ELLIPTIC FUNCTIONS

SERGE LANG

Yale University
New Haven, Connecticut

A

vy

1973

ADDISON-WESLEY PUBLISHING COMPANY, INC.

ADVANCED BOOK PROGRAM
Reading, Massachusetts

London - Amsterdam - Don Mills, Ontario - Sydney - Tokyo



American Mathematical Society (MOS) Subject Classification Scheme (1970):
14K 22, 33A25, 10D05, 10D25

Library of Congress Cataloging in Publication Data

Lang, Serge, 1927~
Elliptic functions.

Bibliography: p.

1. Functions, Elliptic. I. Title.
QA343.L35 5157983 72-1767
ISBN 0-201-04162-6

Copyright ©1973 by Addison-Wesley Publishing Company, Inc.
Philippines copyright 1973 by Addison-Wesley Publishing Company, Inc.
Published simultaneously in Canada.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise without the prior written permission of the
publisher, Addison-Wesley, Inc., Advanced Book Program, Reading, Massachusetts,
01867, U.S.A.

Printed in the United States of America

ISBN 0-201-04162-6




Contents

PART ONE GENERAL THEORY

Chapter

Chapter

Chapter

Chapter

-

wn o hWwW -

jum—y

N =

Elliptic Functions

Liouville Theorems

The Weierstrass Function

The Addition Theorem . .
Isomorphism Classes of Elliptic Curves
Endomorphisms and Automorphisms .

Homomorphisms

Points of Finite Order
Isogenies
The Involution

The Modular Function

The Modular Group .
Automorphic Functions of Degree 2k
The Modular Function j.

Fourier Expansions

Expansion for G, g,, 93, Aand j .
Expansion for the Weierstrass Function
Bernoulli Numbers

— e e
O da b =)

25

"~

L

28

29
P

L

39

TN
oy Lhh W



Vi CONTENTS

Chapter 5 The Modular Equation

1 Integral Matrices with Positive Determinant . . . . . ' 51
2 The Modular Equation . . . . . . . . . . . 54
3 Relations with Isogenies. . . . . . . . . . . 58
Chapter 6 Higher Levels ’
1 Congruence Subgroups . . . ' ... .. 6l
2 The Field of Modular Functions Over C ... .. 62
3 The Field of Modular Functions OverQ . . . . . . 65
4 Subfields of the Modular Function Field . . . . . . 72

Chapter 7 Automorphisms of the Modular Function Field

1 Rational Adeles of GL, . . . 75

2 Operation of the Rational Adeles on the Modular Functxon
Field . . . . S

3 The Shimura Exact Sequence . - X ]

PART TWO COMPLEX MULTIPLICATION
ELLIPTIC CURVES WITH SINGULAR INVARIANTS

Chapter 8 Results from Algebraic Number Theory

1 Lattices in Quadratic Fields . . . . . . . . . 89
2 Completions . . . . 98
3 The Decomposition Group and Frobenlus Automorphlsm 101
4 Summary of Class Field Theory . . . . . . . . 107
Chapter 9 Reduction of Elliptic Curves
1 Non-degenerate Reduction, General Case . . . . . 111
2 Reduction of Endomorphisms . . . . . . . . . 112
3 Coveringsof Level N . . . . . . . . . . . 113
4 Reduction of Differential Forms . . . . . . . . 117

Chapter 10 Complex Multiplication

1 Generation of Class Fields, Deuring’s Approach . . . 123
2 Idelic Formulation for Arbitrary Lattices. . . 129
3 Generation of Class Fields by Singular Values of Modular
Functions . . . R K A
4 The Frobenius Endomorphlsm .. ... .. 136

Appendix A Relation of Kronecker . . . . . . . 143



Chapter 11

l
2

Chapter 12
1

(U5 I NS

Chapter 13

G W N —

Chapter 14
1

[VS I N9

PART THREE ELLIPTIC CURVES WITH NON-INTEGRAL

Chapter 15

1
2

Chapter 16

S UV N

W

Chapter 17

1
2

CONTENTS

Shimura’s Reciprocity Law

Relation Between Generic and Special Extensions
Application to Quotients of Modular Forms .

The Function A{xz)/A(Z)

Behavior Under the Artin Automorphism
Prime Factorization of its Values .
Analytic Proof for the Congruence Relation ij

The /-adic and p-adic Representations of Deuring

The /-adic Spaces

Representations in Characterlstlc ¥4
Representations and Isogenies .
Reduction of the Ring of Endomorphlsms
The Deuring Lifting Theorem .

Thara’s Theory

Deuring Representatives
The Generic Situation
Special Situations.

INVARIANT

The Tate Parametrization

Elliptic Curves with Non-integral Invariants .
Elliptic Curves Over a Complete Local Ring .

The Isogeny Theorems

The Galois p-adic Representations .
Results of Kummer Theory .

The Local Isogeny Theorems
Supersingular Reduction

The Global Isogeny Theorems .

Division Points over Number Fields

A Theorem of Shafarevi
The Irreducibility Theorem .

149
153

161
163
168

172
174
178
181
184

187
190
191

197
202

205
208
211
213
216

o o
—

[SSoe)
N



viii

3

CONTENTS

The Horizontal Galois Group .

4 The Vertical Galois Group .

S

PART FOUR THETA FUNCTIONS AND KRONECKER LIMIT

Chapter 18
1

(= WRV I OV I S ]

Chapter 19

W N

Chapter 20

LV N S P N

Chapter 21

o

Chapter 22

1
2

End of the Proof

FORMULA

Product Expansions

The Sigma and Zeta Function .

Appendix The Skew Symmetric Pairing . .
A Normalization and the g-product for the o Funcnon

g-expansions Again

g-product for A

The Eta Function of Dedehnd
Modular Functions of Level 2 .

The Fundamental Theta Function

Basic Properties
The Siegel Functions .
Special Values of the Siegel Functlons

The Kronecker Limit Formulas

The Poisson Summation Formula .
Examples . .

The Function K(x} . .
The Kronecker First Limit Formula
The Kronecker Second Limit Formula

The First Limit Formula and L-series

Relation with L-series
The Frobenius Determinant.
Application to the L-series .

The Second Limit Formula and L-series

‘Gauss Sums

An Expression for the L -series .

226

" 229

231

239
243
246
248
249
252
254

259
261
264

267
268
270
273
276

279
284
286

287
289



Appendix 1

Appendix 2

wv HW N —

CONTENTS

By J. TATE

Algebraic Formulas in Arbitrary Characteristic

Generalized Weierstrass Form .
Canonical Forms

The Trace of Frobenius and the Differential of the First Kind

The Trace of Frobenius .
Duality

The Tate Trace

The Cartier Operator
The Hasse Invariant .

Bibliography .

Index .






Preface

Elliptic functions parametrize elliptic curves, and the intermingling of the
analytic and algebraic-arithmetic theory has been at the center of mathematics
since the early part of the nineteenth century.

Some new techniques and outlooks have recently appeared on these old
subjects, continuing in the tradition of Kronecker, Weber, Fricke, Hasse,
Deuring. Shimura’s book Introduction to the arithmetic theory of automorphic
Sfunctions is a splendid modern reference, which I found very helpful myself tc
learn some aspects of elliptic curves. It emphasizes the direction of the Hasse-
Weil zeta function, Hecke operators, and the generalizations due to him to the
higher dimensional case (abelian varieties, curves of higher genus coming from
an arithmetic group operating on the upper half plane, bounded symmetric
domains with a discrete arithmetic group whose quotient is algebraic.) I refer
the interested reader to his book and the bibliography therein.

I have placed a somewhat different emphasis in the present exposition. First,
I assume less of the reader, and start the theory of elliptic functions from
scratch. I do not discuss Hecke operators, but include several topics not covered
by Shimura, notably the Deuring theory of /-adic and p-adic representations;
the application to Thara’s work; a discussion of elliptic curves with non-integral
invariant, and the Tate parametrization, with the applications to Serre’s work
on the Galois group of the division points over number fields, and to the isogeny
theorem; and finally the Kronecker limit formula and the discussion of values
of special modular functions constructed as quotients of theta functions, which
are better than values of the Weierstrass function because they are units when
properly normalized, and behave in a specially good way with respect to the
action of the Galois group.

Thus the present book has a very different flavor from Shimura’s. It was
unavoidable that there should be some non-empty overlapping, and 1 have
chosen to redo the complex multiplication theory, following Deuring’s algebraic
method, and reproducing some of Shimura’s contributions in this line (with some

Xi
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simplifications, e.g. to his reciprocity law at fixed points, and with another proof
for the theorem concerning the automorphisms of the modular function field).

I do not emphasize elliptic curves in characteristic p, except as they arise by
reduction from characteristic 0. Thus I have omitted most of the theory proper
to characteristic p, especially the finer theory of supersingular invariants. The
reader should be warned, however, that this theory is important for the deeper
analysis of the arithmetic theory of elliptic curves. The two appendices should
help the reader get into the literature.

I thank Shimura for his patience in explaining to me some facts about his
research; Eli Donkar for his notes of a course which provided the basis for the
present book; Swinnerton-Dyer and Walter Hill for their careful reading of the
manuscript.

New Haven, Connecticut SERGE LANG
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Part One
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In this part we study elliptic curves, which can be defined by the Weierstrass
equation y? = 4x3® — g,x — g,. We shall see that their complex points form
a commutative group, which is complex analytically isomorphic to a complex
torus C/L, where L is a lattice in C. We study these curves in general, especially
those which are “‘generic”’. We consider their homomorphisms, isomorphisms,
and their points of finite order in general. We also relate such curves with
modular functions, and show how to parametrize isomorphism classes of curves
by points in the upper half plane modulo SL,(Z). We constantly interrelate the
transcendental parametrizations with the algebraic properties involved. Our
policy is to tell the reader what is true in arbitrary characteristic (due to Hasse),
and give the short proofs mostly only in characteristic 0, using the transcendental
parametrization.






1 Elliptic Functions

§1. THE LIOUVILLE THEOREMS

By a lattice in the complex plane C we shall mean a subgroup which is free
of dimension 2 over Z, and which generates C over the reals. If w,, w; is a basis
of a lattice L over Z, then we also write L = [w,, w,]. Such a lattice looks like
this:

w1

w2

Fig. 1-1

Unless otherwise specified, we also assume that Im(w,/w,) > 0, i.e. fhat W, /0,
lies in the upper half plane $ = {x + iy, y > 0}. An elliptic function f (with
respect to L) is a meromorphic function on C which is L-periodic, i.e.

fz+ o) =f(@)
for all z e C and w € L. Note that f'is periodic if and only if

[+ w)=f()=[f(+ w,).

An elliptic function which is entire (i.e. without poles) must be constant,
because it can be viewed as a continuous function on C/L, which is compact
(homeomorphic to a torus), whence the function is bounded, and therefore
constant.



6 ELLIPTIC FUNCTIONS [1, §1]

If L = [w,, w,] as above, and « e C, we call the set consisting of all points
&+ 1w + 10, Ry P

a fundamental parallelogram for the lattice (with respect to the given basis).
We could also take the values 0 £ ¢; < 1 to define a fundamental parallelogram,
the advantage then being that in this case we get unique representatives for
elements of C/L in C.

Theorem 1. Let P be a fundamental parallelogram for L, and assume that
the elliptic function f has no poles on its boundary dP. Then the sum of the
residues of fin P is Q.

Proof. We have
2niZResf=—[ f(z)dz =0,
aP

this last equality being valid because of the periodicity, so the integrals on
opposite sides cancel each other.

atwytwy

atw;

atwy

Fig, 1-2

- An elliptic function can be viewed as a meromorphic function on the torus
C/L, and the above theorem can be interpreted as saying that the sum of the
residues on the torus is equal to 0. Hence:

Corollary. Anelliptic function has at least two poles (counting multiplicities)
on the torus.

Theorem 2. Let P be a fundamental parallelogram, and assume that the
elliptic function f has no zero or pole on its boundary. Let {a;} be the singular
points (zeros and poles) of f inside P, and let f have order m; at a;. Then

Y. m;=0.
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Proof. Observe that f elliptic implies that ' and f’/f are elliptic. We then
obtain

0= J f'1f(2)dz = 2n /=1 ) Residues = 2n,/—1 ), m;,
P

2

thus proving our assertion.

Again, we can formulate Theorem 2 by saying that the sum of the orders of
the singular points of fon the torus is equal to 0.

Theorem 3, Hypotheses being as in Theorem 2, we have
Y. ma; = 0 (mod L).
Proof. This time, we take the integral

f@ L, —
.LP z 7 dz = 2n/=1Y ma,

because

L@ _
T f(@)
On the other hand we compute the integral over the boundary of the parellelo-
gram by taking it for two opposite sides at a time. One pair of such integrals

is equal to
J‘a+w1 Zfl(z) dz _ J‘a+m1+wz Zf/(z) dz
a f(Z) at+ w2 f(Z) ’

We change variables in the second integral, letting ¥ = z — w,. Both integrals
are then taken from o to @ + w,, and after a cancellation, we get the value

atw f/(u) B o
—w, Ja 7@ du = 2n,/=1 ka,,

for some integer k. The integral over the opposite pair of sides is done in the
same way, and our theorem is proved.

res, ma;.

§2. THE WEIERSTRASS FUNCTION

We now prove the existence of elliptic functions by writing some analytic
expression, namely the Weierstrass function

1 1 1
@(Z)=?+ Zl:*———z],

wel’ (Z - CI))2 Y
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where the sum is taken over the set of all non-zero periods, denoted by L'
We have to show that this series converges uniformly on compact sets not
including the lattice points. For bounded z, staying away from the lattice points,
the expression in the brackets has the order of magnitude of 1/|w|®. Hence it.

suffices to prove:

1
Lemma.If 2 > 2, then Y, o7 converges.
wel’
Proof. The partial sum for |w| £ N can be decomposed into a sum for @
in the annulus at n, i.e. n — 1 £ |w| £ », and then a sum for 1 £ n £ N.
In each annulus the number of lattice points has the order of magnitude ».
Hence

w0 oo 1
SRR S
1 1

oSN l(l)|"

which converges for 1 > 2.

The series expression for @ shows that it is meromorphic, with a double
pole at each lattice point, and no other pole. It is also clear that g is even, i.e.
0(z) = p(-2)

(summing over the lattice points is the same as summing over their negatives).
‘We get @’ by differentiating term by term,

P'(z) = =2 Z
w=L - )
the sum being taken for all w € L. Note that g’ is clearly periodic, and is odd, i.e.
P'(—2) = —p'(2).
From its periodicity, we conclude that there is a constant C such that
p + o) = p() + C.
Let z = —w,/2 (not a pole of ). We get

o _ [ o
(3)=o-3) < :

and since g is even, it follows that C = 0. Hence g is itself periodic, something
which we could not see immediately from its series expansion.

It is clear that the set of all elliptic functions (with respect to a given lattice -
L) forms a field, whose constant field is the complex numbers.

Theorem 4. The field of elliptic functions (with respect to L) is generated
by 9 and p'.
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Proof. 1f fis elliptic, we can write f as a sum of an even and an odd elliptic
function as usuval, namely

f2) = @) +2f(—2) L 1@ _zf(—Z)’

If fis odd, then the product fgp' is even, so it will suffice to prove that C(p) is
the field of even elliptic functions, i.e. if fis even, then fis a rational function of .

Suppose that f is even and has a zero of order m at some point u. Then clearly
falso has a zero of the same order at —u because

F®w) = (=D fB(~u).
Similarly for poles.
If u= —u(mod L), then the above assertion holds in the strong sense,
namely f has a zero (or pole) of even order at u.
Proof. First note that ¥ = —u (mod L) is equivalent to
2u = 0 (mod L).
On the torus, there are exactly four points with this property, represented by
0 0, @) + O,
2727 2
in a period parallelogram. If f'is even, then /'’ is odd, i.e.
S = =f'(—u).
Since ¥ = —u (mod L) and f is periodic, it follows that f () = 0, so that f has
a zero of order at least 2 at u. If ¥ 3£ 0 (mod L), then the above argument shows
that the function

0

9(2) = p(2) — p)
has a zero of order at least 2 (hence exactly 2 by Theorem 2 and the fact that @
has only one pole of order 2 on the torus). Then f /g is even, elliptic, holomorphic
at u. If £ (u)/g(u) # O then ord,f = 2. If f(u)/g(u) = O then f /g again has a zero
of order at least 2 at u and we can repeat the argument. If ¥ = 0 (mod L) we
use ¢ = l/p and argue similarly, thus proving that f has a zero of even order
at u.

Now letu; (i = 1, ..., r)be a family of points containing one representaiive
from each class (v, —u) (mod L) where f has a zero or pole, other than the class
of L itself. Let

m; = ord, f  if 2u; # 0(mod L),
m; = }Yord, f if 2u; = 0(mod L).

Our previous remarks show that for aeC, a # 0(mod L), the function



10 ELLIPTIC FUNCTIONS (1, §2]

@(z) — p(a) has a zero of order 2 at ¢ if and only if 22 = 0 (mod L), and has
distinct zeros of order 1 at g and —a otherwise, Hence for all z # 0 (mod L)
the function

1] [6() — o™

has the same order at z as f. This is also true at the origin because of Theorem 2
applied to f and the above product. The quotient of the above product by f is
then an elliptic function without zero or pole, hence a constant, thereby proving
Theorem 4.

Next, we obtain the power series developmeht of g and g’ at the origin,
from which we shall get the algebraic relation holding between these two func-
tions. We do this by brute force.

1 1 z z\? 2 1
sa(z)=~z—2+m§[a)—z(1+5+(5> +) _@]

1 it z\" 1
==+ X Z(m"‘l)(‘a‘)) —

) z wel’ m=1 @
1 ® m
=— + Z CnZ
Z m=1
where
Z m+1
c"l = m+2°
w#0 W

Note that ¢,, = 0if m is odd.
Using the notation

1
Sm(L) =Sy = m
wz#:O w
we get the expansion
1 - 2n
p2) ==+ Y 2n + D)sgyy (L)%,
n=1

from which we write down the first few terms explicitly:

1
9(z) = = + 3542° + Ssgz* + -+ -
z

and differentiating term by term,



-
[aeey

(1, §2j THE WEIERSTRASS FUNCTION

-2
p'(z) = — + 654z + 205623 R
z
|
Theorem5. Letg, = gy(L) = 60s, and g5 = gs(L) = 140ss. Then

P =4p> — g, — gs.
Proof. We expand out the function
@(2) = p'(2)* — 4p(2)* + 9:0(2) + g5

at the origin, paying attention only to the polar term and the constant term.
This is easily done, and one sees that there is enough cancellation so that these
terms are 0, in other words, ¢(z) is an elliptic function without poles, and with
a zero at the origin. Hence ¢ is identically zero, thereby proving our theorem.

The preceding theorem shows that the points (p(z), ¢'(2)) lie on the curve
defined by the equation ‘

Y =4x° — gox — gs.
The cubic polynomial on the right-hand side has a discriminant given by
A = g3 - 2742

We shall see in a moment that this discriminant does not vanish.

Let
e = pf 2 i =1,2,3
i =R '5 > 1=1,2,3,
where L = [w,, w,] and w; = w, + w,. Then the function

h(z) = p(z) — &

has a zero at w;/2, which is of even order so that p'(w;/2) = 0 for i
by previous remarks. Comparing zeros and poles, we conclude that

92 = Hp@) — e)(p2) — &) (p(2) — e3).

Thus ey, e,, e; are the roots of 4x® — g,x — g5. Furthermore, g takes on the
value e; with multiplicity 2 and has only one pole of order 2 mod L, so that
e; # e; for i # j. This means that the three roots of the cubic polynomial are
distinct, and therefore

1,2,3,

I

A=g3—2793 #0.
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§3. THE ADDITION THEOREM

Given complex numbers g,,g; such that g3 — 27g% # 0, one can ask
whether there exists a lattice for which these are the invariants associated to the
lattice as in the preceding section. The answer is yes, and we shall prove this in
chapter 3. For the moment, we consider the case when g5, g5 are given as in the
preceding section, i.e. g, = 60s, and g3 = 140ss.

We have seen that the map

zi— (1, p(2), p'(2)

parametrizes points on the cubic curve A defined by the equation

y:=4x® — gx - gs. ‘
This is an affine equation, and we put in the coordinate 1 to indicate that we
also view the points as embedded in projective space. Then the mapping is
actually defined on the torus C/L, and the lattice points, i.e. 0 on the torus, are
precisely the points going to infinity on the curve. Let A¢ denote the complex
points on the curve. We in fact get a bijection

C/L — {0} » A — {0}.
This is easily seen: For any complex number «, $(z) — « has at most two zeros,
and at least one zero, so that already under @ we cover each complex number «.
It is then verified at once that using g’ separates the points of C/L lying above «,
thus giving us the bijection. If you know the terminology of algebraic geometry,
then you know that the curve defined by the above equation is non-singular,
and that our mapping is actually a complex analytic isomorphism between
C/L and Ac.

Furthermore, C/L has a natural group structure, and we now want to see
what it looks like when transported to 4. We shall see that it is algebraic. In
other words, if

P, = (x4, p1), P, = (x;, y2), Py = (x3,y3)
and
P,=P + P,
then we shall express x;, y; as rational functions of (x,, y,) and (x, y;). We
shall see that P; is obtained by taking the line through P,, P,, intersecting it
with the curve, and reflecting the point of intersection through the x-axis, as
shown on Fig. 3.

Select uy, u, € C and ¢ L, and assume u, # u, (mod L). Let a, b be complex

numbers such that

') =ap@,) + b

0'(uz) = ap(uz) + b,
in other words y = ax + bis the line through (¢ (u,), $'(4,)) and (@(u,), @'(,)).
Then

£'(2) = (ap(2) + b)
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%

has a pole of order 3 at 0, whence it has three zeros, counting multiplicities,
and two of these are at u, and u,. If, say, u, had multiplicity 2, then by Theorem
3 we would have :

2u, + u; = 0 (mod L).

N

Fig. 1-3

If we fix u,, this can hold for only one value of u,. Let us assume that we do
not deal with this value. Then both u,, u, have multiplicity 1, and the third
zero lies at

us; = —(u, + u,) (mod L)

again by Theorem 3. So we also get

§'(u3) = ap(us) + b.
The equation
4x3 —gox —gs — (ax + b2 =0

has three roots, counting multiplicities. They are p(u,), o (u,), £(us), and the
left-hand side factors as

4(x — pu))x — pU))x — p(us)).
Comparing the coefficient of x? yields
aZ

p(uy) + p(uy) + p(uz) = T

But from our original equations for @ and b, we have

a(po(uy) — W) = p'(uy) — p'(uy).
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Therefore from
pus) = p(— (U + 1)) = U, + uy)
we get

1/p'(u,) - @’(uz))z
p(uy + us) = —p,) — pu,) + | —F——————=
$(u, 2) o, Plu, 4< 0w = oGa)

\
or in algebraic terms, ,
1y, =y
X3 = —X; — X3 + Z(;i*:’i) .
Fixing u,, the above formula is true for all but a finite number of ¥, # u, (mod L).
whence for all u, # u, (mod L) by analytic continuation.
For u, = u, (mod L) we take the limit as ¥, — u, and get

Qu) = —2pW) + %GZ,E:D .

These give us the desired algebraic addition formulas. Note that the formulas
involve only g,, g5 as coefficients in the rational functions.

This is as far as we shall push the study of the g-function in general, except
for a Fourier expansion formula in Chapter 4. For further information, the
reader is referred to Fricke [B2]. For instance one can get formulas for p(nz),
one can get a continued fraction expansion (done by Frobenius), etc. Classics
like Fricke still contain much information which has not yet reappeared in more
modern books, nor been made much use of, although history shows that every-
thing that has been discovered along those lines ultimately returns to the center
of the stage at some point.

§4. ISOMORPHISM CLASSES OF ELLIPTIC CURVES

Theorem 6. Let L, M be two lattices in C and let

’:C/L - C/M
be a complex analytic homomorphism. Then there exists a complex number «
such that the following diagram is commutative.

C—a—rC

|

C/L—C/M
A



st
(9,3
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The tap‘ map is multiplication by «, and the vertical maps are the canonical
homomorphisms.

Proof. Locally near 0, 2 can be expressed by a power series,
) = ag + a1z + a2 + -+,

and since a complex number near O represents uniquely its class mod L, it
follows from the formula

Mz + 2') = 2(2) + AZ') (mod M)
that the congruence can actually be replaced by an equality. Hence we must have
AMz) = a,z,
for z near 0. But z/n for arbitrary z and large n is near 0, and from this one
concludes that for any z we must have

AMz) = a,z (mod M).
This proves our theorem.

We see that 2 is represented by a multiplication «, and that
al = M.

Conversely, given a complex number « and lattices L, M such that al < M,
multiplication by « induces a complex analytic homomorphism of C/L into C/M.

Two complex toruses C/L and C/M are isomorphic if and only if there
exists a complex number o« such that oL = M. We shall say that two lattices
L, M are linearly equivalent if this condition is satisfied. In the next chapter,
we shall find an analytic invariant for equivalence classes of lattices.

By an elliptic curve, or abelian curve 4, one means a complete non-singular
curve of genus I, and a special point O taken as origin. The Riemann-Roch
theorem defines a group law on the group of divisor classes of 4. Actually, if
P, P’ are points on A, then there exists a unique point P” such that

(P) + (P) ~ (P") + (0),
where ~ means linear equivalence, i.e. the left-hand side minus the right-hand
side is the divisor of a rational function on the curve. The group law on A is

then? + P’ = P”. Incharacteristic # 2 or 3, using the Riemann-Roch theorem,
one finds that the curve can be defined by a Weierstrass equation

Y2 =4x> - g,x — g,
with g,, g5 in the ground field over which the curve is defined. Conversely, any
homogeneous non-singular cubic equation has genus 1 and defines an abelian
curve in the projective plane, once the origin has been selected. These facts
depend on elementary considerations of curves. A curve defined by equations in
projective space is said to be defined over a field k if the coefficients of these
equations lie in k. For the Weierstrass equation, this means ¢, g5 € k.
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For our purposes, if the reader is willing to exclude certain special cases, it
will always suffice to visualize an elliptic curve as a curve defined by the above
equation, with the addition law given by the rational formulas obtained from the
addition theorem of the g function. The origin is then the point at infinity.
If 4 is defined over k, we denote by A, the set of points (x, ¥) on the curve with
x, y € k, together with infinity, and call it the group of k-rational points on the
curve. It is a group because the addition is rational, with coeflicients in 4.

If A, B are elliptic curves, one calls a homomorphism of 4 into B a group
homomorphism whose graph is algebraic in the product space. If A: 4 — B is
such a homomorphism, and the curves are defined over the complex numbers,
then 2 induces a complex analytic homomorphism also denoted by 2,

At Ac — B,
viewing the groups of complex points on 4 and B as complex analytic groups.
Suppose that the curves are obtained from lattices’L and M in C respectively,
i.e. we have maps
@: C/L - A¢ and y: C/M - B¢

which are analytic isomorphisms. As we saw above, our homomorphism' 2 is
then induced by a multiplication by a complex number.

Conversely, it can be shown that any complex analytic homomorphism
y: C/L — C/M induces an algebraic one, i.e. there exists an algebraic homo-
morphism A which makes the following diagram commutative.

C/L ——>C/M

‘| K

AC —> ‘BC
2

We shall make a table of the effect of an isomorphism on the coefficients
of the equations for elliptic curves, and their coordinates. '

Let us agree that if 4 is an elliptic curve parametrized by the Weierstrass
functions, for the rest of this section,

@4: C/L — A
is the map such that
P4(2) = (1, p(2), p'(2)).
The g function depends on L, and we shall denote it by
oz, L).
Similarly for g’(z, L). These satisfy the homogeneity property
ez, cL) = ¢ 2p(z, L) and @'(cz,cl) = c3p'(z, L)

foranyceC, c # 0.
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Suppose that we are given two elliptic curves with parametrizations
0. :CIL—>Ac and  ¢g: C/M - B,

and suppose that
M = cL,

so that the curves are isomorphic, with an isomorphism

A:A— B
induced by the multiplication by c¢. Then the coefficients g,, g5 of these curves
satisfy the transformation

g:(cL) = c%g,(L)

gs(cL) = c=°g5(L).
We let x, and x5 denote the x-coordinate in the Weierstrass equation satisfied
by the curves, respectively. Thus in general,

x(¢(2)) = p(2),
and similarly

Wo(@) = 9'(2)

If Pis a point on A, then the homogeneity properties of the Weierstrass functions
can then be expressed purely algebraically by the formulas

xp(AP) = c2x,(P)  and  yp(AP)) = ¢y (P).

These same formulas are valid in all characteristic # 2 or 3, and one can
give purely algebraic proofs. In other words:

Suppose that A, B are elliptic curves in arbitrary characteristic # 2,3 and in
Welerstrass form, defined by the equations

i y2=4x3~—g2x—-g3
and
y?=4x® — gox — g}

respectively. Let : A — B be an isomorphism, defined over a field k. Ther
there exists ¢ € k such that

9> =c%gs, g5 =c%;
and if the points (x, y) and (x', ') correspond under A then
x'=c*x and Y = c3y.
One can then define purely algebraically the invariant
Ja= _3;}___3_____2 ’
gz — 2193

and using the above quoted result (proved in characteristic 0 by transcendentai
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means) we see at once that A is isomorphic to Bif and only if J, = J (in charac-
teristic # 2 or 3). We shall later study the analytic properties of this function J.
The above discussion also shows:

If A, B are elliptic curves over a field k of characteristic # 2,3, and if they
become isomorphic over an extension of k, then they become isomorphic over
an extension of k, of degree < 6.

Proof. We put the elliptic curves in Weierstrass form as above. Then for
some element c in the extension of k, we see that ¢* = g3/g, (if g, % 0) and
c® = gi/gs (if gi # 0). Thus the isomorphism is defined over an extension of
degree 6, and even an extension of degree 2 if g5g5 # 0.

Example. There are a couple of examples with the special values of ¢ taken as
i and —p, where p = ¢?™/3, which are important. Suppose that 4 is given in
Weierstrass form. Then multiplication by i on C induces the following changes:

x, )= (=x1), G292 g3+ —9gs
Muttiplication by — p induces the following changes:

) (ex, =), g2 pg: g gs.
In particular, if g; = 0, then we see that the curve admits i as an automorphism
and if g, = 0, we seen that it admits — p as an automorphism.

In arbitrary characteristic, Deuring gave a complete description for the
cases which can arise [4], and he also gives normal forms replacing the Weier-
strass form [8]. A short “formulaire”” in this direction was made available
recently by Tate. It has been useful to many people, and is reproduced as an

- appendix. I thank Tate for letting me print it here for the first time.

Given a value for j, we can always find an equation for an elliptic curve with

invariant j defined by a Weierstrass equation
y2=4x*—cx—c¢
with
c? c
3 ~27¢* ¢ =27’

which we can solve for ¢, namely

277
‘TITv
provided thatJ # 0, 1. The two cases corresponding toJ = 0, 1 are then special,
and are associated with the values /, p in the upper half plane. From the algebraic
point of view, the above equation “parametrizes” universally all elliptic curves
(in characteristic # 2, 3) with J-invariant # G, 1, i.e. such curves can be obtained
by specializing the generic equation.
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For the two special values, one can select a number of models, e.g.
y? = 4x3 — 3x, for J=1,
yi=4x 1, for J=0.
By a suitable normalization, one can define a function on an elliptic curve

closely related to the x-function, but which is invariant under isomorphisms.
Namely, if g,g5 # 0, we define the first Weber function

The above relations immediately show that 4, is invariant under isomorphisms
of A. When g, or g5 # 0 we take:

93

hi = —A“X,Z: if g3 =0,
g .

b = szi if g,=0.

We shall see later that the Weber functions play an important role in anaiyzing
the fields generated by points of finite order on the curve.

Occasionally it is useful to normalize the Weber functions so that certain
power series expansions have integral coefficients. In this case, one takes for the
first Weber function the expression

— 2735 9293,

The reader should keep in mind that except for the elegance of language, in
what follows, this normalization will not be used, and wherever he sees such
a normalization, he can forget about the factor —2735, The important thing
will be that except for that factor, the power series involved have integral co-
efficients, and this will be enough.

§5. ENDOMORPHISMS AND AUTOMORPHISMS

If L = M, we get all endomorphisms (complex analytic) of C/L by those
complex o such that «L < L. Those endomorphisms induced by ordinary
integers are called trivial. In general, suppose that L = [w,, w,] and 2L < L.
Then there exist integers a, b, ¢, d such that -

a(l)i = a(l)l + ba)z,
cw, + dw,.

0w,
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Therefore « is a root of the polynomial equation

x—a -b

=0,
—c x-d
whence we see that « is quadratic irrational over Q, and is in fact integral over Z.

Dividing aw, by w,, we see that

a=ct+ d,

where 7 = w,/w,. Since w,, w, span a lattice, their ratio cannot be real. If
« is not an integer, then ¢ # 0, and consequently

Q(x) = Q(a).
Furthermore, « is not real, i.e. « is imaginary quadratic.

The ring R of elements o € Q(z) such that aL < L is a subring of the quad-
ratic field £ = Q(z), and is in fact a subring of the ring of all algebraic integers
o, in k. The units in R represent the automorphisms of C/L. It is well known and
very easy to prove that in imaginary quadratic field, the only units of R are
roots of unity, and a quadratic field contains roots of unity other than +1 if
and only if
“ k=QW=T) or k=QW=3).

If R contains / = \/——1, then R = Z[/] is the ring of all algebraic integers in &,
which must be Q(/). If R contains a cube root of unity p, then R = Z[p] is the
ring of all algebraic integers in &, which must be Q(\/—-3)‘ The units in this ring
are the 6-th roots of unity, generated by —p.

We may view the Weber function as giving a mapping of 4 onto the pro-
jective line, and we shall now see that it represents the quotient of the elliptic
curve by its group of automorphisms.

Theorem 7. If an elliptic curve A (over the complex numbers) has only +1
as its automorphisms, let the Weber function be given for a curve isomorphic -
to A, in Weierstrass form, by the formula -

h(x, y) = %x.

A
If A admits i as an automorphism, let the Weber function be
2
92 2
h(x,y) = =
(x,y) = 3%

and if A admits p as an automorphism, let the Weber function be
g3 3
h(x, y) = =x°.
i0x, y) = 3

Let P, Q be two points on A. We have h(P) = h(Q) if and only if there exists
an automorphism ¢ of A such that ¢(P) = Q.
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Proof. We may assume that 4 is in Weierstrass form. In the first case,
the only non-trivial automorphism of A is such that
(1) - (x! J’)'—*(x, _y):
and it is then clear that /# has the desired property. If on the other hand 4
admits 7 as an automorphism, then multiplication by i in C/L corresponds to the
mapping on points given by
(2) (X,J’)’—*("'x, iy)’
and it is then clear that x2(P) = x2(Q) if and only if P, Q differ by some auto-
morphism of A. Finally, if 4 admits p as an automorphism, then muitiplication
by-p in C/L corresponds to the mapping on points given by
3 . (x, y) = (px, =),

and it is again clear that x3(P) = x3(Q) if and only if P, Q differ by some auto-
morphism of A4, as was to be shown.






2 Homomorphisms

§1. POINTS OF FINITE ORDER

Let A be an elliptic curve defined over a field k. For each positive integer &
we denote by A, the kernel of the map

t— Nt, te A,
i.e. it is the subgroup of points of order N. If 4 is defined over the complex
numbers, then it is immediately clear from the representation A ~ C/L that
Ay ~ Z/NZ x Z/NZ.

The inverse image of these points in C occur as the points of the lattice %L,

and their inverse image in C/L is therefore the subgroup
1
NL/L < C/L.

Let
@:C - A
be an analytic representation of Ac as C/L, and let L = {w,, w,]. If we let

t, = q)(%) and t, = q)(%),

then {t;,t,} form a basis for A4y over Z/NZ, i.e. Ay is the direct sum of the
cyclic groups of order N generated by ¢; and ¢, respectively.

_ If the elliptic curve is defined over a field of characteristic zero, say , then
we can embed k in C and apply the preceding result.

In general, suppose that A4 is defined over an arbitrary field k. Let é = §
be the identity mapping of 4. Then N§ is an endomorphism of A. Hasse has
shown algebraically that if N is not divisible by the characteristic, then N¢ is
separable and its kernel has exactly N2 points, in fact again we have

Ay ~ Z/NZ ® Z/NZ.
23
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If p is the characteristic, and p/N, then the map may be inseparable, but is still
of degree N2, cf. [17]. This will be discussed later.

Let A be an elliptic curve defined over a field & and let X be an extension of .
Let o be an isomorphism of K, not necessarily identity on k. One defines A4¢
to be the curve obtained by applying o to the coefficients of the equation defining
A. For instance, if A is defined by

y:=4x* - g;x — gs,
then A° is defined by
? =4y - gix — g5
If P, @ are points of 4 in K, then we have the formula
(P + QF =P+ Q-

The sum on the left refers to addition on A, and the sum on the right refers to
addition on 4°. This is obvious because the algebraic addition formula is given
by rational functions in the coordinates, with coefficients in k. Of course, if
P = (x, y), then P = (x°, y°) is obtained by applying o to the coordinates.

In particular, suppose that P is a point of finite order, so that NP = O. .
Since O is rational over k, we see that for any isomorphism ¢ of K over k we
have NP¢ = O also, whence P is also a point of order N. Since the number of |
points of order N is finite, it follows in particular that the points of 4y are -
algebraic over k (i.e. their coordinates are algebraic over k).

If P = (x, y), we let k(P) = k(x, y) be the extension of k obtained by ad-
joining the coordinates of P. Similarly, we let

k(Ay)
be the compositum of all fields k(P) for P e Ay. Of course, we view all points
of finite order as having coordinates in a fixed algebraic closure of k, which we
denote by % or k.

The above remarks show that the Galois group Gal(k,/k) operates as a
permutation group of A. Consequently k(A4y) is a normal extension of 4, and
is Galois if N is not divisible by the characteristic of k. We call k(4) the field of
N-division points of A4 over k.

Furthermore, if ¢ is an automorphism of k(A4y) over &, and if we let {r,, #,}
be a basis of Ay over Z/NZ, then ¢ can be represented by a matrix

a b
c d
ot _ fat, + bt _ fa b\/t,
ot,)  \cty +dt,)  \c¢ d/\t,)
Thus we get an injective homomorphism
Gal(k(A4y)/k) = GL,(Z/NZ).

such that
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It is a basic problem of elliptic curves to determine which subgroup of GL,
is obtained, for fields k, which are interesting from an arithmetic point of view:
Number fields, p-adic fields, and the generic case, which will be treated later.

§2. ISOGENIES

We shall now relate points of finite order and homomorphisms of elliptic

curves. Let A, B be elliptic curves and let

iiA-> B
be a homomorphism (algebraic). If . # 0, then the kernel of £ is finite. The
algebraic argument is that both 4, B are algebraic curves, so of dimensicn !,
and hence / must be generically surjective, so of finite degree. Over the complex
numbers, we have a simple analytic argument. Indeed, if Ac = C/L and
Bc =~ C/M, then / is represented analytically by multiplication with a compiex
number « such that 2L = M, so that L « «=*M. The kernel of the homo-
morphism

C/L - C/M
induced by / is precisely a~'M/L, which is finite, because both «~!M and L
are of rank 2 over Z.

We let Hom(A4, B) be the group of homomorphisms of 4 into B. Let
/e Hom(A, B) and /. # 0. Then n/Z # 0 for any integer n % 0. This is obvious
in characteristic O from the analytic representation, and is provable algebraicaily
in any characteristic. If I' is the graph of /, then for any point Q € B we have

N

ATHQ) = X (P) = proj,(I'- (4 x Q)),

i=1
the sum being a formal sum, and the inverse image being taken counting muiti-
plicities which can be defined algebraically. However, don’t worry about these
for the most part because in characteristic 0, or if N is not divisible by the
characteristic, then the multiplicities are 1, and the P; are simply all the points
in the set theoretic inverse image of Q by /. Over the complex numbers, they are
represented by 2~'M/L in the notation of the above paragraph. We call N the
degree of /£, denoted by v(/) or deg /.

Ifv(2) = N, then there always exists a homomorphism

u:B—- A
such that = 2 = pl = N&.

The analytic proof is obvious. Viewing /£ as a homomorphism of C/L into
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C/M, let L'/L be its kernel. Then L'/L has order Nand L' < %L. Therefore we

have a canonical homomorphism
1
C C / =L
M=Clg
such that the composite homomorphism
ciL s M C/%L
has kernel }VL/L,' which represents Ay in C/L. Now we have an isomorphism
c /—l—L Aol
N
given by multiplication with ¥, and the composite
C/M — C/%L A olL
is the desired homomorphism u.

Note that u2 = Né,, but that we also have Ay = N&z, because
' (A — N&)o A =0,
and 2 is surjective. ‘
Since Hom(4, B) has characteristic 0, we can form the tensor product
Q ® Hom(4, B) = Hom(4, B)g,
i.e. introduce integral denominators formally. Then any non-zero element of
Hom(A4, B)g has an inverse in Hom(B, A)q. In fact, if 2 € Hom(4, B) is of
degree X, then
- |
ATl =~
N#,
where u is the element of Hom(B, 4) such that ul = Né.
We let End(4) = Hom(4, A).
Proposition 1. If End(4) or End(B) =~ Z, then either Hom(A4, B) = 0
or Hom(A4, B) = Z. .
Proof. Say End(4) =~ Z and suppose that there exists some homomorphism
ArA—> B, 2 #0. Let Ay = NO. The map

A oa

gives a homomorphism of Hom(4, B) into End(4), and this homomorphism
must be injective, for if ux = 0, then N = Aux = 0, whence o = 0. This
proves our proposition,
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Two elliptic curves A4, B are called isogenous if there exists a homomorphism
from A onto B, and such a homomorphism is called an isogeny.

Proposition 2. If A, B are isogenous and End(4) ~ Z, then End(B) =~ Z.

Assuming that this is the case, if there exists an isomorphism 3. A — B, then
there is only one other isomorphism from A onto B, that is — 4.

Proof. The argument is similar to that of Proposition 1, and is clear.

Let g be a finite subgroup of A. Then there exists a homomorphism
/:A—> B
whose kernel is precisely g, and in characteristic > 0 we can take A to be
separable, so that J satisfies the universal mapping property for homo-
morphisms of A whose kernel contains g.
Again, over the complex numbers, this is obvious using the analytic representa-
tion. We sometimes write B = A/g.
Proposition 3. Assume that End(4) ~ Z and let g, g’ be finite subgroups
of A, of the same order. Then Ajg ~ A/g' if and only if g = g'.
Proof. Let J: Alg - A/g’ be an isomorphism, and let
u: A — Alg and o':A— Alg'
be the canonical maps. Then
) deg(Aoa) =degoa = ordg = ord g’ = dego’.
Thus 2« and «' have the same degree. Since Hom(A4, 4/g") ~ Z, it follows that
la= 4+ o,
whence %, «” have the same kernel, i.e. g = g'. The converse is of course obvious.

Let /: A — Bbe an isogeny defined over a field K. Let ¢ be an isomorphism
of K. The graph of / is an algebraic variety, actually an elliptic curve isomorphic
to 4, and we can apply o to it. If P € A is a K-rational point of 4, then we have
the formula '

AP = }°(P?).
Furthermore, the association / — 4° is an isomorphism
Hom(A4, B) - Hom(4°, B°).
These are elementary algebraic facts which we take for granted. Furthermore,
suppose that A4 is defined over a field k and that g is a finite subgroup of 4 such
that the cycle
2 (P)

Peg
is rational over k. Then we also take for granted that A/g is defined over k and
that the canonical homomorphism
] A:A - Alg
is defined over k.
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§3. THE INVOLUTION
Leta: A = A be an endomorphism of 4. We denote by o’ the endomorphism
such that
oo’ = o’'o = v(a)d,
where v(«) is the degree of «. It is clear that if «, § € End(A4) then
(@f) = p'a'.
Hasse proved algebraically in general that (x + )’ = o’ + f, so that
o a
is an anti-automorphism of End(A4). The proof in the complex case is easy as
usual. Indeed, suppose that 4. ~ C/L as before. Then we may view « as a
complex multiplication, such that «L < L, and the degree of « satisfies
v(a) = (L : al),

i.e. it is the index of oL in L. Furthermore, this index is the determinant det(x),
viewing « as an endomorphism of L, as free module of rank 2 over Z. If o is
non-trivial, we have already seen in Chapter 1, §5, that Q(x) is imaginary
quadratic, and the multiplication by « in L is the regular representation of the
quadratic field. Hence ‘

’

o = v(a)a?!

is the complex conjugate of «, and v(«) is the norm of a.
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§1. THE MODULAR GROUP

By SL, we mean the group of 2 x 2 matrices with determinant 1. We write
SL,(R) for those elements of SL, having coefficients in a ring R. In practice,
the ring R will be Z, Q, R. We call SL,(Z) the modular group.

If L is a lattice in C, then we can always select a basis, L = [w,, w,] such
that w,/w, = 7is an element of the upper half plane, i.e. has imaginary part > 0.
Two bases of L can be carried into each other by an integral matrix with de-
terminant +1, but if we normalize the bases further to satisfy the above con-
dition, then the matrix will have determinant 1, in other words, it will be in
SL,(Z). Conversely, transforming a basis as above by an element of SL,(Z)
will again yield such a basis. This is based on a simple computation, as follows.

If
(Y
c d
is in GL,(R), i.e. is a real non-singular matrix, and Im(z) > 0, then

az + b (ad — bc)Im (2)

1 =
Mt d lez + d|?

We denote by $ the upper half plane, i.e. the set of complex numbers z with
Im z > 0. If « is a matrix as above, in GLI (R), (i.e. « has positive determinant),
then we see that the element
az + b
cz+d

a(z) =

also lies in $, and one verifies by brute force that the association
(a,2) > a(z) = az

defines an operation of GLI(R) on 9, i.e. is associative, and the unit matrix
operates as the identity. In fact, all diagonal matrices o/ (a € R) operate trivially,

29
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especially + 1. Hence we have an operation of SL,(R)/+1on $. Fora € SL,(R),

we have the often used relation
Im z
Ima(z) = —.
@) lcz + d|?

If fis a meromorphic function on §, then the function f o « such that

(fod)(z) = f(az)
1s also meromorphic.

We let I' = SL,(Z), so that I is a discrete subgroup of SL,(R). By a
fundamental domain D for I in $ we shall mean a subset of $ such that every
orbit of T" has one element in D, and two elements of D are in the same orbit
if and only if they lie on the boundary of D.

Theorem 1. Let D consist of all z € $ such that
-+ ZRez=4 and lz| = 1.
Then D is a fundamental domain for I in . Let
T=((1) 11) and S=(? *(I)>
Then 8, T generate I.
Proof. We illustrate D on Fig. 1.

[N IR

Fig. 3-1

On Fig. | we have indicated i and also the points where the vertical lines meet
the circle of radius 1. The left-hand point is
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p = i3 = -1+ \/—3
2 2
i.e. the cube root of unity.

Let T’ be the subgroup of I' generated by S and T. Note that —1 = S? lies
in I'”. Given z € &, iterating T on z shows that the orbit of z under powers of T
contains an element whose real part lies in the interval [—1, 1]. The formula
giving the transformation of the imaginary part under I shows that the imaginary
parts in an orbit of I" are bounded from above, and tend to 0 as max(jc|, id})
goes to infinity. In the orbit I’z we can therefore select an element w whose
imaginary part is maximal. If [w| < 1 then Sw e I’z and has greater imaginary
part, so that |w| = 1.

Next we prove that if z, z’ € D are in the same orbit of I', then they arise
from the obvious situation: Either they lie on the vertical sides and are translates
by 1 or —1 of each other, or they lie on the base arc and are transforms of ¢ach
other by S. We shall also prove that they are in the same orbit of T"".

Fig. 3-2

If a(z) = 2, the arguments will also determine «, which in particular will be seen’
to lie in I'". Say Im z' = Im z, and z’ = «(z) where

v [ b
“\e d)°
Multiplying o by —1if necessary, we may assume that ¢ = 0. From the formuia

for imaginary parts, we see that
lcz +d| £ 1.

Since Im z = /3/2, we must have |c\/§/2| <lsoc=0orl.

Ifc = 0, then
o = 1 b = Tb

and «z € D implies that b = +1, so we are in the obvious situation.
Ifc=1,thend=0o0rd = +1.Ifd = 0, then

"= a —1 - Tag d _ 1
=14 0) = , an a(z)——a—;.,
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In this case |z} = 1, whence Sz also lies in D on the arc, and so z must be at the
end points, i.e. z = p or z = Sp. Itis then clear thata = +1. If d = +1, then
|z 4+ d] £ 1, and again obviously we have z = p or z = Sp. Say z = p. If

d =1, then
oy = a a~—1
Al 1 ’

and a(p) = porafp) = p + 1. Say a(p) = p + 1. Then

1
— Ta — . =
a(p) =TSp =a p—————+1 p + L
But —1/(p + 1) = p, so that a = 1, and « = —TS7, so we are in one of the
“obvious™ cases. The other possible cases are treated similarly.

We have therefore shown that every orbit of the group generated by S, T
has a representative in D, and also that if z, 2z’ lie in D and z’ = az with x e T,
then in fact x € I'’, and the situation is an ““obvious’ one.

To show that S, T generate I, let z € T, and take an element z in the interior
of D. There exists o’ e I'" such that 2’2z € D. By the above, and since z is not
on the boundary of D, it follows that a'zz = z. Again since z is not on the.
boundary, it followsthata’e = + 7, whence«liesinI™’, and ourtheorem is proved.:

Remark. We also have that §2 = (ST)3 = ], and that {S}, {ST} are the
isotropy groups of i and p, respectively. For all points which are not in an orbit

of i or p, the isotropy group is + /. This follows at once from the arguments used
to prove the theorem.

§2. AUTOMORPHIC FUNCTIONS OF DEGREE 2k

Let © be the upper half plane again, let B> 0, and let g be the set of
complex numbers z with Im z > B. The map

P eZni: =gq.

defines a holomorphic map from $, to the punctured disc of radius e—2"5,
i.e. the disc from which the origin is deleted. Furthermore, if $p/T denotes the
quotient space of $ modulo translations by integers (essentially a cylinder),
then g induces an analytic isomorphism between $,/7 and this punctured disc
(trivial verification, since for z = x + iy, we have

eZm': — eZnix e—Zny_)

Consequently a meromorphic function f on $; which has period 1, i.e. is in-
variant under 7, induces a meromorphic function f* on the punctured disc.
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A necessary and sufficient condition that f* be also meromorphic at 0 is that
there exist some positive integer N such that f *(g)¢" is bounded near 0. If this
is the case, then £ * has a power series expansion

fHg) = X, cd”
We shall say that f is meromerphic (resp. holomorphic) at infinity if £ * is mero-

morphic (resp. holomorphic) at 0. By abuse of notation in this case, we also
write

aw
f=% g,
-N

and call this the g-expansion of f at infinity. The coefficients ¢, are called the

Fourier coefficients of 1. If c_y # 0, we call — N the order of f at infinity, and

denote it by v_f. For any ze $ we let the order of f at z be denoted by v,/
Let 9 be the field of meromorphic functions on $ and let

_{a b)
*=\c 4
be in I' = SL,(Z). For fe M and an integer k = 0, define

(T(@f )2) = [ (D)) ez + d)~3.

It is easily seen that this defines an operation of SL,{Z) on M. We say that 7
is automorphic of weight 2k, or of degree 2k, if T\ (x)f = ffor all eI, and if
[ is also meromorphic at infinity. Note that translation by 1 leaves f invariant,
so our definition makes sense. The condition T,(«)f = f also reads

f@(2)) = (cz + d)*f (2).

Remark. The literature is split on the convention whether to say of weight %
or 2k. The terminology of weight k is appropriate if one realizes that the con-
dition can be interpreted to mean that the action of x leaves the differential form
f(2)(dz)* invariant.

Theorem 2. Let f be automorphic of weight 2k, f # 0. Then

vl + D+ i+ i = £

P#i,p

The sum is taken over all points P of the upper half plane mod I, not in the
orbit of p or 1.

Proof. We integrate f'/f along the contour of Fig. 3(a), but modified by
taking small arcs around the possible poles on the boundary, as on Fig. 3(b).
For simplicity we phrase the proof under the assumption that f has no pole or
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zero on the edges other than at i or p, which are the most subtle possibilities.
We have

2—711—iff’/fdz = 2—7lz—ifdlogf= Y’ Residues
= Z vo(f)-
P#i,p

We shall now compute the integral over the top, sides, arcs around the corners,
arc around 7, and the main arcs on the bottom circle.

(a) (b)

Fig. 3-3

Under the g-change of variables, the top segment between E and A4 trans-
forms into the circle centered around the origin, clockwise. The integral over
the top therefore gives

A =V (f)-

The integral over the left vertical side downward, plus the integral over the
right vertical side upward yields 0 by the periodicity of f.

The integral around p over the small arc is equal to

1 ¥
- dlog f.
2mi f,, og J

We make the translation of p to 0, and thus suppose we consider a function also
denoted by f near the origin, with power series expansion

f@) =¢cz™1 + --°).
Then

flz) m

= — + holomorphic terms.
1@ P
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G2
w

As the radius of the small circle tends to 0, the integral of the holomorphic
terms tend to 0. Integrating over an arc tending to 7/3 in the clockwise direction,
and taking the limit as the radius tends to O yields the value —m/6. We get a
similar contribution on the small circle around —p, whence the contributions
from these two small circles yield

—3vp(f).

The same argument for the small arc around i shows that we get a con-
tribution of

— vl f).

There remains to compute the integrals over the main arcs

C D
f + b]\ '
B’ c’ '

The map S transforms the arc B'C to the arc DC’. By definition,
f(Sz2) = 2/ (2),

and
df(Sz) _ f’(Sz)iz = z*f"(z) + 2kz**"1 f(2).
dz z
Since
° —fl@ dw = ENCD) z,
e f(w) c f(52) 7
and

we see that the integral over the second arc has one term which cancels the
integral over the first arc, plus another term which is

1 (€ 2%
— —dz
2ni J g 2
and approaches 2k/12 = k/6.
Putting all these contributions together proves our theorem.
Examples. They are constructed by using the following remark.
There is a bijection between functions of lattices, homogeneous of degree
—2k, i.e. satisfying
G(AL) = J~**G(L), 2eC, 1 # 0,
and functions g on $§ satisfying the condition

9(a(2) = (cz + d)*g(2).
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The bijection is obtained as follows. Given a function G homogeneous of
degree —2k, we let

o) = 61 = ().

where by G(z, 1) we mean the function G evaluated at the lattice [z, 1]. It then
follows at once that

9(x(2) = (cz + d)*'9(2).
Conversely, given a function g satisfying this condition, define

6 1) = 6(;) = 962
and for any iattice L = [w,, w,] define
G(L) = w7 *g(w,/w,).

Then again it follows at once that G(AL) = A~**G(L).
The fact that G is a function of lattices can be written in our vertical
notation as

for any « € SL,(Z).

It is convenient to use the same symbol for the function of two variables
and one variable, so that we shall also write

0) = gz, 1) = g(f) .

An automorphic function of weight 2k is called an automorphic form (of
weight 2k) if it is holomorphic on $ and at infinity. The special examples we
now give will be of this type. In the next section, we construct an automorphic
function of weight 0, holomorphic on $ but not at infinity.

Consider the functions

1
So(L) = 54, = -5 .
..l.( ) 2k w;o w k
Then the function

1
(mmy#(0,0) (M2z + n)**
is obviously holomorphic on $, and substituting z = oo formally gives
1
Gi(0) = ¥ —; = 24(2K).

n#0

Gyz) =

We shall actually get the g-expansion for G, later, and see that G, is holomorphic
at infinity, with the above value. Hence G, is an automorphic form of weight 2k,
and non-vanishing at infinity.
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" Let M, be the set of automorphic forms of weight 2k. Then M, is a vector
space over C. It is clear that
Mle < Mk‘H'
The direct sum

o«

L1 M,

k=0
can therefore be viewed as a graded algebra, whose structure is given by the
next theorem.

Theorem 3. The functions g, = 60s, and g; = 140s¢ are algebraically
independent, and

k]:IO M, = C[gz, g3

Proof. Note that g,, g; generate a subalgebra of our graded algebra. To
analyse M, we shall apply the formula of Theorem 2, and observe that for
feM, f# 0, all the orders on the left-hand side are =0. We now proceed
systematically.

= 0. The right-hand side is 0, so all the terms on the left are 0. If fe M,
and f'is not identically O, then f has no zero on $ or at infinity. The constants
are contained in M,. Let ¢ = f (o). Then g = f — ¢ vanishes at infinity, hence
is identically 0, so M, = C.

k = 1. The right-hand side is 1/6. The left-hand side shows that this is
possible if and only if f = 0,s0 M, = 0. :

k = 2. We prove that M, = (g,) is the I-dimensional vector space gener-
ated by g,. Let fe M,, f # 0. The right-hand side of the basic formula is 1/3.
The only time this is compatible with the left-hand side is when all the terms on
the left are 0 except for 1v,(f), and we must have v,(f) = 1, while fhas no other
zero. In particular, we have also proved:

g2 has a zero only at p, and it is of order 1.

For some constant ¢, f — cg, has zero at infinity, and lies in M, hence is identi-
cally zero, and f = cg,, thus proving what we wanted.

= 3. We prove that M; = (g;). The right-hand side of the basic formuia
is 1/2, for fin M3, f # 0. The only way this is possible is that v(f) = 1, and fhas
no other zero. In particular,
g3 has a zero only at i, and it is of order 1.

The same argument as before shows that f = cg, for some constant c.
k = 4. We prove that M, = (g3). The right-hand side of the formula for

feM,, f# 0is 2/3, and hence v,(f) = 2, and f has no other zero. It follows
that / = cg3 as before.
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k = 5. We prove that Ms = (g,g3). In this case, the same arguments as
before show that fe M, f # 0 has a zero of order 1 at i and p, and no other
zero, and also that f = cg3g;.

k = 6. We recall that A = g3 — 27g% is nowhere zero on $, and A lies
in M. The right-hand side of the formula for & = 6 is equal to 1, and shows that
v, (A) = 1, 1.e. A has a zero of order | at infinity.

Now Gg € Mg and Gg(0) # 0. If f& My, then there exists a constant ¢ such
that f — ¢G¢ vanishes at infinity. Then
f = ¢Gg

A

and we see that f = bA + G, for some constant b. Inductlvely, the same tech-
nique shows that for k = 6,

EMO=C,

M, = AM,_c ® (Gy).

We can prove by induction that any fe M, is a polynomial in g, and g;.
This has already been shown fork £ 5. If k = 6, we writek = 2rork = 2r + 1,
and we can subtract cg} or ¢g}~!g; from f, with a su1tab1e constant ¢, to get a
function vanishing at infinity, so that

f—cg3 or f =gy 'g;
A A
lies in M,_s, and our proof is complete, by induction.

There remains to prove that g, and g are algebraically independent, to be
sure we get the formal polynomial ring. First it is clear from the homogeneity
property that a non-trivial linear relation among elements of distinct M,’s
cannot exist, i.e. if fi,...,f, are of distinct weights, then they are linearly
independent over the complex numbers. If we had an algebraic relation among
g2, g3, then we could assume that the monomials in it have the same weight.
In such a relation, if a pure power of g, occurs, then the relation is of the form

g7 + g3P(g5,93) =0

where P is some polynomial. Evaluating this at / shows that it is impossible
because g;(i) = 0 and g,(i) # 0. Similarly, no pure power of g5 can occur.
Hence g, divides each monomial, and cancelling g, yields a relation of lower
degree, so the proof is finished by induction.

The exposition in this section follows Serre [B10].
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§3. THE MODULAR FUNCTION
We define the modular function
J=g3A and j = 1728g3/A.

The reason for the 1728 is that certain power series expansions later w111 have
integral coefficients, Note that 1728 = 2633,

From the properties of g,, g5 proved in the preceding section, we see that
j is an automorphic function of weight 0, and since it is holomorphic, non-zero
on $, we see that j has a pole of order 1 at infinity. We shall prove later that the
residue is 1, in the g-expansion.

Theorem 4. The map j: T\ — C is a bijection.

Proof. We apply the basic relation of Theorem 2 with £ = 0, so the right-
hand side is 0, to the function j — ¢ for ce C. Then j — ¢ has a simple pole at
infinity, and

v, + v+ Yvp =L
The terms on the left are all = 0. This is possible if and only if the order of
J — c at some unique z in I'\§ is #0. The multiplicity is 1 if z is not in the orbit
of p, i and otherwise, itis 2 at / and 3 at p. In any case, our theorem is proved.

We can view j as a function of lattices according to our general scheme
transforming functions of two variables into functions of one variable by
homogeneity. But since j is of weight O, we see that for a lattice L = [w,, w;]
we can write

J(L) = j(7)
if w,, w, are selected such that w,/w, = 1liesin . If L = AM for some compiex

4 # 0 then (L) = j(M). Conversely, the fact that j gives a bijection of I'\$ with
C can be stated in the homogeneous form, namely that the converse holds, i.e.:

Corollary 1. Let L, M be two lattices in C. Then j(M) = j(L) if and only if
M, L are equivalent.

By Theorem 6 of Chapter 1, §4 we also see that the condition of the corollary
is equivalent with the property that C/L is isomorphic to C/M. Thus j gives us
the desired analytic expression parametrizing isomorphism classes of elliptic
curves (complex toruses).

Corollary 2. Let c,, c3 be complex numbers such that

3 - 27¢3 # 0.

Then there exists a lattice L such that

¢, = gy(L) and ¢3 = gs(L).
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Proof. By the theorem, there exists T € $ such that
3
C2

i(t) = 1728 5 .
J) c3 — 27¢3

Let M = [1,1]. If ¢, = 0, then j(r) = 0 and © = p. Let we C* be such that
wbgi(L) = ¢y # 0. Let L = wM. Then

g2(L) = w™g,(M) = w™gy(p) = ¢, = 0,
and g3(L) = c3, so we are done.

