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Foreword

The present book gives an exposition of the classical basic algebraic
and analytic number theory and supersedes my Algebraic Numbers,
ineluding much more material, e.g. the class field theory on which I make
further comments at the appropriate place later.

For different points of view, the reader is encouraged to read the collec-
tion of papers from the Brighton Symposium (edited by Cassels-Frohlich),
the Artin-Tate notes on class field theory, Weil’s book on Basic Number
Theory, Borevich-Shafarevich’s Number Theory, and also older books like
those of Weber, Hasse, Hecke, and Hilbert’s Zahibericht. It seems that
over the years, everything that has been done has proved useful, theo-
retically or as examples, for the further development of the theory. Old,
and seemingly isolated special eases have continuously acquired renewed
significance, often after half a century or more.

The point of view taken here is principally global, and we deal with
local fields only incidentally. For a more complete treatment of these,
¢f. Serre's book Corps Locauz. There is much to be said for a direct global
approach to number fields. Stylistically, I have intermingled the ideal
and idelic approaches without prejudice for either. 1 also ineclude
two proofs of the functional equation for the zeta function, to acquaint
the reader with different techniques (in some sense equivalent, but in
another sense, suggestive of very different moods). Even though a reader
will prefer some techniques over alternative ones, it is important at least
that be should be aware of all the possibilities.

New York SERGE LaNG
June 1970



Preface for the Second Edition

The principal change in this new edition is a complete rewriting of
Chapter XVII on the Explicit Formulas. Otherwise, I have made a
few additions, and a number of corrections. The need for them was
pointed out to me by several people, but I am especially indebted to
Keith Conrad for the list he provided for me as a result of a very careful
reading of the book.

New Haven, 199} SERGE LaNG
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Prerequisites

Chapters I through VII are self-contained, assuming only elementary
algebra, say at the level of Galois theory.

Some of the chapters on analytic number theory assume some analysis.
Chapter X1V assumes Fourier analysis on locally compact groups. Chap-
ters XV through XVII assume only standard analytical facts (we even
prove some of them), except for one allusion to the Plancherel formula in
Chapter XVII.

In the course of the Brauer-Siegel theorem, we use the conductor-
discriminant formula, for which we refer to Artin-Tate where a detailed
proof is given. At that point, the use of this theorem is highly technical,
and is due to the fact that one does not know that the zeros of the zeta
function don’t oceur in a small interval to the left of 1. If one knew this,
the proof would become only a page long, and the L-series would not be
needed at all. We give Siegel’s original proof for that in Chapter XIII.

My Algebra gives more than enough background for the present book.
In fact, Algebra already contains a good part of the theory of integral
extensions, and valuation theory, redone here in Chapters I and II.
Furthermore, Algebra also contains whatever will be needed of group
representation theory, used in a couple of isolated instances for applica-
tions of the class field theory, or to the Brauer-Siegel theorem.

The word ring will always mean commutative ring without zero divisors
and with unit element (unless otherwise specified).

If K is a field, then K* denotes its multiplicative group, and K its
algebraic closure. Occasionally, a bar is also used to denote reduction
modulo a prime ideal.

We use the o and O notation. If f, g are two functions of a real variable,
and ¢ is always = 0, we write f = O(g) if there exists a constant C > 0
such that [f(z)] = Cg(z) for all sufficiently large z. We write f = o(g) if
lim, . f(z)/g9(x) = 0. We write f ~ g if lim,_,. f(z)/g(z) = 1.
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CHAPTER 1

Algebraic Integers

This chapter describes the basic aspects of the ring of algebraic integers
in a number field (always assumed to be of finite degree over the rational
npumbers Q). This includes the general prime ideal structure.

Some proofs are given in a more general context, but only when they
could not be made shorter by specializing the hypothesis to the conerete
situation we have in mind. It is not our intention to write a treatise on
commutative algebra.

§1. Localization

Let A be a ring. By a multiplicative subset of A we mean a subset
containing 1 and such that, whenever two elements z, y lie in the subset,
then so does the product zy. We shall also assume throughout that 0 does
not lie in the subset.

Let K be the quotient field of A, and let S be a multiplicative subset
of A. By S7'A we shall denote the set of quotients z/s with z in 4 and
2in S. It is aring, and A has a canonical inclusion in S71A.

If M is an A-module contained in some field L (containing K), then
S~1M denotes the set of elements v/s withv € M and s € S. Then S™'M
is an S~!A-module in the obvious way. We shall sometimes consider
the case when M is a ring containing A a2s subring.

Let p be a prime ideal of 4 (by definition, p # A). Then the comple-
ment of pin A4, denoted by A — p, is a multiplicative subset S = S, of 4,
and we shall denote S~ 4 by A,.

A local ring is a ring which has 2 unique maximal ideal. If o is such a
ring, and m its maximal ideal, then any element z of o not lying in m
must be a unit, because otherwise, the principal ideal zo would be con-
tained in a maximal ideal unequal to m. Thus m is the set of non-units
of o.

3



4 ALGEBRAIC INTEGERS [, 82]

The ring A, defined above is a local ring. As can be verified at once,
its maximal ideal m, consists of the quotients x/s, with  in p and sin A
but not in p.

We observe that my N A = p. The inclusion D is clear. Conversely,
if an element y = z/sliesinm, N A withz €Epands & S,thenz = sy €
and s € p. Hencey €.

Let A be a ring and S a multiplicative subset. Let a’ be an ideal of
S™'A. Then

o = 8o’ n 4).

The inclusion D is clear. Conversely, let z €a’. Write z = a/s with
someaec A and s€ 8. Then sz €a’ N 4, whence z € S~'(a’ N A4).

Under multipfication by S~?, the multiplicative system of ideals of A
is mapped homomorphically onto the multiplicative system of ideals of
S~'A. This is another way of stating what we have just proved. If g
is an ideal of A and S~—q is the unit ideal, then it is clear that a N S is
not empty, or as we shall also say, « meets S.

§2. Integral closure

Let A be a ring and z an element of some field L containing 4. We
shall say that z is integral over A if either one of the following conditions
is satisfied.

INT 1. There exists a finifely generaled non-zero A-module M C L such
thatzM C M.

INT 2. The element x satisfies an equation
"ty 3 =0

with coefficients a; € A, and an inleger n = 1. (Such an equation
will be called an integral equation.)

The two conditions are actually equivalent. Indeed, assume INT 2.
The module M generated by 1, z, . .., 2"~} is mapped into itself by the
element z. Conversely, assume there exists M = (v;, ..., v,) such that
zsM CM,and M # 0. Then

ZV; = Q¥ - - - Qintn
TUn = ¥y T * -+ Gunln

with coefficients a;; in A. Transposing zvy, . . ., ¥, to the right-hand side
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of these equations, we conclude that the determinant

T — ax;
—aij
T — Qg3
—.a'-j :
T — Qpn

is equal to 0. In this way we get an integral equation for z over 4.

Proposition 1. Let A be a ring, K its quotient field, and z algebraic over
K. Then there exists an element ¢ # 0 of A such that cz is integral over A.

Proof. There exists an equation
anz” a2 =20
with a¢; € A and a, # 0. Multiply it by a?~1. Then
(@nz)" + -+ + agag ' =0

is an integral equation for a,z over 4.

Let B be a ring containing A. We shall say that B is integral over 4
if every element of B is integral over A.

Proposition 2. If B is integral over A and finitely generaled as an
A-algebra, then B is a finilely generated A-module.

Proof. We may prove this by induction on the number of ring gen-
erators, and thus we may assume that B = A[z] for some element z inte-
gral over A. But we have already seen that our assertion is true in that
case.

Proposition 3. Let A C B CC be three rings. If B s integral over A
and C s inlegral over B, then C is integral over A.

Proof. Let z € C. Then z satisfies an integral equation

T+ by 1" by =0

with b; € B. Let By = Alby, ..., bs_1]. Then B, is a finitely generated
A-module by Proposition 2, and B,[z] is a finitely generated B;-module,
whence a finitely generated A-module. Since multiplication by z maps
B, [z] into itself, it follows that z is integral over A.

Proposition 4. Let A C B be two rings, and B integral over A. Lel o
be a homomorphism of B. Then o(B) is integral over a(A).
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Proof. Apply o to an integral equation satisfied by any element z of B.
1t will be an integral equation for o' (z) over a(4).

The above proposition is used frequently when ¢ is an isomorphism
and is particularly useful in Galois theory.

Proposition 5. Let A be a ring contained in o field L. Let B be the set
of elements of L which are integral over A. Then B 13 a ring, called the
integral closure of 4 in L. -

Proof. Let z, y lie in B, and let A/, N be two finitely generated A-
modules such that zM C M and yN C N. Then MN is finitely generated,
and is mapped into itself by multiplication with z 4 y and =zy.

Corollary. Let A be a ring, K its quotient field, and L a finite separable
extension of K. Let x be an element of L which is integral over A. Then
the norm and trace of = from L to K are integral over A, and so are the
coeffictents of the irreducible polynomial satisfied by z over K.

Proof. For each isomorphism o of L over K, ox is integral over A.
Since the norm is the product of gz over all such o, and the trace is the
sum of oz over all such o, it follows that they are integral over A. Simi-
larly, the coefficients of the irreducible polynomial are obtained from the
elementary symmetric functions of the oz, and are therefore integral
over A.

A ring A is said to be integrally closed in a field L if every element
of L which is integral over A in fact lies in A. It is said to be
integrally closed if it is integrally closed in its quotient field.

Proposition 6. Let A be a Noetherian ring, integrally closed. Let L be
a finile separable extension of ils quotient field K. Then the iniegral closure
of A in L is finitely generated over A.

Proof. It will suffice to show that the integral closure of A4 is contained
in a finitely generated 4-module, because A is assumed to be Noetherian.

Let wy, ..., w, be a linear basis of L over K. After multiplying each
uw; by a suitable element of 4, we may assume without loss of generality
that the w; are integral over A (Proposition 1}. The trace Tr from L to
K is a K-linear map of L info K, and is non-degenerate (i.e. there exists
an element x € L such that Tr(z) # 0). If « is a non-zero element of L,
then the function Tr(ex) on L is an element of the dual space of L (as
K-vector space), and induces a homomorphism of L into its dual space.
Since the kernel is trivial, it follows that L is isomorphie to its dual under
the bilinear form

(x, y) = Tr(zy).
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Let wy, - - -, w, be the dual basis of wy, . . . , wy, so that
Tr{wiw;) = 8.

Let ¢ # 0 be an element of A such that cw} is integral over A. Let z be
in L, integral over A. Then zcw! is integral over 4, and so is Tr(czwy)
for each 7. If we write

z=1Dbwy+ -+ bawn
with coefficients b; € K, then
Tr(czw}) = cb;,
and cb; € A because 4 is integrally closed. Hence 2z is contained in
Aclwy + oo+ Ac  wn.

Since z was selected arbitrarily in the integral closure of A in L, it follows
that this integral closure is contained in a finitely generated A-module,
and our proof is finished.

Proposition 7. If A is a unique factorization domain, then A is inte-
grally closed.

Proof. Suppose that there exists a quotient a/b with a, b € 4 which is
integral over 4, and a prime element p in A which divides b but not a.
We have, for some integer n = 1,

@/b)* + @n_a(a/b)* 1+ -+ ag =0,

whence
a® 4 gn_ba™ "1 ggd” = 0.
Since p divides b, it must divide a”, and hence must divide a, contradiction.

Theorem 1. Let A be a principal ideal ring, and L a finite separable
extension of its quotient field, of degree n. Let B be the integral closure of
A in L. Then B is a free module of rank n over A. '

Proof. As a module over A, the integral closure is torsion-free, and by
the general theory of principal ideal rings, any torsion-free finitely gen-
erated module is in fact a free module. It is obvious that the rank is
equal to the degree [L: K].

Theorem 1 is applied to the ring of ordinary integers Z. A finite exten-
sion of the rational numbers Q is called a number field. The integral
closure of Z in a number field K is called the ring of algebraic integers of
that field, and is denoted by og.
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Proposition 8. Let A be a subring of a ring B, integral over A. Let S
be a multiplicative subset of A. Then S™'B is integral over S~ A. If A
is integrally closed, then S~ A 1is integrally closed.

Proof. If z€ B and s €8, and if M is a finitely generated A-module
such that M C M, then S~M is a finitely generated S—!A-module
which is mapped into itself by s™'z, so that s~z is integral over S™14.
As to the second assertion, let z be integral over 8714, with z in the
quotient field of A. We have an equation

x"_*_Ex"—l_*_..._;_QQ:o,
Sn—1 So
b;e A and s; € S. Thus there exists an element s € S such that sz is

integral over 4, henceliesin A. This proves that zliesin S™14.

Corollary. If B s the iniegral closure of A4 in some field extension L
¢ of the quotient field of A, then S™'B is the integral closure of S™'A in L.

8§3. Prime ideals

Let p be a prime ideal of a ring 4 and let S = A — p. If B is a ring
containing A, we denote by B, the ring S™B.

Let B be a ring containing a ring A. Let p be a prime ideal of A and
P be a prime ideal of B. We say that P lies above pif PN A = p and
we then write B|p. If that is the case, then the injection

A—B
induces an injection of the factor rings

A/p — B/,

and in fact we have a commutative diagram:

B — B/g

T T
A— Ay

the horizontal arrows being the canonical homomorphisms, and the
vertical arrows being inclusions.
If Bis integral over A, then B/P is integral over A/p (by Proposition 4).

Nakayama’s Lemma. Let A be a ring, a an ideal coniained in all maxi-
mal ideals of A, and M a finilely generated A-module. If aM = M, then
M =0
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Proof. Induction on the number of generators of M. Say M is gen-
erated by w;, ..., wn. There exists an expression

w1 = 61wy + -+ Gl
with a; € a. Hence
(1 — apw, = aqwy + - - - + CpWn.

If 1 — @, is not a unit in A, then it is contained in a maximal ideal p.
Since a; € p by hypothesis, we have a contradiction. Hence 1 — a; is
a unit, and dividing by it shows that M can be generated by m — 1 ele-
ments, thereby concluding the proof.

Proposition 9. Let A be a ring, p a prime ideal, and B a ring containing
A and integral over A. Then pB = B, and there exists a prime ideal P
of B lying above ).

Proof. We know that B, is integral over A4,, and that A, is a local ring
with maximal ideal m,. Since we obviously have

pB; = pA;B = pABy = myB,,

it will suffice to prove our first assertion when A is a local ring. In that
case, if pB = B, then 1 has an expression as a finite linear combination
of elements of B with coefficients in p,

1= aibi+ -+ -+ asbn

with a; €p and b, € B. Let By = A[by,...,b,.]. Then pBy = B, and
By is a finite A-module by Proposition 2. Hence Bg = 0, contradiction.

To prove our second assertion, we go back to the original notation, and
note the following commutative diagram:

B — B,
T T (all arrows inclusions).
A — A

We have just proved that m,B, ¥ B,. Hence m,B, is contained in a
maximal ideal ¢ of B,, and M N A, therefore contains m,. Since m, is
maximal, it follows that

mp=mnAU.

Let $ = M N B. Then P is a prime ideal of B, and taking intersections
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with 4 going both ways around our diagram shows that M N A4 =,
go that '
Bnd=y,

a5 was to be shown.

Remark. Let B be integral over A, and let b be an ideal of B, b # 0.
Thenbn A4 # 0.

To prove this, let b € 5, b ¢ 0. Then b satisfies an equation
b+ @y 0" e b ag =0
witha; € 4, and ag # 0. But agliesin b N 4.

Proposition 10. Let A be a subring of B, and assume B iniegral over A.
Let B be a prime ideal of B lying over a prime ideal p of A. Then P s
mazimal if and only if p 2s mazimal.

Proof. Assume p maximal in 4. Then A/p is a field. We are reduced
to proving that a ring which is integral over a field is a field. If k is a field
and z is integral over k, then it is standard from elementary field theory
that the ring k[z] is itself a field, so z is invertible in the ring. Conversely,
assume that P is maximal in B. Then B/ is a field, which is integral
over the ring A/p. If A/p is not a field, it has a non-zero maximal ideal
m. By Proposition 9, there exists a maximal ideal I of B/ lying above
m, contradiction.

When an extension is given explicitly by a generating element, then we
can describe the primes lying above a given prime more explicitly.

Let A be tntegrally closed in its quotient field K, and let E be a finite exten-
sion of K. Let B be the integral closure of A in E. Assume that B = Ala]
for some element a, and let f(X) be the irreducible polynomial of o over K.
Let p be a maximal 7deal of A. We have a canonical homomorphism

A— Afp= 4,
which extends to the polynomial ring, namely-
m . m .
9(X) = 3, X'+ 3 wX" = g(X),
t=1 =1
where ¢ denotes the residue class mod p of an element c € A.

We contend that there is a natural bijection between the prime ideals P of
B lying above p and the irreducible factors P(X) of F(X) (having leading
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coefficient 1). This bijection is such that ¢ prime B of B lying above p cor-
responds to P if and only if P 4s the kernel of the homomorphism

Ala] — Ala]
where & is a root of P.

To see this, let P lie above p. Then the canonical homomorphism
B — B/P sends a on a root of f which is conjugate to a root of some
irreducible factor of 7. Furthermore two roots of 7 are conjugate over 4
if and only if they are roots of the same irreducible factor of 7. Finally,
let z be a root of P in some algebraic closure of 4. The map

gle) — F(z)
for g(X) € A[X] is a well-defined map, because if g(a) = 0 then
9(X) = FX)A(X)

for some h{X) € A[X], whence g(z) = 0 also. Being well-defined, our
map is obviously a homomorphism, and since z is a root of an irreducible
polynomial over 4, it follows that its kernel is a prime ideal in B, thus
proving our contention.

Remark 1. As usual, the assumption that p is maximal can be weakened
to p prime by localizing, '

Remark 2. In dealing with extensions of number fields, the assumption
B = Ala] is not always satisfied, but it is true that B, = A,[«] for all but
a finite number of p, so that the previous discussion holds almost always
locally. Cf. Proposition 16 of Chapter I, §3.

§4. Chinese remainder theorem

Chinese Remainder Theorem. Let A be aring, and ay, . . ., a, ideals
such that a; + a;j = A forall i 5 j. Given elementsz,,...,z, € A, there
exists x € A such that z = z; (mod a;) for all <.

Proof. If n = 2, we have an expression
1=1ua;+ay

for some elements a; € a;, and we let z = z.a, + z;0,.
For each ¢ we can find elements a; € a; and b; € a; such that

a;+b; =1, iz 2
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The product J] (a; + b,) is equal to 1, and lies in a; + J] a:. Hence
i=3 i=3

a1+ H Q; = A.
1=2

By the theorem for n = 2, we can find an element y; & A such that

=1 (mod ay)

y1=0 (mod H a,-)-

P2
We find similarly elements ys, . . ., yn such that

y; =1 (mod a;); y; =0 (mod a;), 7 7.
Then z = z,yy + - - * + Ta¥yn satisfies our requirements.

In the same vein as above, we observe that if a,, ..., a, are ideals of
a ring A such that

a4 -y = A,
and if »y, ..., v, are positive integers, then
a4 4ar= 4.

The proof is trivial, and is left as an exercise.

§5. Galois extensions

Proposition 11. Let A be a ring, inlegrally closed in tis quotient field K.
Let L be a finite Galois extension of K with group G. Let p be @ mazimal
ideal of A, and let B, Q be prime ideals of the inlegral closure of A in L
lying above p. Then there exists o € G such that o = Q.

Proof. Suppose that P # o for any ¢ € G. There exists an element
z € B such that

z =0 (mod P)
z =1 (mod ¢Q), alle e G

(use the Chinese remainder theorem). The norm

Ni@) =] oz

EQF

liesin B N K = A (because A is integrally closed), and liesin P n 4 = p.
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But z € ¢ for allo € @, so that gz & Q for all¢ € G. This contradicts
the fact that the norm of z liesin p = Q N A.

If one localizes, one can eliminate the hypothesis that p is maximal;
just assume that p is prime.

Corollary. Let A be a ring, inlegrally closed in its quotient field K.
Let E be a finite separable extension of K, and B the integral closure of A
in E. Let p be a mazimal ideal of A. Then there exists only a finile number
of prime tdeals of B lying above p.

Proof. Let L be the smallest Galois extension of K containing E. If
£1, Q3 are two distinet prime ideals of B lying above p, and PB;, P, are
two prime ideals of the integral closure of 4 in L lying above Q, and Q,
respectively, then B; # PB,. This argument reduces our assertion to the
case that £ is Galois over K, and it then becomes an immediate conse-
quence of the proposition.

Let A be integrally closed in its quotient field K, and let B be its integral
closure in a finite Galois extension L, with group G. Then ¢B = B for
everyo € (. Let p be a maximal ideal of 4, and P a maximal ideal of B
lying above p. We denote by Gy the subgroup of G consisting of those
automorphisms such that o3 = P. Then Gy operates in a natural way
on the residue class field B/P, and leaves A/p fixed. To each ¢ € Gy we
can associate an automorphism & of B/P over A/p, and the map given by

g G

induces a homomorphism of Gg into the group of automorphisms of B/P
over A/p.

The group Gg will be called the decomposition group of P. Its fixed
field will be denoted by L%, and will be called the decomposition field
of P. Let B? be the integral closure of A in L% and let Q = P N B2
By Proposition 11, we know that P is the only prime of B lying above Q.

Let @ = | Jo;Gg be a coset decomposition of Gg in G. Then the prime
ideals o;P are precisely the distinct primes of B lying above p. Indeed,
for two elements o, 7 € G we have ¢P = 79 if and only if 771aB = B,
i.e. 770 lies in Gy. Thus 7, ¢ lie in the same coset mod Gg.

It is then immediately clear that the decomposition group of a prime
oPis oGgo L.

Proposition 12. The field L% is the smallest subfield E of L conlaining

K such that P is the only prime of B lying above B N E (which is prime in

BnE).
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Proof. Let E be as above, and let H be the Galois group of L over E.
Let q = B N E. By Proposition 11, all primes of B lying above q are
conjugate by elements of H. Since there is only one prime, namely %,
it means that H leaves P invariant. Hence H C Gy and E D L% We
have already observed that L? has the required property.

Proposition 13. Notation being as above, we have 4/p = BY/Q (under
the canonical injection A/p — BY/Q).

Proof. 1f ¢ is an element of G, not in Gg, thenoP = R and e~1P = P.
Let

L, =0 '} n B

Then O, # <. Let x be an element of BY. There exists an element y
of B? such that

y=2 (mod )
y=1 (mod )
for each ¢ in @, but not in Gy. Hence in particular,
y==z (modP)
y=1 (modo™'R)
for each ¢ not in Gy. This second congruence yields
oy=1 (mod R)

for all ¢ € Gqa. The norm of y from L to K is a product of y and other
factors oy with ¢ € Gg. Thus we obtain

NE@ =« (mod P).

But the norm lies in K, and even in A, since it is a product of elements
integral over A. This last congruence holds mod £, since both x and the
norm lie in BY. This is precisely the meaning of the assertion in our
proposition.

If r is an element of B, we shall denote by T its image under the homo-

morphism B — B/B. Then & is the automorphism of B/ satisfying the
relation

aT = ot

If f(X) is a polynomial with coefficients in B, we denote by f(X) its natural
image under the above homomorphism. Thus, if

f(X) = bn-\'" ':— cee T b0|
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then
FX) = BaX™ + -+ - + Bo.

Proposition 14. Let A be integrally closed in its quotient field K, and
let B be its integral closure in a finite Galois extension L of K, with group G.
Let p be @ mazimal ideal of A, and P a maximal ideal of B lying above p.
Then B/B is a normal extension of A/p, and the map o — & induces a
homomorphism of Gy onto the Galots group of B/P over A/p.

Proof. Let B = B/P and A = A/p. Any element of B can be written
as Z for some z € B. Let T generate a separable subextension of B over 4,
and let f be the irreducible polynomial for x over K. The coefficients of f
liein 4 because z is integral over A, and all the roots of f are integral over A.
Thus

f(X) = H X —2)

Tam]

splits into linear factors in B. Since

X =11 —=)

and all the %; lie in B, it follows that J splits into linear factors in B. We
observe that f(z) = 0 implies f(Z) = 0. Hence B is normal over 4,
and

[4(z): 4] £ [K(z):K] £ [L:K].

