2 3
b 133 134 401 1738 3877 13369

b2modn —184 8 —56 107 —64 161

If we set B = {—1,2,7,23}, we have B-numbers when i = 0, 2, 4, 5; the cor-
responding vectors «; are, respectively, {1,3,0,1}, {1,3,i,0}, {1,6,0,0}
and {0,0,1,1}. The sum of the first, second and fourth of these four vec-
tors is zero modulo 2. However, if we compute b = 133 - 401 - 13369 =
1288 mod 17873 and ¢ = 2% - 7- 23 = 1288, we find that b = c mod 17873.
Thus, we must continue to look for more B-numbers with vectors that sum
to zero modulo 2. Continuing the table, we have

1 6 7 8

a; 1 2 1

b; 17246 12115 11488
b2modn —-77 149 88

If we now enlarge B to include the prime 11, ie., B = {-1,2,7,11,23},
then for i = 0,2,4,5,6,8 we obtain B-numbers with vectors @’; as fol-

“lows: {1,3,0,0,1}, {1,3,1,0,0}, {1,6,0,0,0}, {0,0,1,0,1}, {1,0,1,1,0},

{1,3,0,1,0}. We now note that the sum of the second, third, fifth and
sixth of these six vectors is zero modulo 2. This leads to b = 7272, ¢ = 4928,
and we finally find a nontrivial factor g.c.d.(7272 + 4928,17873) = 61. We
obtain: 17873 = 61 - 293.

FEzercises

1. Find the continued fraction representation of the following rational
numbers: (a) 45/89; (b) 55/89; (c) 1.13.

2. (a) Suppose that z is a real number whose continued fraction expansion
consists of the positive integer a repeated infinitely:

a+ a+ a+ a+

What real number is = (written in a simple closed form)?
(b) Prove that if a = 1 in part (a), then z is the golden ratio and
the numerators and denominators of the convergents are Fibonacci
numbers. :

3. Expand e in a continued fraction, and try to guess a pattern in the
integers a;.
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4. In the continued fraction algorithm explain why there is no need to
include in the factor base B any primes p such that (’—;) =-1.

5. Following Examples 2 and 3, use the continued fraction algorithm to
factor the following numbers: (a) 9509; (b) 13561; (c) 8777; (d) 14429;
(e) 12403; (f) 14527; (g) 10123; (h) 12449; (1) 9353; (j) 25511; (k) 17873.
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5 The quadratic sieve method

The quadratic sieve method for factoring large integers, developed by
Pomerance in the early 1980’s, for a long time was more successful than
any other method in factoring integers n of general type which have no
prime factor of order of magnitude significantly less than /7. (For integers
n having a special form there may be special purpose methods which are
faster, and for n divisible by a prime much smaller than /n the elliptic
curve factorization method in §VI.4 is faster. Also see the discussion of the
number field sieve at the end of the section.)

The quadratic sieve is a variant of the factor base approach discussed
in §3. As our factor base B we take the set of all primes p < P (where P is
some bound to be chosen in some optimal way) such that n is a quadratic

residue mod p, i.e., (%) =1 for p odd, and p = 2 is always included in
B. The set of integers S in which we look for B-numbers (recall that a
B-number is an integer divisible only by primes in B) will be the same set

that we used in Fermat factorization (see §3), namely:
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S={t2—nl[\/ﬁ]+1§t5[\/ﬁ]+A}

for some suitably chosen bound A.

The main idea of the method is that, instead of taking each s € S
one by one and dividing it by the primes p € B to see if it is a B-number,
we take each p € B one by one and examine divisibility by p (and powers
of p) simultaneously for all of the s € S. The word “sieve” refers to this
idea. Here we should recall the “sieve of Eratosthenes,” which one can
use to make a list of all primes p < A. For example, to list the primes
< 1000 one takes the list of all integers < 1000 and then for each p =
2,3,5,7,11,13,17, 19, 23,29, 31 one discards all multiples of p greater than
p — one “lets them fall through a sieve which has holes spaced a distance
p apart” — after which the numbers that remain are the primes.

We shall give an outline of a procedure to carry out the method, and
then give an example. The particular version described below is only one
possible variant, and it is not necessarily the most efficient one. Moreover,
our example of a number n to be factored (and also the numbers to be
factored in the exercises at the end of the section) will be chosen in the
range ~ 108, so as to avoid having to work with large matrices. However,
such n are far too small to illustrate the time advantage of the sieve in
finding a large set of B-numbers.

Thus, suppose we have an odd composite integer n.

1. Choose bounds P and A, both of order of magnitude roughly

e\/log nloglogn

Generally, A should be larger than P, but not larger than a fairly small
power of P, e.g., P < A < P2.

This function exp(y/lognloglogn), which we encountered before in
this chapter and which is traditionally denoted L(n), has an order of mag-
nitude intermediate between polynomial in logn and polynomial in n. If
n =~ 10%, then L(n) = 400. In the examples below, we shall choose P = 50,
A = 500.

2. For t = [yn]+1, [Vn]+2,..., [yn] + A, make a column listing
the integers t2 — n.

3. For each odd prime p < P, first check that (%) =1 (see §11.2); if

not, then throw that p out of the factor base.

4. Assuming that p is an odd prime such that n is a quadratic residue
mod p (we'll treat the case p = 2 separately), solve the equation 2=
n (mod pP) for B =1,2,..., using the method in Exercise 20 of §IL.2. Take
increasing values of 3 until you find that there is no solution ¢ which is
congruent modulo p? to any integer in the range [yn]+1 <t < [Vr]+4.
Let 3 be the largest integer such that there is some ¢ in this range for which
t2 = n (mod pP). Let ¢, and t; be two solutions of t2 = n (mod p?) with
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ty = —t; (mod pP) (t1 and to are not necessarily in the range from [Vn]+1
to [yn] + 4).

5. Still with the same value of p, run down the list of t2 — n from part
9. In a column under p put a 1 next to all values of t2 —n for which ¢ differs
from t; by a multiple of p, change the 1 to a 2 next to all values oft? —n
for which ¢ differs from ¢, by a multiple of p?, change the 2 to a 3 next to
all values of t2 —n for which t differs from ¢; by a multiple of p3, and so on
until pB. Then do the same with ¢, replaced by t2. The largest integer that
appears in this column will be 3.

6. As you go through the procedure in 5), each time you put down a 1
or change a 1 to a 2, a 2 to a 3, etc., divide the corresponding > —n by p
and keep a record of what’s left.

7. In the column p = 2, if n # 1 mod 8, then simply put a 1 next to the
2 — n for ¢t odd and divide the corresponding t2 — n by 2. If n =1 mod 8,
then solve the equation t2 = n (mod 2°) and proceed exactly as in the case
of odd p (except that there will be 4 different solutions ¢y, t2, t3, t4 modulo
28 if 8 > 3).

8. When you finish with all primes < P, throw out all of the t? —n
except for those which have become 1 after division by all the powers of
p < P. You will have a table of the form in Example 9 in §3, in which the
column labeled b; will have the values of t, [yn]+1 <t < [y/n] + A, for
which #2 — n is a B-number, and the other columns will correspond to all
values of p < P for which n is a quadratic residue.

9. The rest of the procedure is exactly as in §3.

Example. Let us try to factor n = 1042387, taking the bounds P = 50
and A = 500. Here [/n] = 1020. Our factor base consists of the 8 primes
{2,3,11,17,19,23,43,47} for which 1042387 is a quadratic residue. Since
n # 1 (mod 8), the column corresponding to p = 2 alternates between 1
and 0, with a 1 beside all odd ¢, 1021 < ¢ < 1520.

We describe in detail how to form the column under p = 3. We
want a solution t; = tyo 4+ t11 -3 +ti2 -3+ + it 381 to
t2 = 1042387 (mod 3°), where t;; € {0,1,2} (for the other solution ¢;
we can take t, = 3% — t1). We can obviously take t;0 = 1. (For each of
our 8 primes the first step — solving t7 = 1042387 (mod p) — can be
done quickly by trial and error; if we were working with larger primes,
we could use the procedure described at the end of §I1.2.) Next, we work
modulo 9: (1 + 3t1,1)? = 1042387 = 7 (mod 9), i.e., 61, =6 (mod 9), i.e.,
2t11 = 2 (mod 3), so t1,; = 1. Next, modulo 27: (1+3+9t1,2)2 = 1042387 =
25 (mod 27), i.e., 16 + 18t 5 = 25 (mod 27), ie., 2t;,2 = 1 (mod 3), so
t1 = 2. Then modulo 81: (1 + 3 + 18+ 27t, 3)? = 1042387 = 79 (mod 81),
which leads to ¢; 3 = 0. Continuing until 37, we find the solution (in the no-
tation of §I.1 for numbers written to the base 3): ¢; = (210211)3 (mod 37),
and t, = (2012012)3 (mod 37). However, there is no t between 1021 and
1520 which is = #; or t; modulo 37. Thus, we have 8 = 6, and we can
take ¢, = (210211)3 = 589 = 1318 (mod 3°%) and t = 3% —t; = 140 =
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1112 (mod 3°) (note that there is no number in the range from 1021 to
1520 which is = t (mod 3°)).

We now construct our “sieve” for the prime 3 as follows. Starting from
1318, we take jumps of 3 down until we reach 1021 and up until we reach
1519, each time putting a 1 in the column, dividing the corresponding
2 — n by 3, and recording the result of the division. (Actually, for ¢ odd,
the number we divide by 3 is half of t2 —n, since we already divided t2—n by
2 when we formed the column of alternating 0’s and 1’s under 2.) Then we
do the same with jumps of 9, each time changing the 1 to 2 in the column
under 3, dividing the quotient of > — n by another 3, and recording the
result. We go through the analogous procedure with jumps of 27, 81, 243,
and 729 (there is no jump possible for 729 — we merely change the 5 to
6 next to 1318 and divide the quotient of 13182—1042387 by another 3).
Finally, we go through the same steps with ¢; = 1112 instead of ¢; = 1318,
this time stopping with jumps of 243.