If ¢, # 0, choose w e C* such that w=4g,(M) = ¢, and let L = wM again.
Then g,(L) = ¢,. Hence

3 _ _ _ g3(L)
=z IO I I = e e

3

C2
3 — 27g3(L)
This shows that

g5(L) = ¢},  whence gi(L) = *es.
If necessary, replace w by /w. This does not change g, and changes g; by —1.
Then L is a lattice whose g,, g5 have the desired values, thus concluding the
proof of the corollary.
The above result shows that an arbitrary elliptic curve

y2 = 4x3 — (X — (3

with non-vanishing discriminant can always be parametrized by elliptic functions,
i.e. we can select a lattice L such that

2 = gy(L) and 3 = gs(L).
The associated Weierstrass ¢ and ¢’ parametrize the curve.
If A4 is an elliptic curve, we denote by j, the value j(L), for any lattice L
such that A¢ is isomorphic to C/L. This value is independent of the choice of
L, and is called the j-invariant of the curve. Note that it is defined rationally

in terms of the coeflicients of the equation defining 4. We can reformulate
Corollary 1 as follows.

Corollary 3. Two elliptic curves A and B are isomorphic if and only if
Ja =j3- ‘

Remark. Let r be such that j(r) is transcendental over Q. Then an elliptic
curve with invariant j(t) necessarily has a trivial ring of endomorphisms. Indeed,
we know from Chapter 1, §5 that if the curve has non-trivial endomorphisms,
then 7 is imaginary quadratic, and there are only denumerably such 7, while
there are non-denumerably many transcendental complex numbers over Q.
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If A, is an elliptic curve with transcendental invariant j,, and 4, is defined over
a fleld K, finitely generated over Q, and similarly 4, has invariant j, trans-
cendental over Q, and is defined over K,, we let o: Q(j,) = Q(j,) be an iso-
morphism sending j, on j, and extend ¢ to K;. Then A{ has invariant ji = J,,
and A9 is therefore isomorphic to 4,. Extending K| to a bigger field if necessary,
we may assume that all endomorphisms of A, are defined over K,. Then
* End(A47) = End(4,)°, and thus 4, and A, have isomorphic rings of endo-
morphisms. This proves our remark.






4 Fourier Expansions

§1. EXPANSION FOR G,

In this section we derive the promised expansions at infinity for the G,
whence for A and ;.
We start with the product expansion for the sine,

i z z
innz = 121+ ).
sin 7z ‘ nz }:[1 ( n)( + n)

Taking the logarithmic derivative yields

o ncosnz=1+§[ 1 N l:l.

sinnz  z S |lz—n z+4n
But
eiw + e—iw eiw - e—iw
cosw = ———— and sinw = ————
2 2-1
whence
__1_ —inz ¢ 2nmiz
cosnz =ze (e*™ + 1),
sin 1z = —1—- e (2% — ),
2i
We let
q — qr — eZnit.

Then for 7 in the upper half plane $ we get

Cos mtT +1 2ni b
@) mos =T s i T i 2m Y g
sin mt qg—1 qg—1 V=0

43
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Differentiating the expressions in (1) and (2) repeatedly yields

(3) (=D Yk — 1! i L ——f @rikv-1gv,

n=-c T'—n)k v=1

Consequently from the definition

1
Gy(7) = Z

o (mt + n)*

we get, summing separately for m = 0 and m # O,

Gy(t) = 20(2k) + 2 Z Z :

m=1n=-c ()717.' + n)Z‘\

(27”)2‘\ 2k—1
= 20(2k) + 2 — q,
mzl \Zl (21‘ - ) 1
We let
o(n) =Y, d~
din
Proposition 1. We have :
(27”)21\ 0
4) Gi(r) = 2{(2k) + 2 - Z Ok~ 1(n)qr.
The most interesting special cases give us:
|
(5) g, = 60G, = (2n)* 273(1 + 240X)
© g5 = 140G; = (2n)° 55 3(1 504Y)
where
w0 @0
= Zl o3(n)g"  and Y= Zl as(n)q™.

We have also used the standard values
a* 278
4) = — d 6) = —
‘=55 and 6=z

We then get
1
7 A = (2n)'2 2?33[(1 + 240X)* — (1 — 504Y)*].

We contend that all the coefficients in the g-expansion of the expression in
brackets are = 0 mod 2°3° = 1728. This is a simple matter. We see at once that

[++] = 322*(5X + 7Y)mod 263°.



[4,§2] EXPANSION FOR THE WEIERSTRASS FUNCTION 45

We have to show that 5X + 7Y = 0 mod 4 and mod 3. For this it suffices that
Y d* = Y d° mod 4 and mod 3.

din dln

But for all 4, we already have d* = d°, so our contention holds.

Therefore th'e g-expansion for A has the form
® 2=+ F ),
. n=1

where the coeflicients 4, are integers. From this we now see that the expansion
for j has integer coefficients, namely

3 ©
. gz 1
© J=1PR =S4 Y ag
A q nEO 7

with a, € Z. The first two coefficients are

1
j==+ 744 + 196884g + - - - .
q

§2. EXPANSION FOR THE WEIERSTRASS FUNCTION
If L, = [z, 1] we write
9z, L) = p(z;1, 1) = p(z;7).
From (1) and (2) in the preceding section, we have
> 1
(10) X

ni 2 (0 + n)?

'
(1-gq,)°

where g,, = ¢2™™, From the definition of the g-function, we find

= (2ni)* ¥ ngl, = (2ni)?
n=1

1 1 1

—_— + J—

z? ,,;, ':(z —mr + n)*  (mt + n)Z:,

-+ I T4TY

m=0 n*0 m#0 neZ

@(z; 1) =

r

T

>z 1 1 1
11 + + -2y —
an ,,,;1 [,é\:z[(z +mr+n)? (—z+mr+ n){l 2,,EZZ(mr + n)z]

= (2ni)?
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Recall that £{(2) = n2/6. Also use the fact that

Amesz = qr 9z
For Im t > 0 we have |g:| < L. In the range

1
lg.l < lg.| < —

|

we therefore find a first g-expansion for the @-function, namely:

Proposition 2,

1 = .
(i) = — e+ PIDRTACERRY

@iy - q.)

118 nMg

Y ngt.

m=1n=1

-2

Except for the 1/12, all the coefficients are integers.
On the other hand, we can use the second formula on the right of (10).
Applying these to formula (11), we see that one of the sums has the form

o 979 q7/q:
(12) l: = + :,
m; (I ~qvq.) (1 - g7/q.)?
We multiply the second term by g 2™ and ¢2 in the numerator and denominator,
We also make a similar easy transformation for the other double sum in (11),
and we come up with a second expression for the g-expansion of the g-function,
namely:

Proposition 3.

474 -  hq:
=15+ -2 =
(27[1)2@ EL qrq )2 ngl 1 - qt
Differentiating yields
9791 + g979.)
P21 = ) 5
(2 )3 m§Z (1 — 4. qz)3

Using the splitting as in (12) or looking at these again directly, one sees that
these second formulas are valid for all z e C once < is fixed,

The formulas for g, and g5 found in the preceding section can be put in a
similar form, say abbreviating g = g¢;.
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Proposition 4.
1
(2niy?
1 1 R ] q
T -1+ 504 —_—

From the expansions for g,, g5 and the Weierstrass function, we get triviaily
the expansion for the Weber function.

3

1 n q"

Proposition 5. Let
folz, 1) =
Let q = q andw = q, = e2riz Then

725 92(093(7)
273 o) ——=—w(z;1, 1)

12 3 -
Jo= P(q)[l + (T-W—w_)i + 12 ML:l ng™(w" + w" — 2):l

where
Pl@=qg+cq*+--

is a power series with integer coefficients starting with q.
Let L = [2nit, 2ni]. Then from our knowledge how g, %', 92, g5 transform
under isomorphisms in Chapter 1, §4 we see that the above expressions in fact

give
gZ(L)a g3(L)’ @(Z, L) and @’(Z, L)'

g2 =g,(L) and g3 = gy(L),

Thus if we let

then the elliptic curve
?=4x* - gox — g,

is parametrized by the functions having the second expansions. Furthermore,
since the map

2= (1, p(2), 0'(2))
is a homomorphism of C into the elliptic curve (actually surjective), and since
the formulas for ¢(z,t) depend only on g¢., it follows that the formulas of
Proposition 3 give us a homomorphism from the multiplicative group of complex
numbers onto the complex points of the elliptic curve. For the algebraic implica-
tions of this fact, see the Tate parametrization in Chapter 15.
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§3. BERNOULLI NUMBERS

This section will not be used in the sequel and is included only for the con-
venience of the reader in reading some other literature, e.g. concerning
elliptic functions and L-series. In particular, the von Staudt theorem is fre-
guently used in such contexts.

We define the Bernoulli numbers B, by the power series expansion

From the relation

we get a recursion formula for the Bernoulli numbers, namely

B, B, b B,_, _Jrif =1
nto! - (n - D! 1'(11 - 1! )0 if n>1.
We get B, = 1,
2B, + B, =0, whence B, = —1/2,
3B, + 3B, + By =0, whence B, = 1/6,

and so forth.
From the identity
z 7z + 1\ ze? 4 e
e — 1 +§—§<e‘— 1) T2 e

we see that the above function is even, and hence has only even terms in its
power series expansion. This implies that, except for B,, the odd Bernoulli
numbers are equal to 0. The first few Bernoulli numbers are then:

1 1 1

8 = T12A

30

5 B. - 691 B = 7
66 2720730 e
. We have

z & e i By,
2 12 g2 - = (2)1)!
Replace z by 2niz. We then see that

%] (.—TI)Z"
nz cOt 7z = (=1)" =B,z
nZO (2 )‘ 2

Comparing with our previous expansion for m cot nz, we see that

() = (=1 5B

2n

2n



[4, §3] BERNOULLI NUMBERS 45

Von Staudt’s theorem. We have

1
By= Y —- (modZ)
(p-D)j2n P

Proof. Let D = d/dz. Then
3

z
= D"
B, <e= — 1)

- Dn< ~log(1 — (1 -~ ez)))

1 —¢é

z=0

z=0
Using the power series for the log, and differentiating term by term, we find that
n+1 n+1
k= 1
B,= ¥ iD°(1 — &f! Y A
k=1 k z=0 k=1

where
A, = D1 ~ e’)""’

2=0-

We assert: If k # 4 and is not a prime, then k| 4,.
Proof. Letk =ab,2 s a < k. Write
(1 — &)t =1 — &Y — (1 - e:)ab—a—b—1_
We must have ab —a - b — 12 0. Indeed, y=k —x — k/x — 1 has a

maximum at k. The minimum is at x = 2, with value (k — 6)/2, which is = 0 if
k = 6. Taking the derivative of

(1 — &)1 = &Pl = &Y,
we see that there will be a mon-zero contribution when we substitute z = Q
only for those terms for which we differentiate at least once the factors (I — &%)*

and (I — e%?, in other words, such terms will be divisible by ab = k. This
proves our assertion.

To compute B, (mod Z) we are reduced to considering 4, for those values
of k not already eliminated.
First, if kK = 4, then we find the value directly by expanding out

(1 —e%)* =1 —3e” + 3e*% — &7,
and differentiating. We get
A= —3+32"—3"=0 (mod4)

if n = 1 or if n is even, which are the cases we want. Again in this case, we get
no contribution to B, (mod Z).
Finally, suppose that k = p is a prime < n + 1. Write

n=(p-lg+r 0Lr<p—1.
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Then

sl p—1 =t p—1
Ap=,=zo<—1>'(” l. )i"=__zo (—1)'(” 1- )(ip")" r

whence

sl fp—1
Y (—1)'(pi )i’ S >0
A =70

Iff(—l)"(pzl)—l i r=0.

If r = 0, we get the contribution —1 (mod Z). If r > 0, then our value for 4,
is the same as

L — e=)P“‘L=O’

which yields 0. This proves von Staudt’s theorem.




5 The Modular Equation

We are interested in studying the j-invariants of isogenous elliptic curves,
which, as we shall see, amounts to studying j o « where « is a rational matrix.
For this we need some algebraic lemmas concerning integral matrices with
positive determinant.

§1. INTEGRAL MATRICES WITH POSITIVE DETERMINANT

Let M}(Q), M} (Z) denote the sets of 2 x 2 matrices with components in
Q and Z respectively and positive determinant. We also write M (Q) = GL3 (Q).

If
e (? b
“\¢ d

is in M (Z), we shall say that « is primitive if (@, b, ¢,d) = 1, i.e. a, b, ¢, d are
relatively prime. The set of integral matrices with determinant # is denoted by
A, and the subset of those which are primitive is denoted by A¥. It is immediaiely
clear that multiplication on the left or right by elements of ' = SL,(Z) maps
A¥ into itself.

Since joa = joya for all ye I, we are led to study the cosets 'z for
o€ AL

Theorem 1. The group T operates left transitively on the right T-cosets,
and also right transitively on the left I'-cosets of A¥.

Proof. Let « be a primitive integral matrix as above. Let L = [z, 1] be a
lattice. Then

M =[at + b, ct + d]
51
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is a sublattice, and by the elementary divisor theorem, there exists a- basis
{w,, w,} of L and a basis {w}, w,} of M such that

W] = e,w,

Wy = e,0,,

and e,le,. Since (a, b, ¢, d) = 1, it follows that ¢, = 1. This means that there
exist elements y, 7’ € I such that

, 1 0
yxy = 0 n)’
and we see that A* = Tal". This also proves that " operates transitively on the
cosets as desired.

We now want to obtain a simple set of representatives for the left cosets of '
I in A¥. Given « € A¥ as above, we can always find y € T such that

_(a b,
7“‘(0 d1>'

For instance, select relatively prime integers z, w such that za + we = 0, and
then x, y € Z such that xw — zy = 1. Then

v o= Xy
T \z ow
works.

Suppose now that « is triangular, i.e.

(%)
(3G 2-6 ")

we see that a left coset contains a representative with 0 < b < 4. Finally one
verifies that the elements

a b

0 dJ’

with 0 < @, 0 £ b < d, and ad = n form distinct left coset representatives of
A, i.e. that no two of them lie in the same coset.

We let y(n) be the number of left cosets of A¥. If n = p is a prime number,
then we see that Y(p) = p + 1, the coset representatives being the matrices

p 0 1 i . .
(0 1) and (0 p) with 0Zi<p.

Since
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In general, we have

1
Y(n) = nLI"(l +E>

Although we won’t use this fact, we give the simple proof.
We have to count the number of matrices in normalized form as above.
For given d, a = n/d is determined. Let e = (a, d). There are then

d
P ple)

possible values for b, so

d ‘
Y(n) = Y - ¢(e)
din e
where e = (d, n/d).
The function ¢ is multiplicative (in the sense of elementary number theory),
i.e.if n = nyn, with n;, n, relatively prime, then

Y(nyny) = Y(n(ny).

Indeed, d = d,d,, ¢ = e,e,, and hence

d,d
Y(nyny) = Z 2
dfn G162

ple)pler) = Y(n (ny).

This reduces our study of y to the case when n = p" is a prime power.
Ford =1, e = 1, we get a contribution of 1 in the sum for y(p"). For d = p*
and e = 1, we get a contribution of p". Hence

r—lpv 1
V) =1+p+ X —e(l - —)
v=1 € P

r—1 .
=l+p/+ X 0=

- 1
=pr+pr l=pr(1+_),‘
p

thereby proving that the value y(n) is given by the desired formula.
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§2. THE MODULAR EQUATION

By a I'-modular function, or simply a modular function for this section, we
mean. an automorphic function on § of weight 0, in other words a function
meromorphic on $, invariant under I', and having a g-expansion at infinity.

Theorem 2. Let f be a T-modular function which is holomorphic on 9, and
with a g-expansion
f=Xeoq"

Then f is a polynomial in j with coefficients in the module over Z generated by
the Fourier coefficients c,.

Proof. Write

f= Eq;";l + terms of higher degree,

so that /' ~ c_p /™ is holomorphic on § and has a g-expansion starting with at
most a polar term of order M — 1. Repeating the procedure, we can subtract
a polynomial in j whose coefficients lie in the module generated by all ¢, over
Z, so as to get a modular function holomorphic on §, vanishing at infinity, and
therefore identically zero, thus proving our assertion.

Let a e MF(Q). Let m be a positive integer such that ma is an integral
matrix. By homogeneity, we have

joma =joa.
Thus the study of j ¢ a for rational matrices « is reduced to the study of j © «
for integral «. Also, for any integral & we can factor out the greatest common

divisor of its components, and therefore we can always consider Lprimit.ive a.
Let

{ai} (l = 1: EEEREH) lxb(n))
be representatives of the right cosets of A} for I'. Then the functions j o «; are

permuted transitively by the operation of I', where as usual, I' operates on a
function f by

f=for.
Let

¥(n)
T, (X) = H (X —jouw),

where X is a variable. The coefficients of ®,(X) are the elementary symmetric
functions of the f o a;, and are therefore holomorphic on $, invariant under I,
and are meromorphic at infinity. To see this last property, one replaces 7 by

at + b
d
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in the g.-expansion of j, and one sees that the resulting expansion is a power
series in g!’¢, whence each function o a; grows at most like a power of g at
infinity.

Furthermore, the coefficients of g!/¢ in the expansion of j o «; lie in Z[(,],
where {; = e*"¥4. In fact, if

1
="+P(Q):
/ q

where P is a power series with integer coefficients, and if
26
0 dj’
then

(1) jou= o+ P,
q“Ca
By Theorem 2 we conclude that the coefficients of ®,(X) are polynomials in
Jj, whose coefficients are in Z[{,]. Furthermore, we may view all these functions
as embedded in the power series field

QU)(g").
If k is any field and X a variable, and if ¢ is an automorphism of &, then ¢
extends to an automorphism of the power series field k(X)) by
' Y e, X" Y X
Let r € (Z/NZ)*. The automorphism ¢, on Q({,) such that
g, {,—

extends to the power series field Q((,)((g!/")), and we see from (1) that this
automorphism permutes the functions j o «;. Consequently the coefficients of
®,(X) are invariant under all such automorphisms a,, r € (Z/NZ)*. Hence their
g-expansions lie in Z((g)). :

By Theorem 2 we now conclude that the coefficients of ®,(X) are in Z[j],
i.e. are polynomials in j with integer coefficients. Thus we may view ®,(X) as
a polynomial in the two independent variables X and j, and we write it as

Q,(X) = @,(X,j) e Z[X, j].

We call this the modular polynomial of order n.

Theorem 3.

1) The polynomial ®,(X, j) is irreducible over C(j), and has degree y(n).

i) We have @ (X, j) = ®,(j, X).

iti) If n is not a square, then ®,(j, j) is a polynomial in j of degree > 1 and

with leading coefficient 1.

Proof. The first assertion comes from the fact that I permutes the functions
Joo;(i=1,..., ¢(n)transitively, and acts as a group of automorphisms on the
field C(j,jo oy, . vy J O Oyemy).
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Next, we prove the symmetry of (ii). One of the matrices «; can be taken as

(6 1)

Hencej o % is a root of ®,(X, ), i.e.

®,(j(z/n), j(z)) = 0, for all z.
Hence
®,(j(x), j(n)) = 0O, for all T,
or in other words,
®,(j,jon) =0.

So jonis aroot of ®,(j, X), but it is also a root of @,(X, j), corresponding to

the matrix
n 0
0o 1/

Since @, (X, j) is irreducible, we conclude that
®,(X, j) divides ®,(j, X),

D.(j, X) = g(X, )Pu(X, ))
for some polynomial g(, j) € Z[t, j], by the Gauss lemma. It follows that

,(j, X) = g(X, g(j, X)®,(j, X),

whence

9(X, Ng(j, X) = 1,
and g(JX,j) is constant, = £+ 1. If g(X,j) = —1, then

0, /) = ~ .0, J),
and hence j must be a root of ®,(X). But ®,(X) is irreducible over Q(j), so this
is impossible, and g(X, j) = 1. This proves (ii).

To prove (iii), assume that » is not a square, so that if

v b
~\0 dj’
o is primitive and ad = n, then a # d. We have the g-expansion

. 1
J—Joa=&+...—Ea—/d—..

Since a # d, there is no cancellation in the polar term, and the leading co-
efficient of this g-expansion is a root of unity. But ®,(j, j) € Z[j]. Taking the
product of the j — j o «;, we see that the g-expansion for ®,(j, j) starts with

Cm

qm i
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with ¢,, = +1, because c,, has to be an integer and also a root of unity. Hence
©,(j,J) = cuf™ + - '
is a polynomial in j with leading coefficient c,, = +1, as was to be shown.
Corollary. For any a € M3 (Q), the function j © o is integral over ZJ[j].

Proof. We may assume that « is integral, has determinant », and then
j o ais a root of ®,(X) which has leading coefficient 1, and lies in Z[J, X].

Theorem 4. Ifte$ is imaginary quadrarié, then j(1) is an algebraic integer.

Proof. Let K = Q(1), and let o = [z, 1] be the ring of algebraic integers ir
K. We can always find an element / € o such that the norm of 4 is square free.
If K = Q(i), we take 2 = 1 + i, and if K = Q( —m) with m > | square free,
we take /. = / —m. Then
Jz=az+ b
l=cz+d

with integers q, b, ¢, d and the norm of 4 (over Q) is the determinant ad — &¢

Then
_{a b)
*=ie d

is primitive, and z = az. Hence j(z) is a root of the polynomial ®,(X, X) whick
lies in Z[X] and has leading coefficient 1 according to Theorem 3, whence j{z
is an algebraic integer. We have Q(z) = Q(r), and 7 = uz + v with rationa
u, v, i.e. T = Pz with some primitive f € M (Z). Since j © f is integral over Z[j
by Theorem 3, it follows that j(fz) = j(z) is integral over Z[j(z)], and therefor:
Jj(7) is also an algebraic integer, as was to be shown.

It will be proved in the complex multiplication that j(r) generates an abeliar
extension of Q(z).

The proofs which we have given here are very classical, going back tc
Kronecker and Weber. So far, these proofs for integrality are the simplest ones,
through the g-expansions. Algebraically, one could give proofs which are fairly
complicated. This is one reason why in the higher dimensional theory, integrality
statements like the above are completely lacking,

For a finer analysis of the factorization of the polynomial ®,(X, X), we
refer the reader to the appendix of Chapter 10.

We shall now see how the above techniques also give the Kromecker
congruence relation

®,(X, /) = (X ~ j?)(X? —j) (mod p),

for any prime number p. Stronger results will be derived later by other techniques
and the reader can skip the present arguments.
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For a prime p, representatives for the primitive matrices of determinant

p are given by
‘ 1 i ,
oz‘-—<0 p)’ i=0,..,p—1

p 0
o=(5 1)

For a modular function £, we shall write f *(g) for its g-expansion, and similarly
for a g'/Y-expansion. Such an expansion is a power series in ¢'/¥. If it has
coefficients in a ring Z[{,] where {, is a primitive p-th root of unity, we shall

write congruences
f*q) =9%*(g) (modl —1{)
to mean that all the coefficients of f *(g) — g*(q) in the ¢'/¥-expansion lie in the
ideal generated by | — { in Z[{].
Making the given substitutions in the g-expansion for j o «;, we find at
once that '

and

(joa,)*(q) = j*(g)*  (modp)
and

(joap*(g) = j*(@'* (mod1 —{).
Observe that 1 — { is a prime element at the prime dividing p in Z[{,]. Therefore
we conclude that

DX, j*(@) = (X — j*(@)°)NX? — j*(g)) (mod 1 —{),
in the sense that the power series in ¢ which are the coefficients of the poly-
nomials in 7 on both sides of this congruence satisfy the desired congruence. Let
DX, )) = (X ~ J)XP = )) = Lv,()X*
where \,(j) € Z[j]. Then ,(j*(¢)) has coefficients divisibly by 1 — {, hence by

p because these coefficients are ordinary integers. This proves the desired con-
gruence relation. )

§3. RELATIONS WITH ISOGENIES

Let A, B be elliptic curves over the complex numbers. If 4. ~ C/L and
M < L is a sublattice such that B, = C/M, then we have an isogeny : B — 4
and a commutative diagram
C/M — C/L

P

B —> A
1
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where the top homomorphism is the canonical one. Its kernel is the finite group
L/M.letL = [1, 1]. Then
M = [at + b, ¢t + d]

0= b
“\e d
in M5 (Z). Hence

jp=Jjlr)=j(M) and  j, =j(x) = jL)
In particular, we see that j(xt) is a root of the polynomial
(X, j() € Z[j(), X].

Evaluating functions at 7 in fact shows that for any special value of T € 9, the
roots of ®,(X, j(7)) are precisely the values

Jlx), i=1,...,yMn).

A sublattice M of L is called primitive if when we express a Z-basis of M in
terms of Z-basis of L, by a matrix « in M,(Z), then « is primitive. It is immedi-
ately verified that M is primitive in L if and only if the factor group L/M is
cyclic (using the elementary divisor theorem). Thus the primitive sublattices of
L correspond to the isogenies with a cyclic kernel, whose order is precisely
the determinant of %, or equivalently the index (L : M).

For any given value of T € $, we see that the roots of

(X, j(1))
are exactly the j-invariants of all the elliptic curves B which admit a cyclic
isogeny

with some matrix

/B> A
of degree n. In other words:

Theorem 5. Let A, B be elliptic curves over the complex. There exists an
isogeny 4: B — A with cyclic kernel of degree n if and only jg is a root of
the equation

(Dn(X7 .]A) = 0.

The theorem is true in characteristic 0 simply by embedding any field of
characteristic 0 in the complex numbers. Igusa [22] has shown how it is valid
in characteristic p, for p*n. In a later paper, he analyses the situation when 2
is a power of p [24].






6 Higher Levels

§1. CONGRUENCE SUBGROUPS

Let I' = SL,(Z) again. We define I'y (or I'(NV)) for each positive integer A
to be the subgroup of I' consisting of those matrices satisfying the condition

a b\ _
(c d) =1 (modN),
in other words

a=d=1 (modN) and c=b=0 (modN).

We call I'y, the congruence subgroup of level N. By SL,(Z/NZ) we shall mean the
group of matrices with components in the ring Z/NZ having determinant 1 in
Z/NZ. Reducing SL,(Z) mod N maps SL,(Z) into SL,(Z/NZ), and the kernel by
definition is I'y. Actually one has an exact sequence

0-»Ty— SLy(Z) » SL,(Z/NZ) - 0,

and the surjectivity on the right is proved as follows.

Let
w=( b
T \¢ d
be an integral matrix representing an element of SL,(Z/NZ), so that

ad — be = 1 (mod N).

By elementary divisor theory, there exist elements y, 9" € SL,(Z) such -that )a;:’
is diagonal, and if we can find § € SL,(Z) such that

B =yty (modN),
then y~!fy'~1 solves our problem. Without loss of generality we may therefore
assume that « is diagonal, say
_fa 0
“\0 d)°

6l
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It will suffice to find integers x, y such that
<a + xN yN)
N d
has determinant 1. Let ad = 1 + rN. Our problem amounts to solving
r+ dx —yN =0,
which we can do since (d, N) = 1. This proves the surjectivity.

By a simple counting argument, one sees that the order of SL,(Z/NZ) is

1
N3 1——>.
H( P’

This general fact will not be used in this book.

By GL,(Z/NZ), we shall mean the group of matrices with components in
Z/NZ whose determinant is a unit in Z/NZ. Thus SL,(Z/NZ) is a subgroup of
GL,(Z/NZ). In fact, let Gy be the group of matrices

10
0 d
with d € (Z/NZ)*. Thus Gy = (Z/NZ)*. Then
GL,(Z/NZ) = Gy - SL(Z/NZ) = SL,(Z|NZ) - Gy.
Indeed, any matrix in GL,(Z/NZ) can be multiplied, say on the left, by a suitable
element of Gy, so that the product has determinant 1 in Z/NZ. The product

decomposition is clearly unique. Furthermore, we have an exact sequence
det

0 - SL,(Z/NZ) » GL,(Z/NZ) — (Z/NZ)* — 0.

§2. THE FIELD OF MODULAR FUNCTIONS OVER C

Let f'be a function on the upper half plane $, meromorphic and invariant by
I'y, i.e. such that

FG) =1, t€9,yely.
Letg = e2"*and g'/¥ = e2**/N, The map
, T gt
defines a holomorphi¢c map from $; (the set of t € § with Imt > B) onto a
punctured disc, and is defined on $ modulo the translation by N. Since the

matrix
1 N
0 1
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lies in [y and acts as translation by N on $, it follows that f induces a mero-
morphic function f* on this punctured disc. If there exists a positive power g™
such that | f*(¢)g"| is bounded near 0, then in fact f* is also meromorphic on
the disc and has a power series expansion in the parameter ¢*/¥, with at most
a finite number of negative terms. If for every y € SL,(Z) the function (f o y)*
also has such a power series expansion in /¥, then f is called modular of level
Non 9.

We denote by Fy ¢ the field of modular functions of level N. The group I'
operates as a group of automorphisms of Fy ¢ by f—f0oy. Indeed, let ye T,
and « € . Since I'y is normal in T, it follows that yo = o'y for some o € I'y.
If fe Fy ¢ then

fGar) = f'yr) = f(y0),
so that f ¢ y is invariant under I'y. Clearly, f o 7 is meromorphic on &. The last
condition about g-expansions is immediate from the definition, so we see that
fo7vis modular of level N, and I operates by composition.

By definition, F ¢ is the field of automorphic functions of weight 0, defined
in Chapter 3. We let F¢ be the union of all fields Fy ¢, and call F¢ the modular
function field over the complex numbers,

Theorem1. F . = C(j).

Proof. Let fe F, ¢. For some polynomial P(j) the function fP(j) is holo-
morphic on $. (For instance, if f has a pole at z,, then f(j — j(zo))™ has no pole
at z, for high m, and the number of possible poles in a fundamental domain i3
bounded since f i1s meromorphic at infinity.) Suppose that f has no pole on §,
and has a pole of order » at infinity. Using the fact that j has a pole of order !
at infinity, we see that there exists a constant ¢ such that f — ¢/” has a pole of
order =n — 1 at infinity. Consequently by induction, we can find a polynomial
in j such that f — Pol(j) has no pole on $ and no pole at infinity. Then f — Pol(j)
lies in the space of automorphic functions of weight 0, i.e. the constants, and
this concludes the proof that fe C(j).

We shall now find generators for Fy . Let

o s 92(1)g3(7)

fO(w’ T) - 3 A( ) gO(W, T, 1)

so that w e C and 7 € $. This is called the first Weber function. Having fixed the
integer N > 1, for r, s € Z and not both divisible by N, let

£ = fo(” bl r).

The point of the factors involving ¢,, g5, A in front of @ is to make the resulting
function homogeneous of degree 0 in the vector (z, 1). Because of this homo-
geneity, we sometimes also write
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fid®) = fo(f"‘—*—i"f; o, wz)

if1 = ,/w,. For a fixed 7, the above functions give the normalized x-coordinates

of the points of period N on the corresponding elliptic curve. If (r, 5, N) = 1,

the function f, , is said to be primitive of level N. In view of the periodicity

property of the p-function, it follows that £, ; depends only on the residue classes

of r, s mod N. Thus it is appropriate to use a notation exhibiting this property. If
a=(a,a,)eQ? but a¢Z?

we shall write

fur) = fla;7) = folait + a3 7).
Then each function £, is holomorphic on 9, and f, depends only on the residue
class of @ (mod Z?). We call the functions f, the Fricke functions.
It is also sometimes useful to use vertical notation, and write

5 = i} )s)-

If x e SL,(Z), this notation makes the following relation obvious:

? Ful®) = fifor0).

If we look at the g-expansions of Chapter 4, Proposition 5, then we see that
the Fricke functions have a g!/¥ expansion with only a finite number of negative
terms. Furthermore the powers of 2z cancel in the definition of f;,, and all the
coefficients of ¢g!/¥ lie in the field of N-th roots of unity over Q, because for

T+ s

W= we have
N

dw = Gundsns
and gy = (% where {y = €2"/¥ is a primitive N-th root of unity. For the
moment we disregard this special nature of the coefficients since we first do the
theory over C.

In any case, we have proved that the Fricke functions are modular functions
of level N, because if x = | (mod V), then ax = a (mod N) and hence f,, = f,
and f,(z7) = f,(7).

The relation f,(xt) = f,,(7) also shows that the modular group operates as
ros
N'N
exact denominator N (i.e. (r, s, N) = 1), then ax also has exact denominator N,
and thus SL,(Z) permutes the primitive Fricke functions of level N among
themselves.

a group of permutations of the functions f;. Furthermore, if a = has
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Of course, I' = SL,(Z) operates as a group of analytic automorphisms of
9, and hence operates on Fy ¢ by composition,

f=foa
Since I'y operates trivially, we may view the finite group I'/T’y as operating on
Fy.c, the kernel containing + 1.
We are essentially in a situation of Galois theory, with a group I'/T
operating on the field Fy ¢, with fixed field £y ¢.

Theorem 2. We have

FN,C = Fl,C(fr,s)allr,s = C(J’ fr,s)all r,s*
Furthermore, the Galois group of Fn,c over Fy ¢ is precisely
I'/£Ty = SL,(Z/NZ)] £ 1.

Proof. Let E be the subfield of Fy ¢ generated over C(j) by all f, ;. Since
I' permutes the f, , it follows that I'/I"y acts as a finite group of automorphisms
of E. Note that +1 acts trivially, because the g@-function is an even function.
We shall now prove that any element y e I' which acts trivially on £ must lie
in £T,. We consider the effect of y on the two functions f; o and f, ;. Since
W) = p(v) if and only if v = v (mod L), we see that if y leaves f; o, and fio.1)
fixed, then

Sy 07 = Jiz1,0 and oy @7 = Jio,21)

From this one sees at once that

_(xl 0
'y=(0 il) (mod N).

Since y € SL,(Z), it follows that y = +1 (mod N). Hence we have an injection
I'/£Ty = Gal(E/C(j)),

and the fixed field is C(j). Since we have a fortiori an injection of I'/+Ty in
Gal(Fy,¢/C(j)), it follows that Fy ¢ = E and that the Galois group is that stated
in the theorem.

§3. THE FIELD OF MODULAR FUNCTIONS OVER Q

Let f be a modular function (of level ). We shall say that f is defined over
a field k if f € k(j).

Fix an integer N > I as before. Form the polynomial

MM =r),
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the product being taken over all (r, s) mod N (we could also take the product
over those (r, s) such that (r, s, N) = 1). We obtain a polynomial in X, whose
coefficients are invariant under I', because I" permutes the f, .. Hence these
coefficients are modular functions of level 1, holomorphic on $. Furthermore,

their Fourier coefficients are in the field Q({y).
By Theorem 2 of Chapter 5, it follows that these coefficients are poly-
nomials in j with coefficients in Q({y), and hence the functions f, ; are algebraic

over Q(j).
Let Qy = Q({y), and let

FN = Q(J’ fr,s)all r,se
We shall call Fy the modular function field of level N over Q, and omit the
reference to Q in a discussion when the context makes it clear. _
From the function theory of the preceding section, we already know that
its Galois group contains
SLy(ZINZ)/ £1 = T/£Ty.
Theorem 3. The Galois group of Fy/Q(j) is precisely
GL,(Z|NZ)] + 1.
The algebraic closure of Q in Fy is Qy = Q). If « € GL,(Z|NZ), then the
automorphism induced by « on Qy is given by the determinant, i.e. if o(®)
is the automorphism given by o on Fy, then
o(a) = o
The Galois group of Fy over Qu(j) is SL,(Z|NZ)] + 1.
Proof. We shall prove Gal(Gy/F,) contains the group

Gy = {(é 2) , de(Z/NZ)'}.

We consider the g-expansion given for the Weber function in Chapter 4. At
rt 4+ s
N

it will be of the form of a power series in g, with integer coefficients, times the
power series

12q’/Ncs =] ‘
1 rINrs<2 -+ 12 nqm"(q"’/NCS + q—nr/l\é——s — 2),
(1 —q /NCS)Z m'gzzl

with ¢ = ¢.. This power series is therefore contained in the power series field
Qn((g"™)).

If k is any field and X a variable, then any automorphism ¢ of k extends to the
power series field k((X)) by the mapping

Y X" Y X, ¢, € k.

1+
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If de(Z/NZ)* we let o, be the automorphism of Q,((g!/¥)) obtained in the above
manner, from the automorphism of Qy such that {, +— {%. Then g,, g3,/ are
fixed since their g-expansions are in Q((g)). On the other hand, we see from the
g-expansions of the Weber function that

re fr,s(T) — fr,sd(T)-

In other words o, defines an element of Gal(Fy/Q(})), and o, is represented by

the matrix
1 0
0 d/°

Hence Gy, is contained in Gal(F/Q(j)). It follows now at once that
Gal(Fy/Q(j)) = GL,(Z/NZ)/ % 1.

Furthermore, from the way we defined o, and the decomposition of an element

in GL,(Z/NZ) as a product from an element in Gy and an element in SL,(Z/NZ},

we see that the effect of an element in GL,(Z/NZ) on the roots of unity is given by

the determinant of the matrix. _
Finally, let k be the algebraic closure of Q in Fy, so that k = C n Fy. Then

Gal(Fy/k())) = Gal(Fn,c/C())) =~ SL,(Z/NZ)/+1.
Hence
[k(j) : Q)] = [k: Q] = order of (Z/NZ)* = [Q({y): Q].

Since Fy = Qu((g'/™)) it follows that &k = Q,, and we get equality by the fact
that k and Qy have the same dimension over Q. This settles the Galois group

of Fy/Q(j).
; / Fu.c

N

f C(j)
k(j) — (

We shall now ‘give the formulation of Theorems 2 and 3 in terms of points
of finite order on a “generic” elliptic curve.
Let 7 € $ be such that j(r) is transcendental over Q. Then the map
=1
gives an isomorphism of Fy (which is an algebraic extension of Q(})) on a ficld
which we denote by Fy(t). Let A° be an elliptic curve defined over Q(j(t)) whose
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j-invariant is j(t), say in Weierstrass form with coordinates (x, y). Let 4 be the
first Weber function, so that

h(x, y) = —27359—29’—%,

and let ¢: C/L — A% be the analytic parametrization given by the Weierstrass
functions. Let P, = ¢(w,;/N) and P, = @(w,/N). Then
h(Py) = fu,0(T) and h(P3) = f0,1x(7)
In general,
fr.s(t) = h(rP, + sP,).
Therefore the field Fy(t) is none other than the field
QUj(z), h(AR))
of x-coordinates of division points of order N on 4. Its Galois group is a sub-
group of GL,(Z/NZ)/ + 1, as we saw in Chapter 2.
Corollary 1. Let j be transcendental over Q. Let A be an elliptic curve
with invariant j, defined over Q(j). Let
Ky = Q(j, Ap). ‘
i) The Galois group of Ky over Q(j) is isomorphic to the full group GL,(Z|NZ)
in its representation on Ay ~ (Z/NZ)>.
it) The algebraic closure of Q in Ky is Q(Ly).
iil) The Galois group of Ky over Q({y, j) is SL,(Z/NZ).
Proof. Let G = Gal(Ky/Q())). By the result for Fy we see that
G- {1} = GL,(Z/NZ).

L_ (0 ~1
/ - l 0 B
so thaty € SL,(Z/NZ) and y?> = —1. Theny or —y lies in G, and hence —1 € G,

whence G = GL,(Z/NZ). This proves the first assertion, and the argument also
proves the following lemma.

Lemma. Let G be a subgroup of GL,(Z/NZ) [resp. SL,(Z/NZ)] which maps

onto GL,(Z|/NZ)/+1 [resp. onto SL,(Z/NZ)/+1] under the canonical
homomorphism. Then G = GL,(Z/NZ) [resp. G = SL,(Z/NZ)].

Let

If @ € GL,(Z/NZ), we denote by g, the corresponding automorphism of X,
over Q(j), relative to a fixed basis of A, over Z/NZ. Let k be the algebraic
closure of Q in Ky. We know from Theorem 3 that &k contains {y, and that

o ln ={
Let G| be the Galois group of Ky over &(j). If . € G|, then ¢, leaves the N-th
roots of unity fixed, and hence det « = 1. Hence G, « SL,(Z/NZ), and G, is

deta
N .
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naturally isomorphic with the Galois group of C(j, Ay) over C(j) (assuming that
Jj is transcendental over C, i.e. making the constant field extension to C from k).
Using Theorem 2 of the preceding section we conclude that
G, {+1} = SL.(Z/NZ).
By the lemma, it follows that G, = SL,(Z/NZ). Hence the order of the Galois
group of k(j) over Q(j) is exactly the order of (Z/NZ)*, by the exact sequence at
the end of §l. This implies that
[k : Q] = order of (Z/NZ)*,

and since k contains the N-th roots of unity, we conclude that &k = Q(y),
thereby proving both (ii) and (iii), and concluding the proof of the corollary.

Let &k be an algebraically closed field of characteristic 0 and let j, be trans-
cendental over k. Let us assume that the cardinality of k is at most that of C.
We can then embed & into C, and even in such a way that C has infinite degree
of transcendence over k. Let 4 be an elliptic curve defined over k(j,), with
invariant j,. Taking a suitable isomorphism of k(j,) over k, we may assume that
Jo is transcendental over C. Select T € § such that j(1) is transcendental over k.
Let £y, = kFy be the compositum of the modular function field over Q with
k. The map f+ f (1) induces an isomorphism of Fy , with a subfield Fy () of
C. There is also an isomorphism of k(j,) with £(j()), sending j, on j(z), and
transforming 4 on an elliptic curve 4* defined over k(j(r)), having invariant j(z).
Thus we have isomorphisms

k(jos An) = k(j(1), Ay),
and
k(jo, h(A)) = k(j(), h(AN)) = Fy,.

Having assumed that j, is transcendental over C, it follows that C is lineariy

disjoint from the algebraic closure of k(j,) over k. Making the constant field
extension from & to C, we see that
Cljo, h(AN)) = Fy,c.
Corollary 2. Let k be an algebraically closed field of characteristic 0 and
let j be transcendental over k. Let A be an elliptic curve with invariant ,
defined over k(j). The Galois group of k(j, Ay) over k(j) is isomorphic to
SL,(Z/NZ) in its representation on Ay ~ (Z/NZ)>.

Proof. There exists a subfield k, of k& which is finitely generated over the
rationals, such that A is defined over ko(j), and such that k, is algebraically
closed in kq(j, Ay), i.e. kq is the constant field of kq(j, Ay). We may then replace
k by the algebraic closure of k,, and therefore we may assume that k has finite
transcendence degree over Q. We may then also assume that k is contained in
the complex numbers, and we may identify j with j(t) for some value  such that
J(z) is transcendental over k. Letting ¢: C/L — A¢ be an analytic parametriza-
tion, we let P, = ¢(w,/N) and P, = ¢(w,/N) as usual. Let G be the Galois
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groups of C(j, Ay) over C(j). We can represent an element g € G by a matrix
a € GL,(Z/NZ) with respect to the basis {P,, P,}. We may identify the subfield
C(j, h(4y)) with Fy ¢, and ¢ induces an automorphism of Fy ¢ over C(j), also
induced by an element f € SL,(Z/NZ). We shall prove first that « = £ p. Let

P, =rP, + sP,, r,s€ Z/NZ.
For any P, ; we have

h(P(r,s)ﬂ) = O'h(P,,_s) = h(O'P,,.s) = h(P(r,s)a)'

=@ b
“\e d)°
For each (r, s) we therefore have (r, s)x = =+(r, 5)B. Taking (r, s) to be (1, 0)
and (0, 1), respectively, shows that § = +o or

—a -b
B = i( ; d).
Say ff = (——z _2>.Take (r, s) = (1, 1). We see that
(a+c,b+dy=(—a+c¢, —b+d) (modN),

whence 2¢ = 0 (mod N)and 26 = 0 (mod N). If N = 2, then 1 = —~1 (mod 2)
and GL,(Z/NZ) = SL,(Z/NZ), so we may assume N > 2. If N is odd, then
a = b = 0(mod N), which is impossible. If Niseven, thena = b = 0(mod N/2),
which is also impossible. Hence f = +a, and we have proved that

G < SL,(Z/NZ).

The lemma shows that G = SL,(Z/NZ), and proves our corollary.

Let

Remark. Some sort of argument is needed to prove Corollary 2, beyond
Corollary 1. Indeed, let 4, B be two elliptic curves defined over C(j), where j is
transcendental over C, and suppose that they are isomorphic, but not over
C(j) (i.e. over some finite extension of C(j)). The fields C(j, #1(4y)) and C(j, h(By))
are then equal, but as far as I know, it is not known if the fields C(j, Ay) and
C(j, By) are distinct if N > 2. The problem lies with the extra quadratic extension,
and the answer may depend on the parity of N. In any case, this shows that to
prove Corollary 2, we cannot use the model of Corollary 1, defined over Q(}),
without some additional considerations.

The main part of the argument was to show that Galois group of C(j, 4y)
over C(j) is contained in SL,(Z/NZ). One can use a quite different approach,
based on a canonical skew-symmetric non-degenerate pairing

Ay X Ay =y,
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where p is the group of N-th roots of unity, due to Weil on abelian varieties.
Cf. my book on abelian varieties, and Shimura’s book [B12], where Shimura
actually selects this approach to the question. Hence it seemed worthwhile to
describe the other way in the present book. An analytic description of this
pairing will be given in Chapter 18. The pairing is compatible with the action of
the Galois group, i.e.
(oP,0Q) = <P, Q)"

From this it is immediate that if & is the matrix representing ¢ in its action on
Ay relative to a basis of 4y over Z/NZ, then

“g __ ydeta
CN = ¢N -

Consequently, over the complex numbers, we see right away that the image of
the Galois group in GL,(Z/NZ) is in fact contained in SL,(Z/NZ).

The proofs in this section are classical. Weber [B16], §63, knew the structure
of the Galois group of the division points of order N, both over the complex
numbers and over the rationals, especially that the roots of unity came up as
the new constants. Fricke [B2], Vol. Two, 1.4, gave precisely the same arguments
we have chosen here, through the automorphism on roots of unity acting on the
coefficients of the g-expansion.

Shimura in [38] gave new birth to these questions, and to the study of the
modular function field, using these arguments. It was of considerable help for
the present-day generations to have Shimura’s paper available, rather than plow
through Weber or Fricke, whom we had to learn to read all over again.

The analogous results in characteristic p were given by Igusa [22], [25], who
even works integrally over Z[j]. He gives different arguments, based on ramifica-
tion theory, and finds the unipotent elements in the Galois group over the com-
plex numbers to see that it is all of SL,(Z/NZ). We shall recover this ramification
theory later, when we discuss the Tate parametrization.

One of the reasons why it is still hard to read Weber is that he uses extensively
the Jacobi elliptic functions, rather than the Weierstrass function more or less
exclusively, as we have done.

Actually, there is some point in using the same functions Weber uses, or
similar ones, constructed out of theta functions, because their values are special
algebraic numbers, which are units when suitably normalized, and in this sense
Weber knew perfectly well what he was doing (cf. [B16], §157). We shall consider
this type of question in the last part of the book, since it is much more subtle
than the general question of generating class fields any old way by values of
modular functions of some level.

In this book we are exclusively concerned with congruence subgroups of
I' = SL,(Z), i.e. subgroups which contain some I'y. It is known that there are
infinitely many subgroups of finite index which are not congruence subgroups.
One can factor the upper half plane $ by these to obtain coverings of the
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projective line, ramified at 0, 1, and co. The pullback of any one of these to a
model of some modular curve of suitable level yields an unramified covering
of such a curve, and conversely, any unramified covering of a modular curve
of any level belongs to a subgroup of finite index of I'. Very little is known about
the curves obtained from non-congruence subgroups. A very deep conjecture
was made by Thara [B6], who considers their reduction mod p, and conjectures
roughly that “supersingular” values of j cannot split completely in these coverings,
unless they arise from congruence subgroups. The beginnings of computational
data have been provided by Atkin and Swinnerton-Dyer for “non-congruence”
coverings (AMS Proceedings of Symposia on Pure Mathematics, XIX, (1971)

pp. 1-26).

§4. SUBFIELDS OF THE MODULAR FUNCTION FIELD

By the modular function field F we mean the union of all the fields Fy.
Similarly, F¢ is the union of all fields Fy . We shall deal mainly with F,

We denote by M3 (Z) the set of 2 x 2 matrices with components in Z,
and positive determinant. Similarly for M5 (Q) = GL5(Q).

Theorem 4. If o € MF(Z) and det « = N, then j © a is a modular function
of level N. For any « € M3 (Z), the map

f=fou
is an automorphism of F (or F¢) leaving the constants fixed.
Proof. LetyeTy, and writey = I + Nf. Then
y = ayx~! = I + Nafoa!
has integral components and determinant 1, so lies in SL,(Z). Since
joaxoy=joyoa=joa,

it follows that j o « is invariant under I'y. The other conditions for j o « to be
modular are immediately verified, so the first assertion is proved. The second

assertion is proved similarly. Observe that if x € M,(Q) and m is integer such
that mx € M,(Z), then for any function on the upper half plane, we have

foua=fo(mx)
(the m cancels in the fractional transformation). Thus the inverse automorphism

of
f=foua

fefoat,

is
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Although Fricke [B2], Vol. Two, 1.4 also gives some discussion of subfields
of the modular function fields, his discussion is not so clear (to me), and I
follow Shimura [38], [B12].

In selecting 1 such that j(t) is transcendental, we could always pick 7 trans-
cendental itself (for trivial cardinality reasons, the set of algebraic values of
J on § is denumerable). In particular, an elliptic curve 4* with transcendental
j(z) always has a trivial ring of endomorphisms, i.e. End(4%) = Z.

The first case we consider is that of j(Nt), which is the invariant of an elliptic

curve with lattice
1
Nt, 1} ~|17,— .
e 1] ~ [ ]

Lett = w,/w, and let L = [w,, w,] be the lattice of A*. Put as before

P, = cp<%> and P, = cp(%),

where ¢: C/L — AL is an analytic representation of 4. Then

AV x AT(P,),
as one sees at once from the nature of its associated lattice. From Proposition 3
of Chapter 2, §2, we know that 4/g, ~ A/g, if and only g, = g, (Whenever

g1, g, are finite subgroups of the same order, and 4 has a trivial ring of endo-
morphisms). Consequently we conclude that a matrix

(¢ 2)
c d
leaves j(N7) fixed if and only if it maps (P,) into itself. But
<a b><P1> _ (aP1 + bP2>
¢ d)\P, c¢P, + dP,) "
Hence this happens if and only if ¢ = 0 (mod N). From this we conclude:

Theorem 5. The Galois group of Fy over Q(j,j © N) is the group

{(g Z) eGLl(Z/NZ)} / £ 1.

Corollary 1. The fixed field of Fy under the group Gy consisting of all
matrices

(é 2) . de(ZINZ)*
is the field o
QUi:jo N, fi,0-
Proof. The elements of the Galois group in Theorem 5 which leave f, ,
fixed are represented by those matrices

6 )
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such that
a.0(3 3) = (1.0,

This immediately implies the corollary.
Corollary 2. The field of Corollary 1 is a maximal subfield of Fy consisting
of functions whose Fourier coefficients in the q'/N-expansion are rational.
Proof. Clear.

Theorem 6. The Galois group of Fy over the field Q(j,] © ®)ana with
ae M3 (Z) and det « = N, is the diagonal group

{(g 2)} mod + 1, e (ZINZ)*.

Proof. A diagonal matrix el has the effect P+ ¢ P on a point of finite order P,
and hence maps every subgroup of 4, into itself. Consequently, since j(at) is
the invariant of some factor curve 4/g where g = Ay, it follows that jo « is
fixed under such a diagonal matrix. Conversely, if an automorphism represented

by
k 1
(1)
leaves j ¢ x fixed for all «, then it leaves j o « fixed for the special « corresponding
to the factor curves 4/(P,), A/(P,) and A/(P, + P,). The matrix

k 1
m n
must map each one of the vectors (1, 0), (0, 1), (1, 1) into a scalar multiple of

itself, and from this one sees at once that the m.trix must be diagonal, thus
proving the theorem.

One usually denotes by I'o(N) the group of elements yeI” = SL,(Z)
consisting of matrices
. _fa b
= 3)
with ¢ = 0 (mod N).
Theorem 7. The fixed field of Fy by T o(N) is the field Q(j,j c N, {y).

Proof. This is immediate from Theorem 5, the fact that elements of SL,(Z)
leave the constants fixed, and that the group of Theorem 5 is the product

rO(N)GNs
where Gy consists of the matrices

( (l) 2) . de(Z/NZ)*.




7 Automorphisms of the
Modular Function Field

§1. RATIONAL ADELES OF GL,

If N, M are positive integers, and N|M, then we have a canonical homo-
morphism
GL,(Z/|MZ) - GL,(Z/NZ),
and we can take the projective limit. By the Chinese remainder theorem, if
N = []pi is the prime factorization, then

GL,(Z/NZ) = 1_[ GL,(Z/p}Z),

and so taking the projective limit can be done “componentwise” with respect
to the primes. The projective limit of the rings Z/p"Z as r — o0 is simpiy the
ring of p-adic integers Z . Let Z% be the group of p-adic units (invertible elements
in Z,). Then we see that

lim GL,(Z/NZ) = 1_[ GLZ(ZP),
~ p

where GL,(Z,) is the group of matrices with components in Z,, having their
dete:minants in Z}. We abbreviate

GL,(Z,) = U,
and let
U= n U, = n GL,(Z,).
p p

We let the finite adelic group of GL, be
GLz(Af) = 1_[’ GLz(Qp),
P

where the prime on the product means restricted product: For almost all p the
' 75
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p-component of an element of GL,(Aj) lies in GL,(Z,). We let GLF (Q) denote
the group of rational 2 x 2 matrices with positive determinant.
Of course we can also form the usual ideles

Aj = R* x I;[’ Q;,

with p-adic component in Qj, and almost all components in Z3. Using the prime
factorization of an integer, one sees at once that

Ay = QTR" x [z},
p

where A§ denotes the subgroup of ideles with positive component in R. We
shall next prove the analogous result for GL, and SL,.

Theorem1. We have
GLZ(Af) = GL;(Q)U
SLZ(Af) = SLz(Q) H SLZ(Zp)‘

Proof. We shall first prove the second equality.
For any field & it is easy to see that SL,(k) is generated by the elements

X(b) = <(1) 11)) and <i (1)) = Y(c)

with b, ¢ € k. Indeed, multiplying an arbitrary element of SL,(k) by matrices of
the above type on the right and on the left corresponds to elementary row and
column operations (e.g. adding a scalar multiple of a row to the other, etc.).
Thus the given matrix can always be brought into a form

)

by such multiplications. Letting W(a) = X(a)Y(—a~!)X(a) we get
a O
waw-n = (5 2.

thereby proving our assertion about SL, (k).

Now given « € SL,(Aj), let p be a prime where «,, is not p-integral. Write
o as a product

a=Zby) - Zb,)

where Z(b)) is either X(b;) or Y(b;), and b; € Q,. For each i, select a rational
number r; with only powers of p in the denominator, and approximating b;
very closely at p. Let x, = Z(r;) - * * Z(r,,). Then x, € SL,(Q), and x; o is very
close to the unit matrix in SL,(Q,), whence lies in SL,(Z,). Furthermore, x, is
/-integral for any prime £ # p. We can now repeat the procedure successively



[7,§2] OPERATION OF THE RATIONAL ADELES 77

for the finite number of primes where o is not integral, and thus obtain an element
x € SL,(Q) such that

~xae[[SLLZ,),
5 .
as desired.
To handle GL, we multiply an element « € GL,(A[) by an element f of the
form ‘
(10 "

so that fa € SL,(A[). Approximating the ideles = (.. ., 5, .. .) atafinite number
of p by a positive rational number, we can find a rational matrix

y=((1) (r)>, reQr

/
such that yo € SL,(A)U. This reduces our problem to the preceding one, and
proves our theorem.

We view Qz. = Q x Q as a space of row vectors, and let 2 x 2 matrices
operate on the right, so that GL,(Q) operates on Q2. Similarly, GL,(Q,) operaies
on the right of Q2.

We have a natural isomorphism

Q¥2 ~ [ Q¥Z3,
) p
which corresponds to the primary decomposition of the torsion group (Q/Z)*.
An element u, € GL,(Z,), operates on QZ/Z2 and hence if
\ u=w)el,
then u operates on Q?/Z2, according to the above prime decomposition.

§2. OPERATION OF THE RATIONAL ADELES ON THE
MODULAR FUNCTION FIELD

Let A® = A4 be an elliptic curve with invariant j(t), T € §, and assume thai
4 is defined over Q(j(1)). We let
L. =1, 1]
‘We have an analytic representation
@ =¢@,:C/L, > A
For a = (a;, ;) € Q® we get an element of QL, by taking the dot product

T
a(1> = a1 + das,
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whence an isomorphism
Q?*/2* - QL/L..
The group QL,/L, is the torsion subgroup of C/L,, and its image under ¢,
consists of the points of finite order on 4. We shall also denote by ¢ the homo-
morphism of Q?/Z* — A obtained by the composition of mappings
Q*/Z* - QLJL, ~ 4.
We see that our analytic representation gives us a coordinate system for the
points of finite order on A. If a e Q? and a denotes the class of a in Q?/Z?, we
also write
@(a) = ¢(a).
Thus we also view ¢ as giving a homomorphism
¢:Q* > QLJ/L, — A.
Let us assume that End(4) =~ Z. Then any other analytic parametrization
lp: C/Lt - AC
must be such that y = + ¢, because ¥ o ¢~! is an automorphism of 4. Let us
assume that A4 is in Weierstrass form, and let s be the Weber function such that

h(x, y) = —273° g-zAﬂx, |

so that /1 is an jsomorphism invariant. Then we have
/7, © (pr(a) = f;(T), ae QZ,‘
where f, is the Fricke function.

Theorem 2. Let F be the modular function field, and let f, (ae Q*/Z2, a # 0)
be the Fricke functions. For each u e U there is an auromorphism o(u) of F
over Q(j) such that

Z(U) = f;u’
and the map
ur a(u)
is a homomorphism of U onto Gal(F/Q(})) whose kernel is +1.
Proof. This is but a reformulation of the results of the preceding chapter,
taking into account the projective limit
U ='lim GL,(Z/NZ).
«—

Theorem 3. Let 1€ % be such that j(t) is transcendental over Q, and let
A be an elliptic curve such that j, = j(t), and defined over Q(j(1)). Let
@: C/L, > Ac be an analytic parametrization of A. Let U be as in §1. Then
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Jor each u € U there is an autom/orphism o(u) of the field of all division points
on A such that :
@(a)’™ = g(aw),

and the map u s o(u) is an isomorphism of U onto the Galois group of the

field of all division points over Q(j(z)).

Proof. This is a reformulation of Theorem 2, and Theorem 3 of the preced-
ing chapter, taking into account the projective limits.

In particular we get the formula

h{o(a))"™ = h{p{au)).

There is another type of automorphism. For any o € GL3 (Q) we let o(x) be
the automorphism such that for any f'e€ F we have

'@ = foa

In other words,
o) = flor).
This yields a homomorphism of GL}(Q) into Aut(F), whose kernel is the

subgroup of matrices
a 0 *
(0 a) , | ae Q*.

Remark 1. Note that U n GLF(Q) = SL,(Z). If « € SL,(Z), then the definition
of o(«) viewing « as an element of U or as an element of GL; (Q) is the same.
Indeed, we have the obvious relation

Ja(ot) = foolT)
for the Fricke functions, and for any a € SL,(Z), viewed as an element of U, the
corresponding automorphism leaves j fixed because j{at) = j(7).

Remark 2. Suppose v € U and in addition u, € SL,(Z,) for all primes p. Let
Jfbe a modular function of level N. Then there exists an element « € SL,(Z) such
that if n(p) is the order of N at p, then

2 = u, (mod p™#)
for all p|N. We then see that
SO = 179 = fou,

first for the Fricke functions f,, where a has exact denominator N, and then for
any f € Fy since the functions f, generate Fy.

If 0,0’ are two automorphisms of F, then to have associativity in the
exponential notation, we make their composite act so that

facr’ — (fa)a'.
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There is another important consistency relation.

Theorem 4. (Shimura) Let o, § € GLT(Q) and let' u, v € U be such that
au = vf. Then a(0)o(u) = o(v)o(B).

Proof. For the proof, we have to look into the meaning of this relation,
and on its interpretation in terms of isogenies.

Let y € M,(Z) be a 2 x 2 integral matrix. Then y operates on Q%/Z? and
its kernel is represented by those elements a € QZ such that

aye 722,
i.e. its kernel is
3y Z2.
The next lemma is a basic formal tool for the study of isogenies of elliptic
curves and their points of finite order.

Lemma. Let o e GL} (Q). Let AT and A*® be elliptic curves with invariants
J() and j(a(z)) respectively, and let

@:C[L,—> AL  and  :C|Lyy— AL

be corresponding analytic representations of these curves. Assume that
a~' € M,(Z) has integral coefficients. Let

and let u = ¢t + d. Then there exists a unique isogeny
A=A Ao 4O
such that the following diagram is commutative.

®
/—\

Q%2 —QLJL, —> A

a=1 n-t Ag

Q2/ZZ —> QLa(r)/Lu(r) — A0
\\———/

v
The middle arrow is multiplication by u=1*.

Proof. We have
T a(1)
1) =7

() (5),

whence



[7,§2] OPERATION OF THE RATIONAL ADELES 81

Since a1 e M,(Z) by assumption, we see that multiplication by u~! maps
C/L, into C/L,,. There exists a unique isogeny 1, which makes the following
diagram commutative.

@
C/L, —— A¢

C/L;y —> AYD
y

#~1(a1’ a2)<;) = (ala az)#ﬂ(i[) = (ah az)d_1<a(f)) ,

and therefore the square on the left is commutative. This proves the lemma.

Then

Since A% has invariant j(a(r)), we can always select 4*® defined over
Q(j(«(7))). A way of doing this is to take the elliptic curve with transcendenial
invariant j to be defined by A
y*=4x* —gx — g,
such that g/(g — 27) = j/123. If we select 4% defined over Q(j(«(1))), then any
automorphism of F(z) over F,(z), for instance o(u), can be applied to 4%,

Theorem 5. (Shimura) Let u,ve U and let o, B € GLF (Q) be such that

au = vff. Assume that j(z) is transcendental over Q, and that A" (resp. A*) is

defined over Q(j(z)) [resp. over Q(j(a(x))]. Then o(u)A*? has invariant

J(B(r)). Select A*®) = a(u)A*™. Let 1,, 25 be the isogenies which make the

diagram in the lemma commutative. Then

a(u) _ b
A = 4 A4
Proof. We first prove that independently of how we choose 47, the two

isogenies
A and Ag

have the same kernel.
The kernel of 2, is @(Z?«/Z2). Hence

Ker 2™ = (Ker A,)°™ = @(Za/Z*)°™
= @(Z?ou/Z?) (see below)
o(Z?vB|Z?)
= @(Z?B/Z%)
= Ker Z,.
This proves the first assertion, except that we must explain the notation
Z2ou|Z2.