This implies that the maximal separable subextension of 4 in B is of
finite degree over 4 (using the primitive element theorem of elementary
field theory). This degree is in fact bounded by [L: K].

There remains to prove that the map ¢ +— @ gives a surjective homo-
morphism of Gg onto the Galois group of B over A. To do this, we shall
give an argument which reduces our problem to the case when P is the
only prime ideal of B lying above p. Indeed, by Proposition 13, the residue
class fields of the ground ring and the ring B? in the decomposition field
are the same. This means that to prove our surjectivity, we may take L?
as ground field. This is the desired reduction, and we can assume K = L4,
G = Gg.

This being the case, take a generator of the maximal separable sub-
extension of B over 4, and let it be Z, for some element z in B. Let f be
the irreducible polynomial of z over K. Any automorphism of B is deter-
mined by its effect on %, and maps T on some root of f. Suppose that
z = z;. Given any root z; of f, there exists an element o of G = Gg
such that oz = z;, Hence 5 — ¥;. Hence the automorphism of B over a
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induced by elements of G operate transitively on the roots of f. Hence they
give us all automorphisms of the residue class field, as was to be shown.

Corollary 1. Let A be a ring integrally closed in ils quolient field K.
Let L be a finite Galots extension of K, and B the inlegral closure of A in L.
Let p be a mazimal ideal of A. Let o: A — A/p be the canonical homo-
morphism, and let ¥, Y3 be two homomorphisms of B exlending ¢ in a
given algebraic closure of A/p. Then there exists an automorphism o of
L over K such that

Y1 = Y300

Proof. The kernels of ¢, ¥, are prime ideals of B which are conjugate
by Proposition 11. Hence there exists an element 7 of the Galois group @
such that ¢, Ygo7 have the same kernel. Without loss of generality,
we may therefore assume that y;, ¢o have the same kernel . Hence
there exists an automorphism w of ¢ (B) onto yo(B) such that woy; = ¢,.
There exists an element ¢ of Gg such that woy; = ¥, o0, by the preceding
proposition. This proves what we wanted.

Remark. In all the above propositions, we could assume p prime in-
stead of maximal. In that case, one has to localize at p to be able to apply
our proofs. In the application to number fields, this is unnecessary, since
every prime is maximal.

In the above discussions, the kernel of the map
Gy — Gg

is called the inertia group Ty of P. It consists of those automorphisms
of Gg which induce the trivial automorphism on the residue class field.
Its fixed field is called the inertia field, and is denoted by L'

Corollary 2. Lei the assumptions be as in Corollary 1, and assume that
B s the only prime of B lying above p. Let f(X) be a polynomial in A[X]
with leading coefficient 1. Assume that f is irreducible in K[X], and has a
root « in B. Then the reduced polynomial T is a power of an irreducible
polynomial in A[X].

Proof. By Corollary 1, we know that any two roots of 7 are conjugate
under some isomorphism of B over A, and hence that F cannot split
into relative prime polynomials. Therefore, f is a power of an irreducible
polynomial.

Let & be a number field and E a finite extension of degree N. A non-zero
prime ideal of the ring of algebraic integers o5 will usually be called a prime
of k. We say that such a prime p splits completely in E if there are
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exactly NV different primes of E lying above p. If K/k is Galois, then p
splits completely in K if and only if Gg = 1 because G permutes the primes
PBlp transitively.

When K/k is abelian, then we have the following characterization of the
fixed field of the decomposition group.

Corollary 3. Let K/k be abelian with group G. Let p be a prime of k, let
be a prime of K lying above p and let Gy be its decomposition group. Let E
be the fized field of Gy. Then E is the maximal subfield of K containing k in
which p splits completely

Proof. Let
¢ = U oGy

i=1

be a coset decomposition. Let q = P N E. Since a Galois group permutes
the primes lying above a given prime transitively, we know that P is the
only prime of K lying above q. For each ¢, the prime ¢ is the only prime
lying above ;q, and since 1B, . . ., o, P are distinct, it follows that the
primes @14, . . .,0,q are distinct. Since G is abelian, the primes o;q are
primes of E, and [E:k] = r, so that p splits completely in E. Conversely,
let F be an intermediate field between &k and K in which p splits completely,
and let H be the Galois group of K/F. If ¢ € Ggand P N F = Py, then ¢
leaves Pr fixed. However, the decomposition group of P over p must be
trivial since b splits completely in F. Hence the restriction of ¢ to F is the
identity, and therefore Gy € H. This proves that F C E, and concludes
the proof of our corollary.

Let k£ be a number field and let K be a Galois extension with group G
Let p be a prime of o, and P a prime of ox lying above p. The residue
class field ox/p is finite, and we shall denote the number of its elements by
Np. Itis a power of the prime number p lying in p. By the theory of finite
fields, there exists a unique automorphism of o0g/®B over o,/p which gener-
ates the Galois group of the residue class field extension and has the effect

I — be_

In terms of congruences, we can write this automorphism & as
ga =" (modP), « € og.

By what we have just seen, there exists a coset 0Ty of T'g in Gg which
induces & on the residue class field extension. Any element of this coset.
will be called a Frobenius automorphism of B, and will be denoted by
(B, K/k). If the inertia group Ty is trivial, then (P, K/k) is uniquely
determined as an element of the decomposition group Gg.
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If Q is another prime lying above p, and 7 € G is such that 9P = Q,
then the decomposition group of £ is given by

Go = Gyg = Gy,

and similarly for the inertia group, and & Frobenius automorphism.

(%, K/k) = (B, K/k)n~".

This is immediately verified from the definitions. Furthermore, if Tg is
trivial, we see that (P, K/k) = 1 if and only if p splits completely, mean-
ing that Gy = 1.

If K/k is abelian, and if the inertia group T’y is trivial for one of the B|p
(and hence for all P[p), it follows that to each pin k we are able to associate
a uniquely determined element of @, lying in Gy (the same for all B[p),
which we denote by

o = (p, K/k),

and call the Artin automorphism of p in G. It is characterized by
the congruence

oo =a"" (mod P), a € og.

We shall study this automorphism at length in the class field theory.

§6. Dedekind rings

Let o be & ring and K its quotient field. A fractional ideal of 0 in K is
an o-module a contained in K such that there exists an element ¢ # 0
in o for which ca Co. If o is Noethenan, it follows that ce, and hence q,
is finitely generated.

Theorem 2. Let o be a ring which is Noetherian, integrally closed, and
such that every non-zero prime ideal is mazimal. Then every ideal of o can
be uniquely factored into prime ideals, and the non-zero fractional ideals
Sform a group under multiplication.

Proof. We shall first prove the second assertion, following Van der
Waerden.

(i) Let a £ 0 be an ideal in 0. Then there exists a product of prime
ideals pypg - - - pr Ca.

Suppose the assertion false. Since o is Noetherian, there exists an
ideal @ £ 0 and maximal with respect to the stated property. This ideal
cannot be prime. Hence there exist b;, by € o such that b;bs € a but
neither by nor bg liesin a. Leta; = (a, b;) and a., = (a, bg). Then a;ae C «,
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and a; # a, ag ¥ a. Since a was maximal with respect to the stated
property, we can find products of prime ideals contained in a; and aj.
Taking the product of these gives a contradiction.

(ii) Every maximal ideal p is invertible.

Let p~! be the set of elements x € K such that 2p Co. Then p~! Do.
We contend that p~! % 0. Let e € p, a # 0. Choose r minimal such that
there exists a product '

P19 C(a) Ch.

Then one of the p;, say y,, is contained in p, and hence equal to p, since
every prime is maximal. Furthermore,

Pz"_‘br¢(a)

and hence there exists an element b € ps - - - b such that b & (a). But
bp C (a) and hence ba~'p C o, so that ba~! € p~'. But b & ao and hence
ba~! & o, thereby proving our contention.

We obtain pCpp~' Co. Since p is maximal, either p = pp~! or
pp~! = 0. But p~!p = p would mean that p~* leaves a finitely generated
p-module invariant, and hence is integral over o. This is impossible, since

0 is integrally closed. Hence pp™! = o.

(iii) Every non-zero ideal is invertible, by a fractional ideal.

Suppose this is not true. There exists a maximal non-invertible ideal a.
We have just seen that a cannot be a maximal ideal. Hence a Cp for
some maximal ideal p, and a £ p. We get

aCap~ ' Caa"lCo.

Since a is finitely generated, we cannot have ap™* = q (because p~! is not
integral over o). Hence ap~! is larger than a, hence has an inverse, which,
multiplied by p, obviously gives an inverse for a, contradiction.

(iv) Let a be an ideal # 0, and ¢ a fractional ideal such that ac = o.
Then ¢ = a~! (the set of elements x € K such that za C o).

It is clear that ¢ C ™). Conversely, if za C o, then zac C ¢ and hence
z € ¢, because ac = o.

We finally conclude that every fractional ideal > Q is invertible. In-
deed, if a is a fractional ideal £ 0, then there exists an element c € o
such that ca C o, and ca is invertible. If cab = o, then cb = a~*. This
proves that the non-zero fractional ideals form a group.

From this, we shall prove unique factorization.
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First, we note that every non-zero ideal a is equal to a produet of prime
ideals. Indeed, if this is false, there is 2 maximal ideal a which is not such
a product, and a cannot be prime. Thus a C p and a # p for some prime p.
Then ap~ C o and ap~! % a but contains a. Hence ap™! has a factor-
ization, which, when multiplied by p gives a factorization of a.

Given two fractional ideals a, b we say that a|b if and only if there exists
an ideal ¢ such that ac = b. This amounts to saying that a D b, because
in that case, we take ¢ = a 6.

From the definition of a prime ideal, we see that whenever a, b are two
ideals and plab then p|a or p|b. (Namely, ab C p implies a Cp or 6 C p.)
Given two factorizations

Pib2 - Pr = G142 " * - Qs

into prime ideals, we conclude that p; divides the product on the right,
hence divides some g;, hence is equal to some g;. Multiplying by p7!
both sides of the equality, we proceed by induction to prove that r = s
and that the factors on both sides are equal, up to & permutation.

If a is a fractional ideal # 0, and ¢ € o is such that ¢ # 0 and ca C o,
then (¢) = p;---p, and ca = q; - -+ q,. Hence a has the factorization

_ 01 G
Pr---Pr

(writing 1/p instead of p~!). If we cancel any prime appearing both in
the numerator and denominator, then it is clear that the factorization is
unique.

A ring satisfying the properties of Theorem 2 is called a Dedekind ring.
The ring of algebraic integers in a number field K is a Dedekind ring,
because it satisfies the three properties stated in Theorem 2. The multi-
plicative group of non-zero fractional ideals of the ring of algebraic integers
ox will be denoted by Ig.

From now on, by fractional ideal we shall mean non-zero fractional
ideal, unless otherwise specified.

Let A be a Dedekind ring and a a fractional ideal. We have a
factorization

a= InI p'e

with integers r, all but a finite number of which are 0. We say that 7, is
the order of a at p. If 7, > 0, we say that q has a zero at p. If r, < 0,
we say that it has a pole at p.

Let « be a non-zero element of the quotient field of A. Then we can
form the fractional ideal (¢) = A« and we apply the above notions of
order, zero, and pole to a.

Qa
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If a and b are two fractional ideals, then it is clear that a > b if and only
if ord, @ £ ord, b for all primes y. Thus we have a criterion for an element
o to belong to a fractional ideal a in terms of orders (taking b = (a)).

If ord, « = 0, then we say that « is a unit at p. If that is the case, then
a is a unit in the local ring 4,.

In what follows, by a prime ideal, we shall mean & non-zero prime ideal,
unless otherwise specified, and we call a non-zero prime ideal simply a
prime.

Proposition 15. Let o be a Dedekind ring with only a finite number of
prime ideals. Then o is a principal tdeal ring.
Proof. Let py, ..., ps be the prime ideals. Given any ideal

R = Bl 0,

select an element 7; in p; but not in p? and find an element « of o such
that

a=7F¢  (mod pFt?h).
If

(@) = o7 - 9y

is a factorization of the ideal generated by «, then one sees immediately
that e; = r; for all 7, and hence that a = (o).

Proposition 16. Let A be a Dedekind ring and S a multiplicative subset
of A. Then S™'A is a Dedekind ring. The map

a+— 8 la

s @ homomorphism of the group of fractional ideals of A onfo the group of
fractional ideals of S~ A, and the kernel consists of those fractional ideals
of A which meet S.

Proof. If p meets 8, then
S 'p=S8"14
because 1 lies in S~'p. If g, b are two ideals of 4, then
8~!(ab) = (S™'a)(S7'0),

so multiplication by 8~! induces a homomorphism of the group of
(fractional) ideals.

If S™'a = S~!4, then we can write 1 = a/s forsome a €q and s € S.
Thus ¢ = s and a meets S. This proves that the kernel of our homo—
morphism is what we said it is.
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Our mapping is surjective since we saw in §1 that every ideal of $~'4
is of type S~ 'a for some ideal a of A. The same applies of ecourse to frac-
tional ideals. This proves our proposition.

By a principal fractional ideal we shall mean a fractional ideal of type
aA, generated by a single element « in the quotient field of A, and « # 0
unless otherwise specified. .

Let A be a Dedekind ring. The group of fractional ideals modulo the
group of principal ideals (i.e. non-zero principal fractional ideals) is called
the ideal class group of A.

Proposition 17. Let A be a Dedekind ring, and assume thal ils group
of ideal classes is finite. Lelay, . . ., a, be representative fractional ideals of
the ideal classes, and let b be a non-zero element of A which lies in all the a;.
Let S be the multiplicative subset of A generaled by the powers of b. Then
every ideal of S™' A is principal.

Proof. All the ideals ay, ..., a, map on the unit ideal in the homo-
morphism of Proposition 16. Since every ideal of A is equal to some q;
times a principal ideal, our proposition follows from the surjectivity of
Proposition 16.

If two fractional ideals a, b lie in the same ideal class, we write
a~Db

and we say that a, b are linearly equivalent. It is clear that every frac-
tional ideal is linearly equivalent to an ideal.

The assumptions of Proposition 17 will be proved later to be satisfied
by the ring of integers of an algebraic number field.

§7. Discrete valuation rings

A discrete valuation ring o is a principal ideal ring having a unique
(non-zero) prime ideal m. It is therefore a local ring. If 7 is a generator
for m, then it must be the only irreducible element of o, i.e. the only prime
element (since any prime element generates a prime ideal) up to a unit,
of course. Thus the unique factorization in an arbitrary principal ideal
ring has a particularly simple form in this case: Every element a # 0 of
o has an expression

a= 1Tu

with some integer r, and & unit % in o.

Every discrete valuation ring is a Dedekind ring, and every Dedekind
ring having only one maximal ideal is a discrete valuation ring.’ If 4 is
a Dedekind ring, and p a prime ideal of A4, then A, is a discrete valuation
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ring, since it is equal to S7'4 (S = complement of p in A) (cf. Proposi-
tion 16).

Since every ideal of a discrete valuation ring is principal, it must be
some power of the maximal ideal.

In proving theorems about Dedekind rings, it is frequently useful to
localize with respect to one prime ideal, in which case one obtains a dis-
crete valuation ring. For instance we have the following proposition.

Proposition 18. Let A be a Dedekind ring and M, N two modules over A.
If p is a prime of A, denote by S, the multiplicative set A — p. Assume
that S;*M C Sy N for allp. Then M C N.

Proof. Let e € M. For each p we can find z, € N and s, € S, such
that ¢ = z,/s,. Let b be the ideal generated by the s,. Then b is the
unit ideal, and we can write

1= Ei’lnsn

with elements y, € A all but a finite number of which are 0. This yields

@ = 2 9%a = 2 YT
and shows that a lies in N, as desired.

If A is a discrete valuation ring, then in particular, A is 2 prineipal
ideal ring, and any finitely generated torsion-free module M over A is
free. If its rank is n, and if p is the maximal ideal of 4, then M/pM is a
free module of rank =.

Proposition 19. Let A be a local ring and M a free module of rank n
over A. Let p be the maximal ideal of A. Then M /pM <s a veclor space of
dimension n over A/p.

Proof. Thisis obvious, becauseif {zy, . . ., Z,} is a basis for M over 4, so

M = Y Az; (direct sum),
then

M/oM =~ 3 (A/p)z; (direct sum),
where Z; is the residue class of z; mod p.

Let A be a Dedekind ring, K its quotient field, L a finite separable
extension of K, and B the integral closure of A in L. If p is a prime ideal
of A, then pB is an ideal.of B and has a factorization

pB=B'---Br (2 1)

into primes of B. It is clear that a prime B of B oceurs in this factorization
if and only if P lies above p.
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If S is the complement of p in A, then multiplying the above factoriza-
tion by S gives us the factorization of S~!p in S7!B. The primes S,
remain distinet.

Each e; is called the ramification index of PB; over p, and is also written
e(Pi/p). If we assume that 4 is a local ring, then p = (w) is principal
(Proposition 15). Let S; be the complement of B; in B and let

B; = S,,_IB = Bg,.
Then P, is principal, generated by an element m;, and we have
pB; = wB; = (7¥).

Warning: B; is not necessarily integral over 4,. It is if and only if
there exists only one prime ideal P above p in B. Prove this as an exercise.

Denote by I(A) the group of fractional ideals of a Dedekind ring A.
Let K, L, B be as above. Then we have a natural injection

1(4) — I(B)

given by a — aB. We shall define a homomorphism in the other direction.

If P lies above p in B, we denote by fg or f(B/p) the degree of the residue
class field extension B/ over A/p, and call it the residue class degree.
We define the norm N%(P) to be p’® and extend our map N% to the
group of fractional ideals by multiplicativity.

Proposition 20. Let A be a Dedekind ring, K ifs quotient field,
K CECL two finile separable extensions, and A C B CC the corre-
sponding tower of integral closures of A in E and L. Lel p be a prime of
4, q a prime of B lying above p, and P a prime of C lying above . Then

e(B/p) = e(B/a)e(a/p)
f(B/p) = F(B/a)f(a/p).
Proof. Obvious.

From Proposition 20 it is clear that the norm is transitive, i.e. if we
have a fractional ideal ¢ of C, then

NENE(@) = NE@©.

Proposition 21. Let A be a Dedekind ring, K its quotient field, L a
finite separable extension of K, and B the iniegral closure of A in L. Let
p be a prime of A. Then

[L:K] = ;ewﬁg.

iy
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Proof. We can localize at p (multiplying A and B by S; '), and thus
may assume that A is a discrete valuation ring. In that case, B is a free
module of rank n = [L: K] over A, and B/pB is a vector space of dimen-
sion n over A/p.

Let pB = P51 - - - Bi be the factorization of p in B. Since P¥ O pB for
each ¢, we have a well-defined homomorphism

B — B/pB — B/

and therefore a homomorphism into the direct sum

B — B/pB — 11 B/p%.
i=1

Each B/P¥ can be viewed as an A/p-vector space, and hence so can the
direct sum. The kernel of our homomorphism consists of those elements
of B lying in all the P, and is therefore pB. Furthermore, our map is
surjective by the Chinese remainder theorem. It is obviously an 4/p-
homomorphism, and thus B/pB is A/p-isomorphic tg the above direet sum.

We shall now determine the dimension of B/P° (if P is some P, and
e = ¢).

Let TI be a generator of P in B. (We know from Proposition 15 that
is principal.) Let j be an integer = 1. We can view B//P’*? as an A/p-
vector space, since pB/ C P71, We consider the map

B/B — B/PH

induced by multiplying an element of B by II7. This map is an A4/p-
homomorphism, which is clearly injective and surjective. Hence B/P and
P7/P7*! are A/p-isomorphic.
The A/p-vector space B/P® has a composition series induced by the
inclusions
BOBOPED.-- DB

The dimension of B/P over A/p is fg, by definition. From this it follows
that the dimension of B/P® over A/p is eg fg, thereby proving our proposi-
tion.

If eg = fg = 1 for all B|p, then one says that p splits completely in L.
In that case, there are exactly [L : K] primes of B lying above p.

Corollary 1. Let a be a fractional ideal of A. Then

N%(aB) = o'“¥1.

Proof. Immediate.
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Corollary 2. Assume that L is Galois over K. Then all the ey are equal
to the same number ¢ (for P|p), all the fy are equal to the same number f
(for Blp), and if

pB = (B1--- By,

efr = [L:K].

then

Proof. All the P lying above p are conjugate to each other, and hence
all the ramification indices and residue class degrees are equal. The last
formula is clear.

Corollary 3. Assume again that L is Galois over K with group G, and
let P be a prime of B lying above p in A. Then

NiB-B=I] 0B = (B--- )"
oG
(with e, f, r as in Corollary 2, and the ideal on the left is viewed as embedded
in I(B)). The number ef is the order of the decomposition group of P, and
e 8 the order of the inertia group.

Proof. The group @ operates transitively on the primes of B lying above
p, and the order of Gg is the order of the isotropy group. Qur assertions
are therefore obvious, taking into account Proposition 14 of §5.

Proposition 22. Let A be a Dedekind ring, K its quotient field, E a finite
separable extension of K, and B the inlegral closure of A in E. Letbbea
fractional ideal of B, and assume b is principal, b=(8), B#0. Then

NEb = (NE(8)),

the norm on the lefl being the norm of a fractional ideal as defined above,
and the norm on the right being the usual norm of elements of E.

Proof. Let L be the smallest Galois extension of K containing E. The
norm from L to E of b and of 8 simply raises these to the power [L : E].
Since our proposition asserts an equality between fractional ideals, it will
suffice to prove it when the extension is Galois over K. In that case, it
follows at once from Corollary 3 above.

Proposition 23. Let A be a discrete valuation ring, K its quotient field,
L a finite separable extension of K, and B the integral closure of A in L.
Assume that there exists only one prime P of B lying above the mazimal
ideal p of A. Let B be an element of B such that ils residue class mod P
generates B/P over A/p and X1 an element of B which ts of order 1 at P.
Then A[B,1I] = B.
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Proof. Let C be the ring A[S, IT]. It can be viewed as a submodule of B
over 4, and by Nakayama's lemma, applied to the factor module B/C,
it will suffice to prove that

pB+C = B.

But pB = P, and the products 8117 generate B/R¢ over A /p, as in Propo-
sition 21. Hence every element z € B is such that

r= Zc.-,-ﬁ"II" (mod pB)
for some ¢,; € 4. This proves our proposition.

Finally, we prove one more result, generalizing the arguments of
Proposition 21.

Proposition 24. Let A be a Dedekind ring, and a a non-zero ideal. Let
n, = ordy a. Then the canonical map )

A= T 4/p™
P

induces an tsomorphism of A/a onto the product.

Proof. The map is surjective according to the Chinese remainder
theorem, and it is clear that its kernel is exactly a.

Corollary. Assune that A/p is finite for each prime ideal p. Denote by
Na the number of elements in the residue class ring A/a. Then

Na = J] (Np)™.
»
We observe that the function N can simply be viewed as being extended
from the prime ideals to all fractional ideals by multiplicativity.

$8. Explicit factorization of a prime

We return to the discussion at the end of §3 and give more precise
information eoncerning the splitting of the prime, due to Dedekind.

Proposition 25. Let A be a Dedekind ring with quotient field K. Let E
be a finite separable extension of K. Let B be the integral closure of 4 in E
and assume that B = Afo] for some element «. Let f(.X) be the irreducible
polynomial of & over K. Let p be a prime of A. Let f be the reduction of
f mod p, and let

(X = Py(X) - P(X)™
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be the factorization of T into powers of irreducible factors over A = A/,

with leading coefficients 1. Then
pB = PBi'-- - B

15 the factorization of p in B, so that e¢; s the ramification index of P; over p,

and we have
P: = pB + Pi()B,

if PX) € A[X] s a polynomial with leading coefficient 1 whose reduction

mod p is P;.

Proof. Let P be an irreducible factor of 7, let @ be a root of P, and let

B be the prime of B which is the kernel of the map
Afa] — Alal.