After going through this procedure for the remaining 6 primes in our
factor base, we have a 500 x 8 array of exponents, each row corresponding
to a value of t between 1021 and 1520. Now we throw out all rows for which
2 — 1 has not been reduced to 1 by repeated division by powers of p as we
formed our table, i.e., we take only the rows for which t?2 —n is a B-number.
In the present example n = 1042387 we are left with the following table
(here blank spaces denote zero exponents):

t 2 —n 2 3 11 17 19 23 43 47
1021 54 13 - — — — - -
1027 12342 112 1 - - = =
1030 18513 -2 2 1 - - = =
1061 83334 11 -1 1 - 1 -
1112 194157 -5 - 1 - - 1
1129 232254 131 1 - 1 - -
1148 275517 -2 3 - - 1 - -
1175 338238 12 - — 1 1 1 -
1217 438702 111 2 - 1 - -
1390 889713 -2 2 - 1 - 1 -
1520 1268013 -1 - 1 - 2 -1

Proceeding as we did in Example 9 in §3, we now look for relations modulo
2 between the rows of this matrix. That is, moving down from the first
row, we look for a subset of the rows which sums to an even number in
each column. The first such subset we find here is the first three rows, the
sum of which is twice the row 1321 — — — — . Thus, we obtain the
congruence

(1021 - 1027 - 1030)2 = (2- 3% - 112 - 17)? (mod 1042387).
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But despite our good fortune in finding a set of mod 2 linearly de-
pendent rows so quickly, it turns out that we are not so lucky after
all: the two numbers being squared in the above congruence are both
= 111078 (mod 1042387), so we get only the trivial factorization. As we
continue down the matrix, we find some other sets of dependent rows,
which also fail to give us a nontrivial factorization. Finally, when we are

about to give up — and start over again with a larger A — we notice -

that the last row — corresponding to our very last value of ¢ — is depen-
dent on the earlier rows. More precisely, it is equal modulo 2 to the fifth
row. This gives us (1112 - 1520)2 = (3% - 17 - 23 - 47)% (mod 1042387), i.e,
6478532 = 496179% (mod 1042387), and we obtain the nontrivial factor
g.c.d.(647853 — 496179, 1042387) = 148T7.

Based on some plausible conjectures, one can show that the expected
running time of the quadratic sieve factoring method is asymptotically

0 (e(1+e)¢m)

for any € > 0. There is a fairly large space requirement, also of the form
exp(C+/lognloglogn). For a detailed discussion of time and space require-
ments for the quadratic sieve (and several other) factoring algorithms, see
Pomerance’s article in the volume Computation Methods in Number The-
ory.

The number field sieve. Until recently, all of the contenders for the
best general purpose factoring algorithm had running time of the form

exp(O(+/logn loglogn)).

Some people even thought that this function of n might be a natural lower
bound on the running time. However, during the last few years a new
method — called the number field sieve — has been developed that has
a heuristic running time that is much better (asymptotically), namely:

exp(O((log n)!/*(log log n)?/%)).

In practice, it appears to be the fastest method for factoring numbers that
are at or beyond the current (1994) upper limits of what can be factored,
i.e., > 150 digits.

In some respects, the number field sieve factoring algorithm is similar
to the earlier algorithms that attempt to combine congruences so as to
obtain a relation of the form z2 = y? (mod n). However, one uses a “factor
base” in the ring of integers of a suitably chosen algebraic number field.
Thus, along with the basic machinery of the quadratic sieve, this factoring
method uses algebraic number theory. It is perhaps the most complicated
factoring algorithm known. We shall give only an overview.

The basic requirements of the algorithm can be briefly described as
follows. Given an integer 7 to be factored, choose a degree d and find n as
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the value at some integer m of an irreducible monic integer polynomial of
degree d:

n=f(m)=m?+a41m* ! +ag_om? 2+ +aim +ao,

where m and the ax are integers that are O(n'/¢). One way to find such a
polynomial is to let m be the integer part of the d-th root of n and then
expand n to the base m. For 125-digit numbers an analysis of the algorithm
suggests that d should be 5, so that m and the coefficients will have about
25 digits.

The number field sieve then searches (by a sieving process similar to
the quadratic sieve) for as many pairs (a,b) as possible such that both
a+ bm and also

b3 f(—a/b) = (—a)®+a4-1 (—a)? "o+ aa-2(—a)* 2% + - - —arab?? ~+agh?

are smooth over a given factor base (i.e., are divisible only by primes in
the factor base). The details of how this is done and how this leads to a
factorization of n can be found in the book The Development of the Number
Field Sieve cited in the references below. In order for this procedure to
succeed, the proportion of smooth numbers among values of the polynomial
f should be approximately the same as the proportion of smooth numbers
among all numbers of the same size. Although this is likely to be true, and
is true in all examples that have been computed, it seems to be a very
hard assertion to prove. Since the estimate of running time depends on
this unproved conjecture, it is a heuristic estimate. While perhaps of little
consequence in practice for factoring actual numbers, this circumstance
points to some important open problems in the analysis of the theoretical
asymptotic complexity of factoring.

The author would like to thank Joe Buhler for providing the above
brief summary of the number field sieve for this book.

FEzercises

1. In the example, find all linear dependence relations mod 2 between the
rows of the matrix, and show that if P = 50 and A < 499 one cannot
get a nontrivial factorization of 1042387 by this method.

2. Letn — oo, and suppose that P and A are always chosen to have the
same order of magnitude (for example, suppose that there are positive
constants ¢; and cp such that ¢; < log A/ log P < c2). Asymptotically,
what is the most time-consuming part of steps 1)-7) in the above ver-
sion of the quadratic sieve? Give a big-O estimate for the number of
bit operations required by that step.

3. Use the method in this section with P = 50 and A = 500 to factor:
(a) 1046603, (b) 1059691, and (c) 998771.
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VI
Elliptic Curves

In recent years a topic in number theory and algebraic geometry — ellip-
tic curves (more precisely, the theory of elliptic curves defined over finite
fields) — has found application in cryptography. The basic reason for this
is that elliptic curves over finite fields provide an inexhaustible supply of
finite abelian groups which, even when large, are amenable to computation
because of their rich structure. Before (§IV.3) we worked with the multi-
plicative groups of fields. In many ways elliptic curves are natural analogs
of these groups; but they have the advantage that one has more flexibility
in choosing an elliptic curve than in choosing a finite field.

We shall start by presenting the basic definitions and facts about el-
liptic curves. We shall include only the minimal amount of background
necessary to understand the applications to cryptography in §§2—4, em-
phasizing examples and concrete descriptions at the expense of proofs and
generality. For systematic treatments of the subject, see the references at
the end of §1.

1 Basic facts

In this section let K be a field. For us, K will be either the field R of real
numbers, the field Q of rational numbers, the field C of complex numbers,
or the finite field Fq of ¢ = p" elements.

Definition. Let K be a field of characteristic # 2, 3, and let z2+az+bd
(where a,b € K) be a cubic polynomial with no multiple roots. An elliptic
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curve over K is the set of points (z,y) with z,y € K which satisfy the
equation ’
y¥=2*+az+b, (1)

together with a single element denoted O and called the “point at infinity”
(about which more will be said below).

If K is a field of characteristic 2, then an elliptic curve over K is the
set of points satisfying an equation of type either

v +ey=x°+az+b (2a)

or else
v+aoy=x>+az’+b (2b)

(here we do not care whether or not the cubic on the right has multiple
roots) together with a “point at infinity” O.

If K is a field of characteristic 3, then an elliptic curve over K is the
set of points satisfying the equation

v=2+ar’ +bz+c (3)

(where the cubic on the right has no multiple roots) together with a “point
at infinity” O.

Remarks. 1. There’s a general form of the equation of an ellipse which
applies to any field: ¥ + a1zy + azy = 2% + a2 + a4z + as, Which when
char K # 2 can be transformed to y?> = z® + az® + bz + ¢ (and to the
form y? = 23 + bz + c if char K > 3). In the case when the field K has
characteristic 2, this equation can be transformed either to (2a) or (2b).

2. If we let F(z,y) = 0 be the implicit equation for y as a function
of z in (1) (or (2), (3)), ie, F(z,y) = y2 — 23 —az — b (or F(z,y) =
v +cy+z3+az+b,y?+zy -+ +az+b, y? — 23 —az? — bx —c), then
a point (z,y) on the curve is said to be non-singular (or a smooth point)
if at least one of the partial derivatives 0F/dz, 0F /0y is nonzero at the
point. (Derivatives of polynomials can be defined by the usual formulas over
any field; see paragraph 5 at the beginning of Chapter IL.) It is not hard
to show that the condition that the cubic on the right in (1) and (3) not
have multiple roots is equivalent to requiring that all points on the curve
be nonsingular.

Elliptic curves over the reals. Before discussing some specific examples
of elliptic curves over various fields, we shall introduce a centrally important
fact about the set of points on an elliptic curve: they form an abelian group.
In order to explain how this works visually, for the moment we shall assume
that K = R, i.e., the elliptic curve is an ordinary curve in the plane (plus
one other point O “at infinity”).

Definition. Let E be an elliptic curve over the real numbers, and let P
and Q be two points on E. We define the negative of P and the sum P+ Q
according to the following rules:
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1. If P is the point at infinity O, then we define —P to be O and P+ Q
to be Q; that is, O serves as the additive identity (“zero element”) of
the group of points. In what follows, we shall suppose that neither P
nor Q@ is the point at infinity.

2. The negative —P is the point with the same z-coordinate but negative
the y-coordinate of P, i.e., —(z,y) = (z,—y). It is obvious from (1)
that (z, —y) is on the curve whenever (z,y) is.

3. If P and Q have different z-coordinates, then it is not hard to see
that the line £ = PQ intersects the curve in exactly one more point R
(unless that line is tangent to the curve at P, in which case we take
R = P, or at Q, in which case we take R = Q). Then define P + Q to
be —R, i.e., the mirror image (with respect to the z-axis) of the third
point of intersection. The geometrical construction that gives P+4+Qis
illustrated in Example 1 below.

4. If Q=—P (ie., Q has the same z-coordinate but minus the y-coordi-
nate), then we define P+Q = O (the point at infinity). (This is forced
on us by (2).)

5. The final possibility is P = Q. Then let £ be the tangent line to the
curve at P, let R be the only other point of intersection of £ with the
curve, and define P+ Q@ = —R. (R is taken to be P if the tangent line
has a “double tangency” at P, i.e., if P is a point of inflection.)
Example 1. The elliptic

curve y? = z3—z in the zy-plane

is sketched to the right. The dia-

gram also shows a typical case of !

adding points P and Q. To find Il

P+Q one draws a chord through |

P and Q, and takes P + Q to 0 }

be the point symmetric (with re- ',

spect to the z-axis) to the third P 'l

point where the line through P !

|I
|
|
|
|
|
|

and Q intersects the curve. If
P and @Q were the same point,
i.e., if we wanted to find 2P,
we would use the tangent line
to the curve at P; then 2P is
the point symmetric to the third
point where that tangent line in-
tersects the curve.

We now show why there is exactly one more point where the line ¢
through P and Q intersects the curve; at the same time we will derive a
formula for the coordinates of this third point, and hence for the coordinates
of P+ Q.