We recall that

Q*/z* =[] Q;/Z;,
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and an element u, € GL,(Z,) acts on the p-component QZ/ZZ. What we mean
by Z*xu/Z? is the direct sum

ZPau(Z* =[] Ziau |Z2,
p

and since au, = v,B, we have Z2ou, = Z2uf, = Z2B. From these remarks,
the notation makes sense, and the equalities in the above proof are valid.

The two isogenies 22 and /; having the same kernel shows that their
images are isomorphic, and hence have the same j-invariant, so that the first
assertion of our theorem is valid. We may then choose 4%® = g(u)A%"). Both
/2% and g then map A4° on the same image, and have the same kernel, so they
differ by an automorphism of the image. Since we selected t such that j(t) is
transcendental, we know that the only possible automorphisms are + 1. This

proves Theorem 3.
We can now return to Theorem 4, and verify the relation of Theorem 4

for the functions jand f,.
First, we have

JEFOT = o)y
and
J@)@ W = j(xy® = j(B(x)).

The two expressions on the right are equal by Theorem 5, so our relation is
proved for the j function.
Next, we consider a € Q2 and b = ax~'. Then:

QbYW = by ™

= @yolax” fyrt
(Al (@)™
= 23 p(a)) "
= +4; 0 ¢(au)
= topaup™?)
= i(Pp(r)(a“_lU)
= i(pﬂ(,)(bb)_.

i

Taking the A-coordinate yields
fb(a(f))ﬂ(") = fpulB(7))

which means that
f;(z)a(u) — fg(u)a(ﬂ),

and proves our theorem.
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§3. THE SHIMURA EXACT SEQUENCE

For an arbitrary finite adele x € GL,(A[) we write
x = ou or x = vf,
with u, v e U and %, § € GLT (Q). Then Theorem 4 shows that we can define the
automorphism o(x) on F by
0(x) = a()o() = o(v)a(B).
This is well defined by Theorem 4, and a trivial computation shows that the
association
x> o(x)

gives a homomorphism of GL,(A,) into Aut(F). It is easily proved that the
kernel is precisely the group of diagonal matrices

(g 2), aeQ*,

simply by using the results of the preceding chapter. We leave this as an exercise.
Theorem6. (Shimura) The Sequence
0—- QFf > GL,(Ay) = Aut(F) - 0

is exact, in other words, every automorphism of F is of the form ou (i.c.
o(z)a(u)) for some x € GLT(Q) andue U.

Proof. The proof which we shall give for the surjectivity now differs from
Shimura’s arguments, and is based on a different principle.

Let ¢ be an automorphism of F. If gj = j, then ¢ € 6(U) and we are done.
We shall reduce our proof to this case.

First we may assume that o leaves the roots of unity fixed, because we can
compose ¢ with some g(u) to achieve this. It then suffices to prove that we can
compose o with some () so as to fix j. Since ¢ is now assumed to leave the roots
of unity fixed, it may be extended to an automorphism of the modular function
field F¢ over C, leaving the constants fixed.

Let A be an elliptic curve having invariant j, defined over C(j), say by the
standard Weierstrass equation. We identify the modular function field of level
N over C with C(J, h(Ay)). The field

F&, = C(j, h(4™)
is the subfield of F¢ obtained from the points of p-power order on A4. It is a
p-extension of C(j, 4,), and oF) is the corresponding p-tower over C(je, A3).

Let E = C(j, j°, 4,, A3). Then

E(h(A®Y) and E(h(A4°@Y)
are p-towers over E. We shall now prove that there exists a finite extension X of
E such that
K(h(AP)) = K(h(A°P)).



84 AUTOMORPHISMS OF THE MODULAR FUNCTION FIELD (7, §31

The Galois group of F¢ over E contains an open subgroup of the form
W =T]W, x H SL,(Z,),

eS
where S is a finite set of primes, and W, is such a small open neighborhood of
1in SL,(Z,) for all £ € S, that W, is an /-group without torsion. We select S so
large as to contain 2, 3 and p. Let K be the fixed field of W. Let H, be the Galois
group of K(h(47) over K. Then we have a surjective homomorphism

y: W - H,
of Galois theory, corresponding to the inclusion of fields
K < K(h(A°®)) = Fe.

Each factor W, for £€ S, { # p, maps onto 1 under this homomorphism,
because an /-group can only map trivially into a p-group. If /¢ S, then the
subgroup of SL,(Z,) projecting on 1 in SL,(Z/¢Z) is an /-group, and the same
reasoning applies, to see that this subgroup maps onto [ under . Finally, any
homomorphic image
SL,(Z/¢tZ) - H,

must be trivial, because +1 maps into 1 (since H, has no torsion), and
SL,(Z/¢Z)] £ 1 is simple for £ = 5.

Therefore H, is in fact a homomorphic image of W, and in terms of field
extensions, this means that

K(h(A°?)) < K(h(A®Y)).

Replacing K be a finite extension if necessary and using a symmetry argument,
we conclude that in fact these two fields are the same. (Alternatively, one could
also use the fact that since the Lie algebra of SL,(Z,) is simple, the above ex-
tension is finite, and hence of degree 1 since W, is assumed without torsion.)

It now follows from a theorem to be proved by entirely different methods
later (Chapter 16, §5, Theorem 7, and §1, Corollary of Theorem 1), that 4 and
A° must be isogeneous. Consequently there exists an integral matrix o such
that j = j o «. Thus finally o(2)~'¢ is an automorphism of F leaving j fixed,
as was to be shown.

Groups of automorphisms of infinite modular function fields were con-
sidered by Shafarevi€¢ and Piateckii-Shapiro [31] and [32]. The latter considers
the field of all functions j © x, with rational matrices «. The section of the paper
dealing with the automorphisms is not entirely clear. For instance, what we
gave here as Theorem 5, due to Shimura, seems to be completely overlooked by
Piateckii-Shapiro. On the other hand, the rest of the paper deals with the re-
duction mod p of the modular function field, and has results related to the
Shimura reciprocity law, proved in Chapter 11.






Part Two

Complex Multiplication
Elliptic Curves with
Singular Invariants



In this part we study special curves whose rings of endomorphisms arc
strictly bigger than Z. This involves both elliptic curves whose j-invariant j(z}
is such that z is an imaginary quadratic number over Q, giving rise to the theory
of complex multiplication, and elliptic curves over finite fields. We shall also
relate this special theory with the generic theory of the preceding part, and show
how the various mappings of an arithmetic nature which we obtain are related
at all three levels: generic, number fields, and finite fields, specializing from one
level to the next.

The term complex multiplication arises because the algebras of endomorph-
isms of elliptic curves which are bigger than Z must be complex, i.e. cannot have
real embeddings. Over the complex numbers, complex multiplication arises
from the endomorphisms induced by multiplication in C with a complex number
« sending the given lattice into itself. '

The main development of the theory will be carried out by the Deuring
reduction method. However, it is illuminating to see some of the results derived
by the older analytic method of Kronecker, Weber and Hasse, so we have done
this on a selective basis. For instance, you may find it useful to look right away
at the analytic derivation of the congruence relation reproduced in Chapter 12,
§3, and also the factorization results of Chapter 12, §2 which are self-contained,
before, or simultaneously with, the algebraic arguments using reduction mod p.






8 Results from Algebraic
Number Theory

In this chapter we assume that the reader is acquainted with the ordinary
ideal theory in number fields. Cf. for instance [B7]. The first two sections shouid
be read as technical background for Chapter 10, §2. On the other hand, although
we strive for some completeness, once the reader sees the first results that the
proper o-lattices form a multiplicative group, he can wait to read the other
results until he needs them, as they are slightly technical. They are all classical,
known to Dedekind, except possibly for the fact that a proper o-lattice is locally
principal, which seems to have been first pointed out by Ihara [26]. The localiza-
tion technique will be used heavily for the idelic formulation of the complex
multiplication, as in Shimura [B12].

§1. LATTICES IN QUADRATIC FIELDS
Proper o-ideals

Let & be a number field, i.e. a finite extension of the rationals. We denote
by o, the ring of algebraic integers of k. By an order o in & we mean a subring
of o, whose dimension over Z is equal to the degree [& : Q]. By a lattice in k we
mean an additive subgroup of k which is free of dimension [k : Q] over Z. If
L is a lattice in k, we define the order of L to be the set of elements 2 € k such
that 2L < L. By one of the definitions of algebraic integers, it follows that the
order of L is contained in o, and it is easily verified that it is in fact an order,
i.e. has rank [k : Q] over Z.

For the rest of this section, we assume that 1 is quadratic over Q and we let

89
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k = Q(t). We let ). }' be the non-trivial automorphism of k. Let t satisfy the
quadratic equation’

A+ Btr+C=0

with integers A, B, C which are relatively prime and 4 > 0. Let the discriminant
be -

D = B? — 44C,
so that
-B+./D
24
We clearly have
) B =D (mod2).

Theorem 1. Notation as above, let

[ D+\/ [ B+\/D:|

Then o is the order of the lattice [z, 1].

Proof. The congruence (1) shows that the equality on the right is true. By
a straightforward multiplication, one sees that 1 - L = L, and that

5.
~;¥Qz=—0ech,
e
—+§—\—/2=AI+BGL.

Hence [l,-‘wz—\/Dj' is contained in the order of [z, 1]. To prove the converse,
we prove another basic result first,
Theorem 2. Let L' = [1', 1] where v’ is the conjugate of t, and let o be as in
Theorem 1. Then
LL = 10
=0
Proof. We have

R 1]_[32—1:) —-B+\/5 —B—\/'E’l:|

44* 24

I:CBAB+\/

-0,

as was to be shown.
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In particular, we see that L is invertible (with respect to o), in other words
L1 = AL,
To finish the proof of Theorem 1, suppose that AL < L. Then
ALL- c LL-! = p,
so /o < o, and since o contains 1, we get / € o, thus proving that
o= {iek, AL c L}.
Given an order o in k, we shall say that a lattice L belongs to o, or is a

proper o-lattice, if
o= {lek, AL = L}.

By an po-ideal we mean an ordinary ideal a = o, which is a lattice.

Corollary 1. Let o be an order in the quadratic field k. Every proper
o-lattice in k is o-invertible, and conversely any lattice which is o-invertible is
a proper o-lattice. The set of proper o-lattices is a multiplicative group.

If a, ¢ are proper o-ideals, we define c|a to mean that there exists an o-ideal
b such that bec = a. Multiplying by ¢! shows that b is necessarily a proper
o-ideal. Furthermore, as usual, one sees that this condition is equivalent with the
condition a < ¢. An irreducible proper o-ideal p is a proper o-ideal # o which
cannot be factored p = ab, with proper o-ideals a, b such thata # pand b # p.
If p is irreducible, one sees as usual that if a, b are proper o-ideals, and piab,
then p[a or p‘b. [We shall see later as a result of Theorem 4, that an irreducibie
proper o-ideal p prime to the conductor, is a prime ideal.]

Corollary 2. Every proper o-ideal is factorizable into the product of
irreducible proper v-ideals, and the factorization is unique up to a permutation.

Proof. Suppose that not every proper o-ideal has a factorization into
irreducible proper o-ideals. Since o is Noetherian, there exists a maximal such
ideal a, and it cannot be irreducible, so that we have a = be, where b, ¢ are
proper o-ideals properly containing a. In view of the maximality of a, it follows
that b and ¢ have the desired factorization, whence so does a, thereby proving
the existence. The uniqueness follows from the divisibility property concerning
p|ab mentioned above, as usual.

The conductor and ideals prime to the conductor
Theorem 3. Let o be an order in k, and let o, = [z, 1]. There exists a
unique positive integer ¢ such that
o =[cz,1] = Z + co,.
Proof. Note that o is a sublattice of o,, whence of finite index. Let ¢ > 0
be the unique positive integer such that
on Lz = Lcz.
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We contend this ¢ does it. Indeed, let Z e o, 2 = m + nz. Then
nz=/,—meon Zz,
whence c]n, and 2 e Z + Zcz. This proves the theorem.

The number ¢ in Theorem 3 is called the conductor of o.

Let o be an order and a an o-ideal. Let ¢ be the conductor of 0. We shall say
that a is prime to ¢ if either a + co = o or a + ¢o, = 0. The two conditions are
actually equivalent, for suppose a + co = o. If a + co, # b, then a + ¢o,
is contained in a maximal ideal p which also contains a + c¢o, impossible.
Conversely, suppose a + ¢o, = 0. If a + co o then a + c¢o is contained in
a maximal ideal p, and since o, is integral over o, there is a maximal ideal of o,
lying above p. This contradicts a + ¢p, = o.

We let I,(c) be the set of o,-ideals prime to ¢, and we let /,(c) be the set of
o-ideals prime to c. ,

Theorem 4. There is a multiplicative bijection between the monoid of ideals
of o, prime to ¢ and the monoid of v-ideals prime to c, given by the two inverse

mappings
arano, a € I(c)

a— qo, a € 1,(c).
An ideal of o prime to ¢ is a proper o-ideal.
Proof. i) Let a be an o-ideal and a + ¢o, = 0. We shall prove that
a = ao, N o. The inclusion < is clear. Conversely,
ao, N o = (ao, N o)o = (ao, N o)(a + co,)
< a + aoc

ca+ a0 ca.
This proves our first assertion.

il) Let a be an o, -ideal such that a + co, = p,. Then we prove that
(a N o)o, = a. We have:

0=0,n0=(a+¢o)No
c (@n o)+ cv, < o.
Hence a n o is prime to ¢. Now
a=ao = a((a N o) + ¢o,) < o,(a N o)+ ca.

But ac = an o, so a = (a no)o,.. The converse inclusion is obvious, thus
proving (ii).

iii) We prove that an o-ideal a prime to ¢ is proper. Suppose A€k and
/4a < a. Then

/0 = /(a+ co) = Ja + ico, = a + co, = 0.
Since | € o, we get £ € 0.
iv) In (i) and (ii) we got the desired bijection. It preserves multiplication,
for let a,, b, be o-ideals prime to ¢, where
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a,=ano and b, = b no,
with o,-ideals a, b prime to ¢. Then a/b, is prime to ¢, and
a,b, = (ab,0,) N o = (ab) N o.

This proves our theorem.

Remark. The above arguments work for any number field, with an order o,
defining the conductor ¢ to be the largest ideal of o which is also an o,-ideal.

Theorem 5. Let L be a proper o-lattice and m a positive integer. Then there
exists an element J. € k such that .L < o and
/L + mo = o.

In other words, in the equivalence class of L, there exists a lattice which is

prime to m, and is integral.

Proof. Suppose that we start with a lattice of the form L = [z, 1], such that
7 satisfies the equation

At + Bt + C =0,

with integers A4, B, C relatively prime, and 4 > 0. Then

L 1[,4,:3_@] . [A,:,B_t@]

2 2

Without loss of generality, we may assume that L is the o-ideal

a= [A,:L\/T)].

2

Then aa’ = Ao. Finally, we could also change z by an element of SL,(Z),
i.e. prove our assertion for the lattice L, = [r,, 1] where

at; + b

ct, +d’

The equation for such 7, is
0 = A(ar, + b)®> + B(ar, + b)(ct, + d) + C(ct, + d)?
= A7} + Bit, + Cy,

where A, = Aa?> + Bac + Cc?. It will therefore suffice to prove that we can
select a, c relatively prime such that 4, is prime to m. We take a, ¢ to be products
of primes p dividing m as follows. pr*A, select @ prime to p and p divides c. if
p|4 but p,l’C, take ¢ prime to p but p divides a. If p|4 and p|C, then necessarily
p,l’B. Take both a, ¢ prime to p. This yields the desired integers a and ¢, and
proves our theorem.
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The proper o-ideal classes

Let 7, be the multiplicative monoid of proper o-ideals, and P, the submonoid
of principal o-ideals (automatically proper). We let

G, = /P,

and call G, the group of proper o-ideal classes. Let 1,(c) be the monoid of proper
o-ideals prime to the conductor ¢, and let P,(c) be the submonoid of principal
o-ideals prime to ¢. Then by Theorem 5, we have an isomorphism

G, = 1,(c)/Pc)-
We shall express G, as a factor group of a generalized ideal class group of o.
We let
Py(c)
be the monoid of o,-ideals a which are principal, of thé form
a = 04,
where
a =a (modcoy)
for someae Z, (a,¢) = 1.
Lemmal. Letae Py(c) be as above. Then
ano = px

Proof. Since x eo we get na < a no. Conversely, if xeo, and xae o,
let us write

x=m+ nz and o =a+ chz
with integers m, n, a, b such that (a, ¢) = 1. Then
xa = ma + nza (mod ¢oy).
Hence na is divisible by ¢, so that c|n. Hence x € o, proving our Lemma.

Theorem6. Consider the homomorphism
I(e) = I(c)
such that a — a n o. The inverse image of P (c) is P4(c).

Proof. The lemma shows that Pz(c) is contained in the inverse image.
Conversely, suppose that a n o = pa with « = a (mod ¢o,) and ae€ Z. Then
a = 0,2 50 a € Pz(c).

It follows from Theorem 6 that we have an isomorphism

G, = I(0)/Pz(0).

Note that Pz(c) contains the ideals which are principal and generated by an
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element =1 (mod c) the monoid of such ideals being denoted by P,(c). So we
have a tower

LI (c) o Py(c) > Py(c).
From this we can easily determine the order of the group G,.

Theorem?7. The order of the group G, is equal to
¢

"etro )H(l_@i)

where h is the class number of k, c is the conductor of o, of and o* are ihe

h, =

. . k\ . ,
groups of units in o, and o, respectively, and (E) is the usual symbol, ejual
to | if p splits completely in k, — 1 if p remains prime, and 0 if p ramifies in .

Proof. We shall give the same argument as in Fueter and Weber, §98. The
theorem is very classical. We know from general algebraic number theory that
the order of the generalized ideal class group I,(c)/P,{c) is given by

he(co,)
¢ (ok : c)

where ¢ is the Euler function, and U, consists of those units in o, which are
congruent to 1 mod co,. See for instance my Algebraic Number Theory, Chapter
VI, §1, Theorem 1. It follows that

b= h,
° (Pz(c): Py(c)
Suppose first for simplicity that + I are the only units of o,. We have a map
(Z[cZ)* = Py(c)/Py(c),
given by a — class of ao, modulo P,(c), whose kernel is +1, of order 2 if ¢ > 2,
Suppose that p is a prime number and p™ divides ¢ exactly. The p-contribution
to (Z/cZ)* is p'"(l - ;) Suppose that p splits completely in k. Then po, = pp’

and o,/p, 0,/p’ have order p. Hence the p-contribution to ¢(co,) is the
1 2
order of o, /(pp" )™ = p2”(1 - —') .
' p

Dividing these p-contributions gives the proper factor in the product. On the
other hand, if —1 = 1 (mod ¢), then of = o*, and ¢ = 1 or 2. The unit con-
tribution is then precisely the right one. If —1 = 1, then it is also clear that the
unit contribution is the correct one. If p remains prime in o,, then the p-con-
tribution to ¢(co,) is the order of the multiplicative group of 0,/p™0, which
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Is p“’(l - L,) Dividing by the p-contribution to (Z/cZ)* yields precisely

p
1

p"'(l + —) s
p

which is the desired factor. If po, = p?, then the same type of argument again
shows that we get the right contribution to our factor. Finally, when o, contains
i or p, one argues the same way, which we safely leave to the reader.

Remark. We worked above with ideals of o, i.e. contained in o. Of course,
one can also work with the group of proper o-lattices, with respect to the usual
equivalence, L ~ M if and only if there exists 7 ek such that 2L = M. If
o € k is such that ¥ = 1 (mod* ¢), meaning that

ordy(a — 1) = ord, ¢

for all primes p of v, such that plc, then we can write x = f/y, where

B: b= 1 (mOdk Cok)a ﬂ} 7 € O

[If 4 is a positive Tational denominator for «, prime to ¢, we can select ‘dl
having the same divisibility as d for p,{/c, and d; = | (mod ¢) by the Chinese
remainder theorem. Then 4,2 € v, and d,% = 1 (mod ¢o,).] If a,b are proper
p-ideals such that xa = b, then fa = yb.

Corollary. There is only a finite number of imaginary quadratic 1€ H
inequivalent under the modular group, such that j(t) lies in a given number
field K.

Proof. One knows that the class number of a quadratic imaginary field &
goes to infinity with the discriminant, in fact

log /(D) ~ log | D|*

by a theorem of Siegel. Therefore j(o,) has degree tending to infinity as | D| — o,
For any order o of o,, we see from Theorem 7 that the class number of o also
tends to infinity with the conductor, and j(v) has degree equal to this class
number over k (proved later, complex multiplication). This proves our corollary.

Note that Theorem 7 gives very explicitly the rate at which the degree of
J(o) goes to infinity as a function of the conductor, once the absolute class
number is known. The Riemann Hypothesis would give an explicit and very
good inequality for the absolute class number in terms of the discriminant, but
at the moment, one has to go through various contorsions to prove Siegel’s
theorem because of the lack of a proof for RH. See for instance [B7], Chapter 13,
§4, and Chapter 16, and [B13].
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Localization

Finally we consider localization at a prime number p. Let S, be the set of
positive integers not divisible by p. We define the localization of a lattice L at
P to be

Ly =S, 'L
For the rest of this section, in order to simplify the notation, we shall write Z,
instead of L,,. When we consider completions in the next section, we shall use
L, to denote the completion of L ,,.
If L, M are lattices, then we have trivially

S;ML M) =S;'LnS;'M.

The inclusion < is clear. Conversely, if an element can be written as x/m = )/#
with xe L, y € M, and mn not divisible by p, then my = nx lies in L n M, and
our element is equal to nx/mn, as desired.

As usual, LM consists of all sums

Z Xi¥i
with x; € L and y; € M. It is an additive subgroup of &, finitely generated over Z,
whence it is a lattice. We have
(LM), = L,M,.

Theorem 8. Let L, M be lattices in k. If L, = M, for all primes p, then
Lc M.

Proof. Let x e L. Then we can write x = y,/n, with y, &€ M and an integer
n, prime to p, so that n,x € M. The family of n,’s is relatively prime, sc there
exists m, € Z such that

Y mp, =1
It follows that
X =Y mpuxeM,

as was to be shown.

The theorem shows that to prove that two lattices are equal, it suffices to
do so locally for each p. A similar argument as in the theorem shows that

L=L,
P
We note that if p does not divide the conductor ¢ of o, then
Dp = (Dk)p>

and in particular, if L is a proper o-lattice, then by ordinary ideal theory we
find that L, is locally principal, i.e. there exists an element x € £ such that

L, = op.

For quadratic fields, this property remains true even if p|c, as was pointed out

by Ihara [25].



98 RESULTS FROM ALGEBRAIC NUMBER THEORY 8, §2]

Theorem 9. Let L be a lattice in k belonging to the order v. Then there
exists o € k such that L, = o2, i.e. L is locally principal.

Proof. Let o, = [z, 1] again. We may assume that p|c Since L,L;! = o,
there exists y € Ly * and x € L such that yx = m + ncz, with mtegers m, n and
(m,p) = 1. D1v1dmg by m, we conclude that

leyL, + czo,.
Multiplying by cz, which lies in o so that czL, < L, we get
czeyL, + c*z%o,
and substituting back, using induction, we get
leyL, + (cz)'v, < yL, + p'o,

for all positive integers v. Hence o, = yL, + p’o, for all v. Since the index
(0,:yL,) is a power of p, we have o,  yL,, and o, = yL,. This proves our
theorem.

The next lemma is sometimes useful to find a local generator for a proper
o-ideal.

Lemma 2. Let ae li(c), and for a prime p suppose that a, = o, 2, wzth
dea. Let x,y e o, , be such that
xx + yc = 1.
Then
a, N D, = D, XX.
Proof. Note that 1, yceo,, so xx €0, whence the inclusion > follows.

The converse inclusion is proved by a jacking up argument similar to that of
Theorem 9.

§2 COMPLETIONS
Let Kk be a number field, and let L be a lattice in k. For a prime number p
we let Z, be the ring of p-adic integers, and
L,=Z,® L, also written Z,L.

We let L, = S, 'L be the localization of L at p as defined in the previous
section. Then L, can be viewed as the completion of L(,, and there is a natural
injection

Lipy = Ly,
which we treat as an inclusion.
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Let Q, be the p-adic numbers. We define
k,=Q,® k, also written Q.
By a Z -lattice in k, we mean a Z,-submodule of &, of dimension [k: Q] over
Z,. Note that
kp = Qp ® Dks
so that the powers of p appearing in the denominators of elements of a Z -lattice
are bounded. Consequently, if M, is a Z-lattice there exists a power p" of p

such that
p’Mp 0y, =Z, ® 0,
On the other hand, there exists a power p° such that
pSDILp < Mpa

because o, , and M, have the same dimension over Z,.

By a Z,-lattice in k we mean a Z,, submodule of k of dimension [k : 3]
over Z,,. If M, is a Z -lattice in k,, then

M,k

is a Z,-lattice in k. The intersection is taken by viewing k as embedded naturaily
in k,. The assertion is easily seen, because M, N k is a module over Z,,, it

contains p°o, (,, for some integer s, and it is contained in p"o, () so that it has
the correct dimension, over Z,,.

Theorem10. i) Given foreach paZ,-lattice M,y ink suclh that M, == o, ;,,
Sor almost all p, there exists a unique lattice L in k such that L,y = M, for
all p.

ity Given a Z,-lattice M, in k, such that M, = o, , for almost all p,
there exists a unique lattice L in k such that L, = M, for all p. v
Proof. We let L = (| M, to prove (i). It is immediately verified that L
is a lattice, and that L,y = M, for all p. The second part follows from the first
by the remarks we have made, relating Z,-lattices and Z -lattices.
Let L be a lattice in k. For each p we have a natural isomorphism
k/L(p) ~ kp/Lp’

because L,y = L, n k. Since N L, = L, we get a canonical isomorphism
P
kIL =~ H k/L(p) ~ H kp/Lp‘
P P

Indeed, any x € k lies in o, (,, for almost all p, so we have a map of k into the
~ direct sum of the k,/L,. The above isomorphism essentially gives the p-primary
decomposition of the torsion group k/L.

Recall that the ideles J; of k can be defined as the restricted product

kg x [T &
P
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where kg = R ® k, and the * indicates the group of invertible elements. If
s=(.0Sp..)
is an idele with s, € k¥, then for any Z -lattice L, we can take the product
s,Lp
and it is again a Z -lattice.
If L is a lattice in &, then s,L, = o, , for almost all p, and consequently
there exists a unique lattice M such that
M, =s,L,
This lattice M is denoted by sL. Observe that s is an idele, and that there is no
multiplication defined directly between s and L. The notation sL is merely
symbolic.
Multiplication by s, induces an isomorphism also denoted s,
syt koL, = kyls,L,,
given by x, — s,x,. From the decomposition
k/L =~ ] k,/L,,
p

we can define an isomorphism
s kIL = k/sL

by letting s operate componentwise, i.e. s, operates by multiplication on each
component k,/L,.

If L = ais a fractional ideal of the ring of algebraic integers o,, then we
can work with the prime components in k. If we denote by a;, the closure of
ain the local field kp, and if s is an idele with p-component s,, then sya, is defined,
and

o ~ L1 ke,
)
so that
kisa =~ ] k,/s,a,.
P

Let ¢ be an ideal of o, (and so contained in o,). Then ¢~'a o @, and
¢ taja

is a finite subgroup of k/a. Furthermore, k/a is the union of such finite subgroups
taken for ¢ tending to infinity (ideals being ordered by divisibility). Let p,, ..., P,y
be the prime ideals dividing ¢ or entering in the factorization of a. By localizing
o, at these primes, we obtain a Dedekind ring o’ having only a finite number of
prime ideals, and hence a principal ring. Then ¢o’ = (¢) for some element ¢ and
ao’ = (a). We have an isomorphism

clafa = (c'a)/(a)
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where (x) is the ideal generated by x in o’. Let x € o’ be such that xao’ = ao’.
Let u € c~'a/a. Then xu is defined in the natural way by multiplication by x,
and we have xu = u for all w € ¢~'a/a if and only if

x =1 (mod*c).

This follows at once from the definitions. The congruence mod* means ordinary
congruence in the local ring for each prime power component of ¢.

§3. THE DECOMPOSITION GROUP AND
FROBENIUS AUTOMORPHISM

In this section we summarize pertinent facts about the decomposition group
of a prime ideal in a Galois extension. The results are basic, but we emphasize
that although they are sometimes stated only for Dedekind rings, e.g. in number
fields, they are valid more generally, and this is important when we consider an
elliptic curve over the ring Z[j].

Throughout this section, ring means ring without divisor of zero and
commutative.

Proposition 1. Let R be a ring, integrally closed in its quotient field K.
Let L be a finite Galois extension of K with group G. Let p be a maximal
ideal of R, and let B, Q be prime ideals of the integral closure of R in L lying
above p. Then there exists o € G such that c'B = Q.
Proof. Suppose that B # oQ for any o € G. There exists an element x ¢ §
such that
0 (mod %)
x=1 (modoQ), aloeG

(use the Chinese remainder theorem). The norm

Ni(x) =[] ox
oeG
lies in B K = R (because R is integrally closed), and lies in B A R = p.
But x ¢ ¢Q for all ¢ € G, so that ox ¢ Q for all ¢ € G. This contradicts the fact
that the norm of xliesinp = Q n R.

Corollary. Let R be a ring, integrally closed in its quotient field K. Let
E be a finite separable extension of K, and S the integral closure of R in E.
Let p be a maximal ideal of R. Then there exists only a finite number of prime
ideals of S lying above p.
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Proof. Let L be the smallest Galois extension of K containing E. If Q;, Q,
are two distinct prime ideals of S lying above p, and B,, B, are two prime ideals
of the integral closure of R in L lying above L, and {Q, respectively, then
B, # R,. This argument reduces our assertion to the case that £ is Galois
over K, and it then becomes an immediate consequence of the proposition.

Let R be integrally closed in its quotient field K, and let S be its integral
closure in a finite Galois extension L, with group G. Then ¢S = S for every
g eG. Let p be a maximal ideal of R, and P a maximal ideal of S lying
above p. We denote by Gy the subgroup of G consisting of those automorphisms
such that o = . Then Gy operates in a natural way on the residue class field
S/P, and leaves R/p fixed. To each o € Gy we can associate an automorphism
a of S/*B over R/p, and the map given by

oG

induces a homomorphism of Gg into the group of automorphisms of S/B
over R/p.

The group Gy will be called the decomposition group of P. Its fixed field
will be denoted by L?, and will be called the decomposition field of . Let S":
be the integral closure of R in LY, and let Q = B n S By Proposition 1, we:
know that W is the only prime of S lying above Q. ‘

Let G = (] 0;Gy be a coset decomposition of Gy in G. Then the prime
ideals o P} are precisely the distinct primes of S lying above p. Indeed, for two
elements o, 1 € G we have o' = 9 if and only if t-16® = R, i.e. 1o lies in
Gy. Thus 1, o lie in the same coset mod Gg,.

It is then immediately clear that the decomposition group of a prime
o is aGyol.

Proposition 2. The field L* is the smallest subfield E of L containing K

such that B is the only prime of S lying above $ n E (which is prime in S N E).

Proof. Let E be as above, and let A be the Galois group of L over E. Let
q = P n E. By Proposition 1, all primes of S lying above q are conjugate by
elements of H. Since there is only one prime, namely ‘B, it means that H leaves
P invariant. Hence H <= Gy and E > L?. We have already observed that L* has
the required property.

Proposition 3. Notation being as above, we have Rjp = S*/Q (under the
canonical injection R/p — SY/Q).
Proof. If o is an element of G, not in Gy, then ¢B # P and 67!P # P. Let
Q, =07 'P S
Then Q, # Q. Let x be an element of S*. There exists an element y of S such that
y=x (modQ)
y=1 (modRy)

W
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for each o in G, but not in Gy. Hence in particular,

y=x (modP)

y=1 (mode P
for each ¢ not in Gg. This second congruence yields

gy=1 (mod?P)
for all ¢ ¢ Gg. The norm of y from L% to K is a product of y and other factors
oy with ¢ ¢ Gg. Thus we obtain

NE(») = x (mod B).

But the norm lies in X, and even in R, since it is a product of elements integral
over R. This last congruence holds mod Q, since both x and the norm lie in 5*.
This is precisely the meaning of the assertion in our proposition.

If x is an element of S, we shall denote by X its image under the homec-
morphism S — S/8. Then & is the automorphism of S/ satisfying the relation
oxX = ox.

If £(X) is a polynomial with coefficients in S, we denote by f(X) its natural
image under the above homomorphism. Thus, if
f(X)=an"+ ."+b0’
then
f(X)= B,,Xn + -+ Bo.
Proposition 4. Let R be integrally closed in its quotient field K, and let
S be its integral closure in a finite Galois extension L of K, with group G.
Let p be a maximal ideal of R, and B a maximal ideal of S lying above p.

Then S/® is a normal extension of R/p, and the map ¢ — & induces a homo-
morphism of Gg onto the Galois group of S/ over R/p.

Proof. Let § = S/P and R = R/p. Any element of § can be written as
% for some x € S. Let X generate a separable subextension of S over R, and let
Jfbe the irreducible polynomial for x over K. The coefficients of flie in R because
x is integral over R, and all the roots of fare integral over R. Thus

J(X) = l:[1 (X ~ xp)
splits into linear factors in S. Since
F(X)=1](X - %)

and all the X, lie in S, it follows that f splits into linear factors in S. We observe
that f'(x) = O implies f (X) = 0. Hence S is normal over R, and

[R(X): R] = [K(x): K] < [L: K],
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This implies that the maximal separable subextension of R in § is of finite
degree over R (using the primitive element theorem of elementary field theory).
This degree is in fact bounded by [L : K].

There remains to prove that the map ¢ — & gives a surjective homomorphism
of Gg onto the Galois group of § over R. To do this, we shall give an argument
which reduces our probiem to the case when P is the only prime ideal of S lying
above p. Indeed, by Proposition 3, the residue class fields of the ground ring
and the ring S¢ in the decomposition field are the same. This means that to prove
our surjectivity, we may take L? as ground field. This is the desired reduction,
and we can assume K = L, G = Gj,.

This being the case, take a generator of the maximal separable subextension
of § over R, and let it be X, for some element x in S. Let f be the irreducible
polynomial of x over K. Any automorphism of S is determined by its effect on
X, and maps X on some root of f. Suppose that x = x,. Given any root x; of f,
there exists an element ¢ of G = Gy such that ox = x;. Hence 6X = X;. Hence
the automorphism of S over R induced by elements of G operate transitively
on the roots of j. Hence they give us all automorphisms of the residue class
field, as was to be shown.

Corollary 1. Let R be a ring integrally closed in its quotient field K. Let

L be a finite Galois extension of K, and S the integral closure of R in L. Let

p be a maximal ideal of R. Let @: R — R/p be the canonical homomorphism,

and let \, 5 be two homomorphisms of S extending ¢ in a given algebraic

closure of R/p. Then there exists an automorphism & of L over K such that
Y, =y 00.

Proof. The kernels of /,, {/, are prime ideals of S which are conjugate by
Proposition 1. Hence there exists an element 1 of the Galois group G such that
Y1, ¥, o T have the same kernel. Without loss of generality, we may therefore
assume that i/, ¥, have the same kernel . Hence there exists an automorphism
w of Y,(S) onto Y,(S) such that w ¢y, = ¥,. There exists an element ¢ of

Gy such that w <, = ¢, < o, by the preceding proposition. This proves what
we wanted.

Remark. In all the above propositions, we could assume p prime instead of
-maximal. In that case, one has to localize at p to be able to apply our proofs.
In the application to number fields, this is unnecessary, since every prime is
maximal.

In the above discussions, the kernel of the map
Gy — Gy
is called the inertia group 7y of P. It consists of those automorphisms of Gy
which induce the trivial automorphism on the residue class field. Its fixed field
is called the inertia field, and is denoted by L',
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If the inertia group of P is trivial, i.e. 1, then we say that P is unramified
over p. If every prime P over p is unramified, then we say that p is unramified
in L. ‘

Let again p be a maximal ideal of R, and let L be a finite Galois extension of
K, of degree N, with S the integral closure of R in L. We shall say that p splits
completely in L if there exist exactly N different primes of L lying above p.
Then p splits completely in L if and only if Gg = 1 because G permutes the
primes /p transitively.

When L/K is abelian, then we have the following characterization of the
fixed field of the decomposition group.

Corollary 2. Let L/K be abelian with group G. Let p be a prime of K, let
R be a prime of L lying above p, and let Gg be its decomposition group. Let
E be the fixed field of Gg. Then E is the maximal subfield of L containing k in
which p splits completely.

Proof. Let
G = U O’iG‘B
i=1

be a coset decomposition. Let ¢ = 8 n E. Since a Galois group permutes the
primes lying above a given prime transitively, we kndw that R is the only prime
of L lying above q. For each /, the prime ¢, is the only prime lying above
0,9, and since o,', . . ., 6,V are-distinct, it follows that the primes ¢,q, . . ., 7,4
are distinct. Since G is abelian, the primes ¢;q are primes of £, and [£: K] = r,
so that p splits completely in E. Conversely, let F be an intermediate field between
K and L in which p splits completely, and let H be the Galois group of L/F.
If 6 € Gy and B n F = P, then g leaves Py fixed. However, the decomposition
group of P over p must be trivial since p splits completely in F. Hence the
restriction of ¢ to F is the identity, and therefore Gy < H. This proves that
F < E, and concludes the proof of our corollary.

Let L/K be an arbitrary Galois extension again.

Assume now that the residue class field R/p is finite, with g elements. We
also write g = Np. It is a power of the prime number p lying in p. By the theory
of finite fields, there exists a unique automorphism of S/Y8 over R/p which
generates the Galois group of the residue class field extension, and has the effect

X x™,
In terms of congruences, we can write this automorphism & as
ox = x™, xeS.

By what we have just seen, there exists a coset 6Ty, of Ty in Gy which induces
¢ on the residue class field extension. Any element of this coset will be calied



106 RESULTS FROM ALGEBRAIC NUMBER THEORY [8, §3]

a Frobenius automorphism of P, and will be denoted by (B, L/K). If the inertia
group Ty is trivial, then (B, L/K) is uniquely determined as an element of the
decomposition group Gy,

If Q is another prime lying above p, and 5 € G is such that B = Q, then
the decomposition group of Q is given by

Ga = G"g = r]Ggﬂ-l.

Similarly for the inertia group, and for a Frobenius automorphism,

(B, LIK) = n(B, LIK)n~".

This is immediately verified from the definitions. Furthermore, if Ty is trivial,
we see that (B, L/K) = 1 if and only if p splits completely, meaning that G = 1.

If L/K is abelian, and if the inertia group Ty is trivial for one of the P|p
(and hence for all R|p), it follows that to each p in K we are able to associate
a uniquely determined element of G, lying in Gy (the same for all Blp), which
we denote by

o = (p, L/K),
and call the Artin automorphism of p in G. It is characterized by the congruence
ox = x¥ (mod P), xeS.

By using Zorn’s lemma, one can easily extend the above results to infinite
Galois algebraic extensions L/K. Propositions 1 through 4 are valid in this case,
and we therefore also get a Frobenius automorphism (P, L/K), well-defined
modulo the inertia group Ty,

Consider the finite Galois case, not necessarily abelian, and let

oy = (P, L/K)

be the Frobenius automorphism of . We assume that P is unramified, so oq
is well defined as an element of G Suppose that S is given by generators over R,

S = R[xy, ..., x,).
Let 7 be an element of the Galois group G such that
x; = x? (mod PB)

for all i = 1, ..., n. Suppose also that P does not divide the discriminant of
any Xx;, i.e. does not divide the non-zero differences
/";vxi - ;.“x,', ;sv, ;.“ € G.
Then 1 = oy because
X; = ogx; (mod P)

whence tx; = gyx; for all i, whence T = g because the x; generate L over K.
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§4. SUMMARY OF CLASS FIELD THEORY

The treatment of class field theory given in my Algebraic Number Theory is
classical, and is the most suitable for the applications to this book. We summarize
briefly the main theorems.

Let & be a number field which we assume for simplicity has no real con-
jugate, and let X be an abelian extension, say finite to begin with. If p is a prime
of k, and is unramified in K, then we can associate with p the Frobenius auto-
morphism

oy = (p, K/k)
in Gal(K/k). Let ¢ be an ideal of o,, sufficiently highly divisible by all the primes
of k which ramify in K, and let I,(¢) be the group of fractional ideals prime to .
We can extend the map p — (p, K/k) to I,(¢) by multiplicativity, and then get
a homomorphism called the Artin map,

I(¢) — Gal(K/k)

which can be proved to be surjective.
Let P,(c) be the subgroup of I,(¢) consisting of those principal ideals (2},
where ' ' '
a=1 (mod* ¢).
This means that « = 1 (mod my®™), where m, is the maximal ideal of the local
ring o, at p, for ple, and r(p) is the order of ¢ at p. Let N(c) denote the group
generated by the norms of all prime ideals of K, relatively prime to ¢. Then the
kernel of the Artin map is precisely
P1(e)N(c),

and this is Artin’s reciprocity law.

This can also be formulated in terms of ideles. An idele s is an element of
the restricted product

IT

of the multiplicative groups of the completions k,, at all absolute values of &,
extending the ordinary absolute value on Q, or the p-adic absolute value on Q,
such that |p|, = 1/p. The non-archimedean absolute values of k corresperd
then to the prime ideals of o,. The restriction in the product means that we take
elements
S=ov .y Spy--l)

such that s, is a p-unit for almost all (all but a finite number of) primes p.
We define the Artin symbol for ideles (s, K/k) as follows. We select « € k such
that the idele as having p-component as,, is such that as, is very close to | at
all p ramified in K. (Close to 1 is determined by the same type of congruence
that defines P,(c).) We then define the ideal

(as) = [T p™®
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where m(p) is the order of as, at p. The symbol (s, K/k) is defined to be
(s, Klk) = ((as), K]k).

This symbol is well defined, and gives a homomorphism of the idele group J,
onto Gal(K/k), whose kernel is generated by k*, embedded on the diagonal
in the ideles, and the group of norms of ideles from K, i.e. the kernel is

K*N AL

The norm is defined in a natural way, which is irrelevant for us here.

If K" > K > k are abelian extensions, then the restriction of (s, K'/k) to K
is exactly (s, K/k). This consistency allows us to define (s, k) in the Galois group
of k,, over k, i.e. the Galois group of the maximal abelian extension of k.

Given a prime p, we can consider the values of the Artin map at ideles

(ool s, 1,1,..0)

with component | except at p. These values lie in the decomposition group of
a prime B lying above p, and give an injective homomorphism of k¥ onto a
dense subgroup of this decomposition group. The mapping is surjective for
every finite abelian extension. This local fact will not be needed, except for one
application, and the reader may disregard it until he needs it. 1

Over the rational numbers, it is easy to describe what’s going on in element-
ary terms. Consider a cyclotomic extension Q, = Q({,) where {,, is a primitive
n-th root of unity. The ideals of Z are all principal. We get the Artin map
as follows. If ae Z and @ > 0, and g is prime to n, then ((a), Q,/Q) is that
automorphism ¢ such that

=10
In particular, for a prime pJn we have
G =0

We see that the decomposition law of p in Q, takes place according to an
arithmetic progression. The congruence relations defining the generalized ideal
class groups extend this notion to arbitrary number fields.

Finally we recall the characterization of Galois extensions by the nature
of the primes which split completely in them. Let M be a set of primes. One
defines the limit '

1
Y N
lim 2M Np
s—1+ 1
log

to be the Dirichlet density of M (if it exists). It is provable (e.g. from class field
theory, cf. my Algebraic Number Theory, Chapter VIII, §4) that an ideal class
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of I(c)/P,(c) always has such a density, and that this density is equal to 1/A.
(where k. is the order of I(¢)/P,(c)). Let S, T be sets of primes in k. Let us write
S < T if there exists a set Z of primes of Dirichlet density 0, contained in S,
such that S — Z < T. Thus S is contained in T except for a set of primes of
density 0.

Let K/k be a Galois extension and let Sk be the set of primes of & which
split completely in K. If L > K is another Galois extension of &, then trivially,
SL/k c Sx/k. If

Sk < Sepo

then L = K. Indeed, Sy, has density 1/[L: k], and hence
[L:k] = [K:k],
so L = K. One can then prove (see e.g. [B7], Theorem 9, Chapter 8, §4):

Let Kjk be a Galois extension, and E a finite extension of k. Then Sk;x < Sgy
ifand only if E = K.

One can then characterize the ray class field belonging to an ideal ¢ (or as one
says, with conductor ¢) as the abelian extension K of k such that Sk consists
precisely of those primes lying in the unit class of I(c)/P,(c), i.e. those primes
which are principal, generated by an element o = 1 (mod ¢).

For some purposes (i.e. for our construction of abelian extensions in Chapter
10, §1) this characterization suffices. Later, when we analyze the nature of the
Artin automorphism in terms of its effect on the values of certain analytic
funictions, such a characterization is of course insufficient, and one must know
some of the other statements of class field theory as well to understand fuliy
what’s going on.






9 Reduction of Elliptic Curves

§1. NON-DEGENERATE REDUCTION, GENERAL CASE

The properties of reduction in this chapter, except for §3, are due to Deuring,
who used them to give his algebraic proofs for complex multiplication. We
shall not give any proofs. These can be given ad hoc, as Deuring did, for the
elliptic curves, or one can develop a general reduction theory, as in Shimura [39].
No matter what, it is a pain to lay these foundations, but the results can be
stated simply. Although classically one reduces over a discrete valuation ring,
it is useful to deal with an arbitrary local ring.

Let o be a local ring (always without divisors of zero), with maximal ideal
m. An elliptic curve 4 defined by an irreducible non-singular equation

f(Xo, X1, X3) = 0

in projective space, with coefficients in o, is said to have non-degenerate reduction
mod mn if when we reduce f mod in we obtain again an absolutely irreducible
equation, defining again a curve without singularities, denoted by A.
If the curve is defined by a Weierstrass equation
Y =4x* — gox — g,

with g., g3 € 0, and the characteristic of o/in is not 2 or 3, then non-degenerate
reduction means that the discriminant A is a unit in 0. For our purposes, the
reader can always restrict himself to this case.

If K is a field containing o and

Wi W

denotes a place of K extending the canonical homomorphism o — p/in, then this
place induces a homomorphism

Ax — Az
of the K-rational points of 4 into the K rational points of 4, by applying the
111
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bar to the coordinates of points. If the curve is given in Weierstrass form as
above, the map on points is given by

(x, y) = (X, 7),

If X or y = oo, then the point with coordinates (x, y) lies in the kernel of our
homomorphism. Suppose that the points of period ¥ on A are rational over K.
Let p be the characteristic of o/m. If N is a positive integer prime to p, then the
map

Ay - Ay

is an isomorphism. Essentially this is due to the fact that we can obtain the
points of 4 as an inverse image

(No)™10) = pri[Tys - (4 % 0)]

and that reduction mod m commutes with the operations of algebraic geometry,
especially inverse images. This shows that the points of Ay map onto the points
of Ay, and since these two abelian groups have the same number of elements,
we must get an isomorphism between them.

§2. REDUCTION OF HOMOMORPHISMS

Let A, B be elliptic curves with non-degenerate reductions 4 and B over
a local ring o as before. We know that Hom(A, B) is finitely generated. In fact,
in characteristic 0, it has at most rank 2 over Z, and this will be the main case
of interest to us. If 2: 4 —» B is a homomorphism, then 1 is defined over an
algebraic extension L of the quotient field K of 0. However, it can be shown
that for any place extending the canonical homomorphism o — o/im to L, 2
has a non-degenerate reduction Z: A — B, and that the association

) A A
is an injective homomorphism
Hom(A, B) - Hom(4, B).

Warning. This last map is not necessarily a surjection. Two significant cases
arise: when A, B have transcendental j-invariant, but reduce to special elliptic
curves over the complex numbers, having invariant j(t) with imaginary quadratic
7; and when A, B are already special, but reduce to elliptic curves in characteristic
D, and then pick up new endomorphisms besides those arising from complex
multiplications. We shall study both cases. The first is the theory of complex
multiplication proper. The second has its genesis in the Deuring theory as in
Chapter 13.
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We can give a heuristic motivation for the fact that the reduction of a
homomorphism is also a homomorphism. Let " be the graph of A. Then
I' < 4 x Band pr,I' = A.If reduction is to preserve the operations of algebraic
geometry, we must have pr,[" = 4. Also T has to be connected (being a de-
formation of T'), whence I is also the graph of a mapping from A into B.

Considering the intersection

r-4x9

with a general point Q of B, and the fact that the degree of this cycle (i.e. the
number of points in it, counting multiplicities) is the degree of 1, we see that
reduction being compatible with intersection implies that 1 and A have the same
degree. ‘

Suppose that the characteristic of the residue class field is not 2 or 3, and
that je o but j # 0 or 1728 mod m. We can find an elliptic curve defined by
the equation

y:=4x® —cx — ¢,

having the given invariant j, and non-degenerate reduction mod m, by solving
linearly .

Y
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and we see that this gives a “universal” parametrization for such curves. For
the other two cases, we can always take
yP=4x>~x and p*=4x3 -1

Let A be an elliptic curve in characteristic 0, defined over the local ring o,
and with non-degenerate reduction. Let g be a finite subgroup of 4. Then 4/g
has many models. Its invariant is integral over Z[j,], and therefore integral over
o, because j, € 0. We can therefore find a model B for A/g defined over an
integral extension S of o, and having non-degenerate reduction at every maximal
ideal of S lying above m, by writing down the usual simple equations as in
Chapter 1, §4 (and assuming for our purposes that the characteristic of o/m is
# 2, 3, although one can also give normalized equations valid in these cases.)

§3. COVERINGS OF LEVEL N

Theorem 1. Let A be an elliptic curve defined over an integrally closed
local ring o, with non-degenerate reduction modulo the maximal ideal m.
Let p be the characteristic of o/m, and let N be prime to p. Let K be the
quotient field of v. Let G = Gal(K(Ay)/K). Let M be a maximal ideal of the
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integral closure S of o in K(Ay), and let the bar, w W, denote reduction
mod M, for we S. Then:

1) The ideal m is unramified in K(Ay).

ii) For any o € Gz and P € Ay we have

oP = GP.

iii) If 6 € GandoP = PforallP e Ay, theno = 1.

Proof. The formula of (ii) holds by the definition of the effect & on the
residue class field extension. Since the map P+ P is an injection on Ay, we
conclude from the hypotheses of (iii) that ¢P = P, whence ¢ = | because the
coordinates of points in A4y generate K(4y). Note: In (iii), we do not assume

that o is necessarily in Gg. This is useful in applications. The fact that m is
unramified in K(4,) follows from (jii).

In applications, we are sometimes given elements ¢,, ¢, € G such that
9P = 0,P
for all P € Ay. Considering 03 ', shows that o, = o,.
Corollary. Let A have invariant je o, and such that j # 0, 123, and the

characteristic of ojm is # 2, 3. Let h be the first Weber function, i.e. g,g3x/A.
If o € G is such that

oh(P) = h(P)
Jorall P € Ay, then o is the identity on K(h(Ay)).
Proof. We have oh(P) = h(Q) for some point Q € Ay. By hypothesis, we get

hP)=h(Q), ie. h(P) =R,
where  is the Weber function of the reduced curve A. This means that § = + P
(because the x-coordinates of Q and P are the same), whence Q = 4 P. Hence
h(Q@) = h(P), so that
oh(P) = h(P).
This being true for all P € Ay, we conclude that o = 1 on K(h(4y)).

Next we deal with the two exceptional cases, and we shall take values in
characteristic zero.

‘ We shall see later that J¥ and JJ — 1 are modular functions of level 6,
essentially from the product expansion for A, which shows that A* and At are
holomorphic on the upper half plane. This means in terms of points of finite
order that the field Fy is ramified of order 3 over J = 0, and ramified of order 2
over J = 1if 6|, See Chapter 18, §5. From this, we shall prove it is true for all
N, and we shall determine the decomposition group.
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No other ramification than the above can occur (for finite values of j),
because we can define an elliptic curve by the equation
y?=4x3 = 3YTx — T — 1,
which has obviously non-degenerate reduction over J + 1 and J ~— 0. Theorem 1
shows that the extension by the coordinates of the points of order N over
Q(i/], J — 1) is then unramified, except at infinity. _
The ramification at infinity will become clear in Chapter 15, using a different
parametrization for the points of the elliptic curve.
As before, we call
3
gz 2 g3 3
72 d 73
A an A
the second and third Weber functions respectively, defined for an elliptic curve
in Weierstrass form by the above formulas. We let Fy be the field of modular
functions of level N, identified with the field Q(j, A(4y)), where A4 is an elliptic
curve with invariant j, and #4 is the first Weber function.

Theorem 2. The field Fy (for N > 1) is ramified over Q(j) at j = 123, with
ramification index 2. Let h be the second Weber function. Let I be a maximal
ideal of the integral closure of Q[j] in Fy lying above the ideal (j — 123), and
let the bar denote reduction mod M. Let Tm be the inertia group. An element
o € Gal(Fy/Q())) is such that

oh(P) = h(P)
forall P e Ay, if and only if o lies in Tan.

Proof. Take N sufficiently large first (with respect to divisibility) to insure
that Fy is ramified at j = 12°. We can represent o by a matrix operating on Ay,
If 6h(P) = h(P) for all P € Ay, then we must have in the analytic representaticn

oG- (52 20

for all integers r, s not both 0 (mod N), and q, b, ¢, d are the components of the
matrix representing ¢. Putting r, s equal to 0, 1 respectively, one sees that this
can be so if and only if the matrix represents multiplication by +1, +1 In the
case of i, the matrix is

0 -1

(7o)

Since +1 operates trivially on Fy, we see that only +i yields a possible non-
trivial automorphism of Fy. We know that there is a non-trivial inertia group
T, whence its generator is necessarily represented by such a matrix. Now for
any n|N, the same matrix operating on A, represents the restriction of ¢ to F,,
and operates non-trivially, so that we must also have ramification of order 2 in
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F,. Given n, we can always find N divisible by n so that we can argue as above.
This proves our theorem.
Theorem 3. The field Fy (for N > 1) is ramified over Q(j) at j = 0 with
ramification index 3. Let h be the third Weber function. Let M be a maximal
ideal of the integral closure of Q[j] in Fy lying above the ideal (j), and let
the bar denote reduction mod M. Let To be the inertia group of M. An
element o € Gal(Fy/Q(}))) is such that

oh(P) = h(P)
forall P e Ay if and only if o lies in Tan.

Proof. The proof is completely analogous, except that this time o is
represented by the matrix corresponding to multiplication by p or p?, where

p = emil3 eg,
-1 -1 °
1 0/’

We stated Theorem 2 and Theorem 3 in terms of points of finite order
We can also state them in terms of modular functions.

Theorem 2'. Let Fy be the field of modular functions of level N > 1. Let
z be equivalent to i under the modular group in . Let

gz() 2
746 = 5 # (()‘)

be the second Fricke functions, with a € (Q*/Z*)y, a # 0. If o € Gal(Fy/F,)
is such that

(af)(2) = fu2)
SJorallae (Q*Z?)y, a # 0, then
(af )2) = f(2)
Sor all functions fe Fy which are defined at z. The group of such o is cyclic

of order 2, and consists of those elements represented by matrices y € SL,(Z)
such that yz = z,

Theorem 3'. Let Fy be as above, and let z be equivalent to p under the
modular group in $. Let

_93(‘5)
w0 =550 +)

be the third Fricke functions with a € (Q*|Z?)y, a # 0. If 6 € Gal(Fy/F,) is
such that

(of)(2) = fi2)
Sforall ae (Q*/Z*)y, a # 0, then

(@)@ = (@)
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for all functions f e Fy which are defined at z. The group of such ¢ is cyclic
of order 3, and consists of those elements represented by matrices y € SL,(Z)
such thatyz = z.

§4. REDUCTION OF DIFFERENTIAL FORMS

Let V be a curve (always projective non-singular) over a field k,. One can
define differential forms in the function field k,(}V) as the dual space of the
derivations of k,(¥) which are trivial on k,. Suppose that ko(V) = ko(x, )
where x is transcendental over k and y is separable algebraic over ko(x). Then
the differential forms are a l-dimensional space over k,(V) and dx is a ko(V}-
basis for this space, where dx has the effect Dx on the derivation D. Any differ-
ential form of ko(¥) is of type zdx for some z € ko (V).

One can define in the usual manner the zeros and poles of a differential
form, expanding in a power series with a local parameter at a given point.

If A is an elliptic curve in Weierstrass form

¥ =4x> — gx — g,

then dx/y is a differential form of the first kind, in other words, it has no pole.
Over the complex numbers, under the Weierstrass parametrization

ur (1, p), p'(u),
the differential form dx/y corresponds to the differential form du on C/L,

as one sees immediately from x = @(u) and y = p'(u).
Back to a general curve over a field k,. Let

VW

be a rational map of V onto another curve, and suppose that f is not constant,
Then ko(W) is contained in k(}V), and a differential form on W pulls back ic a
differential form on V. If '

w = zdx

with z, x € ko(W), then we may view z, x as functions on V (i.e.aszo f, x = f}
and we then get a differential form

wof=frw=(0f)dxof)

which we also write as z dx by abuse of notation. If the map f is separable,
i.e. ko(V) is a separable extension of ko(W), and z dx # 0, then f*w # 0. On
the other hand, if zdx # O but f is not separable, i.e. ko(V) over ko(W) kas
inseparable degree > 1, then f*w = 0,
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A typical example of an inseparable extension is obtained as follows.
Suppose that ko has characteristic p, and let ko(¥) = ko(x, y) where y is separable
over ko(x). Then ko(x) is purely inseparable over ko(x?), of degree p. Further-
more, since y is separable over ko(x), we have ko(x, y) = ko(x, y?), and p*is
separable over ko(x?). From the diagram ‘

/ ko(x, y) = ko(x, ¥7)
ko(x) l
.

ko(x?)
we conclude that [ko(x”, y7): ko(xP)] = [ko(x, ¥) : ko(x)], and that

[ko(x, ) ko(x?, ¥7)] = p.
The subfield ko(x?, y®) is the function field of a curve denoted by V(P and we
have a purely inseparable rational map

V> yie,

called the Frobenius map. Similarly, if g = p" is a power of p, we get a rational
map r, of degree g, purely inseparable, sending

(x, p) = (x4, y9).

Suppose that &, is perfect, so that k§ = k,. Then raising to the g-th power
gives an isomorphism of ky(x, ) onto kq(x?, y9). It follows that there is precisely
one subfield of ky(x, y) over which ky(x, y) is purely inseparable of degree g,
and that is kqo(x9, y9).

If ¥ = A is an elliptic curve, the map r, is a homomorphism of elliptic
curves.

Let

irA— B

be an isogeny, defined over a field k. It can be shown that the space of differ-
ential forms on A4 (or on B) defined over kg, and of the first kind (i.e., without
pole), is 1-dimensional over ko,. Consequently if wj is a non-zero differential
form of the first kind on B, we conclude that

Afwp = cwy,

where ¢ € kq. Furthermore % is separable if and only if ¢ # 0.
Actually we want the dependence of ¢ on 4, so let us write

I*¥wp = c;0,.

Then 7+ ¢; is a homomorphism of the subgroup of Hom(4, B) consisting of
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those homomorphisms defined over kg, into the constant field. Observe that
¢ = ¢, is independent of the choice of differential form wjy # 0, because any
other form of the first kind on B is a constant multiple of wg. A similar remark
applies to w,. Thus 2+ ¢, is a well-defined representation.

Let ¢: C/L — Ac be an analytic representation. Let a be a complex number
such that L = L, and A: 4 — A an endomorphism of 4 making the following
diagram commutative.

C s AC
al ll
C - AC
Then for any differential form of the first kind w on 4 we have
wo A= aw.

Thus the number « is the number ¢, mentioned above.
Suppose that End(4), is isomorphic to an imaginary quadratic field %

(a subfield of the complex numbers). We can therefore define an isomorphism
6: k - End(4)q

such that
wo0@)=aw | O(a]*w = °<-C*’)

for all differential forms of the first kind w, and all « € k. If this condition is

satisfied, we call the pair (4, 6) a normalized pair. We have some easy functorial
properties.

DIFF 1. If (4, 6) and (A', 6') are normalized pairs, and
A A
is a homomorphism, then
Aof(m) =6(@oi
forallaek.

This is obvious, because w 0 1 0 8(x) = aw 0 Aand w 0 §'(2) 0 A = wew 0 2,
by the definitions of normalization.

DIFF 2. If (4, 6) is normalized and if o is an isomorphism of the field over
which A and all elements of End(A) are defined, then (A4°, 0°) is alsc
normalized. ‘

The proof is immediate,

DIFF 3. Let (A, 0) be normalized. If A is defined over ko < C, then every
element of End(A) is defined over kyk.
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Proof. We can find a differential form of the first kind defined over k,.
Let o be an automorphism of C over k¢k. Then w’ = w, whence

@0 0(2)° = 0 0 0(x)° = (w0 B(@)° = (2w)* = aw = w o H(x).
Hence 6(2) = 8(«)° for all o, whence 0(z) is defined over kgk.

To be able to reduce differential forms when we are given a non-degenerate
reduction of 4 mod m, we must. give 4 an integral structure over the local
ring o. One can lay foundations working with rings instead of fields for differential
forms, i.e. within the framework of schemes, or one can select generators (x, y)
for the function field of A4, as for instance in the Weierstrass form when the
characteristic of o/ is #2 or 3, and then work ad hoc, as Deuring did, using
such simple equations. It is then “clear” that the differential form w = dx/y
reduces properly, to the differential form @ = d¥%/y. For any element ceo
we have

cw = cO.
If A, B have non-degenerate reduction over o, with quotient field K, and
i:A-> B

is a homomorphism defined over K (whence over o), and if w is a differential
form on Bsuchthat @ # 0, w 0 A = cw, with c € o, then

WO /i=B04=Cd.
In particular,

worsi=0

if and only if 1 is not separable. This is the case when, for instance, I is the
Frobenius endomorphism =, for someg = p".