It is clear that pB -}- P(«)B is contained in . Conversely, let g(a) € B
for some g(X) € A[X]. Then § = Pk with some kh € A[X], and hence
g — Ph, which is a polynomial with coefficients in 4, in fact has coefficients
in p. This proves the reverse inclusion, and proves the last formula of our

proposition.
Finally, let ¢; be the ramification index of P, so that

DB = 51;;1 ot iBf‘;‘y

and let d; be the residue class degree [B/‘B,-:A/p].. It is clear that d; is

the degree of P,. Since f(a) = 0, and since
F(X) — Pi(X)% - - - P(X)*r € pA[X],
it follows that
(*) Py(a) -+ - Pr(a)* € pB.
On the other hand, we see that
i CpB + Pi(a)"B,

whence using (*) we find

P BT CPB+ Pi(@)® - P(a)"B CpB = Bfi- - -

This proves that e; = ¢ for all . But we know that

D ed; =degf=[E:F] = Ze’,-di.

It follows that e; = e; for all 7, thus proving our theorem.

B
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Remark. The hypothesis that B = Ale] for some « is not always satis-
fied, but if we are interested in the decomposition of a single prime p,
then it suffices to look at the localization B, over A;, and in that case B,
can be generated by a single element except for a finite number of excep-
tions. See Proposition 16 of Chapter III, §3.

Ezample. Let o® = 2, and let E = Q(2). It can be shown that the
ring of algebraic integers og is precisely Z[a]. Let p = 5. Then we have

X} —2=(X—3)(X*+3X—1) (mod5),

and X2 4- 3X — 1 is irreducible mod 5. Hence the prime ideal (5) of Z
has the decomposition

80 = pips

where p; has residue class degree 1, and pp has residue class degree 2
over Z/5Z.

§9. Projective modules over Dedekind rings

Although we shall not use this section further in this book, we include
it for the convenience of the reader for other possible applications. We
recall from basic algebra that a module P over a ring A is called projective
if every exact sequence of A-modules

0-MMLpPoso

splits, i.e. there exists a homomorphism g: P — M such that fog = idp.
In such a case, we have a direct sum decomposition M ~ M’ @ P.

We assume known the basic operation of localization of a module at
a prime. It is defined in a manner similar to the localization in §1.

Proposition 26. Let M be a finilely generaled torsion-free module over the
Dedekind ring A. Then M s projective.

Proof. Let p be a prime. Then the localized module M, is finitely
generated torsion free over the local ring A, which is principal. Then
M, is projective, so if F is finite free over A and f: F — M is a surjective
homomorphism, we obtain an induced homomorphism f,:F, —» M,
which has a splitting g,: M, —» F,, namely f,og, =idy;,. There exists
cp e A such that ¢, ¢p and c,g,(M) c F because g,(M) is finitely gen-
erated. The family {c,} generates the unit ideal, so there is a finite number
of elements c,, and elements x; € A such that ) z;c, = 1. Let

g= Z ZiCp,Fp,
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Then g: M — F is a homomorphism, and it is immediately verified that
(fpeg,): M, — M, is idy, for all p, whence fog: M — M is idy (verifica-
tion left to the reader).

Proposition 27. Elementary divisors theorem. Let M be a non-zero finitely
generated projective module over a Dedekind ring A. Then there exist
ideals a; (1 =1, ..., ) such that

.
Mx~@oaq,.
i=1

These ideals can be so chosen that o;|q; ., for all €, and are then unigquely
determined. .

Proof. Let K be the quotient field of A. Tensoring M with K we
obtain a finite-dimensional vector space V over K, whose dimension is
called the rank of M and is denoted by r. The natural map of M in
K ®4 M is injective, so we may identify M inside K ®, M. There exists
a functional e Hom,(M, 4) such that A(M) # {0}. For instance, let
{€1,...,¢,} be a basis of V over K. A non-zero element of M can be
written as a linear combination of this basis, with some non-zero coeffi-
cient, say z€ M, z = ) z;¢;and z; # 0. Let 1 = ; be the projection on the
Jj-th coefficient. Then A{M) # {0}. After multiplying A by some non-zero
element of A, we may assume that A(M) < A. Let A(M) = a;. Then a; is
an ideal, and we have a surjective homomorphism M — q; giving rise to
an exact sequence

By Proposition 26, a; is projective, so M =~ a; @ M’. We leave it to the
reader to verify that the rank of M’ is r—1, so the proof of the first
statement is concluded by induction. If one takes for 1 a functional such
that A(M) is maximal among all possible ideals obtained as above, then
the inductive sequence of ideals ay, ..., a, which one obtains satisfies
a;la;,; for all 4. The uniqueness follows by localizing at primes p, and
invoking the corresponding uniqueness over principal rings, which is part
of standard algebra.



CHAPTER 1II

Completions

This chapter introduces the completions of number fields under the
- p-adic topologies, and also the completions obtained by embedding the
number field into the real or complex numbers.

In §3 we discuss the rough structure of complete fields.

In §4 and §5 we cover the basic facts concerning unramified and tamely
ramified extensions. For the higher ramification theory, we refer the
reader to [ArT 67]. In §4 and §5 we deal with complete Dedekind rings.
We define the notions of B unramified, tamely ramified, and totally
ramified above p. These can also be defined globally, since they will depend
only on the ramification index and residue class degree. However, in the
local case, we can also apply them to the field extension, since to each
finite extension of the ground field K there is exactly one P above j.

It is useful to think of finite extensions of a number field as coverings,
and of completions as analogous to power-series fields in the theory of
functions. Absolute values measure something like the order of a zero or
pole of & function.

§1. Definitions and completions

Let K be a field. An absolute value on K is a real valued function
z +— |z|, on K satisfying the following three properties:

AV 1. We have |z|, = 0 and = Q tf and only if z = 0.
AV 2. For all z, y € K we have |zy|, = ||o]Yle-
AV 3. [zt yl £ [z]s + [y]o
If instead of AV 3 the absolute value satisfies the stronger condition
AV 4. |z +yly £ max(|zl,, |yl.),

then we shall say that it is a valuation or that it is non-archimedean.

The absolute value which is such that |z] = 1 for all z # 0 is called
trivial. We shall assume from now on that none of the absolute values
we deal with are trivial.

31



32 COMPLETIONS (11, §1]

‘When v is fixed throughout a discussion, we omit it from the notation,
and write |z| instead of |z],.

An absolute value | | defines a distance function (z, y) — |z — y|, and
thus a topology on the field. Two (non-trivial) absolute values are called
dependent if they define the same topology. If they do not, they are
called independent. It s clear that if | || and | |2 are absolute values such
that there exisis some X > 0 for which

|2y = IIIQ, alzec K,

then they are dependent. The converse is also true, and thus the weakest
notion of dependence implies the strongest. This is easily seen as follows.
The set of z € K such that |z|; < 1 is the same as the set such that
limz* = 0 for n — «. Then if x € K and |z|; > 1 we conclude that
[z]a > 1 also, because |z7!|; < 1. Since the absolute values are assumed
_ to be non-trivial, there exists y € K such that |y|; > 1. Let e = [y|, and
let b =ly|s. Letz K,z # 0. Say {z|] = 1. Then |z|; = |y| for some
a 2 0. If m, n are integers > 0 such that m/n > «, we have

|zl < [ylT/™,
whenee |z°/y™|, < 1, and thus |z"/y™|z < 1, so that

l2l2 < [yl3"™

Similarly if m, n are integers such that m/n < e, then

lzlz > lyl3™

Hence |z]; = |y|3. From this it follows immediately that
|=l1 = [=3,

where A = (log a)/(log b), thus proving our assertion.

Let v be an absolute value on K. We say that K is complete if every
Cauchy sequence in K has a limit (i.e. converges). Suppose that K is
complete, and let E be a finite extension of K. Assume that we have ex-
tended the absolute value to E in some way. Since E is a finite dimensional
vector space over K, it is easy to verify that all extensions of v to E are
equivalent, and we shall recall the proof below. Since two of them are
positive powers of each other, and since they coincide on K, we conclude
that they must be equal. Thus we get:

If K is complete under an absolute value, then an extension of this absolute
value to a finile exlension 1s uniquely determined. In particular, if E is a
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finite extension of K and 0 : E — oE is an tsomorphism of E over K, then

loa = |a|
for every a € K.

We now recall the result about finite dimensional vector spaces over
complete fields.

Let k be complete with respect to an absolute value. Let V be a finite dimen-
stonal vector space over k. Then all norms on V are equivalent.

By a norm on V we mean of course a function which satisfies the same
properties as an absolute value, namely its values are real = 0, and
lz] > 0if z # 0, the triangle inequality holds, namely

lz+yl < 2+ vl
and we have
[ez| = |e| [2] cek,zeV.

We say that two norms are equivalent if each one is less than or equal
to a positive constant times the other.

The reader can refer to my Algebra for a proof in the general case. We
give here a slightly simpler argument valid when % is locally compact,
which is the only case that matters for this book. Let {a;,...,as} bea
basis for V over &, and let || || be the sup norm with respect to this basis.
We let | | be any other norm. If x € V and z; € k are its coordinates with
respect to our basis, then

|z} = lz1e1 + - - + znen| = Cllal,
where C = n - sup ||a|. This proves one inequality, and shows that the
norm || is continuous with respect to || ||. Hence || has a minimum on

the unit sphere with respect to || || (by local compactness), say at the
point v € V, so that

_ [v] £ |z, allze V, |z = 1.
Lety e V, ¥y # 0 and write

Yy = v1o1+ -+ -+ Ynom, y; €k
Let j be such that [y;] = max |y;| = ||y||. Theny = y;z with ||z|| = 1, and

ol £ |2l = [v/yil = lyl/lysl.
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It follows that
o} llwll = lyl,

thus proving the other inequality, and concluding the proof of our
assertion.

The vector space V is like n-space over k& with respect to the sup norm,
and is thus complete with respect to the sup norm, because a sequence in
V is Cauchy if and only if the sequences of coordinates with respect to
the given basis are Cauchy (in k). From the equivalence of any norm with
the sup norm, we conclude that V is complete with respect to any norm.
All of this applies to a finite extension of k, which may be viewed as a
normed vector space over k.

We shall be mostly concerned with the following examples.

Let K = Q be the rational numbers. Then we have the ordinary
absolute value.

For each prime number p we have the p-adic valuation v, = | |, de-
fined by the formula

lp"m/nl, = 1/p,

where r is an integer, and m, n are integers # 0 and not divisible by p.

Let o be a discrete valuation ring with maximal ideal m, generated by
an element 7. Every non-zero element « of the quotient field K of o can
be written in the form a = #"u, where r is an integer and « is 2 unit in o.
We call r the order of . Let ¢ be a positive real number, 0 < ¢ < 1.
If we define

|| = ¢,

then we get an absolute value on K (trivial verification), which is in fact
a valuation.

There is of course considerable arbitrariness in the choice of the con-
stant ¢. In number fields, we shall deal with two possible normalizations
of this constant.

Let A be the integral closure of the integers Z in an algebraic number
field K, and let p be a prime of A. Let 7 have order 1 at p, and let p be
the prime number generating p N Z. Then p = 7° for some integer
e > 0 and a unit w at p. Let f = f, be the degree of A/p over Z/pZ.
The residue class field A/p is an extension of degree f over Z/pZ, and
hence has p’ elements. We denote by Np the number of elements in 4/p.
We now have two absolute values determined by p. On the one hand the
unique absolute value such that

1
ply = ;) and  |wy= pile’
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and on the other hand the unique absolute value such that

1
|wfly = Np
For any « € K, & 5 0, we have
llelly = lafs#’>.

Similarly, if L is a finite extension of K, and P lies above p in the ring
of algebraic integers B of L, let II be an element of order 1 at $. Then

pB — QBG(vIb) ..
and

[l = 5™,

The fact that ramification indices and residue class degrees are multipli-
cative in towers insures the consistency of these definitions when we go
to finite extensions.

Given a p-adic valuation on Q, any extension of it to a number field K
comes from some prime ideal in the integral closure A of Z in K. Indeed,
if o is the given valuation ring in K, and m its maximal ideal, then m N 4
cannot be 0, and hence is a maximal ideal p. It is then trivial to verify
that 0 = A4;. Thus from our point of view of Dedekind rings and integral
closure, we recover all the valuations on K which induce p-adic valuations
on Q.

If K is a number field, then every embedding of K into the real or com-
plex numbers will induce an absolute value on K, which will be called
real or complex accordingly.

Let K be a number field. The set of absolute values on K consisting of
the p-adic absolute values | |, deseribed above, and of the absolute values
induced by embedding K in C or R will be called the canonical set, and
will be denoted by M g. The real or complex absolute values in M are
also called archimedean.

If E is a finite extension of K and v € Mg, then any absolute value w
on E extending v lies in M g, and we write

wlz.

It is clear that two distinet absolute values in our canonical set are
independent, in the sense that they induce distinct topologies on K. We
shall prove the approximation theorem, which is the analogue for absolute
values of the Chinese remainder theorem, and is due to Artin—Whaples.

Theorem 1. Let K be a field and | |4, . . . , | | non-trivial pairuise inde-
pendent absolute values on K. Let z,, . . ., x, be elements of K, and ¢ > 0.
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Then there exists x € K such that

|:l: — ZL‘.'[" < €
Jor all 4.

Proof. Consider first two of our absolute values, say »; and »,. By hy-
pothesis we can find a € K such that |of; < 1 and |e|, = 1. Similarly,
we can find 8 € K such that |8]; = 1 and |8|l. < 1. Let y = 8/a. Then
[yl: > 1 and [yl < 1.

We shall prove that there exists z € K such that [2|; > 1 and |2]; < 1
forj = 2,...,s We prove this by induction, the case s = 2 having just

been proved. Suppose that we have found z € K satisfying
2]y > 1 and lzl; <1 forj=2,...,8— 1.

If |z, < 1, then the element z"y for large n will satisfy our requirements.

If |2, > 1, then the sequence
= zn/(l + Z")

tends to 1 at »; and »,, but tends to 0 atv; (= 2,...,5 — 1). Forlarge
n, it is then clear that t,y satisfies our requirements.
Using the element z that we have just constructed, we see that the

sequence

zﬂ.

1+2m

tendsto 1l at vy, and toQ at v; forj=2,...,s. Foreachi=1,...,s
we can therefore construct an element z; which is very close to 1 at »; and
very close to 0 at v; for 7 # 7. The element

T=21%1 1+ Z:Za
then satisfies the requirement of the theorem.

Let K be a number field, and » an absolute value (assumed from now
on to be always in the canonical set). Then we can form the completion
of K in the same way as one constructs the real numbers from the
rationals. We consider Cauchy sequences in K. These form a ring. The
null sequences form a maximal ideal, and the residue class ring is a field
K,. Our field K is naturally embedded in K, (by means of the sequences
whose elements consist of a fixed element of K), and the absolute value
on K can be extended to K, by continuity. We usually identify K inside
K, and call K, the completion of K, we also call K, a local field.

If v is archimedean, then K, is the field of real or complex numbers.
In fact, K, contains the closure of the rational numbers, which is R.
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View K as embedded in K,, as well as R. Then KR is a finite extension
of R, and hence equal to R or C (in the latter case, determined up to com-
plex conjugation). But KR is then complete, hence closed, so that
KR = K,.

If v is non-archimedean, i.e. is a valuation, corresponding to a prime
ideal p of the ring of algebraic integers of K, then K, will also be written
K,, and will be called the field of p-adic numbers. We shall now consider
in greater detail the situation when » = », is a p-adic valuation.

Let A be the integral closure of Z in K, i.e. the ring of algebraic integers
of K. Denote by A, the closure of 4 in K, and let z € A,. Selecty € A
such that

|z — yl < |z

(11 =11s)- Then|y| = [y — z + z| = |z| because of the non-archimedean
nature -of our valuation. Since all elements of A have a p-adic absolute
value which is < 1, it follows that all elements of A, have a p-adic ab-
solute value < 1. A similar argument shows that the closure of p consists
of elements of A4, which have absolute value < 1, and that an element
z € K, which does not lie in A, has absolute value > 1. In particular,
the value group on K, and K is the same, and is infinite cyclie. If 7 is
an element of order 1 at p in A, then iergenerates this value group.

Let 0 = A, be the local ring at p. All the elements of o have a p-adic
absolute value £ 1 because their orders at p are = 0. Hence o lies in the
closure of A, and hence the closure of o in K, is the same as the closure
of A. Itis called the ring of p-adic integers in X,. Let m, be the maximal
ideal of Ay. Then we have canonical isomorphisms

Ap/mb And A/P « Av/pu

if we denote by p, the closure of p in 4,.
In view of the above remarks, every element & # 0 in K, has an
expression
a = 7',

where {u|, = 1, and u is therefore a unit in the closure 4, of A. Hence
A, is a2 unique factorization domain with precisely one prime, and is
therefore a discrete valuation ring.

Let E be a finite extension of K, B the integral closure of A in ¥, and
P a prime of B lying above p. Let w be the canonical absolute value
corresponding to P. Then we have a commutative diagram:

B — B,

T 1
A— A,
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the arrows on the top, bottom, and left being inclusions, and the right
vertical arrow mapping A, on the closure of 4 in B,. Similarly, we have
a commutative diagram of residue class fields:

B/B — Buw/Bw
) )
A/p — Afp,

the vertical arrows being injections, and the horizontal arrows being
isomorphisms.

Let K, be the closure of K in E,. Then the composite field EK,, is a
finite extension of K, contained in E,,. We know that EK, is complete,
hence closed, hence equal to E,,. The same argument of course applies
also to the case when », w are both induced by embeddings into the real
or complex numbers.

Theorem 2. Let K be a number field, v one of tts canonical absolute
values, E a finite extension of K. Two embeddings o, 7:E — K, over K
give rise to the same absolute value on E if and only if they are conjugate
over K,.

(By conjugate over K, we mean that there exists an isomorphism X\ of
oF : K, onto 7E - K, which is the identity on K,.)

Proof. Suppose that the two embeddings are conjugate over K,. Then
the uniqueness of the extension of the absolute value from K, to K, guar-
antees that the induced absolute values on E are equal. Conversely,
suppose that this is the case. Let

A:TtE —oE
be an isomorphism over K. We shall prove that A extends to an isomor-
phism of 7E - K, onto ¢E - K, over K,. Since 7F is dense in 7E - K,,
an element x € 7E - K, can be written

z = lim 1z,

with z, € E. Since the absolute values induced by ¢ and 7 on E coincide,
it follows that the sequence

{Arz,} = {oz.}

converges to an element of ¢F - K, which we denote by Az. One then
verifies immediately that Az is independent of the particular sequence
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7z, used, and that the map
nTE-K,—oF -K,

1s an isomorphism, which clearly leaves K, fixed. This proves our assertion.

This result gives a clear picture of the nature of the extensions of v
to E, including the archimedean absolute values.

Corollary 1. Let K be a number field and E a finite extension, of degree n.
Let v € Mg and for each absolute value w on E extending v, let n,, be the
local degree,

Ny = [Ew: K.
Then
Z Ny = T
wiv

Proof. Immediate from Theorem 2 and the fact that for a finite sep-
arable extension, the degree is equal to the number of conjugates.

Corollary 2. Let K be a number field, and vy an absolute value in M.
Leta € K. Then

I1 [al5" = NG @)s

vlvg

Corollary 3. Let k be a number field and E a finite extension. Letv € M;
and for each w|v in E, let N, be the local norm from E,, to k,, and Try,
the local trace. Then

Nf(a) = H Nw(a):

wlv

and
Tri(a) = 2 Try(a)

wlv

foralla € E.

Remark. From Corollary 1, viewing a number field as a finite extension
of Q, we see immediately that we have an isomorphism

K®QQV0?“‘HK”

vlvg
if vg is a fixed absolute value in M.

Let K be a number field and E a finite extension of degree n. Let »
be an absolute value in M x. We shall say that v splits completely in E if
there exist precisely n extensions of » to E. From Theorem 2, we see at
once that v splits completely in E if and only if every embedding o of E
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into K, over K maps E into K,, i.e. (¢E)K, = K,. From this we im-
mediately obtain some basic properties concerning the case when v splits
completely as follows:

SC1. Let E DO F DK be finite extensions. An absolute value v in Mg
splits completely in E if and only if it splits completely in F, and
every wl|v in F splits completely in E.

SC 2. If v splits completely in E, if K,/K is finite, and vi|v in K, then
vy splits completely in EK .

SC 3. If E,, E, are finite extensions of K, and v splits completely in E,
and Eg, then v splils completely in the compositum E,E,.

The proofs are immediate.

Let A be a Dedekind ring. Its group of fractional ideals is isomorphic
to the free abelian group generated by the prime ideals. If pis a prime
ideal, and A, the local ring at p, then the group of fractional ideals of 4,
is infinite cyclic, generated by the maximal ideal m, of 4,. If v is the
absolute value determined by p and A, the completion of A (or A,), then
4, is also a Dedekind ring, and its group of fractional ideals is infinite
cyclic, generated by p,. Thus we have natural maps:

I(4,) — I(4,) — I(4),

the first arrow being a bijection, and the second an inclusion. It is con-
venient to make an abuse of language, and occasionally to identify p,,
my, and p and just call any one of them p. A product

b= Jy™
]

with integers r, all but a finite number of which are 0 eould be called a
formal ideal, and according to the context can be interpreted as an
element of I(4), I(A,), or I(4,). We shall call p™* its y-component and
denote it by by,. We say that r, is the order of b at p and write

ry = ordb.

If @ ¢ 0 is an element of the quotient field of A or of A,, then we can
form the principal fractional ideals A, ad,, or a4, and the orders of
these at b are all equal to the same integer, ord, a.

If @, B are two such elements, we write

a=8 (mod b)

if ordy(e — B) = ord, d. If @, 8 lie in the quotient field of A and we
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view b as being a fractional ideal, then this means that a — g8 lies in b
and is a congruence in the usual sense. It is convenient to visualize it as
applying simultaneously to any one of the three above rings if b = p" is
the power of a single p.

Suppose that A is a Dedekind ring and p a prime of 4, with a corre-
sponding valuation v. Let A, be the closure of A in the completion K,
of the quotient field, and p, the closure of p in A,. Then A4, is a discrete
valuation ring. If a is a fractional ideal of A, then we have trivially:

aA, = p:"
if r; = ord, a. Conversely, given a fractional ideal p] of 4,, we have
ppNAd =7y

The closure of the fractional ideal a in 4, is ad,. All these statements are
trivial to verify, and we leave the details to the reader.

§2. Polynomials in complete fields

Throughout this section, we assume that K is a field complete under a
valuation, and we let o be the ring of integers, i.e. the set of elements of
absolute value £ 1. We don’t need to assume that the valuation is dis-
crete. We let p be the maximal ideal of 0. We observe that a series

2 an
n=1
with a, € K converges if and only if

lim a, = 0.

n—oe

Thus convergence is easier to deal with than in the archimedean case.
We now discuss the possibility of finding roots to certain polynomials
in complete fields.

Proposition 1. Let m be a postlive integer such that

m # 0 (mod p).
Then for any z €y the binomial series of (1 + )™ converges to an m-th
root of 1 + xz in o*.

Proof. Obvious, because the binomial coefficients have no p in the
denominators.

1t is frequently necessary to have a more refined criterion for the exist-
ence of a root.
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Proposition 2. Let f(X) be a polynomial with coefficients in 0. Let aq
be an element of o such that

| (o) < |f'(0)?|
(here f' denotes the formal derivative of f). Then the sequence
flas)

Qi1 = O — f'(a.-)

converges to a root o of f(X) tn 0. Furthermore,

—w f(eo)
Ia Ql § f,(a0)2 < 1.
Proof. Let ¢ = |f(ag)/f (ag)?| < 1. We show inductively that
@ |l =1,
(i) |os — o} = 6,
BICD)
) || s

These three conditions obviously imply our proposition. If ¢ = 0, they
are hypotheses. By induction, assume them for . Then:

ERICD)
(1) f’ (a‘_) 2

whence |a; 4| £ 1

2" . 2i
< ¢? gives e — a £ ¢ < 1,

(i) |aipy — aol S max{loiy; — ail, |oi — aol} = c.
(ili) By Taylor’s expansion, we have.

flassn) = f(os) ~ ') Fies 4 6 (;(? )))

for some 8 € o, and this is less than or equal to
fe) |2

. F(e)
in absolute value.
Using Taylor’s expansion on f'(a; 1) we conclude that

1" (el = 157 (el

From this we get
Fletgv1)
.f'(a‘iq'-l)z =

2i+1

as desired.
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(The interested reader can refer to Bourbaki [Bou 62] to see a more
general formulation of the preceding proposition.)