Let (z1,%1), (z2,y2) and (z3,y3) denote the coordinates of P, Q, and
P+ Q, respectively. We want to express z3 and y3 in terms of z1,y1, T2,Y2-

"

+0Q
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Suppose that we are in case (3) in the definition of P+Q, and let y = az+0
be the equation of the line through P and Q (which is not a vertical line in
case (3)). Then @ = (y2 — y1)/(z2 — z1), and B8 = y1 — ax1. A point on £,
i.e., a point (z,az + (), lies on the elliptic curve if and only if (ax + B8)? =
z3 + az + b. Thus, there is one intersection point for each root of the cubic
equation 2° — (ax + 8)? + az + b. We already know that there are the two
roots z; and zz, because (x;,az; + (), (z2, 2z + B) are the points P, Q
on the curve. Since the sum of the roots of a monic polynomial is equal to
minus the coefficient of the second-to-highest power, we conclude that the
third root in this case is z3 = a? — 1 — z5. This leads to an expression for
23, and hence P + Q = (z3, —(az3 + 0)), in terms of 1, T2, Y1, Yo:

— N\ 2
T3 = (u) —T1— T

Iy — X1 (4)
- 22‘_1/1) -
ya=-y+ (332 e (21 — z3).

The case (5) when P = (@ is similar, except that « is now the derivative
dy/dz at P. Implicit differentiation of Equation (1) leads to the formula a =
(322 + a)/2y1, and so we obtain the following formulas for the coordinates

of twice P: 952 )
T + a
T3 = ( ! ) —2z;;
_ +(3m§+a)(z )
Ys=-n 21 1 3)

Example 2. On the elliptic curve y? = 23 — 36z let P = (-3,9) and
Q = (~2,8). Find P + @ and 2P.

Solution. Substituting z; = —3, y1 = 9, To = —2, y2 = 8 in the first
equation in (4) gives z3 = 6; then the second equation in (4) gives y3 = 0.
Next, substituting z; = —3, y1 = 9, @ = —36 in the first equation in (5)
gives 25/4 for the z-coordinate of 2P; then the second equation in (5) gives
—35/8 for its y-coordinate.

There are several ways of proving that the above definition of P + Q
makes the points on an elliptic curve into an abelian group. One can use
an argument from projective geometry, a complex analytic argument with
doubly periodic functions, or an algebraic argument involving divisors on
curves. See the references at the end of the section for proofs of each type.

As in any abelian group, we use the notation nP to denote P added
to itself n times if n is positive, and otherwise —P added to itself |n| times.

We have not yet said much about the “point of infinity” O. By defi-
nition, it is the identity of the group law. In the diagram above, it should
be visualized as sitting infinitely far up the y-axis, in the limiting direction
of the ever-steeper tangents to the curve. It is the “third point of intersec-
tion” of any vertical line with the curve; that is, such a line has points of
intersection of the form (z1,¥1), (1, —y1) and O. A more natural way to
introduce the point O is as follows.
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By the projective plane we mean the set of equivalence classes of triples
(X,Y, Z) (not all components zero) where two triples are said to be equiv-
alent if they are a scalar multiple of one another, ie., (AX,\Y,AZ) ~
(X,Y, Z). Such an equivalence class is called a projective point. If a pro-
jective point has nonzero Z, then there is one and only one triple in its
equivalence class of the form (z,y, 1): simply set * = X/Z, y = Y/Z. Thus,
the projective plane can be identified with all points (z,y) of the ordinary
(“affine”) plane plus the points for which Z = 0. The latter points make
up what is called the lLine at infinity; roughly speaking, it can be visualized
as the “horizon” on the plane. Any equation F(z,y) = 0 of a curve in the
affine plane corresponds to an equation F(X,Y,Z) = 0 satisfied by the
corresponding projective points: simply replace £ by X/Z and y by Y/Z
and multiply by a power of Z to clear the denominators. For example, if
we apply this procedure to the affine equation (1) of an elliptic curve, we
obtain its “projective equation” Y2Z = X3+aX Z?+bZ3. This latter equa-
tion is satisfied by all projective points (X, Y, Z) with Z # 0 for which the
corresponding affine points (z,y), where ¢ = X/Z, y = Y/Z, satisfy (1).
In addition, what projective points (X,Y, Z) on the line at infinity satisfy
the equation F' = 07 Setting Z = 0 in the equation leads to 0 = X 3 ie.,
X = 0. But the only equivalence class of triples (X, Y, Z) with both X and
Z zero is the class of (0,1,0). This is the point we call O. It is the point on
the intersection of the y-axis with the line at infinity.

Elliptic curves over the complexes. The algebraic formulas (4)~(5) for
adding points on an elliptic curve over the reals actually make sense over
any field. (If the field has characteristic 2 or 3, one derives similar equations
starting from Equation (2) or (3).) It can be shown that these formulas give
an abelian group law on an elliptic curve over any field.

In particular, let E be an elliptic curve defined over the field C of
complex numbers. Thus, E is the set of pairs (z,y) of complex numbers
satisfying Equation (1), together with the point at infinity O. Although
E is a “curve,” if we think in terms of familiar geometrical pictures, it
is 2-dimensional, i.e., it is a surface in the 4-real-dimensional space whose
coordinates are the real and imaginary parts of z and y. We now describe
how E can be visualized as a surface.

Let L be a lattice in the complex plane. This means that L is the
abelian group of all integer combinations of two complex numbers w; and
wy (where wy and wo span the plane, i.e., do not lie on the same line through
the origin): L = Zw; + Zw,. For example, if w; = 1 and wy = i, then L
is the Gaussian integers, the square grid consisting of all complex numbers
with integer real and imaginary parts.

Given an elliptic curve (1) over the complex numbers, it turns out
that there exist a lattice L and a complex function, called the “Weierstrass
p-function” and denoted g (), which has the following properties.

1. p(z) is analytic except foi a double pole at each point of L;
2. p(z) satisfies the differential equation g’ 2 = g3 +ap+b, and hence for
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any z ¢ L the point (p(z), g’(z)) lies on the elliptic curve E;

3. two complex numbers z; and z; give the same point (p(z), p'(2)) on
E if and only if 27 — 22 € L;

4. the map that associates any z & L to the corresponding point (p(2),
©'(2)) on E and associates any z € L to the point at infinity 0 €
E gives a 1-to-1 correspondence between E and the quotient of the
complex plane by the subgroup L (denoted C/L);

5. this 1-to-1 correspondence is an isomorphism of abelian groups. In
other words, if z; corresponds to the point P € E and z; corresponds
to Q € E, then the complex number z; + 22 corresponds to the point
P+Q.

Thus, we can think of the abelian group E as equivalent to the complex
plane modulo a suitable lattice. To visualize the latter group, note that
every equivalence class z + L has one and only one representative in the
“fundamental parallelogram” consisting of complex numbers of the form
aw; + bwa, 0 < a,b < 1 (for example, if L is the Gaussian integers, the
fundamental parallelogram is the unit square). Since opposite points on
the parallel sides of the boundary of the parallelogram differ by a lattice
point, they are equal in C/L. That is, we think of them as “glued together.”
If we visualize this — folding over one side of the parallelogram to meet
the opposite side (obtaining a segment of a cylinder) and then folding over
again and gluing the opposite circles — we see that we obtain a “torus”
(donut), pictured below.
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As a group, the torus is the product of two copies of a circle, ie.,
its points can be parametrized by ordered pairs of angles (a, ). (More
precisely, if the torus was obtained from the lattice L = Zw, + Zwz, then
we write an element in C/L in the form aw; + bw; and take a = 27a,
B = 2rb.) Thus, we can think of an elliptic curve over the complex numbers
as a generalization to two real dimensions of the circle in the real plane.
In fact, this analogy goes much farther than one might think. The “elliptic
functions” (which tell us how to go back from a point (z,y) € E to the
complex number z for which (z,y) = (p(z), ©'(2))) turn out to have some
properties analogous to the familiar function Arcsin (which tells us how to
go back from a point on the unit circle to the real number that corresponds
to that point when we “wrap” the real number line around the circle). In
the algebraic number theory of elliptic curves, one finds a deep analogy
between the coordinates of the “n-division points” on an elliptic curves
(the points P such that nP is the identity O) and the n-division points on
the unit circle (which are the n-th roots of unity in the complex plane). See
the references at the end of the section for more information on this, and
for the definition of the Weierstrass p-function and proofs of its properties.

Elliptic curves over the rationals. In Equation (1), if a and b are ra-
tional numbers, it is natural to look for rational solutions (z,y), i-e., to
consider the elliptic curve over the field Q of rational numbers. There is
a vast theory of elliptic curves over the rationals. It turns out that the
abelian group is finitely generated (the Mordell theorem). This means that
it consists of a finite “torsion subgroup” (the points of finite order) plus
the subgroup generated by a finite number of points of infinite order. The
number of generators needed for the infinite part is called the rank r; it is
zero if and only if the entire group is finite. The study of the rank r and
other features of the group of an elliptic curve over Q is related to many in-
teresting questions in number theory and algebraic geometry. For example,
a question asked since ancient times — “Given a positive integer n, when
does there exist a right triangle with rational sides whose area is 7" —
turns out to be equivalent to the question “Is the rank of the elliptic curve
y? = 23 — n2z greater than zero?” The case n = 6 and the 3 — 4 — 5 right
triangle lead to the point P in Example 2, which is a point of infinite order
on the curve y? = z3 — 36z. For more information on this subject, we again
refer the reader to the references at the end of the section.

Points of finite order. The order N of a point P on an elliptic curve is
the smallest positive integer such that NP = O; of course, such a finite N
need not exist. It is often of interest to find points P of finite order on an
elliptic curve, especially for elliptic curves defined over Q.

Example 3. Find the order of P = (2,3) on y? = 2% + 1.

Solution. Using (5), we find that 2P = (0,1), and using (5) again gives
4P = 2(2P) = (0, -1). Thus, 4P = —2P, and so 6P = O. Thus, the order
of Pis 2, 3or 6. But 2P = (0,1) # O, and if P had order 3, then 4P = P,
which is not true. Thus, P has order 6.
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Elliptic curves over a finite field. For the rest of this section we shall
let K be the finite field F, of ¢ = p” elements. Let E be an elliptic curve
defined over Fg. If p =2 or 3, then E is given by an equation of the form
(2) or (3), respectively.

It is easy to see that an elliptic curve can have at most 2q+1 F4-points,
i.e., the point at infinity along with 2g pairs (z,y) with z,y € Fq which
satisfy (1) (or (2) or (3) if p = 2 or 3). Namely, for each of the ¢ possible
z’s there are at most 2 y’s which satisfy (1).

But since only half of the elements of Fj have square roots, one would
expect (if 3 + ax + b were random elements of the field) that there would
be only about half that number of F,-points. More precisely, let x be the
quadratic character of Fg. This is the map which takes z € Fj to +1
depending on whether or not = has a square root in F, (and we take x(0) =
0). For example, if ¢ = p is a prime, then x(z) = (%) is the Legendre symbol
(see § I1.2). Thus, in all cases the number of solutions y € F, to the equation
y? = u is equal to 1+ x(u), and so the number of solutions to (1) (counting
the point at infinity) is

1+ Z(l+x(ws+aw+b))=q+1+2x(a:3;|-aa:+b). (6)
z€F, z€F,

We would expect that x(z3+az-+b) would be equally likely to be +1 and —1.
Taking the sum is much like a “random walk”: toss a coin ¢ times, moving
one step farward for heads, one step backward for tails. In probability theory
one computes that the net distance traveled after g tosses is of the order of
/@ The sum ) x(z® + az + b) behaves a little like a random walk. More
precisely, one finds that this sum is bounded by 2,/3. This result is Hasse’s
Theorem; for a proof, see § V.1 of Silverman’s book on elliptic curves cited
in the references.