If an elliptic curve A is defined over K, and if we have a family of discrete
valuations of K such that an element of K has only a finite number of zeros
and poles in this family, then given a non-zero differential form on A, for all
but a finite number of the discrete valuation rings in the family, the reduction
of A is non-degenerate, and the differential form reduces to a non-zero differential
form on A. In all the sequel, we shall use reduction mostly in this case, omitting
a finite set of bad primes. The family of all valuation rings in a number field
K gives an example of such a family.

We already mentioned that A may have more endomorphisms than 4.
It is important in certain cases to know when an endomorphism of A is the
reduction of an element in End(A4). If (4, 6) is normalized, then we define

0: k —» End(4)
by .
6(2) = 6(a).
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DIFF 4. Assume that End(A)q is an imaginary quadratic field. If an element
of End(Ad)q commutes with all elements of End(4), i.e. with all
the reduced endomorphisms of A, then it lies in End(A)q.

To prove this, one has to know that End(A4), is either a quadratic fieid,
or a division algebra of dimension 4 over Q. This will be proved later, with
¢-adic representations, assuming only that v(Né) = N2 If one knows this result,
‘we see that End(d4)q already provides a quadratic subfield of End(4)q, whence
DIFF 4 follows.







10 Complex Multiplication

§1. GENERATION OF CLASS FIELDS, DEURING’S APPROACH

We first consider values of the j-function at quadratic imaginary numbers.
We shall see that these values generate abelian extensions of quadratic fields.

Let k be an imaginary quadratic field and o, its ring of algebraic integers.
We view j as the isomorphism invariant of elliptic curves. We don’t need analysis,
and if Ac &~ C/L where L = [zy, z,], z = z,/z, € k N $, then we write

Ja =J(L) = j(z) = j(AL), all 2 e k*.

Theorem 1. Let a be an ideal of v,. Then j(a) generates an abelian extension

of k, and in fact generates the maximal unramified abelian extension of k.

If a; (i = 1, ..., h) are representative ideals for the ideal classes in k, then

the numbers j(a,) are all conjugate over k, and for all but a finite number of

primes p of k such that (p) = pp’ in k, p # p’ and Np = p, we have the

Kronecker congruence relation,

j(p~la) = j(a)" (mod %)
for any prime P in k(j(a)) over p. Therefore,.if 6, is the Artin automorphism
of p in k(j(a)), then
j(p~ta) = opj(a).

Proof. Let K be the smallest Galois extension of k containing all the
numbers j(a;). For each j(a,) select an elliptic curve defined by a Weierstrass
equation over X and having invariant j(a,). For any a among the a;, the corres-
ponding elliptic curve is analytically isomorphic to C/a and we suppose given an
analytic representation

Cla — Ac.
Select a prime p # 2, 3, such that (p) = pp’ink, p # p’, Np = p, such that all
the above elliptic curves have non-degenerate reduction at a prime P lying
above p in K, and such that p is relatively prime to the discriminants of the
numbers j(a,), all i. If B is the elliptic curve chosen above whose invariant is

123
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j(p~'a), then there exists an isogeny 2: A — B such that the following diagram
is commutative,
Cla —> A¢

j(z
Clp~'a— B
and the left vertical map is the canonical map arising from the inclusion a = p~a.

Let b be an ideal prime to p and such that pb = () is principal. Then our diagram
becomes

C > Cla Ac
Clp~la— B,
d. (1
C/bm "
Vy J can

C — Cla —> A,

with some isogeny u: B — A which makes the diagram commutative. On the
left we have multiplication by a. We compute degrees:

v(2) = (p7'a:a) = (o,:p) =Np=p

v(u) = (a:Da) = Nb prime to p.
We contend that A (reduction mod P) is purely inseparable. Let @ be a differ-
ential form of the first kind on B, say @ = dx/y. Then

Wouo L= aw,
whence
Dojpold=aw =0,
because « € p. Hence i © 4 is not separable. But the degree of i (which is the

degree of u) is prime to p, and hence / is not separable. Since 4 has degree p,
it follows that 4 is purely inseparable.

It follows that B is isomorphic to A”. But the invariant of A is jZ (by
first principles, applying the isomorphism “raising to the p-th power™). Hence

JG71a) = j(a)”.
This means precisely the congruence relation of Kronecker. The Frobenius

automorphism o4 has the same effect on j(a), and hence we must have the final
equality

. jp~ta) = agj(a),
having chosen p prime to the discriminant of the numbers j(a).
We now see that the numbers j(a;) are all conjugate, because there is a
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prime of k of degree 1 over Q in every ideal class of k. Furthermore, a prime
p as above splits completely in K if and only if p is principal, because j takes
on the same value on two lattices if and only if they are linearly equivalent.
Hence by class field theory, we conclude that K is the maximal unramified
abelian extension of k. This proves Theorem 1.

The next thing to do is to prove a theorem analogous to that of Theorem 1
for points of finite order on an elliptic curve 4 having invariant j, = j(a), where
a is an ideal of o,. Recall that two analytic representations C/a — A differ by
an automorphism of 4. The points of finite order in C/a are obviously the
points k/a. Those of order N are denoted as usual by (k/a)y.

We have the commutative diagram as in Theorem 1,

Cla — A¢

C/p~la— A2
where the map on the left is the canonical one and 2 is an isogeny such that
4 is purely inseparable of degree p. We also have, by the definition of o, that

A7 = m(d) = AP,
Indeed, if 4 is defined by
= 4x3 - .gzx - .g3’

then A° is defined by
2

y?=4x* — g3x — g5,

and reducing mod 9P yields the equation for A°, namely
y? =4x* — ghx — gh.

Hence there exists an automorphism & of 4‘”’ such that

A l=E%om.

We contend that & is the reduction of some element in Aut(49). Since
End(4°) = o, is integrally closed, it will suffice to prove that £ lies in End(4?),,
and for that it will suffice to prove by DIFF 4 that & commutes with all the endo-
morphism of A‘” obtained by reducing the endomorphism of A°. We may
assume that (A4, 0) is normalized, so that (47, 0°) is also normalized. Then by
DIFF 1 and DIFF 2, we get for anyy € &,

200(y) = 0(y) o 4,
whence

Zo0(y) =0()Fox
and .
(1) tEonocly)=0(Frcéom.
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But from the definition of the Frobenius mapping, we have

0y = ()2,
whence
2 gonob(y) =éocblyYon

Comparing the right-hand sides of (1) and (2) proves what we want.
We can then change A by ¢! in order to achieve the more precise relation

A=m,

at the cost of changing the bottom arrow, giving the analytic representation of
<, by an automorphism of 4?. We have therefore proved the following result.

Lemma 1. Let A be an elliptic curve with j, = j(a), where a is an ideal of
o, ink. Let

¢: Cla — Ac
be an analytic representation. Assume that A is defined over k(j,). Then for

all but a finite number of primes p of degree 1 in k, if 6 = o, is the Frobenius
automorphism of v in k(j,), we can find an analytic representation ‘

Wi Clp~ta — A

and an isogeny ) such that the following diagram commutes,

]
Cla — A¢
canl ll
Clp~la— AL

¥

and such that if the bar denotes reduction with respect to some.prime P
extending p in k(j,), then 1 = m,,

Theorem 2. Let A be an elliptic curve whose ring of endomorphisms is the
ring of algebraic integers o, in an imaginary quadratic field k, and A is defined
over k(j,). Let h be the Weber function on A, giving the quotient of A by its
group of automorphisms. Then k(j,, h(Ay)) is the ray class field of k with
conductor N.

Proof. Let K be the smallest Galois extension of k containing j, = j(a)
and all coordinates #(4y). We take a prime p of k of degree 1 as before, omitting
only a finite number of them, e.g. those which ramify in X, all p|N and p|q,
and all p where we might have bad reduction of 4 and its conjugates. We can
now take the elliptic curve B = 47 to have invariant j§{ where ¢ = ¢y is the
Frobenius automorphism of some prime B in X lying above p. The bar reduction
will again be with respect to P.

If t € Ay, then

it =7 = n(i) = o1,
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by the definition of the Frobenius automorphism applied to the coordinates of
t. Since reduction induces an injection on A4y, we conclude that 1 = g on Ay,
Therefore the commutative diagram of Lemma 1 now reads

(kja)y ——> Ay
3) ml l op
(k/p~ta)y ” Ay

We shall prove that p splits completely in K if and only if p = () with some
o € o, such that & = 1 (mod* Nbp,).

Suppose first that p = (x) with « € k. Then p splits completely in k(j,) and
hence A° = A. Following the left vertical arrow in Lemma 1 by multiplication
with «, we get a commutative diagram with an analytic representation ' of
AC’

(kfa)y ——> Ay

<an U$= a
4) (kfp~ta)y " Ay
a id

(Kfa)y —> Ay

If « = 1 (mod* Nbo,), then the composite vertical map on the left is the identity.
Furthermore, i’ differs from ¢ by an automorphism of 4. It follows that o acts
as the identity on the Weber coordinates /4(¢) for all t € Ay, and hence g = !
on K = k(j,, 1(Ay)).

Conversely, suppose that p splits completely in K, and in particular splits
completely in k(/,). Then by class field theory, p = («) is principal, and A° = 4
in Lemma 1. We obtain the same two-storied diagram (4) above, using multiplica-
tion by a. For the Weber function /1 we have &° = h because 4 can be defined
over k(j,). For any element u € (k/a)y we get:

ho@)) = h(e@)” = h*(o(u)")

= hg(uy) ‘
= h(Y'(ow)) (by the commutative diagram)

= h(p(aw)).

Observe that k/a is an o,module, and by localizing one sees that (k/a)y is
principal, generated by an element u,, say. Our final equality above implies
that there exists a root of unity { such that

auo = {up
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(the A-coordinates of the two points @(uo) and @(xu,) being equal, the two
points differ by an automorphism of 4). We change the generator o of p by
the inverse of this root of unity. We then get
oo = Uy,

and hence au = u for all u € (k/a)y because any u can be written as Aiu, for some
/. € o,, and a} commutes. It follows that « = 1 (mod No,).

By class field theory, we now conclude that K is the ray class field of k with
conductor N. (Cf. Theorem 9 of Chapter VIII, §4 in my Algebraic Number
Theory.) This proves Theorem 2.

Corollary. Let Fy be the field of modular functions of level N, and let k
be an imaginary quadratic field. Let kFy be the composite field. Let a be an
o,-ideal, a = [z,, z,) and z = z,/z, € ©. Then the field kFy(z) generated over
k by all values f (), with f € Fy, and f defined at z, is the ray class field over
k with conductor N.

Proof. Let M be the kernel of the place f'+— f(z) for fe kFy. Let
G = Gal(kFy/k(j)),

and let G be the decomposition group. From general decomposition group
theory we know that the induced group G is the Galois group of the residue
class field extension. We also know by Theorem 2 that the residue class field
contains the above mentioned ray class field. Let ¢ € G be such that & is the
identity on this ray class field. In particular, & is the identity on all elements
f(2) and j(z),w here f, are the Fricke functions (a e (Q?*/Z?),, a # 0): By
Theorems 2" and 3’ of Chapter 9, §3 we conclude that o lies in the inertia group,
whence ¢ is the identity on the residue class field. This means that the residue
class field is precisely the stated ray class field, and concludes the proof.

As is well known, Kronecker started the whole business of complex multi-
plication, and Weber gave a first systematization of the resuits known at the
time. They were considerably incomplete, for instance the so-called Kronecker
congruence relation of Theorem | was known only in a weaker form, namely

D,(X) = (X - j))(X —j?) (mod p)

actually proved by Weber (Acta Mathematica 6, 1885, p. 390). Hasse proved
it in the form we stated it [19], and also obtained all the abelian extensions of
k from values of the Weber function. Weber himself needed some quadratic
extensions in addition. Fricke [B2] and Fueter [B5) gave treatments before that
which are still of some interest, for the special cases which they discuss, and for
the analytic methods.

The Institute Seminar [B17] is also a convenient reference for a quick
introduction to some basic results, using the analytic approach, and some useful
chapters on computational aspects.
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Deuring [B1] simplified considerably some of Hasse’s proofs in his mono-
graph, which is an exceedingly good reference for the analytic development of
the complex multiplication. For the convenience of the reader we shall reproduce
the analytic proof of the congruence relation in Chapter 12, §3. It will not
require any knowledge beyond Chapter 12, §2 which is self-contained. Hence
the reader can read these sections as an alternative approach to part of the resuits
of complex multiplication.

Deuring’s major contribution, however, was to have found the algebraic
development which we have followed, using reduction mod p, cf. all his papers
in the bibliography. This was extended to abelian varieties by Shimura and
Taniyama [B13], see also Shimura’s book [B12].

§2. IDELIC FORMULATION FOR ARBITRARY LATTICES

In the first section we derived the basic theorem of complex multiplication
using ordinary ideals of o,. For a number of technical reasons, arnd also in order
to tie up the situation over the quadratic field & with the generic situation, it is
necessary to have a formulation describing the values of j(L) for arbitrary
lattices L, and also to know the relation with class field theory through the
ideles. For this, we shall give a theorem as in Shimura [B12], who did it for a
finite number of points, but whose final formulation is due to A. Robert. We
now assume that the reader knows Chapter 8, §1 and §2, especially how the
ideles operate on k/a where a is an arbitrary lattice in k. If s is an idele, (s, &)
is the Artin symbol on the maximal abelian extension k.

Theorem 3. Let ¢: Cla — Ac be an analytic representation of the elliptic
curve A, where a is a lattice in k. Let s be an idele of k and let & be an automor-
phism of the complex numbers whose restriction to k is (s, k). Then there exists
an analytic representation

Y:Cis™la = AL

such that the following diagram is commutative.

L4
kla —— Ac
kjsT'a - AZ
¥

Proof. Our first task is to reduce the theorem to the case when a is an ideal
of o,. Let b be an ideal of o, contained in a. Let ¢: C/b — B be an analytic
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representation of an elliptic curve with lattice b, and let 2: B'— 4 be the isogeny
which makes the top of the following diagram commutative.

The back side is trivially commutative. Putting A° on the lower right makes the
right side commutative. Assuming our problem solved for b we can find ¢’
making the front square commutative. We define ¥ such that the bo;tom is

Fig. 10-1

commutative. This can be done by checking that the kernels of the two bottom
maps are the same. It then follows that y makes the back face commutative,
and this solves our problem for a.

Observe that the above reduction shows that if we can solve our problem
for one elliptic curve 4 = C/a, then we can solve it for any other elliptic curve
A’ isomorphic to 4. Of course, a simpler direct argument can also be given
in this case. .

We now assume that a is an ideal of o,. A positive integer m will be said to
be freezing for 4 if any automorphism of 4 which leaves A, fixed (pointwise)
must be the identity. Since A4 has only a finite number of automorphisms,
there always exists such an integer. Let N be a positive integer such that m|N.
We shall prove that there exists : C/s~'a — AZ such that the desired diagram
commutes on (k/a)y, i.e. such that the following diagram commutes.

@

(kja)y —> Ay

s—1 4

(kfs™ ta)y — A3

v

Since we could prove the theorem for any A in an isomorphism class, we can
select A defined over 4(j,) and we can then proceed as in Theorem 1 and the
first part of Theorem 2. We select K Galois over k containing k(j(a)), containing

the ray class ficld with conductor &V and such that k(Ay) < K. Actually, using
Theorem 2 shows that this last condition implies the one preceding it. There
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exists a prime p which splits completely in k, that is (p) = pp’, p # p’, such
that p is unramified in X, and for some B|p in K, the finite number of elliptic
curves under consideration have good reduction mod . We also take p prime
to N and to a. '

By the Kronecker congruence relation we have j(p~'a) = j(a)?, and the
first part of the proof of Theorem 2 shows that we have a commutative diagram
(3) which is almost the one we want, except that we have to relate p—ta and
s~ta.

Letc=(..,1,1,¢,1,1,...) be an idele with component | except at p,
and with component ¢, at p having order 1 at p, so that we have

(s, k) = (¢, k) = (p, k)
on the maximal abelian subfield of X over k, which we denote by (Kj4},,.
Then we have »
¢ = spb,
with some element f € k and some idele b = 1 (mod* N), i.e. b has unit coni-
ponent outside N and its components at primes dividing N satisfy the desired
congruence. Since s~'a = fa, we get a commutative diagram

(4
Cla —> A

Clp~la— AZ
¥
B id
C/s™'a - AZ
¥
with some analytic representation ,, and the lower left vertical map being
multiplication by .
As we saw in the proof of Theorem 2, we can choose the map A so that
A = m and hence on the points of order N, 2 has the same effect as . So we get
a commutative diagram '

@

(kfa)y —> Ay

B o

(kjs™'a)y — A5

'3}

and there remains but to prove that multiplication by # on the points of period
N on the left is the same as multiplication by s—1, i.e. that if u € (k/a)y, then
fu = s~'u. This has to be checked locally for each prime q of k (since we work
with an ideal a of o,, we can use g-components.) If q # p then ¢, = ! and
sq = Bgb,. Since b, = 1 (mod No,), we see that bu, = u,, and what we want
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is true at q. If ¢ = p, then p*n, and u, = 0. This proves Theorem 3, for (k/a)y
instead of k/a.
However, if we have found two analytic representations

Yy and Y, ClsTla — AL

which make the diagram commutative on (k/a),,, they must be equal because
m is freezing for A, This means that the solution of our problem at the m level
is the same solution as that on the N level, for any N divisible by m. This
concludes the proof of Theorem 3.

s

§3. GENERATION OF CLASS FIELDS BY SINGULAR VALUES OF
MODULAR FUNCTIONS

We shall give direct applications of Theorem 3. The results are classical,,
and the exposition follows Shimura [B12]. !

Theorem 4. For any lattice a in k the number j(a) lies in k,,, and for any
idele s we have )

j(s™4a) = (@)=,
Proof. Take first s = 1 and let ¢ be any automorphism of C which is the
identity on k. Then Theorem 3 shows that
Ja) = j(a),
whence j(a) lies in k,,. The formula of our theorem then expresses the fact that

if A =~ C/a, then 4% ~ C/s~'a, which is also contained in the statement of
Theorem 3.

Remark. For any proper o-lattice a and any isomorphism ¢ of Q(j(a)) over Q,
gj(a) = j(b) for some proper o-lattice b.

Proof. Let 4 ~ Cla. Then End(4) ~ o, and consequently End(4?) ~ o
also. If b is a lattice such that C/b & (4%, then it follows that o is the set of
complex numbers « such that ab < b. Hence b is also a proper o-lattice. We
also have

0ja = 0j(a) = ju« = j(b).
This proves our remark.

For the next result, we introduce a notation. Let b be a proper o-ideal
prime to the conductor of v. Let b, = by, be the extension of b to o,. We denote
by

(b, k)



—
2
(U3}

[10, §3] SINGULAR VALUES OF MODULAR FUNCTIONS

the Artin automorphism (b,, K/k) in the maximal abelian extension K of &
in which all primes dividing b are unramified. This is well defined because of the
consistency of the Artin automorphism when restricted to subfields. In par-
ticular, (b, k) is defined on the ray class field whose conductor is the conductor
of o.

Theorem 5. Let o be an order in k, and let {a;} (i =1,..., h,) be re-
presentatives for the distinct proper o-lattice classes. Then the numbers j(a;)
are all conjugate over k, and over Q. The Galois group of k(j(a)) for any
proper o-lattice o is isomorphic to the group of proper o-lattice classes, under
the map

b oy
such that : ‘
opj(a) = j(b~"a).
Furthermore o, is the restriction of (b, k) to k(j(v)), so that we have iie
Sormula ’

J(@)®F = j(6™ a).

Proof. We know from Theorem 4 of Chapter 8, §1 that any proper o-lattice
b is locally principal, say b, = s5,0,. Let s be the idele whose p-component is
s, Then b='a = s~'a, and Corollary 1 implies all our assertions, except the last
one. To prove it, let s be an idele such that s, = 1 for all primes dividing the
conductor of o, and such that
550, = by
for all other primes. Since b, = (bo,), at all primes dividing b (because such
primes do not divide the conductor), it follows that

so=D0 and 50, = bo,.

Our formula is now a special case of Theorem 4. The fact that the values of ;
on proper o-lattice classes are conjugate over Q was already mentioned in the
remark preceding our theorem.

Remark 1. Let L’ denote the complex conjugate of a lattice L in &, and w’ the
complex conjugate of a complex number w. From the original series for g,
and g, we see that for any lattice L in k we have

g2(L) = g2(L) and g3(L") = g3(L),
whence
ji&w) =jiy.
Since o = o' for any order o, we conclude that j(o) is real. We have seen that

all the conjugates of j(o) over Q are the same as the conjugates of j(o) over k.
Hence we also find that Q(j(0)) is the real subfield of k(j(0)).
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i

Remark 2. Let K = k(j(o)) where o is an order in k. Let p be the complex
conjugation automorphism of C. Then for any proper o-lattice a we have

j@' = j@).

Since aa’ = Ao for some complex number A, we conclude that

j@) =j@*).

We now conclude that the field K is Galois over Q, and we shall prove that for
any automorphism o € Gal(K/Q) we have the formula :

pop~t = ¢~}

To see this, we have for any proper o-ideal b, and any proper o-ideal a such
that ¢ = a,,

pap~tj(b) = paj(6™") = pj(a”'b™") = j(ab) = 0,-4j(b).
This proves what we wanted.

Since p is not the identity on k, it follows that the Galois group of 4(j(0))-
over Q is a group extension of Gal(k(j(o)/k) by a group of order 2, and that the
structure of the Galois group over Q is completely determined by the Galois
group over k and the formula giving the commutation rule between ¢ and the
complex conjugation.

Theorem6. Leto < o be two orders of k. Then
k(j(0)) = k(). .

Proof. We have to show that an automorphism ¢ of k,, leaving j(o) fixed
also leaves j(o") fixed. Write ¢ = (s, k) for some idele 5. Then so = ao for some
« € k. Changing s by ~! we may assume without loss of generality that ¢ = (s,k)
with so = o. But then for any prime number p, we have oo’ = o', 0,0, = 0, and
$,0, = 0,, whence so’ = o’. The commutative diagram of Theorem 3 shows
that (s, k) leaves j(o") fixed, as desired.

As in Shimura, we can now give a criterion in terms of ideles for the Galois
group leaving a point of order N fixed.

Theorem 7. Let A be an elliptic curve such that ¢: Cla — Ac is an analytic
representation for some lattice a in k. Let h be the Weber function associated
with A. Let s be an idele of k. Then (s, k) is the identity on k(j(a)), h(p(u))
for some point u € kja if and only if s € k* Vo, where V.. is the subgroup of
ideles b such that

ba =a and bu = u.

Proof. First consider the case where we deal only with k(j(a)). Let ¥, be
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the subgroup of ideles & such that ba = a. If s is an idele such that sa = q,
then s~'a = a and
j(a) = j(s7'a) = j(a), o = (s, k),
whence the image of k*V, in Gal(k,,/k) leaves k(j(a)) fixed. Conversely, if
(s, k) = o leaves j(a) = j, fixed, then
= j(a) = j(a) = j,

and 4° ~ A. Hence s~'a and a differ by multiplication with an element from
k, ie. s~'a = aa for some a € k. Hence s € k*V,, thus proving our assertion in
the present case.

By Theorem 2, if /1 is the Weber function, then #{(¢(x)) generates an abelian
extension of k. Suppose first that sa = a and su = u. Let 0 = (s, k). Then

) = Y(s~'u) = Y(u) = ep(u)
for some automorphism ¢ of A, because ¢ and y differ by an automorphism of
A. Since h* = h we conclude that
a(h(p(w))) = h(p()).
Conversely, suppose that oj, = j, and oh(eu)) = h(e(u)). From gj, = j, we
conclude that s—!a = aa with some « € k*. Replace s by as. This reduces our
assertion to the case when sa = a because (s, k) = (5o, k) = . Now
oo(u) = Y(s~'u) = ep(s~'u)

for some automorphism z of 4. Take A to get

o) = ohlp()) = h(s~u)).
It follows that s=!u and u differ by an automorphism of C/a, i.e. there exisis
a root of unity { such that s='u = {u, whence s{u = u. Hence s{ lies in V, , and
5 € k*V,,4, thereby proving our theorem.

Corollary. Let ¢ be an ideal of v,. The ray class field with conductor ¢ over
k is obtained as

k(j(a), h(p(c~'a/a)))
for any ideal a of o,
Proof. The proof is obvious using Theorem 3 and the remarks at the end
of Chapter 8, §2. Note that as a module over o, ¢~!a/a is principal, and hence

the above class field can be obtained by the image of one point in ¢~la/a,
together with j(a), adjoined to .
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§4. THE FROBENIUS ENDOMORPHISM

For an elliptic curve with complex multiplication, Deuring proved a sugges-
tion of Weil that the Frobenius endomorphism should be a Hecke character [13].
As Weil pointed out, this shows that the Hasse zeta function of the curve is a
Hecke L-series, an interpretation which we shall indicate afterwards.

The reader interested at this stage principally in the generation of class
fields by values of modular functions can omit this section and proceed directly
to the Shimura reciprocity law, as a direct continuation of the preceding sections.

Throughout this section, we let A be an elliptic curve defined over a number
field K, and we assume that A has complex multiplication. Let k be an imagin-
ary quadratic field in C, and let

8: k — End(4)q

be a normalized isomorphism of k with the algebra of endomorphisms of A.

We recall that normalized means that for any differential form w of the first
kind of 4, we have
w o 8(n) = pow, Hek.

Such a differential form can always be selected to be defined over K.

Remark. We have k = K if and only if every element of End(A) is defined over
K.

Proof. Let ¢ be an automorphism of the algebraic closure K, over X.
Then having chosen w to be defined over K, we have

w o 0’ = pw.

Therefore 0(u)® = O(w) if and only if u* = u. From this our remark follows at
once.

Recall that a Hecke character (or quasi character) is a continuous homo-
morphism
-~y Af - C*

from the ideles of K into the multiplicative group of complex numbers, which
is trivial on K*, i.e. such that y(K*) = 1. [We do not require that the character
has absolute value 1.] Such a character is said to be unramified at a prime p if
it is trivial on the local p-units (embedded at the p-component of the ideles,
having all other components equal to 1). If this is the case, we define y(p) = »(s),
where s is an idele having component 1 except at p, and having p-component
equal to an element of order 1 at p, thus

Z(p) = X(’ (Y} l’ Sp, 1’ ‘e -), OrdpSp =1,



(10, §4] THE FROBENIUS ENDOMORPHISM 137

We consider first the case when k < K. Let p be a prime of K where 4
has non-degenerate reduction 4 = A(p). Let o be the order in k such that
8(o) = End(4). Assume that p is prime to the conductor of 0. Let p, = p n o
and p, = p N k. Let f = f(p/p,) be the degree of the residue class field extension.
Then

Nip = pf.
The field K contains k(j,). By complex multiplication, and the elementary
formalism of the Frobenius automorphism, it follows that the Artin symbol of
p/ on k(j,) is the identity. Therefore p{ is principal, and there is an element
ue LLSUCh that
’ . Pk = HDy.
Deuring’s theorem asserts that we can select the generator y = u(p) in such a
way that the endomorphism 6(u) reduces to the Frobenius endomorphism of A4,
and that the values u(p) are the values of a Hecke character. For the proof of
Deuring’s theorem, we shall use the following idelized version as in Shimura,
who also gives a generalization to abelian varieties [B12], 7.8.

As usual, we denote by Ay, the set of torsion points of 4. We let K(p) be

the residue class field of X at p.

Theorem8. Assume thatk = K. Let s be an idele of K. Let

¢: Cla = Ac :
be an analytic parametrization of A. Then K(Aw,) is abelian over K, and there
is a unique element u(s) € k, making the following diagram commutative.

@
kla—> A,

u(s)N{f(s“‘)l l(S.K)
kla —> A,
"3
Proof. Let o be an automorphism of K(A4,;) over X, inducing (s, K) on the

maximal abelian subfield of K(Ai:). The restriction of ¢ to k,, is equal to
(NK(s), k). Let

t = NK(s).
According to the idelized formulation of complex multiplication, Theorem 3
of Chapter 10, §2, there is an analytic parametrization
» Y: Clt~la —» A¢
making the following diagram commutative, with 4° = 4.

@
kla —> A,

-1 g

k/t la 7 A,
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Again, since A= A, it follows that t~'a = aa for some « € k. The map ¥ is
determined up to an automorphism of 4. Changing ¥ by a unit in End(4)
corresponds to changing « by a root of unity in k, and we may thus get the
diagram with ¢ at the bottom, and u(s)NX(s~*) on the left with some u(s) in £,
which is uniquely determined since ¢ and ¢ are isomorphisms. Suppose that the
restriction of ¢ to the maximal abelian subfield of K(A4.) is the identity. Then
we could have taken s = 1 and u(s) = 1. Since ¢ is determined by its effect on
Ator, 1t follows that ¢ = id, and therefore K(A,,,) is abelian over K. This proves
Theorem 8.

We continue to assume that ¥ <= X. We note that the association

s u(s)
in Theorem 8 is obviously a homomorphism, and we define a function x,.

on A¥, by
Xa,k(8) = BEINEG™) o

where ¢, is the archimedean component of an idele ¢ € A§. As with x, we say

that g is unramified at p if g is trivial on the local p-units, and in this case, wei

define u(p) as we defined x(p). |
Theorem9. Assume k = K. The function y = y, x is continuous and trivial
on K*. In other words, it is a Hecke character of the idele classes of K. If p
is a prime of K where A has non-degenerate reduction, then y and u are un-
ramified at p, and x(p) = u(p). If we denote reduction mod p by a bar, then

6(u(p))

is the Frobenius endomorphism of A, over the residue class field K(p).

Proof. 1t is clear that x is a homomorphism. If s e K*, then (s, K) = 1,
and we can take u(s) = NX(s), so that y(s) = 1. Hence y is trivial on K*. If
s, = 1 for all (non-archimedean) primes p, then we can take u(s) = 1, and

x(8) = NEG™ D

so that y is continuous on the archimedean part of the ideles. On the other hand,
suppose that s, is very close to 1 at all p dividing a in Theorem 8. Then N¥(s~1)
is also close to 1, and :
NiGs™Ya = a.
Since we must also have
HENEG™Da = a,

it follows that u(s) is a root of unity in k. If in addition we select s such that
(s, k) is the identity on the points of 4 of order N for large N, and such that s,
whence NX(s~!), is close to 1 at primes dividing N, then multiplication by
N&(s7*) on (k/a)y is the identity. Consequently u(s) must also be equal to 1.
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This proves that the kernel of x contains an open subgroup of the finite part
of the ideles of K, and therefore that y is continuous, whence a Hecke character.

Let p be a prime of K at which 4 has non-degenerate reduction. By Theorem 1
of Chapter 9, §3 we know that p is unramified in K(A4or). Let s be an idele all
of whose components are equal to 1, except for the p-component, where
ord,s, = 1. Note that N¥(s7*),, = 1, and hence x(s) = u(s). Then 6(u(s)) is an
endomorphism of 4, and we shall prove that its reduction mod p is the Frobenius
endomorphism of 4, which we denote by

m, =m: 4> A

Let ¢ be a prime number not divisible by p. Since the £-component of s is 1, we
conclude that multiplication by p(s)NX(s~*) on the group of /-primary elements
k,/a, is the same as multiplication by u(s). Since @ is normalized, it follows that
the following diagram is commutative.

[
C—— A,
u(s) l l (u(s))
C _— AC

@
Let A® be the group of /-primary points on 4, i.e. the image of k,/a, under ¢.
Then the commutative diagram of Theorem 8 shows that for any point P € 4
and ¢ = (s, K) we have

8u(s) P = P° = x(P).
Therefore ‘B(u(s)) = m, because these two endomorphisms have the same
value on 4.

If u, is a unit in k, and s; = u,s,,-then from the above, we conclude that
O(u(s")) and 6(u(s)) have the same reduction, namely =, and therefore that
6(u(u,)) = id. Since reduction mod p is injective on End(4), it follows that
u(u,) = 1, and hence that y, is unramified at p. This proves our theorem.

Remark. Deuring also proved that when 4 does not have good reduction at p,
then the character ramifies. Today, one can use a result of Serre-Tate [27] to
deduce this property at once from the /-adic representations discussed later in
Chapter 13. Indeed, the Serre-Tate result asserts that if £ is a prime number not
divisible by p, and if p is unramified in the extension K(4'“?) generated over X
by the points of /-power order on A4, then 4 has a model over X with non-
degenerate reduction at p. Let (k/a)¥ be the group of £-power torsion points
in kfa. By definitions, and the lemma applied to an idele s, having components
equal to 1 except at p, we have a commutative diagram
(kja))—— 4®

Bisp) (550K},

(k/a)(’) > A(l)
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We see that the right-hand side depends only on the order of s, at p if and only
if u(s,) depends only on the order of s, at p, i.e. if and only if the Hecke character
is unramified at p. The Serre-Tate criterion shows that this occurs if and only if
A has non-degenerate reduction at p.

Next we consider the case when k is not contained in the field of definition
of A, again as in Deuring [13], (iv).

Theorem 10. Let A be defined over a number field K, not containing k.
Let K = Kok. Let py be a prime of K, where A has non-degenerate reduction.
Then pg is unramified in K. Let
p:éi=¢

be the automorphism of K over K, and let p, p’ be the primes of K above p,.
Let u(p) = y4,x(p), and similarly for p’. Then

up) = pup).
Let ny = my, be the Frobenius endomorphism of the reduction A(p,) over
K(po). Let 4o = Npo.

Case 1. p, remains prime in K, so p = p’. Then mn, is not rational. We
have

nd =m, and  my = + —q,.

Case 2. p, splits completely in K, so p # p’. Then my = n,. Furthermore,
mo = 8(u(p)) and  7mH = 0(u(p")).
Proof. By the remark at the beginning of this section, we know that there
exists an endomorphism « of 4 defined over K but not over K,, so that «® # a.

Suppose that p, ramifies in K. The effect of p on the residue class field is trivial,
and consequently reducing mod p yields

px = &,
contradicting the injectivity of the reduction map on End(A). This proves that

po is unramified in K.
We shall prove that

up) = pu(p).

Let ¢ be a prime number relatively prime to p,. Let A“)-be the torsion points of
A whose order is a power of ¢. Similarly for (k/a)¢). Both p and p’ are unramified
in K(4¥). From the definitions and the lemma, we have a commutative diagram

@
(kfa) O —> A®
uip) (»,K)
(k[a)?—> A4©

@

and a similar one for p’. This means that 0(u(p)) = (p, K) on K(4¥). Since
p’ = pp, we get similarly that

O(u(d") = (pp, K) = p(p, K)p~*
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on K(A®). Abbreviate 6(u(p)) by 4. Extend p to K(4¥). From the formula
(Ax)y = 2#(x),
we conclude that 2 = p(p, K)p~! on K(4¥)). This proves that
O(u(p") = 6(ulp))’,

because these two endomorphisms have the same effect on A, It follows that
u(p") = u(p)’, from the definition of a normalized map 6, i.e.

o o 0(y) = uow.

Consider the case that p = p’. Then u(p) is an element of k fixed under
conjugation, whence is rational. It follows that m, is a rational (and therefore
integral) multiple of the identity on A, and hence 7, = +g,6. This yields
n§ = +go. We contend that 7y cannot be a trivial endomorphism. Otherwise,
it commutes with all endomorphisms of 4. But if « is an endomorphism of 4
such that a® # a, then @ # & and & is not defined over K(p,). Consequently
# does not commute with 7o, whence 7, is non-trivial. On the other hand,
Ty = go, and since the map & — &' is the automorphism of Q(x,), it follows

that ny # i\/c;;. Hence
To = ++/ —9o,

thereby proving the assertions in case 1.
Now suppose that p, splits completely in K. Then the residue class field
extension has degree 1, and therefore m, = n,. Hence n, is the reduction of

6(u(p)) mod p, by Theorem 9. Furthermore
O(u())b(u(p))” = v(B(u(p)))0.
Taking the bar (reduction mod p), and taking into account that
V(G(#(P))) = v(70) = 9o,
it follows that A(u(p))’ reduces mod p to nj. This proves our theorem.

Remark. As with Theorem 9, we can apply the Serre-Tate result to prove
Deuring’s criterion:

If po is unramified in K, and A has non-degenerate reduction at one prime
p of K extending po, then in fact A has non-degenerate reduction at p,,.

Deuring had a rather hard time proving this in [13], (iv), and even comments
that this is the ‘““wesentliche Schwierigkeit” of his paper, as distinct from the
rather formal arguments reproduced above for Theorem 10.

Theorems 9 and 10 were proved by Deuring to describe the zeta function
of the elliptic curve as a Hecke L-function. We carry out the formalism.

Let F be a finite field with g elements and let 4 be an elliptic curve defined
over F. Let N be the number of rational points of 4 in F. Let

nnA—- A
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be the Frobenius endomorphism n = n,. Then
N=vy(n —98)=(n— 8 — 9
=g + 1 - Tr(n),
where Tr(n) = n + n’ is the trace. Let 8: Q(n) —» C be an embedding into the

complex numbers such -that 8(u) = n. Then following Hasse, we define the
zeta function '

(1= pX)(1 ~u@'X)

1 -=X){1 - gX)

Note that u, y’ occur symmetrically, so that the numerator of the zeta function
is often written

Z(4,F, X) =

H(A,F, X)= (1 — zX)1 — n'X).
Taking the logarithmic derivative, one sees by a trivial computation that

d _ [ o]
——logZ(A,F, X) = -1
5 o8 (4,F, X) dglNdX

where N, is the number of points of 4 in F, (extension of F of degree 4). Putting
X = g%, it is then easily seen that the zeta function is equal to the usual ex-
pression

1

Z(A,F,q™%) = ]_[(1 - N—ps)_l =Y Na~"

where the Euler product is taken over all primes p of A4, rational over F, and the
sum is taken over all positive divisors (cycles) a on A, rational over F. As
already mentioned in Chapter 2, Hasse had determined the roots of the zeta
function in this case as the eigenvalues of the Frobenius mapping. [This was
generalized by Weil to arbitrary curves and abelian varieties, as is well known.]

Let again A be an elliptic curve defined over the number field X or X, as
in the previous considerations. We define its zeta function, again following
Hasse, by the product

UA, K, 5) = [T Z(A(p), R(p), Np™%),

taken over all p where 4 has non-degenerate reduction. Then according to the
above definitions, Theorem 9 implies that

‘ (A K, 5) = L(5)aals — DILG, 24 LG, 70017

while Theorem 10 implies that

{ (A, Kovs) = L&)lk(s — DL(s, 140"
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The function {x is the Dedekind zeta function associated with the number field
K, and L(s, y) is the Hecke L-function
[1a = xp)Np™)™!
P
associated with a Hecke character of the idele classes of X.
Sometimes one wants to deal with a Hecke character of absolute value 1.
Then one can define

Yax(P) = XA,K(P)NP_*,
and then L(s, y) is replaced by L(s — %, ¥).

APPENDIX. A RELATION OF KRONECKER

The contents of this appendix will not be used anywhere else in the book and
may be omitted. They are due to Kronecker. Cf. Weber, §115, 116. '

We shall prove another property of the modular polynomial ®,(X, X),
for an arbitrary positive integer m. Let z € $ be imaginary quadratic. We are
interested in the multiplicity of j(z) as a root of ®,,(X, X). This multiplicity may
of course be 0. Write z = z,/z, where z,, z, lie in an imaginary quadratic field
k, let a = [z, z,] and let o be the order belonging to a (or equivalently to
L, = [z, 1]). An element p € o is called primitive if it does not lie in no for any
positive integer n # 1. If i € o, then

z;\ _fa b\(z;\ [z,
#(22) Bl (C d)(ZZ) Bl a(ZZ)
with an integral matrix « = «, and we see that yu is primitive if and only if

(a, b, ¢, d) = 1. Two elements of o will be said to be o-equivalent if their quotient
is a unit in o.

Theorem 11. Let z€ $ be imaginary quadratic and let o be the order of
L, = [z, 1). Then the multiplicity of z as a root of ®,(X, X) is equal to the
number of primitive v-equivalence classes of elements p € o such that Nu = m.

Proof. Let {a;} (i = 1,...,¥(m)) be representatives for the left cosets of
Ay, with respect to I 1t is clear that j(z) is a root of ®,,(X, X) if and only if

J(2) = j(a:z)
for some a;, and this is the case if and only if there exists y € I" such thatyo,z = z.
Without loss of generality, we may assume that if «;z and z lie in the same orbit

of SL,(Z), then they are equal (multiply a representative «; by a suitable element
of SLy(Z)).
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Using the notation before the theorem, we see that the association
HE oy
induces a bijection of the primitive o-equivalence classes of elements u € o such
that Nu = m, and those representatives ; such that o;z = z. We are therefore
reduced to proving that the number r of such representatives is precisely the
multiplicity of j(z) in®,,( X, X),i.e. that®, (X, X) is exactly divisible by (X — j(2))".
It will suffice to prove that '
i @uli2), ()
m-——— s
=z (.](T) - j(Z))
and therefore it will suffice to prove the following lemma.
Lemma. Let a € A} be such that az = z. Then
im J——,(I) — j‘(ou:) # 0, 0
11— .](1:) - j(Z)
Proof. We use the Taylor expansions:

w :(n)
@) @) = ¥ L oy

=, n!

and

i j(")(t)(at 3 T)"

) = j6) = %

J™z) + jo* @t —2) + -
n!

(ar — 7).

n=1 ’
Since at — t == 0 has two distinct solutions (namely z and its complex con-
jugate) it follows at once that the above two expressions have the same order
of zero at t = z, whence the lemma is proved.

Let G, be the group of proper o-ideal classes for an order o in an imaginary
quadratic field k. Let :

HX) = [] X - j@).

GeG,

We know that all the numbers j(®@) (@ € G,) are conjugate over Q. Hence
H,(X) has integral coefficients, and is irreducible over Q. Let r(m, o) be the
number of primitive o-equivalence classes of elements g € o such that Ny = m.
Then Theorem 8 shows that for a suitable constant c,,, we have

(DM(X, X) =c, l—[ HD(X)"(M’B)-

Counting up the degrees will yield the relation we are looking for. We make
some more remarks concerning the degree of ®, (X, X) since the discussion in
Chapter 5, §2 was kept brief for the limited purposes we had in mind then.
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We have
. * w("') » .
(Dm(./:./) = 1_1 (J —JO ai)'

Suppose that « is in triangular form,

_fa b
“=\o 4/’

 withad =m, a,d>0,and 0 £ b < d — 1. Also, « is primitive. The lowest
term of the g-expansion of j — j o « is then:
i) _e-21rib/d q—a/d if a> d,
ii) ¢g* if a<d,
i) (1 — e?®/d)g-1 if a=4d.
This third possibility occurs if and only if m is a square and had been disregarded
before, but we must take it into account now. Note that in this last case, the
coefficient of g~ is # 0 since « is primitive, so that b # 0. The lowest term of the

g-expansion of ®@,(j,j) is therefore Cq~V, where C is some non-zero constant,
and

N = 2, Ja <o(e)+2, 14 ¢(e)+¢(Jm),

a>d

As usual, we use the notation e = (g, m/a), and by convention, (p(\/r_ri) =0
if m is not a square, otherwise has the usual value of the Euler function. This
yields:

Theorem 12. The degree of ®,(X, X) is equal to

=2y - (P(e) + o(\/m),
A
and we have the Kronecker relation

¥ r(m, p)h, = deg @,(X, X),

taking the sum over all orders o, where h, is the number of elements in G..

From the elementary discussion about orders, we know that an order o
is of the form
D —
0D = [ +2\/D, 1] N

where D is the discriminant of o, and D = 0 or 1 (mod 4). We shall also write
r(m,0) = r(m, D) if D = D(v). We ask what is the largest possible value of
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|D| (for given m) such that r(m, D) > 0. The answer is given by the following
theorem.
Theorem 13. Let m > 1. The largest values of |D| with r(m, D) > 0 are
those for which D is equal to —4m and —4m + 1. The corresponding values
of r(m, D) are

D
r(m, —4m) = 1, and a representative primitive solution of Nu = m iST;

r(m, —4m + 1) = 2, and representative primitive solutions of Ny = m are
1+JD ,1-+D
5 and >

given by

Proof. Write a primitive solution of Ny = m in the form
x4+ }’\/B
==
Then 4m = x* — Dy? If y = 0, then x = +2, because y is primitive, Hence

m = 1, which is impossible. Hence |y| > 0. Therefore |

withx, ye Z,'

|D| < 4m. i
Since D = 0 or 1 (mod 4), the highest possible values for |D| correspond to'
D= —4m and D = —4m + 1. We-now determine the multiplicities in these
two cases.

Casel. D = —dm. From the relation 4m = x> + 4my”® we conclude that

x = 0and y = +1. Therefore u = -\/Z—D, ie.

D D+D
k=73 2

D+ D
2 -
we have found one solution, and its multiplicity is 1.

This is an element of o, and is primitive since has coefficient 1. Thus

Case 2. D = —d4m + 1. Then 4m = x* + 4my* — »2. Since p is primi-
tive, y # £2,and also y # 0,s0 y = +1. Hence x = +1. Then

_iliﬁ_i1¢D+D+ﬁ
B 2 T2 T2

U

lies in o and is primitive, because D = 1 (mod 4), D is odd, and

+1F¥D

Z
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is an integer, while the other term has coefficient 1. This shows that
rim, —dm + 1) = 2,
with the two inequivalent primitive solutions ‘
1 +2JD and L —2\/1)
for Nu = m.






11 Shimura’s Reciprocity Law

§1. RELATION BETWEEN GENERIC AND SPECIAL EXTENSIONS

Let F be the modular function field, studied in Chapter 6. We saw that #
can be identified with the field of x-coordinates (or A-coordinates, 7 = Weber
function) of division points of an elliptic curve A defined over Q(j), having
invariant j. Let k be an imaginary quadratic field, and let ze & n . Then the
fundamental theorem of complex multiplication tells us that the field F(z)
consisting of all values f(z), f€ F, is k. Let o be the local ring in k(j) of the
place fi— f(z), with fe k(j). Let S be the integral closure of o in F. Then every
function f'e S is defined at z, and we let M be the kernel of the homomorphism
f—f(2), fe S. We are now in a situation similar to that of the decomposition
group, except that automorphisms of F do not necessarily leave Q(j) fixed.
We want to determine in some fashion the decomposition group of this situation,
which we shall see is isomorphic to Gal(k,/k), i.e. to the Galois group of the
residue class field, so that our situation is essentially unramified, except in the-
two cases when z is equivalent to i or p under the modular group.

If £ € k*, then there is a rational matrix ¢(¢) € GLF (Q) such that

z\ _ [éz\ _ z
{i)= (&)= (i)
So we have an embedding
4. = q: k* > GL7(Q)

satisfying the above property. We note that z is a fixed point of g(k*). By con-
tinuity, we can extend ¢ to an embedding

q:p = 4,° kj = GLy(Q,),
whence to an embedding of the ideles, again denoted by g = ¢. (depending on z),
q: Af — GL,(A),
149
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although we shall use the homomorphism

which drops the complex component, and otherwise is the same as above on the
p-components. The image of A¥ lies in the adelized GL, because for all p,

Qp@k:kp=sz®Qw
and for almost all p,
Oup = Lz ® Z,
Theorem 1. (Shimura) Let s be an idele of k, and let (s=1, k) be the Artin
symbol on k,,. Let ze k and z € . Let o = d(q,(s)) be the automorphism of
F of Chapter 7, §3. Then for every function f € F defined at z, we have
f@ETH = fU2).
Proof. We shall first prove that the above relation holds for the Fricke
functions f, as in Chapter 7, and for J itself. After that, we shall give a formal

decomposition group argument to show that the same relation holds for all 1.
Write

gq(s) = ua
where
« e GL;(Q) and ue ]_[ GLy(Z,)) = U,
P

as in Theorem 1 of Chapter 7, §1. Let a e Q?, a ¢ Z2. We recall the notation

z
a<1> = a;z + a,.

() ) )
- au(;)
= au#(a(;))

with some p € k (actually y = cz + d).
As usual, we write L, = [z, 1]. What is sL,? We contend that

SLZ = ﬂLa(z).
It suffices to verify this locally at each p. We have

z a(z)
s,Z,L, = Z;‘:sp<1> = Z;‘:upp< 1 )

-z,

Locally, we have

This proves our contention.



[11,§1] RELATION BETWEEN GENERIC AND SPECIAL EXTENSIONS 151

We now have the usual diagram of complex multiplication,

dot
Q?/Z2? — QL./L, —> A®

s (s~ 1,k)
u QL,/L, —> A"
" id

Q2P QL Loy —> A

Note that
J@¢TR = j((2)),
so that we can select
Au(z) = (Az)a'.

We contend that multiplication by u on the far left makes the diagram
commutative. This is trivially verified using our previous computation.

Therefore, if ¢,: C/L, = A% is our usual parametrization of 4%, we obtain,
for some automorphism &,

GDz(a)(s_l’k) =£0 %(z)(au),

if g(s) = ua. Taking the Weber function, rewriting this in terms of the notation
f. where £, is the Fricke function, and recalling that g(s) = ux, we have

J@ = f3(2) = falx(2)) {
J@ET = j((2)) = j(2)-

Thus we have proved our theorem for the special functions f;, j. Observe that
we can take the Weber functions of any one of the three types, and these rela-
tions still hold. ‘

Next we prove that the relation of the theorem holds true for all elements
of F. Let S be the integral closure of the ring R = k[j]in F. Sincej o o is integral
over k[j], it follows that ¢ maps S on a ring which is integral over k[j o a],
whence ¢ induces an automorphism of S. We let m be the maximal ideal in
k{j], and "M the maximal ideal in S, which are the kernels of the homomorphism

fef=1@.

If p is an automorphism of S which maps M onto M, i.e. p lies in the iso-
tropy group of 9%, then p induces an automorphism of the residue class field,
denoted by

p:S- 8.
We identify S as the set of all elements f, fe S.
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We shall prove that there exists an element p € Aut(F) such that:
i) p maps M onto M.
i) p = o on k(j).
i) g = (s, k).
Let o, be the automorphism of F such that o,f = fo «. Then o, induces an
automorphism of S (same argument as for ¢). The formula

Jjlaz) = j(z)¢7P ,
shows that o,m = M, because g, leaves the constants fixed. Consequently

m < o7 YM. By the ordinary Galois theory as in Chapter 8, §3 there exists an
element 1 € Gal(F/k(j)) such that 19 = o7 1M, whence we obtain
o M = M,
and 0,7 = o on k(j). This already achieves the first two of our desired conditions.
Let G = Gal(F/k(j)). The residue class field R/m = R is precisely k£(j(2)). By
the surjectivity of Proposition 4, Chapter 8, §3 we know that there exists an
automorphism 2 € Gx such that 1 has any prescribed effect on the residue class
field, in our case such that
Loz = (571, k).
We let p = Jo,z. Then p satisfies all three of our requirements.
The automorphism p~!o¢ satisfies the condition

(p~1af)(2) = f.(2)
foralla # 0, a e Q%/Z?, and leaves Q(j) fixed. By Theorems 2’ and 3’ of Chapter
9, §3 we conclude that p—*o lies in the inertia group. Since the relations we want,
ie.
o7 = o

are true for p and all fe S, they are also true for o, and this proves our theorem.

In his proof of the reciprocity law, as given in [B12], Shimura gave the
arguments showing that the relation holds for j and the functions f,. To extend
this to all elements of F, he then went through a fairly elaborate discussion,
even using the parametrizations of the models of the function fields Fy over Q
from the upper half-plane. The difficulty concerning such a step had arisen
before, in every treatment of complex multiplication. We have avoided the
difficulty by a more direct usage of the formalism of decomposition groups,
which follows the usual formalism of Galois extensions.

It is worthwhile also to describe the inertia group in the full group of auto-
morphisms.

Theorem 2. Let z€ $ be imaginary quadratic, and let k = Q(z). Let M
be the kernel of the place f+ f(z) = f in the modular function field F. Let
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G be the group of automorphisms of F over k, and let Gg be the isotropy
group of M. Then the map

oG, » o€ Gy,
is @ homomorphism of G onto Gal(ky/k), whose kernel consists of those
elements o,, with o € GL} (Q) satisfying az = z.

Proof. By Theorem 6 of Chapter 7, §3 (the Shimura exact sequence), we
can write an element ¢ € Gy in the form
o = o(ua),
with we ] GLZ(ZP) and a € GL3(Q). Then oj = jo . Suppose that & = id.
Then
Jaz) = j(2),
whence az = yz for some y € SL,(Z). For any Fricke function f,, we have
f2(2) = fi(2), whence
Jalaz) = fo(2).
But £, (2z) = f,.(yz) = fuy(z). By Theorem 1, 2’, 3’ of Chapter 9, §3, we con-
clude that uy = y, for somey; € SL,(Z) such thaty,z = z. Hence ¢ = o(y,y ),
and y,y—ta leaves z fixed. Conversely, if f e GL} (Q) and fz = z, it is clear that
o(p) lies in the kernel of ¢ &. The surjectivity of our homomorphlsm on
Gal(k,,/k) comes from Theorem 1, thereby proving our theorem.

Corollary. Let Af be the group of ideles of k. Then Gg, is the image of A¥
under the embedding q..

Proof. Theorem | shows that the image of g, is contained in Gg. Further-
more, if ¢ € Gg, then
¢ = a(g.(s))
for some idele s, whence ¢ and o(g,(s)) differ by an element of the kernel in
Theorem 2, which we know is of type o,. If

o b
“\c¢ d)’
we let u = cz + d, and identify y with the idele having y on each component.
Then a(g,(1t)) = «, and our assertion follows.

§2. APPLICATION TO QUOTIENTS OF MODULAR FORMS

We shall proceed as in Shimura [B12]. If ' is an automorphic function of
a certain weight 2z as defined in Chapter 3, §2 we shall write fhomogeneously, i.e.

16 =1(3).
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so that as a function of two variables, fis homogeneous of degree —2¢, i.e.

(W)-) e

Aside from the meromorphic conditions, the functional equation of an auto-
morphic function with respect to I' = SL,(Z) then reads in homogeneous

notation
f<)’<{>) = f<;>, allyer.

Theorem 3. Let f, g be automorphic functions of the same weight, and let
ae MF(Z), deta = N. Let

h(z) = M :

Then h is a modular function of level N. Furthermore:

1} his fixed under the group a=*Ta n T
iiy Letting U = [] GLy(Z,) as before, h is fixed under
oo n U.

Proof. Letyely, i.e.yel and y = I + NP for some integral matrix f.
Then
ayae~! = I + Nafa-?
is integral and has determinant 1. Hence

) o)
h(z) = = = h(y1),
T T
() o)
which proves that / is modular of level N. Substituting an element a~!ya which
also lies in I" into / leaves 4 invariant, as one sees at once.
The proof of the other assertion is slightly longer. We first make a reduction
by diagonalizing a. There exist y, & € SL,(Z) such that
rm 0
a=ws, p=(7 7)

r

with r € Q and m equal to a positive integer. Then

o020 ()
o) o})

= hy 0.




[11,§2] APPLICATION TO QUOTIENTS OF MODULAR FORMS 155

It suffices to prove that Ay is fixed under 6(a~* Ua n U)d-1, i.e. under f~1UB n U,
because da—! = f-'y~!, and.y~1Uy = U. Thus it suffices to prove our assertion
for

5D _ f ()
0@~ 4@’

which we have to show is invariant under 8~ UB n U, where
m 0
7= (5 %)
Let u € U and suppose f~'up also lies in U. Write u, as a matrix

b
u, = (‘C’P dp) € GLy(Z,).

P p

prup = (o).

mc, P

h(r) =

Then
This lies in U, if and only if b, = mb, for some p-adic unit b;. Consequently,

we have proved:
we (™ 0
“\0 1)’

Lemma. If
then a=*Ux v U consists of all elements v € U such that
a, b
—_ p .
v, = (mgp a'p> s ay, by, c,,d,eZ,;
and a~'Ta 0 T = Ty(m), i.e. consists of all matrices

( a f}) e SL,(@),

mcec

Reading mod m, our proof of Theorem 3 reduces to the following special
case.

Theorem 4. Letf, g be automorphic functions of the same weight with respect
to I' = SL,(Z), and with rational Fourier coefficients. Let m be a positive
integer. Then the function

f(mr)

g9(r)
has level m, and is fixed under the group of all automorphisms of F represented
by the matrices

1) <g Z) € GL,(Z/mZ).

h(z) =
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Proof. Since h has rational Fourier coefficients, it is fixed under the auto-
morphisms of F represented by matrices of the form

((1) 2) . de@ZjmD)*,

Multiplying a matrix of type (1) by such a diagonal matrix, we are reduced to
the case when the element of (1) lies in SL,(Z/mZ). Such an element has a
representative in SL,(Z) lying precisely in the group

a'Ta N = [y(m)
as described in Lemma 1. This concludes the proof, in view of the first assertion
in Theorem 3.

Corollary 1. Thefunctionf(mr)/g(r) lies in Q(j, j o m).

Proof. The fixed field of the group of automorphisms of F,, in Theorem 4
is equal to Q(j, j o m), according to Theorem 5 of Chapter 6, §4, so our corollary
1s clear.

Corollary 2. Let A be the usual discriminant function, and let

A(mr)
A

Ou(T) =

Then Q(j,j o m) = Q(j, @m)-

Proof. Takef = g = (2n)~'?Ain the theorem. Then we see that the function
@ lies in Q(J, j o m), referring back to Theorem 5 of Chapter 6, §4. Looking
at the conjugates of this function under the modular group, and the coefficients
of the g-expansion at infinity, one sees that all y(m) conjugates are distinct,
and hence that we have an equality of fields as stated.

The arithmetic result corresponding to the function theoretic result of
Corollary 2 will be proved in Chapter 21, §1, Theorem 3.

The next theorem is Excercise 6.37 of Shimura’s book [B12]. In his book
Shimura proves the result only for ideals of the ring of all algebraic integers.
It is needed explicitly in general for certain applications.

Theorem 5. (Shimura). Let f, g be automorphic functions of the same

weight with respect to I, and with rational Fourier coefficients. Let « € M} (Z),

deta = N. Let

h(t) = >~

Let k be an imaginary quadratic field. Let s be an idele of k such that s, = 1 ‘
forall pIN. Let L = [z,, z,] be a lattice in k with z = z,[z, € §. There exists
n € GL3 (Q) such that:
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i) n(i‘) is a basis for s—'L.
2
ii) ana~' € GLy(Z,) for all p|N.
Assume that f o o and g. are defined at z. For any y satisfying (i) and (ii),
we have
()% = h(yz).
Proof. We first prove the existence of n satisfying the desired conditions.
It is trivial to find some 7 satisfying (i). We need only prove that there exists
y € I such that replacing 5 by yn satisfies (ii), i.e.
ayna~' € GL,(Z,)
for all p|N. To do this, note that multiplication on the right by the element
u, € GLy(Z,) yields an automorphism of ZZ, and hence we have an isomorphism
2%2% ~ || Z2/Z2au,.
There exists a sublattice M of Z? such that M, = ZZ2au, for all p, and then
23|77« ~ Z2 M.
By elementary divisor theory, there exists y € I" such that Z2ay = M, or in other
words
Zlay = Z2au,
for all p. Hence
;l
for all p. In particular, for p|N, we know that u,; ! = 5, whence the existence of
the desired y follows.
To give the effect of (s, k), we have to unwind the meaning of g(s~!) to
apply Theorem |. We have

-1/ Z - z - b4
z3s; 1(;;) _5; 1L,,(z;> =i, = Zﬁ”(é)'

a5, 1) = u,n,
with some u, € GL,(Z,) = U,. Hence u, = n~! for p|N, and g(s~') = un. By
Theorem 1, we find

ayu, 'a" ' eU,

Hence

h(z)®® = h%(z) = h*™(yz),
and it suffices to prove that /) = h. By Theorem 3(ii), we need only show that
uea'Uxn U, ie. aux~' € U. We check this at each prime. If p|N, then this

amounts to the second hypothesis on 7. If p,]’N, then « itself lies in U, so this
is clear. This completes the proof of Theorem 5.

Let o be an order in k. If b is a proper o-ideal prime to the conductor of o,
we recall the notation of Chapter 10, §3, where (b, k) = (b, &), b, = bo,, and
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(by, k) is the Artin automorphism on any abelian extension of k in which all the
prime factors of b, are unramified (in particular £(j(0))).

Theorem 6. Let f, g be automorphic functions of the same weight with
respect to T', and with rational Fourier coefficients. Assume that they are
holomorphic on 9, and g does not vanish on 9. Let o be an order of k, and let
a, b be proper v-ideals, with b prime to the conductor of v. For any proper
o-ideal ¢, define
ac
hn(c) = f(_) .
g9(c)
Then h,(o) lies in k(j(0)), and
hy(0)® = hy(b™).

Progf. Leto = [z, 1] and let « be an integral matrix such that

()

is a basis of a. Let det « = N. Assume first that b is also prime to N. Let s be
an idele such that 5, = 1 for all p|N, and such that 5,0, = b, for all p. Let / be

as in Theorem 5. We find:
Ao 2
he) = o) = 1O 0)

)
o(o(3)

> is a basis for b~'a, and we check this for

and
h(nz) =

z
1
each prime p. If p|N, then b, = o, and

Zf,om(i) = Zf,ou]a_la(ﬂ =a,=b;la,

using the definition of «. On the other hand, ifp*N, thena, = o,and Z2a = Z2,

so that
z z _ -
Zf,om<1> = Z‘Z,r]<1> =b,' =b,"a,

This gives us the desired basis for b-'a.

We shall now prove that 1;7(
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By Theorem 5 we conclude that
_is _ Sf@™h
ha(o)(s’k) = ha(b 1) = - .
g(®™"h

Let K = k(j(0), 71,,(0)). Let S be a finite set of primes containing all primes
dividing N, all primes dividing the conductor of o, and all primes which may
ramify in K. Assume that b is also prime to S. We apply the above relation to
b, and select s such that s, = 1 for all p e S. Then
flab™")
g™~
Suppose that (s, k) leaves j(o) fixed. The Kronecker congruence relation tells
us that

B = h(e)™ =

J@©P = jlo)® = j(~).
Consequently b = 2o is principal, and the above formula shows that A(o) is
also kept fixed by (s, k). It follows that /i,(o) lies in k(j(0)).

If we start with a proper o-ideal b which is prime to the conductor of o
(and hence contains only prime factors in & which are unramified in k(j(0)),
then there exists A € k such that 1b is an o-ideal prime to S, by Theorem 5 of
Chapter 8, §1. On k(j(o)) the two symbols (b, k) and (b, k) have the same
effect. This reduces our theorem to the case already treated, and concludes
the proof.