As an application, we observe that in the 2-adic field Q3, the equation
z? + 7 = 0 has a root. In fact, for any element ¥ =1 (mod 8) in Q.
the equation 2% = 7 has a root. We take g = 1 in Proposition 2.

Proposition 2 applies also in the trivial case when

f(ag) = 0 (mod p) but (o) #0 (mod p).

The solution of the recursive linear equation needed to refine g to a root
of f is then more trivial. Another way of characterizing this situation is to
say that ag is a root of multiplicity 1 of the polynomial f reduced mod p.
We shall call this the trivial case of Hensel’s lemma.

Proposition 2 also shows that every unit of o sufficiently close to 1 has
an m-th root if m is not divisible by the characteristic of K. Indeed, we
need but consider the equation

X" —u=20

and take ag = 1, provided [u — 1| < |m|%.
We prove next a useful approximation lemma in finite extensions.

Proposition 3. Let «, 8 be two elements of the algebraic closure of K,
and assume that o 1s separable over K(8). Assume that for all isomorphisms
o of K (a) over K, ¢ # id, we have

. B — a| < |oa— q.
Then K(a) C K(B).

Proof. It suffices to show that for all isomorphisms of K{(B, ) over K(8)
the element « remains fixed. Let 7 be such an isomorphism. By the
uniqueness of extensions of absolute values over complete fields, applying
7 to f — a yields for all ¢ # id:

B — 10| < |oa — af.
Using the hypothesis, we obtain
lta —a|=|re — B+ 8 — | < |ga — al.
This implies that r is the identity, hence K (8, «) = K(B), as desired.

Proposition 3 is known as Krasner’s lemma. It is useful in determin-
ing extensions of K.
Next, we note the continuity of the roots of a polynomial.
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Let f(X) be a polynomial in K[X] having leading -coefﬁcient 1 and
admitting a factorization

X)) =JIX — a)™

in the algebraic closure of K. Say f has degree n, and the «; are distinct.
Let ¢ also have degree n and leading coefficient 1. As usual, we denote
by |g| the maximum of the absolute values of the coefficients of g. One
sees immediately that if |g| is bounded, then the absolute values of the
roots of ¢ are also bounded.

Suppose that g comes close to f, in the sense that |f — g] is small. If
B is any root of g, then

|7(8) — 9(8) = 17(8)|

is small, and hence 8 must come close to some root of f. As 8 comes close
to say a = «a, its distance from the other roots of f approaches the dis-
tance of «; from the other roots and is therefore bounded from below.
We may say in that case that § belongs to o.

If g comes sufficiently close to f, and say 8;, ..., B, are the roots of g
which belong to o (counting multiplicities), then we contend that s = r
(the multiplicity of « in f).

If this is not so, then we can find a sequence g, as above, approaching f,
with precisely s roots 8¢, ..., 8¢ belonging to « and s # r. Thus each
8, ..., 8% approaches «. Butlim g, = f and hence « must have multi-
plicity s in f, contradiction.

As an application, we have:

Proposition 4. If f is irreductble and separable, then any polynomial g
sufficiently close to f i3 also irreducible. (Both f and g are still assumed to
have leading coefficient 1, and the same degree.) Furthermore, given a rool
a of f, there exists a root 8 of g belonging to a, and K(a) = K(8).

Proof. If g is sufficiently close to f, then its roots have multiplicity 1,
and belong to the distinct roots of f. If 8 is a root of ¢ very close to the
root « of f, then Krasner's lemma immediately shows that K(a) = K(8).
Hence g is irreducible, since it has the same degree as f.

Corollary. Let K be a finite extension of Q. Then there exists a finite
extension E of Q contained in K such that [E:Ql = [K:Q,] and E s
dense in K, so that K = EQ,,.

Proof. Let K = Qp(a), let f be the irreducible polynomial of « over Q,,
and take for g a polynomial very close to f as before, but with coefficients
in Q. Then let E = Q(B).
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In view of this corollary, we call any finite extension of Q, also a p-adic
field. The integral closure of the p-adic integers in K has a unique max-
imal ideal which is denoted by p.

§3. Some filtrations

Let o be a discrete valuation ring with maximal ideal p, let K be its
quotient field, and assume that K is complete under the valuation induced
by 5. Let 7 be a generator for p. This notation will stay fixed throughout
the section. We also fix a valuation corresponding to o.

We know that in the topology given by the valuation, we have sub-
groups p” (r = 1,2, ...) which are open in the topology. Indeed, given
z €K, if y is an element of K such that [z — y| < |z, then |y} = |z].
Thus the p” are open subgroups whose intersection is 0. Consequently,
they form a fundamental system of neighborhoods of 0 in K. (We let
p® = p by definition.)

As an additive group, each factor group p"/p"*! is isomorphic to o/p
under multiplication by 7.

The units of o form a group under multiplication, which will be denoted
by U. For each integerz = 1 we let

U= 149

and define Ug = U. Then U; is a group, because whenever z, y € p*
we see that

A+ +y)=1+zt+ytazyel+p G=1)
1+z+y mod(l+pith)

and
Q-2 '=14+z+22+---.

is a convergent series.

The units are an open subset of o.

If 7 has order 1 at p, then it is clear that K* is topologically and alge-
braically isomorphic to the product {#} X U (letting {w} be the cyclic
group generated by ).

Under the canonical map

0—0/p

the units map on the non-zero elements of o/p, and the kernel of the
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induced homomorphism
U— (o/p)*

is precisely U;. Thus U/U; = (o/p)*.
Furthermore, for 7 = 1, we have an isomorphism

P/ = Ui/ Ui
induced by the map on p’ given by
z—> (1+2) mod Uspy

which is immediately verified to be a homomorphism, whose kernel is
p**1, This map is a truncated exponential map.

If o/p is a finite field, with g elements, then the number of elements in
p?/pit!is also equal to g. The number of elements in U/ U, is then g — 1.

Proposition 5. If o/p is fintte, then 0 and U are compact.

Proof. We observe that o is the projective limit of the finite groups
0/p* and hence is compact. (It can be viewed as a closed subgroup of the
Cartesian product of the o/p’.) The same argument applies to U as a
projective limit of U/U..

The U; form a fundamental system of neighborhoods of 1 in U.

In view of Proposition 5, we conclude that a p-adic field is locally
campact.

As we remarked in the preceding section, every unit of a p-adic field
sufficiently close to 1 is an m-th power. Thus given a positive integer m,
the index (U : U™) is finite. We shall now determine this index.

We need a group theoretic lemma.

Lemma. Let f be a homomorphism of a commutative group A into some
other group. We denote the image of f by A and its kernel by A;. Let B be
a subgroup of A. Then

(A:B) = (A7:B")(A;:B))

in the sense that if two of the indices are finite, so is the third and the equalily
holds.

Progf. Consider the composite homomorphism of f and the canonical
map
A— A - Af/B.
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Tts kernel in A is B 4+ Ay, and hence we have an isomorphism
A/(B+ Af) = A//BY.
But ADB+ A;D B, and
(B+ A))/B =~ A;/(AynB) = A;/B,.
Our lemma follows at once.
Proposition 6. Let K be a yp-adic field and U the units of its ring of

inlegers. Let m be a positive integer. Then

. ___1_ *
(U:U™ = Tl (Km:1)
and

K*:K*™) = T _ Km:1
( ) = Ymffy En:D

(where K is the group of m~th roots of unily coniained in K).

Proof. The second formula follows from the first by recalling that
K*~ZXxU.

‘We now consider the unit index, and the proof is taken from Artin [1].

Take r so large that [m7"1!| = |[7?'| and consider the group U,. Then
for any integral z,

A +zr)™ =1+ mzr™ (mod mr +1).
Thus if ord, m = s, we have
U;n = Ur+a-

Take r sufficiently large that no m-th root of unity except 1 lies in U,. We
apply the lemma to the homomorphism f(a) = o™, applied to the units.
We obtain

(U: Uy) = (U™:Uppa) (K2 1)
(U Ur+.|) (K* 1)

(U:Um
Hence

. _U:Ur) jox. 1y _ . —
(U-Um)—‘(—UT]T)—(Km-l) = (Ur:Urya)(Em:1).

But (U, : U,4.) = (Np)* and our assertion follows.
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Corollary. If K conlains the m~th roots of unity, then

m * | prkmy mz .
Ty, 224 EET =

(U:U™ =

§4. Unramified extensions

We continue to assume that K is complete under a discrete valuation, with
ring A and mazximal ideal p.

If E is a finite extension of K and B the integral closure of A in E, then
there is a unique prime ideal P of B lying above p, and B is a discrete
valuation ring. If eis the ramification index and f the residue class degree,
then

ef = [E:K].

(In this book, we have proved this only when E is separable over K.
As we are primarily interested in number fields, we don't give the proof
in general. The reader may assume that K has characteristic 0 if he
wishes.)

We see that e = 1 if and only if

[E:K] = [B/B:4/p].

If this equality holds and the residue class field extension B/ over 4/p
is separable, then we shall say that @ is unramified over p, or that E is
unramified over K.

Let ¢: B — B/P be the canonical homomorphism. If

g=BuX"+ - +Bo

is a polynomial with coefficients in B, then we denote by g¥ the polynomial
?(Bn)X™ + - - - + (Bg), obtained by applying the map ¢ to the coeffi-
cients of g.

Proposition 7. Let E be finite over K, and assume that P is unramified
over §. Let & € BY be such that B = A¥(a) and let « be an element of B
such that go = a. Then E = K(a), and the irreducible polynomial g(X)
of a over K s such that ¢* is irreducible. Conversely, if E = K(a) for some
o € B satisfying a polynomial g(X) in A{X] having leading coefficient 1
and such that g° has no multiple rool, then B is unramified over p and
B¢ = A®(ga).

Proof. First assume P unramified. Let g(X) be the irreducible poly-
nomial of & over A?. Let « be an element of B such that ga = &, and
let g(X) be its irreducible polynomial over K. Then « is integral over A,
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and & is a root of g*, whence 7 divides ¢*. On the other hand
degg = [B°:A°] = [E:K] = deg g

and so § = ¢g¥. This proves the first statement.

Conversely, if « satisfies the stated condition, then we may assume
without loss of generality that its irreducible polynomial g(X) is such
that g¥ has no multiple roots. We can now apply Corollary 2 of Proposi-
tion 14, Chapter I, §5 (to the smallest Galois extension of K containing E)
to conclude that g¥ is a power of an irreducible polynomial, and hence is
irreducible. Using the inequalities

[A%(pa) : A%] 5 [B¥:A°] < [E:K]
we now conclude that we must have an equality everywhere, and that
BY = A%(pa).
This proves our proposition.

Proposition 8. Let E be a finile extension of K.

() If ESF DK, then E is unramified over K if and only if E is un-
ramified over F and F is unramified over K.

(ii) If E is unramified over K, and K, is a finile exlension of K, then
EK, i8 unramified over K.

(iii) If E, and E, are finite unramified over K, then so is E Es.

Proof. The first assertion comes from the fact that the degrees of residue
class field extensions are bounded by the degrees of the field extensions,
and their multiplicativity property in towers. One must also use the fact
that assertion (i) holds when “unramified” is replaced by “a finite separable
extension”. The second assertion is an immediate consequence of our

criterion in Proposition 7. The third comes formally from the first and
second.

Proposition 9. For each finite extension E of K in a given algebraic
closure, let Bz be the integral closure of A in E. Let A be the integral closure
of A in the algebraic closure K of K. Let ¢ be a homomorphism of & such
that its restriction to Bg has the maximal ideal P as kernel. Then the map

Bg — B%
induces a bijection belween unramified extensions E of K and separable
extensions of A®.

Proof. We have shown in Proposition 7 that every finite separable
extension of A¢ is obtainable as an image Bf for some finite extension E
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of K, unramified over K. We now must prove the uniqueness. If E; C Eq
are unramified, then eclearly ¢Bg, C ¢Bg,. Let E; = K(&;) and
E; = K(as) be unramified extensions, generated by elements oy, ag re-
spectively satisfying polynomials over A having leading coefficient 1, and
whose reductions mod p have no multiple roots. Then E,E; = Ez(ay),
and e, satisfies with respect to E, a similar condition (with the same poly-
nomial as over K). Let E = E E,. Using Proposition 7 once more, we
conclude that

¢Br = pBg,(pa1) = A®(pai, pag) = (¢Bg,)(pBg,).

If pBg, = ¢Bg,, we conclude that E, = E,, thus proving our proposition.

If we assume that A® is a finite field, as is the case in number theory,
then its algebraic extensions are all separable, and in fact are cycliec. The
Galois group is generated by a canonical automorphism, the Frobenius
automorphism ¢ (Chapter I, §5) such that

oz = z7
if g is the number of elements in the residue class field A/p. Thus each
finite unramified extension of K is in fact eyclie, and has a uniquely deter-
mined automorphism corresponding to o. In fact, we see that in Propo-
sition 14 of Chapter I, §5 the Galois group G of an unramified extension
is equal to Gy because there is only one P above p, and Gy is isomorphic
to the Galois group of the residue class field extension.

Corollary. Let K be a p-adic field (i.e. completion of a number field under
a p-adic valuation). Let E be an unramified extension of K. Then every
unit of K 15 a norm of a unit in E.

Proof. Let u be 2 unit in K. We identify the Galois group of E over K
with the Galois group of the residue class field extension. It is a simple
consequence of Hilbert’s Theorem 90 (or anything else you can think of)
that both the trace and norm from a finite extension of a finite field are
surjective. Hence there exists a unit ag in E such that

u=NEq, (mod p).
Then

uNEagl=1+ e (mod p?).
for some ¢; € A. Let
o =1+ w5y

with z; in Bg. Then

NEoy=1+4Tr@z)r (modp?)
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where Tr is the trace, and it is again an easy matter to verify that the trace
is surjective in the residue class field extension. Hence we can select z;
such that

Tr(z;) =c; (mod ),

whence we ean find «; such that

uNEag! = NEo; (mod p?).
Proceeding inductively, we can find aqg, ey, . .., o, such that

ap,=1 (modp")
and such that

uNE(ap -+ an)"'=1 (mod p"+1).

The infinite product

is convergent to an element « such that

Nﬁa = u,

thus proving our corollary.

§5. Tamely ramified extensions

We still assume that K ts complele, under a discrete valuation, with Dede-
kind ring A and mazimal tdeal p, and we assume that A/p is perfect.

If E is a finite extension, we denote by B = Bpg the integral closure of
4'in E, and P = P its maximal ideal.

We shall say that P is totally ramified above p if [E : K] = e. In that
case, the residue class degree is equal to 1 (because ef = n). Since P is
the only prime of B lying above b, we say that E is totally ramified over K.

Proposition 10. Let E be a finite extension of K. Let E, be the com-
positum of all unramified subfields over K. Then E, i3 unramified over K,
and E s totally ramified over E,.

Proof. The first statement comes from Proposition 8 of the preceding
section. As to the second, we consider the towers

E B/B
I |
Eu BH/GBH

| I
K A/p
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If the residue class field extension in the upper level of the tower had
degree > 1, then it could be lifted back to an unramified subfield of E
over E,, of the same degree, contradicting the maximality of E,. Hence
the degree must be equal to 1, and therefore E is totally ramified over E,,.

Let E be a finite extension of K. We shall say that P is tamely ramified
over p (or E tamely ramified over K) if the characteristic p of the residue
class field A/p does not divide e. If it does, we say that B is strongly ram-
ified. We shall now deseribe totally and tamely ramified extensions.

Proposition 11. Assume that E is totally ramified over K. Let II be
an element of order 1 at B. Then 11 satisfies an Eisenstein equation

Xt a1 X g =0,

where a; € p for all © and ag 5% 0 (mod p?). Conversely, such an equation is
irreducible, and a root generales a totally ramified extension of degree e.

Proof. All conjugates of IT over K have the same absolute value (by the
uniqueness of the extension of p to any finite extension), and hence the
coefficients of its irreducible polynomial, which are polynomial functions
of the roots, lie in pn A = p. The last coefficient g, is the product of II
and its conjugates, and there are ¢ of those. Hence

‘Gol = |Hla:

80 gg = T is an element of order 1 at p. As to the converse, an Eisenstein
equation is irreducible. If 8 is a root, then the same argument we applied
to II before now applies to B and shows that [8]° = |w|. Hence
e = [K(f) : K].

‘We observe that if p { ¢, then the extension is tamely ramified.

Proposition 12. Let E be totally and tamely ramified over K. Then there
exists an element 1L of order 1 at P in E satisfying an equation

X—7=0

with w of order 1 at p in K. Conversely, let a be an element of A, and e @
positive inleger not divisible by p. Then any root of an equation

Xf—a=0

generales a tamely ramified exlension of K, and this exienston is totally
ramified if the order at p of a s relatively prime to e.

Proof. Let f(X) = X°® — a with e € A and ¢ not divisible by p. Let
a be any root of f. Write @ = 7"u with some integer r and a unit u of A.
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Then K(c) is contained in K(¢, u!/¢, 7'/¢), where ¢ is a primitive e-th root
of unity. The extension F = K (¢, u'/¢) is unramified over K, and hence 7
is still a prime element in Bp. The extension F{r'/*) is totally and tamely
ramified, and hence the ramification index of K(a) over K divides that of
K(t, u''*, ) over K. This proves that K(«) is tamely ramified over K.
If the order of a at p is relatively prime to ¢, then we ean find two integers
s, t such that
settr=1.

Let 8 = a!7®. Then 8° and 1 have the same order at P, whence the
ramification index is at least equal to e. It must therefore be equal to e
(because [K(a) : K] = e), and our extension is totally tamely ramified.

There remains to prove that any totally and tamely ramified extension
is generated by the root of an equation

Xe—71=0
for some prime element 7 of p. For this we shall need a lemma.

Lemma. Let ¢ be a posilive integer not divisible by p. Let E be a finite
extension of K, mg a prime element in y, and 8 an element of E such that
[B° = |mo|. Then there exisls an element 7 of order 1 in p such that one
of the roots of the equation X® — m = 0 15 contained in K(B8).

Proof. We can write 8¢ = wou with a unit » in B. Since the extension
is totally ramified, the residue class degree is equal to 1, and hence there
exists a unit %g in A such that u = %y (mod B). Letting 7 = mgue we get

=7+ 7z
with some element z = 0 (mod P). Thus
[8° — | < |ml.
Let f(X) = X® — 7, and let ay, . .., a, be its roots. Then
|7B) = 18 — au| - - - |B — -

But [ai = |8] for each 7. Hence for at least one value of 7, say i = 1,
we have

18 — a1l < el
On the other hand,

[f(a)] = lad]* ™' = |ay — @z * - |ag — a

and |a; — | £ |oy|. This proves that for all j # 1 we have [ay — o] = [oy].
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" By Krasner’s lemma, it follows that K(a;) = K(f) thereby proving our
assertion.

Proposition 12 follows at once by taking 8§ = II.

Proposition 13. Let E be a finile extension of K. Then all statements
of Proposition 8 hold if the word “unramified” is replaced throughout by
the words “tamely ramified”.

Proof. Routine, using the multiplicativity of the ramification index,
and Proposition 12.

Corollary. Let E be a finite extension of K, and let E, be the compositum
of all tamely ramified subextensions. Then E, is tamely ramified over K,
and E is tolally ramified over E,. Furthermore, if p is the characteristic of
the residue class field, then the degree [E: E,] is a power of p.

Proof. Let e be the ramification index and write
= eop’,
where ¢g is prime to p. Let II be an element of order 1 at P, and let
g =17,

By the lemma, K(8) contains a tamely ramified subextension of ramifica-
tion index e;. The composite of this extension with the maximal un-
ramified subfield of E gives us a tamely ramified extension F of K, and
from the definition of 8, it follows that the ramification index of E over F
is p”. On the other hand, E is totally ramified over F (because F contains
E.,), and hence [E: F] = p". Any tamely ramified subextension of E must
be contained in F, otherwise its compositum with F would be tamely
ramified over F. This proves the corollary.

Lastly, we specialize to p-adic fields and prove a useful finiteness
statement.

Proposition 14. Let K be a p-adic field (finite extension of Q,). Given
an tnteger n, there exists only a finite number of extensions of degree S n.

Proof. Since there is exactly one unramified extension of a given degree,
corresponding to an extension of the residue class field, and since every
extension is a tower of an unramified and totally ramified extension, it
will suffice to prove that there is only a finite number of totally ramified
extensions of a given degree e. But such extensions are obtained by
Eisenstein equations

Xe + Ge_]_Xl—l + - + UQT = 0’
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where the coefficients a; belong to p and g is & unit (7 being a fixed prime
element of p). The Cartesian product

pX---XpXU

of the units and of p taken ¢ — 1 times is compact. Any point in it can be
viewed as determining a finite number of extensions of degree e (eorre-
sponding to the distinct roots of the equation). By Krasner’s lemma, it
follows that a neighborhood of such a point determines the same extensions
(Proposition 4 of §2), and by compactness the finiteness follows.



CHAPTER III

The Different and Discriminant

The study of the different and diseriminant provides some information
on ramified primes, and also gives a sort of duality which plays a role both
in the algebraic study of ramification and the later chapters on analytic
duality. It also gives a good method for computing the ring of algebraie
integers in a number field, as in Proposition 10.

§1. Complementary modules

Throughout this section, A is a Dedekind ring, K its quotient field,
E a finite separable extension of K, and B the integral closure of 4 in E.
Let L be an additive subgroup of E. We define its complementary set
(relative to the trace) to be the set of € E such that

Tr(zL) C 4,

and denote it by L’. Then L’ is an additive group. If AL = L, then
AL’ = L.
If L, M are two additive subgroups of E, and L C M, then M’ C L’.
We also have the following properties.

Proposition 1. If wy, ..., w, is a basis of E over K and

L= Aw;+---+ Awn,
then

L'= Awi +--- + Awy,
where {w(} is the dual basis relative to the trace.
Proof. Let a € L' and write

a= i+ ---+ twn

with g; € K. Then Tr(aw;) = a;, whence a; € A for all 7. This proves
57
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the inclusion C. Conversely,
Tr(AwiL) = A-Tr(wiL) C A
so the inelusion D is equally trivial.

Since every fractional ideal of B is squeezed between two A-modules of
type Aw; + - - - + Aw, for suitable bases {w;} of E over K, and since
A is Noetherian, we obtain:

Corollary. If b is e fractional ideal of B, then W s also @ fractional
ideal. Furthermore B C B'.

Proposition 2. Let E = K(a) be a finile separable extension, of degree n.
Let f be the irreducible polynomial of « over K, f' its derivative, and

__._){(}_Oa =bo+ b1 X+ -4 by X"L

Then the dual basis of 1, @, ..., a" " is

b[) bn—l

@' @
Proof. Let ay, ..., a, be the distinet roots of f. Then

n_ﬂ&- a',: I B
E(X—a,-)f’(ai)_xx 0Lrsn—1.

To see this, let g{X) be the difference of the left- and right-hand side of
this equality. Then g has degree < n — 1, and has # roots ay, ..., @}
hence g is identically 0.
The polynomials
fX) ot
X — a; f'(as)

are all conjugate to each other. If we define the trace of a polynomial
with coefficients in E to be the polynomial obtained by applying the trace
to the coefficients, then

Tr[f(f_()—{_)a—; f’a(;a)] = X"

Looking at the coefficient of each power of X in this equation, we see that

Tr (.x" }%5) = -5.-,-

thereby proving our assertion.
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Corollary. Assume that B = Alc]. Then B’ = B/f'(e).

Proof. Using the recurring formulas

bn—l = 1
ba—2 — abp—1 = Gn_y

we see that the module generated by 1, e, . .., @® ! over A is the same as

that generated by by, . . ., by_;. Our corollary follows immediately.