Hasse’s Theorem. Let N be the number of F4-points on an elliptic
curve defined over Fq. Then

IN-(g+1)| <2Va

In addition to the number N of elements on an elliptic curve defined
over Fy, we might want to know the actual structure of the abelian group.
This abelian group is not necessarily cyclic, but it can be shown that it
is always a product of two cyclic groups. This means that it is isomorphic
to a product of p-primary groups of the form Z/p*Z x Z/pPZ, where the
product is taken over primes dividing N (here > 1, 8 2 0). By the type of
the abelian group of Fg-points on E, we mean a listing (., p%, 0%, DpiN
of the orders of the cyclic p-primary factors (we omit p? when 8 =0). It is
not always easy to find the type.

Example 4. Find the type of y? = z® — z over Fr,.

Solution. We first find the number of points N. In (6) we notice
that in the sum the term for z and the term for —z cancel, because
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x((=z)3=(-z)) = x(-1)x(z*—z), and x(—1) = —1 because 71 = 3 m2od 4.
Thus, N = g+ 1 = 72. Notice that there are exactly four points of or-
der 2 (including the identity O), because they correspond to the roots of
23 — z = z(z — 1)(z + 1) (see Exercise 4(a) below). This means that the
2-primary part of the group has type (4, 2), and so the type of the group is ei-
ther (4,2,3, 3) or else (4,2,9), depending on whether there are 9 or 3 points
of order 3, respectively. So it remains to determine whether or not there
can be 9 points of order 3. Note that for any P # O the equation 3P = O
is equivalent to 2P = %P, i.e., to the condition that the z-coordinates of P
and 2P be the same. By (5), this means that ((3z% —1)/2y)? -2z =z, i.e.,
(322 —1)% = 122y® = 122* — 1222 Simplifying, we obtain 3z*—62°~1 = 0.
There are at most 4 roots to this equation in F7;. If there are four roots,
then each root can give at most 2 points (by takingy = +v23 —zif £3 -z
has a square root modulo 71), and so we may in this way obtain 9 points
of order 3 (including the identity O at infinity). Otherwise, there must be
fewer than 9 points of order 3 (and hence exactly 3 points of order 3). But
if the root z of the quartic polynomial has z® — z a square modulo 71,
then the root —z of the quartic has (—z)® — (—z) = —(z3 — z) a nonsquare
modulo 71. Thus, we cannot get 9 points of order 3, and so the type of the
group is (4,2,9).

Extensions of finite fields, and the Weil conjectures. If an elliptic curve
E is defined over F, then it is also defined over Fgr for r = 1,2,. .., and so
it is meaningful to consider the Fy--points, i.e., to look at solutions of (1)
over extension fields. If we start out with Fy as the field over which E is
defined, we let N, denote the number of F,--points on E. (Thus, Ny = N
is the number of points with coordinates in our “ground field” Fg.)

From the numbers N, one forms the “generating series” Z(T; E /F,),
which is the formal power series in Q[[T]] defined by setting

Z(T,E/F,) = R " (1)

in which T is an indeterminate, the notation E/F, designates the elliptic
curve and the field we're taking as our ground field, and the sum on the
right is over all 7 = 1,2,... . It can be shown that the series on the right
(obtained by taking the infinite product of the exponential power series
eN*T"/7) actually has positive integer coefficients. This power series is called
the zeta-function of the elliptic curve (over Fg), and is a very important
object associated with E.

The “Weil conjectures” (now a theorem of P. Deligne) say in a much
more general context (algebraic varieties of any dimension) that the zeta-
function has a very special form. In the case of an elliptic curve E/F, Weil
proved the following.

Weil conjectures [theorem] for an elliptic curve. The zeta-function is
a rational function of T having the form
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1—aT + qT?
: (8)

Z(TiE[Fe) = G-y 1= q1)’

where only the integer a depends on the particular elliptic curve E. The
value a is related to N = Ny as follows: N = ¢+ 1 — a. In addition, the
discriminant of the quadratic polynomial in the numerator is negative (i.e.,
a? < 4q, which is Hasse’s Theorem) and so the quadratic has two complex
conjugate Toots a, B both of absolute value \/q. (More precisely, 1/c and
1/B are the roots, and a, (3 are the “reciprocal Toots.”)

For a proof, see § V.2 of Silverman’s book.

Remark. If we write the numerator of (8) in the form (1—aT')(1—8T)
and then take the derivative of the logarithm of both sides (replacing the
left side by its definition (7)), we soon see that the formula (8) is equivalent
to writing the sequence of relations

N,=q"+1-a - (", r=12....

Since « and 3, along with a, are determined once you know N = Ny,
this means that the number of points over F, uniquely determines the
number of points over any extension field. Thus, among other things, Weil’s
conjectures for elliptic curves are useful for determining the number of
points over extension fields of large degree.

Example 5. The zeta-function of the elliptic curve y? +y = z° over
F, is easily computed from the fact that there are three Fa-points. It is
(14 2T?)/(1 - T)(1 — 2T), i.e., the reciprocal roots of the numerator are
+i+/2. This leads to the formula

2" +1, if r is odd;
N = { 2r +1-2(=2)"/% if ris even. ©)

3

To conclude this section, we remark that there are many analogies
between the group of F4-points on an elliptic curve and the multiplicative
group (Fg)* For example, they have approximately the same number of
elements, by Hasse’s Theorem. But the former construction of an abelian
group has a major advantage that explains its usefulness in cryptography:
for a single (large) g there are many different elliptic curves and many
different N that one can choose from. Elliptic curves offer a rich source of
“naturally occurring” finite abelian groups. We shall take advantage of this
in the next three sections.

FEzxercises

1. If E is an elliptic curve defined over C whose equation (1) actually has
coefficients a,b € R, then the points of E with real coordinates form
a subgroup. What are the possible subgroups of the complex curve E
(which as a group is isomorphic to the product of the circle group with
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itself) which can occur as the group of real points? Give an example
of each.

2. How many points P of order n (i.e., nP = O) are there on an elliptic
curve defined over C? How about on an elliptic curve over R?

3. Give an example of an elliptic curve over R which has exactly 2 points
of order 2, and another example which has exactly 4 points of order 2.

4. Let P be a point on an elliptic curve over R. Suppose that P is not
the point at infinity. Give a geometric condition that is equivalent to
P being a point of order (a) 2; (b) 3; (c) 4.

5. Each of the following points has finite order on the given elliptic curve
over Q. In each case, find the order of P.

(a) P = (0,16) on y? = z3 + 256.

(b) P=(%, ) ony? =23+ jz.

(c) P =(3,8) on y? = z° — 43z + 166.

(d) P =(0,0) on y? + y = z° — 2% (which can be written in the form
(1) by making the change of variables y — y — %, T—z+ %)-

6. Derive addition formulas similar to (4)—(5) for elliptic curves in char-
acteristic 2, 3 (see Equations (2)—(3)).

7. Prove that there are g + 1 Fy-points on the elliptic curve
(a) y? = 2% — z when ¢ = 3 mod 4;

(b) y? = z° — 1 when ¢ = 2 mod 3 (where g is odd);
(c) ¥* +y = z° when g = 2 mod 3 (g may be even here).

8. For all odd prime powers ¢ = p" up to 27 find the order and type of the
group of F-points on the elliptic curves y® =23 —z and y? =2 - 1
(in the latter case when p # 3). In some cases you will have to check
how many points have order 3 or 4.

9. Lgt g = 27, and let the elliptic curve E over F, have equation y? +y =
z°
(?);Dxpress the coordinates of —P and 2P in terms of the coordinates
of P.

(b) If g = 16, show that every P € E is a point of order 3.

(c) Show that any point of E with coordinates in Fi¢ actually has
coordinates in F4. Then use Hasse’s Theorem with ¢ = 4 and 16 to
determine the number of points on the curve.

10. Compute the zeta-functions of the two curves in Exercise 8 over F';, for
p=2>5,7,11,13.

11. Compute the zeta function of the curve y> +y =23~z + 1 over F,
for p = 2 and 3. (First show that N; = 1 in both cases.) Letting
N(z) = z - T denote the norm of a complex number, find a simple
formula for N,.

3
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2 Elliptic curve cryptosystems

In § IV.3 we saw how the finite abelian group Fy — the multiplicative group
of a finite field — can be used to create public key cryptosystems. More
precisely, it was the difficulty of solving the discrete logarithm problem in
finite fields that led to the cryptosystems discussed in §IV.3. The purpose
of this section is to make analogous public key systems based on the finite
abelian group of an elliptic curve E defined over F,.

Before introducing the cryptosystems themselves, there are some pre-
liminary matters that must be discussed.

Multiples of points. The elliptic curve analogy of multiplying two ele-
ments of F} is adding two points on E, where E is an elliptic curve defined
over F,. Thus, the analog of raising to the k-th power in F} is multiplication
of a point P € E by an integer k. Raising to the k-th power in a finite field
can be accomplished by the repeated squaring method in O(log k lag®q) bit
operations (see Proposition I1.1.9). Similarly, we shall show that the mul-
tiple kP € E can be found in O(logk log®q) bit operations by the method
of repeated doubling.

Example 1. To find 100P we write 100P = 2(2(P + 2(2(2(P +2P))))),
and end up performing 6 doublings and 2 additions of points on the curve.

Proposition VI.2.1. Suppose that an elliptic curve E is defined by a
Weierstrass equation (equation (1), (2) or (3) in the last section) over a
finite field F,. Given P € E, the coordinates of kP can be computed in
O(log k log3q) bit operations.

Proof. Note that there are fewer than 20 computations in Fy (multi-
plications, divisions, additions, or subtractions) involved in computing the
coordinates of a sum of two points by means of equations (4)-(5) (or the
analogous equations in Exercise 6 of §1). Thus, by Proposition I1.1.9, each
such addition (or doubling) of points takes time O(log®q). Since there are
O(log k) steps in the repeated doubling method (see the proof of Propo-
sition 1.3.6), we conclude that the coordinates of kP can be calculated in
O(log k log®q) bit operations.

Remarks. 1. The time estimate in Proposition VI.2.1 is not the best
possible, especially in the case when our finite field has characteristic p = 2.
But we shall be satisfied with the estimates that result from using the most
obvious algorithms for arithmetic in finite fields.
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2. If we happen to know the number N of points on our elliptic curve E,
and if k > N, then since NP = O we can replace k by its least nonnegative
residue modulo N before computing kP; in this case we can replace the
time estimate by O(log*q) (recall that N < g + 1+ 2,/g = O(q)). There
is an algorithm due to René Schoof which computes N in O(log®q) bit
operations.