Covrollary. The values A(ao)/A(o) lie in k(j(0)), and we have
(A_(Pi))(b,k) _ Afab™Y)

A(o) T AT
Proof. Take f= g = (2n)~*2A in Theorem 6.







12 The Function A(at)/A(t)

§1. BEHAVIOR UNDER THE ARTIN AUTOMORPHISM

In this section we give an example for the Shimura theorem concerning
the quotient of automorphic functions. Throughout this section we let k& be an
imaginary quadratic field and we let

o, = [z, 1], ze$H.

0

We consider the special case when « = (m ), so that a(z) = mz, and

0 1
0 = [mz, 1]

is the order with conductor m. If b is a proper o-ideal prime to m, we recall the
notation of Chapter 10, §3, where (b, k&) = (b, k), b, = bo,, and (b, k) is the
Artin automorphism,.

Theorem 1. The value A(v)/A(v,) lie in k(j(0)), and for any proper v-ideal
b prime to the conductor m of v, we have

( Ala) )“’-k) _ AGa)

Aay) (6 'a,)

Jfor any proper o-ideal a prime to m.

Proof. We shall first prove the special formula

( A(o))“"") _AGTY
A(o,) A1)’
1t will be a special case of Theorem 5, taking /= g = (2n)~!2A. Note that the

power of 2z cancels in the quotient, so .that the condition on rational Fourier
coefficients is satisfied. We let  be as in the theorem, such that

(i)

161
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is a basis of by !, and anx~' € GL,(Z,) for all p|m. Theorem 5 of Chapter 11
gives us

(A(o) )@-k) _ A((l)) _AG™Y

Aoy A(Z) TARY’
1

which is what we want, provided we check that

()

is a basis of b~1. We do this at each prime p. If p,{'m, then « is locally invertible
at p, and the matter is clear. If p|m, we write

€)) an(i) = ana‘la(i) .

By hypothesis, anx~! is p-integral and its determinant is a p-unit. Hence locally
at p, the local lattice whose basis is given by (1) is precisely o,, which is also
b, ! since b is assumed prime to m. _

From the special formula, we get the general one of the theorem, simply
by applying the special case to (ba=!, k) instead of (b, k), and using the special
result twice.

Finally, to see that the desired values lie in the ring class field k(j(0)), let
o be any automorphism of the ray class field k,, over k& which leaves j(o) fixed.
Select an o,-ideal b, prime to m such that ¢ = (b, k,/k). Since the restriction
of o to the ring class field k(j(mz)) is the identity, it follows from Theorem 5 of
Chapter 10, §3 that the proper o-ideal b = b, n o must be principal. The
formula giving the effect of (b, k) and the homogeneity property of A now show
that (b, k) is also the identity on A(0)/A(v,), which is therefore contained in
k(j(o)). This proves all of Theorem 1.

Corollary. The numbers j(0), j(0,), A(0)/A(o,) are real, and

. Alo) .
J(04); Kz—ok) € Q(j(0)).
Proof. The reality assertion is clear, because from the original series, say
for g, and g3, and any lattice L in &, with complex conjugate L', we have

9L) = g2(L)  and  g5(L) = g5(L)’,

whence A(L") = A(L) and j(L") = j(L)'. Since o’ = o, the reality assertion
follows, and so does the corollary, because Q(j(o)) is-the maximal real subfield

o k(j)o)).
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It will be proved in Chapter 21, §l, Theorem 3, that the numbers J(0,),
A(0)/A(o,) actually generate k(j(o)) over k.

§2. PRIME FACTORIZATION OF ITS VALUES
We want to describe the prime factorization of the values
A(az)
A(z)
for imaginary quadratic z, and « € M (Z). This was done completely by Hasse,
but we shall work out here only the most important special case, and refer to
Deuring [B1], §22, p. 43 for the general tables. We begin with some integral

properties similar to those for the j function. Let « have determinant », alsc
denoted by |«|. Define

@a(7) = |of*? —A“G[—)—

For any y € SL,(Z) we have ¢,, = ¢@,, so the value of ¢ depends only on the
left coset of o, which we may assume primitive. We may then also assume that
« is in triangular form

a b
@ = (5 4):
as in Chapter 5, §1. Then
A(ot)
A

Theorem 2. The function @, is integral over Z[j].

Put) = |of 12 d712

Proof. Let «y, ..., oaym be representatives of the left cosets of primitive
matrices in M,(Z) having determinant n, with respect to the modular group,
and take these representatives in triangular form as above. We use the same
method as in Chapter 35, §2. The g-expansion for A is of the form

A = (2m)"q(1 + A(g)

where A(g) is a power series with integer coefficients, and does not vanish on $.
Each g, is holomorphic on $, and has a ¢'/"-expansion at infinity. Each g, in
fact has level n, as one sees by the same argument that we used for j (Theorem 4,
Chapter 6, §4). The symmetric functions of the ¢,, are therefore modular func-
tions of level 1, and being holomorphic on $, they lie in C[;].
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To get them in Z[j] we use the g-expansion. For « in triangular form as in
(1), we see that under the transformation

g+ g
the g-expansion for A transforms in such a way that

AGT) _ 1y L+ 4G
A0 2 YT Al

The Fourier coefficients of this expression lie in Z[{,]. An automorphism o,
sending {; on {5 (with (s, n) = 1) extends to the power series field in ¢'/*, and
permutes the expansions of the y(n) functions ¢, (i = 1,..., ¥(n)). Hence
the elementary symmetric functions of @q,, . . ., Pay., are invariant under these
" automorphisms, and therefore have coefficients in Z. Together with the fact
that each ¢, is holomorphic on $, this proves our theorem.

(3) @ (1) = n13d~12

Actually if one analyses the proofs of Theorem 2, one finds that they are
valid in the more general context of a quotient of automorphic functions having
the same weight, under the following conditions.

Theorem 3. Let f, g be automorphic functions of the same weight —m with
respect to SL,(Z). Assume that:

i) both f, g have Fourier coefficients in Z. .
ii) both f, g are holomorphic on § and g is not zero anywhere on 9.
iii) the function g has a g-expansion of the form
9 =q"(1 +qB())

where v is some integer, and B(q) is a power series in q with integer coefficients.
Then the function

is integral over Z[j).

Theorem 4. For imaginary quadratic z, the values @/z) are algebraic
integers, which divide |o|*2.

Proof. Since the values j(z) are algebraic integers, and since ¢,(z) is integral
over Z[j(z)], we conclude that ¢,(z) is also- an algebraic integer. To get the
divisibility, we let o’ be the integral matrix such that

' al O
o= oy = (g |a|>’
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and we consider the product

]2 |2 A<ala<i>) A(“G» .
() )

We cancel a numerator and denominator, and use aa’ = |«|/, with the homo-
geneity of A, of degree —12, to get

z
«0)
' Iallz |arI12 |a|—12

)

Knowing that ¢,(z) is an algébraic integer proves our theorem.

—

= I,

We use the following notation. If € is an algebraic integer, and a is some
o,-ideal, we write
& a
to mean that &ox = aox in some large number field K. Similarly, if &, &,
are algebraic numbers, we write
SRR
to mean that &, /¢, is a unit. We then say that &,, £, are associated.

Let o be an order in k and let o, b be proper o-ideals. Let b = [z,, z,] and let
o € M3 (Z) be such that
%)
o
22

is a basis of ab. We denote by Na the index (o: a), and it is clear (say from
elementary divisors) that Na = |«|. Thus we use the notation

A(ab)
A)
TheoremS. Let p be a prime number which splits completely in k, and does

not divide the conductor of o. Let po = pp’ be its factorization in o, p # p’,
Then for any proper v-ideal a,

@.(b) = @ (z) = Na'?

12 Alpa) ~ pi2
A(a)

Praof. Let b be a proper o-ideal prime to p such that by is principal, say
bp = io. Then

@y(a) = p

A(bpa) |, A(pa) A(4a)
Nblz 12 = Nblz 12

Apa) 7 Aa) A(d)

— Nblz p12 ,1—12.
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By Theorem 3, the first factor on the left divides Nb!2, which is prime to p,
and the second factor divides p!2. On the other hand, in the prime factorization °
of /o, we know that p appears with multiplicity 1, and p’ does not appear since
b is prime to p. Hence in the prime factorization of the right-hand side, p'!?
is the precise contribution of p’. This proves our theorem.

Corollary. For any proper o-ideal b the number

|A(b)|?
Nb!l AN
{A(0)}?
is @ unit. .
Proof. Let
|A(B)I
&(b) = Nb® .
®) 1)

Forany 2 e k, 2 # 0 we see that (/b) = ¢£(b), i.e. ¢(b) depends only on the class
of the ideal b. We can always find some Z such that 2b is equal to a prime p of
degree 1, i.e.

(p) = pp’
with p # p’, and p is a prime number not dividing the conductor. (We are using
here the existence of primes in generalized arithmetic progressions from class
field theory. The theorem for o,, combined with Theorem 5 of Chapter 8, §1

gives us what we want.) Replacing b by such a prime ideal p, and taking the -
product of the expression in Theorem 5 with its conjugate yields the corollary.

We prove one other statement which is occasionally useful in applications.

Theorem 6. Let p be a prime number, let z be imaginary quadratic, and let

a,e MF(Z) (i =0, ..., p) be representatives for the left cosets of matrices
with determinant p, with respect to SL,(Z). Then

p+1

IT ¢z = (=1)P71p'a
i=1

Proof. We know that y(p) = p + 1, and that representative matrices can
be selected as
| S
. == [ = 0 .« .. -
% <0 p) , i seewp — 1

_(r 0
%y = (0 1) .
Hence we get the g-expansions for the ¢,, from the g-expansions as given in (3). .

The leading term of ¢, fori = 0,...,p — lis

i 1/p—1

$pq
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The leading term of ¢,, is p'2¢?~'. From this it follows that the product has a
g-expansion beginning with the constant

C;+2+ +pp12 — (_1)p—1p12'

Since this product is a modular function having no pole at infinity, it is constant,
thereby proving our theorem.

Corollary. Let a be a proper v-ideal, and let p be a prime number, prime
to the conductor, and splitting completely in k, so that po = pp’, p # P’
Let a = (24, z,] and let P, P’ be matrices of determinant p such that

P<zl> and P’<z‘>
23 Z2
are bases of pa and p'a respectively. If « € M3 (Z) has determinant p and

does not lie in the orbit of P or P’ under SL,(Z), then @,(z) is a unit, where
z = z,/z,. '

Proof. The contributions to the product in Theorem 6 coming from the
two terms @,(a) and @,-(a) arising from Theorem 5 will already contribute p!'?
to the factorization of the product. Since there can be no other prime factor
contribution by Theorem 6, we conclude that all other terms in the product
must be units, because they are all algebraic integers by Theorem 3.

To find the values of ¢,{(z) in general, one can use an inductive procedure.
For suppose « = fiy, with 8,y € MF(Z). Then for any lattice L = [z,, z,] with
z = z,/z, € H we have

“(2) o) 20(0)

o) a0() oG)

’ 0p(z) = @g(y2)p(2). ’

I

in other words

Given a lattice L and a sublattice M we can find a chain of lattices
L=LygoLioLl,n- 2L =M
such that (L;: L;;;) = p; is a prime number. Now, if (L: M) = p, then M has

a basis
P<21>
2,

with a matrix P such that [P| = p. So in principle, the values of ¢, are reduced to
computing values ¢, where P has prime determinant.
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§3. ANALYTIC PROOF FOR THE CONGRUENCE RELATION OF ;

For the convenience of the reader, we shall reproduce here the classical proof
of Hasse [19], [B1] for the congruence relation of the j-function.

Theorem 7. Let o be an order in k and let p be a prime not dividing the
conductor of o, such that po = pp’, p # p'. Let a be a proper ideal of o.
Let K be a finite Galois extension of k containing all the numbers j(c), where
¢ ranges over the proper ideals of v. Then

J(@)? = j(p'a) (mod pok).

Proof. Without loss of generality we can extend K to a bigger finite Galois
extension of k to contain other algebraic numbers which will occur in the proof,
e.g. values ¢,(z) where a is a primitive integral matrix with determinant p.
We select the same representatives as before for the left cosets of such matrices
with respect to SL,(Z), namely

1 i ,
ozi—(o p> for i=0,..,p—1

p O
a,,=(0 ,1>~

If £ is a function on the upper half-plane, we write f *(g) for its powers series in
g (or g*/P = ¢2ri/?), We agree that

f*(g) =0 (modp)
means that all coefficients of the power series lie in p. We also write a congruence
mod p, or 1 — {, where { is a primitive p-th root of unity, to mean that the
coefficients lie in the ideal generated by these elements.
We consider the polynomial in two variables

FOLY) = 3 (X =jou)Y = 0. (Y = 9+ (¥ = 0,)

the factor Y — (., being omitted from the product on the right. The above
polynomial has coefficients which are functions on $, modular of level p.
The permutation induced by j 0 «; — j 0 a;y for y € I' is the same as @4, > Qayy.
Hence F(X, Y) has coefficients which are invariant under I'. Furthermore, if
(d, p) = 1, the automorphism ¢, on roots of unity such that ¢,/ = (¢ has the
effect

jogmjoua, and @, @,

fori=0,...,p — 1 (mod p), while leaving j o «, and ¢, fixed. Therefore the
coeflicients of F(X, Y)are modular functions invariant under I', and with rational
Fourier coefficients. We may therefore write

FX, Y)=FX, Y,))eZ[X, Y,]]
as a polynomial in X, Y, j with integer coefficients.
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Observe that if
f¥q) = Al@eZ(q)

is a power series in g with coefficients in Z, then for i = 0,...,p — 1 we have

(f o a)*(q) = A(g'70)

= A(¢"") (mod1 —{).

On the other hand ,

(fou,)*(q) = A(g®) = A(g)" (mod p)..
Here { is a primitive p-th root of unity, and the congruences mean that all
coeflicients are divisible by 1 — { in the ring of algebraic integers in K, taken
sufficiently large to contain the p-th roots of unity. Applying this to the first p
terms, and to the functions j and (27)~'2A, we conclude that these first p terms
are all congruent to each other mod 1 — (.

The last term involves (X — j*(¢)?) as a factor. If we substitute j* for X,
then this factor becomes = 0 (mod p). Therefore

F(j*(@)7, Y,j*(@) =0 (mod 1 —{),
i.e. this expression lies in (1 — C)Z[C]((q‘“’))[Y] Since the Fourier coefficients
are integers, we conclude that

F(j*(q)", Y¥,j*(g)) =0 (mod p).
Therefore

E(j*%, Y, j) e PZIY, j].

Leta = [z,, z,], withz = z,/z, € $. Since (a: pa) and (a : p’a) have index p,
we can find two of the matrices «;, say P and P’, such that

P(z‘) and P’(Zl,)
Z2 22
are bases of pa and p’a respectively. Substitute j(a) for j and ¢@p.(z) for Y.
We find that

F(j(@)?, ¢p(2), j(a)) = 0 (mod p).
On the other hand, in the original sum defining F(X, Y), all the terms become
equal to 0 except one, and we find

(j(@)? — j(p'0)) E[P! (pp(2) = 9, (2)) =0 (mod p).

From the preceding section, we know that ¢p.(z) &~ p'2. We also know that
@a(2) is a unit for a; # P or P’. This proves our theorem.

In his paper, Hasse gave a further slightly elaborate argument to show
that k(j(o)) is abelian over k and that the Frobenius automorphism gives, for
almost all p, the effect

oyj(a) = j(p'a).
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Deuring [B1] observed that this now follows trivially. Indeed, disregard the
finite number of primes dividing all differences j(a,) — j(a,) and the differences
of their conjugates, if a, represent the different proper o-ideal classes. By general
properties of the Frobenius automorphism (cf. the end of Chapter 8, §3) we
see that the precise equality '
ogi(a) = j(p')
does hold for any P dividing p in K. Since multiplication of proper o-ideal
classes is abelian, it follows that the map
B Gy

is a homomorphism from the free abelian group generated by almost all primes
into the Galois group of the smallest Galois extension of k containing j(a).
Using now theorems concerning the existence of primes with given Frobenius
element, one concludes that this extension is abelian, and that the proper

o-ideal class group is isomorphic to the Galois group under the map induced
both by the Frobenius element on almost all primes, and also by the property

o3j(@) = j(B' Q)
for proper o-ideal classes @ and B.



13 The l-adic and p-adic
Representations of Deuring

It was first proved by Hasse that even in characteristic p > 0, if N is an
integer prime to p, then the points of order N on an elliptic curve 4 form a
cyclic group of type Z/NZ x Z/NZ. On the other hand, Hasse also discovered
that there may not be points of period p, and if there are some, then the group
of points of order p" is then cyclic. Essentially one sees this from the representa-
tion of the endomorphism

Noé:aw> Na,

whose degree is N2. If we represent this endomorphism on the local tangent
space at the origin, or equivalently on the differential forms, we see that it
must be separable if (¥, p) = 1, and must be inseparable if p divides N. Thus in
characteristic p > 0, there cannot exist two points of period p linearly independ-
ent over Z/pZ. Therefore either

A, =0 or A, = Z/pZ.

The first case is called supersingular. The second case is called singular or generic
according as the j-invariant is transcendental over the prime field or not. Hasse
also discovered that over finite fields the algebra of endomorphisms must be
either an imaginary quadratic field, or a division algebra of rank 4 over Q,
depending on the two cases.

Using ¢-adic and p-adic representations, Deuring [4] gave a more com-
prehensive theory, and especially determined what happens to the ring of
endomorphism of an elliptic curve under reduction mod p. We shall closely
follow Deuring’s paper, except that as usual we use the projective limit of the
groups Ay, forming the Tate vectors and Tate module T,(4), which gives
a natural representation of the endomorphisms over the p-adic integers. Except
as specified above, the results of this chapter are due to Deuring.
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§1. THE /-ADIC SPACES

Let, therefore, 4 be an elliptic curve defined over a field of characteristic
p. Points of A4 are taken in a fixed algebraic closure. For any prime number /,
define the /-adic module 7,(A) to be the set of infinite vectors

(al: aZ’ v ~)

with a; € Az (thatis¢’a; = O)and Za;,, = a;. Addition is defined componentwise
so T,(A) is a group. It is clear that T,(4) is a module over the /-adic integers Z,.
To define the multiplication of a vector by an /-adic number, we define it com-
ponentwise. On the i-th component, we approximate the £-adic number by an
integer mod #¢, and multiply the i-th component by this integer. It is immediately

verified that this multiplication is well defined, and gives an operation of Z,
on T,(A).

Theorem 1. If £ + p, then T,(A) is a free Z,-module of dimension 2. On
the other hand, T,(A) = 0, or is a free module of dimension | over Zp, accord-
ing as we are in the supersingular or singular case.

Proof. Take first £ # p. Let x,, x, be elements of T,(4) whose first com-
ponents a,,,, a,,, are linearly independent over the field Z//Z. Then thesé
vectors x,, x, are linearly independent over Z,, for if we had a relation of
linear dependence over Z,, we could assume that not all coefficients are divisible
by ¢, and hence the projection of this relation on the first component would
contradict the hypothesis made on x,, x,.

I contend that x,, x, form a basis of T,(A4) over Z,. We are going to prove
this by an inductive argument. Suppose that we can write every element w of
T,(A) as a linear combination

(1) W= Zx; + Z,X, mod £"T,(A)
with integers z; € Z. Let w = (by, . . ., b,, by41, - - ). By definition, we have for
* the first n + 1 components,
2@y s 0o o Q) + 23(@005 - o Gy pey)
= (bl) MRS bm bn+l) + (05 AR ) 0, Cn+l)

for some point ¢,,, of order /. By the very choice of the vectors x;, there exist
integers d,, d, such that

Copr = A"y pyy + d275 -

If we replace z,, z, by z, + d,/", z, + d,/", we see that we have extended the
congruence (1) from n to n 4+ 1. That gives us what we wanted.

If £ = p, then one verifies at once that 4, is cyclic of order plin the
singular case, and that T,(A4) is free over Z,, in this case (easier than for / 5 p
in this instance). If there is no points of order p, then T,(4) = 0.
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From now on, we use £ to denote a prime number other than p.
Let /: A » B be a homomorphism of elliptic curves. Then A induces a
homomorphism also denoted by 4,
A: T,(A) — Ty(B),
and similarly for 7,,. Its effect on a vector (a,, a,, . . .) is given by
Aay, a,,...) = (tay, Aay, . . ).
Theorem 2. If /y,..., 2, are endomorphisms of A which are linearly

independent over Z, then as endomorphisms of T,(A), they are linearly
independent over Z,. ‘
Proof. Say c,2; + - -+ + ¢4, = 0 with ¢; € Z,. 1t will suffice to prove that
all ¢; are divisible by £ (then cancel the £ and start over again to get an impossi-
bility unless all ¢; = 0). Write
C; = m; + fd",
with d; € Z, and m; € Z. It suffices to prove that £|m; for all /. The endomorphism
L= A md o= —Ld A, + -+ dA)
lies in End(A). Acting on A, we see that 2 kills 4,. Hence 2 factors through ¢4,
i.e. A = fafor someac End(4). But /,, ..., A, generate aspace Q/i; + -+ + Q4,

over Q, and
(Q4; + -+ + Q4) n End(4)

is a lattice of rank r in this subspace. Without loss of generality, it suffices to
prove that a basis of this lattice is linearly independent over Z,, i.e. we can
assume that 2, . . ., 2, themselves form a basis of this lattice. But then it follows
thata liesin ZZ; + - - - + Z/,, whence £|m;, for all j, as desired.

The above theorem shows that our representation of End(4) on T,(A4)
corresponds to tensoring with Z,, i.e. we get an injection

Z; ®z End(4) — Endz (T,(4)).
We denote by 4 the set of points of 4 whose order is a power of £.
Let V,(A) be the set of vectors
((10, ag, 4z, .. )
with @, € 4¢) any point of order a power of , and satisfying
faH_l = da;.
It is clear that
Ve = Qr ®z,T,.
In fact for any point x in ¥, we can find a power £° such that #°x has its first
component equal to 0. Identifying the vectors

©,a,,a,,...)
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such that/a, = 0in V, with elements of T,, we get an exact sequence
0 = T,(4) > V,(4) = 4D >0,
the mapping on the right being projection on the first component.
Of course we have a similar sequence with 7, and V,; however, when 7, = 0,
we do not get a faithful representation of End(4). We do if T,, # 0, because an

isogeny has finite kernel.
For an arbitrary /£ we get a faithful representation

Q ®z End(4) = End(4)q — Endg,(V)).
Since dimg, (V) = 2 it follows that dimg, Endg (V,) = 4. Hence:

Theorem 3. In any characteristic, dimg End(A4)q < 4 and
dimz End(4) £ 4.

This gives a proof for a result mentioned previously.

We already know that every element of End(A4) is invertible in End(4)q, as
discussed in Chapter 2, §2. Hence End(4)q is a division algebra of dimension
<4 over Q. The only possibilities are that it has dimension 1, 2 in which case
it is commutative, or dimension 4. In that case, it cannot be commutative,
because we have an injection

Q® End(A)Q - M,(Q,)

in the representation on V.

§2. REPRESENTATIONS IN CHARACTERISTIC p

We first give a proof in arbitrary characteristic for the following fact, using
only the involutive property of a +» a’.

Let a e End(A) be a non-trivial endomorphism. Then Q(x) s quadratic

imaginary.

Proof. Since Q(«) is a commutative subfield of a division algebra of dimen-
sion 4 over Q, it follows that [Q(«) : Q] = 2, so « is quadratic. The mapping

A A

on Q(x) (where 1’ is the endomorphism such that 11’ = v(1)d as discussed in
Chapter 2) defines an automorphism of Q(a), and is not the identity, for other-
wise

M= =v)el
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for all A e Z[x] which is patently false. Hence 4 A’ is the non-trivial auto-
morphism of Q(a). Furthermore Q(x) must be imaginary (in any embedding
in C) because

Now) = 44 =v2) >0
forall le Z[o], 2 + 0.

Theorem 4. Let A be defined over the finite field with q elements, and let
n, be its Frobenius endomorphism. If n, € Z, then T, = 0. So if T, # 0,
then n, is a non-trivial endomorphism.

Proof. Let g = p". We know that 7, has degree g. If 7, = nd, then
qg= V(qu) = n2: .
whence n = p™ for some integer m. But 7, is purely inseparable, and therefore
p™é has kernel 0, whence T, = 0.

Theorem5. Let A be an elliptic curve over a finite field F of characteristic p,
and assume T,(A) # 0. Then:
i) End(A4)q = k is a quadratic imaginary field, and End(A4) = o is an order
ink.
ii) The prime p does not divide the conductor c of o.
iiiy The prime p splits completely in k.
Proof. Theorem 4 shows that there exists a non-trivial endomorphism of
A, namely m,. The representation of End(4)q on V, (or of End(4) on T,) is
faithful, and therefore gives rise to an embedding of End(4) in Z,, which shows
that End(4) = o is commutative. It follows that End(4) has dimension 2 over Z,
whence End(4)q = k is a quadratic field. Since & admits an embedding in Q,,
it follows that p splits completely in k. There remains only to prove that p does
not divide the'conductor ¢ of 0. We know that o = Z + co,. There is an integer
m such that
n,=m+ ce  and n,=m + ca’

for some « € o,. We get
gé = nm, = m* (mod co,).

Viewing o, as embedded in Z,, from the representation on T,(4), we conclude
that p divides m, whence from the representation on T,(A4) it follows that =, kills
the points of order p on 4. This is a contradiction, since n, is purely inseparable,
and our theorem is proved.

Corollary. Let q = p* be the number of elements of F. Let m = n, be the
Frobenius endomorphism. If po = pyp’ is the factorization of p in 0 = End(4),
then

m=p" o 7o =p"

and any other generator of 7o is + .
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Proof. Since nn’ = ¢é, in the unique factorization in o (with primes not
dividing the conductor), only divisors of p can occur as divisors of 7 and =’
Since p does not divide n (because = is purely inseparable, and pé has a non-
trivial kernel), it follows that there is a positive integer m such that, after
permuting p and p’ if necessary, we get

0 = p" and n'o = p'™.

Therefore nn'o = p’o, and m = d. Since the curve is not supersingular, the
only automorphisms are +6 (according to the tabulation of Appendix 1),
and 7 is uniquely determined up to + 1. This proves our corollary.

Next we consider the supersingular case. We observe that if 7,(4) = 0 and
B is isogenous to A then T,(B) = 0 also (obvious).

Theorem 6. Let A be defined over a field of characteristic p. If T,(A4) = 0,

then j, = j&'.

Proof. If T, = 0, then pd must be purely inseparable of degree p?. Hence
there is an isomorphism

ArA - ﬂpz(A),

whence j, = jA*. We are using the fact in characteristic p that j, is the invariant
of isomorphism classes of elliptic curves.

In particular, we see that j, € Fp2 must lie in the field with p? elements if
T,(A) = 0, and there is only a finite number of isomorphism classes of elliptic
curves A in characteristic p such that T ,(4) = 0.

Corollary. Assume that A is supersingular, with invariant j, and that A
is defined over ¥ ,(j) = F. Then for p 2, 3 we have:

i =—p5 ifjeF,

P

mp=+pd  ifj¢F,

Proof. Suppose first that F = F,, i.e. that je F,. Let n = 7. Since pd and
n? have the same degree p?, it follows that they differ by an automorphism of 4.
Since p # 2,3 and the curve is supersingular, it follows from Appendix 1
that the only automorphisms of A are +4, whence n? = -—pd, and the first
formula is proved.

Secondly, suppose that j is of degree 2, so F = F,(j) = Fpz, and g = p%
Then n, and pd have the same degree p?, so that they differ by an automorphism
of A. Again by Appendix 1, it follows that in the supersingular case the only
possible automorphisms are + 8, whence 7 = +pd. The second formula is then
obvious.
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Remark. In characteristic 2 or 3 there are slight variations on the formulas of
the corollary. Take for instance characteristic 2. The curve 4 defined by
V+y=x3+x
‘over F, has 5 rational points (counting the point at infinity). If & is the number
of rational points, then
N=vn~—38) =(m—-3dxn -9
=g+1—-(z+ =)
In the present case,
5=24+1—-(x+7r)
whence Tr(z) = —2. Thus n = —~1 £ i and n? = +2i. In general, when we
have
n? = pe,
with some unit ¢, one must take a power of this expression to get rid of the
non-rational unit.

Theorem?7. If T,(A) = 0, then End(A)q is a division algebra of dimension
4 over Q. ‘

Proof. First we prove that there exist non-trivial endomorphisms. Let
£1,¢3, . . . be a sequence of distinct primes unequal to p, and let a, a,, ... be
a sequence of points such that a; has order ;. Let (a;) be the cyclic group
generated by a;. Each factor curve 4/(a;) has no point of order p. By Theorem 6
we must have an isomorphism

Al(a) = Af(a))
for some { # j. Consider the composite homomorphisms
A — Al(a) = Al(a;) > 4,

where the first is the canonical homomorphism 1; of degree £;, and the last is
a homomorphism of degree /;, say 4;. We then obtain an endomorphism of A4
of degree £,¢;, which cannot be of type né for n € Z because its degree is not a
square. Hence we have obtained non-trivial endomorphisms of 4.

Next we prove that End(4)q cannot be a quadratic field. Suppose it is a
quadratic field k. Let py, p;,... be a sequence of primes # p which remain
prime in k, and let @; be a point of order p; on 4. We consider the factor curves

Al(ay), Al(ay, a3), Al(ay, a2, as), . ..

none of which has a point of period p. Hence by Theorem 6 we have an iso-
morphism

Allay, .., a)= A4/, ....0:8,.,...4a)

for some pair of integers r < 5. Let B = A/(a;, . . ., q,), and let b,,. . ., b, be
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the images in B of q,., . . ., a,,, under the canonical map. We have an endo-
morphism of B,

A:B - Bl(b,,....b) ~ B
of degree p, - -+ + p,. Let

Aoy =q; " Gy

be the prime factorization in o,. Then
v(/:) = ).)_’ = qu .. "Iqqm = Pl . -ps.

Hence the prime ideals g; must be the prime ideals of o, dividing p,, ..., ps
and must occur to the first power. Since p; remains prime in k for all J, it follows
that Ng; is the square of a rational prime, a contradiction which proves the
theorem.

Theorem 8. Let T,(A) =0, and let. D be the division algebra End(d4),.
Then D splits at all primes ¢ # p.

Proof. If ¢ # p, then D is represented as a ring of endomorphisms of
V,(A), in a way which we know is the tensor product with Q,, and V,(A4) has
dimension 2 over Q,. Hence locally at /, we must have Q, ® D ~ M,(Q,).

For the reader who knows the Hasse theorem on simple algebra, we now
see that D ramifies at p and also at infinity (i.e. becomes the ordinary quaternion
algebra over R) because the sum of its invariants is equal to 0, and D cannot
split everywhere, otherwise D is a matrix algebra globally, which is not the case.

Theorem9. IfT,(A) = 0O, then End(A) is a maximal order in End(A4)q.

Proof. We shall omit this proof, which the reader can look up in Deuring
[4], and which depends on a counting argument, considering left ideals. The
result will not be used in this book.

For the further properties of supersingular invariants, we refer the reader
to Deuring’s basic paper [4], and more recently to Manin’s fairly comprehensive
survey [30]. Observe that in characteristic p, if the group of automorphisms
of an elliptic curve has order >2, then j = 0 or 123 (as you can verify from the
tables in the Appendix). If the curve is supersingular in addition, then we neces-
sarily have j = 0. Connections with the Hasse invariant are discussed in an
appendix.

§3. REPRESENTATIONS AND ISOGENIES

We continue to suppose that £ # p where p is the characteristic of the field
over which A is defined.
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We want to see how the modules 7, correspond under isogenies. In many
ways these modules play the same role as a lattice L in C. Let

A B

be an isogeny. Tensoring Hom(4, B) with Q to get Hom(4, B)q, we can find
an inverse A-! in Hom(B, 4)o.

First we have a simple lemma, giving us a criterion of /-integrality for an
element o € End(A4)g in terms of its representation on T,(4).

Lemma 1. Let S, be the multiplicative monoid of positive integers prime
to ¢, let o = End(A), and let oy, = S; !0 be the localization of o at {. Let
o € End(A4)q. Then aT, = T, if and only if o € 0. In other words, o, is
the set of o € End(A)q such that «T, < T,.

Proof. If aeony,, it is clear that «T, < 7,. Conversely, suppose that
aT, = T,. There exists A € o such that m¢"a = A for some integer m prime to /.
Then v

mlaT, < £'T,,
whence AT, = £'T,,and 2 = ¢"f for some f € o. It follows that
mt'e = ¢'p, '
and therefore ma = f. This proves that « € S; "o, a is /-integral, as desired.

Lemma 2. Let .. A — B be an isogeny, and let M, be the set of vectors
(ao, ay, . . .) in V,(A) such that a, € Ker A, Then AM, = T,(B).

This is clear from the definition of T, and therefore gives us some description
of the inverse image of T,(B) under 4, in V,(A).

Theorem 10. Let A: A — B be an isogeny, and let o € End(A4)q. Let M, be
the inverse image of TAB) in V,(A) under 2. We have Ja)~' € End(B) if and
only if aM, < M,, for all £.

Proof. Assume first that p*v().). Suppose that a2~ € End(B). Then for all
£, we get )

aM, = 2~ Jal~ 1AM, = A-'T/B) < M,
Conversely, assume that aM, < M, for all £. Then
IA T(B) = laM, < IM, = T,(B).

By Lemma 1, we conclude that AaA~! is £-integral for each /. There remains to
prove that Ao/~ is also p-integral. Suppose that

Jai=t = p~'B
for some f € End(B). Let n = v(1). Then

nf = p"lani-! = p"y,
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for some y € End(B). So
- 1
- 1 _ 1
AT = Pt
But

L )TUB) < T/B)

for all £|n, and by Lemma | we conclude that y = ny’ for some y’ € End(B).
Therefore
Jal~! = y' ¢ End(B),

thus proving our theorem in the present case p*v().).

Next we have a result which will be used to deal with the remaining case,
but is of interest in itself, so we state it separately as a theorem.

Theorem1l. Let /: A — B be an isogeny and v(2) = p". The map

o ai—t

is an isomorphism between End(A) and End(B).

Proof. We may decompose / into a composition of. isogenies each of
whose degrees is p, and it will therefore suffice to prove the theorem under the
assumption that v(Z) = p, which we now make. It will suffice to prove that if

« € End(A4), then Zai~! € End(B), for then we get an inverse mapping using A/,
and the fact that

Alar=t i = pap~! =

Let « € End(A4). Suppose that Z is separable. Let 22 = pd. Then 2’ is purely
inseparable, and 2~! = p~'/’. Suppose that

Jai™t =

with some § € End(B). Then
. 1 1
Ai~t = - dak = - B,
4 4 b

whence Zai” = B. But A’ is purely inseparable, 2 is separable, hence Ker f
contains the point of period p. Hence f = py with some y € End(B), so

Ja~! =y e End(B),

proving our theorem in this case.

If 2 is purely inseparable, then 4 = en with some isomorphism ¢, and then

2= gl
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so that
Jal-t = gnan—le L,

For any point x € n(A4) we have
man~}(x) = a(«(x"*'?)) = «P(x),
where «‘” is the image of « under the automorphism ¢+ ¢” of the universal
domain. Hence we find
nan~ ' = o® € End(nA4),
whence egnan~'e-! € End(B), thereby proving Theorem 11.

Returning to the proof of Theorem 10, we decompose an arbitrary isogeny
into a product of an isogeny whose degree is prime to p, and an isogeny whose
degree is p” for some r. The theorem follows at once.

§4. REDUCTION OF THE RING OF ENDOMORPHISMS

We now investigate the relationship between elliptic curves in characteristic
0 and curves in characteristic p, and consider especially how the ring of endo-
morphisms reduces.

First we look at the /-adic spaces. Suppose that A is an elliptic curve defined
over a number field. Let R be a place of the algebraic numbers °Q (algebraic
closure of Q in C) with values in an algebraic closure of the finite field with

p elements, denoted by “F,. On each number field finite over Q, the place,
denoted by

x— X = x(P)

induces a discrete valuation ring. Suppose that 4 has non-degenerate reduction
niod PB. Again we use £ for a prime number unequal to p. Then we know that
we have an isomorphism

A e
AO & O,

where 4% denotes the group of points of 4 whose order is a power of Z, in the
given algebraic closure “Q. Consequently we have an isomorphism

T4 5 TAA).
If we want to specify the '} in the notation, we also write
A= AMP).
On the other hand, we only have a homomorphism

T,(A) = T,(A).
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If T,(A) # O, then the kernel of this homomorphism is a 1-dimensional module
over Z,.

We observe that a result like that of Theorem 10 allows us to test for
integrality both upstairs and downstairs, i.e. on 4 and 4.

Theorem 12. Let A be an elliptic curve over a number field, with End(A4) = o,
where o is an order in an imaginary quadratic field k. Let R be a place of “Q
over a prime number p, where A has non-degenerate reduction A. The curve A
is supersingular if and only if p has only one prime of k above it (p ramifies
or remains prime in k). Suppose that p splits completely in k. Let ¢ be the
conductor of o, and write ¢ = p'c,, where p*co. Then:

i) End(A4) = Z + oo, is the order in k with conductor cg.
ii) pr*c, then the map J. v 1 is an isomorphism of End(A) onto End(A).

Proof. Suppose that p splits completely in k, say po, = pp’, p # p’, and
P A o, = p. To prove that 4 has a point of period p, it suffices to do it for any
elliptic curve isogenous to A. By changing 4 with an isogeny over some number

field, we may assume without loss of generality that we have a normalized
embedding

9: k - End(A)o

such that 6(o,) = End(4). Let m be a positive integer such that p™ and p’™ are
principal, say

p" = po, and P = o,

Then up’ = p™. Note that u’ ¢ p, and since § is a normalized embedding, it
follows that 8(u") is separable because the reduction of y'w (for a differential
form of first kind w) mod P is not 0. Since #(u') has degree a power of p, so
does its reduction mod P, and hence A has a non-trivial point of order p, thus
proving that A is not supersingular.

On the other hand, if p does not split completely in &, we know from
Theorem 9 of Chapter 10, §4 that there is some element u € o, such that 6(u)
reduces to a Frobenius endomorphism. Since po, = p™, with only one prime p,
and since pu' is equal to a power of p, it follows that p’ differs from u by a unit
in o,, and that 8(u)8(u’) = g0, where g is a power of p. This implies that gé is
purely inseparable, whence A4 is supersingular.

Let us assume now that p splits completely in &, and that quite generally
End(A) =~ o, where o is an order in k with conductor ¢ = pco, and p*co. We
want to determine End(A).

We know from general reduction theory that the reduction map

End(4) - End(A)
is an injection. So End(4) contains at least End(4). Theorem 5 of §2
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puts some limitation on how much more there is in End(A), for we know that
End(A)q is an imaginary quadratic field. Hence at least we get an isomorphism

End(4)o > End(A)g
induced by reduction.
Now suppose that p does not divide the conductor of o = End(4). We have
an isomorphism

TAA) S T4

for every prime £ # p, and we use Lemma 1 of §3, which tells us that End(4)
and End(A4) have the same localizations at #. On the other hand, o, ,, = o,
if p does not divide the conductor, and therefore o, is integrally closed, hence
must coincide with the localization at p of End(A4). This proves that

End(4) ~ End(A)

because they have the same localizations at all primes.

If p divides the conductor, the argument is similar. We see that End(4) and
End(A) have the same localizations at £ # p. Theorem 5 of §2 tells us that p
does not divide the conductor of End(A4). This proves our theorem.

Let ¢ be the set of all invariants j, of elliptic curves 4 over the complex
numbers with non-trivial endomorphisms. If j& #, we let k; be the quadratic
imaginary field isomorphic to the endomorphism algebra corresponding to the
given invariant. We know that _¢ is contained in the integral closure of Z in
the field of algebraic numbers, and we denote this integral closure by “Z.

For each prime number p we let £, be the set of je # such that p splits
completely in &;, and p does not divide the conductor of the ring o; of endo-
morphisms of an elliptic curve 4 with invariant j. We shall sometimes use
Ihara’s notation, and write

() -
P

if p splits completely in the field & and does not divide the conductor of the
order oin k.
Let *B be a place of °Q, lying above p. We get a map
Fr = F,
denoted by the usual bar,
j—J,
into the set of singular (and not supersingular) invariants in characteristic p,
according to Theorem 12. One of Deuring’s major results is:

Theorem 13. Themap ¢, — °F, is a bijection of ¢, with the set of si'ngu/ar
invariants in characteristic p.
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Proof. We first prove that the map is injective.

Suppose that ji = j, = jp = js. We know by Theorem 12 that k; is
preserved under the reduction map, whence 4 and B have the same field k.
Hence there exists an isogeny 2: A — B, giving rise to a reduced isogeny

Z:A-B.

Also there exists an isomorphism ¢: B — 4. By Theorem 12 again, we know
that End(A4) = End(A). Hence there exists 2 € End(A4) such that
g=¢ol

Let C be the image of themap /2 x 2: 4 x A — B x A. Then C is the image of
X x @& The projection of C on each factor induces an isomorphism of C on its
projection, i.e. has degree |. By general reduction theory, this must also be true
for C, and therefore C is the graph of an isomorphism between A and B. It
follows that j, = jg, thereby proving the injectivity.

The surjectivity will be proved in the next section by a method different
from that which we have been using, also as in Deuring’s paper [4]. In fact,
somewhat more is proved, since one shows that given an elliptic curve in
characteristic p, and some endomorphism, then they can both be lifted to
characteristic 0. Given a singular elliptic curve A in characteristic p, we then
select an endomorphism & such that End(A4) = [&, 1] and lift back, to an endo-
morphism « of an elliptic curve A4. It follows that the reduction of End(4) is
precisely equal to End(A) (it is contained in End(A) and cannot be bigger).

§5. THE DEURING LIFTING THEOREM

Theorem 14. Let A, be an elliptic curve in characteristic p, with an endo-
morphism oy which is not trivial. Then there exists an elliptic curve A defined
over a number field, an endomorphism o of A, and a non-degenerate reduction
of A at a place B lying above p, such that Ay is isomorphic to A, and x,
corresponds to & under the isomorphism.

Proof. We shall give the proof only in cases which imply the surjectivity
of Theorem 3. It is a little simpler than the proof of the general theorem, on
which we shall make technical comments at the end.

First we can assume that v(a,) is prime to p, by considering oy + 76 with
suitable n, namely such that

Wao + nb) = agay + n(ag + ap) + n?

is prime to p, which we can obviously do. Indeed, if we can lift «y + 78, we can
lift ao, since the trivial endomorphisms lift in a trivial way.
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We can also assume that a, is cyclic, for otherwise, factor out any multiple
of the identity. Let n = v(ay). Let A(j) be an elliptic curve with transcendental
invariant j over Q. Let Z,, . . ., Zy( be the cyclic subgroups of A(j), of 01jder n.
Let

At A() = A
be a homomorphism with kernel Z,, i = 1, ..., ¥(n). Let R be the integral
closure of

Z[j;jly .. ',jlﬁ(n)]

in a suitable finite extension of Q(j).
Let j € °F, be the invariant of 4,. There exists a homomorphism

Z[j] - °F,
whose kernel contains p and sending j on j. We can extend this homomorphism
to R, say R — R, because all the j; are integral over Z{j]. We can select models
for the A(j;) so that they have non-degenerate reduction at the local ring of the
homomorphism ‘
R - R.

Without loss of generality, we can select 4, = A(j) = A since they have the
same invariant j. For one of the indices /, say i = 1, the kernel Z, of 1, will be
the kernel of «,. Therefore

fT ~ Z/Zl P~ A(]l)'
Let M be the kernel of the homomorphism R — R. We have the inclusions

R=>M>(p,j— ).

Let qr be a minimal prime containing (j — j,). Then qg is of dimension 1
(geometrically speaking, q, defines a component of the hypersurface J =T
Then qg 1 Z = {0}, for if g€ g is a rational prime, then qg contains g and
J — j1, whence would be of dimension 2, which is impossible.

Let q be an extension of qg to a prime ideal in the integral closure “R of R
in the algebraic closure of Q(j). We reduce mod q. Then j — j, goes to 0, and
A(j,) reduces to an elliptic curve A(j1),> while A reduces to A,, and we have an
isomorphism

' A1), = A,
We have an isogeny
’ /’»q: Ay =A@y
whose kernel is Z,, and therefore 4, admits an endomorphism o whose kernel
is Z,,. Reducing further mod M, we conclude that A has the endomorphism
& whose_kernel is Z,, which is the same kernel as 2.

If A = A4, has no automorphisms other than + 1, we have now completed

the proof, because two endomorphisms with the same kernel differ by +1.
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This suffices for our purposes of lifting singular, i.e. not supersingular,
invariants. Indeed, in characteristic > 0, if an elliptic curve admits automorphisms
other than +1, then one sees from Appendix 1 that either the characteristic
is # 2,3 and the curve is not supersingular, and is definable by an ordinary
equation,

y =x3-—x or y=x3-1,

whence the ring of endomorphisms obviously lifts; or the characteristic is 2 or
3, in which case the curve is necessarily supersingular, and actually j = 0!

So, for our purposes, we are done.

Observe the compatibility of the present situation with the general system
of Theorem 12, say. If A is an elliptic curve over a number field with ring of
endomorphisms Z[/], then its reduction mod 2 or 3 must be supersingular,
because 2 ramifies in Q(i) and 3 remains prime in Q(¢). Similarly, if 4 admits
Z[p] as endomorphisms, then its reduction mod 2 or 3 must be supersingular,
because 3 ramifies in Q(p) and 2 remains prime in Q(p).



14 Thara’s Theory

One can reduce the modular function field mod p and obtain an infinite
extension.of F, (), with j transcendental over F,. Igusa determined the Galois
group [22], pointing out that it has the same SL, part as in characteristic zero,
and that the part acting on the roots of unity is just that generated by the
Frobenius element, i.e. those matrices having determinant a power of p. Thara
had the idea of lifting back singular values j of jin the algebraic closure “F, by
the Deuring lifting, and to represent the Frobenius automorphism in the de-
composition group of the modular function field in characteristic p by an
element of the isotropy group of the point ze€ $ such that j(z) = j, with a
suitable place of the algebraic numbers, denoted also by a bar. This led him
to deep conjectures concerning non-abelian extensions of the rational field
F,(j), for which we refer to his original treatise [B6].

However, as pointed out in [28]; one can use some of Ihara’s ideas in the
context of extensions of Z[/] in characteristic 0, also allowing for the possibility
of studying extensions of number fields generated by coordinates of point of
finite order on elliptic curves without complex multiplication. The ideas used by
Thara for his proofs could be extended to this context, and we shall follow
here the exposition of [28].

§1. DEURING REPRESENTATIVES
As in Thara, we start with Deuring’s canonical bijection,
) jp - ?p,
from singular invariants in number fields to singular invariants in °F,, with

respect to a fixed place P of “Q into °F,. We take “Q as the algebraic closure
of QinC,

187
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The elements of #, are values j(z), such that the order o of [z, 1] has con-
ductor not divisible by p, and p splits completely in the imaginary quadratic
field & = Q(z). We shall abbreviate these two conditions by (o/p) = 1.

The association

J2)— @)
gives a bijection between £, and the set of singular invariants in “F,, by Theorem

13 of the preceding chapter. A point ze § such that j(z) = j will be called a
Deuring representative of j in §.

We consider such a point z, let the order o be as above. We let
p=%no, '
so that po = pp’. Note that p is determined by our original place ‘3.

Theorem 1. Having fixed the place B of °Q, let z be a Deuring representa-
tive for j € °F,, let o be the order of [z, 1], and let p = B N o. Then the period
D of p in the proper ideal class group of o is equal to the degree of j over F,.
Furthermore, letting a = [z, 1, the elements

ﬁi j(pa)) o s ouy j(pD"lq)
Sform a complete set of conjugates of j over F,,.

Proof. The Kronecker congruence relation

jr~"a) = j(@)", |
together with the fact that the elements listed above are distinct (no repetition
because of the injectivity in Deuring’s reduction mapping on #,), implies that

these elements form a complete set of conjugates over F,, and also that D is
the degree of

J =@
over F,. This proves the theorem.

We denote by M? = MZ(Z) the set of 2 x 2 rational integral matrices
whose determinant is equal to a power of p. Then M? operates on §. We let
M? be the isotropy set of z, i.e. the subset of matrices « € M? such that a(z) = z.

Theorem 2. Let z be in the upper half plane, let o be the order of [z, 1],
and assume (o/p) = 1. Then there exist two elements a, o' of M? such that M?*
is a disjoint union of two direct products

M={a} xpNxT v {a'} x PN x T,

where {a}, {a'} are the positive powers of a, «' respectively, pN consists of all
powers of p with natural numbers, and T is isomorphic to the group of units
in the order o of [z, 1].
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Proof. Let the notation be as in Theorem 1. Let p? = up. Then there exists
a unique matrix « in M such that

i) =+(3)

and «(z) = z, i.e. z is a fixed point of a. Let L, = [z, 1], and let 4” be, as in
complex multiplication, an elliptic curve whose j-invariant is j(z), and having
non-degenerate reduction mod P. We identify k& = Q(z) as End(4%)q in the
normalized way. Let

¢.: Q* = QL./L, — A*

be our usual coordinatization, as in Chapter 7, §2. By the lemma of Chapter 7,

§2,if
* %
<= (c )

so that u = cz + d, then there exists an isogeny A: 4*® — A% such that the
following diagram is commutative.

Q2 - QLa(z) — A%
«l N 12
Q*-QL, -4
In other words,
)'oqpa(z)(a) = qu(aa)'
In the present case, 2(z) = z. Reducing mod ‘B, we obtain
2 ¢, (a) = ¢.(ax).
Furthermore, since y € p, it follows that 7 is purely inseparable. Hence 7 differs
from the Frobenius map n,» by an automorphism ¢ of 47, and consequently
we get the relation
¢(az) = £ 9 (a)".
The matrix « has infinite period modulo pN x T (7 = torsion) because yu does

not lie in po (not divisible by the conjugate p’).
Let f e M?. Dividing out a positive power of p, we may assume that f is

primitive. Then
z z
o(5) = (i)

with some y, € o, because z is a fixed point of 5. But u, ¢ po. Hence if p’ is the
conjugate of p, then

o =p" or  ppo=p”
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for some positive integer m. Since D is the period of p in fhe proper ideal class
group of o, we must have D|m. Hence

pe=p"PC or oy =™,

where  isa unit of 0. Hence § = «™/Py, wherey has finite period, and corresponds
to a unit of o, or § = a’™Py, where o’ relates to u’ as « relates to p. This proves
Theorem 2.

Observe that the distinction between « and ' was due to the determination
of p as P N o. We call « a p-generator of MZ, It is well-defined modulo 7, and
is characterized as being that matrix such that if D is the period of p in the proper
ideal class group of o, and p? = uo, then

()=o)

§2. THE GENERIC SITUATION

Let j be the modular function. Let F; = Q(j) and Fy the field of modular
functions of level N. As usual we let F be the union of all Fy. We let R, = Z[j],
and let R be the integral closure of R, in F.

Theorem 3. Let z € § be imaginary quadratic, and let k = Q(z). Let B be

a place of k,,, denoted by a bar, and lying above p. Let o be the order of [z, 1]

and assume (o/p) = 1. For f€ R, let f = f(2), and let M be the kernel of the

bar mapping in R. Let p = B N o. Let « be a p-generator of ME. Then a

Frobenius automorphism (M, F/F,) restricted to those subfields Fy with p*N

is given by the automorphism

Jar> Ja
on the Fricke functions f, with a € (Q*/Z%?),, p*N. -

Proof. Let p? = o as before, and let s be the idele

s=C.ompLipp...)

having p-component equal to I, and all other components equal to u. For any
prime £ # p, the embedding g,(s) in GL,(Z,) is simply the matrix « itself. By
Shimura’s reciprocity law in Chapter 11, we know that for any function fe F
defined at z, we have

@ = f(2),

where ¢ = g(q(s)). Note that « = u,. So the right-hand side of the above relation



[14, §3] SPECIAL SITUATIONS 191

gives us the desired effect on functions. As for the left-hand side, (s~%, k) is the
same automorphism as (r, k) where r is the idele

r=C..LLml ...

with y in the p-component and 1 everywhere else. Now one knows by local class
field theory (cf. Algebraic Number Theory, Chapter XI, §4) that (r, k) lies in the
decomposition group of ¥, and has precisely the effect (B, k,,/k), modulo the
inertia group of B. Consequently we find that

@ =16,

because u has order D at p. This proves our theorem.

Remark 1. On the subfield of F which is the union of all Fy with p*N, it is clear
that the inertia group of M n Fy, is precisely 7 as in Theorem 2.

Remark 2, From the argument in Theorem 3, we also get some description of
the Frobenius automorphism in the p-part of F. Indeed, it is the matrix g,(s,),
where s, = (u, 1) with patpand 1 at p’.

§3. SPECIAL SITUATIONS

Let F again be the modular function field, and let R;, R be as in §2. Let j
be a singular value in “F, and let m be the kernel of the homomorphism

Ry = Z[j] = F,[J]

in R;. Let MM be a maximal ideal of R lying above m. If g is a prime of dimension
l in m, and Q is a prime in M lying above g, then we can reduce mod Q. Let
G = Gal(F/F,). Those elements of Gg which leave L invariant then induce a
Frobenius automorphism of R/Q over R,/q. In this way we can recover Thara’s
theorem in characteristic p, if we select q to be the ideal generated by p, and
make use of Igusa’s irreducibility theorem, which says that the modular function
field reduces mod p in a non-degenerate way [23].

We can, however, take a prime q which yields extensions of a number field.
We start with a value z € § such that j(z) is algebraic, and that an elliptic curve
with invariant j(z) does not have complex multiplication. Let us give ourselves
again a place R of °Q, and assume that j(z) is P-integral. Let B, = P n Q(j(2)).
Suppose that j(z) is not supersingular, and let

J=i).
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Let F(z) be the field of all values f'(z) with fe F,fdeﬁri'ed at z. The Galois group
of F(z) over Q(j(2)) is a factor group of the decomposition group of the place

S~ f(2).

Let M, be the maximal ideal in R which is the kernel of the map

7).

We can find a Deuring representative z’ for j, and we let M. be the kernel of
the map

[=f@)
in R, Both M, and M- lie above 11, and the Frobenius automorphisms
(M., F/F) and M, FF)

are conjugate to each other (as are the idéals M, and M_). We can then apply
Theorem 3 to .z’ to get a description of the Frobenius automorphism in F(z).

Thus we obtain a correspondence from certain non-abelian extensions of
Q(j(2)) to abelian extensions of Q(z’, j(z")). In some sense, the study of the non-
abelian Frobenius automorphism can be thrown back to the study of an abelian
one, which, however, varies with p. Thus it becomes a major problem to deter-
mine the distribution laws of this variation with p, having fixed z. This concerns
both the distribution of zg and of the values j(z§). For instance, one may start
with a given integer j, € Z, such that an elliptic curve with invariant j, does not
have complex multiplication. One then asks for the distribution of values j{(z;)
with Deuring representatives z; such that

J(z,) = jo (mod p),

and j, {mod p) is not supersingular, One can conjecture that the set of p for
which j, (mod p) has a given quadratic imaginary field k as algebra of endo-
morphisms must have density 0, but is infinite. Hale Trotter and I have made
extensive computations about this problem, and a more precise discussion will
appear, with the data, in a forthcoming joint paper. For supersingular reduction,
Serre has proved that the density is 0, cf. [35], 3.4 and 4.3.

One can also recall a problem which I had encountered many years ago,
for abelian class field theory over finitely generated rings over Z, namely describe
an appropriate equivalence among the maximal ideals to determine which ones
have the same Artin symbol in an abelian extension. It turns out here that we
are studying a non-abelian situation of Kronecker dimension 2, i.e. a situation
where both p and j vary, not only with fixed j, variable p as in ordinary complex
multiplication, or fixed p, variable j, as in Thara’s work. In this way, complex
multiplication seems to have a much wider range of applicability than thought
of previously, since it affects the most general non-abelian situation.






Part Three

Elliptic Curves with
Non-Integral Invariants



The preceding part studied elliptic curves with singular invariants, having
complex multiplication from an imaginary quadratic field. We now study &
case, which is both special and generic, of elliptic curves with invariant which
is not integral at a given place, and find that there is a very convenient way to
parametrize them, as shown by Tate, over a field with a non-archimedean
valuation. Actually, as pointed out in [28], one also can work over complete
local rings such that if j is the invariant of the curve, then 1/j lies in the maximal
ideal, and this allows us to treat the generic case as well, since we can always
send a transcendendental j to infinity.

For the higher dimensional theory, the reader is referred to:

H. MoRrikawa, “On theta functions and abelian varieties over valuation

fields of rank one,” I and 11, Nagoya Math. Jour. 20 (1962), pp. 1-27 and

231-250.

D. MuMrorD, “An analytic construction of degenerating curves over

complete local rings,” Compositio Math. 24, Fasc. 2, (1972), pp. 129-174.






15 The Tate Parametrization

§1. ELLIPTIC CURVES WITH NON-INTEGRAL INVARIANTS

In this section, we have essentially copied an unpublished manuscript of
Tate. For an exposition of Tate’s results which is more complete we refer to
Roquette [B9]. We have done essentially what is needed to prove the isogeny
theorem afterwards.

Consider the formal series in variables ¢, w given by

- 1 n3qn
1 4 240

n= -q"
1 nSqn
1 504
g3 6|: + nzl q:l
. 1
j=—+744 + -
q
(w) = Z 2§ ng"
X(w _—
mez (1 — g W)Z m11—q"
q W(l + 4"w)
sy = 3, L+ )

meZ (1 - qmw)3
The denominators involving the primes 2, 3 are a slight blemish on these series,
and so we make a transformation which ‘gets rid of them.

First we get rid of the 4 in 4x> by letting y — y/2. Next we get rid of the 1/12
by letting x+> x — 1/12. Finally we make a translation on y, to give us new
variables X, Y whose relations to the original x, y are

1 A | 1
—x—=, v=24x-=).
X=x-5 2+2<x 12)

Then the Weierstrass equation is transformed into the Tate equation
Y2 - XY =X?~h, X~ hy
197
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where

hy = sni 1 z"qn

hy = '21 5 1-27)1 1 E"q"
(1Y) Yw) = ¥ _M _ § ng"

HEZ(I _qnw)3, n=11 - q".
By expanding the square of the geometric series, one sees that the last term can
be rewritten in the form

o] n o] qﬂ

ng
ngl 1 - qn nzl (1 ")

The reader will find both expressions in the literature.

We shall see that the series (1.X) and (1Y) parametrize the elliptic curve 4
defined by the Tate equation over any field & complete under a non-archimedean
absolute value, in any characteristic, under the following conditions.

Let g be an element of k£ such that 0 < |g] < 1. Consider the series X(w)
in (I'X) where w is a variable in k*. Using the identity

w _ | _ w!
(I—w? wH+wle2 (@Q1-wh?’

we can rewrite the series in the form

(1 —wy 1~ g"w)?

which shows, by comparison with the geometric series Y g that the convergence
is absolute for all w e k* and is uniform for w in an annulus

_ow 2 qw gw !t q
(2X) X(W) - 1 - + ngl (( n + (1 _ qnw—l)l 2(1 - qn)Z)

O<r, Z|w £r,.
We get the functional equations
(3X) X(gw) = X(w) = X(w'),
trivially from (1.X) and (2X) respectively. In the restricted range
lg] < Iwl < |q|7*

we have |g"w| < | and |¢"w™!| < 1 for all positive integers n, and hence we can
expand the fractions under the summation signs in (2.X) to obtain
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(4X) X(W) a _ww)2 +m§1 "g (nq’""w" + nq L 2nqmn)

'l

1

1

w4+ w

(w" +w"=—2)

for |q] < jw| < {g|~".

Similar to (2X) we have the analogous expression for the other coordinate,
namely for all w € k* we have

w2 «© l: q2nw2 qnw—l qn ]

2Y) Y(w) = ——5 + — — —— — — |-
@r) (1~ wy ,.gl A-qwP (1-gw')P (1-¢q)
Trivial rearrangements of the defining series show that Y satisfies the functional
equation
3Y) Y(gw) = Y(w) and Y(w™Y) + Y(w) = —X(w).

The series giving /&, and /1; converge, because the coefficients are integers,
so of absolute value < 1.

As usual, we let

A = hy + B3 + T2hyhy — 432h2 + 64h3
=g —24q% +252¢° + - - -,

the polynomial in /,, /1, being simply obtained from the formal relation

3 - 2742 = 4h +13 271 4h 1h Ly
g2 gz = 2 12 373" T 55)

We have A # 0 because A = ¢ (mod g?) (non-archimedean absolute value!).
Therefore we have the absolute invariant

_(1295)° (1 +48h,)° 1+ 240q + 2160g% + -
A A T g —24g% +252¢> + - -+

- ql(l + T4dq + 1968847 + - - )

as expected. The Tate equation defines an elliptic curve, called the Tate
curve. ‘

Theorem 1. Let q% be the infinite cyclic group generated by q in k*. Let
A be the Tate curve. Let

p(w) = (X(w), Y(w)) if wéqg?
o(w) =0 if weg?,

where 0 Is the origin (point at infinity) on A. The map ¢ is a homomorphism of
k* into A, with kernel ¢=.
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Proof. We prove first that ¢ maps k* into A. Since 0 € 4,, this amounts to
proving that the points ¢(w) for w ¢ g7 satisfy the equation of the curve. Because
the functions X(w) and Y(w) have multiplicative period ¢, it is enough to
consider values of w such that |¢g| < |w| £ 1 and w # 1. In this range we can
use formula (2X) which expressed X as a power series in g with coefficients which
are rational functions of w, and similarly for Y. Our first task will be completed
if we can show that the Tate equation is a formal identity when we interpret X,
Y, h,, hy as formal power series in g with coefficients which are rational functions
of an indeterminate w. In fact, the coefficients of the formal power series in
question are expressed as elements of the ring

Zw, w1 (1 — w)~1].
Theé canonical homomorphism Z — & extends to a homomorphism of this ring
into k(w). Hence the formal identity we are trying to establish is a *“‘universal”
one, and will hold in any characteristic provided it holds in characteristic 0.