Proposition 3. Assume that A s a discrete valuation ring, that there is
only one prime B of B above p, and that B/B 1s separable over Afp. Then
there exisis ¢ € B such that B = Alc].

Proof. Let 8 be an element of B whose residue class mod P generates
B/ over A/yp. Let f be a polynomial with leading coefficient 1 and
coefficients in A such that its reduced polynomial mod p is an irreducible
polynomial for 8 mod P. Let II be an element of order one at P in B.
Then

fB+ 1) =f(8)+ @) (mod B3,

and f/(8) #£ 0 (mod PB). Hence taking either 8 or 8 + II yields an element
a such that its residue class generates B/ over A/p and such that there
exists an element of order 1 at P in the ring A[e]. We conclude by Propo-
sition 23 of Chapter I, §7 that B = Al[a].

The preceding proposition gives us a ecriterion when we can apply
Proposition 2. It applies in particular in the local case, when our Dedekind
ring is complete.

Proposition 4. Let b be a fractional ideal of B. Then
o = B'b™L.
Proof. We have
Tr(B'6~ ') = Tr(B'B) C A
whence B’6~! C ¥'. The converse is equally clear.

For purposes of the following proposition, we denote by B%/x the com-
plementary module of B. We need some index, since we shall deal with
more than two fields.

Proposition 5. Let E D F D K be two separable extensions, C the inlegral
closure of A in F, and B the integral closure of A itn E. Then

B'gjxk = B'g;rC'Fik.
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Proof. We prove first the inclusion 5. We have

Tr(B% rC/kB) = Trik TrE(BgrC'rxB)
= Trk(C’ k TrF(B’,rB))
C A.

This proves the desired inclusion.
Conversely, let § € Bg/x. Then

TrE(8B) = Trk(C TrE(8B)) c A
(we can insert C since CB = B). Thus

Tr#(8B) CC’x,
and

C’k TrE(8B) CC.

The C-fractional ideal C4;2 can be taken inside the trace Try because it
is contained in F. Hence

BC'rikx C Bkr.
Multiplying by Cgx shows that 8 € Ck/gBg/r and concludes the proof
of the reverse inclusion.

Notation being as above, we define the different Djp; 4 to be B5/x. The
preceding proposition gives us the rule

Dp;cDeia = Dpja,

which is called the multiplicativity of the different in towers.
The different is the inverse of a fractional ideal containing the integers,
and therefore is an ideal.

Proposition 6. Let S be a multiplicative subset of A. Then
Ds—1p/5-14 = 87 Dpa.
Progf. Obvious.

Proposition 6 allows us to compute the different by loecalizing at a
prime p of A. This has the advantage that A, becomes prinecipal.

We shall now see how the different localizes in the completion, and
how it can be computed purely locally.

Using Proposition 6, we may assume that A is a discrete valuation ring.
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Proposition 7. Let A be a discrete valuation ring, v its valuation, and
B a prime of B lying above the prime p of A. Let wq be the veluation corre-
sponding to B and A,, Byg the respective completions. Then:

DpjaBug = Ds

wg’Av'
Proof. Since the differents are ideals, it suffices to prove that

Ol‘d\y SDE/A = Ordg; QB‘”‘BIA"'
Let Tr denote the trace from E to K and Tr, the local trace from E,, to
K, for any w extending v in E. Then

Tr = >, Try
w2
(as an operator on E).

Let z € Eug and assume that Tryg(zBug) C Ay Select an element £
of E which is very close to z at wg and very close to 0 at all other w|v.
Let y € B. Then Tr,(#y) is close to 0 if w # wg and Tr,(&y) lies in A,
if w = wg, by assumption and the fact that the local trace is continuous.
This implies that Tr(¢y) lies in A and hence that £ lies in the comple-
mentary module B’'.

Conversely, let z be an element in B’ and let y € Byg. Find an element
£ of E which is close to z at wy and close to 0 at the other wjr. Find an
element 7 of B close to y at wg and close to 0 at the other wjv. Then

Tr(tn) = Trug(én) + - Tru(tn).

wawy

The global trace on the left lies in A. Each term in the sum on the right
lies in A,. Hence Tryq(£n) lies in A,. Since ¢ and 7 are close to z, y
respectively, it follows that Tryg(zy) also lies in 4,.

The above arguments show that B’ is dense in Bjg (= local comple-
mentary module with respect to Tr.q) and the proposition follows.

Let © denote the different of B over A. If we think of formal ideals,
then we have the relation

D= II SDg.
g
Each Dg can be interpreted as the P-component of Dp4, as the P-

component of Dp, 4 (if PBlp), or as Dp 4, if w and v are the valuations
corresponding to B and p respectively.
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One usually calls Dpj4 the global different, and Dp 4, the local
different. We may identify ©p /4, with Dg as a formal ideal, and in
this sense, we may say that the global different is the product of the local
differents.

§2. The different and ramification

In this section, we lel A be a Dedekind ring, K ils quotient field, E a finile
separable extension of K, and B the integral closure of A in E. We shall
also assume that for any prime p of A the residue class field A/p is perfect.

Proposition 8. Let B be a prime of B lying above p, and let ¢ be its rami-
fication index. Then P°! divides Dpja. If P is strongly ramified, then
B divides Dpya. If B is unramified, then P does not divide Dpr4. There
is only a finite number of ramified primes. Finally, Dp;a s the greatest
common divisor of all ideals (f'(a)), where a is an integral generator of
E over K, and f the irreducible polynomial for a over K.

Proof. In view of the fact that ramification theory and the theory of
the different localize to the completion, we may prove the first assertions
under the assumption that K is complete.

Since we work over a complete field, we can apply Proposition 3 of §1 :
the Corollary of Proposition 2, §1, and Proposition 23 of Chapter I, §7.
If P is unramified, this yields ©p;4 = (1). Using Proposition 5 of §1
(multiplicativity in towers), we may also assume that P is totally ramified.
In that ease, we can write B = A[II] for some element II of order 1 at B,
and II satisfies an Eisenstein equation

fO) = M+ @u I 4 - - 7= 0,
for a; €p and 7 € A of order 1 at p. Then
f/) = e (mod $°),

and the second assertion of the proposition follows from the definitions.

We now return to the global case. Let « be an integral generator for
E over K, and let f be its irreducible polynomial over K. There is only
a finite number of primes B dividing (f/(a)), and hence by Proposition 7
of Chapter 11, §4, these primes are the only possible primes which may
ramify (we may view « as a generator of the completion E,q over Kv‘n)
Since B D Ala], it follows that D4 divides (f'(a)). There remains to
be proved that it is the greatest common divisor, or more precisely that
given a prime P, there exists an « such that

Ol‘dq; SDB/A = ordg; (f'(a)).
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The proof will be an exercise in techniques revolving around the approxi-
mation theorem.

There would be no difficulty if we could write B = Ala] for some a.
This is true only locally. Hence we shall use the approximation theorem
to reduce our problem to the local case.

Let v = v, and w = wy. Let {¢} range over the distinct isomorphisms
of E into the algebraic closure K, of K. Let o, be one of these, inducing
the absolute value wg on E. If « is a generator of E over K, and f its
irreducible equation over K, then

a1f'(a) = f'(g10) = [] (010 — ca).

Le 200

We shall write o ~ 7 if ¢ and 7 are conjugate over K,, i.e. if there exists
an isomorphism A of K, over K, such that 7 = Ao on E.

According to Proposition 3, §1, there exists an element 8 of B, such
that B,, = A,[8]. We observe that any element of B,, which is sufficiently
close to 8 also generates B, over A,.

Let A range over isomorphisms of K, over K,. There exists an element
a € A, such that

A—al=1

for all A. Such an element exists because the conjugates A have residue
classes which are conjugate over A4,/p,. If these residue classes are 0, we
take ¢ = 1. If they are not 0, we take a = 0.

Let oy, ..., o, be representatives of the equivalence classes of the
embeddings of E into K,. By the approximation theorem, we can find
an element « of E such that

|o1a — B] is very small,
|ose — @l is very small for 7 5% 1.

Without loss of generality, we may assume in addition that « is integral
over A and E = K(a). (If necessary, first multiply « by an element
of A which is = 1 mod p and is highly divisible by a finite number of other
primes to make it integral, and then add ="y, where 7 is any integral
generator, and v is very large. Then a + 77 becomes a generator.)

Since o« 18 very close to 8, it follows that B, = A,[o1a], and hence
the B-contribution to the different is given by

ordg D4, = ordg [[ (512 — oa).
o

We must now show that the other factors do not give any B-contribution.
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Suppose that o is not conjugate to oy over K,. We can write o = Agy,
1 # 1. Then

loya — ga| = |o1e — Agel = N Tlora — aual
= A\ "loye — a+a — ol

But |0y« — a] is very small, and Ao, is very close to A™!8. Since
A78 —a| =1, it follows that A\7'oja —a| =1 also. Hence
|oie: — ga| = 1. This proves our last assertion.

83. The discriminant

Throughout this section, A is a Dedekind ring, K s quotient field, E a
finite separable extension of K of degree n, and B the integral closure of A in E.

Let W = (wy, ..., w,) be any set of n elements of E. We define the
discriminant

DE/K(W) = det(a';w,-)2

to be the square of the determinant taken with a; ranging over the n dis-
tinct embeddings of F in a given algebraic closure of K.

Assume that W and V = (v, ..., v,) are two sets of elements of E,
and that there is a matrix X = (z;;) of elements of K such that W = XV
From this we see that

DEIK(W) = det(X)zDE,K(V).

If the matrix X has entries in A, then det(X)? lies in A. Hence whenever
W and V generate the same module over A, the matrix X is invertible in
A, and its determinant is a unit in A. Thus the two discriminants differ
by the square of & unit in A.

In particular, if A = Z is the ring of ordinary integers, the discriminant
is uniquely determined by the module. If the module is the ring of alge-
braic integers og, then its discriminant will be called simply THE dis-
criminant (or also the discriminant of K), and will be denoted by Dg.

Proposition 9. Notation as above, the discriminant Dg (W) lies in K,
and lies in A if the components of W lie in B. The discriminant is 5 0if
and only if W is a basis of E over K.

Proof. Applying any isomorphism o of E over K to the determinant
det(ow;) interchanges the rows, hence multiplies the determinant by +1.
Taking the square gets rid of +1. If « is a generator of £ over K, i.e.
E = K(«), then the discriminant Dg (1, a,...,a" ) is the Vander-
monde determinant, and hence is # 0. The same holds therefore for
any basis V of E over K by a preceding remark concerning the change of
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the discriminant under linear transformations. If the coordinates of W
are linearly dependent over K, it is clear that the diseriminant is 0. If
they are all integral over A, it is also clear that the diseriminant lies in A
(because the integral closure of A in a Galois extension containing F is
a ring). This proves our proposition.

If M is a free module of rank n over A (contained in E), then we can
define the discriminant of A/ by means of a basis of M over A. It is well
defined up to the square of a unit in A.

Proposition 10. Let M, « M, be two free modules of rank n over A,
contained in K. Then Dgg(M,) divides Dg (M) (as principal ideals).
If Dgjg(M,) = Dgx(My)u for some unit w of A, then M, = M,.

Proof. The first statement is obvious. The second statement asserts
that the matrix going from a basis of M, to a basis of M, is invertible
in A, and hence that 7, = M,.

In general, it is not true that every fractional ideal of B is a free module
over A. For the moment, if b is a fractional ideal of B, we denote by
Dgk(b) the A-module generated by all Dg, k(W) as W ranges over bases
of E over K such that all w; € b, and call this the discriminant of the
fractional ideal. Since there exists an element ¢ # 0 in A such that
ch C B, it follows at once that the discriminant is a fractional ideal of A.

Proposition 11. Let b be a fractional ideal of B and S a multiplicative
subset of A. Then

S—IDE/K(I)) = DE/K(S_lb).
Proof. Trivial from the definitions.

This proposition allows us to localize. If p is a prime of A, we can
compute the p-component of the discriminant by localizing at ». The
great advantage of this is that A, becomes a discrete valuation ring, and
thus that every fractional ideal of B becomes a free A,-module when
localized at p. Furthermore, B, has only a finite number of primes above
b, and is a principal ideal ring. Thus we are reduced to computing Vander-
monde determinants.

Proposition 12. Assume in addition that A is a discrele valualion ring.
Let b be a fractional ideal of B, b = (B) for some B £ 0in E. Then

Deix(b) = (N£(B)) 2D x(B).

Proof. Let W be a basis of B over A. Then W is a basis of b over 4,
and the assertion is obvious from the definitions.
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Using the localizing process, we can extend the above proposition to
the case when A is not necessarily local.

Proposition 13. Let A be arbitrary again, and b a fractional ideal of B.
Then

Dgx(b) = (NE(9))*Dgx(B),
the norm being the norm of ideals as in Chapter I, §7.

Proof. It suffices to verify this relation for each p-component, p a prime
of A. Thus we may assume that A is a discrete valuation ring by Propo-
sition 11. In that case b = (8) for some 8 € E, and our assertion follows
from Proposition 22 of Chapter 1, §7.

Proposition 14. The discriminant and different are related by the formula

NE®pia = Dgix(B).

Proof. Using Proposition 6 of §1 and Proposition 11, we may assume
that A is a diserete valuation ring, and hence that B is a free module over
A. If W is a basis for B over 4, then Dg x(B) is generated by Dg x(W).
Let W’ be the complementary basis to W under the trace. Then the
complementary module B’ is generated by W’ over A. Thus

Dp;x(B") = Dgix(W"A.
But we see directly from the definition of the diseriminant of a basis that
DE/K(W)DE/K(VV' = 1.

Hence Dg/g(B)Dg x(B’) = A. Using Proposition 4 of §1 and Proposi-
tion 13 yields what we want.

Finally, consider a finite separable extension & of degree n over K, and
let B be an element of E, 8 > 0, such that E = K(8). We define the dif-
ferent Vg, x(B8) and the discriminant Dg/x(8) of this element by

Deix(B) = I1 (8 — o8)
owid
DEIK(B) == DE/K(11 ﬁ: LRI ) ﬁn—l)-
Proposition 15. We have
Dgx(B) = (=)™~ D2NED g x(8).

Proof. Exercise in permuting the rows of a determinant.
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Proposition 16. Let « € B and let p be a prime of A. If p does not divide
DE/K(a)/DE/K(B) then B, = Aj[a].

Proof. By Theorem 1 of Chapter I, §2 we know that B, is a free module
over A,. Furthermore

Dgix(Ly @, .. ., a"_l) = DEIK(B)C2

where ¢ is an element of A;. By hypothesis, this element ¢ is a unit in 4,,
and hence our proposition follows from Proposition 10.

Remark 1. In Proposition 16, we formulated a local version. One
obtains immediately a global version in special cases using Proposition 18
of Chapter I, §7, which states that two A-modules are equal if and only if
all their localizations are equal.

Remark 2. Instead of using the discriminant, we could have formulated
our hypothesis in terms of the different. Indeed, the condition

B is relatively prime to (f'(«))/Dr/x
where f is the irreducible polynomisal of a over K s eguivalent with the
condition
p does not divide DE/K(OL)/DE/K(B).

The equivalence 1s seen at once by taking the norm, and using the fact
that the norm of the different is equal to the discriminant.

The following result is sometimes useful to analyse the discriminant
and verify that the hypothesis of Proposition 16 is satisfied.

Stickelberger’s criterion. Let E be an extension of degree n over Q,
and let ay, . . . , a, be algebraic integers in E, linearly independent over Q.
Then

Dgiola, ..., 0,) =0 or 1 mod 4.
Proof. The determinant det(c;c;) has an expansion as a sum of terms
with plus and minus signs in front of them. Let P be the sum of terms with

plus signs, and N the sum of terms with minus signs, so that the discrim-
inant is equal to

(P — N)?= (P+ N)2 — 4PN.

But P 4 N and PN are both invariant under any o, and hence are rational
integers. The assertion follows at once.

Ezample. Let E = Q(a) where a® = 2, say a is the real cube root of 2.
Let f(X) = X® — 2. Then f*(a) = 3a?, and Dgjqla) = —3%2%. Let B
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be the ring of algebraic integers in E. Note that 2 is ramified in E with
ramification index 3, and hence D g;o(B) is divisible by 2, whence by 22,

- by Stickelberger’s criterion. Furthermore 3 must have some ramified
factor in E, for otherwise all the conjugates of £ would be unramified
over 3, so that the splitting field Q(a, /—3) would also be unramified
over 3, which is obviously not the case. The polynomial X3 — 2 is irre-
ducible over the 3-adic field Q3 because already the congruence

X3 =2 (mod 9)

has no solution in the 3-adic integers. Thus there is only one prime in £
lying above (3), and therefore the ramification index must be 3. Thus
we have

3B = P3.

We see that in fact, P is strongly ramified, and by Proposition 8 of §2 we
conclude that B2 divides the different of E/Q. Since NP = 3, it follows
that 3% divides the disecriminant, and we now see that 3322 divides the
discriminant Dg;o. By Proposition 10, we conclude finally that B = Z[a].

Proposition 17. Let K, E be two number fields. Assume that their dis-
criminants are relatively prime and that the fields are linearly disjoint (t.e. if
Wy, ..., W, 18 a basis of K over Q and vy, . . ., vy is a basis of E over Q,
then {wv;} is a basts of KE over Q). Then

OgE = OKOE
and

Dgp = DQD%.

Proof. From the fundamental properties of the different, we know that
QKEIQ 18 equal to

DrexPri1g = DreieDEg.

But Dg,o and Dg g have no factor in common (viewed as ideals of oxx).
The same holds for the other two factors. Hence

Dkee = Drigoxeg  and  Dggr = Dgoke-

Let W be a basis for ox over Z and V a basis for og over Z. Then the
above remark implies that the complementary basis W’ of W, which
generates Dy o, also generates Dxp/p. This is the complementary module
of og g relative to 0. Dualizing again shows that W generates ogz over
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9eg and proves the assertion concerning the rings of integers. We leave
the assertion on the discriminants as an exercise.

Examples of the situation in Proposition 17 arise, for instance, with two
distinet quadratic extensions, with relatively prime discriminants, or with
cyclotomic extensions of relatively prime degrees, as we shall see in the
next chapter. It will in fact be used to determine the ring of algebraic
integers for an arbitrary cyclotomic extension when we know the ring
of integers in cyclotomic extensions of a prime power root of unity. Thus
the next chapter gives us further examples for the use of the discriminant.



CHAPTER IV

Cyclotomic Fields

This chapter achieves two purposes simultaneously. It gives examples
for the theory, and also describes in greater details the cyclotomic fields
which exert a great deal of control over algebraic number theory in general.
The extent to which they exert this control is in fact not yet clearly under-
stood, but one knows for instance that the heart of the proofs of class
field theory is concentrated in the eyclotomic fields.

§1. Roots of unity

Let w be an n-th root of unity, i.e. w®™ = 1. The extension Q(w) is
normal over Q. Indeed, if w is a primitive n-th root of unity (i.e. has
period exactly »), and if o is any isomorphism of Q(w) over Q, then
(0w)" = o(w™) = 1, so that ow is an n-th root of unity alse. Hence
0w = w* for some integer 7 = i(c), uniquely determined mod n. Hence
Q(w) is mapped into itself by o, and hence is normal over Q. If 7is another
isomorphism of Q(w) over Q, then grw = w*?*”. Since ¢, 7 are iso-
morphisms, it follows that (g}, 7(t) are prime to n. Hence the map

e X10))]

is a homomorphism of the Galois group G of Q(w) over Q into the multi-
plicative group of residue classes mod 7, prime to n, and is injective. If
we let ¢ be the Euler g-function, then ¢(n) is the order of this multipli-
cative group. We shall see below that {Q{w): Q] = ¢(n). This will deter-
mine the Galois group of Q(w) aver Q, i.e. prove that the map o — ()
is surjective.

Let K be a number field. Then the Galois group of K(w) over K is a
subgroup of @, and hence is abelian.

Let K be a number field, and let us fix an algebraic closure K of K.
A eyclotomic extension of K is one which is contained in a field K{w),
where w is a root of unity (™ = 1 for some n). Since K(w) is abelian over
K, 2 cyclotomic extension of K is abelian. We say that K is cyclotomic
if it is a cyelotomic extension of Q.

71
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Consider now the case K = Q(w).
Let p be a prime number and w a primitive p-th root of unity. Then
w is & root of the polynomial

X?P—1=(X—1)(XP 1+ +1).
Hence [Q(w): Q] < p — 1. We contend that
Qw:Ql=p—1
In fact, let # = 1— o Then = is integral over Z. If 7 is an integer
prime to p, then " is also a primitive p-th root of unity, and

l—w‘-__
1 —w

14+ w4 4w

is an algebraic integer. But w = (%)’ for some integer ; (such that
7t =1 (mod p)), and hence the above quotient is a unit in the ring og of
algebraic integers of K.

Let p be a prime of 0g lying above (p), and let

FX)=Xr14. .+ 1

Then w' (= 1,...,p — 1) is a root of f{X) (because it is a root of
X? — 1), and hence

Pl )
[(X) = I_I1 X — o).
Therefore B
p—1 X
p=f0)=II -
For any 4, j prime to p we have seen that

1— ot
1 — wi

is a unit in 0g. All elements 1 — w® have the same absolute value at p.
Hence for the absolute value | | = | |; we have

lr?~ = |pl.

This implies that the ramification index of p is at least p — 1. By Propo-
sition 21 of Chapter I, §7 it follows that

e =p— 1=[Qw): Q]
and that p is the only prime of 0x above (p), which is totally ramified.
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Since w also satisfies the equation X? — 1 = 0, we see that any prime
number not equal to p is unramified in Q(w), because the derivative
pw?~! is divisible only by p. (Use Proposition 8 of Chapter ITI, §2.)

We now consider the prime-power case, and let m = p’, r an integer > 0.
Let ¥ = X' and consider

XF —1=Y?—1= (Y — 1)(Y?14...41).
Let

r

=2 =L
X? —1

=¥ l4.. 1.

The degree of f is ¢(p") = (p — 1)p"~’. Let w be a primitive p’-th root
of unity. Let ¢ be integer. Then o' is also a primitive p”-th root of unity
if and only if 7 is prime to p. Thus there are ¢(p”) primitive p™-th roots of
unity. Then

X=MN&E-=I1&— ),
[e (i,p)==1
the product over ¢ being taken over primitive p"-th roots of unity, and the

product over ¢ being taken over distinct residue classes of Z/p"Z prime to p.
Just as we saw for p-th roots of unity, we see that

1 — ot
1 — wi

is 8 unit if 4, j are prime to p. Let 1 = 1 — w. Then from

* jm=p= I (-
1,Pp)=
we conclude that

|7[e?? = |p|

at any absolute value extending the p-adic absolute value on Q, and hence
p is totally ramified. We therefore have:

Theorem 1. Let w be a primitive p™-th root of unity, and K = Q(w).
Then [K : Q] = o(p") = (p — 1)p"" L. There is only one prime p of ox
lying above p, and it 1s totally ramified. All other primes of ox are un-
ramified.

Corollary. Let n be an integer > 1, and assume thal n is not a prime
power. Let w be a primitive n-th root of unity. Then

"I—Il (1—o’)=1.
i=1
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Proof. Let Sg be the set of primitive d-th roots of unity. Let
i@ = I X— 0.
$€8q

Let
=5l xixypxq
Then
g(X) = TI fa(X).
i
Hence
n=g(l) = ‘y fa(1).

d>1

If p is a prime dividing n, then among the divisors of n we get p, p?, . .

(v, 51

D"

(where r is the highest power of p dividing n). We know from (*) that

fpk(1) = p. Hence
II 1) = p".
E=1

Thus from the prime powers dividing n we already get a contribution
of n for g(1). This irplies that for the composite divisors of n, the values
fa(1) (which are algebraic integers, rational, hence ordinary integers) must
be 1 or —1. Assume inductively that for djn and d < 7 the value f4(1) is
equal to 1. Then we see from our product that f,(1) = 1, thus proving

our corollary. (I am indebted to Bass for this proof.)

The last statement in Theorem 1 actually can be strengthened as follows.