Imbedding plaintexts. We shall want to encode our plaintexts as points
on some given elliptic curve E defined over a finite field F,. We want to
do this in a simple systematic way, so that the plaintext m (which we
may regard as an integer in some range) can readily be determined from
knowledge of the coordinates of the corresponding point Pr,. Notice that
this “encoding” is not the same thing as encryption. Later we shall discuss
ways to encrypt the plaintext points P,,. But an authorized user of the
system must be able to recover m after deciphering the ciphertext point.

There are two remarks that should be made here. In the first place,
there is no polynomial time (in logq) deterministic algorithm known for
writing down a large number of points on an arbitrary elliptic curve E
over F,. However, there are probabilistic algorithms for which the chance
of failure is very small, as we shall see below. In the second place, it is not
enough to generate random points of E: in order to encode a large number
of possible messages m, we need a systematic way to generate points that
are related to m in some way, for example, the z-coordinate has a simple
relationship to the integer m.

Here is one possible probabilistic method to imbed plaintexts as points
on an elliptic curve E defined over Fy, where ¢ = p” is assumed to be large
(and odd; see Exercise 8 below for ¢ = 27). Let & be a large enough integer
so that we are satisfied with a failure probability of 1 out of 2* when we
attempt to imbed a plaintext message unit m; in practice & = 30 or at
worse £ = 50 should suffice. We suppose that our message units m are
integers 0 < m < M. We also suppose that our finite field is chosen so that
g > Mk. We write the integers from 1 to Mk in the form mx + j, where
1 < j < Kk, and we set up a 1-to-1 correspondence between such integers
and a set of elements of F,. For example, we write such an integer as an
r-digit integer to the base p, and take the r digits, considered as elements
of Z/pZ, as the coefficients of a polynomial of degree 7 —1 corresponding to
an element of F,. That is, the integer (ar-la,_\g ---a1ag)p corresponds to
the polynomial E:__fg a; X7, which, considered modulo some fixed degree-r
irreducible polynomial over F;, gives an element of F,.

Thus, given m, for each j = 1,2,...,x we obtain an element z of F,
corresponding to mk + j. For such an z, we compute the right side of the
equation

V= () =2° +az+b,

and try to find a square root of f(z) using the method explained at the end
of § I1.2. (Although the algorithm was given for the prime field Fy, it carries
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over word for word to any finite field Fy. In order to use it we must have
a nonsquare g in the field, which can easily be found by a probabilistic
algorithm.) If we find a y such that y* = f(z), we take Pp = (z,y). If
it turns out that f(z) is a nonsquare, then we increment j by 1 and try
again with the corresponding z. Provided we find an = for which f(z) is a
square before j gets bigger than s, we can recover m from the point (z,y)
by the formula m = [(5: -1) /N] , where Z is the integer corresponding to
z under the 1-to-1 correspondence between integers and elements of Fg.
Since f(z) is a square for approximately 50% of all z, there is only about
a 27 probability that this method will fail to produce a point P, whose
z-coordinate corresponds to an integer Z between mk+1 and mi+k. (More
precisely, the probability that f(z) is a square is essentially equal to N/2g;
but N/2q is very close to 1/2.)

Discrete log on E. In §IV.3 we discussed public key cryptosystems
based on the discrete logarithm problem in the multiplicative group of a
finite field. Now we do the same in the group (under addition of points) of
an elliptic curve E defined over a finite field F.

Definition. If E is an elliptic curve over Fq and B is a point of E, then
the discrete log problem on E (to the base B) is the problem, given a point
P € E, of finding an integer z € Z such that zB = P if such an integer z
exists.

It is likely that the discrete log problem on elliptic curves will prove
to be more intractible than the discrete log problem in finite fields. The
strongest techniques developed for use in finite fields do not seem to work
on elliptic curves. This is especially true in the case of characteristic 2.
As explained in Odlyzko’s survey article cited in the references, special
methods for solving the discrete log problem in F3. make it relatively easy
to compute discrete logs, and hence break the cryptosystems discussed in
§IV.3, unless r is chosen to be rather large. It seems that the analogous
systems using elliptic curves defined over F- (see below) will be secure with
significantly smaller values of r. Since there are practical reasons (relating
to both computer hardware and software) for preferring to do arithmetic
over the fields For, the public key cryptosystems discussed below may turn
out to be more convenient in applications than the systems based on the
discrete log problem in Fy.

Until 1990, the only discrete log algorithms known for an elliptic curve
were the ones that work in any group, irrespective of any particular struc-
ture. These are exponential time algorithms, provided that the order of the
group is divisible by a large prime factor. But then Menezes, Okamoto, and
Vanstone found a new approach to the discrete log problem on an elliptic
curve E defined over F,. Namely, they used the Weil pairing (see §IIL.8 of
Silverman’s textbook cited in the references to §1) to imbed the group E
into the multiplicative group of some extension field Fgx. This imbedding
reduces the discrete log problem on E to the discrete log problem in F;,‘.

However, in order for the Weil pairing reduction to help, it is essential
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for the extension degree k to be small. Essentially the only elliptic curves for
which k is small are the so-called “supersingular” elliptic curves, the most
familiar examples of which are curves of the form y? = z3 + az when the
characteristic p of Fq is = —1 (mod 4), and curves of the form y? = £* + b
when p = —1 (mod 3). The vast majority of elliptic curves, however, are
nonsupersingular. For them, the reduction almost never leads to a subex-
ponential algorithm (see my paper in Journal of Cryptology cited in the
references).

Thus, a key advantage of elliptic curve cryptosystems is that no subex-
ponential algorithm is known that breaks the system, provided that we
avoid supersingular curves and also curves whose order has no large prime
factor.

We now describe analogs of the public key systems in §IV.3 based on
the discrete log problem on an elliptic curve E defined over a finite field
F,.

Analog of the Diffie-Helman key exchange. Suppose that Aida and
Bernardo want to agree upon a key which will later be used in conjunction
with a classical cryptosystem. They first publicly choose a finite field F,
and an elliptic curve E defined over it. Their key will be constructed from
a random point P on the elliptic curve. For example, if they have a random
point P € E, then taking the z-coordinate of P gives a random element of
F,, which can then be converted to a random r-digit base-p integer (where
q = p") which serves as the key to their classical cryptosystem. (Here we'’re
using the word “random” in an imprecise sense; all we mean is that its choice
is arbitrary and unpredictable in a large set of admissible keys.) Their task
is to choose the point P in such a way that all of their communication with
one another is public and yet no one other than the two of them knows
what P is.

Aida and Bernardo first publicly choose a point B € E to serve as
their “base.” B plays the role of the generator g in the finitefield Diffie-
Hellman system. However, we do not want to insist that B be a generator
of the group of points on E. In fact, the latter group may fail to be cyclic.
Even if it is cyclic, we want to avoid the effort of verifying that B is a
generator (or even determining the number N of points, which we do not
need to know in what follows). We would like the subgroup generated by B
to be large, preferably of the same order of size as E itself. This question
will be discussed later. For now, let us suppose that B is a fixed publicly
known point on E whose order is very large (either N or a large divisor of
N).

To generate a key, first Aida chooses a random integer a of order of
magnitude g (which is approximately the same as N), which she keeps
secret. She computes aB € E, which she makes public. Bernardo does the
same: he chooses a random b and makes public bB € E. The secret key they
use is then P = abB € E. Both users can compute this key. For example,
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Aida knows bB (which is public knowledge) and her own secret a. However,
a third party knows only aB and bB. Without solving the discrete logarithm
problem — finding a knowing B and aB (or finding b knowing B and bB)
— there seems to be no way to compute abB knowing only aB and bB.

Analog of Massey-Omura. As in the finite-field situation, this is a
public key cryptosystem for transmitting message units m, which we now
suppose have been imbedded as points P, on some fixed (and publicly
known) elliptic curve E over Fy (where g is large). We also suppose that the
number N of points on E has been computed (and is also publicly known).
Each user of the system secretly selects a random integer e between 1 and
N such that g.c.d.(e, N) = 1 and, using the Euclidean algorithm, computes
its inverse d = e~! mod N, i.e., an integer d such that de = 1 mod N. If
Alice wants to send the message P, to Bob, first she sends him the point
eaPy (where the subscript A denotes the user Alice). This means nothing
to Bob, who, knowing neither d4 nor e4, cannot recover P,,. But, without
attempting to make sense of this point, he multiplies it by his eg, and sends
egeaPm back to Alice. The third step is for Alice to unravel the message
part of the way by multiplying the point egeaPm by da. Since NP,, = O
and dsaea = 1 mod N, this gives the point epPp,, which Alice returns to
Bob, who can read the message by multiplying the point egPm by dp.

Notice that an eavesdropper would know e4 P, ege APm and egPp,.
If (s)he could solve the discrete log problem on E, (s)he could determine
ep from the first two points and then compute dg = egl mod N and
Pm = dB(eBPm)-

Analog of ElGamal. This is another public key cryptosystem for trans-
mitting messages Pr,. As in the key exchange system above, we start with
a fixed publicly known finite field F, elliptic curve E defined over it, and
base point B € E. (We do not need to know the number of points N .) Each
user chooses a random integer a, which is kept secret, and computes and
publishes the point aB.

To send a message Py, to Bjérn, Aniuta chooses a random integer k
and sends the pair of points (kB, Py + k(apB)) (where apB is Bjorn’s
public key). To read the message, Bjérn multiplies the first point in the
pair by his secret ap and subtracts the result from the second point:

P +k(apB) — ap(kB) = Pn.

Thus, Aniuta sends a disguised Py, along with a “clue” kB which is enough
to remove the “mask” kagB if one knows the secret integer ap. An eaves-
dropper who can solve the discrete log problem on E can, of course, deter-
mine ag from the publicly known information B and agB.

The choice of curve and point. There are various ways of choosing an
elliptic curve and (in the Diffie-Hellman and ElGamal set-up) a point B
on it.

Random selection of (E, B). Once we choose our large finite field F,
we can choose both E and B = (z,y) € E at the same time as follows. (We
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shall assume that the characteristic is > 3, so that elliptic curves are given
by equation (1) in §1; one makes the obvious modifications if ¢ = 2" or 3".)
First let z, y, a be three random elements of Fy. Then set b = y?— (z> +az).
Check that the cubic z3 + az + b does not have multiple roots, which is
equivalent to: 4a3 + 27b? # 0. (If this condition is not met, make another
random choice of z,y,a.) Set B = (z,y). Then B is a point on the elliptic
curve y2 = 2% + az + b.

If you need to know the number N of points, there are several tech-
niques now available for computing N. The first polynomial time algorithm
to compute #FE was discovered by René Schoof. Schoof’s algorithm is even
deterministic. It is based on the idea of finding the value of #F modulo [
for all primes [ less than a certain bound. This is done by examining the
action of the “Frobenius” (the p-th power map) on points of order Z.