From the classical theory over the complex numbers we know that the
point @(w) satisfies the Tate equation if we substitute any pair of complex
numbers w # 1,q s 0 such that )

lgl < w] < |ql~".
Fixing first w such that |[w| < | and letting g vary, we conclude that the resulting
power series in ¢ with complex coefficients are equal coefficient-wise. Then
letting w vary, we conclude that the coefficients are formally equal as rational
functions of an indeterminate, as was to be shown.

Next we prove that our map is a homomorphism. Given w;, w, € k*, let
wy = w;w,. We must prove
(5) ewiwy) = o(w1) + @(w,).

Let P, = o(w;), { = 1, 2, 3. In view of the periodicity
o(gw) = o(w),
we can restrict our considerations to values of w, and w, in the range
igl <|wil =1 and 1 < |w,| < g7
Then -
lgl < |ws| < lg|7,
so that all three w; are within the domain of convergence of the power series
expressions for X and Y considered before.

Since ¢(1) = 0 by definition, (5) holds trivially if w, = 1 or w, = 1. The
algebraic addition formula derived for the @-function yields an addition formula
for points on the Tate curve.

LetP; = (X, Y),i=1,2,3.If P, P, are on the curve, then P, + P, =0
if and only if
6) X, =X, and Y, +Y,=-X,.

From this we see that (5) holds if w,w, = 1.
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In general, suppose that all three points P; are different from 0. If X, # X,
then the addition formula for the g-function yields at once an addition formula
for points on the Tate curve, which reads

(M) (X1 = X2)’X3 = (Y, — Y2)? + (Y, — Vo)X, — X3) —

(X1 — X22(X; + X3)
(B (X, = Xp)Y; = —(X; — X)X, + X3) + (Y — Vo)X, — X3)
Now we can argue just as in the proof that ¢(w) lies on the curve. Relations (7)
and (8) hold in the classical case. Hence they are identities in the ring of formal
power series in g with coefficients in

Z[Wls W;ls Wi, W;ls (1 - Wl)—l, (1 - Wz)_la (1 - Wlwz)_l]a

and (5) is therefore a functional identity in any complete field k. The remaining
case X, = X, can be taken care of also by an explicit formula or by a con-
tinuity argument.

If w € ¢Z then X(w) and Y(w) lie in k, so @(w) =+ 0. Hence the kernel of ¢ is
¢Z, Tate has also shown that ¢ maps k* onto 4,. For this and a description of
the function field in terms of the functional equation, we refer to the exposition
of Roquette [B8].

Theorem 2. Let A(q) be the Tate curve corresponding to a choice of g€ k
with |q| < 1. For any positive integer N, the curves A(q) and A(q™) are iso-
genous.

Proof. Lét ®\(T, j) = O be the modular equation of order N. Write j(q) for

the g-expansion of j. Then from the complex theory we know that we have a
formal power series relation

y(j(g").j(g)) = O.
Hence this relation is valid for g € k* and |¢g| < 1. This proves the theorem in
characteristic 0 by Theorem 5 of Chapter 5, §3. Actually the theorem is valid
in general, and we again refer to Roquette’s exposition for this.

It was convenient to give the above proof here, but of course it is also natural
to see the theorem from the general theory. The group ¢Z plays the role of a lattice,
and in this analogy, any sublattice gives rise to an isogeny in a natural way.

Suppose given an element je k* such that |j| > 1. Then the formal g-
expansion for the modular function can be inverted, to give

1 1
q=;.+f(‘j),

where f'is a power series with coefficients in Z. Hence we can define g in k* and
get a Tate curve having the given invariant, chosen to be non-integral.
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§2. ELLIPTIC CURVES OVER A COMPLETE LOCAL RING

Throughout this section, let R be a complete local ring, Noetherian, without
divisors of zero, and integrally closed, with maximal ideal m, and quotient
Sfield K.

Let j € K be such that j~! € n. Then we can get an element ¢ € m such that

1
q=-.+f(}.)
J Jj

where fis the power series at the end of the last section. Conversely, giveng e m
the series j(g) converges in R.

We can always find a discrete valuation on X which induces the topology
on R such that the powers of m form a fundamental system of neighborhoods
of 0. For instance if R is regular, for any element a € R we define

ord a

to be the largest exponent r such that a e m’, and extend the order function to
the quotient field so as to make it a homomorphism. In general, we use the
Cobhen structure theorem, which states that a ring R as above is always a finite
module over a subring R,, satisfying the same conditions, and in addition
regular. We can then put a discrete valuation on the quotient field of R, as
above, and extend it to the quotient field of R. It serves our purposes. Such a
valuation will be called admissible.

Alternatively, one could also use the procedure known by geometers as
blowing up the point corresponding to m in spec(R), and one way of doing it
is to take generators m = (a,, . . ., a,). For at least one of the q;, say a,, the ideal

(als [N ams al/als vy am/al)

is not the unit ideal in Rla,/ay, ..., a,/a,]. Let S be the integral closure of
Rlay/a,, ..., aj/a\}in K, and let p be a minimal prime ideal containing the ideal
Sa,. Then a; = 0 under the canonical homomorphism S — S/p. The local ring
S, is a discrete valuation ring whose maximal ideal induces m in R.

Geometrically, the above construction amounts to the following. We have
a morphism spec(S) — spec(R), and we intersect S with the hypersurface
a; = 0. Thenall components of this intersection have dimension dim spec(S) — 1,
and since S is integrally closed, these components are non-singular divisors on
spec(S). One of them lies above the point in spec(R), thus giving rise tp the
discrete valuation. Cf. Zariski, A4 simple analytical proof of a fundamental
property of birational transformations, Proc. Nat. Acad. Sci. USA (1949),
pp. 62-66.

For a formal reference to the commutative algebra used above, you can
always look up Grothendieck’s EGA, Chapter IV, 7.8.3 and 7.8.6. The point
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is that starting with a certain type of ring called excellent, and including Z,
a field, or a complete Noetherian local ring, then the rings obtained by taking
completions, localizing, taking finitely generated extension rings, or taking
integral closure, will have all desirable properties. For instance, we used the fact
that the integral closure of R[b,, . . ., b, is finite over this ring (b; = a;/a,). We
shall continue to assume such basic results from commutative algebra. For
another reference, the reader can look up Matsumura’s Commutative Algebra,
Benjamin, Reading, Mass. 1970, Chapter XIII.
Let 4 be an elliptic curve defined over K, with invariant j = j(g). Let D, = ¢2.
We denote by D!’N the subgroup of K* consisting of all elements whose N-th
_power lies in D,. This subgroup is generated by the N-th roots of unity, and any
N-th root of ¢, say ¢!/N. The factor group

DID,
is isomorphic to a direct product of cyclic groups of order ¥, generated respec-

tively by a primitive {y and ¢'/¥ mod g%, if the characteristic of X does not divide
N.

Theorem 3. Let A have invariant j(q) as above, and q lie in the maximal
ideal m of R. Let Ry be the integral closure of R in Ky = K({x, g"'Y). Then
the Tate mapping defined by the same formulas as in Theorem 1 converges in
Ry and induces a homomorphism of DN into Ay. If N is prime to the charac-
teristic of K, it induces a Galois isomorphism of D}¥| D, onto Ay, and

K(Ay) = K(ln, 4').

Proof. Let w = {g*" where { is an N-th root of unity, and s is an integer.
The series giving X(w) and Y(w) in the preceding section are seen to converge
in Ry, and even in R[{y, ¢'/V], to yield elements in K({y, ¢'/¥). Formulas (2.X)
and (2Y) exhibit the desired convergence. Note that a finite number of terms
are rational functions in ¢, w, but that all but a finite number of terms lie in the
maximal ideal of Ry, and tend to 0. We then see that the mapping is a homo-
morphism of D}/¥ either by repeating the arguments of Theorem 1, or by re-
ducing the present situation to the preceding one by means of a discrete valuation
v as constructed above. We get an injective homomorphism of DY¥/D, into Ay.
If N is not divisible by the characteristic of K, the homomorphism must be
surjective since 4, has order N2.

Let G be the Galois group of K(A4y) over K. Then G operates in a manner
compatible with the Tate parametrization, i.e. that for o € G we have
X(ow) = X(w)* and Y(ow) = Y(w)°
if we D}/N. This is clear by continuity. It is then clear that
K(Ay) = K(Cn, g'"),
thereby proving our theorem.
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Example. Let A be an elliptic curve with transcendental invariant j over Q.
We consider the ring Z[1/j], and its completion at the maximal ideal generated by
(p, 1/j). Let R be this completion, so that actually

Let K| be its quotient field and let Ky = K,;{4,). Then
Ky = K, ql/N)'

The Galois group of this extension is easily determined. Over K,({y) it is
a Kummer extension, whose Galois group is generated by the map

q'™ = Lyg ',

Let ¢ = (X, Y) be the Tate mapping, and let P, = o({y), P, = ¢(g'/V). Then
the above element in the Galois group is represented by the matrix

11
0 1/
On the other hand, suppose for simplicity that p*N. Then {5 generates an

unramified extension of Z,[[g'/*]], whose Galois group is generated by the
Frobenius automorphism such that

v s

represented on the points of period N by the matrix

p 0
(6 3)
The full Galois group Gal(Ky/K,) is the subgroup of GL,(Z/NZ) generated by
the above two elements (when p,{’N). When p|N, then the root of unity ramifies,
but the group is again easily determined, since K over the quotient field of
Z,[[g*/¥]] has the same Galois group as Q,((y) over Q,. '

Observe that taking the union of all fields K, yields a field which we denote
by K. The group of all matrices

1 b ~
<0 1) , be ];I Z,
1s contained in the inertia group of a maximal ideal M lying above (p, ¢) in R,.
If we restrict this group to the subfield obtained as the union of all Ky such that
p,{’N, then it is the inertia group of this subfield, since the N-th roots of unity
for p*N generate an unramified extension.

Igusa was the first to recognize the presence of such unipotent elements in
the Galois group in the case of bad reduction [25].
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T 7zl'ouglzout this chapter we let K denote a field of characteristic 0.

§1. THE GALOIS p-ADIC REPRESENTATIONS

We return to p-adic representations. Let 4 be an elliptic curve defined over
K. We take points of 4 in a fixed algebraic closure K,. We have the p-adic spaces
T,(4) and V,(4)
over Z, and Q, respectively. We recall that T,(A) consists of all vectors

(a, a,, .. .), a;eA
such that p'a; = 0, pa;,, = a;; and V,(4) consists of all vectors
(aO’ ag, az, . . ')

such that g, is an arbitrary point of order a power of p, and pa;,.; = a;. We
know that T,(A4) (resp. V,(A)) is free of dimension 2 over Z, (resp. Q).
The Galois group Gal(K,/K), also denoted by G, operates continuously on
both T,(4) and V,(A) in the obvious way. If 6 € G, then
a(ay, a,, . ..) = (6a;, 6a,,...).
Thus we get a representation
p: Gk = GL,(Z,)
if a basis of T,(A) over Z, has been selected, and without such a selection, into
Atz (T,(A)).

For simplicity, we shall write T, V,,, omitting the 4 if the reference to 4 is
fixed throughout a discussion. We call the above representations the p-adic
(Galois) representations associated with 4 over K.

If 2: A — Bis an isogeny defined over K, then 1 induces a Gg-isomorphism

V,(0): V,(4) - V,(B), ‘
205
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but of course only an injection of T,(4) into T,(B). Indeed, if A is defined over
K and ¢ € Gk, then for any point g of 4 in the algebraic closure of X, we have
May = i°(a°) = Ma°).

It is then clear that the induced map on ¥ ,(4) commutes with the action of the
Galois group. For simplicity, we also write V(1) = A.

It is a major problem to prove the converse over fields which are of arith-
metic interest, and the first progress in this direction was made by Serre [B11],
whose results and methods we reproduce in this chapter.

Remark 1. We observe that all the results will be such that they allow us to
pass to open subgroups of the Galois group over the field K. Thus whenever
we want to prove an isogeny theorem, it suffices to do it over a finite extension
of K, which we select at our convenience. We can also do it over a finitely
generated extension, because the Galois group of a Galois extension does not
change when we lift this extension over a purely transcendental extension of K,

Remark 2. The Galois representation of Gk on V, factors through the Galois
group leaving K(A'?) fixed, where A‘? is the group of points on 4 having
p-power order. Hence we are really concerned with the representation of the
Galois group of K(A'P’) over K. In particular, if 4, A’ are two elliptic curves
defined over K, and V,(4), V,(4") are Gg-isomorphic, then K(4'?) = K(A'P).

There is a converse to the preceding remark in certain cases.

Theorem 1. Let A, A’ be elliptic curves defined over K, and assume that
K(AP) = K(A''P). Let G be the Galois group of K(A*?) over K, and assume
that the representations of G on T,(A) and T,(A") map G onto open subgroups
of SLy(Z,). Then V ,(A) and V (A") are Gg-isomorphic for some finite extension
Eof K.

The theorem follows from the next lemma.
Lemmal. Let G be an open subgroup of SL,(Z,) and let
p1:G — SLy(Z,) and p2:G — SLy(Z,)
be continuous injective representations. Then there exists g € GLy(Q,) such
that g='p,g = p, on an open subgroup of G.
Proof. Without loss of generality we may assume that p, is the identity
and p, = p. Thus p induces a local isomorphism of SL,(Z,) into itself. We look

. . _ (0 1 _ /00 1 0
atxtseﬂ’ectontheLxealgebra.LetX—(O 0>,Y— (l O),andH: (0 —l)'

Then [X, H] = 2X, [Y, H] = —2Y and [X, Y] = H. Since p maps H on a
semisimple element, after a conjugation by an element of GL,(Q,) if necessary
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we may assume that p sends H into a scalar multiple of H. Looking at the above
brackets shows that this scalar is +1, and another conjugation reduces us to the
case when p leaves H fixed. Again looking at the effect of p on the brackets
we conclude that p sends X into aX and Y into Y, and then that b = o~ '.

Conjugation by (é 2_1) then returns aX to X and 5Y to Y. Hence the effect

of p on the Lie algebra is inner. It follows that it is locally given by a conjuga-
tion on the group.
CordIlary. Let A, A" be elliptic curves over K, and assume that K(AP)
and K(A''P") have an intersection which is of infinite degree over K. Assume
that the representations of Gal(K(A4”)/K) on T,(A) and Gal(K(4'”")/K) on
T,(A") map the Galois groups onto open subgroups of SLy(Z,). Then there
is a finite extension E of K such that ‘
E(A(")) = E(A’(”)),
and Theorem 1 applies. )
Proof. Since the Lie algebra of SL,(Z,) is simple, there exists an open
subgroup W of Gal(K(4‘?)/K) having the following properties:
i) W has no finite subgroup other than 1.
ii) Any closed normal non-trivial subgroup of W is also open, and hence
of finite index.
Let K, be the fixed field of W. We consider the inclusion of fields:

K, < K;(AP) K (4'P) < K,(AP).

The intermediate field is of infinite degree over K, and is the fixed field of a
closed normal subgroup of W. By the above two properties, it must be equal
to K,(4”). Arguing the same way with respect to 4’, i.e. selecting an open
subgroup W' in a similar way, we can find a finite extension K, of K such that

Ky (AP) = K(4'P).

This proves our corollary, with E = K,.

The assumptions of the corollary concerning 4 and K are always satisfied

in the following cases.

1) K is obtained from a number field by adjoining all roots of unity, and
then making a finite extension. 4 has no complex multiplication. This is a
theorem of Serre, whose proof will be reproduced in the next chapter, in
case the invariant of 4 is not integral over Z.

i) K is finitely generated over an algebraically closed field of characteristic
0, and A has transcendental invariant over this field. This is clear from

Chapter 6. :
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§2. RESULTS OF KUMMER THEORY

In this section we assume that K has characteristic 0. We let u, be the group
of p"-th roots of unity in an algebraic closure K,. We thus use the p-logarithmic
notation, and similarly let 4, denote what we would otherwise write as Ap~,
the group of points of order p" on an elliptic curve 4.

Welet G = Gx = Gal(K,/K) through the section.

We suppose that K is the quotient field of a ring R, complete, local Noetherian,

integrally closed, and we assume that the prime p lies in the maximal ideal m,

Let ¢, g’ be elements of m and let 4 = A(q) and A’ = A(g") be the elliptic
curves as in the Tate parametrization, defined over K. Let D, = g%, We know
that there is an isomorphism

D)"ID, ~ A,,

Actually, the elliptic curve will be irrelevant for this section, and one could
phrase all the statements completely in terms of the Kummer extensions
K(D}/*"), letting the above & be an equality.

As in Kummer theory, if ze D}/?" then z*" lies in D,, and there is an
integer ¢ such that

27" = ¢°.

The association z + class of ¢ mod p"Z defines a homomorphism of A, onto
Z/p"Z, and hence gives rise to the exact sequence
M 0—pu, > A4, > 2[p"Z ~0
of G-modules, the Galois group acting trivially on Z/p"Z. Taking the limit,
we obtain an exact sequence
2 0= T,(1) = Ty(d) > Z, — 0,
where G operates trivially on Z,,. Tensoring with Q, yield the exact sequence of
G-modules,
3) 0-V,(w—>»V,4)~-»Q,»0. -

Lemma 1. The above sequence does not split.

To prove Lemma 1, we introduce an invariant x which belongs to the group

lim HY(G, u,).
ra—
Let d be the coboundary homomorphism
d: HG, Z[p"Z) - H'(G, u,)

with respect to the exact sequence (1), and let x, = d(1). We define x to be the
element of lim H'(G, y,) defined by the family {x,}, n = 1.
-
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Lemma 2. i) The isomorphism

5: K*/K*" — H'(G, ,)
of Kummer theor;v transforms the class of ¢ mod K**" into x,.
ii) The element x is of infinite order.

Proof. Recall that & is induced by the coboundary map relative to the
exact sequence

1oy, - K¥'5 K* 5 1,

The first assertion of Lemma 2 is immediate from the definitions, because the
isomorphism of Kummer theory transforms an element a € K* into the class
of the cocycle a?/a, 0 € G.

To prove the second assertion, let v be a discrete valuation on K which ig
admissible, i.e. induces the given topology on R. Then the valuation defines a
homomorphism

fu: K*E* > Z[pZ,
and hence a homomorphism

f:lim K*K*" — 2,

If we identify x with the corresponding element of lim K*/K*P", as in (i), then
we have -

fx) = v(g),

and hence x is of infinite order, proving Lemma 2.

We can now prove Lemma 1. Suppose the sequence (3) splits. There is a
G-subspace W of ¥ (A4) which is mapped isomorphically onto Q,. Let
Wr = W n T, (A).
The image of Wy in Z,is p¥Z, for some N = 0. But then it follows immediately
that p¥x = 0, contradicting the fact that x has infinite order.

Lemma 3. Let R, be the integral closure of R in
K, = K(‘u(p), qI/p") = K(A(P)).
Let M be the maximal ideal of R, lying above m. Let I be the inertia group
of M in Gal(K,/K). Then I is of finite index in Gal(K_/K).
Proof. Let v be an admissible discrete valuation on K. We denote an exten-
sion of this valuation to K., by the same letter. Let /, be the inertia group for this
extended valuation. It will suffice to prove that 7, is of finite index in Gal(K,/K),

because I > I,. Without loss of generality, we may therefore assume that R
is a discrete valuation ring. Let K, be the completion of X at v, and let L be the
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completion of the maximal unramified extension of K. Then L again has a
discrete valuation v. It will suffice to prove that Gal(Z(A4‘?)/L), identified in the
usual manner with a subgroup of Gal(K(4‘”)/K), is of finite index. The picture
of Galois theory is as follows.

L(A(”))

e
e d
o

K(A(p)) L

KEA"”) nL

i
H

K

It is known from elementary algebraic number theory that if { is a primitive
p"-th root of unity, then 1 — { has order 1/o(p") = 1/(p — 1)p"~! at the p-adic
valuation giving p order 1. Since v is a discrete valuation, it follows that there is
a constant ¢ such that for all n,

[L(py): L] 2 cp”,
and in fact the ramification index of L(y,) over L satisfies a similar inequality.
The operation of the Galois group on T,(4) is represented, relative to a basis

by matrices
a b
0 d

with components in Z,. There exists some positive integer r such that the
equation
X" —q=0
has no root in L(u'?). For otherwise, we obtain
L(;t(”)) — L(,u(”), qllp“’) — L(A(”)),;

and the Galois group of L(A‘?) over L is abelian, which means that the above
matrices must be diagonal, whence the representation is reducible, contradicting
Lemma 1, applied to the field L, with its discrete valuation ring. By an elementary
irreducibility criterion, or even Kummer Theory, this implies that the degree of

L(u'®, g'7")

over L(u'?) satisfies an inequality of the same kind as above, i.e. it is at least
equal to ¢p” for some constant ¢. Hence there is a constant ¢ such that for all n,

[L(4,): L] 2 cp™.
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Since the Galois groups of K(4,) over K and L(A,) over L have an order of
magnitude at most equal to ¢’p?" for some constant ¢’, it follows that

Gal(L(A4™)/L)

is of finite index in Gal(K(4"")/K). Since L is maximal unramified, it follows
that L(A‘?) is totally ramified over L, thereby proving our lemma.

§3. THE LOCAL ISOGENY THEOREMS

Serre [35] discovered that over a p-adic field, an elliptic curve whose j-
invariant is not integral satisfies the isogeny theorem: If 4, B are such elliptic
curves, and their p-adic representations on ¥, are Galois isomorphic, then the
curves are isogenous. It turns out that his proof, with minor modifications,
is valid over a more general type of local ring [28a]. Thus we shall prove:

Theorem 2. Let R be a Noetherian complete local ring, integrally closed,
without divisors of 0, and of characteristic 0. Let K be its quotient field.
Assume that the maximal ideal m of R contains the prime number p, and that
R/wi is finite. Let A, A" be elliptic curves defined over K, with invariants j, j’
such that 1/j and 1/j" are contained in m. Suppose that V,(A) and V,(A4’) are
Gy~isomorphic. Then A and A' are isogenous.

Proof. Tt will suffice to prove that there exist integers 7, i’ such that ¢°* = g%,
by Theorem 2 of the preceding chapter. Let
@: V(4 = V,(4)
be a Gx-isomorphism. By Lemma 1 we know that V,(u) is the only 1-dimensional
subspace of V,(A) (resp. V,(A4")) which is stable by Gx. Hence ¢ maps V(1)
into itself. Moreover, after multiplying ¢ by some p-adic integer, we may
suppose that ¢ maps 7,(4) into T,(4"). We then have a commutative diagram:
0Ty —T(4) -Z,-0
4) rl 2 s|
0->T,()->T(A)>Z,->0

where the vertical arrows on the ends are multiplication by p-adic integers r and
s respectively. Let x, x’ be the elements of lim H*(G, u,) associated to 4 and 4’
above, then the commutativity of (4) shows that

rx = sx'.
Using again our discrete valuation v, we get a homomorphism
lim HY(G, u,) = lim K*/K**" - z,
— —
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and we have seen that the image of x is v(¢) and the image of x' is v{g'). Hence
rulg) = su(q).
It will now suffice to prove that
o = qv(q')/q'v(q)

is a root of unity.
We look at the image of « in lim K*/K*P", This image is

ug)x — v(g)x’,
and multiplying by s, we find 0 by using the above relations. Hence the image
of z in lim K*/K*P" is 0.
We:l—re thus reduced to proving that the kernel of the canonical map
K* > lim K*/K*"

is finite. If an element « lies in the kernel, then & must be a p"-th power in X for
all n. If « does not lie in R, then l/a does not generate the unit ideal in R[1/«],.
for otherwise « would be integral over R, whence in R, a contradiction. A
minimal prime over the ideal (1/x) in the integral closure of R[l/a] would give
rise to a discrete valuation where a has a pole, and hence could not be a p"-power
for large n. So « lies in R. Similarly, a cannot lie in m, otherwise 1/a does not
lie in R. Hence « is a unit in R. Since the residue class field is finite, and R is
complete, there is a finite subgroup k* in R representing the non-zero elements
of R/m, and the group of units U of R is isomorphic to a product

U=~ k* x Uy,

where U, consists of the units congruent to 1 mod nt. If w e m, then (1 + w)?”
liesin 1 + m". From this it is clear that « must lie in k*. This concludes the proof
of Theorem 2.

Remark 1. Having proved that two integral powers of g and ¢’ are equal, it is
then also true that the curves are isogenous over K. This follows from the
general Tate theory viewing g% and ¢'Z as “lattices”. ’

Remark 2. In higher dimensions, one can define the analogue of the “‘multi-
plicative” parametrization given here for certain abelian varieties. However,
Ribet has given an example where the corresponding local isogeny theorem is
false in dimension 2, over an ordinary p-adic field. There remains the problem
of determining if it is true for “generic” abelian varieties.

Theorem 3. Let R be a complete Noetherian local ring, without divisors of
zero, integrally closed, with maximal ideal m, and quotient field K of character-
istic 0. Assume that Rfw is finite. Let A be an elliptic curve defined over K,
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with invariant j € R, and let A" be defined over K, with invariant j' such that
1/j" € m. Then the representations of Gy on V,(4) and V,(A’) for any prime
p are not isomor phic.

Proof. Passing to a finite extension of K and the integral closure of R in
this extension if necessary, we may assume that 4 has non-degenerate reduction
mod nt. Furthermore, 4’ becomes isomorphic over a finite extension of K to
the curve having the Tate parametrization in terms of g’, and hence again
without loss of generality, we may assume that 4’ is the Tate curve. We now
distinguish two cases.

The reduction A of 4 mod n has a point of order p in the algebraic closure
of the residue class field R = R/m. Then K(A‘P) contains an infinite unramified
part, corresponding to the infinite residue class field extension

R(Z(P))'
On the other hand, by Lemma 3, we know that K(4'¢?) is almost totallyramified,
in the sense of that lemma. Hence 4 and A’ cannot be isogenous. (If p # charac-
teristic of R/m, then all of K(4‘”) is unramified, and the argument works evern
more strongly.)

The reduction A of 4 mod m is supersmgular i.e. has no point of order p,
so that 4 = 0. In that case, we use an admissible discrete valuation v. The
representation of Gx on V,(A4') is triangular, and has in particular an invariant
subspace of dimension 1, corresponding to V,(1). On the other hand, Serre has
proved that the representation of Gy on V,(4) is irreducible, [36], p. 128, Prop. 8.
[For the convenience of the reader, we shall reproduce the proof in §4.] Hence
these representations cannot be isomorphic, and the curves are not isogenous,
as was to be proved.

Remark. The assumption that the residue class field is finite can be weakened
to finitely generated over the prime field, since it is known that for such field k,
the extension k(A‘?) of k has an infinite separable part if 4 is not supersingular.
However, we shall not use this in the sequel.

§4. SUPERSINGULAR REDUCTION

We now deal with the irreducibility property mentioned above. For the rest
of this section, we let 4 be an elliptic curve defined over a field K of characteristic
0, with a discrete valuation. We let og be the ring of integers of the valuation,
my its maximal ideal. To prove that V,(A4) is G4-irreducible, it suffices to do so
with respect to any closed subgroup of Gy. Thus we may assume without loss
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of generality that K is complete. We let o be the ring of integers in the algebraic
closure of K, and we let m be the maximal ideal of 0. We assume that o/m has
characteristic p. ‘

Suppose that A has non-degenerate reduction mod m,. We want to find
an appropriate parametrization of the points of 4 which will exhibit their
ramification properties. This is done by studying the formal law defined by 4
over og. (Cf. Serre’s Lie Algebras and Lie Groups, Chapter 4 and Appendix 1, §3.)
Assume for simplicity that the characteristic of the residue class field is # 2, 3
and that A is in Weierstrass form,

y2=x>+bx +c, b, c € og,

with non-degenerate reduction. The origin is represented by the point at infinity.
Let (x,, y;) be a point in A, which is in the kernel of the reduction map. Then
X, ¥, cannot lie in og.

It is clear by comparing poles that

—2m — -3m
Xy = wm , Yy = un s

with some positive integer m, units u,, v;, where n is an element of order 1 at
the discrete valuation of K. Let
t = ol and 5= l .
y y
The correspondence (x, y) — (¢, 5) changes the Weierstrass model into the curve
defined by
s =13+ bts* + cs*.
The kernel of the reduction map is then represented by points in the (s, ¢) plane,
with coordinates in m, and the origin of A, has coordinates (0, 0) in the (s, )
plane. Observe that ¢ is a local uniformizing parameter at the origin of A.
[The only use we have made of the assumption that the characteristic of o/ is
# 2, 3 is to give this explicit parameter. Except for this, all the arguments which
follow hold quite generally. The p-adic analytic study of the points on an elliptic
curve was originated by E. Lutz, “Sur I'equation y* = x* — Ax — B sur les
corps p-adiques,” J. reine angew. Math. 177 (1937), p. 204.]
Let z be the point with affine coordinates (x, y) on A4, and write ¢ = #(2).
It is easily shown by an explicit computation that multiplication by p on 4 is
represented by a power series with coefficients in og. In other words,

t(pz) = f(t) = pt + axt* + at> + - -+,

with a; = p, and a, € ox for all n. [In general, the formal group law is defined
by a power series in two variables,

1z + 2) = F1(2), 1(2"),
and fis obtained by iterating F, p times, setting z = z'.] See Appendix 1, §3.
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Assume that the absolute value on K defined by the discrete valuation is
normalized in such a way that |p| = 1/p. Let in general

f@) = ait + at? + -
be a power series with coefficients in og. Let & be a positive integer such that

lal < 1for1 £i £ h — 1, and suppose that g, is a unit u. Then the Weierstrass
preparation theorem tells us that we can factor f'as

f(@) = g@W(@),
where g(1) is a polynomial of degree h, and y(¢) is a unit in the power series ring
og[[#]], i.e. a power series starting with a unit. In particular, a zero of fin m is
a root of g. For the proof, see A. Frohlich, Formal Groups, Lecture Notes 74,
Springer-Verlag, 1968, Chapter I, §3, Theorem 3.
We apply this to the power series obtained from #(pz) on our elliptic curve.

t(pz) =f(t) =Pt + ath + -+ ah_lth“l =+ uth 4 - .

where » is a unit, and |g;| < 1,1 £ i < h — 1. We see that a point Q € Ak, lies
in the kernel of the reduction map if and only if 7(Q) = 0, and this occurs if
and only if 2(Q) e m.

Assume now that 4 has supersingular reduction, i.e. that A consists -
only of the origin. Then all points of 4¢” lie in the kernel of the reduction, and
in particular, there are p? elements in A4, so that 4 > p?. Indeed, if pQ = O,
then #(Q) is a zero of f, because ¢(0) = 0.

Theorem 4. Assume that A has supersingular reduction, i.e. that AP = Q.
Let w = (wy, wy,...) €T, (A), so that pw,,, = w,, and suppose w, # O.
There exists a number C > 0 such that the ramification index of K(w,) over
Kis = Cp*".

Proof. Lett, = t(w,). Then |z,| < 1, and we have the relation
ty = Plyvy + Gplgeg + @i+ uth g
First let us prove that
lim |¢,| = 1.

n—=+o

We cannot have |¢,,,] < |¢,[, because the right-hand side would then have an
absolute value < |¢,|. Furthermore, the absolute value of the right-hand side
is at most '

max{'!’l Itn+1" Itn+1|2}9
and its absolute value must be the same as |¢,|. This shows that
|tn+1| gpltn[ or ,tn+1| 2 ltnl*}'
From this we conclude that |z,| - 1 as# — 0.
If |£,] is sufficiently close to 1, then the term uz#,, on the right-hand side has
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absolute value strictly greater than any other term, because |a < 1 for
1 £1i £ h~ 1. We must therefore have

[t,] = 'Ut:ﬂl = ltn+1|h-

Thus from a certain n, on, the ramification index at the n-th step increases at
least by a factor of # = p?. This proves our theorem.

Theorem35. Let Abeanelliptic curve defined over a field K of characteristic
0, complete with respect to a discrete valuation, and with non-degenerate
reduction A, which we assume supersingular. Then V (A) is Gy-irreducible.

Proof. Let w = (wy, wa, . ..) € T,(4) and suppose that w; # 0. It suffices
to prove that there exists o € Gy such that ow does not lie in the 1-dimensional
module over Z, generated by w, because then w and ow form a basis of ¥,(4)
over Q,, whence V,(A) is Gx-irreducible. We use Theorem 4, and need only that

[K(w,): K] = Cp™".
Suppose that ow is a p-adic multiple of w for all ¢ € Gg. Take n large. Then for
all o € G, the point ow, is an integral multiple of w,, and there are at most p"

such multiples. This contradicts the degree inequality above, and proves that
Vp(A) is irreducible, as desired.

§5. THE GLOBAL ISOGENY THEOREMS

We shall now see that the isogeny theorem holds globally, over a number
field, for an elliptic curve having non-integral invariant; and over a function
field for an elliptic curve having transcendental invariant, both when the function
field has a constant field which is a number field, and when it is over the complex
numbers. The first case, over number fields, is due to Serre.

Theorem6. Let A, A' be elliptic curves over a number field K, with invariants
JsJ'. Assume that j is not p-integral for some prime v of K, dividing p. Assume
that Vo(A) and V,(A') are Gy-isomorphic. Then the curves are isogenous.

Proof. We have seen in §3 that j’ is necessarily not p-integral. The Galois
representations being isomorphic on Gy, they are isomorphic on any closed
subgroup, in particular the subgroup which is the Galois group over the p-adic
field K. This reduces our problem to the local case, and concludes the proof by
Theorem 2.

At the time this book is written, the isogeny theorem in general over number
fields is not known.
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Next we deal with the generic case. Deligne [2] proved it over the complex
numbers by using Hodge structures. I showed [28a] that the Serre arguments for
p-adic fields hold also in this case by working over Z{1/j] as follows.

Theorem 7. Let A, A’ be elliptic curves over a field K, finitely generated
over the rationals. Assume that they have transcendental j-invariants. Let p
be a prime number, and assume that V,(A) and V,(A') are Gy-isomorphic.
Then the curves are isogenous.

Proof. 1t is trivial that j, j* must be algebraically dependent. Hence X can
be selected to be a finite extension of Q(j, j'), of transcendence degree 1 over Q.

Next we prove that j’ is integral over Z[j] and vice versa. Suppose this is
not the case. There exists a homomorphism of Z[j] which extends to Z[j, 1/]
sending 1/j’ to 0. Let R be the integral closure of Z[j, 1/j°] in K. Extend the
homomorphism to R. By composing our homomorphism with another one if
necessary, we may assume that our homomorphism takes on its values in a finite
field. Let m be the kernel in R. The completion R,, has no divisors of 0 by EGA,
Chapter IV, 7.8.3 and 7.8.6. The Galois representations being isomorphic on
Gy, they are isomorphic with respect to any closed subgroup, in particular the.
subgroup arising from the extension K, (4‘?) = K, (4", where K, is the
quotient field of R,.. This is a contradiction in view of Theorem 3. Hence ;'
is integral over Z[/].

(For the reference to commutative algebra, the reader can also look up
Matsumura’s book on the subject, W. A. Benjamin, Reading, Mass., 1970,
Chapter XIIL.)

Consider the ring Z[1/j, 1/j']. We contend that the ideal generated by
P, 1/j, 1/j' is not the unit ideal. Let o be the local ring in Q(j) of the homo-
morphism of Z[1/j] which sends p and 1/j to 0. Any place of Q(;) over this
homomorphism must send 1/’ to 0. Otherwise, suppose 1/’ goes to a finite
element ¢ # 0. Then j goes to 1/c, and j goes to infinity, which we have already
seen is impossible. Similarly, 1/’ cannot go to infinity. This proves our contention.

Let R be the integral closure of Z[1/;, 1/j’] in K and let 1n be a maximal ideal
of R containing p, 1/, 1/j’. We now argue as in the first part of the proof, with
R,., reducing our problem to the local case, and cite Theorem 2 to conclude
the proof.

Theorem 8. Let K be a finitely generated field over an algebraically closed
Jfield k of characteristic 0. Let A, A’ be elliptic curves defined over K, with
invariants j, j’ which are transcendental over k. Assume that V(A) and V (4")
are Gy-isomorphic. Then the elliptic curves are isogenous.

Proof. Asin Theorem 7, the invariants j, j' must be algebraically dependent
over k, and we can assume X finite over k(j, j*). Without loss of generality, we
can assume that A4 is defined by a Weierstrass equation
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¥y =4x* —gx -y,
and that 4’ is defined by

y=4x*—g'x~ ¢,
after replacing K with a finite extension if necessary. Then k(g) = k(j) and
k(j") = k(g’). There exists a function field K, with constant field k,, such that &,
is contained in &, is finitely generated over Q, Kj is a finite extension of ko(J, /'),
and K is obtained from K, by extending the constants from k, to k. The picture
is as follows.

K
)
Ko k(j, J)
kosn/ ‘
o\
[, —

The only new constants introduced over Q by the points A” are the p-power
roots of unity (Chapter 6, §3). Let k, be the constant field of Ko(4¢?), i.e. the
algebraic closure of k4 in Ko(4?). Let K, = kK, be the corresponding con-
stant field extension. We must then have

K (AP) = K (4).
Indeed, if we make the constant field extension to k, the two fields

K, (4% and K (A
become equal. Let
E = K, (AP n K, (4.

If E is a proper subfield of K;(4‘”), then there is an element # | of the Galois
group of K;(A'?’) over E which extends to an element of the Galois group of
K (AP, AP over K,(4’'P), thus acting trivially on A’‘?, contradicting the
hypothesis that the Galois representations over X on V,(4) and V,(4') are
isomorphic.

We now conclude that

Ko(AP) = Ko(4').
Let G be the Galois group of the extension K,(4'”) over K,. We have two
representations
p: G — Aut T,(A) and p':G = AutT,(4")
onto open subgroups of these automorphism groups, each .one of which is
isomorphic to GLy(Z,) after a choice of basis over Z,. Let S be the Galois

group of K;(A‘”’) over K,. Then the image of S under both p and p’ is an open
subgroup of the special linear subgroup of Aut T,(4) and Aut T,(4"), respec-
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tively, that is this image is open in SL,(Z,) under both representations. The
center of S maps onto open subgroups of the diagonal groups, formed with
units in Z,. An open subgroup W of the center, not containing ~1, is then such
that W S = 1, whence S x WisopeninG.

The representations of W on ¥,(4) and V,(4’) give rise to two characters
¥, ' of W into the group of p-adic units, such that if ¢ € W, then the matrix
representation of ¢ on 7,(A4) is a diagonal matrix

(9 v

and similarly for ¢’. The effect of o on a p-power root of unity { has been
shown to be \
o(0) = [P,
This implies that y(c?) = y'(0?) for all ¢ € W. Since (W: W?) is finite, passing
to an open subgroup of W is necessary, we may assume without loss of generality
that = ' on W. ‘
By hypothesis, we know that there is a Q,-isomorphism
h: V,(A) = V,(4)

which is also an S-isomorphism. Since W acts on V(4) and ¥ (4) as the same
group of p-adic multiplications, it follows that 4 is also a W-isomorphism, in
other words, 4 is a G-isomorphism for the group G = S x W. The fixed field

of G is a finite extension of K, finitely generated over the rationals, and we are

therefore reduced to the situation of Theorem 7, thus concluding the proof of
Theorem 8.

The argument given at the end also shows:

Theorem 9. Let A, A’ be elliptic curves defined over a field K. Assume
that the representations

p: Gy — Aut V(4) and p": Gx — Aut V (4)
map Gy onto open subgroups of AutV (A) and Aut V (A') respectively.
Let L = K(u'P) be the field obtained by adjoining all p-power roots of unity

to K. If the restrictions of p and p’ to G are isomorphic, then p and p' are
isomorphic on an open subgroup of G.

A result of Serre states that the hypotheses of Theorem 9 are satisfied in the
case of number fields, for elliptic curves without complex multiplication.
In each one of the cases of Theorems 7 and 8, the curves are actually

isogenous over the given field X. This comes from an easy additional argument,
as in Serre, namely:

Theorem 10, Let A, A’ be elliptic curves defined over a field K of character-
istic 0. Assume that V (A) and V (A") are G g-isomorphic, and that the images
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of Gal(K,/K) in Endz,(V,(A)) and Endz(V,(4")) contain an open subgroup

of SLy(Z,). Let ).: A — A’ be an isogeny. Then 4 is defined over K.

Proof. First 4 must be defined over a finite extension of K (otherwise A
would have infinitely many distinct conjugates, corresponding to distinct images
of a smallest field of definition under isomorphisms in a sufficiently large
algebraically closed field). Say 2 is defined over a Galois extension L of K.
Let G, and Gx be the Galois groups of K, over L and K respectively, and let
G = Gal(L/K). It suffices to prove that ¢ = A for all ¢ € G, and since

%(a®) = May

for any point a of 4 rational over the algebraic closure of X, it suffices to prove
that the endomorphism

V(2): Vp(4) = V(4
commutes with all ¢ € G. As noted already in §1, we know that V,(4) lies in
Homg, (V, V') {writing V = V,(4) and similarly for V). It will suffice to prove
that

Homg, (V, V') = Homg, (V, V').

We know that ¥ and V' are G-isomorphic. Hence it will suffice to prove that

Endg (V) = Endg, (V).

Having assumed that the image of Gy, and hence Gy, in End(V) contains an
open subgroup of SLy(Z,), it follows that the only G;-endomorphisms of V
must be scalar multiples of the identity, i.e. are the endomorphisms af with
a € Q,. These are also Gg-endomorphisms, and our assertion is proved.

In the generic case, we know from function theory that the image of the
Galois group Gy (when X is finitely generated over Q) in End(V) contains an
open subgroup of SL,(Z,). In the next chapter, this will be proved over number
fields for curves with invariant which is not p-integral, so that our remark
applies to this case too. As mentioned before, the proof when j is integral over

Z (and A4 has no complex multiplication) is harder and won’t be given in this
book.



17 Division Points over
Number Fields

We know from Chapter 2, §1 that over any field X, the Galois group of the
field obtained by adjoining to K all coordinates of points of finite order on an
elliptic curve A defined over K is representable as a closed subgroup of the
product

H GLZ (Zt) s
¢

taken over primes £. In this chapter, we reproduce Serre’s fundamental work
that over a number field this Galois group is always open in the product, in the
case that the elliptic curve has a non-integral invariant at some prime p. Serre
also proved the theorem in general, when the curve does not have complex
multiplication, but the proof involves different, and in many respects deeper,
techniques. The special case to be given here is sufficiently important, and fits
in well enough with the preceding chapters to be included, since the proof is
quite short.

§1. A THEOREM OF SHAFAREVIC

Let K be a number field. Let o be the ring of algebraic integers o, and let
S be a finite set of primes of XK. We let o4 be the ring of S-integers, i.e. elements
of K which are integral for all p ¢ S. The group of units of o is denoted by o%.

Let A be an elliptic curve defined over K. We shall say that A has good
reduction at a prime p of K (or at one of the discrete valuations » of K) if 4 is
isomorphic over K to an elliptic curve defined by an equation having non-
degenerate reduction at the local ring o, (resp. 0,). If p does not divide 2 or 3,

221
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we know that this equation can then be chosen to be a Weierstrass equation
whose discriminant is a unit in the local ring.

Theorem 1. (Shafarevié) There is only a finite number of K-isomorphism
classes of elliptic curves over K having good reduction at all primes of K
outside S.

Proof. Shafarevi€ deduced his theorem from a theorem of Siegel on integral
points on curves of genus 1. The particular exposition given here is due to Tate—
it is also the one in Serre’s book [B11]. Suppose that A is defined by the equation

Y2 =4xP — g,x — g,

with ¢,, g5 € K, and has good reduction outside S. Without loss of generality
we can assume that S contains all primes dividing 2 and 3. For each v ¢ S there
exists an elliptic curve isomorphic to 4 over K, defined by an equation

yt=4x’ - g,,%x — g3,
with g, , and g5 , € 0, and discriminant A, € o¥, so that there exists ¢, € & such
that
92 = €92 93 =Cods, A=A,

We may also enlarge S so that og is principal, because making S bigger only
strengthens the theorem. For almost all v ¢ S we can take ¢, = 1, i.e. wherever
A is a unit. Write

— T .
Cy = Pu" Uy,

where u, is a unitino,. Let
c= l:[ .
Then let
gy =c *g, and  gj = c %,
so that A" = ¢~'2A, It follows that the curve 4’ defined by
V=42 —gix—gy

is K-isomorphic to A4, and has non-degenerate reduction at all » outside S. We
can still change 4’ by changing the coefficients with a factor b € 0¥ so that
A"+ b'2A” = A". Therefore A4 is K-isomorphic to an elliptic curve 4” with
coefficients in o5 and discriminant defined in o¥/0%!2. Thus we can insure that A”
lies among a finite set of representatives F of this factor group of S-units.

But according to the theorem of Siegel (extended by Mahler and Lang,
cf. my Diophantine Geometry) for r € F, the equation

L U212 =

has only a finite number of solutions in og. This proves Shafarevi&’s theorem.
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Remark. The theorem of Shafarevi¢ extends as follows. Let R be a finitely
generated ring over Z, without divisors of zero, and integrally closed. A minimal
prime of R is called a prime divisor. It gives rise to a discrete valuation of the
quotient field K. We can form as usual the group of divisor classes, which is
known to be finitely generated (cf. DG again). Thus by localizing, e.g. consider-
ing R[1/x] for some x € R, we can kill the finite number of generators of this
group, and end up with a factorial ring. One calls X = spec(R) an absolute affine
model of K. Theorem 1 extends to the following statement.

Let S be a finite set of prime divisors of an absolute affine model of a field K,
finitely generated over Q. The set of isomorphism classes of elliptic curves

over K, with good reduction at all prime divisors of the model not in S, is
finite.

The proof is the same as the above, because we only used the unique factor-
ization in R, the finite generation of the group of units (also known, cf. DG),
and the finiteness of the number of points in R, of a curve U® — 27V? = r, an
extension of Siegel’s theorem which is also known (loc. cit.).

The importance of Theorem 1 for what follows lies in the fact that we can
combine it with a known result:

If A is an elliptic curve over a field K with nondegenerate reduction at a
discrete valuation ring o of K, and if B is an elliptic curve over K isogenous
to A over K, then B has good reduction at o.

This theorem was proved by Koizumi-Shimura [27], and Serre-Tate [37] for
abelian varieties. I don’t know a convenient (perhaps computational) proof for
elliptic curves, although it is quite plausible. For instance, it is obvious that B
has good reduction at the valuation ring in a finite extension, which could easily
be taken of degree 4 or 6.

We shall now give an alternate proof for the Shafarevi¢ theorem.

Lemma 1. Let K be a number field, let S be a finite set of primes in K, and
let d be-a positive integer. There is only a finite number of extensions of K of
degree < d, unramified outside S.

Proof. By taking a sufficiently large set of prime numbers, including all
those divisible by primes in S, and those which ramify in K, we see that any
extension of X satisfying the hypotheses as stated in the lemma will give rise to
an extension of the rationals satisfying similar hypotheses. Thus we may assume
that K = Q. It will therefore suffice to prove that the Galois extensions of Q
of bounded degree, unramified outside a finite set of primes S, are finite in
number. For each prime p e S, let E, be the smallest Galois extension of Q,
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containing all the extensions of Q, of degree < d. (There is only a finite number
of these, see for instance [B7], 11, §5, Proposition 14.) Let E be a Galois extension
of Q whose completions at all primes dividing those of S contain E,. If Fis a
Galois extension of Q of degree < d, unramified outside S, then the completion
F, for any prime p dividing p € S has degree < d over Q,, and hence is contained
in E,. This implies that FE over E is unramified (in fact splits completely) at
any prime lying above a prime p in S. If Fover Q is also assumed to be unramified
outside S, then it follows that FE over E'is everywhere unramified. The different
of E over Q is fixed, and is equal to the different of FE over Q ([B7], III, §I,
Proposition 5). Its norm down to Q from FE is the discriminant of FE over Q,
and is therefore bounded. But a classical elementary theorem of Minkowski says
that there is only a finite number of extensions of Q with bounded degree and
bounded discriminant ([B7], V, §4, Theorem 5). This proves our lemma.

Lemma 2. Let K be a number field and j, € K. Let S be a finite set of primes
of K. There exists only a finite number of K-isomorphism classes of elliptic
curves over K with good reduction outside S, having invariant j,.

Proof. Let A, B be such curves. There is an isomorphism
«:A— B

defined over an extension of K of degree < 6. We contend that « is defined over
an extension which is unramified outside S. To prove this, we may replace K
by its completion K, for p ¢ S. Let 0,4, .. ., 0,0 be the distinct conjugates of
« over K, where g4, . . ., 0, are automorphisms of the algebraic closure of K,
over K,. Then

T8, ..., 0,0

n

are distinct, and are equal to 6,4, . . ., o respectively, where g, is the auto-
morphism on the residue class field extension determined by o,. Hence the
embeddings o, ..., o, are distinct. This implies that the smallest field of
definition for « containing X, is unramified over X,,.

Using Lemma 1, we conclude that there is a finite extension E of K, which
we may assume Galois, such that any two elliptic curves 4, B over K, with good
reduction outside S, having the same invariant j,, become isomorphic over E.
If 2: A — Bis an isomorphism over E, then

o czz—'1 o a’, o € Gal(E/K)
is a function of Gal(E/K) into Aut(A), and the set of such functions is finite.

If we fix 4, and consider elliptic curves B,, B, having the same associated
function as above, say by isomorphisms

a: A - B, and B: A - B,,
then B,, B, are isomorphic over K. Indeed, let 1 = Bx~!. From a~!x° = g-1g°
we see that 7 = Z,s0/ isanisomorphism defined over K. This proves our lemma.
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To prove the theorem of Shafarevié¢ from the lemmas, let N be an integer
so that the genus of the modular function field Fy is 1. Let Ry be the integral
closure of Z[j] in Fy. Enlarge the set S to contain all prime divisors of N. Let
A be an elliptic curve defined over K with good reduction outside S. Then the
extension K(Ay) of K is unramified outside S, and has degree bounded by N*.
Hence there is a finite extension E of K, which we may assume Galois, such that
for all elliptic curves 4 over K, with invariant j,, € 0 5, and good reduction
outside S, we have

K(4y) < E.
Let oy ¢ be the integral closure of oy g in E. Then any specialization j j, in
Dk €xtends to a point of spec(Ry) in og s. By the Siegel-Mahler~Lang result,
we conclude that there is only a finite number of possible values of such j, in
pg,s. The proof of Shafarevi¢’s theorem is finished by using Lemma 2.

The advantage of the above proof over the previous one is that it exhibits
better the connection of the theorem with the moduli scheme, which'in our case
is spec(Ry). A similar proof could be given for higher dimensional abelian
varieties if one knew the finiteness of integral points on the higher dimensional
moduli schemes.

§2. THE IRREDUCIBILITY THEOREM

Theorem 2. Let A be an elliptic curve without complex multiplication,
defined over a number field K. Let G = Gal(K,/K). Then:

i) For almost all primes p, A, is G-irreducible.

i) For all primes p, V (A) is G-irreducible.

Proof. Suppose that 4, is not irreducible for infinitely many p, and let W,
be an irreducible subspace, necessarily of dimension 1, over F,. Then W, is
cyclic of order p, and 4/W, is an elliptic curve which can be defined over K,
and is isogenous to 4 over K. If W, W’ are cyclic subgroups of 4 of different

prime orders, then 4/W and A/W’ cannot be isomorphic, otherwise we get a
non-trivial endomorphism of 4 from the following diagram,

A
:/ \z
AW —— AW’

[ N:

A4
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where 24’ = v(4), and the endomorphism is A’ 0 =~ o «. This contradicts the
hypothesis that 4 has no complex multiplication. Theorem 1 (the theorem of
Shafarevi¢), together with the remarks at the end of §1, now show that there can
only be a finite number of W, as above, in other words, only a finite number of
primes p such that 4, is reducible.

The proof of (ii) is similar, except that we work vertically. Suppose that
V,(A) is not irreducible. Then there is a G-irreducible 1-dimensional subspace
over Q,, and therefore after multiplying a generator for this subspace with a
suitable p-adic integer, we get a G-invariant 1-dimensional Z,-subspace Z of
T,(A4). Let Z, be the projection of Z in A,~. Then the order of Z, goes to infinity
with », and each Z, is cyclic, invariant under G. We form A/Z, = B, as before,
defined over K, and with good reduction by the assumed result mentioned above.
The curves B, cannot be isomorphic, for if B, ~ B, say Z,, = Z,, then we have
a sequence of isogenies

; AJZ,S 4z, > 4)Z,,

whose composite has cyclic kernel, whence is a complex multiplication, contrary
to hypothesis. This proves Theorem 2, again in view of the theorem of Shafarevi¢. |

§3. THE HORIZONTAL GALOIS GROUP

Let A4 be an elliptic curve defined over a number field K. For each prime
¢, let A® be the group of points of order a power of £ on 4, in a fixed algebraic
closure. (When we consider 4 with invariant j, which is not p-integral for some
prime p of K, it is convenient to take this algebraic closure to be in an algebraic
closure of the completion K.} Let 4. denote the group of torsion points of A4,
and K{(Awr) be the field generated over K by all the coordinates of the torsion
points of 4.

Let G = Gal(K(4wr)/K) be the Galois group of the torsion points of A.
By the representation on the product '

[T 744,

taken over all primes ¢/, we get an embedding
p: G~ ] GL,(Z,)
I3

of G as a closed subgroup of the product of the linear groups GL,(Z,). At each
£, we get a similar embedding

PG, — GLy(Z,),

where G, = Gal(K(A4“)/K). We shall often identify G and G, with their images
under this representation.
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Serre has proved:

Theorem3. Let A beanelliptic curve over a number field K, without complex
multiplication. Then the Galois group of K(Ae:) over K is open in the product,
taken over all primes ¢,

[16LA(Z)).
¢

We shall prove Serre’s theorem here only when A has an invariant j = j,
which is not integral at some prime p of K. The proof in general uses quite
different techniques.

In this section, we prove one portion of the theorem, namely:
Step 1. The Galois group of K(A,) over K is GL,(Z/{Z) for almost all £.

We note that the local extension K,(4,) has a local group which acts on 4,
which we know is Galois-isomorphic to

Dy,
under the Tate parametrization, as in Chapter 15, §2. Here, D, is the cyclic
group generated by ¢, and ¢ = n®y has order'e > 0 at p, and can be expressed
as the above product with some unit « in K. For all # not dividing e, the field
Ky(Cs 4
admits an automorphism ¢ over K, which leaves {, fixed and such that
og' = {,q'V".

Thus in a suitable basis of 4, the matrix of ¢ is

1 1
1)

On the other hand, 4, is a vector space of dimension 2 over F,, and is
irreducible for almost all £ by Theorem 2. Since ¢ leaves a 1-dimensional sub-
space of A, fixed (corresponding to [,), there exists some 7 € Gal(X(4,)/K) which
moves that subspace to another. Then ¢’ = tat~! leaves the other subspace

fixed. If we select for basis eigenvectors of ¢ and o' respectively, then ¢ and ¢’
have matrices of the form

I b I 0
G 1) = ()
with b, ¢ # 0. These matrices generate SL,(Z/¢/Z), thus proving that

Gal(K(4,)/K)
at Jeast contains SL,(Z/¢Z).
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We also know that the roots of unity lie in K(4,), and hence for almost all Z,
we get a subgroup (Z/¢Z)* as a factor group of the Galois group. This implies
that Gal(K(4,)/K) must be the whole group ‘

GL,(Z/(Z),
as desired.

Step 2. For all £, the Galois group of K(A)) over K contains an open sub-

group of GLy(Z,).

Proof. We first consider the matter locally over K. As r goes to infinity,
q'/*" generates an extension of arbitrarily high degree over the field generated

by all £*-th roots of unity over K, (notation as in Chapter 16, and justification
by Lemma 1 of Chapter 16, §2 concerning the non-split exact sequence

0->V,(w—-V,4)-Q,~0

locally, forZ = p.) For £ # p, the extension by £"-th roots of unity is unramified,
and so our assertion is even more trivial.

Hence there is an automorphism o of the algebraic closure of X, leaving K,
and all #"-th roots of unity fixed, such that the matrix of ¢ has the form ‘

%)

with some a # 0 in Z,. By the irreducibility Theorem 2 (ii), there exists globally
an element 7 in Gal(K(4)/K) which moves the 1-dimensional subspace of Vo
left invariant by o, and tor~! leaves another subspace invariant. In a suitable
basis, we conclude that there exist automorphisms in the global Galois group
Gal(K(A®)/K) represented by the matrices

((‘) ‘1’) and (}7 ?)

Hence the closure of the subgroup generated by these matrices contains the

analytic subgroups
1 dZ, 1 0
(0 1) and (bz, 1)

as well as their product. It is therefore locally a 3-dimensional analytic subgroup
of SL,(Z,), whence is open in SL,(Z,). (Again for the elementary theory of
Lie subgroups, cf. Serre’s Notes, Lie Algebras and Lie Groups.)

To get an open subgroup of GL,(Z,), we merely consider the exact sequence

det
0~ SLy(Z,) ~ GLy(Z,) ~ Z} - 0,

and observe that since the field of all £"-th roots of unity (for all r) over the
rationals has a Galois group isomorphic to Z%, the translation of this field to a
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number field has a Galois group open in Z¥. From this it follows at once that
Gal(K(A4“)/K) is open in GL,(Z,). :

Step 3. Given a positive integer N, let A™ be the group of points of order
divisible by prime powers only for primes dividing N. Then the Galois group
of K(A™) over K contains an open subgroup of
I GL.(Z)).
¢IN
Proof. Again, we do the SL, part first. For each £|N, a suitably small open
subgroup W, of SL,(Z,) is a pro-£-group (it is a subgroup of those elements
= | (mod ¢)). The field K(A™) is the composite of the fields K(4©) for £|N,
and passing to a finite extension E of K (corresponding to an open subgroup of
the Galois group) we know that E(4™) is the composite of the fields £(4%) for
¢|N. Taking E sufficiently large, we see that E(49) is a union of Galois extensions
over E, finite, of degree a power of £. Hence for different £, these extensions are
linearly disjoint, thus proving our assertion.
Again, using the roots of unity takes care of the GL, part.

§4. THE VERTICAL GALOIS GROUP

Now let us prove that for almost all £, we get all of SL,(Z,) in the Galois
group. The proof is based on the following lemma.

Lemma. Let H be a closed subgroup of GL,(Z,) whose projection mod £
contains SLy(Z[¢Z). Then H contains SLy(Z,) if ¢ = 5.

Proof. Let se SL,(Z,). We must show that s € H. There exists x, € H such
that

' x, = s (mod 2),
50

x7's = 1 (mod ¢).
Without loss of generality, we may thus assume that s = 1 (mod ¢), and write
s=1+¢u,

with

b
u= (‘c’ d) € M,(Z,).
Then
dets =1+ £(a+d) (mods?),

and therefore a + d = tr(u) = 0 (mod ¢).
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We can write u as a sum
u=u + -+ u, (mod/f),
where u; e M,(Z,) and u? = 0, tr(u;) = 0 for all /. For instance,

€ 9=0 o)+ o) G -2

and the last matrix in the sum can be written as a scalar times

1 0\ _ 1 1 4 0 -1 4 0 0\
0 -1/ "\—-1 -1 0 0 1 0/°
Then we have
(I + Zu) (1 +¢u,) =s (mod£?).
Lets; = 1 + fu;. Then dets; = 1 + £ tr(u;) + £2 det(u;) = 1. We see that our
s is a product of the s;, and we are reduced to studying each s; separately.

Suppose therefore that
s=1+"Zu,

with u? = 0, tr(u) = 0. We want to show that there exists x, € H such that
x, =5 (mod/¢?).
By hypothesis, there exists y € H such that y = 1 + u (mod £), so

y=14+u+/1y with v € M,(Z,).
Then H contains )7, and
£~1

Vo=14+6u+¢6v)+ Y <€>(u + £o) + (u + (oY

=2

1 + fu (mod £2).

The binomial coefficients (i contain £ forv = 2,...,¢ — 1, and the terms in

the sum contain either u?> = 0, or £ for £ = 3, so these terms contain £2.
The last term (u + £v) contains (u + £v)* because £ = 5, and
(u + £v)? = 0 + £(uv + vu) + £202,
o)
(u + £v)* contains £2.
This proves that H contains y* = s (mod £2).
We can now proceed inductively, writing s = 1 + £"u, and take

y=1+/¢"lu
This proves the lemma.

We can combine the lemma with the result of the preceding section, and
find:
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Step 4, Let A be the group of points of £-power order on A, defined over
a number field K, and with a non-integral invariant at some prime p. Then
Gal(K(A)/K) contains SL,(Z,) for almost all £.

Let G = Gal(K(A4wr)/K). Then we have a closed embedding of G in the
product of all GL,(Z,). For each # we have the determinant GL,(Z,) — Z,
which extends to the product over all £/ componentwise, and induces a homo-
morphism of G onto a subgroup of [ | Z¥, denoted by Z, with kernel . Note
that Z is open in the product because all the roots of unity lie in K(4wr). Thus
we have a pair of exact sequences

0- w - G - Z -0
I i) i)
0- H SL.(Z,) — H GL,(Z,) —» H Z; - 0.
¢ ¢ ¢

Furthermore we know from our above results that there is a finite set F of
primes such that the projection of G on

I1GLAZ,)

¢eF
is an open subgroup of this product by Step 3. Also, the projection of G on the
¢-th factor contains SL,(Z,) for almost all Z.
In the next section we conclude the proof, using only group theory.

§5. END OF THE PROOF

The end of the proof depends on a formal juggling with groups and factor
groups, and prime factorizations, and we don’t use elliptic curves any more,
just group theory. Again we let

G = Gal(K(Awr)/K).
Step 5. The group G contains
P = (',' 2 ls 1, SLZ(Zp)’ 1’ 15 .. ')

Jor almost all p.

Proof. A group X is called profinite if it is a projective limit of finite groups.
Galois groups of infinite Galois extensions are of this type. If X is profinite and
S is a finite simple group, we shall say that S occurs in X if there exist subgroups
X, € X, € Xsuch that X, is normal in X, and X,/X, = S.

Using elementary isomorphism theorems, one sees that if X is a closed
normal subgroup of the profinite group Y, then S occurs in X or S occurs in Y/ X.