Theorem 2. Let m be a positive infeger and w a primitive m-~th root of
unity. Then [Q(w): Q] = o(m). The only ramified primes p in Q(w) are

those dividing m. If

m:p’il...p:'

is the prime power decomposition of m, w; is a primitive p'i-th root of

unity, then

Q(w) = Q(wls sy 0),,) = Q(o’l) e Q(wa)
1s the compositum of the Q(w;).
Proof. Let g(X) = X™ — 1. Then w satisfies g(X) = 0, and

g'(w) = ma™!

is divisible only by primes dividing m. Hence any other prime is unrami-
fied in Q(w). For any 7 > 1, the field Q(w;) is an abelian extension of Q
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whose intersection with Q(w;,...,w;—1) is Q, because p; is totally
ramified in Q(w;) and unramified in the other field. Hence Q(wy, .. ., ;)
has degree o(p"7) over Q(wy, . .., w;—;). This proves our theorem.

If G is the Galois group of Q(w) over Q, then any automorphism ¢ of
Q(w) over Q must map w on some primitive root w’, 7 prime to m. Since
[Q(w): Q] = o(m), it follows that for any such ¢ there exists o € G such
that 0w = w'. Thus G is isomorphic to the multiplicative group of residue
classes of Z/mZ which are prime to m. Observe also that if m, n are two
relative prime integers > 0, and {,, ¢{= denote primitive m-th and n-th
roots of unity respectively, then

Qta) N QEm) = Q.

Theorem 3. Let w be a primitive p™-th root of unily, eand K = Q(w).
Then og = Z[w]. The discriminant is given by

p'_l(pr—r—l)
D= =+p f

where the — sign holds when p” = 4 or p = 3 (mod 4), and the + sign
holds otherwise.

Proof. We shall give the proof only when r = 1. The principle is the
same in general. Thus we deal with the p-th roots of unity. Let B = Z[w].
To prove that B = ox it suffices to prove that the discriminant of B and
ox as modules over Z coincide as Z-ideals by Proposition 10 of Chapter I11,
§3. To do this, it suffices to prove it locally for each prime. All primes
except p are unramified, and consequently such primes do not contribute
either to the diseriminant of og or of B. As for p, it is totally ramified,
and using Proposition 23 of Chapter I, §7, we conclude that 8;'B = S 'ox
if 8, is the complement of the principal ideal (p) in Z. Hence the p-com-
ponent of the discriminants is the same in both cases. This proves that
B = og. The assertion concerning the exact value of the discriminant
comes from taking the diseriminant of the element w itself, and paying
attention to the sign. There is no difficulty in this (use Proposition 15 of
Chapter 111, §3).

To deal with an arbitrary composite integer m, we use a discriminant
criterion.

Theorem 4. Let m be a positive inleger, and w a primilive m-th root of
unity. Then Z[w) is the tnlegral closure of Z in Q(w).

Proof. 1t is clearly the compositum of the rings of integers of various
prime power cyclotomic fields which satisfy the conditions of Proposition
17, Chapter 111, §3.
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§2. Quadratic fields

Extensions of degree 2 over the rationals are also worthy of mention as
examples.

Theorem 5. Let m be a square-free integer # 0, and let K = Q(~/m).
If m =2 or 3 (mod 4), then [1, \/m] is a basis for ox over Z. If m=1

(mod 4), then
[ ]
! 2

s a basis for ox over Z.

Proof. Exercise. To verify that an element z 4 y+/m with z, y € Q is
integral over Z, it is necessary and sufficient that its norm and trace lie
in Z. From this, there is no difficulty in verifying the assertion of the
theorem.

For instance, if m = —3, then

1++v—3
2

is a cube root of unity, and hence is integral over Z.

Before proving the next result, we make some observations on finite
fields.

Let F, be the finite field with ¢ elements, ¢ equal to a power of the
prime number p. Then F¥ has ¢ — 1 elements, and is a cyelic group.
Hence we get the index for p odd

(Fg:F3%) = 2.

If v is an integer ¥ 0 mod p, let

vy _ { 1 if v=2z® (mod p)
T =1 if v#£2? (modp).
This is known as the quadratic symbol, and depends only on the residue
class of » mod p.

From the preceding remark, we see that there are as many quadratic
residues as there are non-residues mod p.

Theorem 6. Let { be a primitive p-th root of unity for p odd, and

s=Z()r
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the sum being taken over non-zero residue classes mod p. Then

o G)r

Eyery quadratic extension of Q 1s contained tn a cyclotonvic exlenston.

Proof. The last statement follows at once from the explicit expression
of 3-p ag a square in Q(¢) and also (1 + 7)Z = 2i. As for the sum, we have

§% = Z (ﬂ"') Q'V-H‘.
P, p

As v ranges over non-zero residue classes, so does vu for any fixed u, and
hence replacing » by vu yields

g2=3 (Vu ) oD Z )g.ncv+n

P p

2 (F)es 5 (e

py—1

But 1+ ¢+ ---+ *~! =0, and the sum on the right over x conse-
quently yields —1. Hence

82 = (pl)(p—1)+(1)2 )

SEH-z0)
as desired. B (:1;—1) ’

We see that Q(+/7) is contained in Q(¢, v/—1), or Q(¢), depending on
the sign of the quadratic symbol with —1. It is in fact a theorem that
every abelian extension of Q is cyclotomic, and we shall prove this in the
class field theory later.

‘We now apply Theorem 6 to prove the quadratic reciprocity law. We
observe that if p is an odd prime, then

(—p-) — )T and (%) =»7  (mod p).

This is obvious from the definitions, and the fact that (Z/pZ)* is cyclic.
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Let p, g be odd primes. On the one hand, we get

—1 p—1¢—1 g—1

87 = 3(82)2 =8(-1)2% Zp?Z

p—1g—1
=8(—1) % ® (2) (mod g).
On the other hand, we get

Hence

Multiplying by S and canceling +p yields the reciprocity law

§-@er™

{1v, §2]

A similar argument (but simpler) using the sum (1 + ¢)? yields the result

§-

We shall now reconsider these results from another point of view, closer
to that of class field theory, and having to do with the decomposition laws

for primes.

Quadratic Reciprocity Law. Lel p, q be prime numbers.

Case 1. If p, q are odd and p = 1 (mod 4), then (2) = (g) .
q

D

Case 2. If p, ¢ are = 3 (mod 4), then (S) = — (%) .
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2
Case 3. If ¢ = 2 and p is odd, then (;) =1if p= =1 (mod 8) and
(g) = —14f p = %3 (mod 8).

Proof. First deal with Case 1, and consider the field Q(¢) where ¢ is a
primitive p-th root of unity. Then

Q©):Q=p—1

and Q(¢) is cyclic over Q. Hence Q({) contains a unique quadratic sub-
field. Since p is the only ramified prime, this subfield must be obtained by
v/—p or v/p, and hence must be Q(~+/p) since the discriminant is p in the
latter case, and —4p in the former.

In the field Q(+/p), the prime ¢ splits as follows:

(¢) = q¢’ with q = ¢ < (g) =1,

(g) = q remains prime < (g) = —1.

This is obvious from the definitions.

Let 0|g in Q(¢). We let f be defined by NQ = ¢/, so Q) )
that f is the order of the decomposition group of Q. We
let r be the number of distinet primes of Q({) dividing g.
Then

fr=p—1 QWp) [ @
We shall prove that 2|r is equivalent with (g) = 1 and

with (%) = 1. This will take care of Case 1. Q

Assume that 2[r. If Z is the fixed field of Gg, i.e. the decomposition field
of g, then [Z: Q] = r, so that Z contains the unique quadratic subfield

Q(+/p). Hence ¢ splits completely in this subfield, and <Z_;) = 1.
Conversely, if (g) = 1, then ¢ splits completely in Q(+/p), which is

therefore contained in Z, and hence 2|r.
Next, let ¢ be the Frobenius automorphism such that ot = {?. Then
¢’ =1 (mod p) and f is the least positive such exponent. If 2|r, then
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fl(p — 1)/2, and hence

qL;_l =1 (mOd p).

It follows that (g) = 1. Conversely, if (%) = 1, then we get the same
V4

congruence, so that f{(p — 1)/2 and finally 2|r, thus proving Case 1.
As for Case 2, the proof is just like that of Case 1, except that now, 2|r

is equivalent with (Z—’) = —1.
In Case 3, we take ¢ = 2. Leti = +/—1so (1 + %)% = 2i, and

(1 + i)2(p—1)l2 — 2(1:—1)/21:(1)-—1)[2 — (1 + i)p—l_

We get
(1+9)P=1+4+14= (%) i{P~2(1 4 4)  (mod p).
But
_ ] 20 ifp=1 (mod4)
1470 =
(L+37)(1 +1) [2 ifp=—1 (mod4).
Hence

p=1(mod4) implies 2i= (%) i{P~1/29  (mod p),

p=—1 (mod 4) implies 2= (;?) P~ V129;  (mod p).

From this Case 3 follows at once.

Note that the three cases ean be summarized by the usual formula.
The symbol
@)
q

can be extended to more general integers.
Let P be a non-zero integer, written as
P = +p1...pr
where py, . . ., pr are primes. Let

Q=—"ql...q,
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be an odd positive integer written as a product of primes. We assume that
(P, Q) = 1. We define

@11 = (-

We call this the quadratic symbol. It is then clear from the definition
that the following properties hold.

QR 1. If P, = P, (mod Q) then

-

QR 2. The symbol is bi-multiplicative, i.e.,

(e)-@) (@) = (G@)-@&)

QR 3. We have (—Zz—l) — (-

Proof. By definition, and the definition of the symbol for primes,

g;—1 (g;—1)
() 07 =25,

i=1

But

Q= wam+o—2m—n+1mm®

Pl

because ¢; — 1 is even, and the product of any two or more such terms
is = 0 mod 4. Thus our assertion follows.

QR 4. If P, Q are odd and both > 0 then

-

Jlk—l g;—1

PY(Q =11 & % (— 1)" i =(-—1)£2:10~2_J.
() &) -G -

Proof. We have
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§3. Gauss sums

Sums involving roots of unity appear in many contexts. We have just
seen one example in §2. Other examples arise in the functional equation
of zeta functions and L-series. We study them here a little for their own
sake. We shall use constantly the fact that if G is a finite abelian group
and X is a character of G (i.e. 2 homomorphism of G into the group of roots
of unity) then

0 if x 5 1
GEE:G"(“) = {(G:l) if X = 1.

This is trivially seen, because if X # 1, then there exists b € G such that
x(d) # 1. Then

2 x(@) = 2, x(ba) = x(b) X x(a),
a€G c€G 4€G
whenee Y"x(a) = 0.

We shall consider Gauss sums relative to Z/qZ where ¢ is an integer > 1,

and also relative to a finite field with ¢ elements. We begin with the
former case.

Gauss sums for Z/qZ.

The elements of Z/qZ represented by integers relatively prime to g form
a multiplicative group denoted by (Z/¢Z)*. By a2 multiplicative char-
acter of Z/qZ (or a character mod ¢) one means a character of this multi-
plicative group. Such characters are denoted by x. If d|g, then we have a
natural homomorphism

(Z/q2)* — (Z/dZ)*

which is surjective. A multiplicative character for Z/dZ composed with
this homomorphism induces a character mod q¢. We say that a character
mod g is primitive if it cannot be induced by a character mod d for any
divisor d of g, d # ¢q. A character X is extended to a function on Z/qZ by
letting

x(n) = 0if (n,q) > 1.

Let ¢ be a primitive g-th root of unity. We define the Gauss sum for
a primitive character x mod ¢ and an integer n to be

n) = 2, @)

zmad ¢
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This Gauss sum of course depends on ¢. We can always select

g_ — e21‘r€/q

as a canonical choice, but we are interested here in algebraic manipula-
tions rather than analytic values, so any fized ¢ will do. Observe that
7(X, n) is actually the Fourier transform of X evaluated at »n (actually
selecting ¢ to be e~27%e!),

If (n, 9) = 1, then we write

X(n) = x(n)~t = x(n™")
where n™! is the inverse of » mod ¢.

For any primitive character X mod ¢ we have the formula

M 7(x, n) = X(n)7(x, 1).

Proof. Assume first that (n,q) = 1. Then
x(m)r(x, 1) = 32 X(m)x(2)¢”
= Z x(m—‘:l.)g_: = Z x(y)f'"y == 'r(xi n))

because as z ranges over the residue class mod g, so does nz when = is
relatively prime to g. This proves our formula, in case (n, q) = 1.

Assume now that (n, q) > 1. It will suffice to prove that

2 | r(x,n) = 0.

Write ¢ = rd and » = md with positive integers r, d, m such that d > 1
and (r, m) = 1. Then

(X, n) = D, X(=)¢7*

zmod g
where {, = Cg is a primitive r-th root of unity. Since r properly divides ¢
and y is primitive, there exists ¢y e (Z/gZ)* such that ¢, = 1 mod r and
x(cp) #1. Let ¢; = ¢;' = 1 mod r. Then

me,x =mz mod 7.
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Then
e)t(xm) = Y xle@)T = Y ylz)(ro®
xel/qZ xeZ/qZ
= Y (=)
zeZ/qz
= 1(x, n).

Hence t(x, n) = 0, thus proving our assertion (2).
Finally, we obtain the absolute value of the Gauss sum.

For primitive character X mod q and (n, q) = 1, we have

3) Ir(x,n)| = Vgq.

Proof. We have:

[7(x, n)|? = r(x, n)7(x, n) = 2 2 x(@)x(y) "=

Take the sum over all residue class n mod g.

If x # y (mod @) then ., " ¥ = Q.

nmod ¢

If 2=y (mod g) then ), **~¥ =g,

nmodg

Since x(z) = 0 if (z, ¢) > 1, we get

2, Il = 3 x@)l=ge(q).

nmod g

But from (1), we know that
lr(x, n)|? = [x(n)|¥r(x, 1)|%
Summing over n and using the fact that x(n) = 0 if (n, ¢) > 1 we get
¢(@)lT(x, )|* = ge(g).

This proves our formula |7(x, n)| = V4.
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We shall now investigate quadratic sums. For the rest of our discussion,
we use the following convention.

Let a, b be non-zero integers, b > 0, and (a, b) = 1.

Let

271 ;2
Gla,b)= D, e? = .

zmod b

We shall determine the value of this Gauss (quadratic) sum. We first
give some algebraic reduction steps.

QS 1. If p is an odd prime, then

Gla,p) = (7) 60, p).

Proof. If a = ¢ (mod p) for some ¢, then we replace z by cz, which also
runs over the residue classes mod p, and we see that G(a, p) = G(1, p) in
this case. If a # ¢? (mod p), then we use the fact that

2ri 273
> e722=1+22e7r

zmad p

where r denotes the non-zero quadratic residues mod p, and »n denotes the
non-zero non-residues mod p. The map x — z2 covers the residues pre-
cisely twice (since (Z/pZ)* is cyclic), and we also have
y 271 2r1
> eP ——0——1_1,_231: —;—Ze"
ymod p

From this our assertion is clear.

QS 2. Let p be an odd prime, and r an integer = 2. Then

Gla, p") = pGla, p"32).

Proof. Write

z=y+p "2, ymodp ! zmodp.

Then z% = »2 + 2" 1yz + p?— 22,

2w

G(a,p)—ZZ”

ﬂll2 2" 2ayz
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Sum separately for y=0 (p) and y £ 0 (p). If y # 0 (p), then the map
z — 2ayz permutes the residue class mod p, and hence the sum over z in
this case is 0. If y = 0 (p), we write

Yy = py,

-
and we can take the sum for 4 mod p"~2. Each term 6P 2oVe g 1, and
the inner sum over z yields p. Thus we obtain precisely

pGla, "3,
as desired.

QS 3. Letb,c = 1, (b,c) = 1, and (e, bc) = 1. Then

G(a, bc) = G(ab, ¢)G(ac, b).

Proof. Write z mod be as

z = yb + zc, 9 mod ¢, z mod b.

Then
2wi g2 2wi 2
Gab, ¢)Glac,b) = Sec “Veb °F
¥.z
-3 ezb—’;' el e’
.2z
— G(a, bc)
because
2yzbe — 22

be
is an integer.

QS 4. Ifbisodd = 1 then

Gla, b) = (%) G(1, b).

Proof. Induction. If b is an odd prime, this is QS 1. Assume b > 3.
If b= p" and r = 2, then

Gla,p) _ Gla,p™%)
G, p) ~ G, p2)

Our assertion then follows at once, in the case of prime power. In the
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composite case, suppose b, ¢ > 1, (g, bc) =1, b, ¢ odd, (b,c) =1. Then
G(a, bc) = G(ab, c)G(ac, b)

_ (a_b) (%E) G(1,0)G(1,b)  (by induction)

c

_ (ﬁ) (IE)) (%) 61, G, b)

- (b%) G(b, ©)G(c, b) = (b%) G(1, be),

and we are done.

There remains to handle the case when b = 2". We shall compute
analytically the value G(1, b) for arbitrary b below, and we shall find:

(1 4+)vh if b= 0 (mod 4)

6 B) — Vb if b=1 (mod 4)
’ if b= 2 (mod 4)
Vb if b =3 (mod 4).

Remember thatb = 1, and that +/b is the ordinary positive square root of b.
In view of these values, we define

1  ifb=1 (mod 4)

«(b) = [i if b =3 (mod 4).

We shall use the given values to get G(a, 27) as follows.
QS 5. Let a be odd. Then .

—9or
a

G(e,2") = ( ) e(a)G(1,27).

Proof. The map
gaif > ¢*

on 2™-th roots of unity induces an automorphism of the field generated
over Q by 2™-th roots of unity for all m, and we have

G(a, 27 = 0,G(1, 27) = aa(1 + D)a.(272),



88 CYCLOTOMIC FIELDS [Iv, §3}

assuming that r = 2 (the case r = 1 being trivial). Obviously,

141 ifa=1 (mod 4)

U
ol +9) =1+7 [l—i if @ =3 (mod 4),

Since 1 — 7 = —%(1 + ), we find that

ool + 1) = (—"a—l) e(a)(1 +9).
Next observe that

where ¢ = ¢ 8. Hence

aa\/—_l—}—z [ V2 i e= =1 (mod 8)
—V2 if a=43 (mod 8).
Thus

0o/ = (%) Vi (e

If r is even, then 272 is rational, and if 7 is odd, then 272 is a rational
number times /2. Therefore

5o (2712) = (a) 9ri2 _ (2;') ori2.

This proves QS 5 and concludes our formalism of the Gauss sums.

There remains to compute G(1, b) for arbitrary b = 1. The ecomputa-
tion is analytie, and is due to Dirichlet. It uses the fact that if ¢ is a
funetion which is smooth except for ordinary discontinuities, then its
Fourier series converges pointwise to the midpoint of the discontinuity.
In particular, if ¢ is a function which is continuously differentiable on the
interval [0, 1], then

¢(0) + e(l) Z e

where ¢, is the m-th Fourier coefficient,

emlp) = fo ' e(z)e™ > dz,

and the sum is taken over all integers m.
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We shall use the function

flz) = e2™i=18, 0z <1,
and its translates, alsoin the interval 0 £ z < 1, namely
Jel@) = flz + k), k=01,...,b—1.

Then by definition,
b—1

k==0

whence if ¢ = fo + f1 + - -+ fo—1, we need only compute the sum of
the Fourier coefficients for ¢ to get the value of G(1, b). By definition, and
the convergence of the Fourier series, we find

—1 .
G, b) =3 Z_; / fulz)e 2™ 4

/b 2riz Ib —21rrm:d

2'I'i

b - {z —bmx]
-/
h e comPIEbe th'e Squa’I e!

- B _b_mz__bzmz
z bmx—(:z: 5 1’

and find that our last expression is

. 2 (z——‘)
— Z e—wtbm /2/ b dz.
m o

If m is even, then e=*®™"2 — 1. If m is odd, then e~ ™*™/2 = =% We
split the sum over even m and odd m. A trivial computation putting
m = 2r or m = 2r } 1 shows that the sums of the integrals over m even
and m odd are equal to the same value, namely
) 2ri 112
I, = f e’ " dy,

so that

G1,b) = (1 4 D)1,

This integral converges at both ends, for if 0 < A < B, then changing
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variables, t = y2, dt = 2ydy, and integrating by parts shows that

B
: 1
e2rty2/b dy = 0 (____
fA YT\
Thus the tail ends of the integral are arbitrarily small. Finally, let

dy
u == and du = —= .
Vb Vb
Changing variables shows that
2xi

f_: e’ v dy = \/I;f_: 2 gy — Vi I,

where I is the universal integral constant on the right. The integral I is
simply I;, whose value is obtained from the relation

1=G6G1,1)=(1-+i I
Thus we find

—b
61,5 = 5 Vo,

as desired.

Character sums over finite fields

For the rest of this section, we let F be a finite field with g elements, and
qg=1p'. Welet F, be Z/pZ. We denote elements of F by z, and elements of
the multiplicative group F* of F by a. We let w = e2™?, We let
Tr = Trpr, be the ubsolule trace from F to F,. Let §§ be the vector space
of complex valued functions on F.

If A:F — C* is a non-trivial character, then \ induces a self duality of
F, by means of the pairing

(z, ¥) — Azy).

Indeed, if A; is the map such that A (y) = A(zy), then £ — ). is an injective
homomorphism of F into its dual group, whenee an isomorphism because
these two groups have the same order. We shall always use the fized A
such that

A(x) — wTr(z)
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If f € §, we define the (essentially Fourier) transform 7 by
Tf(y) = 2 f(@)Mzw).
zEF
Thus T is again a function on F (identified with its character group by A),
and T: § — § is a linear map.
Theorem 7. We have T = qf 7, i.e. T?f(2) = qf(—2).
Proof. We have
T%(2) = 2 2 f(z)Myz)\(zp)
¥y =z
= 2 f(z — 2) 2- NMyz)
z ¥
= qf (_2):

as desired.

Theorem 7 is the analogue of the Fourier inversion formula. We see in
particular that 7' is an automorphism of §.
We define the convolution f * g between functions by the usual formula

(F*)) = ;f(x)y(y — 2).
A change of variables shows that
f*g=g*f.
Theorem 8. For complez functions f, g on F, we have
T(f*g) = (Tf)(Tg)
T(fg) = 3 Tf*To.
Proof. For the first formula, we have

T(f*g)(2) = 2 (f+9)@)Azy) = 2. 3 f(z)g(y — z)N(zy).

We change the order of summation, lety — z = t, y = z 4 £, and find
2 f(@)\(zz) Z‘: g(t)N(zt),

which is precisely (T')(T'g) (), thus proving the first formula. The second
formula follows from the first because T is an isomorphism on , so that
we can write f = T'f;, g = Tg, for some functions f1, g;. We then combine
the first formula with Theorem 7 to get the second.

We let X denote a character of the multiplicative group F*, and define
x(0) = 0.
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Ezample. If p is odd, we could take the character X, defined by

Xz(a) = (%) ’

i.e. the quadratic residue symbol. This character is trivial on F*2,

We are concerned with the Gauss sums which generalize the sum S
considered in §2, and which are defined by

7(X) = ;‘ x(a)A(a) = 2 x(z)A(z).

z

This ean also be written as
7(X) = X(—1)(x*A)(0) = (Tx)(1),

using our convention that x(0) = 0. The Gauss sum has the following
properties.

GS 1. For any character X # 1, we have Tx = T(x)x"L.
Proof. We have
Tx(y) = ZIZ X(z)M(yx).
If y=0, then Tx(y) = 0. If y # 0, we make a change of variables,
z = ty~!, and we find precisely the desired value 7()x(y™1).
GS 2. T(X)T(x™ ) = x (~1)q for x#1.

Proof. Note that T2 = T(r()x™!} = 70)7(x"")x. But we also
know that T?x = ¢gx~. This proves GS 2.

GS 3. [r(0)| = Vq for x#1.
Proof. For the complex eonjugate, we have
) = 2 xTHe\(—a) = x7(—1) X x"Ha)A(a)
) = x(—l)-r(x_al).
Hence 7(X)7(X) = ¢, and our property follows.