In Schoof’s original paper the bound for running time was essentially
O(log® q), which is polynomial but quite unpleasant. At first it looked like
the algorithm was not practical. However, since then many people have
worked on speeding up Schoof’s algorithm (V. Miller, N. Elkies, J. Buch-
mann, V. Miiller, A. Menezes, L. Charlap, R. Coley, and D. Robbins). In
addition, A. O. L. Atkins has developed a somewhat different method that,
while not guaranteed to work in polynomial time, functions extremely well
in practice. As a result of all of these efforts it has become feasible to com-
pute the order of an arbitrary elliptic curve over F if q is, say, a 50-digit
or even a 100-digit prime power. Some of the methods for computing the
number of points on an elliptic curve are discussed in the references listed
at the end of the section.

It should also be remarked that, even though one does not have to
know N in order to implement the Diffie-Helman or the ElGamal system,
in practice one wants to be confident in its security, which depends upon
N having a large prime factor. If N is a product of small primes, then
the method of Pohlig-Silver-Hellman (see §IV.3) can be used to solve the
discrete log problem. Note that the Pohlig—Silver-Hellman method carries
over to the discrete log problem in any finite abelian group (unlike the
index—calculus algorithm also discussed in §1V.3, which depends upon the
specific nature of F7). Thus, one has to know that N is not a product of
small primes, and it is not likely that you will know this unless you have
the actual value of N.

Reducing a global (E, B) modulo p. We now mention a second way
to determine a pair consisting of an elliptic curve and a point on it. We
first choose once and for all a “global” elliptic curve and a point of infinite
order on it. Thus, let E be an elliptic curve defined over the field of rational
numbers (or, more generally, we could use an elliptic curve defined over a
number field), and let B be a point of infinite order on E.

Example 2. It turns out that the point B = (0,0) is a point of infinite
order on the elliptic curve E : y? + y = 2% — z, and in fact generates the
entire group of rational points on E.
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Example 3. It turns out that the point B = (0,0) is a point of infinite
order on E : y? +y = z% + 2% and generates the entire group of rational
points.

Next, we choose a large prime p (or, if our elliptic curve is defined over
an extension field K of Q, then we choose a prime ideal of K) and consider
the reduction of E and B modulo p. More precisely, for all p except for
some small primes the coefficients in the equation for E have no p in their
denominators, so we may consider the coefficients in this equation modulo
p. If we make a change of variables taking the resulting equation over Fp
to the form y2 = 23 + az + b, the cubic on the right has no multiple roots
(except in the case of a few small primes p), and so gives an elliptic curve
(which we shall denote E mod p) over Fp. The coordinates of B will also
reduce modulo p to give a point (which we shall denote B mod p) on the
elliptic curve E mod p.

When we use this second method, we fix E and B once and for all,
and then get many different possibilities by varying the prime p.

Order of the point B. What are the chances that a “random” point B
on a “random” elliptic curve is a generator? Or, in the case of our second
method of selecting (E, B), what are the chances, as p varies, that the point
B reduces modulo p to a generator of E mod p? This question is closely
analogous to the following question concerning the multiplicative groups of
finite felds: Given an integer b, what are the chances, as p varies, that b is
a generator of F;? The question has been studied both in the finite-field
and elliptic—curve situations. For further discussion, see the paper by Gupta
and Murty cited in the references.

As mentioned before, for the security of the above cryptosystems it is
not really necessary for B to be a generator. What is needed is for the cyclic
subgroup generated by B to be a group in which the discrete log problem
is intractible. This will be the case — i.e., all known methods for solving
the discrete logarithm problem in an arbitrary abelian group will be very
slow — provided that the order of B is divisible by a very large prime, say,
having order of magnitude almost as large as N.

One way to guarantee that our choice of B is suitable — and, in fact,
that B generates the elliptic curve — is to choose our elliptic curve and
finite field so that the number N of points is itself a prime number. If we do
that, then every point B # O will be a generator. Thus, if we use the first
method described above, then for a fixed Fy we might keep choosing pairs

(E, B) until we find one for which the number of points on E is a prime
number (as determined by one of the primality tests discussed in § V.1). If
we use the second method, then for a fixed global elliptic curve E over Q we
keep choosing primes p until we find a prime for which the number of points
on E mod p is a prime number. How long are we likely to have to wait?
This question is analogous to the following question about the groups Fy:
is (p—1)/2 prime, i.e., is any element # +1 either a generator or the square
of a generator (see Exercise 13 of §11.1)? Neither the elliptic curve nor the
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finite field question has been definitively answered, but it is conjectured in
both cases that the probability that a chosen p has the desired property is
O(1/log p).

Remark. In order for E mod p to have any chance of being of prime
order N for large p, E must be chosen so as to have trivial torsion, i.e., to
have no points except O of finite order. Otherwise, N will be divisible by
the order of the torsion subgroup.

FEzercises

1. Give a probabilistic algorithm for finding a nonsquare in F,.

2. Describe a polynomial time deterministic algorithm for imbedding
plaintexts m as points on an elliptic curve in the following cases:

(a) E has equation y* = z° — z and ¢ = 3 mod 4.
(b) E has equation y? + y = z3 and ¢ = 2 mod 3.

3. Let E be the elliptic curve y2 + y = 23 — = defined over the field of
p = 751 elements. (A change of variables of the form y' = y + 376
will convert this equation to the form (1) of §1.) This curve contains
N = 727 points. Suppose that the plaintext message units are the
decimal digits 0—9 and the letters A—Z with numerical equivalents
10—35, respectively. Take k = 20.

(a) Use the method in the text to write the message “STOP007” as a
sequence of seven points on the curve.

(b) Translate the sequence of points (361,383), (241, 605), (201, 380),
(461,467), (581, 395) into a reply message.

4. Let E be an elliptic curve defined over Q, and let p be a large prime, in
particular, large enough so that reducing the equation y? = 23+ az+b
modulo p gives an elliptic curve over F,. Show that (a) if the cubic
2% + az + b splits into linear factors modulo p, then E mod p is not
cyclic; (b) if this cubic has a root modulo p, then the number N of
elements on E mod p is even.

5. Let E be the elliptic curve in Example 5 of §1. Let ¢ = 27, and let N,
be the number of Far-points on E.

(a) Show that N, is never prime for r > 1.
(b) When 4|r, find conditions that are equivalent to N, being divisible
by an (r/4)-bit or (r/4 + 1)-bit prime.

6. Let E be an elliptic curve defined over F,, and let N, denote the
number of F,--points on E.

(a) Prove that if p > 3, then N, is never prime for r > 1.
(b) Give a counterexample to part (a) when p = 2 and when p = 3.

7. (a) Find an elliptic curve E defined over F4 which has only one F4-
point (the point at infinity O).

(b) Show that the number of F4--points on the curve in part (a) is the
square of the Mersenne number 2" — 1.
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(c) Find a very simple formula for the double of an F4--point on this
elliptic curve.

(d) Prove that, if 2" — 1 is a Mersenne prime, then every F4r-point
(except O) has exact order 2" — 1.

8. Let r be odd, and let K denote the field Far. For z € K let g(z) denote
E;L—ol)/ 222" and let tr(z) (called the “trace”) denote Z;;é 2%,

(a) Prove that tr(z) € Fa; tr(z1 + 22) = tr(z1) + tr(z2); tr(1) = 1; and
g(2) + 9(2)? = z + tr(2).

(b) Prove that tr(z) = 0 for exactly half of the elements of K and
tr(z) = 1 for the other half.

(c) Describe a probabilistic algorithm for generating F,--points on the
elliptic curve y% +y = 23 + az + b.

9. Let E be the elliptic curve y? = z° + az + b with a,b € Z. Let P € E.
Let p > 3 denote a prime that does not divide either 4a® + 27b% or the
denominator of the z- or y-coordinate of P. Show that the order of
P mod p on the elliptic curve E mod p is the smallest positive integer
k such that either (1) kP = O on E; or (2) p divides the denominator
of the coordinates of kP.

10. Let E be the elliptic curve 3% + y = 23 — z defined over Q, and let
P = (0,0). By computing 2/P for j = 1,2,..., find an example of a
prime p such that E mod p is not generated by P mod p. (Note: it can
be shown that the point P does generate the group of rational points
of E.)

11. Use the elliptic curve analog of ElGamal to send the message in Ex-
ercise 3(a) with E and p as in Exercise 3 and B = (0,0). Suppose
that your correspondent’s public key is the point (201, 380) and your
sequence of random k’s (one used to send each message unit) is 386,
209, 118, 589, 312, 483, 335. What sequence of 7 pairs of points do you
send? )

Note that in this exercise we used a rather small value of p; a
more realistic example of the sort one would encounter in practice
would require working with numbers of several dozen decimal digits.
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3 Elliptic curve primality test

The elliptic curve primality test, due to S. Goldwasser, J. Kilian and (in
another variant) A. O. L. Atkin, is an analog of the following primality test
of Pocklington based on the group (Z/nZ)*:

Proposition 6.3.1. Let n be a positive integer. Suppose that there is a
prime q dividing n—1 which is greater than «/n—1. If there exists an integer
a such that (i) a®! = 1 (mod n); and (i) g.c.d.(a®V/9 —1,n) =1, then
n is prime.

Proof. If n is not prime, then there is a prime p < y/n which divides n.
Since ¢ > p — 1, it follows that g.c.d.(¢,p — 1) = 1, and hence there exists
an integer u such that ug = 1 (mod p — 1). Then an=V/a = guatr—1/9 =
a*("=1) = 1 (mod p) by condition (i), and this contradicts condition (ii).

Remarks. This is an excellent test provided that n — 1 is divisible by
a prime ¢ > /7 — 1, and we have been able to find ¢ (and prove that it’s
prime). Otherwise, we're out of luck. (This is not quite true — there’s a
more general version which can be used whenever we have a large divisor
of n — 1 in fully factored form, see Exercise 2 below.)
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Note that this primality test is probabilistic only in the sense that a
randomly chosen a may or may not satisfy condition (ii) (of course, if it
fails to satisfy (i), then n is not prime). But once such an a is found (and
a = 2 will usually work), then the test shows that n is definitely a prime.
Unlike the primality tests in §V.1 (the Solovay-Strassen and Miller-Rabin
tests), the conclusion of Pocklington’s test is a certainty: n is a prime, not
a “probable prime.”

The elliptic curve primality test is based on an analogous proposition,
where we suppose that we have an equation y? = 2% + az + b considered
modulo n. That is, a and b are integers modulo n, and we let E denote
the set of all integers z,y € Z/nZ which satisfy the equation, along with a
symbol O, which we call the “point at infinity.” If n is prime (as is almost
certainly the case — since in practice we are only considering numbers n
which have already passed some of the probable prime tests in §V.1), then
E is an elliptic curve with identity element O.