Let S, = SL,(Z/pZ)/ £ 1 for a prime p. It is well known that S, is simple
forp = 5.
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We use the exact sequences of the last section. We know that S, occurs in

G for almost all p, by projecting on the p-factors. We want to conclude that G
contains the factor

I,=(.,1,1,SL,{Z), 1,1,...)
for almost all p. We show first that S, occursin G n I, Let

U,=(.,1,1,GLy(Z), 1,1,...).
We have an injection

G/(G ~ U,) = ([] U)/U,
4

But S, does not occur in any GL,(Z,), for ¢ # p and p > 5. Hence S, does not
oceur in G/(G n U,), so S, occurs in G n U,, whence it occurs in G n T,
which is closed in I'), and projects into PSL,(Z/pZ) = SLy(Z[pZ)/ £ 1. Let H,
be its image. We contend that H, = PSL,(Z/pZ). If not, H, is a proper subgroup,
so S, occurs in the kernel of the projection, i.e. in
{ue SL,(Z,), u=1(modp)}.

This is impossible because this group is solvable, while S, is simple.

We have therefore shown that G n T, projects onto SLy(Z/pZ), whence
G n T, = SLy(Z,) for p large by the lemma of {4, combined with our preceding
results. This finishes Step 5.

We now conclude that G contains finite products

(.o 1,1, 8Ly (Ze), SLAZy)), - - ., SL2(Ze,), 1,1,.. )

for /; sufficiently large. Since G is closed in [ | GL,(Z,), it follows that there is a
finite set S of primes such that G contains

[1SLLZ0).

z8s
Step 6. The group G contains an open subgroup of ]_[ SL(Z,).
Proof. Let S be as above. Let G be the projection of G into

l—[ GLZ(Zl)a

€S
and G§ the projection into the complementary product

T1GLA(Zo).

¢S

Hs =GnJ[GL(Z,) and Hi=Gn][]GLAZ),
ZeS £¢S

Let

so that Hg < Gs and H¢ < G3. We have canonical isomorphisms
Gs/Hg ~ G/(Hs x Hg) =~ Gs/H;.

Step 5 shows that H¢ contains [] SL,(Z,), so that Gs/Hj is abelian. Hence
IS
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Gs/Hj is abelian, and H; contains the closure of the commutator group of Gs.
But the Lie algebra of S, is equal to its own derived Lie algebra. Hence the
closure of the commutator subgroup of an open subgroup of SL;(Z,) contains

an open subgroup of SL,(Z,). This implies that Hg contains an open subgroup
W of

I15L:(Z)),

eSS

Combined with Step 5, this yields Step 6.

Final Step. We now consider the determinant map
G- [z,
'3
induced from the product of the determinant maps
I;[ GLZ,) — I;[ Zy.

Since K(Aw:) contains all roots of unity, it follows that the determinant map
sends G onto an open subgroup of [ [ Z¥, necessarily of finite index. By Step 6,
1

we know that the kernel contains an open subgroup of | [ SL,(Z,), also of finite
1

index. From the commutative exact sequences at the end of §4, it follows that
-G is of finite index in

U GL,(Z,),

and must therefore be open because G is closed in this product. This concludes
the proof.






Part Four

Theta Functions and
Kronecker Limit Formulas






This last part enters into the multiplicative theory of the elliptic functions,
and its connection with L-series. Chapters 18 and 19 are immediate continuations
of Chapters 1 and 4, and could have been treated much earlier, with the obvious
exception of the arithmetic application of Shimura’s reciprocity law to the
special values of the Siegel function. We deal first with the analytic construction
of modular functions by “multiplicative’” means, and then study the special
values at imaginary quadratic numbers.

The reader can- read the first Kronecker limit formula independently of
the other chapters, and immediately in connection with Chapter 18. He can then
read the chapter on the fundamental theta function in connection with the second
Kronecker limit formula. The treatment of these limit formulas follows Siegel’s
exposition [B15]. A complete account, including relations to L-series, and real
quadratic fields, is also given in Meyer’s book [B8].






18 Product Expansions

§1. THE SIGMA AND ZETA FUNCTIONS

Both in number theory and analysis one factorizes elements into prime
powers. In analysis, this means that a function gets factored into an infinite
product corresponding to its zeros and poles. Taking the values at special points,
such an analytic expression reflects itself into special properties of the values,
for which it becomes possible to determine the prime factorization in number .
fields.

In this chapter, we are concerned with the analytic expressions.

Our first task is to give a universal gadget allowing us to factorize an elliptic
function, with a numerator and denominator which are ‘entire functions, and
are as periodic as possible.

One defines a theta function (on C) with respect to a lattice L, to be an entire
function  satisfying the condition

8(z + u) = (z)e2rilizm +e] zeCuel,

where / is C-linear in z, R-linear in v, and ¢(u) is some function depending only
on u. We shall construct a theta function.

We write down the Weierstrass sigma function, which has zeros of order 1
at all lattice points, by the Weierstrass product

o(z) =z [] (1 - f)eﬂ“*(z/w)’.
wel’ (&

Here L’ means the lattice from which 0 is deleted, i.e. we are taking the product

over the non-zero periods. We note that ¢ also depends on L, and so we write

6(z, L), which is homogeneous of degree 1, namely

E o(z, AL) = lo(z, L) t ieC.

239
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Taking the logarithmic derivative formally yields the Weierstrass zeta
function ‘
a(z) 1 1 1 z
L)= =—==-+ + -+ =]
{(z, L) = Uz) o) )y [ 3

zZ gz o o

It is clear that the sum on the right converges absolutely and uniformly for z in
a compact set not containing any lattice point, and hence integrating and ex-
ponentiating shows that the infinite product for o(z) also converges absolutely
and uniformly in such a region. Differentiating {(z) term by term shows that

1 1 1
@)= —p@)=-7~- ;‘_l:(z——T)z - 57}

Also from the product and sum expressions, we see at once that both o and
{ are odd functions, i.e.

o(—z) = —o(2) and U{—2) = ={(2).

The series defining {(z, L) shows that it is homogenous of degree —1, that is

tz, AL) = 3 (=, L)

Differentiating the function {(z + w) — {(z) for any w € L yields O because
the gp-function is periodic. Hence there is-a constant n(w) (sometimes written
n.) such that

{(z + w) = {(z) + n(w).
1t is clear that n(w) is Z-linear in w. If L = [w,, w,], then one uses the notation
nw)) =71 and  nlwz) =71,
As with {, the form 5(w) satisfies the homogeneity relation

n(iw) = %n(w),

as one verifies directly from the similar relation for {. Observe that the lattice '
should strictly be in the notation, so that in full, the above relations should read

Uz + w, L) =z, L) + n(w, L)

|
| 1

| e, AL) = n(@, L.
r

Remark. For those who like to connect with other ideas, the map

@ 0= (1, pE), p'@), 1~ @)
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sends C? onto a 2-dimensional group variety, which projects on the elliptic
curve parametrized by the ¢ and g'-functions. We observe that the above map
is genuinely periodic, with periods (w,, #,) and (w,, ). The group variety is
that associated with integrals of the second kind on the elliptic curve, and is a
group extension of the elliptic curve by an additive group.

Theorem 1. The function o is a theta function, and in fact

ofz + w) — I,D(w)e"(“’)(:+“’/2)
a(z)
where
Y(w) =1 if w2elL
Ylw)= -1 if w/2¢L.
Proof. We have

i Iog O'(—Z-j:_(l_)_) = ’1(60)
dz o(z)
Hence

o(z + w)

log _*__a(z)

= n(w)z + c(w),
whence exponentiating yields
o(z + w) = o(z)e"=F ),

which shows that o is a theta function. We write the quotient as in the statement
of the theorem, thereby defining y(w), and it is then easy to determine () as
follows.

Suppose that /2 is not a period. Set z = —w/2 in the above relation. We

see at once that Y(w) = — | because ¢ is odd. On the other hand, consider
o(z + 2w) oz + 2w) o(z + w)
a(z) a(z + @) o(2)
Using the functional equation twice and comparing the two sides, we see that
Y(2w) = Y(w)*. In particular, if w/2 € L, then
Yl(w) = Y(w/2)%.

Dividing by 2 until we get some element of the lattice which is not equal to

twice a period, we conclude at once that y(w) = (—1)*" = 1.
The numbers », and n, are called basic quasi periods of {.

Legendre Relation. We have
iy — Ry = 2mi.

Proof. We integrate around a fundamental parallelogram P, just as we did
for the @-function:
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ay+wptwg

atw)

a+wg

Fig. 18-1

The integral is equal to

f {(z) dz = 2mi Y, residues of {
op
= 2ni

because { has residue 1 at 0 and no other pole in a fundamental parallelogram
containing 0. On the other hand, using the quasi periodicity, the integrals over
opposite sides combine to give

N2y — N2,
as desired.

Next, we show how the sigma function can be used to factorize elliptic
functions. We know that the sum of the zeros and poles of an elliptic function
must be congruent to zero modulo the lattice. Selecting suitable representatives
of these zeros and poles, we can always make the sum equal to 0.

For any a € C we have

o(z + a + w)

= Y()eM@Nzte/2) gnlw)a
o(z + a) V(@)

Observe how the term n(w)a occurs linearly in the exponent. It follows that if
{a;}, {b;} (i =1, ..., n) are families of complex numbers such that

Z a; = Z b;,
then the function

[To(z — a)

[]o(z = b)
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is periodic with respect to our lattice, and is therefore an elliptic function.
Conversely, any elliptic function can be so factored into a numerator and
denominator involving the sigma function. We write down explicitly the special
case with the g-function.

Theorem 2. Foranyae CnotinL, we have
o(z + a)o(z — a)
p(2) — pla) = — TR @

Proof. The function p(z) — @(a) has zeros at a and —a, and has a double
pole at 0. Hence '

+ —_
pla) - pla) = L=

for some constant C. Multiply by z2 and let z — 0. Then ¢2(z)/z? tends to 1 and
z%p(z) tends to 1. Hence we get the value C = —1/¢%(a), thus proving our
theorem.

APPENDIX. THE SKEW SYMMETRIC PAIRING

As an application of the sigma function, we shall carry out the details of
the skew-symmetric pairing between points of order N on an elliptic curve
mentioned in Chapter 6, §3.

Recall that a divisor (ora 0-cycle) on the elliptic curve (torus) A4 is an element
of the free abelian group generated by the points, and can therefore be written
in the form

a =Y mya),
with integer coefficients m,. We take a; to be a point in C representing a point on

Ac = C/L. We say that a has degree 0 if Y’ m; = 0. We write a ~ 0 if a is the
divisor of a function, and we say then that a is linearly equivalent to 0. We let

S(a) = ¥ ma; (mod L)

be the point on the torus obtained by summing the a; in C (as distinguished from
the formal sum giving the divisor). Then the representation of a function as
a product of sigma factors shows that a ~ 0 if and only if S(a) = 0.

Let g be a non-zero function on A such that none of the components (a,) of
a are zeros or poles of g. Then we define

g9(a) = [T g(a)™.
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if £, g are non-zero rational functions on A, then we have the reciprocity law

7(9) = g((f)

provided of course that the expressions are defined, i.e. the divisors of fand g
have no point in common. This fact holds on arbitrary curves (Weil, 1940), and
a suitably formulated generalization holds on arbitrary varieties (L.ang, 1958).
In the case of elliptic curves, the relation is obvious if we make use of the sigma
function. Indeed, if

(f) =Y mfa) and (9) =Y ngb),
where a;, b; are complex numbers corresponding to points on the torus, such
that Y ma; = Y n;b; = 0, then

1@ = c[] oGz = a)™,
13
with some constant ¢. Consequently

f(@) =1 o(b; — ay™™ = g((f)),

iJj

because ¢ is an even functionand ). m; = 0. -
Now let a, b be divisors such that Na and Nb ~ 0. Say

Na = (f) and Nb = (g).
Assume that a and b have no point in common. We define
_I®
g(a)

Theorem. The symbol {a, b) depends only on the linear equivalence classes
of a and b. It induces a skew-symmetric non-degenerate pairing

<a,b>

Ay X Ay = py,
where yy Is the group of N-th roots of unity.

Proof. If " ~ b and a, b’ have no point in common, it is immediately
verified from the reciprocity law that {a, b) = {a, b"). Thus our pairing depends
only on the linear equivalence classes of a and b respectively. In particular, if
a, b are points of order N on 4, we may let a = (a) — (0) and b = (b) — (0),
and define

{a,b) = <a,b) = <a’, b,
where a’ ~ a, b’ ~ b, and a’, b’ have no point in common. (We can always find
such o', b’ by making appropriate translations.)

It is also an immediate consequence of the reciprocity law that the pairing
13 skew-symmetric, and takes its value in the N-th roots of unity. We shall
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obtain an analytic expression for this root of unity, which will automatically
show that the pairing is non-degenerate.

The symbol <a, b) is independent of the linear equivalence classes of a and
b respectively. We let a, b be complex numbers representing the points S(a) and
S(b) respectively, so that

Na=ow and Nb =o'
are periods. To compute {a, b) we may then take a and b to be the divisors
a=u+a — () and b=(v+b)— (v)
where u, v are sufficiently general. Again letting
Na = (f) and Nb = (g),
we see that the factorization of fand g in terms of the sigma functions is given by:

o(z — (u + a))?

/@) = oz —u)" " lo(z — u - w
3 o(z — (v + b)Y
9(z) = o(z =)' oz — v~ @)’

If we now make the appropriate substitutions for f (a)/g(b), and use the functional
equation for the sigma function, together with the fact that the sigma function
'is odd, we find the value

f(a) @’ /N
é@ = gM@ /N

Let us select @ = o, and w’ = w,, and use the Legendre relation. We find

\ .
IR —
for the special divisors a;, a, such that S(a,) is represented by the complex
number w,/N and S(a,) is represented by the complex number w,/N. Expressing
® and o’ as linear combinations of w,, w, with integer coefficients, we see at

once that our pairing {(a, b) is non-degenerate. This proves everything we
wanted.

Remark. The symbol {a, &) can also be given in terms of Kummer theory.
Cf. my book Abelian Varieties for the general statement in higher dimensions.
We leave it as an exercise to the reader to give the proofs in terms of sigma
function on elliptic curves. Shimura [B12] treats the pairing directly from the
Kummer point of view.
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§2. A NORMALIZATION AND THE ¢-PRODUCT
FOR THE o-FUNCTION

We normalize our lattice to be L, = [z, 1], so that the corresponding sigma
function is ¢(z; 7). We wish to multiply ¢ by a trivial theta function, of the form
eazz+bz’
ie. let
o(z) = e *¥0(2),

such that ¢ has period 7 (we shall see afterwards how ¢ behaves under translation
by 1). This is a trivial problem in solving for a and 5. We let

a= —in(l) and b =in

Computing ¢(z + 1)/¢(z), and using the functional equation for o, yields the
first part of the next theorem.

Theorem3. Let
@(z;1,1) = ¢(2) = e g} o(z;5 1),
where n = n(1) (= n, for the lattice [t, 1]), and q, = €*™2. Then

' 1
pz+ 1) =9¢(z) and @z+1)=— 7 o(2).
Proof. The first relation was achieved by construction. The second part of
the theorem comes by expanding
(P(Z + ‘l‘) — ea(z+r)2+b(z+r) l,b(‘l') eﬂ(t)(z+t/2) O'(Z)

= ¢(z) times an obvious exponential factor.

Write down the exponential factor explicitly, and use the Legendre relation,
which reads

nDr — n(x) -1 = 2ni.
You get at once
@(z + 1) = @(z)(—~1) e™ "=,
This proves the second part, as described.

One also wants the formulation of Theorem 3 in its homogeneous form as
follows. : '

Theorem3'. Let L = [w,, w,] and
o(z; w;, w;) = o~ tnzw2(zjw2)? q;}/wz o(z; L).
Then

o(z + 035 01, W) = ¢(z; Wy, W)
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and

o(z + 0 0, W) = — o(z; @y, W)

2fwy
Remark. In the relation between ¢ and o, observe that ¢ is homogeneous of
degree 1, and that the exponential factors in front are homogeneous of degree 0
(that is the products n,w, and z/w,). In particular, ¢ is homogeneous of degree
1, that is:

o(4z; oy, Awy) = Ao(z; 0, @,).

We want product expansions for o(z) and ¢(z), which are entire, with zeros
of order 1 at the lattice points of [t, 1]. Let g, = e?**and g, = ¢*™=.

Theoremd. Let ¢(z) be as in Theorem 3. Then

© (] _ g" 1 —-4g"
qD(Z, T) = (271!')_1(% - 1) l:I ( Kzthz_)_(qn)Z q‘/qZ)

and

2 =1 - ::'z 1 - : z
O'(Z; T) = (27(i)_1 e (q.;.1~ - qz—*) l:I ( [zlq_)(qn)Z d /q )

(Again we put n = (1) = 5, with respect to the lattice [z, 1].)

. Proof. Let g(z) be the expression on the right-hand side, which we want
to be equal to ¢(z). It is clear that g has period 1, just like ¢, that is

gz + 1) = g(2).

Let us compute g(z + 7). Substituting z + 7 for z in the terms of the product,
we essentially get all these terms back, except that the product of terms involving
g7q. starts with » = 2, and the product of terms involving g7/q, starts with n = 0.
Taking these into account, together with the transformation of ¢, — 1 into
q.9. — 1 arising from the term in front of the product, we find that g satisfies
the same functional equation as ¢, namely

gz +1) = — (;‘z—g(z).

Therefore ¢/g has a period lattice [t, 1]. On the other hand, our product ex-
pansion for g shows that g has exactly the same zeros, of order 1, as ¢ (and
hence ¢). Therefore ¢/g is constant. Letting z — 0 immediately shows that the
constant is 1, thus proving our theorem.

Again for the record, we give the homogeneous form of Theorem 4.
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Theorem 4', Let L = [w,, w,], and let ¢(z: w,, w,) be as in Thearem 3'.
Then

w, S =g q 2)(1 9:19:/0,)
@(z; @, w,) = ';1 Ul /w n)Z =
and
wl = q’:q:/wz)(l - q’r'/qz/(oz)
- L Inawrz/w:)? 3 —
o(z; L) = 27“. e: ([l w2 4z /w 1_:[1 (1 — q’,')z

Remark. In all our g-expansions, we emphasize that the power of 2z/ occurs
with precisely minus the homogeneity degree of the function involved. Thus we
have (2zi)~" in the g-product for o, while we have for instance (2zi)? in the
g-expansion for ¢, in Chapter 4, and say (2n/)* in the g-expansion for g,.

§3. g-EXPANSIONS AGAIN |

This section may be omitted. For the most part we recover g-expansions
already obtained in Chapter 4, by using the g-product for o, and then getting
the corresponding g-expansions for {, n,, ¢ by differentiation. In particular,
the product expression for A in the next section is independent of the present
section.

Taking the logarithmic derivative of the product for ¢ term by term, which
we can do by absolute convergence, we obtain:

+2'Z[ ailq. q,qi]

q:
1 =
4)) &(2) '722+“’q l—q/q. 1 —qlq.

where 1, = n,(t, 1). On the other hand, going back to the additive expression

for { obtained from the logarithmic derivative of the Weierstrass product
for o, we get the power series expansion of { at the origin,

1
(2) Uz) == — 542 = 542 °— -
where

1
Sm = 2 s L =L- {0}

wel,’

Furthermore, we have trivially
g. + 1 e 4 7™ _cos mz

g, — 1 e =TT sin iz’
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whose power series expansion at the origin is immediate from Taylor’s formula,
and yields

Mz~ 37 Ta5 T 45-21

To get a power series in z for the sum in (1), letg = g: and w = g. for simplicity.
Then for [q] < |w| < |g|~! we have

» q"/W q"W 3 © o q,, m o
ngl l:l — q"/\V 1 — qﬂw] - ngl ,,,;1 l:(w> (q W) ]’

which by interchanging the two sums is equal to

© 9 m_ om
w — W)
mgl 1 - qM( )

Substituting back w = ¢?**, we obtain another power series in z for {. Com-
paring the coefficient of z yields the g-expansion

2mi)? ng"
(2) 1,(T, 1)=( 12) [—1 4—24"‘2_‘,1 1 —qqf]
Similarly, comparing the coefficients of z* and z* would yield the same expansions
for g, and g5 that we found in Chapter 4.

Differentiating (1) with respect to z also gives us another derivation of the
g-expansion for ¢(z; 1) found in Chapter 4. Observe that one needs here the
intermediate step giving us 5, in (2). There is no need to write these expansions
again, as they have been tabulated previously.

§4. THE g-PRODUCT FOR A
We shall obtain the product expansion for A = A(t, 1).
Theorem 5.

i
A=) g J] (1= g |
" |

i
i
|
5
|

By definition, the discriminant of our cubic polynomial is given in terms of
the roots by
A = 16[(e; — e;)(e5 — e3)(es — e)]?,

w=o(3):

where
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We shall actually find g-products for the differences e; — e,, and even their
square roots.

We continue to work with our normalized lattice [z, 1]. Then by Theorem 2,

Q-4 -

e, — e, =
2 of T

GG

T T
1 T+ 1 ”(§+1)° "2’)
5’2“5’3=£9<§)"89( 5 )=_‘ NONNCES
()

1\ /1

T+ 1 T 0(T+_2_)0§
omamo(3) - ols) - -
A(5)6)

We use the functional equation of the sigma function in Theorem 1 on each one
of the numerators of the expressions on the right hand side. For instance,

T—~1 T+ 1 T+ 1
= ST NP CV T S
o{5) =5 - 1) =),

and similarly for the other cases. We also use the fact that ¢ is an odd function.
Then our expressions for the differences of the ¢, become:

E;;. €, — e = —e ——7—1—2—1
0" —_— _—
2)°\2

E23. ez - 33 =

1
E“. ey — e, erz(t)ir(t+l)
2 T+ 1\ /7
J —
2 2

Remark 1. Each expression on the right is a perfect square, which shows that

]

the square roots \/e, — e; are holomorphic on $.
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Remark 2. Using the g-product expression for ¢ found in Theorem 4 and
substituting the special values for z yields the corresponding g-product expres-
sions for the differences of the ¢,. We can tabulate these, although we won’t
need them in what follows. Let ¢ = ¢: and let as in Fricke,

Po=Tl0-gq) P=]l0~g
Po=Tl0+q) Pa=Tl(+q79
Then:
E%l (ez ‘91)*=\/E P0P§
Egs (e — 93)*=\/E Pon
E§1 (e5 — 91)* = \/7_17 2Q*P0P§-
Since PP, P,P; = P, trivially, we see that.
P1P2P3 = 1.

It then follows thét the product expansion for A is the desired one. However,
we shall do it directly again below.

Remark 3. Having given the differences of the ¢, in terms of the g-function,
we see that these differences are modular forms of appropriate weight. The
classical literature went overboard on this. To read Weber, just to find the
g-product expansion of A, one has to plow through all the formalism of these
differences and the names given to the numerators and denominators occurring
on the right in Ej1, Ez3, E3 (they are theta functions with various indices}.
Of course, these modular forms of low level are very useful in other applications,
and provide computational data which should not be disregarded, but should
be tabulated in its proper place.

Let us now multiply together all the expressions Ejy. We get cancellations,
giving us
— M1/ 2+ () (x4 1)/2)
vA =4 -

)

We use the g-product for ¢ found in Theorem 4. To figure out A, we mus:
therefore keep track of the exponential term, a rational function in ¢, and three
types of infinite products.

The exponential term is dealt with by using the Legendre relation

n(l)r — n(x) = 2mi,
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which will cause all the transcendental terms in the exponent to cancel. It
comes out neatly, and we won't clutter up the page with it.
For the product, let

P@) = [1 ( - giq0( ~ atfg.).
We have to study the product
p(3)p(Z)p(
2 2 2

= [T+ a0 = 0 + )t = g7,

P .

Let P, = [] (1 — g"). Then we get the efficient relation
n=1

P§

PP} = %
0 ].—q

H

so that (miracle)
1
]

P=1Tq..

This contribution from the infinite product therefore reduces to a contribution
of a rational function of g, which we can combine with the other rational
functions of g arising from the expression for the o-function in Theorem 4.
We are therefore left only with the product

]j'l (1 - q")“.

You can work out the rational function in ¢ which must appear in front, and
you will find that all the terms cancel out except the desired ¢ = ¢,. The power
of 27/ must be 12, and is 12 (corresponding to the homogeneity degree of A).
This gives us our desired g-product for A.

§5. THE ETA FUNCTION OF DEDEKIND
We now use the symbol n for a new function, and not for the quasi periods of (.

We define the Dedekind eta function by
n() = g:"** 1 (1 = g0,

where g = g, = ™. It is holomorphic on the upper half plane $.
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Theorem 6. The eta function satisfies
N + 1) = &2 ()
1 S
(D)= =0
where the square root is the obviously normalized one for t € 9, taking positive

values on the positive real axis.

Proof. The first relation is trivial from the g-product. As for the second,
we know that A, viewed as a function of two variables, i.e.

8(2)

is homogeneous of degree — 12, so that

-1/ 1/0 —1\/z 12
A(—~1/7) = A( 1 ) = A(;(l O)G)) = 7°A(7).

Taking the 24-th root shows that

In(=1/)] = Wl In()l.
Note that /7 is holomorphic on $. Hence the function
n(—1/7)
\/?’7(1’)

is holomorphic on $ and has absolute value 1. By the maximum modulus
principle, it must be constant. Putting = = / shows that

1= ¢/

whence C = ]/\/; = \/i This proves our theorem.

We can now recover a fact used in our analysis of ramification in the modular
function field. We have the definition of J,

J = g3/A.

We want to see that its cube root exists as a modular function of level 3. Since
g» 1s homogeneous of degree —4 as a function of two variables, we find that

g2(=1/7) = t%g,(2).
On the other hand, from Theorem 6 we get -
n%(=1/7) = *n’().

Furthermore,

'78(-[ + 1) = eZm'/3 }"8(‘[) and gz(f + 1) = gZ(T)'
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Hence we obtain the transformation rule for J¥ under the modular group.
Theorem 7. Let J* = g,/n®. Then
B+ D) =e3J¥)  and I ~1/7) = J¥).
Similarly,
Theorem8. Letf = JJT = 1 = 27g;/n*2. Then
f@+D=—f(® and f(-1/1)=f(@).

Corollary. The functions J* and JT =1 are modular functions of level 3
and 2 respectively.

Proof. Let T = SL,(Z) as usual, and let g = J3, f = \/JT = 1. We have a
representation of I on the space generated by f, g over C, which is abelian,
with characters of order 3 and 2 respectively. However, letting S, T be the
mappings

ST = -1/t and T(x) =1 + 1,

we know that S, T generate the modular group, and so do .S, ST which have
order 2, 3 respectively. The abelianized modular group can therefore have order
at most 6, and has order 6 since we just found the appropriate representation
for it. Let I'y and I'; be the congruence subgroups of level 3 and 2 respectively.
Then I'/+T'; has order 12 and I'/T'; has order 6. Also, I'/+T'; has a normal
subgroup whose factor group is cyclic of order 3, and I'/T", has a normal sub-
group whose factor group has order 2. In this way we obtain another representa-
tion of I into a cyclic group of order 6, whose kernel must be the same as that
of the previous one, because the abelianized modular group has order at most
6. This proves that I'; and I'; leave fand g fixed, as was to be shown.

§6. MODULAR FUNCTIONS OF LEVEL 2

This section will not be used anywhere else, and is included as an example,
for the sake of completeness, and because it fits with the computations involving
e, €3, €.

We consider the congruence subgroup I'(2) consisting of all elements « of
SL,(Z) satisfying the condition

b
Such « can be written in the form

I (mod 2).

O(_ab
“\c¢ d
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with a,d odd and b, ¢ even. Using arguments similar to those involved in
determining a fundamental domain for the modular group, one sees that the

elements
1 2 1 0
T, = (0 1) and S, = (2 1)

generate I'(2), and that a fundamental domain for I'(2) consists of the shaded
region in the next figure. The mapping S, carries the semicircle on the left onte
the semicircle on the right.

Fig. 18-2

Let G¢ = G = I'/T(2) be the factor group, which is of order 6. It is re-
presented by the matrices:

(0 )-(-1 0)- (3 06 1) 1) (3 1)

Define the function

€, — €
)= 22

€ — €3

The homogeneity properties of the quasi periods of the Weierstrass zeta function,
and of the g-function, show that the above ratio is homogeneous of degree 0,
and that our notation as a function of 7 is legitimate. Indeed, in the relations
E;, the exponential factor is homogeneous of degree 0, and each factor involving
o is homogeneous of degree 2, so that we get homogeneity of degree O when
taking the quotient.

It is now verified by direct computation that the six transformations of Gy
transform the function 2 into the following six functions.
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e, — €3 1 e; — e, A—1 e —e
A= = — =
e, — e; L—2 e, —e¢ 2 e; — €,
1 e —e; A €3 — €, ! . ey — e
—_—= = —_— A= —
i ey — e, A—1 e —e, ey — €,

This yields a faithful representation of G, on those six functions, and the fixed
field consists of rational functions in j, with rational coefficients. The function
/. generates the modular function field of level 2, which we denoted by F,. We
shall express J(t) as a rational function of /(t), namely we shall prove:

(Recall that j(r) = 123J(1) is the normalization whose g-expansion starts with
l/q.)

To derive the above rational expression as in Ford’s Automorphic Functions,
consider the rational function

0=0 + 1)(11. + 1)(’“ mik g 1)(l + 1)( L. 1)(1 — 2+ 1)
— A ya yA 4~ 1

(o + DX = 2)24 — 1)
JX(2 — 1) '

i

In terms of e, e,, €3, it becomes

0= _ (e; + e = 2e5)*(e; + €3 — 2e,)’(e; + &5 — 2e,)°
(e; — e3)*(e; — e3)’(e; — es)’ )
But
e; + e, + e; =0 and e e, = 1g;.

The numerator of Q is then equal to
6

(=3e3)*(—3e,)’(—3e,)* = ;—4 g3-
The denominator is equal to
T6(g3 — 27g3),
which is A, up to the factor 1/16. Therefore
0 = 27(1 — J).

Since we had the original expression of Q as a rational function of 2, it is then

trivial to get the rational expression of j in terms of 2, and it is the stated one,
The function 2 is used by Deuring [8]. It is also taken by Igusa as one of

the fundamental parameters in his theory of abstract elliptic functions [25].
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It is advantageous because it can be used instead of j to parametrize elliptic
curves in a non-degenerate way, by means of the equation

y? = x(x — D(x — 2), A#0,1,00.

The point J = 0 lies above j = oo, and is ramified of order 2. One can see
directly (and thus confirm the general fact) that Q(2) is ramified over Q(J) = Q(})
of order 3 overj = Oand of order 2 overj = 123,i.e.J = 1. A direct computation
shows that the j-invariant of the above curve is precisely j, for 2 # 0, 1. As
Igusa points out, the same parametrization is valid for all characteristics # 2.

One can look at the function Z from another point of view, namely as the
-analogue of a “Minkowski’” unit in the function field. It can be generalized as
follows. For an integer N > 1, let

P(w,/N) = p(w;/N)
o(w,/N) — p(w3/N)’

The expression on the right is homogeneous of degree 0, and hence gives rise
to a function of 7 € $, modular of level N. The function Ay obviously has no
zero or pole on H. It would be interesting to determine the part of the unit
group it generates in the integral closure of Z[j] in the modular function field
of level &, and to investigate its special values at imaginary quadratic pomts
to see if they generate the ray class fields.

in(1) =






19 The Fundamental
Theta Function

§1. BASIC PROPERTIES
Let L = [w;, w,]. We defing

A“”(a)‘) = 2,

Wy (25}

where 1 = w,/w, and 7 is the Dedekind eta function. Then A1/12 s homogeneous

of degree — 1, that is
Al/12 Ay =1A”‘2 @)
Aw, A W,

(1) f(Z; a)li Cl)z) = e—‘%mﬂ/ml Al/lz(w]’ 0)2) G(Z; L)'

We define the function

= q;/:f;z A, w,) o(z; 0y, w,),

where ¢ is the function considered in Chapter 18, §2 (an adjustment of «
made to have period 7). This function f'is homogeneous of degree 0, that is
@ S (425 doy, b)) = f(z; 01, @2).

Therefore by Theorem 4 of Cpapter 18, §2, it has the g-product

©) f@i0 = a0 = D I 0~ g2g(1 ~ q¥/g2).
Replacing z by —z shows immediately that

) f(=z;7) = =f(z0.
259
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In order to apply modular transformations easily, we also write the arguments

of fin vertical notation,
w
feionen = f(5:(2)).

Theorem 1. Let 2 = <‘CI 3) be in SL>(Z). Then there is a 12-th root of

unity () such that

(= a@)) - (= <gz>> griesHteon +donos

0

In particular, if S = <1

~(l)> and T = (é }) are the usual generators of
SL,(Z), then

o o) o5 = or(o(2)

and

o s{os(2)) - () s a(s(2)

where e and s are 12-th roots of unity.

Proof. We use the definition (1), and the fact that ¢(z; L) is invariant under
modular transformations. The factor involving the 12-th root of A picks up a
12-th root of unity under a modular transformation (easily determined, using
the functional equation of the eta function). The exponential factor does not
change under 7. Under S, it becomes

—4mz¥o,
e * .

which differs from the exponential factor involving #,, w, by the factor

niz¥/ w0z

e >
as one sees at once from the Legendre relation. The case of general « is treated
in the same way, thus proving our theorem.

Remark. We have treated the theta functions from the multiplicative point
of view here, because of the applications which we intend to make, or did make
(say to the discriminant A, or to seeing that /7 — 1 is a modular function).
The theta functions have interesting additive expansions, for which there are
many adequate references, say to Siegel [B14] or books on analysis like Hurwitz-
Courant, and they can be used to construct modular forms. A recent paper of
McDonald, completing work of Dyson, also relates the multiplicative and
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additive expansions to the general theory of affine root systems [29]. Considering
the size of the present book, and the type of result considered here, I decided
to omit the additive theory and its relation to the multiplicative theory, which
could probably occupy another book.

§2. THE SIEGEL FUNCTIONS

Let u, v be real parameters. Define

(7N O(u, v; 1) = 9<<Z>, T> = f(u — vr;T) T,

We can also write this in the form

) 0, v3%) = (=G, v)S@; @) o),

This second way of writing the function shows more clearly the fact that in
terms of <§>, the factor involving the function f is homogeneous of degree 0.
However, the vertical way in terms of u, v makes it easier to state the trans-
formation formula with respect to x € SL,(Z), which reads:

) -

for some 12-th root of unity &,.

We prove this by looking separately at « = 7 and « = S, using definitions
and the formulas of Theorem 1 in the preceding section. The desired result just
drops out.

Two other formulas are also useful, namely

®) O(u + 1,v51) = —e ™ 6(u, v; 1)
(10) Ou, v + 1;7) = —e™ O(u, v; 7).

These are consequences of the periodicity behavior of ¢(z; 7, 1), and the ex-
pression of £ (z; 7, 1) in the.definition of f.

We shall use the above functions when (, v) is a pair of rational numbers
not both integers, which we denote by @ = (a;, a,), in the same notation as for
the Fricke functions. Suppose that N is the precise denominator of a (i.e. the
least common multiple of the denominators of a,, a,). Raising the expressions
in (8) to the 12N power kills the root of unity, and raising the expressions in
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(9), (10) to this power makes them periodic of period 1 with respect to u, v. Thus
we define the Siegel functions of primitive level N

H(a; 1) = H,(z) = 6(a; 1)**"

if N is the precise denominator of a. The periodicity relations (9) and (10) show
that H, depends only on the residue class of a (mod Z?2). If (u, v) are a pair of
rational numbers with precise denominator N, then we also write the Siegel
functions in the form

H((“); ). orH,@, o H®.

v

Relation (8) gives us a similar relation for the Siegel function, without the root of
unity. Namely for o € SL,(Z),

) ()

Replacing a by «~'a for any « € SL,(Z) shows that
H2. H(a™'a; 1) = H(a; a1).

Taking « = I (mod N) shows that H, is a modular function of level N. As with
the Fricke functions, we see that the modular group, operating on the upper half
plane, induces a permutation of the Siegel functions of primitive level N.

Using the product definition of £ (z; t) given in §1, (3), we immediately find
the g-product expression for the functions H,. Let r, s be integers not both
divisible by N. Then

rINY. O\ _
H3. H<<S/N>’ 7:> =
qi\!+6s+652/N C;6r5(cr)'v Q:S/N _ 1)12N ]:[1 [(1 _ q:—s/NChr")(l . q:+s/N C)-V_r):ller

Here, {y = 2™V,
As in the study of the Fricke functions, and the automorphisms of the
modular function field, let o, (for 4 prime to N) be the automorphism of the

modular function field F induced by the action
CNVH ty

on the roots of unity, and leaving the local uniformizing parameter g/~ fixed.
From the g-product of H3, we see that in the present case, if u, v have denominator
N, then

H4. OdHll,U = Hdu,v'
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Recall also that we had defined automorphisms of the modular function
field, namely o(x) for o € GLF (Q) and o(g) for

geU =[] GLyZ,).
P

(As u is already occupied, we use g for elements of this product over all primes
p-) The automorphism o(g) was defined relative to the coordinatization obtained
by the Fricke functions. Their effect on the Siegel functions is, however, easily
determined.

H5. If « € GL7(Q), then HS®(7) = H (x1).
This is merely the definition of how ¢(x) operates on modular functions.
H6. Let g € U and write

g = <(1) 2)0: (mod N)

with some positive integer d satisfying d = det g, (mod N) for all p|N, and
o € SL,(Z). Then on Fy we have '

o(g) = 0,0(x),
and for any rational u, v with denominator N, we have
HZ’(S)(T) = Hdu,u(ar)'

Proof. The first assertion is merely a repetition of the fact that we have a
homomorphism of U into the group of automorphisms of Fy, and of the matrix
representation of the automorphism ¢, on the Fricke functions as described in
Chapter 6, §3. The second assertion follows by definition, and H4.

Finally, we can use the functions H, to generate the modular function field:

Theorem 2. The Siegel functions H, (ac Q3, a ¢ Z2, a has precise de-
nominator N) lie in the modular function field Fy, and generate Fy, over Q(j).
They are integral over Z[J].

Proof. The proof is essentially the same as for the Fricke functions. For
the integrality, we symmetrize, taking the product

[Tx -~ H)

over all a (mod Z?) with precise denominator N. The coefficients are symmetric
both for the action of SL,(Z), and the action of the automorphisms o, (with
d prime to N), and hence are modular functions in Z[j]. The fact that the
functions H, generate Fy is easily seen, and is left as an exercise.
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§3. SPECIAL VALUES OF THE SIEGEL FUNCTIONS

Throughout this section, we let k be an imaginary quadratic field. We let b be
the different of k over Q. We let § be an ideal of the ring of algebraic integers
0 = 0y, and assume | # o.

For the convenience of the reader, we recall that d~! = o' is the set of
elements 4 € &k such that

Tr(/io) < Z.
This condition on the trace (from & to Q) is equivalent with the condition
2RiTr0) — 1 ‘
which is the reason for the orthogonality sign.

Let ¢ be a fractional ideal of 0. Following Siegel [B14] and Ramachandra
[33], if ¢ = [z, z,] with z,/z, € ©, we put

o= (1) )

Property H1 shows that this definition is independent of the chosen basis of c.
Furthermore, let b be an ideal (i.e. not fractional) which is prime to f. We define

the Ramachandra invariant
Di(b) = H(bd1§-1).

It is easy to see that if N is the smallest positive integer contained in | and
¢ = bd'j~* = [z,, z,], then N is also the precise denominator of the pair

(u, v) = (Tr(zy), Tr(zy)).
In particular, the function H, , has level V.
Lemma. The value ®y(b) depends only on the ray class of b modulo §.

Proof. Let a be an ideal in the same ray class, so that there exist two
algebraic integers y, v € o prime to f, such that 4 = v (mod {) and

va = ub.
Let the notation be as above. Then

pOdTH = [uzy, pz,] = vab~Hil,

E7 EZ
v“l’ v 2

is a basis for ad~!{-!. In view of the fact that H, depends only on the residue
class of @ mod Z2, it suffices to prove that

Hence

Tr<ﬁv zi) =Tr(z) (mod Z)
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for i = 1, 2. For any prime p, let o, be the local ring at p, and f, = fo,. If plf,
then ’
U

o1
v

(‘l—l -~ l)zi ed !,
v

whence the trace of this element lies in Z. This proves our lemma.

0 (modf,).
It follows that

Let /(f) be the monoid of ideals prime to f, let P,({) be the subset of ({}
consisting of those ideals which are principal, generated by an element y = I
(mod 1), and let Gj be the ray class group I(j)/P,(f). In view of the lemma, for
any ray class R in Gj, the value ®¢(b) is independent of the choice of b prime
to { in the class, and defines what we denote by ®¢(R).

Theorem 3. Let | be an ideal # o in the imaginary quadratic field k. For
any ray class R € Gy, let R’ be its complex conjugate. Let (R, k) be the Artin
automorphism on the ray class field with conductor §. Then ®i(R) lies in the
ray class field with conductor {', and
®(R)S = O (RS).
Proof. Let a be an ideal in the ray class S* of {, relatively prime to fj".
Let d = Na so that do = aa’. Let

b0~ = [z, z,]
as before. Let

f=H,, where (u, v) = (Tr(z)), Tr(zy)).

Let s be an idele of k such that s, = 1 unless p|d, so that in particular 5, = ] if
pIN, and such that s,0, = a, (for instance you can take for s, a generator of the
locally principal ideal a, over o). Then 5,bd~7{~! = (abd~'{~!),. Let g(s) be
the embedding of s in GL,(A ) given as in Shimura’s reciprocity law of Chapter 11

§1, so that
Zy\ Zy
S”<Zz> B q”(sp)<22>'

Theng,(s,) = 1 ifp,{'a‘. We shall apply Shimura’s reciprocity law,
DRYTID = f(z,/2,)7H0) = [z, [z,).
Let e M3 (Z) be such that
()
Z2

is a basis of abb~!~!. Then det « = Na = d. Furthermore,

qp(sp)(fl> and a(z1>
<2 Zz
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both form a basis of (abd=1f-1), over Z,,, for all p. Hence there qxists 9, € GLy(Z,)
such that
gpqp(sp) = for all p.

By definition, g(s) = ¢g~'a and o(g(s)) = 0(g~")o(x). The effect of ¢ on any
function in Fy is determined by its congruence class mod N, since on the Fricke

functions f, we have

o(g) —
a ag*

For all p|N we have g, = a. Let B € SL,(Z) be such that
_ o1 0
g = ﬁ(o d> (mod N).
Then 6(g) = o(f)o,. Let e be a positive integer such that

ed =1 (modN).
Then on F we have o(¢g~') = o.0(8~!), whence by H6,

Hi(zy/z) = H,, (B o(24/2,))

(s ().

The ray class (modulo ') of a’~! is that containing ea. Therefore
®(RS) = H(eabd™'{™!) = H(eoc Tr<§1>; on(zl/zz)> .
2

Since H, depends only on the residue class of @ mod Z?, it now suffices to verify
that

ﬁ(g (1)> = ex (mod N).

This is now clear, because for p|N, we have g, = a, and therefore

o= /3((1) 2) (mod N).

Thus we have shown both that if a € P((f’), then (s=!, k) acts trivially on ®y(R),
and that in general, it acts according to the formula stated in the theorem.
This proves that ®y(R) lies in the ray class field of {, and also proves the desired
formula.

The above theorem is due to Ramachandra [33]. Here it comes like all others
of its kind as an immediate consequence of the Shimura reciprocity law. Observe
that Ramachandra has the usual troubles at the two “singular” points i and p,
taken care of once for all by the theorems of Chapter 9, §3 describing the
various inertia groups, and the Shimura reciprocity law which ends up by
making no distinction at these points.




20 The Kronecker Limit
Formulas

§1. THE POISSON SUMMATION FORMULA

Let f be a function on R. We shall say that f tends to 0 rapidly at infinity
if for each positive integer m the function
x = [x]7f (x)
1s bounded. We define the Schwartz space S to be the set of functions on R

which are infinitely differentiable and which tend to O rapidly at infinity, as .well
as their derivatives of all orders.

Example. The function e=** is in the Schwartz space Any C® functlon with
compact support is in the Schwartz space.

We define the Fourier transform of a function fin S by the integral
JOo) = f f(x) e dx.
— :

Differentiating under the integral sign shows that f is C® and tends rapidly
to zero at infinity (it is in fact in the Schwartz space but we won’t need this),

Poisson Summation Formula. Let f be in the Schwartz space. Then
Y f(n) =Y fn).
neZ neZ
Proof. Let
g(x) = é G + k).

The convergence 'is obviously absolute and uniform on compact sets, and we
see that g is periodic with period 1, and C*. Its Fourier coefficients are defined by

267
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1
C =f g(x) e~ 2mmx gx,
0

Integrating by parts, one sees that |c,,| £ C/|m|? for some constant C (essentially
the sup norm of the first two derivatives of g). Hence the Fourier series converges
to g. We have

3 en=9(0) = 3, f(m).

mel meZ

On the other hand, interchanging a sum and an integral, we get

1 1
Con =J‘ g(X) e.—zﬂim:" dx = Z J~ f(X + n) e—Zm'm:c dx
0 " 0
1
= ZJ‘ f(x + n) e"lﬂim(x+n) dx
n 0

- f " oo e ax = fom)

This proves the formula.

§2. EXAMPLES

The function A(x) = e~™" is self dual, i.e. i = A. One merely has to differ-
entiate under the integral sign and integrate by parts to see that
R(y) = —=2mh(y).
It follows that
h(y)=Ce™™
for some construct C. Using the standard integral 1(0) shows that C = 1.

Let f'be in the Schwartz space, and let g(x) = f(x + ¢) for some constant c.
Then '

g(») = ¥ f(y).
This just comes from changing variables in the integral defining g.
Similarly, let g(x) = f(bx) where b > 0. Then

sy = 2 7(?
g()-)—bf(b>-

Again this comes from a trivial change of variables in the integral.
1If we let
0([) — Z e—nnzt

neZ
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with ¢ > 0, then we obtain the relation 8(¢-1) = ¢36(¢), or

Z e-nnzt = Z \%e—nnz/t

neZ neZ

known as the functional equation of the theta function.
From it we shall obtain the functional equation of the zeta function defined
for Re(s) > 1 by the series

) =3

Recall that

0

® dt
T(S)=J e_tts't—,

and also recall the invariance of the integral with respect to multiplicative

translations, that is
® dt ® dt
f ﬂmr;=f ok
(V] 0

if a > 0 and f'is absolutely integrable. Select @ = nn. Then let
w0 , dt
F(s) = n"l‘(E)C(s) = J Yo
2 0 n=1 t

Under the integral on the right we have essentially the theta function, except
for its term with n = 0.
Let

o) = Y ™,
n=1

so that 2¢(t) = 6(t) — 1. Then we obtain

H9=Jﬂ“¢m?

0

@ S dt © dt
= J. 12 (1) 7 + J 172 4’(1/1)7-

1 1

The functional equation of the theta function immediately implies that

~ap( Ve = L 1 (” 3,
7 F(2>C(s)—s_1 s+flw(t)[t+t ]t.
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The right-hand integral is absolutely convergent for all s, and this whole ex-
pression is invariant under s+» 1 — 5, so we obtain the analytic continuation
and functional equation of the zeta function, following Riemann’s original proof.

The argument is typical of all proofs of functional equations, and of ex-
pressions for functions of zeta type, especially those which we shall give for the
Kronecker limit formula in a moment.

§3. THE FUNCTION X,(x)

Let a, b be real numbers > 0. Define

K1. K(a, b) = me~(“2'+b’/f> fit.
5 2 o t

This is like an integral for the gamma function, but is much better, because first,
it is more symmetric, involving both ¢ and 1/¢, and second, it converges absolutely
for all complex s, because the presence of 1/¢ cures the blow up which occurs
for the gamma integral near 0.

Let us use the invariance of the integral under multiplicative translations,

and let tHgt. We find that

b k3
K2. K(a, b) = (E) K (ab)
where for ¢ > 0 we define
K3. KS(C) = J‘ e-—c(r+1/1) ts[it{ .
4]

In general, this integral cannot be changed any further, and we note that
K4. Ki(c) = K_(c),

proved by letting # — ¢~! and using the invariance of the integral on R+ by this
transformation.
However, for s = 1, the integral collapses to

KS. ' Ky(e) = \/’-c’ 2
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whence )
K6. Ky(a, b) = %‘ p-2ab
The proof of K5 is easy, and runs as follows. Let
g(x) = K4(x) = J: g+ 1) tf%t'

Let t > ¢/x. Then
1 [~ dt
= —(t+x2]1) t‘% -
9x) ij ¢ :

0
Let i(x) = \/;g(x). We can differentiate /(x) under the integral sign to get
h(x) = —2x | e =0t dt .
2 t
Let r+> =1, use the invariance of the integral under this transformation, and
then let # + #/x. We then find that

R (x) = ~2h(x),
whence
h(x) = Ce=?*

for some constant C. We can let x = 0 in the integral for /4(x) (but not in the
integral for g(x)!) to evaluate C, which comes out as I'(¥) = /7. This proves K5.

It is also useful to have an estimate for K (x), namely:

K7. Let xo > 0and oy £ 0 < 0. There is a number C(xy, 04, 0;) = C
such that if x = x,, then
K, (x) S Ce™?~

Proof. Firstnotethatt + 1/t = 2,if t > 0. Split up the integral as

o 1/8 8 0
o] 7] 1/8 8

The middle integral obviously gives an estimate of the type Ce~2*. To estimate
the first integral, note that if + < 1/8, then

1 1
-2 44+ .
t 2t
Hence
1/8 1/8
e—x(r+1/r—2) ta[ﬁ < e—zx e—xo(z+1/21) taii_t
o t o t

which is of the desired type. The integral to infinity is estimated in the same way,
to conclude the proof.
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¢

The preceding formulas provide the basic formalism of the K-function.
We suggest to the reader that he skip the following properties until he needs to
use them, or to give alternate proofs for identities which he knows already.

C e+ 1y I'(s)
Proof. Consider

= g odi
r(S)f-wmsdll =J\ J‘ (u 7 1)5 —du.

Let ¢+ (u? + 1)t and use the invariance of the integral with respect to dt/t,
relative to multiplicative translations. The formula K8 drops out.

® 1 _I(s —
KS. f s du = /7 Gl ) for Re(s) > %

The above formula allows us to find the first term of the expansion of the
right-hand side at s = 1, which will be needed. There are of course alternate
proofs for this (using the functional equation of the gamma function), but it
does no harm to get it in the spirit of the present section. Putting s = | in the
integral of K8 yields the value n because 1/(«? + 1) integrates to the arctangent.
To get the coeflicient of s — | in the expansion, we differentiate under the
integral sign with respect to s, and we must evaluate the integral

j” log (u? + 1)
——=——"du
. 41

To do this, I use a trick shown to me by Seeley. Let
* log (u?x? + 1)
g(x) = j T du

so that g(0) = 0. Differentiating under the integral sign and using a trivial
partial fraction decomposition yields

l’= TE
g'(x) I x > 0.

Hence g(1) = n log 2. This gives us
I's—4)
I'(s)
Finally in questions related to the second Kronecker limit formula it is
sometimes useful to know the next identity.

=/n(1 = (s — Dlog4 + ---).

x eixu _Ix s—4
K9. I(s )‘[_@ ﬁs du = 2\/71 (5) Ko () for Re(s) > %
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Proof. Again as in K8, write down the integral for I'(s), interchange the
order of integration, let t — (#? + [)r and use the fact that e—*%2 is self-dual for
the Fourier transform normalized as

fm f(x) e™™ dx.

Then let ¢ — x7. The desired formula drops out.

§4. THE KRONECKER FIRST LIMIT FORMULA

Let T = x + iy be in the upper half plane, y > 0. We are interested in the
function E(z, s) defined by the series

E(t,s) =) 4

o mT + n?’

s

Re(s) > 1,

the sum being taken for all integers (m, n) # (0, 0).

We want to get its constant term in the expansion at s = 1. We shall derive
an analytic expression for £(t, s) which will exhibit a simple pole at s = 1 with
residue 7, and will show that otherwise it is holomorphic in the complex plane.
From this expression, we shall be able to read off the first two terms.

Kronecker first limit formula. Let g. = €™, and let
n(w) = q:"** [T (1 - 4.
Let vy be the Euler constant. Then
7 _
E(1,s) = i 2n(y — log 2 — log (\/y In(0))?) + O(s — 1).

Proof. Lett = x + iy, so that
imt + nl* = (n + mx)* + m?y2
As in the functional equational equation for the zeta function, we start with

T[-SF(S) - fm e~ mat tsit

5

a 0 t

Therefore summing E(z, s) first for m = 0 and then m # 0, we find:
4.1) 7T (s)y "°E(x, 5)

— 2 T(s)((25) + 2 a

—x|mr+n|2t =

t

e

80

dt

—n(n+xm)2t e—nyzmzt Pagu

= 27T (s)(2s) + 2 ;

=1+1L

e

gy
=)

:ﬁ[\fjs ?IMS

-

=]

(=]



274 THE KRONECKER LIMIT FORMULAS [20, §4]

We now apply the Poisson summation formula on the sum over all n € Z under
the integral, yielding
Z e—n(n+xm)1x — _1___ Z eZm’xmn e—nnl/r.
tn

The square root of ¢ in the denominators will combine with #° to give *7%.
We now split the sum over # into two parts, withn = Oand n # 0. Whenn = 0,
we essentially get a zeta expression, so that the corresponding term in the right-
hand side of (4.1) is

(4.2) II =g = 2 - ? e—nyzmzt ts—-i-i?
n=0

t
0]
= 27”6~ 2D (5 — Pr(2s — 1).

Next we deal with the term 11, 5, which is

¢ ” (yiun2r+n2/t) idt
— 2nixmn —a(yim2t+n2/t) ;5
(4.3) Houo =2 ) ) emim jo e pi -

m=1n#0

o
=23y ¥ K, (Jrym, Jxln|).
m=1n#0
Therefore the expression in (4.3) is an entire function of s, as one sees by an
easy estimate for X, but what concerns us is that this expression is holomorphic
at s = 1. Using (4.1), (4.2), and (4.3) now gives the analytic continuation of
E(z,s5), and it would be easy to get the functional equation, having a form
similar to that of the zeta function. We concentrate our attention at s = 1, in
which case
o0
(4.4) ITeo at s=1isequalto2 Y Y e2mixm —l—e"z”"""l .
m=1n#0 my

Recall that

g, = eZni(x+iy).
Looking at g + g;™ (arising from positive and negative values of n), and using
formula K6, we find that

(4.5) IM,z0 at s=1 1is

ll

Z—ReZq

m=1 My h=

It

4 n
~—Z loglg — 44
y

n=1

- (log (ol + 19

I

4 7
-~ —log n(7)| — 3
y
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b

Putting all our terms together, we obtain
(4.6) 7 T(s)y "°E(z, s) = 2n°T(s){(2s) + 2n~ =8 y=26"HT(s — (25 — 1)
4 o
— ~logp(x)] — = + O(s — 1).
y 3
Since {(2) = n%/6, we see that the term arising from {(2s) will cancel —z/3.

Divide by n—T(s), setting s = 1. From simple identities with the gamma
function, or from K8, one knows that

T6—-9_ 0 _
(;-(S) )=\/ﬂ(1—(s—1)log4+---)
while
1
C(Zs—1)=2(s_1)+y+0(s—1).

Multiplying by y* we.still have to expand
y‘y_z(‘_*) = yl—s =1—(s—Dlogy + 0(s — 1)2-
Putting all this together shows that

E(,s) = ——73—1 _ nlogy + 2n(y — log2) — 4nlog [n(x) + O(s — 1),

s —

which is another way of writing Kronecker’s formula.

Remark. The formula can be generalized to arbitrary number fields, the case
treated above corresponding to the rational numbers. One uses the sum over
pairs of integers of that field. For each real absolute value, one takes a copy
of the upper half plane. It was unknown until very recently what to do for the
complex absolute values, but as shown in Asai [1] one merely has to take the
quaternion upper half plane in this case. The quaternion upper half plane can
be represented as the set of matrices

)

where z is a complex number, z’ its conjugate, and u > 0. You then end up with
a multiple integral of K-functions, which does not collapse to an exponential
function, and yields a function analogous to log|y(z)|. Asai discusses precisely
several aspects of the analogy. However, the connection with abelian functions
and moduli remains to be worked out.
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§5. THE KRONECKER SECOND LIMIT FORMULA

Let u, v be real numbers which are not both integers. We define
S

i y
E .(T S) — ean(mlﬁ-nv) 5
e (m,n)§(0,0) |mz + n[**

fort = x + iy in the upper half plane. The series converges for Re(s) > 1.

Second limit formula. The function E, (z,s) can be continued to an entire
function of s, and one has
UZ/Z‘Z

bl

E,(t,1) = —=log|f(u — vt; 7)q;
where

S0 = g3t = g7 TT (1 = g2t - )

is the function studied in Chapter 19, §1.

Proof. We follow Siegel [B14]. We shall not need any property of f other
than its definition as the above product. We carry out the proof first for the
values .

TR and O<v<l.
The extension to the general case will be done afterwards.

As in the first formula, we split off the sum taken for m = 0, so that,

abbreviating E, (t, s) by E(z, 5), we get

eZninv . , . 1
y—’E(‘c S) — + emeu eZmnu A
’ n§0 i”lz m§0 ; IHTE + nlzs

At s = 1, the first sum is a standard Fourier series,

P (CURE
n#0 |”]2 6

The second term is dealt with by using the Gamma integral, and is equal to

13 x
n Z e?_m'muf S‘ eZm'm.’e—m|mr-§-n|2 tsit
I'(s) m=o o n l
We write t = x + iy, so that |mt + n|? = (n + mx)* + m?y?. The second
term is equal to
) .

v Z p2rim(u=vx) ? Z e nEmx=ivft) = n(ty'm?+02/1) ts_‘i_t .

F(s) m#0 0 n _ t
We apply the Poisson summation formula to the inner sum over n. This sum
is then equal to

_1 Z e—nnz/t eZm’n(mx-—iv/r)‘

L=l

n
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Therefore the second term is equal to an expression which involves a Ks-
integral, which is seen to be entire in 5. At s = 1, the second term is equal to

: ®
7 Z g2nim(u—vx) Z leu'nmxf e_,,[,,,,zy2+(,.—u)2/t] t* ‘ﬁ 3
m#0 n 0 t

\/; —2ab

The inner integral is of the form Ky(a, b) = — e and therefore our second

term is equal to
T Z 2nim(u—vx) Z elnmm.\: 1 e—Zn_v]n—v[ [m]‘
m#0 Imly

The sums converge exponentially, and can be reversed, so that we sum over =
first, and then over m # 0. This is the only point where we use v # 0. Forv = 0
one has to take the term with n = 0 into account separately, and then interchange
the summations. The arguments are similar. We obtain for v # 0,

1 ) o ln—
E(T 1) = 2r (l) — v+ )y + TEZ Z Zm[m(u—vx)+nmx+ly\n vl |m|]l

n m#£0

For |r| < 1 we have

m

—~log(1 — r) = Z — .

ey m

We evaluate the double sum over #» and m # 0 by distinguishing cases, dealing
first with » = 0, and then with the four cases corresponding ton # 0, m # 0.
Take first » = 0. Then we have the double sum

2 = Z+Z

m#0 m= m=-1

which therefore yields

s me[(u vx)+iyv] + Z 2ni[—(u-—vx)+iyv]m
1 m mey M
— —log (1 _ eZm’(u—-vf))(l - e—2m‘(u-vt))'
Let z = u — vz. The term corresponding to n = 0 can be rewritten
—lo_g (1 _ e—2m'z)(1 _ e‘Znif). )

But

(1 _ e—2m‘z)(1 _ eZm‘f) — (em'z _ e—niz)(e—m'i — euii) eni(E-:)

= lg} ~ gz¥ e 7.

Hence the term corresponding to n = 0 is equal to

n(—log|gf — g + 2nvy).
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Now observe that 2m%py cancels the —2nyy arising from the very first expres-

sion.
Next, we consider the four sums separately, arising from the cases

n>0 n<0, m>0 m<O
Consider first the case with n > 0and m > 0. Summing over m yields
1

2rifu—vx+tax+iy(n—v)im __ _ eZm’(u—vr+nr)m = —log (1 - qnq )
- tdz/
-1 m
m=1

e
1

One of the other cases will contribute the complex conjugate of the above
expression, and the two other cases will contribute the factors of type (1 — g%/q,)
and their complex conjugates. This accounts for the big double product in the
function f(z; 7).

There remains to prove that

3
1B

2n2yo + Lnly = —mlog|q”? ql/12|2,
This is easily done as follows:
1/12'2

1q:

Taking —r times the log of this expression yields the term 2r?y/6. The other
term is computed in a similar fashion. This concludes the proof.

2rit/12 —2nit/12 —2ny/6

= ¢€ e = e

We still have to make the appropriate remarks when u, v do not lie between
0 and 1. In that case, we note that the series defining E, (t, s) is obviously
periodic in u and ». On the other hand, from the definition of f(z; 1) as a product,
we see that the right-hand side of the formula is obviously periodic in . A short
computation again using the product definition shows that it is also periodic
in v. This takes care of the general case. .

The second limit formula will be applied to the case when u, v are rational
numbers with exact denominator N > 1. Referring back to the definition of the
Siegel function H of Chapter 19, §2, we see that in this special case, we can write

the limit formula in the form
| ]
v)" |

We shall use it as such when we look at L-series later.

E!/,L‘(Tﬁ 1) = - 6_71[\—[ 108




21 The First Limit Formula
and L-series

§1. RELATION WITH L-SERIES

Let k£ be an iméginary quadratic field, with discriminant —d, < 0 so that
d, is the absolute value of the discriminant. Let o be an order in &, and let @ be
a proper o-ideal class. We define the zeta function

1
i, @) =X No®

taking the sum over all proper o-ideals a in the class. We can define Na to be
the unique positive integer which generates aa’, where a’ is the conjugate ideal
to a. (Refer back to Chapter 8, §1, to see that this makes sense.) Fix some
proper o-lattice in the inverse class @~!. Then ab = (&,) is principal, and the
association

at> &
gives a bijection between the proper o-ideals in @ and o-equivalence classes of
elements of b. (Two elements of k are called o-equivalent if their quotient is
a unit in 0.) In what we do later, b will only enter homogeneously of degree 0,
so we assume right away for convenience that b = [1, 1]. Any proper p-lattice
is always equivalent to a lattice of this type. Then we can rewrite the zeta function
in the form
Nb* 1
Z Nés ’

wn Zeb

{, Q) =

where w, is the number of roots of unity in o (the only units in an imaginary
quadratic field are roots of unity). This also can be written as
Nb* 1
G, @) = e
¢ @) X [mt + n|*

o mn

w
where the sum is taken over all pairs of integers (m, n) # 0, 0).
279
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Note that NaNb = N¢&,, so that the b really appears only as the usual
convenient'means of making ideals principal.