GS 4. Let
Y(X1, X2) = X1 *Xo(1) = D X1 (z)X2(1 — ).
If x1xg # 1, then

T(X1)T(X2) = ${Xy, X2)7(X1X3).
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Proof. We compute from the definitions:
T(x)7(%a) = 2 X @)XWz + )
=2 Z X1(2)Xe(y — M)
= )E i‘, X1(@)xz(a — 2)Ma) + 2 X1 (z)Xa(—7).

z a0 z
Sinee x;X5 # 1, the last sum on the right is equal to 0. In the other sum,
we interchange the order of summation, replace = by ez, and find

2 XaXz(@)A(a) - 2 X1 (2)X2(1 — 1),

which proves GS 4.

GS 5. For any positive integer r, we have T(X®) = 7(X).

Proof. This is obvious because raising to the p-th power is an auto-
morphism of F, and therefore Tr(z?) = Tr(z).

We shall now consider the prime factorization of 7(x). To begin with,
we observe that t(x) is an algebraic integer in Q(w,c) where € '=1,
Furthermore, since t(x)t(x"')= t g, it follows that the only primes dividing
() are those which divide p.

We let K be the extension of Q obtained by adjoining the p-th roots of
unity and the (¢ — 1)-th roots of unity, so that K contains roots of unity
as representatives of the elements of the finite field F with g elements.
We fix a homomorphism

oo — Fy
of og into the algebraic closure of F',,, and write mod p for this homomor-
phism. This homomorphism induces an isomorphism between the group
of (g — 1)-th roots of unity in K and the multiplicative group F*, because

the polynomial X?~! — 1 has no multiple root mod p. If W,_; is the
cyclic group of (g — 1)-th roots of unity, then

(p:Wq_1—>F*

is this isomorphism. We can define a generator X, for the character group
of F* by letting X, be the character such that
eXo(a) = a™ L.

Then X, has order ¢ — 1, and any character X is a power of X,.
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Theorem 9. Let X be a character of F* and let X = X,,, with
15v<qg— 1.
Write v in the p-adic expansion
v=vo+vipt-eFvpp !
with0 2 v; £p—L,andnotallv;=0o0rp — 1. Let
s(v) = Ii) v; and Y@ = If]:) @) (mod p).

Then Y(») # 0 (mod p) and

ol 2] - T wetn
In particular, for any absolute value | |, extending the p-adic absolute value
on the rationals, we get
Ir()p = lw — 13"

Proof. We use induction on v. Take first » = 1 s0X = X,,. We have

(X)) = 2 Xp(a)™ .

Write :
Wl = (1 + 0w — )T = 1 + Tr(@)(w — 1) + &w — 1)*

with some algebraic integer ¢ depending on a. We interpret Tr(a) to be
any representative in og for the element in F. Then

T(Xy)
w—1

= 2 X (&)[Tr(a) + Ew — 1)],

and hence

¥ (;(ip)l) =2, a "Tre) = 2 a a+a®+ -+ a"!_l)
=30+ b d® Y
because @ +—» g? !
v=1

is a multiplicative character. This settles the case



1V, §3] GAUSS SUMS 95

Assume next that 1 < v < ¢ — 1 and that the statement is true for
xp with 1 < u < v. We distinguish two cases.

Case 1. plv. Then v = pu and X, = (x£)?, so that by GS 5 we have

] 7(Xp) = T(x}).
But obviously

s(u) = s(¥) and Y(@) = v(u).
This case is taken eare of.

Case 2. ptv. Then vy # 0. We shall use GS 4. We have

‘P(‘P(st x;_l)) =¢ ( Z X,,(a.)x:,_l(l - ‘1))

a+0,1

= T et -a,

a+0,1

and after inserting ¢ — 1 as an exponent of (1 — a), using the fact that
(1 — @) = 1, we find that this is

q—y
== T vi(177)e
as0 j=0
=(g— D(—(@g—»
(because @ — a’~! is a multiplicative character)
= —y = —yy (mod p).

" Note that in the present case,

s =sp—1+1 and YY) = vo-Y(v — 1).

¢ («o—r—(_ﬂi))ﬁ) — ((w s (f")ﬁffjfb(xw x;—‘))

Hence

—1
= (= 1)')'(u—l) Vo
-1
BRETON

thus proving our theorem.

For an application in the next section, we obtain another expression for
8(v). As usual, [z] is the largest integer < x, and {z} = = — [z].
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Lemma. If v is a positive integer, v = vo+vip + -+ 4+ vr_1p’ !

withQ S v; £ p — 1, then

s(v)—v~(p—1)2[q_1]

j=0

Proof. The expression on the right is equal to

p—l)Z(q_l [q—p—v—l]>= "”,Z%{ }

We note that this expression depends only on the residue class of
v (mod ¢ — 1). We consider therefore » such that 0 < v < ¢ — 1. For
i=0,...,f — 1, we have

_lw v
Vi = 1 D p—H—_—l- 1
and [v/p/] = 0. Taking the sum yields

i=0

It will now suffice to prove that

[_Vz’] _ [L]
q g—1
Suppose otherwise. Then for some integer n we have

i J

?._p_<n§_yp—,
q g—1
whence
L P S LA
V<p1—q—1 v+q_1<v+l,

a contradiction which proves our lemma.

§4. Relations in ideal classes

Throughout this section we let k = Q({) where ¢ is a primitive m~th root
of unily. We let p be a prime number, pim, and we let p be a prime in k
such that plp. We let w be a primitive p-th rool of unity. If u is a posilive
integer prime to m, we let o, be the automorphism of k such that

g8 ="
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We know that p is totally ramified in B, Q¢, w)
Q(w), and hence p is totally ramified in
Q{f, w) = k(w). Thus there exists a 9, Q) =k
unique prime P in k(w) such that Py,
and we have Q(w)

p=PL Q

Theorem 10. Let f be the order of p mod m, and ¢ = p’. Let X be a
character of F = F, such that

x(a) = ¢~ V'"™ (mod p).

Then for any integer r = 1 we have the factorization

T(xr) ~ $a(r)’

where a(r) is the element of the group ring given by

olr) = %Z . ((_q:mﬂﬂ_f> ot

B

and the sum 1is taken over all p mod m, prime lo m.

Proof. This is essentially a reformulation of Theorem 9. Let K = Q(¢, w)
and let ¢ be 2 homomorphism of og into Fj, corresponding to B, i.e. inducing
an injection

[ 4 / $ — Fp.
Then we may assume that X" = X,(:_”’/ ™. We know from §1 that w — 1

is a prime element in Q(w), and remains unramified in K. Hence by
Theorem 9,

ordg 7(X") = s ((q_—f;tl_k) .
We also have
o, 7(X7) = 7(x™),
so that
_ o o (q - 1)7.”'
ord, ' 7(X') = ordg g, 7(X’) = s )

As p ranges over (Z/mZ)*, each conjugate of P appears f times. This
"proves Theorem 10.
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Theorem 11. Let k = Q({n) where { is a primitive m-th root of unity.
Let p be a prime number, me, and let plp in k. For positive integers a, b such
that ab{a +b)%# 0 mod m, let

-3 (-

Then y%s» is principal, end in fact
Pﬂ"-" ~ \l’(xay xb);
where X s the character described in Theorem 10.

Proof. We just transform the expression of Theorem 10 and use GS 4.
We have

o0, xb) = T
’ 1(xa+b)
and hence
\b(xa1 xb) ~ $B(a'b)!
where

B(a, b) =

%-Z (s ((q — l)au) +s ((q — l)bu> g ((q — 1)75:14- b)u)) oot
12 -1 Z Z [(a + b)p’ #] [apju] _ [bpju]> o,
m m

using the lemma at the end of §3. The decomposition group G, of pin &
is {1,0p,052,...}. Hence we can replace o, by ¢5i,, and since u ranges
over (Z/mZ)*, so does p’u. Consequently we find

B(a,b) = (p — 1)bap.

Since p = B?~!, we see that Theorem 11 is proved.

The special case of Theorems 10 and 11 when m is prime is already in
Hilbert’s Zahlbericht and is due to Stickelberger. The general case is due
to MacKenzie (“Class group relations in cyclotomic fields”, Am. J.
Math., 74,1952, pp. 757-763). Here, I have followed an exposition given
by Tate in a seminar around 1951. The significance of Theorem 11 is
that it gives a relation in the ideal class group of Q((), since every ideal
class contains infinitely many primes (a fact which will be proved later
in this book).



CHAPTER V

Parallelotopes

This chapter gives quantitative results concerning the distribution of
elements of a number field in parallelotopes.

If we impose certain bounds on the absolute values of elements a in a
number field k, then we can ask for the number of field elements satisfying
such conditions. It turns out that this number is asymptotic to the volume
of the region (in a suitable space) determined by the inequalities.

Next, we shall reproduce the classical theory of Minkowski concerning
the units and diseriminant of the number field, and obtain the Minkowski
constant.

§1. The product formula

Let Mg be the canonieal set of absolute values on the rational numbers
Q. Then for any element & € Q, a # 0, we have

H afy = 1.

vEMQ
Indeed, if « is a prime number [, then

1 if pisa prime number # [
i/p if p=1L

The ordinary absolute value will be called (by abuse of language) a prime
at infinity. Since |l|, = [, the product formula is satisfied for prime
numbers. It follows for any element of Q* by multiplicativity.

Let k be a finite extension of Q and M} the set of absolute values of &
extending those of Mq. Then by Corollary 2 of Theorem 2, Chapter II,
§1, we obtain for « € k*:

1= TI INé@ls= II TI lafs"

I, =

wEMQ 2EMQ vivg
N
= II lelv>= II el
2EM; vEM

99
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Thus the product formula is also satisfied, with multiplicities
Ny = [ky :QVO]'

If k is a number field, we denote by S. the set of archimedean -absolute
values in M;. Welet r, and r, be the number of real and complex absolute
values respectively. Then

71+ 2rs = [k:Q]

and we denote this degree by N. We also let r = r; + 75 — 1. The local
degree N, is 1 if v is real, and 2 if v is complex.

We shall now prove the classical theorems concerning the finiteness of
class number and the unit theorem.

To begin with the class number, we shall prove that there exists a con-
stant C depending only on k, such that for any ideal a (always assumed # 0),
there exisis an ideal b in the linear equivalence class of o such that Nb = C.

This implies that the number of ideal classes is finite, because there is
only a finite number of ideals with bounded norms. (In fact, there is only
a finite number of prime numbers bounded by a given constant, and for
each prime number p, there is only a finite number of prime ideals p of oz
lying above p.) This number is called the class number of k.

Let wy, ..., wy be a basis of o over Z, and let S be the set of elements
of o of type

a1w; + - ¢ -+ aywn

with integers a; such that
0<a; £ Na) +1.

Then there are more than Na elements in 8, and thus there are two distinet
elements «, 8 in S such that @« — 8 = ¢ will map into 0 in the homo-
morphism

0 — an/pordpn_
(Cf. Proposition 24 of Chapter I, §7.) It follows that there exists an ideal
b such that () = ab. On the other hand, we estimate the norm

|NI(‘;(C)| = H le1w] + -+ + + envwn,

where 0 £ |c;| £ (Na)¥ + 1. We see that there is a constant C (depend-
ing on the maximum of the archimedean absolute values of the w; and
on N) such that

IN&(®)] < C- Na
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Using Proposition 22 of Chapter I, §7 we get N6 < C and b~ a™! by
definition. This proves our assertion.

Next, we shall prove the unit theorem, as in Artin-Whaples. We first
discuss some general notions.

We define an M-divisor ¢ to be a real valued function of absolute
values » in M}, such that:

(1) e(v) > 0 for all v in M.
(2) ¢(¥) = 1 for all but a finite number of v in M,.

(3) If v is a discrete valuation, then there exists an element « in k such
that c() = [afs.

We shall sometimes write ||, or ¢, instead of ¢(v), and when we have
the multiplicities N,, we write

flells = e(0)¥>.
We define the k-size or simply size of our M-divisor to be

llele = IT c)™~.

We denote by L(c) the set of elements z &€ k such that for each v € M;
we have .
lzls = ).

Each element @ € k* determines an M~divisor whose value at v is simply
|al,. The product of two M,-divisors is an M-divisor, and if ¢ is an
M-divisor, then ac is the M-divisor such that

(@)(v) = lalsc(o).
In view of the product formula, we have
fleclle = Ilcllz-

In other words, the size of ¢ is the same as the size of ac.
If « € k*, then L(ac) and L(c) are in canonical bijection under the
mapping
z — oz, z € L(c).

We denote the number of elements of L(c) by A{c). Then
AMac) = A(0).

If we think of ¢ as prescribing the sides of a box, all but a finite number of
which are 1, then A(c) may be interpreted as the number of field elements
in the box. The size of ¢ may be interpreted as the volume of the box. We
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shall now prove that the number of elements in the box is approximately
equal to the volume. In the next section, we shall obtain a stronger
asymptotic result, by different methods.

Theorem 0. Let k be a number field. There exist two numbers ¢1, ¢z > 0
depending only on k, such that for any M -divisor ¢, we have

eilfelle < M) < sup [1, callcfla]-

Proof. Suppose that there is at least one complex absolute value vy in
M. We identify k,, with the complex plane, and consider the square
centered at the origin, with sides of length 2¢(vy). Let m be an integer
such that

m < MOYE 2 m+ 1.

Without loss of generality, we may assume that m < 0, and so m = 1.
Cut up each side of the square into m equal parts, thus giving rise to m?
small squares inside the big one. QOur set L(c) is embedded inside the big
square at k,,. Since it contains more than m? elements, there exist two
distinct elements z, y € L(c) lying in the same small square. Hence we
can estimate their difference by

2‘\/§ C(Uo) .

— <
lx ylvo = m

If v is any other archimedean absolute value of M3, then

lz — ylo £ 2c(v), -

and if v is non-archimedean, then

lz — ylp £ c@).
Taking the product, we obtain

eallclle
1= z —ylyr s 2F
‘ngl yl” m2

with a suitable constant c;. Since (m 4+ 1)2 £ 4m?, the inequality on the
right in Theorem 0 follows immediately.

If there is no complex absolute value in My, then we proceed in a similar
manner, using a real one vy, and cut up the interval centered at the origin
of length 2¢(vo) into m equal parts, giving rise to m small intervals, with

m < N¢) Em -+ L

The arguments then proceed in the same way.
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Let us prove the other inequality. Let w;, ..., wy be a basis for oy
over Z. Put

co = N sup, ; |wils,

the sup being taken over the archimedean absolute values » in M, and
over . This is a number depending only on k.

Let ¢ be our given M;-divisor. By the approximation theorem, there
exists an element o € k* such that

co < oty £ 2¢0

for each archimedean absolute value » in M,. We now select an element
ea€Z, a # 0, such that act has absolute value < 1 at all non-archi-
medean v € Mg, just by taking a highly divisible at a lot of prime numbers.
In view of the fact that Mc) and {|¢[|x do not change if we multiply ¢ by an
element of k*, we may therefore assume, without loss of generality, that
our M -divisor satisfies the inequalities

colal, = [cly £ 2colals

for some element e € Z, @ > 0, and all v € S..
We must exhibit elements of L(c). For this purpose, consider the set L
of elements of o; consisting of those which can be expressed in the form

aiwy + -+ + anwy

with a; € Z, and 0 £ a; £ a. Then our set L contains more than a?¥
elements.

Each non-archimedean v in M} corresponds to a prime p of ok, and using
the third condition in the definition of an M -divisor, we have in an obvious
manner the notion of ord, ¢. Let n, = ord, ¢. The additive group

ox/TIp™

has H(Np)"n elements. We lock at the image of L under the canonical
homomorphism of p; into this additive group. There will be a subset L’
of L with at least

aN

II(Np)™»

elements, all of which have the same image. Take one fixed element
z € L, and let y range over L. Then for each non-archimedean absolute
value v in M}, we have

]:C - y!v s C(f)),



104 PARALLELOTOPES v, §11

because ord, (z — y) = ord,¢. If v is archimedean, then by an obvious
estimate, we have

[z — ylo £ colals = c(v).

Thus our element z — y lies in L(c¢). We have therefore proved that

NTT L.
A 2 o' I [,
We observe finally that
o = I lafS* > e IT Iei3™,

Vivg vlog

the product being taken over the archimedean absolute values, and ¢,
being an obvious constant, while

1
N = fleil o,

if v is the non-archimedean absolute value belonging to p. Taking the full
product over all absolute values proves our inequality on the left in
Theorem 0.

Let k be a number field, and S a finite subset of M; containing the
archimedean absolute values. Let s be the number of elements of S. We
define the set of S-units kg to be the set of elements « in k* such that

lals = 1

forve 8. If § = S,, the S-units are also called the units of k. Strictly
speaking, they are the units (invertible elements) of the ring of algebraic
integers og.

We map kg into Euclidean s-space as follows. Let vy, ..., v, be the
absolute values of S. Map

Tk (log ”x"l: DRI 1°g "xuﬂ):
and call this map
log: ks — R

By the product formula, the image of kg is contained in the hyperplane
defined by the equation

B+ =0,

so that this image is at most (s — 1)-dimensional.

Unit Theorem. The image log(ks) is an (s — 1)-dimensional lattice
in R°.
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By saying that it is a lattice, we mean that it is & discrete subgroup of
R, and by saying that it is (s — 1)-dimensional, we mean that the vector
space generated by it is the entire hyperplane mentioned above. Thus
in particular, it follows that log(ks) is a free abelian group on s — 1
generators. The kernel of our log mapping is clearly the set of roots of
unity in k because the kernel is a group, and its elements have bounded
absolute values, hence form a finite group.

Corollery. Let k be a number field and S a finite subset of M\, containing -
the archimedean absolute values. Then ks modulo the group of rools of
unity in k is a free abelian group on s — 1 generalors (s = number of
elements of 8).

Observe, however, that the statement of the unit theorem is stronger
than the statement of the corollary. The unit theorem is actually equiva-
lent with a compactness statement, which we shall give in Chapter VII, §3.

We shall now prove the unit theorem.

Let us begin by observing that in any bounded region of R* there
exists only a finite number of elements of log(kg). Indeed, if log(z) lies
in such a region, then the absolute values of z and its conjugates must
be bounded, and hence x can satisfy only a finite number of monie
polynomials of degree < [k:Q] over Q, because the coefficients of such
polynomials are elementary symmetric functions of z and its conjugates.
By a well-known property of Euclidean space, whose proof we shall recall
at the end, it follows that log(kg) is a discrete, finitely generated subgroup
of R°. We must prove that it has dimension s — 1.

For this purpose, we shall first prove that given an index 7, there exists
a veector (&y,..., &) in log(ks) such that ¢ > 0 and &; < O for j # <.
We shall then prove that any s — 1 such vectors are linearly independent
over R.

We need the following lemma.

Lemma. Given vq € My there exists a number c(vg) > O such that for
any M-divisor c there exists 8 € k* such that

1 = ||Bells £ e(vo)
Jor all v # vg in M.

Proof. Let ¢; be the number of Theorem 0. Let ¢g = 1 if vg is archi-
medean, and let ¢g = Npg if pg is the prime of vy. Let ¢’ be an M-divisor
which differs from ¢ only at vq, and such that

/ey £ Ik < eo/er

If vg is archimedean, we can adjust the vg-component as we please, in a
continuous fashion. If »q is discrete, the value group ranges over powers
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of Npy, and so we can also find the ¢ subject to our condition. We set
c(vg) = co/ci.
By Theorem 0, A(t") > 1, and hence there exists an element a 7 0 in
L{c"), that is,
lafl < Il

for all v € M. We put 8 = 1/a. Then the inequality on the left in the
lemma is satisfied. For the inequality on the right, we have

3 ___“ﬁc’”k o [
"ﬁc "‘u - II ”Bc:”w S Ilﬁc ”k = ”C “k

WekD

for all v € M. The product is taken over all w € My, w ¢ v. Since ¢
is like ¢ except at vq, we have also proved the inequality on the right.

We return to the main proof. If v & S, then the value group of v is
infinite eyclic, generated by Np, and there is only a finite number of primes
such that if vyeS corresponds to the index 4, then

Np = c(v).

Consequently, by the lemma, there is a finite set of absolute values 8’ O'S
having the following property. If ¢ is an M-divisor, then there exists
B € k* such that

1 = ||gcll,, allv g §'.

Consider only such ¢ that ¢(v) = 1 for all v and ¢(v) = 1 for all v & S.
For such ¢ there exists 8 with

1= ||Bcll. = 18lla vg S
1 é ”Bc"v é C(Uo), v Ug.

Let B be the set of all such 8. Map B into RS~ by

g— {”6“17} veES’' —8-

The image of B is finite. Let 81, ..., B» be representatives in B for the
elements of this image. Let

b= Min |8l
e8'—S

j=1,....m

Then b > 0, and for all 8 € B there exists an S-unit ug € ks and some j
such that

B = ugb;.
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For all ¢ as above, we can therefore find u € kg satisfying

lucl, < C(Z°), all v 5 v,.

We select ¢ such that c¢(v) is very large for all v € S. Then |jul, is very
small for all v # vy, v € S. By the product formula, it follows that [|ull,,
is very large. The log of » has the desired property. This achieves the
first of our objectives.

As to the second, we have found elements z;, ..., z,_; € ks such that

10g z) f (EIIJ ey Ela)

log ;1 ; (Es—l.ly ey Eu—l.a)y

and such that the matrix of signs of the £;; is as follows:

Let Y,,..., Y, be the column vectors. We must show that the first
s — 1 are linearly independent over R. Suppose that

Y1+ 4 aaYa= 0,

not all the coefficients being 0. Say a; > 0 and a; = g; for any 5. Then
looking at the sum just in the first row, we get

0=a1& +agéiz+ -+ aq_11..1
2 a1f tarfa -t a8 .
= {11+ b2+ + E1,5—1)

because £;; is negative for j = 2,...,8 — 1. By the product formula,
we must have

i+ b2t b1 > 0,

contradiction. .

For the convenience of the reader, we repeat the proof that a discrete
subgroup of Euclidean space is a free abelian group. We do this by in-
duction on the dimension of the subgroup, i.e. the maximal number of
linearly independent elements over R.

Let T be our subgroup and ¢,,..., £, a maximal set of independent
vectors in I'. Let I'y be the subgroup of I' contained in the subspace
spanned by £, ..., én—;. By induction, we may assume that any vector
of Ty is a linear integral combination of £, ..., tm_1.
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Consider the subset T of all ¢ in T of the form
t=a 5+ + Onim
with real coefficients ¢, satisfying

0=a; <1, i=1...,m—1
0<am = 1.

IA

It is a bounded set. Let £, be a vector of T' with the smallest a,, # 0, say
bm = bif1 + - - -+ bk
Starting with any vector £ of T, we can select integral coefficients
€1y -+ 1 Cm in such a way that
' =F—cmbm — 11— — Cmrdm—1

lies in 7', and the coefficient of &, is <b,, and = 0. This coefficient must
therefore be 0, and &’ lies in I'y. From this our result is clear.

Remark. Tt is sometimes useful to consider subgroups of finite index in
the unit group. They may arise in the following way. Let M be an additive
subgroup of the algebraic integers o, of finite index. An equivalent condi-
tion is that M has rank [k :Q]. Let » be a unit in 0. The map

T ux

is an additive automorphism of o, which maps M on an additive subgroup
uM. We have isomorphisms of factor groups,

o/M = o/uM,
and hence the same index,
(0: M) = (o:uM).
1f m = (0:M), then every element of o/M has period m, and hence
0 D M D mo.