Before stating the analog of Proposition 6.3.1 for E, we note that, even
without knowing that n is prime, we can apply the formulas in 81 to add
elements of E. One of three things happens when we add two points (or
double a point): (1) we get a well-defined point, (2) if the points are of
the form (z,y) and (z, —y) modulo n, then we get the point at infinity, (3)
the formulas are undefined, because we have a denominator which is not
invertible modulo n. But case (3) means that n is composite, and we can
find a nontrivial divisor by taking the g.c.d. of n with the denominator.
So without loss of generality in what follows we may assume that case (3)
never occurs.

It can be shown that for P an element of E modulo n, even if n is
composite the answer our algorithm gives for mP does not depend on the
particular manner in which we successively add and double points. (This
is not a priori obvious.) However, this fact will not be needed helow. It
suffices to let mP denote any point which is obtained working modulo n
with the formulas in §1.

Just as we can add points modulo n without knowing that n is prime,
similarly, given an algorithm for computing the number of points on an
elliptic curve (such as Schoof’s method), we can apply it to our set E
modulo n. We will either obtain some number m — which if n is prime
is guaranteed to be the number of points on the elliptic curve E — or
else encounter an undefined expression whose denominator has a nontrivial
common factor with n. As in the case of the addition of points, without
loss of generality we may assume that the latter never happens.

Such an m will play the role of n — 1 in Proposition 6.3.1 — notice
that n — 1 is the order of (Z/nZ)* if n is prime.

We are now ready to state the elliptic curve analog of Pocklington’s
criterion.

Proposition 6.3.2. Let n be a positive integer. Let E be the set given
by an equation y? = z° + az + b modulo n, as above. Let m be an integer.
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Suppose that there is a prime q dividing m which is greater than (nl/ 44 1)2.
If there erists a point P of E such that (i) mP = O; and (i) (m/q)P is
defined and not equal to O, then n is prime.

Proof (compare with the proof of Proposition 6.3.1). If n is not prime,
then there is a prime p < y/n which divides n. Let E’ be the elliptic curve
given by the same equation as E but considered modulo p, and let m' be
the order of the group E’. By Hasse’s Theorem, we have m’ < p+1+2,/p =

(VP+1)? < (n/4 + 1)2 < g, and hence g.c.d.(g,m’) = 1, and there exists an
integer u such that ug = 1 (mod m’). Let P’ € E’ be the point P considered
modulo p. Then in E' we have (m/q)P’ = ug(m/q)P’ = umP’ = O, by
(i), since mP”’ is obtained using the same procedure as mP, only working
modulo p|n rather than modulo n. But this contradicts (ii), since if (mn/q) P
is defined and # O modulo 7, then the same procedure working modulo p
rather than modulo n will give (m/q)P’ # O. This completes the proof.

This proposition leads to an algorithm for proving that an integer n
(which we may suppose is already known to be a “probable prime”) is
definitely prime. We proceed as follows. We randomly select three integers
a,z,y modulo n and set b = y? — z* — ax (mod n). Then P = (z,y) is
an element of E, where E is given by y? = z® + az + b. We use Schoof’s
algorithm (or another method for counting the number of points on an
elliptic curve) to find a number m which, if n is prime, is equal to the
number of points on the elliptic curve E over F. If we cannot write m in
the form m = kg, where k > 2 is a small integer and g is a “probable prime”
(i.e., it passes a test as in §V.1), then we choose another random triple a, z,y
and start again. Suppose we finally obtain an elliptic curve for which m has
the desired form. Then we use the formulas in §VI.1 (working modulo n) to
compute mP and kP. If we ever obtain an undefined expression — either
in computing a multiple of P or in applying Schoof’s algorithm — then
we immediately find a nontrivial factor of n. We may assume that this
doesn’t happen. If mP # O, then we know that n is composite (because
if n were prime, then the group E would have order m, and any element
of E would be killed by multiplication by m). If kP = O (which is highly
unlikely), we are out of luck, and must start again with another triple. But
if mP = O and kP # O, then by Proposition 6.3.2 we know that n is
prime, provided that the large factor g of m is really a prime (we only know
it to be a “probable prime”). This reduces the problem to proving primality
of g, which has magnitude at most about n/2. We then start over with n
replaced by g. Thus, we obtain a recursive procedure with ¢ repetitions of
the primality test, where ¢ is no more than about log, 7. When we're done,
we have obtained a number g; which we know to be prime, from which
it follows that the previous g;_; was really a prime (not just a “probable
prime”), from which it follows that the same is true of g:—2, and so on, until
@1 = ¢, and finally n itself is truly a prime. This concludes the description
of the elliptic curve primality test.
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There are two difficulties with this test, one practical and the other
theoretical. In the first place, although Schoof’s algorithm takes time poly-
nomial in log n, in practice it is quite cumbersome. Some progress has been
made recently in supplementing and streamlining it, but even so it is rather
unpleasant to have to count the number of points on a large number of E
until we finally find one for which m has the desired form m = kq. In order
to deal with this problem, A. O. L. Atkin developed a variant of the elliptic
curve primality test using carefully constructed elliptic curves with complex
multiplication, for which it is much easier to compute the number of points
on their reduction modulo n. For more information on Atkin’s method, see
the article by Lenstra and Lenstra in the references below.

The second difficulty is theoretical. In order to find an elliptic curve
E over F,, (assuming that n is prime) whose number of points is “almost
prime” (i.e., of the form m = kq for k small and g prime), we have to know
something about the distribution of primes (rather, of “near primes”) in the
interval from p+1—2,/p to p+1+2,/p which, by Hasse’s Theorem, is known
to contain m. Because the length of this interval is relatively small, there is
no theorem which guarantees that we have a high probability of finding such
an E after only polynomially many tries (polynomial in logn). However,
there is a very plausible conjecture which would guarantee this, and for
practical purposes there should be no problem. But if one wants a provably
polynomial time probabilistic algorithm, one has to work much harder:
such a primality test was developed by Adleman and Huang using two-
dimensional abelian varieties, which are a generalization of elliptic curves
to 2 dimensions. However, their algorithm is completely impractical, as well
as very complicated.

FEzercises

1. (a) In Pocklington’s primality test, if n is prime, n — 1 is divisible by a

prime g as in Proposition 6.3.1, and a is chosen at random in (Z/nZ)*,
then what is the probability that a will satisfy the conditions of the
proposition?
(b) In the elliptic curve primality test, if n is prime, one has an elliptic
curve of order divisible by a prime q as in Proposition 6.3.2, and P is
a random point on it, then what is the probability that P will satisfy
the conditions of the proposition?

2. Generalize Pocklington’s primality test to the case when one knows an
integer s dividing n — 1 which is greater than \/n — 1 and for which
one knows all primes q|s. Condition (ii) is required to hold for all g|s.

3. (a) (Pépin’s primality test for Fermat numbers.) Prove that a Fermat
number n = 22 + 1 is a prime if and only if there exists an integer a

k-1
such that a®* = —1 mod n. Prove that if n is a prime, then 50% of
all a € (Z/nZ)* have this property. Also prove that a can always be
chosen to be 3, or 5, or 7, if k > 1.
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(b) Prove that a Mersenne number n = 27 — 1 is a prime if and only if
there exists a point P = (z,y) on the curve E : y? = 23+ mod n such
that (1) 2771 P can be computed without encountering non-invertible
denominators mod n, and (2) 2P~! P has y-coordinate zero. To do this,
first prove that, if n = 2P — 1 is prime, then the group of points on
E mod n is cyclic of order 27, and 50% of all P € E mod n have
the properties (1)~(2) above. Explain how one can generate random
points P € E mod n. You may use any algorithm that assumes that
b"~! = 1 mod n (i.e., that n is a pseudoprime to various bases b),
because if you ever encounter a b for which this fails, your test ends
with the conclusion that n must be composite.

Note that this is a probabilistic primality test in the sense that, if
n is a prime, there is no guarantee of when a suitable P will turn up.
However, once such a P is found, then the test ensures that n must
be prime. In this respect it is different from the pseudoprime tests in
§ V.1. For a generalization which can test primality of any odd n2, see
W. Bosma’s paper cited below.
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4 Elliptic curve factorization

A key reason for the increasing interest in elliptic curves on the part of cryp-
tographers is the recent ingenious use of elliptic curves by H. W. Lenstra to
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obtain a new factorization method that in many respects is better than the
earlier known ones. The improvement in efficiency is not significant enough
in practice to pose a threat to the security of cryptosystems based on the
assumed intractability of factoring (its time estimate has the same form
that we encountered in §V.3); nevertheless, the discovery of an improve-
ment using an unexpected new device serves as a warning that one should
never be too complacent about the supposed imperviousness of the factor-
ing problem to dramatic breakthroughs. The purpose of this final section
is to describe Lenstra’s method.

Before proceeding to Lenstra’s elliptic curve factorization algorithm,
we give a classical factoring technique which is analogous to Lenstra’s
method.

Pollard’s p — 1 method. Suppose that we want to factor the composite
number n, and p is some (as yet unknown) prime factor of n. If p happens to
have the property that p — 1 has no large prime divisor, then the following
method is virtually certain to find p.

The algorithm proceeds as follows:

1. Choose an integer k that is a multiple of all or most integers less than
some bound B. For example, k might be B!, or it might be the least
common multiple of all integers < B.

2. Choose an integer a between 2 and n — 2. For example, a could equal
2, or 3, or a randomly chosen integer.

3. Compute a* mod n by the repeated squaring method.

4. Compute d = g.c.d.(a* — 1,n) using the Euclidean algorithm and the
residue of a* modulo n from step 3.

5. If d is not a nontrivial divisor of n, start over with a new choice of a
and/or a new choice of k.

To explain when this algorithm will work, suppose that k is divisible
by all positive integers < B, and further suppose that p is a prime divisor
of n such that p — 1 is a product of small prime powers, all less than B.
Then it follows that k is a multiple of p— 1 (because it is a multiple of all of
the prime powers in the factorization of p — 1), and so, by Fermat’s Little
Theorem, we have a¥ = 1 mod p. Then p|g.c.d.(a* — 1,n), and so the only
way we could fail to get a nontrivial factor of n in step 4 is if it so happens
that a* = 1 mod n.

Example 1. We factor n = 540143 by this method, choosing B = 8
(and hence k = 840, which is the least common multiple of1,2,...,8) and
a = 2. We find that 284° mod n is 53047, and g.c.d.(53046,n) = 421. This
leads to the factorization 540143 = 421 - 1283.

The main weakness of the Pollard method is clear if we attempt to use
it when all of the prime divisors p of n have p — 1 divisible by a relatively
large prime (or prime power).

Example 2. Let n = 491389. We would be unlikely to find a nontrivial
divisor until we chose B > 191. This is because it turns out that n =
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383 -1283. We have 383 —1=2-191 and 1283 — 1 = 2-641 (both 191 and
641 are primes). Except for ¢ = 0,£1 mod 383, all other a’s have order
modulo 383 either 191 or 382; and except for a = 0,+1 mod 1283, all other
a’s have order modulo 1283 either 641 or 1282. So unless k is divisible by
191 (or 641), we are likely to find again and again that g.c.d.(a* —1,m2) = 1
in step 4.