The discriminant of b is given by
1

D(b) = Jl

2
o -2 = 2y
T

ift = x + iyand y > 0. On the other hand we have
D(b) = Nb?D(o),

where D(o) is the discriminant of o. Hence we have a third expression for the
zeta function, namely

| 1
|
)

BYEL
{s) = W(Td‘) D e

where we see appearing the Eisenstein series for which we know the Kronecker
limit formula. Here d, is the absolute value of the discriminant of o.

It will be slightly more convenient to deal with A than with 5, and we note
that the absolute value signs in the Kronecker limit formula anyhow eliminate
the ambiguity of the possible roots of unity. As in Chapter 12, define

g(b) = (2m)~'2Nb°|A(b)| = (2m)~**N([z, 1])°|A().
This function is an invariant of the equivalence class of b, because considering

/b instead of b, we see that |i|'? comes out of the norm sign, and |2}~!2 comes
‘out of the |A|. So we can write

(1)

g(b) = g(B),
where 3 is the proper o-lattice class of b.
We use the beginning of the exponential series

<—2—)s—1~1+(s—1)10 ——2—+
Ja. SN

and we find the expression for {(s, @) which we wanted, suitably normalized,
namely

1 2n 1 1
¢ =——= + 2y — + - -1 —
(2) (s, ®) " \/a'.,(s i y — logd, ¢ log g(@ )) + O(s — 1).

Let 7 be a character of the proper o-ideal class group G,. We define the
L-series

1)\
L, 7) =Y 2@ @) =TT 1 -
60 = £ 1@ ® = 11 - 52)

with the product taken over all proper irreducible o-ideals. Let | be the trivial
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character. If y # I, then taking the sum of y(®) over all @ yields 0. Hence the
terms independent of the class (i.e. the polar term involving the residue, and the
universal constants) will disappear after taking the sum, leaving us with

Theorem 1. Let ¥ be a non-trivial character of the proper ideal class group
G, of an order o in k. Then

7
L, )= — — ¥ 1(@®) log g(@™1).
o(Ls %) 3Wu\/dn‘é,x( )log g(@™")
On the other hand, if h, is the order of G, then
2nh 1
Ls, 1) ={(s) = L cre
D =09 = T

It will be convenient to split the product for the L-series and the zeta function
into factors involving the conductor and factors not involving the conductor.
Thus if ¢ is the conductor of b, we let

1 -1
4 = 1 —
o8, €) pI:[ ( Np‘)

and

1 -1
P(s,e) =]] (1 -~ Np‘)

ple
The second product is taken over the irreducible proper o-ideals p dividing the
conductor. We use a similar notation for the L-series. For the zeta function,
we then have

{o(s) = Co(s9 C)PO(S, C)’
and for the full ring of algebraic integers,
Culs) = Li(s, P(s, ©).
For the L-series, factors P,(s, x, ¢) and P,(s, 7, ¢) would appear.
Let K = k(j(o)) be the class field corresponding to the order o. It is contained

in the ray class field with conductor ¢, and thus all primes not dividing ¢ are
unramified in K. If p is prime to the conductor, then we have a formal relation

_ Ly _x(p)
A )10 -5

whose proof we reproduce for the convenience of the reader. Let

u = Np°.

Then N¥ = (Np)/ and so our relation amounts to

(1 —u)y =] ~ xp)u),
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if pog = P, - - - B,. The cyclic group generated by p in G, has order f by
definition of the Frobenius automorphism. Let ¢,,..., ¥, be the distinct
characters of this cyclic group. If {; is a prlmltlvefth root of unity, then we
can make these characters correspond to

Yyup) = Cf
Let ¥y, ..., 7, be the characters of G,/{p}, i.e. the characters of G, which are

trivial on p. Then the products y,, constitute all of the character group of G,.
Hence

S=
[T ~ xp)u) = H (1~ Gy = (1 —u'y,

b3 ¥=0
thus proving our relation. In terms of L-series, it yields:

Theorem 2. We have a relation
{x(s, ©) = Lls, o) TT Lils, 7, 0.
x#1

Both sides have a simple pole at s = 1. The residues must therefore be equal.
One knows from elementary analytic number theory that the residues are given
by the expressions

| .
(2n)2hxRy
Px WK\/dk Pk

where 2r, = [K: Q] = 2h, because [K:k] = h,. Thus r, = h,. As usual,
wg is the number of roots of unity in XK. From the definitions, we therefore find
that

px = pPx(©Pk(1, c) and px = pr(OP(1, ©)
while
L1, 75 €) = Lo(1, P(1, %, o).
From Theorem 2, we therefore obtain the corresponding relation for the residues.

Theorem3. Let o be the order with conductor ¢, and K = k(j(0)). Then

px(©) = pl&) T Pl 2, 0)" (

x#1

N 2 x(@) log g(@~ ))

We observe that since the residue of the zeta function is not 0, it follows
that for any non-trivial character y of G,, the sum

gj x(@) log g(@~1)

1salso # 0.
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In the next section, we shall do some elementary algebra involving the
Frobenius determinant to transform some more the final product in Theorem 3.

The above results are essentially due to Fueter [14], who gets the class
number relation implicit in the above, when we substitute the values for the
residues of the zeta function. Our exposition follows Siegel [B14], and [B15],
§27.3, who phrases his results in terms of the absolute class field, but there is no
change in the application to the ring class fields, taking into account the primes
dividing ¢ as separate factors, as done above. Meyer [B8] does it in general.

We return to the values of the A function. Let

_A@
Y

for any proper o-ideal a. Recall that a;, = ao,.
Following Ramachandra’s idea [33], we shall now see how Theorem 3
implies a non-degeneracy statement for the values (o) = A(0)/A(0y).

Theoremd. Letobeanorderink. Then
k(j(0)) = k(j(0)), A(0)/A(0y)).
Proof. First we state a lemma. If @ € G, we let @, be its natural image in
Go,.
Lemma. Let S be the kernel of the homomorphism G, — G,,. Let y be a
character of G,, which is non-trivial on S. Then

Y x(®)log g(@,) = 0.

QeGo
Proof. The sum over @ € G, can be broken up into two sums

Y Z‘,g3 (@) log g(B).

BeGo, Qi =

The distinct elements @ such that @, is equal to a fixed B constitute a coset of
S, and since y is non-trivial on S, it follows that the inner sum is 0, as desired.

Next we make two remarks on how we can change the sum over @ in
Theorem 3 in a convenient way. We can replace @ by @' and y by y~!, and
we thus see that if y is non-trivial on G,, then

%‘,x(@) log g(®) # 0,
Furthermore, if C is a positive number, then
¥ 2(@)log C = 0.
a
Now we come to the proper part of the proof. We have a tower of fields

k < k(j(o) = k(o) = K,
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with Galois group G, for the full tower K over k, and G,, for the base level,
between k and k(j(o,)). The Galois group of the top level is precisely the kernel
S of the homomorphism
G, = G,,.
Suppose that there is an element € S, ¢ # [ which leaves (o) fixed. Let
B e G, be such that ¢ = a(R), the Artin automorphism. Let y be a character
of G, such that y($B) # 1. Let a be a representative ideal of @, prime to the
conductor. In view of our remarks, we can replace g(®) in the sum
Y #@) log g(@)
by
|A(a)]
[A(a,)l
without affecting the values of this sum, and in particular the fact that it is # 0.
Recall that by Theorem 1 of Chapter 12, §1 we have
Yoy = Y(a),
if ¢(a=') = (a~!, k) is the Artin automorphism. By the lemma, we conclude that
L 1(@) log [y(@)] # 0.

(2m)7"2 Na®|A(a))| = l¥(a)lg(ay),

Let {B'} be the subgroup generated by B. Let {@,} be representatives for the
cosets of G /{B'}. Then the sum over @ can be replaced by the double sum

2 X H@0)(B) log (@),

because (®) depends only on the coset of @ mod {$B'}. Since y was chosen
non-trivial on B, our last sum must be 0, a contradiction which proves Theorem 4.

§2. THE FROBENIUS DETERMINANT

Let G be a finite abelian group and & = {y} its character group. We have
the Frobenius determinant relation:

Theorem 5. Let fbe any (complex valued) function on G. Then
[T X #a)f(a™’) = det f(a™'b).
N]

216G aeG a
Proof. Let F be the space of functions on G. It is a finite dimensional vector
space whose dimension is the order of G. It has two natural bases. First, the
characters {y}, and second the functions {3,}, b € G, where
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Sp(x) =1 if x=5
Sp(x) =0 if x s b.
For each a € G let T, f be the function such that T,f(x) = f(ax). Then
(T.)(6) = x(ab) = x(a)x(b),

so that
Tox = x@)x
So y is an eigenvector of T,. Let
T=73 fla T,
aeG

Then T is a linear map on F, and for each character y, we have
= [Zéx(a)f (@M.
ae

Therefore y is an eigenvector of, 7, and consequently the determinant of T is
equal to the product over all y occurring on the left-hand side of the equality
in Theorem 5.

On the other hand, we look at the effect of T on the other basis. We have

Taéb(x) = 5b(ax)7
so that T,5, is the characteristic function of a~!b, and
néb = 5a—1b.
Consequently

0p = Z f@ Ns,-1

aeG

= Y f(a"'b)s,.

aeG

From this we find an expression for the determinant of T which is precisely
the right-hand side in Theorem 5. This proves our theorem.

Theorem 6. The determinant of Theorem 5 splits into

dait flab™) = [gé: f(a)]agitl[f(ab'l) ~ f(a@)].
Therefore

];I1 ;G xa)f(a™) = det [f(ab D = f(a@]

Proof. Leta; =1,...,a,bethe elements of G. In the determinant

flaarh) f(ayaz?)--- fa,a, ")

det f(a,a; ') =

fla,at?)  flaas?) - fla,a."),
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add the last # — 1 rows to the first. Then all elements df the new first row are
equal to " f(a~!) = ¥ f(a). Factoring this out yields

1 P 1
flaxai) flazaz?y-- - flayarh)
(¥ f@1| | ’ '

aeG

flaar?)  flaaz?) ... f(aa;")
Recall that a, is chosen to be 1. Subtract the first column from each one of the
other columns. You get the first statement of the theorem.

On the other hand, the function f can be selected so that the elements
{f(a)}, a € G, are algebraically independent over Q, and therefore the factoriza-
tion given in this first statement for the determinant is applicable in the poly-
nomial ring generated over Z by the variables f(a). Combining the first statement
with Theorem 5 yields the second relation where the product is taken only
over y # 1. : :

§3. APPLICATION TO THE L-SERIES

We apply the determinant of §2 to the case when G = G, is the group of
proper ideal classes of an order o in k, and
/(@) = log g(®)
where
9(®) = (2m)~'*Na®|A(a)|
is our previous invariant of the class @, defined with any proper o-ideal a in
the class. Then
- g(@B™Y)
@B~ — f(@) = log———
9(@)
with
~1 A -1
9@BY) _ (e M@
9(@) |A(a)]
Recall the Corollary of Theorem 5, Chapter 12, §2 which asserts that the above
number is a unit. The product occurring in Theorem 3 can then be interpreted
as a regulator of a system of units,




22 The Second Limit Formula
and L-series

§1. GAUSS SUMS

Let k£ be a number field and o = o, the ring of algebraic integers. Let { be
an ideal of o. (Unless otherwise specified, ideal means contained in 0.) We
shall consider Gauss sums formed with characters (the generalization to number
fields is due to Hecke).

Let y be a character of the multiplicative group (o/{)*. We extend y to a
function on o/f by setting y(«) = 0 if « not prime to {.

Let g be an ideal dividing j. We have a natural homomorphism

o/f — o/g
sending (o/f)* into (o/g)*. If ¥ is a character of (o/g)*, then we can define a
character y on (o/f)* by composing i with the natural homomorphism above, and
then set y(x) = 0 if « is not prime to §. A character y of (o/f)* which cannot
be obtained by composition with a character Y as above, for some proper divisor
g of {, is called proper, and f is called its conductor. A function on o defined as
above by a character on (o/f)* is called a character modulo .

A character y modulo § is proper if and only if it satisfies the following con-
dition: For each proper divisor g of | there exists a pair of integers 1, peo
prime to T such that /. = p (mod g) and x(A) # x(w).

This is immediate from the definition.

Let  be an ideal of 0. Let D = Dyq be the different. Recall that if o = o,
is the ring of algebraic integers, then ot is the set of elements A e k such that

Tr(lo) c Z,
287
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and b~! = o' by definition. The above condition on the trace is equivalent
with the condition
eZniTr(/’.o) — l

’

which is the reason for the orthogonality sign.

Let y be a fixed element of & such that yfd is an ideal prime to . Thus yd has
exact denominator .

If 2 €, then Tr(iy) € Z and hence
eZRiTr(i.‘/) = 1'

This proves the second assertion in the next identity.
Gl. Let J € 0. We have

Z eZniTr(izy) —

zmod §

0 if A£0(modi)
Ni if 2 =0 (mod ).

Proof. Supposethat 2 # 0(mod §). Themap z + z — 1 permutes the residue
classes mod f, and by the remark before G1, we see that the value of the sum is
unchanged when we make this permutation. Therefore our sum is equal to

e—ZniTr(i*/) Z eZﬂ:iTr(lzy).
zmod f
But Tr(ly) is not an integer, otherwise iy € ot = d~!, which contradicts the
way we chose y, and the assumption on 4. Therefore the sum must be 0, thereby
proving our property G1.

For any character y modulo {, we define the Gauss sum

Te) = 3 00 e,

x mod f

The y as subscript to T indicates that the sum depends on y and also on f. If -
x = y (mod {), then Tr(xxy) = Tr(yay) (mod Z), and hence each term in the
sum is well defined. The sum depends on the choice of y. However, in the applica-
tions, it will appear together with a factor which takes away this dependence.
Namely, the character y will arise from a ray class character, and one then
verifies that

Z(yp7)
T(x, 1)

is independent of the choice of y, as a direct consequence of the next property.

G2. Let y be a character modulo §. If X is prime to 1, then
Ty, at) = (A Ty, o).
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Proof. The map x+— x/} permutes the residue classes off, and hence our
assertion is obvious. (Note that 7 = x~1.)

G3. Let y beapropercharacter moduloi. If x € o is not prime to§, then Ty(y, %) = 0.
If ais prime to §, then -
Tz, )] = V/NI.
Proof. Suppose that « is not prime to f, and write

() =c, T=Tg
where g is the greatest common divisor of (x) and f. Since y is proper, there exist
elements /, p € o prime to §, with A = u (mod f,) such that y(1) # z(x). Then

T, (6 22) = j(OT (1, ) and T (y, o) = F(T,(x, ).
But since «2 = op (mod {), we have Tr(xalty) = Tr(xauy) (mod Z), whence
T.(x, x2) = T(x, au). This is a contradiction, which proves the first assertion.
As for the second, for an arbitrary z € o representing a residue class mod {,
we have

T 0T (n2) = 3 2(0F(y) e2mTrs=—ne),

x,pmod |
primetof

and the left side is O if z is not prime to {. We sum over z in o/f. Then from the
left-hand side, we get the value

eMIT, (1 DI = oMIT(x, 0)?
where @(f) is the Euler function, i.e. the order of (o/f)*. On the right-hand side,
we consider the sum over z as the inner sum. If x = y (mod {), then each
exponential has the value 1, and hence the sum over z, taken for x = y (mod 1),
gives a contribution of
(DN,

since Nf is the order of o/f. On the other hand, for the sum taken over x # y
(mod 1), we apply G1 to see that we get 0. This proves G3.

§2. AN EXPRESSION FOR THE L-SERIES

Again let k be an imaginary quadratic field with o, = v and let | be an ideal
of o, { # o. Let G; = I(7)/P,(j) be the ray class group, where I(f) denotes
the monoid of ideals prime to {, and P,(T) denotes the subset consisting of those
principal ideals (x) such that « = 1 (mod ). Let y be a character of G.

We define
(a
Lsp= 3 29

(@p=1 N
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Let {&} be the elements of the ordinary ideal class group I/P = G. For each
ordinary ideal class &, let bg be an ideal in @-!, prime to f. Then for each
a € @ prime to {, the ideal abs = (&,) is principal, and the association

a = (Co)

Is a bijection between elements of @ prime to {, and non-zero principal subideals
of bg prime to f. We can write

1 Nbg
Na  N¢,
Let bg (f) be the set of non-zero elements of bg prime to §. Then
1 55 x(&)
(1) Li(s, ) = =X, Nbga(be) X g
Wia geb, (1) N¢

where w is the number of roots of unity in o. We follow Siegel [B14] in finding
an appropriate transformation of this expression. The map which to each element
of o associates its principal ideal induces an injection

(off)* = 1({)/P, (D),
and a character of G; therefore induces a character of (o/f)*. The value x(&)
in the above expression for the L-series can be therefore viewed either as the
value of y on the principal ideal (£), or the value of y on the residue class of ¢ in
(/™.
Lemmal. Let y be a proper character of G;. Then

. 1
Ls, 1) = —=—— >, 7(bg)ND} e2miTren
f wiT(7, 1) 2 7(ewNG ¢§R Ng*
where the sum over R is taken over all ray classes R € Gy; by is a fixed ideal
in R prime to T; wy is the number of root of unity in o which are = 1 (mod f);
the £ € by are of course # 0; and y is chosen as in §1, such that yid is integral
prime to i.

Proof. Using G2 and G3 of the preceding section, we know that
TG, if D=1
T(y, &) = ’ . .
) {0 it (G0 # 1.
Therefore from (1) we find

. 1 T(%, &)
Li(s, z) = = 2, 7(bq)Nbg T
f V4 w%/ () [¢ gg,:aNCsn(Z, 1)

1 ) X—(Z)BZniTr(zéy)

= ——— ) 7(bg)Nbg B
WT‘i(Zs 1) %: ¢ ¢ égl;a :S(ozlf)‘ N¢

1 eZNiTr(zéy)

= — 7(bg)7(z)Nbg 5
wT (%, 1)%:5(%)- ¢ ¢ ég@. N¢
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We now observe that the products bgz represent all the elements R of

1(1)/P,(7) = Gy
exactly w/w, times. One sees this by considering the sequence of subgroups

I(D/P,(D) = PP 2 ZIZ,()
where Z is the group of roots of unity in o, and Z,(f) the subgroup of those
which are = 1 (mod §).

We multiply our expression for the L-series by Nz° and divide by Nz°,
to form N(z€£)®. The elements z¢ then range over the ideal zbg, as z ranges over
(o/T)* and ¢ ranges over bg, always considering non-zero elements, of course.
It is now clear that the expression which we obtain for the L-series is equal to
that stated in the lemma.

Remark. We made the assumption that k is imaginary quadratic for simplicity.
The same arguments prove an analogous expression for the case of an arbitrary
number field, and similarly, there is an analogous expression to that of Theorem 1.
These can then be used to deal with quadratic real fields, as in the work of
Hecke (cf. Siegel [B14]), or to some extent in general number fields, e.g. [33].

Let R be a ray class in G,. Let b be an ideal prime to { in the class. We define.

(2) Ef(R, S) — N(bb—- 1f_ l)s Z eZm’Tr().) is ,
Aebd = 1f~1 N

(where, in such a.sum, it is"understood that 2 # 0). The notation is justified.
i.e. the sum on the right does not depend on the choice of ideal b prime to { in
R. Indeed, if a is another such ideal, there exist y, v e o prime to { such that
# = v (mod {) and ub = va. The same argument as in the lemma of Chapter 19,
§3 shows that the traces in the exponent corresponding to elements in bd—1j-!
or ab~!j~! are congruent mod Z. The multiplicativity of the norm shows that
the other terms are also independent of the choice of b.

Theorem 1. Let y be a proper character of Gy. Then

x(yd) _
s Z(R)E(R, s).
Wny(X) 1) REZGf f
Proof. In Lemma | we make the change of variables 2 = £y. Then £ ranges
over b as A ranges over yb = qbd~!'{~! if q = ydf. Note that x(q) = x(yd7)
makes sense since q is prime to {. Substituting in Lemma 1, we note that R+— Rq
permutes the ray classes, and Theorem 1 drops out at once.

Ls, x) =

Let b be an ideal prime to { in the ray class R. Let
b~ = [z,, 75,
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and let

T = 2)/z; = X + iy, y>0.
The elements /¢ bd~1{~! can be written mz, + nz, with (m, n) (0, 0). As
usual, we have the discriminants

D(Bd~{™!) =

Z 2112

= —Nz}(2y)

23
and also
D(Bd 1) = N(Bd{-1)2D(o).
Taking absolute values yields
N(bd~ 1§~ )d}
2y )
Since NA = Nz,|mtyz + n|?, we obtain from the definition of Chapter 20, §5:

NZZ =

28
(3) Ef(R: S) ds/z Eu v(TR’ S)
25 2ri(mu+ no) ys
- as_/i e 2s
k" (mm)#(0,0) [mtg + nl

where ¥ = Tr(z;) and v = Tr(z,).
Using the second Kronecker limit formula now gives us the value at s = 1
n terms of the Siegel function and Ramachandra invariant.

Theorem 2. Let k be an imaginary quadratic field and T an ideal # o,.
Let R be a ray class modulo §. Let N be the smallest positive integer contained
inf. Then

E(R,1) =

~ log [H(6d™ 1 ™)| = —— log |B(R)],

d* 6N d* 6N
where H is the Siegel function of Chapter 19, §3; b is any ideal in R prime to
f; and ®(R) is the Ramachandra invariant. In particular, if x is a proper
character of Gy, then

Ll ) = 2D 5 5z) log [0R).

WfT/(i’ 1)dt 6N REGf

It does not seem to be known if the invariant ®(R) generates the ray class
field modulo {. The difficulty lies in the fact that the above theorem applies to
a proper character y, whereas one needs an analogous statement for a non-

trivial character. Precisely, one has the following formal result, due to
Ramachandra. ’

Theorem 3. For each ray class R modulo f, suppose given an element W(R)
in the ray class modulo {', satisfying the conditions:
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i) W(R)’S? = Y(RS), for all Se G, and where o(S’) is the Artin auto-
morphism. »
i) For any non-trivial character y of G;, we have
RZG x(R) log ['¥(R)] # 0.
Gy

Then W(R) generates the ray class field modulo §'.

Proof. Tt suffices to prove that for any R, W(R) is distinct from all its con-
jugates. By (i), it suffices to prove this for R = R,, the unit class. Suppose that
we have some S # R, such that

W(RoS) = Y(Ro).
Then W(RS) = W(R) for all R. Let yx be a character of G; which is non-trivial on
S, and therefore on the subgroup (S) = {5} generated by S. Let {R;} be
representatives of the cosets of G;/{S>. Then

T «(R)log [¥(R)| = T T (RS log [¥(R;S)
EG’- J i
=¥ ¥ x(R)x(S") log '¥(R))|
=0

because Y, x(S%) = 0, a contradiction which proves our theorem.

13

By taking an appropriate product of invariants @y, with g|f, Ramachandra
constructs such invariants W(R), satisfying the hypothesis of the theorem.

Ramachandra also determines the prime factorization of ®«(R), showing
that if { is a prime power, say a power of p, then

D(R) ~ p™

for some integer m, and if { is not a prime power, then @,(R) is a unit. For this,
he needs arguments similar to those used in the analogous result for the Delta
function, together with the finer results of Hasse (reproduced in Deuring [B1]}
concerning the prime powers occurring in such values. We shall omit this,
merely pointing out the analogies of these cases, and not forgetting the analogy
with the simplest case of roots of unity, where we know that if { is a primitive
N-th root of unity, then | — { is a unit if ¥ is not a prime power, and otherwise
has the obvious order at p.

Hecke also worked out the value of the L-series at s = | for real quadratic
fields (cf. [B8], [B14]). In this case, there is no transcendental term like the log
of a transcendental function, but a rational number which it is interesting to
determine explicitly. Similar results should hold for number fields. For precise
conjectures, cf. Stark’s talk at the International Congress in Nice, 1970. The
present chapter may be viewed as giving the reader an introduction to these
questions, through the first non-trivial case beyond the cyclotomic case.
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The two appendices constitute essentially a fifth part of the bcok, con-
centrating on results proper to characteristic p. The first appendix gives the
basic formulas describing elliptic curves, in general, by algebraic means. The
normal forms are due to Deuring [8]. A convenient, complete, systematic
tabulation of them and the automorphisms was given by Tate, whose {un-
published) paper is reproduced here. See also [41].

The second appendix relates the trace of the Frobenius endomorphism
with the p-th coefficient in the expansion of a differential of first kind. The three
basic techniques involved (the arguments on “formal groups” in §1, the Cartier
operation, and the Hasse invariant) are logically independent of each other, and
the reader can read them in any order he wishes. -

We assume that the reader is acquainted with the basic theory of functicn
fields in one variable, e.g. the Riemann—-Roch theorem, used on fields of genus 1.






Appendix 1
by J. Tate

Algebraic Formulas in
Arbitrary Characteristic

§1. GENERALIZED WEIERSTRASS FORM

Let K be a field. An elliptic curve over K is a connected algebraic curve 4
smooth and proper over K, of genus 1. An abelian variety of dimension i over
K is the same thing as an elliptic curve A over K furnished with a K-rational
point, O. Given such an A4, there exist functions x and y on A4 defined over X
such that x (resp. y) has a double (resp. triple) pole at O and no other poles.
Moreover, if w # 0 is a given differential of first kindon A and w = df + - - -
Is its expansion in terms of a uniformizing parameter at O, one can arrange {by
muliiplying x and y by constants) that x = ¢t=2 4+ -« - and y = —¢"3 4 -« -,
Then in the projective imbedding defined by 3(O) the equation for 4 is of the
form

(L.1) Y2+ axy + asy = x* + apx? + ax + ag

with a; € K. Homogeneity: y is of weight 3, x of weight 2, and the a; of weight i,
meaning that if we replace w by uw, then x is replaced by u=2x, y by u3y, etc.

If we are given an equation of the form (1.1), we define associated quantities’
b,, ba, be, bg, Ca, Cg, A, and j by the following formulas:

(12) bz = a% + 402, b4 = 4,43 + 2(14, b6 = a% + 4(16
bg = atag — a,aza, + 4a,as + a,al — a3

(13) Cq = b% - 24b4 Ce = ’—b% + 36b2b4 - 216b6

(1.4) A = —blbg — 8b3 — 27b% + 9b,b,bg

3
(1.5) j %“ (if A is invertible).

299
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These quantities are related by the identities
(1.6) 4bg = b,bs — b3, and 1728A = ¢} — c%

If the characteristic is % 2 or 3 and we put

ax+a b
1.7 = .__l—.s = _3
1.7 n=y+ 2 , and ¢=x+ 5"
then equation (1.1) becomes

b, b
1.8 2 _ 8 -4 - &3 ~ 1~ 364
(1.8) n x> + 4x + ke +§— 4 f 864
The relation to the classical Weierstrass theory is given by
1.9 E=pW ci=12g, A =g} - 2793

21 = p'(u) g =216g;  j= 1728J,
e
and @ = 2—C = du (see below).
t]

Some of the first facts to be proved are summarized by the following
theorems:

Theorem 1. The plane cubic curve (1.1) is smooth (and hence defines an
abelian variety A of dimension one over K with the point O at infinity as origin)
if and only if A s O, in which case the differential of first kind © we started
with is given by

dx

2y + a;x + a3

dy dy
F. 3x* +2a,x +a, —ayy’

(1.10) o =

Nlhey

where
(1.11) FX,Y)=Y>+a, XY +a3Y — X> — a,X* — a, X — ag
is the equation of the curve.

Theorem 2. Let A and A’ be two abelian varieties of dimension one over
K, given by equations of the form (1.1), and let j and j' be their “‘invariants”.
Then A and A’ are isomorphic over some extension field of K if and only if
J =]J’, in which case they are isomorphic over a separable extension of degree
dividing 24, and indeed of degree 2, if j # 0 or 1728,

Theorem 3. For each je K, there exists an abelian variety A of dimension
one over K with invariant j. Indeed if j # O or 1728, such as A is given by
the equation

36 1
1.12 2 = x3— —
(1.12) Yoy =X g T i 1728
Jfor which
. 22
Cs = Cg = 1 and J

A=s——"—1—+.
j—1728 (j — 1728)°
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Theorem 4. The group of automorphisms of an abelian variety of dimension
one is finite, or order dividing 24, and if j # 0 or 1728, it is of order 2,
generated by x> x and y — —y — a;x — as (i.e., by P> —P).

These theorems, and indeed more precise versions of them than we have
bothered to state, can be proved by straightforward computations, once on¢
analyzes the most general allowable coordinate change in (1.1). This is done as
follows. Suppose 4 and A’ are abelian varieties of dimension one over X,
given by equations y* + a,xy + - -- and y'? + a\x’y’ + - - -, and suppose
f: A" 3 A is an isomorphism defined over K. Then there are elements u € K*
and r, s, t € K such that

(1.13) xof=u?x"+r = yof=u®y + su*x' +t wof=u'lw.
The coefficients a} are related to the a; as follows:
uay =a, +2s
uay =a, —sa, + 3r —s*
(1.14) w’a=a;+ra; +2t =Fyr,1)
ual = a, — saz + 2ra, — (t + rs)a, + 3r? = 2st = —F (r,t) — sF,(r, &}
ubal =ag +ra, +rla, +r} —tay; —t* —rta; = —F(r,1).
For the b} we have
u?by = b, + 12r
u*by = b, + rb, + 6r*
uSby = bg + 2rb, + r?b, + 4r°
uBby = bg + 3rbg + 3r?b, + b, + 3%,
For the ¢} and A one then finds
(1.16) utch=c, ubli=cs u'’A'=A.
Hence j' = j is indeed invariant; j(4) depends only on the isomorphism class of
A, not on the particular choice of an equation (1.1) defining 4’,

(1.15)

/

§2. CANONICAL FORMS

Let p be the characteristic of our ground field K. The easy case is p # 2, 3:
Then we can always choose coordinates so that 4 is given by the equation
] dx
2.0 y2=x*+ax +as  with =3
y
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and
2.2) cs = —48ay,, cg = —864ag, A = —16(4a, + 27a2).

Since any curve of the form (1.1) is smooth at the infinite point 0, such a curve
is smooth everywhere if ‘and only if the polynomials F, F,, and F, have no
common zero. In the case of an equation of the form (2.1) with p # 2, this
condition amounts to the non-existence of a common root of the polynomials
G(X) = x* + a,x + agand G'(X) = 3x% + a,, and since A = 16 - discr. G(X),
the condition in this case is just A # 0, a}claimed in Theorem 1.

Let 4 and 4’ be given by equations of the form (2.1) with the same invariant
Jj = Jj'. The isomorphisms f: 4’ =5 A are given simply by

(2.3) xof=u*x yof=ud,

where u is such that u*a, = a, and u®a; = aq.

Suppose j £ 0, 1728 (i.e. a, # 0, ag # 0). Then A and A’ are isomorphic
if and only if a.a/a}ae is a square; the smallest field over which 4 and 4’
become isomorphic is the field obtained by adjoining the square root of that
quantity to K. The automorphisms of 4 are given by u = +1.

Suppose j = 1728 (i.e., ag = 0). Then 4 and A’ are isomorphic over K
if and only if as/aj € (K*)*. The automorphisms of 4 are given by u* = 1.
A typical curve of this type is given by y? = x* — x.

Supposej = 0 (i.e.,, a, = 0). Then 4 = A’ over Kif and onlylfaﬁ/aﬁe(K"‘)6
the automorphisms are given by #® = 1, anda typical curveis y* = x3 — 1.

Now suppose p = 3. In this case (and more generally if p # 2) we can always
write A4 in the form

2.9 ¥ =x3 4 a,x* + ax + ag = G(x), say,
dx
0= — —
y
Using the fact that p = 3, we find
(2.5) b, = a, by = —ay, b = as, bg = —aj + ayag
co =a3, ce=—a}, A=aja}— ajas — aj.

Here again A is the discriminant of G(X), up to an invertible factor, so A # 0
is the condition for smoothness.
Suppose 4 and 4’ of form (2.4) withj = j'.
&

Suppose j = 0 (i.e.,, a, # 0). Then we can 'make the term in x disappear,
getting the reduced form

(2.6) =X+ ax? +as, A= —dlag, = —a}ja,.
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An isomorphism f: 4’ % A is given by
(2.7 xof=u*x', yof=udy

where u?a)y = a,. Hence A4’ ~ A if and only if a,/a} € (K*)?, and the avto-
morphisms of 4 correspond to u = +1.

Suppose j = 0 (i.e., a, = 0). Reduced form:

(2.8) V=x*4+ax+a,, A=-a o= i?.
Isomorphisms: ’
2.9 xof=ux"4+r, yof=udy
with

uay, = a,, ubal =ag + ra, + r.

Hence 4 and A’ are isomorphic if and only if (a,/ay) € (K*)* and (a,/a})as — a6
is of the form r? + ra,. This is always so over a separable extension of degree
dividing 12. The automorphisms of A are given by the pairs (u, r) such that:

2.10) either r3 4+ g,r =0 and u=+1,
) or r34ay+2a,=0 and u= +i,
where i? = —1. Over the separable closure of X, they form a group of order 1Z,

the twisted product of C, (cyclic group of order 4) and C; with C; the normal
subgroup acted on by elements of C, in the unique non-trivial way—conjugation
of C; by a generator of C, is the map carrying elements of C; into their inverses,

A typical curve of this type is y> = x3 — x, the automorphisms being given
byu* = 1,r® — r = 0 (i.e., r € F;) in this case. 2
Last case, p = 2. Here we have ua} = a, (see 1.14) and ¢, = b2 = a* (see (i.2)
and (1.3)). Hence we have j = 0<> a, = 0, and separate cases accordingly.
Suppose a, # 0 (i.e., j # 0). Then choosing suitably r, 5, and ¢, we can achieve
a, = l,a; = 0,a, = 0. Hence 4 is given by an equation of the form

2 3 2 . dx

(2.11) VP4 xy =x% 4 a,x* + a5, with o= <
and

.1
by =1, by = b =0, by =ag, ca =1, A=as ]=;_'
’ 6
F, =y + x?, and F, = x have their ohly common zero at x = y = 0, and this

is on the curve if and onlyifag = A = 0. Hence A # 0O is condition for smooth-
ness. '

Isomorphisms:
xof=x, yof=y +sx
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with
(2.12) ay, =a, +s*—s, a;=as
Two curves 4 and A’ with the same j are isomorphic if and only if a3 — @
is of the form s2 — s, which is true over a separable extension of K of degree < 2.
The group of automorphisms of 4 has two elements, corresponding to s = 0, 1.
A typical curve is y* + xy = x3 + (1/)).
Suppose a, = 0 (i.e., j = 0). Choosing r suitably we can arrange that a, = 0,
so A is given by N

dx
(2.13) y2 + asy = x* + a,x +ag, Wwith o= o

3
and
b2=b4=0, b6=a%, b3=a£, A=a§’, j=0.

Since F, = x* + a, and F, = aj, the curve is smooth if and only if a5 # 0,
i.e., A # 0. Two curves 4 and 4’ with the same j are isomorphic if and only if
the following equations are soluble in w, 5, and ¢:

uday = a;
(2.19) u*al = a, + say + s*

ubal = ag + s’a, + tay + s° + t2.

This is always so over a separable extension of K of degree < 24. A typical
curve of this type is

(2.15) y:—y=x3

Its group of automorphisms (ovér the separable closure of K) is of order 24,
the elements corresponding to triples (v, s, ¢) such that

w=1 s*+s5=0, and P4+ 1+s53+s52=0.
It is isomorphic to the twisted direct product of a cyclic group of order 3 with

a quaternion group. The quaternion group is the normal subgroup, and is acted
on by the group of order 3 in the obvious way.

§3. EXPANSIONS NEAR O; THE FORMAL GROUP.
Let A be defined by a Weierstrass equation (1.1). Let
x 1

3.1) I=—— W= — - SO x =
y y

S.lr—t

y Y= =

in
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<
w
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The equation for A in the affine (z, w)-plane is
(3.2) w =23+ a;zzw + a,z*w + a;w? + azw? + agw’.

The point O is given by (z, w) = (0, 0), and z is a local parameter at 0. From
(3.2) we get the formal expansion

(33)  w=2z>+a,z* + (a® + a,)z° + (a} + 2a,a;, + a3)z®+
(a* + 3a%a, + 3aa; + a2 +a)z” + ...
=220 + Az + A28 + ..,

where 4, is a polynomial of weight » in the a; with positive integral coefficients.
From (3.3) and (3.1) we get

=z2—qaz! —a, —ayz— (a + aya3)z* + - -,
(3.4) X Z a,z 2 asz ( 4 1 3)

y=~—zlx=—z34az2+ -

as the formal expansion of x and y. Clearly, the coefficients of these expansions
have coefficients in Z[a,, a,, a3, a4, ag]. The same is true for the expansion of the
invariant differential w:

(3.5) o = H@Z)dz
where H(z) is given by
H(z) =1 + a,z + (a? + a,)z* + (a} + 2a,a, + 2a;)Z*
+ (at + 3a%a, + 6a,a; + a% + 2a)z* + ...

because
w dx/dz -2z 4+ ...
;1—z=2y+a1x+a3= -2z + ...
dyjdz —3z7% 4.
T3xX y2a,x +a, —a,y -3z %+, .

has coefficients in Z[4, a4, . . ., ag], but also in Z[%, a,, . . ., a¢].

Finally,if Py = P, + P,and P; = (z;, w,), then we canexpress z; = F(z,, z,
as a formal power series in z; and z,, with coefficients in Z[ay, . . ., a¢]. Th
expansion begins

Y
J
e

(3.6) F(zy,23) =z, + 2z, — ayz,2; — az(zfzz + 2125)
— 2a5(z3z, + z,23) + (a,a, — 3a3)ziz3 + .. ..

This is the “formal group on one parameter” associated with A.
For each integer n = 1 we have, formally,

3.7 z(nP) = y,(z(P)),

where the series {r, are defined inductively by

(.8) Vi@ =2, Yrui(2) = Fz, Y(2)).
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For example, we have
3.9  Yaz) = 2z — a2 — 2a,2% + (a,a, — Tas)z* + + -
and )
(3.10) y3(2) = 3z — 3a,2® + (a, — 8a,)z° + 3(daja, — 13a3)z* + - - .
In characteristic p > 0, the series ¥, is of the form
Y (2) = ¢,27 + 227" + 32 + ...
with ¢, # 0, where / is an integer equal to 1 or 2, because the isogeny
pd:A— A4

is of degree p2, and is not separable. This means that zopd lies in the inseparable
subfield of degree p or p? of the function field of 4, whence our assertion follows.

EXERCISE

Let p = char (K) be arbitrary, let j € K with j % 0 or 1728, and let 4; denote
the abelian variety of dimension 1 over X given by the equation (1.12), i.e.,
36 . 1

Jj— 1728 j—1728"

Show that for each separable quadratic extension L of K there exists an abelian
variety A;; of dimension one over K such that A4;, is isomorphic to 4;
over L, but not over X, and 4, ; is uniquely determined up to isomorphism
by j and L. Show also that (denoting by A(K) the group of points on 4
rational over K) we have

A (K) = {Pe A(L)|loP = —P},

where ¢ is the non-trivial automorphism of L/X, (and where

2+ xy=x3—

—P = (X, =Y = a;x — 03) if P = (X, y))'



Appendix 2 |
The Trace of Frobenius and
the Differential of First Kind

§1. THE TRACE OF FROBENIUS
Theorem 1. Let A be an elliptic curve defined over the prime field ¥, of
characteristic p, let t 'be a local parameter at the origin in the function field

F,(A4). Let w be a differential of first kind in F,(A), with expansion

hed dt
o=y cvt"t—

v=1

1. Let n = 7, be the Frobenius endomorphism of

normalized such that ¢, =
A. Then
worn’ = ¢,w, and to(pd) = c,tP (mod 2%).

Proof. We lift an equation for the elliptic curve to the integers. Thus it i
useful to write 4 for the curve in characteristic p, and A4 for its lifting. We do
this in a naive way, by lifting the coefficients in a Weierstrass equation if p # 2, 3,
or in a normalized equation otherwise. We let f be the parameter at the origin &,
and let ¢ be a parameter at the origin O of 4, reducing to i. Then

and the differential form @ on 4 has the expansion
® dt
w=Y cvt"—t— = h(t)dt
v=1

with¢; = 1 (mod p).
307
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On the one hand, we have
w o (pd) = pw = ph(t)dt.

Let o = Z, be the local ring of Z at p. There are power series U(t), V() € o[[¢]]
such that
to(pd) = U + pV(2).

So on the other hand, we find

(D ph(t) = h(U(P) + pV(OXU (tP)ptP=* + pV'(1)).
Let n + o’ = f,. Since -
fonmn' =fii+ - and fon=1p,

and since nn’ = pd, we see that
) U(tP) = g,t? (mod ¢??), with g, =f, (modp).

We divide (1) by p. We then read it mod p, as well as mod %, and look at the
coefficient of 71, The term A(U(t?) + V(t)) is then congruent to 1. The constant
term of U'(¢?) is g,, and V'(t) has no term of degree p — 1. Comparing co-
efficients of #*~!, we find the desired congruence

¢, =/, (modp).
This proves our theorem.

The above proof is due to Tate, and generalizes to formal groups. The
reader will find another proof using the Weierstrass normal form in Manin [30].

All further sections of this appendix take place in characteristic p. Whereas
in the first section, we considered a reduced elliptic curve over the prime field,
we now work quite generally with any elliptic curve in characteristic p.

§2. DUALITY

Let X be the function field of an elliptic curve in characteristic p, over an
algebraically closed constant field k,. Let {P} range over the points of 4 in
ko (orin other words, the places of K over ko). We let K denote the completion
at P. An adele £ of K is an element of the cartesian product [ [Kp, such that the
component {p is P-integral for almost all P. The group of adeles is denoted by A,
There is a pairing between differential forms of K and adeles, given by

(@, &) > K, &) = ;resp(ﬁpw).
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Theorem 2. Let w be a differential of the first kind in K. Let Q be an arbitrary
point of A, let t be a local parameter at Q, and let w have the expansion
& dt
w = Z c,t’ -'t— s

v=1

normalized so that ¢; = 1. Then for any adele &, we have
{w, %) = ciw, &P

Proof. We assume that the reader is acquainted with Weil’s proof of the
Riemann-Roch theorem (given in the books on algebraic functions by Artin,
Chevalley, or Lang). We let A(0) be the group of integral adeles (i.e. adeles £
such that &p is P-integral for all P). Weil’s proof of the Riemann-Roch theorem
shows among other things that

[A:A(Q) + K] =1,

where the brackets mean dimension of the factor space A/(A(0) + K) over the
constant field k4. Therefore the adele

n=4(..,0,1/,0,..))
having 0 at all components except @, where 1, = 1/, generates this factor
space. Since w is of the first kind, both sides of the formula in the theorem arz
equal to 0 when ¢ lies in A(0) + K. Furthermore, both sides are p-power linear

with respect to constants. Hence it suffices to prove the formula when & = 7.
But in this case, the formula is obvious.

§3. THE TATE TRACE

This section is preliminary to the next section on the Cartier operator, and
gives lemmas on purely inseparable extensions of degree p. Let K be a field of
characteristic p, and let x be algebraic, purely inseparable over K, so that x* is
an element of K, but x ¢ K. An element of K(x) can be written uniquely in the
form

y=Yyo+yixt 4y xfTh yek.
We define a substitute for the trace by letting

Sx(y) = Yp-15
and derive properties of S, as in Tate [42].
We note first that for 0 </ < p — 1, we have

i = Sx(yxp—l_i)9
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whence .
P .
y= ‘ZO SyxP~170).

Furthermore, S, is K-linear, and hence linear with respect to p-th powers in
K(x).

If £(X) is a polynomial in a variable X over K, we let as usual f'(X) be its
formal derivative. Then the map

F(x) = f(x)

is immediately verified to be well defimed, because if f(x) = 0, then f(X) is
divisible by X7 — a, with a = x”. Hence f'(x) = 0. It follows at once that this
map is a derivation of X(x), and is the unique derivation trivial on K, mapping
x onto 1. We denote this derivation by D,. If an element y € K(x) is expressed
as above, then

D(y) =y1 +2y:x+ -+ (p — Dy, xP7%

A power x! (0 £ i < p — 2) can be “integrated”’, and we see that an element
y € K(x) can be written in the form y = D,z for some z € K(x) if and only if ‘
V,-1 = 0. We have the following properties, the first of which is immediate.

SL. S,D, = 0. \
S2. S,(y*-1D.y) = (D,y)?, or equivalently, S.(D,y[y) = (D,y/y)".

Proof. Let R be the set of elements y in K(x) for which S2 is true. We observe
that R is the kernel of the additive map

Y= S(Deyly) — (D.yl[y)P.

The non-zero elements of R form a multiplicative group. Furthermore, if y € R,
then y + 1 € R, because (y + 1)*~!D,y — y*~'D_y consists of terms which can
be integrated, so that

S + 1771 D,p) = S,(°D,y),
and D,y = D (y + 1). Finally, if y, ze Rand z = 0, then
y+z=2z(z"'+ 1)eR
Therefore R is a field containing K and x, thereby proving our assertion.

S3. Let K(x) = K(W). Then S,(z) = S, (z(Dw)'~P) for all z € K, or in other
words,
S(zDw) = S,(z2)(D,w)".
Proof. Both sides of the formula are K-linear with respect to the variable z.
Hence it suffices to prove the formula when z = w', and 0 </ =p-1,or
equivalently, it suffices to prove

(Dw)"S,(w') = Sy(w'Dew).
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If i <p— 1, then w'D,w = Dw™+1/(i + 1)) (i.e. w'D,w can be integrated),
and both sides are equal to 0. If i = p — 1, then the left-hand side is equal o
(D w)?, which is equal to the right-hand side by S2. This proves our property.

In the next section, we interpret S3 more naturally in terms of differentiai
forms.

§4. THE CARTIER OPERATOR

Let ko be a perfect field of characteristic p > 0 and let ky(¢) be a purely
transcendental extension in one variable 7. Then kq(2)'"? = ko(t'/F). Similarly,
as we have already seen in Chapter IX, §4, if K is a function field in one variable
over k, then K has a unique purely inseparable extension of degree p, namelv
K*'?, Looking at this in another way, we see that K? is the unique subfield of X
over which K is purely inseparable of degree p. If x is an element of K sucn:
that x ¢ K?, then K = KP(x).

Let x € K. We denote by dx the functional on derivations D of K, trivial oi

ko, given by the pairing
(dx, D)+ Dx.

A differential form ® = ydx is therefore the functional whose value at D is
yDx, also denoted by {w, D). If K is a function field of one variable over the
perfect constant field kg, and if x ¢ K?, then there exists a unique derivation
D = D, of K, trivial on kg, such that Dx = 1. An arbitrary differential form of
K can then be written as ydx for some y € K, or in other words

o=+ yix+ -+ yr_xP"Hdx. v,eK.
We define the Cartier operator C on differential forms by letting
Co =y, dx
In terms of the Tate trace, this is merely
Clydx) = S (y)''? dx.

" Formula S3 shows that this value Cw is independent of the representation of
the differential form, i.e. we get the same value if we write the form as zgu
for some w ¢ K*.

The Cartier operator is obviously additive, and it is linear with respect to
the prime field. The following properties will be immediate from what we aiready
know, and the definitions. Let z € K be arbitrary.
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CI1. C(zPw) = zCw.

C2. C(dz) = 0.

cs. | c(%) =&

C4. C(zP71 dz) = d-.

Cs. C(z"* dz) = O, it (n,p) = 1,

The first property is obvious since S, is K?-linear. If z € K?, then dz = 0, and
if z ¢ K?, then we apply the definition of the Cartier operator to the forms dz or
zP~! gz directly, substituting z for x in fBe definition, in order to obtain C2 and
C4. Property C3 then follows from C4 and C1, while C5 follows from the fact
that z"~! dz = d(z"/n), and C2.

It is useful to decompose a differential form w = ydx as a sum

dx
= pP__
w=df +g .

with some elements f, g € K. The existence of such a decomposition is obvious
since terms yfx’ with 0 £/ £ p — 2 can be integrated. The uniqueness is
equally clear. When o is so written, then

Co =g—.
X

C6. If w is regular at a place of K over ky, then Cw is also regular at this
place.

Proof. We can take for x a local parameter at the given place. In the ex-
pression w = ydx, all the coefficients y¥ must then also be regular at x, for
otherwise, y?x has a pole of order mp — i for some integer m; = 0, and there
cannot be any cancellation of such poles among y§ + - -+ + yB_;xP-1.

We observe that if we make a constant field extension of our function field,
then the definition of the Cartier operator remains the same, and we may assume
without loss of generality that the constant field k, is algebraically closed.

C7. Let P be a place of K over k. Then
resp Co = (resp w)''*.

Proof. We select x to be a local parameter at the place. We then write

: dx
w=df + g"x"—;—
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so that Cwo = gdx. Expanding g in powers of x, say
g=cpXx "+t ot x+ o,
we see that resp w = ¢ ;. Taking the p-th root yields precisely res, Cow.
In terms of the duality between differential forms and adeles, C7 can be
expressed by the formula

(Co, &% = {w, £%),

taking C1 into account.

Theorem 3. Let K be the function field of a curve of genus 1 (an elliptic
curve) over an algebraically closed constant field ko of characteristic p. £zt
 be a differential of the first kind in K. Let x be a local parameter in K jor
some place of K, and expand

z d

X

w= Z cx" —,
n=1 X

with ¢,€ ko. Then ¢, # 0, and if we normalize w so_that ¢, = 1, then
Co = c,w.

Proof. By C6 we know that Cw = cw for some constant c. On the other
hand, the Cartier operator is clearly continuous for the topology induced on
K by the discrete valuation arising from the place, and consequently by C4 and.
C5 we find ‘

dx

Co =Y, x"—.
. X
This yields cc; = c,. We cannot have ¢, = 0, for otherwise the differentiai of
first kind would have a zero at the place, whence would have a zero at every
place since it is invariant under translations. This proves our theorem.

" The same argument also gives the relations
" ‘ Cap = CpCpe
Atkin and Swinnerton-Dyer had found such congruence relations, and coti-
jectured higher ones. Serre observed that applying the Cartier operaior
could be used for a proof. For the higher ones, cf. Cartier’s talk at the Inter-
national Congress of Mathematicians, 1970, Tome 2, pp. 291-299.

Theorem 4, Let K be a function field in one variable over an algebraicaily
closed constant field of characteristic p, and let w be a non-zero differential
form in K. Then: '
i) We have Cw = 0 if and only if there exists z € K such that v = dz.
i1y We have Cow» = w if and only if there exists z € K such that w = dz/[z.
Proof. The above two statements amount to the converses of properties
C2 and C3. As to the first, if Cwo = 0, then from the decomposition

o =df + g° dx/x,
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we conclude that g = 0, whence @ = df. The second is somewhat harder to
prove, and amounts to showing that there is some z € K such that for any
derivation D of K over the constants, we have {w, D) = Dz/z. If w = ydx,
it suffices to prove this relation for D = D, and our problem amounts to show-
ing that the element yDx of K is a logarithmic derivative. To show this about
an element w € K, it suffices to prove that there exists an element z € K such that

(w+ D)z =0,
because in that case, wz + Dz = 0 and
_ Iyz Dz?™1
Ve ST

If w e K, we denote by L(w) the linear map equal to multiplication by w.

Lemma. Let K be a field of characteristic p, let D be a derivation of K,
and we K. Then

(L(w) + D)y? = L(w)* + D? + L(D""tw).
Before proving the lemma, we show how it implies the second part of Theorem 4.
We set w = yDx with our previous notation, and D = D_. Then D? = (.
From the decomposition w = df + g”dx/x, we see at once from the definitions
that
{Cw, DY? = — D", D).
From the hypothesis Cw = w, it follows that @ = — D?~'a, whence
(Lw) + D)y =
This proves what we wanted.

There remains for us to prove the lemma. Let u, v be elements of a ring (not
necessarily commutative), of characteristic p. We let L = L(x) and R = R(u)
be left and right multiplication by u respectively. Then L and R commute, and

p=1 . .
(L~ Ry™ =Y, LR,
i=0

as one sees by using the geometric series formally on (L — R)?/(L — R), say.
If t is a new variable, we have
p-1 .
(tu + o) = tPu? + v° + Y. cu, v)t,
i=1
with appropriate coefficients c;(«, v).
Replacing ¢ by ¢ + h, expanding out, and looking at the coefficient of 4
(i.e. differentiating with respect to ¢), we obtain
p—1 -1

Y (tu 4+ v)u(tu + v)P~ 17 = pZ icu, V)t~ 1,

i=0 i=1
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Writing Ad u for the operator such that

(Ad w)(v) = uv — vu = (L — R)(v),

we now see that
p-1

(Ad(tu + v))* " Yu) = Z ic(u, v)t~?
In the ring of endomorphisms of X (as additive group), substitute ¥ = L(w) and
v = D. From the formula
[L(w) + D, L(z)] = L(Dz),
we see that ‘
(4d(tL(w) + D)P'(L(w)) = L(D""'w),
and in particular that this expression is independent of #. This implies that
ci(L(w), D) = 0, for i>i.
Finally, putting # = 1, we obtain for u = L(w), v = D,
w+ v =u + 0"+ ¢;(u,v),

and we have just seen that ¢,(u, v) = L(DP"w). This proves the lemma, and
thus also concludes the proof of the theorem.

In this section, we essentially followed Cartier’s paper “Sur la rationaljié
des diviseurs en geométrie algébrique,” Bulletin Soc. Math. France (1958),
pp. 177-251. ‘

Let 4 be an elliptic curve defined over the prime field F,. If 4 and its
Frobenius endomorphism are obtained by reduction mod p as in §1, ther we
now see that ¢, = ﬁ and hence the residue class of f, can be determined from
the local expansion of w at any point. If one wishes to avoid reduction mod p,
one can use the discussion of Hasse invariants in the next section instead. in
any case, we see that for 4 defined over F,, we have

Co=worn

The Cartier operator is the transpose of Frobenius.
In particular, we have Cw = 0 if and only if z’ is purely inseparable, whick
means that the curve is supersingular, i.e. has no point of order p. ,
“On the other hand, suppose that the curve is not supersingular. Then £, 18
the reduction of an ordinary integervmod p, with1 £ v < p — 1. Writev = 4*¢
for some constant b. Then the basic formalism of the Cartier operator shows that

Clbw) = bw.
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In other words, we can normalize the differential of first kind so that it is fixed
by the Cartier operator. We now see that the two cases of Theorem 4 correspond
to the singular and supersingular cases respectively, i.e. the differential of first
kind (suitably normalized) is logarithmic or exact according as the elliptic curve
is singular or supersingular.

5. THE HASSE INVARIANT
In this section, we follow Hasse [18)] and Hasse-Witt [20]. .

Let kg be an algebraically closed field of characteristic p, and let K be the
Sunction field of an elliptic curve A over kq. In other words, K is a function field in
one variable, of genus 1. We fix a point Q of A in ko (i.e. a place of K over k),
and we let t-be a local parameter of Q in K. If a is a divisor of K, we let £(a) be
the kq-vector space of functions z € K such that (z) = —a. In particular, £(pQ)
is the vector space of functions having at most a pole of order p at Q.

By the Riemann-Roch theorem, for any positive integer m, the space
£(mQ) has dimension m. Again by the Riemann-Roch theorem, for each
m = 2, there exists a function in £ (mQ) having a pole of order exactly m at Q,
and consequently there exists a function x,, whose expansion at Q (as a power

series in 7) is like
()
X, =-— |mod-}.
" t

In particular, there exists a function y € #(pQ) such that

1 a
y=eTi T
at 0, with some constant a. Since the difference of two such functions has at
most a pole of order 1 at Q and no other pole, it must be constant, and we see
that y is uniquely determined modulo constants. We call such a function y
a Hasse function of X (or on 4). The constant « is uniquely determined by the
choice of parameter ¢.

Theorem 5. Ler w be a differential of first kind on K, with expansion at Q
given by
i dt
w = Z ottt —,
v=1 t
normalized such that ¢; = 1. Let —a be the residue of the Hasse function y
as above, with respect o the parameter t. Then a = c,.
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Proof. The only possible residue of yw is at Q, and is equal to ¢, — a. It is
also equal to 0, whence our theorem follows. '

The constant c, is called the Hasse invariant at Q with respect to 7. If we
change the parameter ¢ by a constant factor 4, then ¢, changes to c,6' .

The Hasse invariant arising in the above fashion is related directly tc the
existence of points of order p on A. If such a point exists, then the isogeny pé
breaks up into a separable part of degree p, and a purely inseparable part of
degree p. The separable part is unramified, and hence A has an unramified cover-
ing of degree p (i.e. K has an unramified extension of degree p). Conversely.
if such an unramified extension of K exists, then it has genus 1 (say by the
Hurwitz genus formula). Let 2: B — A be the corresponding covering of elliptic
curves, normalized so that A(O) = O. Then A is a homomorphism with kerne!
of order p. Indeed, if P,, P, are points of B, then the divisor

(P) + (P2) — (Py + P3) — (O)
is the divisor of a function on B, whence its image
(APy) + (AP3) — (AP, + P3)) — (0)

is the divisor of a function on A (the norm, as is clear from elementary valuation
theory). Hence by the Riemann—-Roch theorem on A4, we get

APy + Py)) = AP, + AP,
and A is a homomorphism.

[Actually, the fact just proved follows from very general properties of
abelian varieties due to Weil, that any rational map of one abelian variety intc
another is a homomorphism followed by a translation.]

It is clear that the kernel of our homomorphism 2 has order p.

The Hasse function will give us a natural way of constructing unramified
extensions when the Hasse invariant is # 0.

For each place P of K we again let K, be the completion of K (isomorphic
to the power series field over k,, in a local parameter at P). By additive Kummer
theory in characteristic p (Artin-Schreier theory) a cyclic extension of K of
degree p is obtained by adjoining the roots of a polynomial X? — X — z, with
ze K. We let

X = XP — X,

and write 'z for any root. An extension of K is unramified at P if and enly
if it splits completely at P (because we took k, algebraically closed), and hence
it is unramified at P if and only if z € g K5. Let

U= () (0K nK).

Then U > @K, and the unramified extensions of K are precisely those obtained
by adjoining g-th roots of elements of U to K. (In fact, U/pK is dual to the
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Galois group of the maximal unramified extension of K of exponent p, but we
won’t need this.)

Theorem 6. The additive group £ (pQ) N @K, is contained in U, and the
inclusion induces an isomorphism

(L(pQ) N pKllko = UlpK.

Proof. If an element z of K is integral at P, then a root « of X? — X — z = f(X)
is unramified at P because f’(x) = —1 is a unit. This proves the desired inclusion
relation. If ze £(pQ) N pK, then ghere exists x € K such that z = x? — x.
Hence x is P-integral for all P # Q. If x has a pole at Q, then this pole has at
most order 1, and hence x is constant, whence z is constant. This proves that
the homomorphism of Z(pQ) N K, into U/» K has kernel equal to the constant
field k,. Finally, given an element z € U, we wish to prove that there exists an
element we £(pQ) such that z = w(mod @K). First take P # Q. Since
z€ pKp, if z is not integral at P, then z has a pole of order pm at P for some
positive integer m, say

a

z=1,-4ﬁ'+'“’

where v is a local parameter at P. By the Riemann-Roch theorem, there exists
x e L(mP + nQ) for some large » such that

at’?
X =— 4

u™
Then z — gx has a pole of smaller order than z at P. After repeating the above
procedure, we may assume without loss of generality that z has a pole only at Q.
Since z € g Ky, it follows that z has an expansion of the form
_ b
zZ = ‘1’7 +
at @, with some positive integer m, and a constant b. If m = 1, we are done.
If m > 1, there exists an element x € #(mQ) such that
piie
X=— 4 -,
tm
Hence z — gpx has a lower order pole at Q than z. Again inductively, we can
finally achieve that z € £(pQ). This proves our theorem.

Theorem 7. The following conditions are equivalent:

1) The space £(pQ) n pKg is equal to the constant field.

ii) There exists no cyclic unramified extension of K of degree p.
iti) The Hasse invariant at Q is equal to Q.
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Proof. By Theorem 6, the cyclic unramified extensions of K are obtained by
go-th roots of elements of #(pQ) N pK,. Hence i) implies ii). If the Hasse
invariant a is not 0, let b be a constant such that 5~ = g, and let z = by
where y is the Hasse function,

1 a

1=___+...‘
) t? t

Then z € £(pQ), and also z € p K, because

pkollt]l = kollt]], _
i.e. every equation X? — X — v = 0 with a power series v € ko[[¢]] has 2 oot
in kollr]]. A -th root of z generates an unramified extension of degree p, by
Theorem 6, thus proving that ii) implies iii). Finally, assume iii). If Z(pQ)n p &g
contains a non-constant z, then z can be written x¥ — x with some x & P&,
Expanding x as a power series in ¢, we see that z has an expansion

with some constant b 0. Dividing by 57 ylelds the Hasse function, and shows
that the Hasse invariant is not 0, thus proving our theorem.
The above arguments also prove:

Theorem 8. Assume that the Hasse invariant is not Q. Then modulo constants,
there exists a unique non-zero function

ze X(pQ) N pK,.
This function has the expansion

for some constant b, and the cyclic unramified extension of K of degree p is
equal to K(p~'z).

Over the prime field, we may now summarize the results obtained, identifying
possible definitions of the element c,,.

Theorem 9. Let A be an elliptic curve defined over the prime field F,. Let
w be a differential of the first kind in the function field F (4). Let Q be a
rational point of A in¥,, and t a local parameter at Q in ¥ ,(A). Let

d dt
w=Y ¢t'—,
v=1 t
normalized so that ¢, = 1. Let n = n, be the Frobenius endomorphism of 4

over ¥, and let C be the Cartier operator. Then:

Co=worn = co.
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Ify e L(pQ) has the expansion

then a = c,. The curve A is supersingular if and only if c, = 0. We also have
the expansion
to(pd) = c,t? (mod 27).
The information in Theorem 9 puts together Theorem 1 of §1, Theorem 3
of §2, and Theorem 5 of §5, which relate tRe various possible definitions of the
Hasse invariant.
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