The basic dilemma with Pollard’s p — 1 method is that we are pinning
our hopes on the group (Z/pZ)* (more precisely, the various such groups
as p runs through the prime divisors of n). For a fixed n, these groups are
fixed. If all of them happen to have order divisible by a large prime, we are
stuck.

The key difference in Lenstra’s method, as we shall see, is that, by
working with elliptic curves over F, = Z/pZ, we suddenly have a whole
gaggle of groups to use, and we can realistically hope always to find one
whose order is not divisible by a large prime or prime power.

We start our description of Lenstra’s algorithm with some comments
about reducing points on elliptic curves modulo n, where n is a composite
integer (unlike in §2, where we worked modulo prime numbers and in finite
fields).

Elliptic curves — reduction modulo n. For the remainder of the section
we let n denote an odd composite integer and p an (as yet unknown) prime
factor of n. We shall suppose that p > 3. For any integer m and any
two rational numbers z;, z2 with denominators prime to m, we shall write
T1 = z9 mod m if x; — x5, written in lowest terms, is a fraction with
numerator divisible by m. For any rational number z; with denominator
prime to m there is a unique integer zo (called the “least nonnegative
residue”) between 0 and m — 1 such that z; = z2 mod m. Sometimes we
shall write “r; mod m” to denote this least nonnegative residue.

Suppose that we have an equation of the form y? = z3 + az + b with
a,b € Z and a point P = (z,y) which satisfies it. In practice, the curve
E together with the point P will be generated in some “random” way, for
example, by choosing three random integers a, z,y in some range and then
setting b = y2 — 3 — az. We shall assume that the cubic has distinct roots,
i.e., 4a® + 27b% # 0; this is almost certain if the coefficients were chosen
in the random way described. For simplicity, in what follows we shall also
suppose that 4a® + 27b% has no common factor with n; in other words,
z3 + az + b has no multiple roots modulo p for any prime divisor p of n.
In practice, once we have made a choice of a and b, we can check this by
computing g.c.d.(4a3 + 27b%,n). If this is > 1, then either n|da® + 2757
(in which case we must make another choice of a and b) or else we have
obtained a nontrivial divisor of n (in which case we're done). So we shall
suppose that g.c.d.(4a® + 27b%,n) = 1.

Now suppose that we want to find the multiple kP, using the repeated
doubling method described in § VI.2. This can be done in O(log k) steps,
each involving a doubling or an addition of two distinct points. There are
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many ways to go about this. For example, k can be written in binary as ao+
a1-2+ - +am_12™"1, then P can be successively doubled, with 27 P added
to the partial sum whenever the corresponding bit a; is 1. Alternately, &
could be factored first into a product of primes £;, and then one could
successively compute £1(P), £2(¢1P), and so on, where ¢1,%2,... are the
primes in the factorization (listed, say, in non-decreasing order). Here each
multiple ¢;P;, where P; = £;_1£;_2---£1P, is computed by writing ¢; in
binary and using repeated doublings.

We shall suppose that some such technique has been chosen to compute
multiples kP.

We shall consider the point P and all of its multiples modulo n. This
means that we let P mod n = (z mod n,y mod n), and, every time we
compute some multiple kP, we really compute only the reduction of the
coordinates modulo n. In order to be able to work modulo n, there is a
nontrivial condition that must hold whenever we perform a doubling step
or add two different points. Namely, all denominators must be prime to n.

Proposition VI.3.1. Let E be an elliptic curve with equation y* = z° +
az + b, where a,b € Z and g.c.d.(4a® + 27b%,n) = 1. Let P, and P, be
two points on E whose coordinates have denominators prime to n, where
P, # —P,. Then P, + P» € E has coordinates with denominators prime
to n if and only if there is mo prime p|n with the following property: the
points Py mod p and P; mod p on the elliptic curve E mod p add up to the
point at infinity O mod p € E mod p. Here E mod p denotes the elliptic
curve over F,, obtained by reducing modulo p the coefficients of the equation
y¥2=xz3+az+b

Proof. First suppose that P, = (z1,y1), P2 = (%2,%2),and i+ P2 € E
all have coordinates with denominators prime to n. Let p be any prime
divisor of n. We must show that P, mod p + P> mod p # O mod p. If
z1 # z2 mod p, then, according to the description of the addition law on
E mod p, we immediately conclude that P; mod p + P mod p is not the
point at infinity on E mod p. Now suppose that z; = z2 mod p. First, if
P, = P, then the coordinates of Py + P, = 2P; are found by the formula
(5) of §1, and 2P; mod p is found by the same formula with each term
replaced by its residue modulo p. We must show that the denominator 2y,
is not divisible by p. If it were, then, because the denominator of the z-
coefficient of 2P; is not divisible by p, it would follow that the numerator
3:1:21' + a would be divisible by p. But this would mean that z; is a root
modulo p of both the cubic 23 +az + b and its derivative, contradicting our
assumption that there are no multiple roots modulo p. Now suppose that
P, # P,. Since 3 = z; mod p and x3 7# 1, we can write Tz = I +pz
with 7 > 1 chosen so that neither the numerator nor denominator of z is
divisible by p. Because we have assumed that P; + P, has denominator not
divisible by p, we can use the formula (4) of §1 to conclude that y2 is of the
form y; + p"y. On the other hand,
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=(z1+p2)’ +a(z;+pz) +b

=13 + azy + b+ p"2(323 + a) = y? + p (322 + a) mod p"t. W

But since z = z; mod p and y2 = y; mod p, it follows that P, mod p =
P; mod p, and so Py mod p+ P> mod p = 2P, mod p, which is O mod p if
and only if y1 = yo = 0 mod p. If the latter congruence held, then y2 —y? =
(Y2 —y1)(y2 +y1) would be divisible by p™** (i.e., its numerator would be),
and so the congruence (1) would imply that 3z + @ = 0 mod p. This is
impossible, because the polynomial 23 + az + b modulo p has no multiple
roots, and so z; cannot be a root both of this polynomial and its derivative
modulo p. We conclude that P, mod p+ P, mod p # O mod p, as claimed.
Conversely, suppose that for all prime divisors p of n we have P, mod p+

P3 mod p # O mod p. We must show that the coordinates of P; + P> have
denominators prime to n, i.e., that the denominators are not divisible by
p for any p|n. Fix some p|n. If 2o # z; mod p, then the formula (4) of §1
shows that there are no denominators divisible by p. So suppose that z, =
z1 mod p. Then y, = Fy; mod p; but since P, mod p+ P, mod p # O mod p,
we must have yo = y; # 0 mod p. First, if P, = P, then the formula (5) of
81 together with the fact that y; # 0 mod p shows that the coordinates of
P; + P, = 2P, have denominators prime to p. Finally, if P, # P;, we again
write £, = 1 + p"z with = not divisible by p, and we use the congruence
(1) above to write (y2 — y?)/(z2 — 1) = 32% + a mod p. Since p does not
divide Y2 + n= 2y1 mod D, it follows that there is no p in the denominator

W)—éﬁ %2741 and hence, by formula (4) of §1, there is no p in
the denominator of the coordinates of P; + P,. This completes the proof.
Lenstra’s method. We are given a composite odd integer n and want
to find a nontrivial factor d|n, 1 < d < n. We start by taking some elliptic
curve E : y? = z® + az + b with integer coefficients along with a point
P = (z,y) on it. The pair (E, P) is probably generated in some random way,
although we could choose to use some deterministic method which is capable
of generating many such pairs (as in Example 4 below). We attempt to use
E and P to factor n, as will be presently explained; if our attempt fails, we
take another pair (E, P), and continue in this way until we find a factor d|n.
If the probability of failure is p < 1, then the probability that h successive
choices of (E, P) all fail is p", which is very small for h large. Thus, with a
very high probability we will factor n in a reasonable number of tries.
Once we have a pair (E, P), we choose an integer k which is divisible
by powers of small primes (< B) which are less than some bound C. That

is, we set
k=L e @
¢<B

where a; = [log C/log K] is the largest exponent such that ¢*¢ < C. We
then attempt to compute kP, working all the time modulo n. This compu-
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tation is uneventful and useless, unless we run into the following difficulty:
when attempting to find the inverse of zz — 1 in the formula (4) of §1
or the inverse of 2y; in (5), we encounter a number that is not prime to
n. According to Proposition VL.3.1, this will happen when we have some
multiple k; P (a partial sum encountered along the way in our computation
of kP) which for some p|n has the property ki (P mod p) = O mod p, i.e.,
the point P mod p in the group E mod p has order dividing k;. In the
process of using the Euclidean algorithm to try to find the inverse modulo
n of a denominator which is divisible by p, we instead find the g.c.d. of n
with that denominator. That g.c.d. will be a proper divisor of n, unless it is
n itself, i.e., unless the denominator is divisible by n. That would mean, by
Proposition VI.3.1, that kP mod p = O mod p for all prime divisors p of n
— something which is highly unlikely if n has two or more very large prime
divisors. Thus, it is virtually certain that as soon as we try to compute k; P
modulo 7 for a k; which is a multiple of the order of P mod p for some p|n,
we will obtain a proper divisor of n.

Notice the similarity with Pollard’s p — 1 method. Instead of the group
(Z/pZ)*, we are using the group E mod p. However, this time, if our E
proves to be a bad choice — i.e., for each p|n the group E mod p has order
divisible by a large prime (and so kP mod p is not likely to equal O mod p
for k given by (2)) — all we have to do is throw it away and pick out
another elliptic curve E together with a point P € E. We did not have
such an option in the Pollard method.

The algorithm. Let n be a positive odd composite integer. We now
describe Lenstra’s probabilistic method for factoring 7.

We suppose we have a method for generating pairs (E, P) consisting of
an elliptic curve y? = z° +az + b with a,b € Z and a point P=(z,y) € E.
Given such a pair, we go through the procedure about to be described. If
that procedure fails to yield a nontrivial factor of n, then we generate a
new pair (E, P) and repeat the process.

Before working with our E modulo n, we must verify that it is in fact an
elliptic curve modulo any p|n, i.e., that the cubic on the right has distinct
roots modulo p. This holds if and only if the discriminant 403 + 27K is
prime to n. Thus, if g.c.d.(4a® + 27b%,n) = 1, we may proceed. Of course,
if this g.c.d. is strictly between 1 and n, we have a divisor of n, and we're
done. If this g.c.d. equals n, then we must choose a different elliptic curve.

Next, we suppose that we have chosen two positive integer bounds B,
C. Here B is a bound for the prime divisors of the integer k by which we
multiply the point P. If B is large, then there is a greater probability that
our pair (E, P) has the property that kP mod p = O mod p for some p|n; on
the other hand, the larger B the longer it will take to compute kP mod p.
So B must be chosen in some way which we estimate minimizes the running
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