Since o/mo is finite, we conclude that there is only a finite number of sub-
groups of o lying between o and mo. The unit group U is represented in
the finite group of permutations of such subgroups of 0. We conclude
that the subgroup Ujs consisting of all units « € U such that udl = M
is a subgroup of finite index in U.
Let
r=mrmT + Ty — 1.
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If @ € k, we let «'” be the j-th conjugateof e forj =1,...,r, + 5. Let

{uh e :ur}

be a set of generators for the ordinary unit group U, modulo roots of
unity. The absolute value of the determinant

Nilogiul®] --- Njplog|ul|

N log [u{’] --- N,log|u{"|

is independent of the choice of our generators u;, . .., u. and is called the
regulator B; = R of the field k. Since the log vectors of the units are
linearly independent, it follows that the regulator is not 0. We note that
this regulator, like all determinants, can be interpreted as a volume of a
parallelotope in r-space. The regulator occasionally oceurs in the form

1 log jull| , log [ul)]
£2NR =1 P
1 log [u{tY) log |ué"t1)

To see this, we multiply the z-th row of the determinant on the right by
N;, and add the sum of the first r rows to the last row. Then we get N
in the lower left-hand corner, 0 in the rest of the last row, and our assertion
is obvious.
The reason for the regulator appearing in the second form is as follows.
Let
G=Rtx.--xXR*

be the direct product of r; + ro copies of the multiplicative group of
positive reals. Map each unit u into G by

e ([, ., [T,
This is 2 homomorphism of U into G, whose kernel consists of the roots of
unity. Let V be the image of U in G. Then V is contained in G°, the sub-

group consisting of all elements

Y= Yty---s Yrs1)

such that
r41 N
y=Ilvi=1
i=1
Let uy, ..., %, be a set of independent generators for U modulo roots of

unity, and let 7y, ..., 5, be their respective images in G. Then we have
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an isomorphism

g:RTXR =G
given by
glt,2) = /M ait - T,

and the Jacobian matrix of this mapping is

1
N log 711 -+ log an
Jacy (t,2) =[ : : :
1 1
¥ gm0 10g 7

Hence the Jacobian determinant is

(l)l (I)I

1 11 log |u log Iu

Ag(t, 2) = Vi

1 log lu""’”{ -+ log |u"+”|

from which we see the determinant as indicated above.
Observe that our map g gives us a natural parametrization of G° in
terms of a Euclidean space R”.

§2. Lattice points in parallelotopes
In this section, we shall give a refinement of Theorem 0.

Theorem 1. Let k be a number field, (k: Q] = N. Let By be the constant

2"(27r)"

Be=Tp, i

Then, for ¢ ranging over M-divisors, the number A(c) of elements of L(c)
18 given by
A©) = Billells + O(lelli™™), el — oo.

In other words, there exist constanis by, by > 0 depending only on k such
that for ||c||e > bs we have

IN©) — Billellel = sa(llcld—™).

Proof. We shall first make some remarks concerning M;-divisors.
Given an M-divisor ¢, there exists a fractional ideal a of o, such that
a € ¢ if and only if

laly = c(op)
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for all primes p of o. This follows at once from the definitions. Thus
L(c) consists of those elements of a which satisfy certain inequalities at
the archimedean absolute values. We call a the fractional ideal associated
with ¢.

Given 8 € k*, we have A(8c) = A(c). Hence to compute A(c), we may
change ¢ by an element of k*.

We know that the group of ideal classes of o, is a finite group. Let
ay, . . ., 0 be ideal representatives of the elements of this group. Multi-
plying ¢ by a suitable element of £*, we may assume that the fractional
ideal a associated with ¢ is equal to one of the q;.

Let ¢ be an M-divisor, and a its associated fractional ideal. Then

1 N
oy = < € °
el = 5 IT ¢

where we write ¢, instead of ¢(¥) to simplify the notation.

Lemma 1. Assume that the assoctated fractional ideal a is equal to one of
the fized representalives a;. There exists a unil u of or such that we have,
Jor all v € 8,

() elli’™ = Jucls = ca(®)llell’™,

where cy(k), c2(k) are two constants > 0, depending only on k.
Proof. Let V = ||c||x and let ¢; = ¢,(VNa) ¥ for all v € So- Then

I e¥e=1.

vESw

Consider now the log vector

log(¢) = (..., log [lci]la) - - )oe8e-

Since the log vectors of units form a lattice of maximal rank in the hyper-
plane of vectors such that the sum of the components is 0, it follows that
there exists a unit % such that

[log(c)) — log(u™")] < ca(k)

for some constant ecz(k). The absolute value is the ordinary norm of a
vector in Euclidean space. From this we conclude that log(ut’) is a vector
of bounded length, i.e. that there exist constants ¢4,¢5 > 0 such that

¢ = Iuci'lv =Ses

for all v € S.. We get the assertion of the lemma by substituting the
definition of ¢.
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We let
A(0) = [] ko

vESw

We can identify this product with RY, because we have a product of ry
copies of the real numbers, and r; copies of the complex numbers. If v
is complex, we fix an isomorphism of k, with C. (We have a choice of two
such isomorphisms.)

Each nonzero ideal of o, is a lattice of rank N in this Euclidean space,
if we view o, as embedded in the natural way on the diagonal. The
inequalities imposed by our M -divisor at absolute values e S, can be
viewed as determining a region in this Euclidean space, and our problem
has therefore been reduced to the following.

Given a lattice L of rank N in Euclidean N-space, show that under
certain circumstances, the number of lattice points in a parallelotope is
approximately equal to the volume of the parallelotope. This is precisely
what we shall do.

Let £y, .. ., &y belinearly independent vectors in R¥. The abelian group
generated by them is a lattice. By definition, a fundamental domain
for the lattice is any (measurable) set such that every vector of RY is
congruent to exactly one vector in the set modulo the lattice. For funda-
mental domain, we shall always select the set F of points

b+ ik

with0 £ ¢; < 1.
If ¢ is an M-divisor, we denote by P, the set of vectors z in

11 k. = RY
vESe

such that
lzls £ ¢ forallv € S,

and call P the parallelotope determined by c (at infinity).

Let n(c) be the number of translations F. of F which are contained in
P forsomez e L. .

Let m(c) be the number of translations F. of F which intersect P, for
some z € L.

Let I(c) be the number of lattice points in the parallelotope P.. Then
clearly

n(c) Vol(F) £ Vol(P) = m(c) Vol(F)

where Vol means volume in Euclidean space.
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The only lattice point in F, is z itself. Thus
n(c) < Uc) = m(o).

We shall now prove a theorem concerning any lattice in RY.

Theorem 2. Let ¢ range over M-divisors such that for all v € S, we have

cg Vol(PYY < ¢, < ¢ Vol(P)U¥,

with constants cg, c; > 0. Let L be a fixed lattice in RY. Then, whenever
Vol(P:) > ¢’, we have

_ Vol(P)
1) = Yoi(r)

+ ¢’ Vol(Pe) ' ~11¥,

with constants ¢’, ¢’ depending only on cg, ¢z, and L.

Proof. It suffices to prove that m{c) — n(c) is bounded by a term of
order of magnitude B*~Y¥ if we set B = Vol(P,).

If a translation F, of our fundamental domain by an element z in L is
not contained in P, but intersects P,, then it intersects the boundary
of P, (Namely, the line segment between a point in F, N P, and a point
in F; but not in P, is contained in the convex set F. and crosses the
boundary of P..) We can write

Pc= H Dvy

vESx
where D, is the closed interval or the closed disc of radius ¢,, according
as v is real or complex. Then the boundary of D, consists of two points
or a circle, and

oP.= U [aD.,.,x II D,,]-

79€E S PR

The dimension of the boundary is therefore N — 1. It will now suffice
to give an upper bound of the desired kind for the number of translations
F_. which intersect each

8Dy, X I D»

V29

because there are at most N such terms in the union. This will be done
by parametrizing the boundary by a map having suitable partial deriva-
tives. We recall that if ¢ is a differentiable map with derivative ¢’, then
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for any two vectors y, z we have

le@) — ¢@)| = l¢'l ly — 2l

where | | is Euclidean norm, and |¢’| is the maximum of the norm of the
derivative of ¢ on the segment between y and z. (This is the mean value
theorem.)

We parametrize P, by a map

(p:IN——)Pc

sending the N-cube with sides of length equal to 1 onto P, as follows.
If v is real, we map

t—2(t—4%), 0=ts1

and if v is complex, we use polar coordinates, and map

1

0
, 8) — (¢, 278),
(%, 8) — (cu, ™ L

Il/\ lIA
IIA I|A

Each partial derivative of ¢ is then bounded by ¢, times a constant
(2 or 27), and hence there is a constant ¢g (= 27wN¢;) such that
l¢'l < csBY¥.

The boundary of P, is then parametrized by the (N — 1)-cube I¥—L
If we cut each side of I¥ ™! into [BY"] segments of equal length, we get
a decomposition of I¥ ! into

[BllN]N—l

small cubes, of diameter < (N — 1)Y2/[BY¥]. The image of such a
small cube under ¢ has dlameter

_y/2
L W-1)

SCaR

CSBI/N

IIA

The number of translations F. {z € L) which meet a region of diameter
= cg is bounded by a constant ¢;¢ depending only on cg and the diameter
of F. Thus the image of a small cube under ¢ meets at most ¢;¢ translates
F. of F by lattice points. Since we have [B'Y ~1/¥] small cubes, we see
that (¥ ~1) meets at most c;o[BY ~V¥] translates of F. The boundary
of P, cousists of at most N pieces, each of which can be parametrized as
indicated. This proves our theorem.
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The next lemma determines the volume of the fundamental domain of
an ideal a of o; viewed as a lattice in Euclidean space

RY = ] k.

7€8Sm

Lermma 2. Let a be an 1deal of the ring of inlegers of k, and let F be a
fundamental domain of a, as lattice in RY. Then

Vol(F) = 27| Dijo(@)[*'? = 27"*Nav/[D4].
Proof. The ideal g has s basis oy, ..., ay over Z.

Let oy, . ..,0,, be the real embeddings of k. Let 7y4,...,7,, and their
conjugates be the complex ones. Each o in & maps on the vector

(10 ..., 0,0, T10, . . ., Tryat).

Let us write

Tie = z; + VvV —1lyj
where (z,, y;) are real coordinates in the complex numbers C. Thus
Tiay = Zjy + V—1 ¥Yjn, v=1,...,N.

The discriminant of a as a module over Z is the square of the determinant

['BT23] ... 010N IT],
Tty ... Twv + iy lrz
Iy —tu ... TN — YN |T2

Adding the last set of r5 rows to the middle rows, and then subtracting
again, we see that this determinant, up to a sign, is equal to

gy ... 010N
ory i1 ... TN
Yin --- UIN

and the determinant obtained here is the determinant of a set of basis
vectors for a as a lattice in RY having all their components in the direction
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of the canonical unit vectors of RY. Thus we obtain

V/|Dijola)] = 27 Vol(F)
as desired.

We can finally show how Theorem 2 implies Theorem 1. We had seen
that we could assume our M;-divisor such that the condition of Theorem 2
was satisfied, and also such that its associated ideal a is one of a finite
number of representatives of the ideal classes.

For any M -divisor ¢, we find

Vol(P) = Hx @2, JI (xd) =277 ] -

vrea! 7 complex vESm
Vol(F) = 27 "2Nav/| Dy

whence
Vol(P) _ 2(2m)" Il
Vol(F) — [Dgfuz M

thereby proving Theorem 1.

§3. 4 volume computation

We begin with some remarks on convex bodies in Euclidean space RY.
We let u be the ordinary measure in RV,
A subset C of RY is said to be convex if, whenever z, y are points of C,
then
iz + (1 — By, 0st=1

also lies in C (in other words, the line segment between z and y lies in C).
We say that C is symmetric (with respect to the origin) if z € C implies
—zeC.

Theorem 3. Let L be a lattice of dimension N in RY, and let C be a
closed, convex, symmetric subset of RY. If

w(C) Z 2Vu(F),
where F is a fundamenial domain for L, then there exists a lattice point = 0
in C.

Proof. We shall first prove the theorem under the assumption
r(C) > 2Vu(F).

Under this assumption, we contend that there exist two distinct
elements in }C whose difference is in L. Indeed, if not we have

iIc=U 3CnF,)  (disjoint)

zeL
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and

r(3C) = %n(%c' NF;)
= 3, u((3C)—= N F).
z€EL

But u#(3C) = 1/2¥ - u(C). Hence the sets (3C)_, N F cannot be disjoint
(otherwise the assumption on the measure of F would be contradicted).
This means that there exist two vectors y;, y2 € C such that

Wi+o=4%ya+ 2z

with suitable z,, z2 in L, and z; ¢ x,. This proves our contention.

This gives £(y; — y2) € L. But y; €C implies —y; €C, and so
1(y1 — y2) lies in C by convexity, as desired.

Suppose that u(C) = 2Vu(F). For every € > 0,

p((1 + €C) > u(C) 2 2%u(F),

and hence there is a lattice point in (1 - €)C. Letting € tend to 0 shows
that one of these lattice points must be in C.
Our next task is to compute a volume.

Lemma 3. Let
RY = ]I .,

2E S

where k, ranges over the reals taken r, limes, the complex ry times, and
N = ry + 2r,. For each number a > 0, let A be the convex region deter-
mined by the inequality

> Nz, < a

vESw

and denote its volume by V., ,,(a). Then

172
Viirl®) = 2747"5(2m)"™ o ¥,
Proof. To begin with, it is clear that

V‘rl ,rz(a') = aNVrl,rz(l)i

because
1’EZS:WN,,Izul =z + -+ + 2
+ lery 1] + 22l + o fer gl 4 B
The complex variables 2,41, ..., zr;4r, Will now be replaced by polar

coordinates.
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We wish to find V., (1). Use polar coordinates (u;8;) with
0 < 6; £ 2rand 0 £ %, to describe z;. We have

Vf‘rz(l)
= fu’l"‘l PR url+r= du)_ [ durl durl+1 . durl+r2 d9r1+1 “ s d0r1+rz,
the integral being taken over the region
‘ull + . + lurl‘ + 2u1'1+1 + “e + 2url+r2 é 1.

Restricting the region of integration so that u; = 0 for all ¢ multiplies the
integral by 2.

We make the change of variables 2u;=w;, 2du;=dw; for
ri+1 =7 £ r; + rg. The integral becomes

2M4 ™2 (2m) W, 4(1),
where

Wft-fz(b) = j’ufl+1 Tt Uy trg duy--- du71+fzv

the integral taken over the region u; = 0 for all 4, and

u1+'..+ufl+rz é b-
But
Wrra(d) = BV W, 1,(1).

We can split off the integral over du; between 0 and 1, and write the
integral

1
Woprol) = fo W1, (1 — w1) duy
1
== 'N' er—l.rz(l);

performing a trivial integration on u; and using the homogeneity. By
induction, we get rid of the first set of variables and get

1
er,rz(l) = N(N —1)---(N—r + 1 WD.Tg(l)'

In a similar way, we get

1 o
Wo.rg(1) = fo t(1 — 1) 4, Wo..,—1(1),
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which, after performing the integration and using induction, is

1

Wo,0(1) = @l

(2 2) !

This yields
1
Wepr(1) = N

whence the desired value for V;, ., drops out.

§4. Minkowski’s constant

Let & be of degree N over Q and let a be an ideal of the integers oy,
viewed as a lattice in RY. We select the number a in Lemma 3 such that
the region of that lemma has volume at least equal to 2V times the volume
of a fundamental domain for a. We denote by 4, the absolute value of
the discriminant Di¢. Then the value of a such that

= NW"2r "Nadi/?

will achieve our purpose, in view of Lemma 2, §2. By Theorem 3 there
exists a lattice point in the region of Lemma 3. This means that there
exists an element a € a, a ¥ 0 such that

jo1a] + -+ + lowel S a.

The geometric mean being bounded by the arithmetic mean, we get

W@ < Joel b+ lowal
= N
whence

N
IN§(e)] < 1%1; xN4"1r"‘Nad”2.

We have a factorization of ideals,
() = ab,
where b is an ideal. Hence
|N&(a)| = NaNb.
Canceling Na, we have:

Theorem 4. In any ideal class, there exists an ideal b such that

bSdellz
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where C, 1s the Minkowsk: constant:

N! [ 4\
o B
Corollary. The absolute value of the discriminant di is > 1. There ts

at least one prime ramified in k.

Proof. We have Nb = 1 whence

2 v N ar2v
az (B N S () N
=\2) @WnE=\1) )2
If N = 2, then we obtain at once d > § > 1. Our assertion will be
proved if we show that the sequence of numbers

E N N2N

4; (N2
is monotone increasing. Taking the ratio of two successive numbers, a
trivial computation proves what we want.

I copied the following table of values for the Minkowski constant in
a course of Artin around 1950.

4\ N!

N T rq (;) W

0 1 0.63661
2

2 0 0.5

1 1 0.28299
3

3 0 0.22222

0 2 0.15198
4

2 1 0.11937

4 0 0.09375

1 2 0.06225
5

3 1 0.04889

5 0 0.0384
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For large N, we see that dy = (1/N)(we?/4)V.
We conclude by an example of which Artin was very fond. Consider
the equation f(X) = X5 — X + 1. The discriminant A of a root of

X34 aX + bis 5%* + 285, In this special case,
A = 2869 = 19 - 151.

Each prime factor occurs to the first power.

Let a be a root of f(X) and k = Q(a). Then « is integral over Z. Since
f(X) is irreducible mod 5, it is irreducible over Z (or Q) and k is of degree 5
over Q. The discriminant of Z[«] as a module over Z has no square factors.
Hence it must be equal to D(ox), because it differs from D(o,) by a square.
Hence Z[a] = ox by Proposition 10 of Chapter 111, §3.

It is not difficult to show that the Galois group of the polynomial is the
full symmetric group. Hence the splitting field K has degree 120 over Q.

By the Minkowski theorem, every ideal class has an ideal b such that
Nb < 4 (using the value for the Minkowski constant in the table and
trivial estimates). Since Nb is an integer, it is either 1, 2, or 3. If Nb = 1,
the only possibility is that b is a prime ideal p with Ny = 2 or 3. This
would mean that the residue class field ox/p has degree 1 over Z/pZ and
hence that f has a root mod 2 or mod 3. This is impossible (direct compu-
tation), and hence the only possibility is that N6 = 1. But then b = (1)
and (oh miracle!) every ideal is principal. The ring of integers is a prin-
cipal ideal ring.

As Artin noticed, it can be shown that the splitting field K is unramified
over the extension Q(vA) = Q(v19 - 151).

Artin’s example also gives an example of an unramified extension whose
Galois group is the icosahedral group. As he once pointed out, given any
Galois extension K of a number field k, with group G, there exist infinitely
many finite extensions E of k such that K N £ = k and KE is unramified
over E. To obtain such E, it suffices to construct an extension which
ahsorbs locally all the ramification of K (this puts a finite number of
conditions on E, which can be realized by the approximation theorem},
and one must insure that E N K = k. To do this, one can for instance
use the existence of primes and density theorems proved in a later chapter.
We leave it as an exercise.

As a final application of the Minkowski theorem, we shall prove:

Theorem 5. If k is a number field, denote by N and di the degree [k : Q]
and absolule value of the discriminant respectively. Then the quotient
Ni/log di. is bounded for all k # Q. Furthermore, there exists only a finite
number of fields k having a given value of the discriminant.

Proof. The first assertion follows from a trivial computation involving
the inequality of the Corollary to Theorem 4, and the standard estimate
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from Stirling’s formula
N! = NN ~N 2“_N89I12N , 0<f<l.

We leave it to the reader. This shows that the degree is bounded when

the discriminant is bounded. Hence to prove the second assertion, we

must show that there is only a finite number of number fields & having

given degree N and given absolute value of the disecriminant d.
Consider Euclidean N-space

RY = ] k..
vESw

Suppose that there is at least one complex absolute value vg. Consider
the domain defined by the inequalities

lzvo - Evn‘ é Cld”2
20 + 2ol < %
‘zvl < %1 v # Yo,

where C, is a large constant, depending on N. Here we denote by z, an
element of k. identified with C or R as the case may be.

Then our domain is convex and symmetric with respect to the origin.
Consequently it must contain an element o« # Q in ox. Since the norm
of « has absolute value = 1 (being a non-zero rational integer), it follows
from the first inequality that the absolute value of the imaginary part of
is greater than 1. Hence the two conjugates of a corresponding to v are
distinet. Furthermore, « is distinet from any other conjugate, since
already its absolute value at vg is distinct from its absolute value at
v £ vg. Hence o is a generator for k over Q. Its equation over Z has
coefficients which are elementary symmetric functions of « and its con-
jugates, and are therefore bounded as a function of d and N. Hence such
a can satisfy only a finite number of equations over Z, thereby proving
our theorem if there is a complex vg. If all absolute values are real, the
proof is even easier, since we can replace the first pair of conditions
simply by |z,,| < C;d"? and argue in the same way.

Corollary (Hermite’s Theorem). Let S be a finite set of primes. There is

only a finite number of fields k of bounded degree over Q, and unramified
outside S.

Proof. For each prime p € S there is only a finite number of extensions
of Q, of bounded degree, and for such extensions, the diseriminants are
bounded. This immediately implies a bound for the global discriminants,
and we can apply the previous result to conclude the proof.



CHAPTER VI
The Ideal Function

§1. Generalized ideal classes

Let & be a number field, and let I denote the multiplicative group of
non-zero fractional ideals. Let P be the subset of principal ideals. If
a, b are fractional ideals (which we say from now on, instead of non-zero
ideals, unless otherwise specified), then we write a ~ b (a is equivalent to b)
if there exists « € k* such that a = ()b, i.e. ab~! is a principal fractional
ideal. Then the equivalence classes of fractional ideals form a finite group
(as we saw in Chapter V, §1), which we call the ideal class group. Its
order is usually denoted by %, and is called the class number of k.

We shall now refine the notion of ideal class group. By a eyele (of -k)
we shall mean a formal product

c= JI ™,
2EM

where v ranges over the normalized absolute values of k (inducing the
ordinary absolute value or a p-adic absolute value on Q), with exponents
m(v) which are integers = 0, and such that m(v) = 0 for all but a finite
number of v. Thus we are interested in assigning a multiplicity = 0 to
each absolute value. Actually, we shall not care about the complex o,
and if » is real, then we only care whether m(v) = 0 or m(v) > 0. Thus
for our purposes, we could take m(y) = 0 or 1 in case v is real, and leave
out the complex » altogether.

From a notational point of view, the literature extends the notation ¢
to apply to the archimedean absolute values in M, and also to say that
such v are “primes”, or “primes at infinity”.

We shall avoid this, and reserve p to denote (non-zero) prime ideals
of 0. If v = v, for some prime p, we do however also write m(p) instead of
m(v). We write p|c or v|c if m(p) [or m(v)] is > 0, and we also say in that
case that v (or p) divides ¢. We call m(v) the multiplicity of vin ¢. Welet

0= pm(ﬂ) or €= vm(u)

denote the local v-component of ¢, if p corresponds to v.
123
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We denote by ¢g the product

o = II pm.(b)
PFV0
taken over all prime ideals p, and call it the finite part of c.

We let I(c), or I(k, ), or Ir(c), denote the set of fractional ideals rela-
tively prime to ¢g (or as we shall also say, prime to ¢). Thus I(c) is the set
of fractional ideals not divisible by any prime ideal § having a multipli-
city > Oinc.

Next, we introduce a subgroup of k* as follows. If @ € k*, we define

a=1 (mod*c)

to mean that « satisfies the following two conditions:

(i) If p is a prime ideal with multiplicity m(p) > 0, then a lies in the
local ring o, and

a=1 (mod my®),
where m, is the maximal ideal of o,. Symbolically, we also write
this congruence in the form

a=1 (mod c,).

(i) If v is a real absolute value in M) having multiplicity m(») > 0
in ¢, and g, is the corresponding embedding of k in R, then

aa > 0.

It is clear that those elements of k* satisfying (i) and (ii) form a group,
and we denote this group by k.. We observe that elements of k. are neces-
sarily p-units if p is a prime dividing ¢. [As a matter of notation, we write
X(c) to denote the subset of X consisting of those elements prime to ¢,
and X to denote the subset of X consisting of those elements satisfying
the congruence relations (i) and (ii).]

We denote by P, the subgroup of P consisting of those prinecipal frac-
tional ideals («) with @ € k.. Then it is clear that P, is a subgroup of I(c).
The factor group I(c)/P, will be called.the group of c-ideal classes. We
shall see in a moment that it is finite, and has the ordinary group of ideal
classes as factor group. If ¢ = 1, we agree to the convention that I(1) = I
is the group of fractional ideals, and P, = P.

First, we observe that every ideal class in I/P has a representative in
I(c), i.e. has a representative ideal prime to ¢. To see this, let o be an
(integral) ideal in a given class mod P. If ord, ¢ = 7(p) for a prime ideal
plc, we solve the congruences

a=m® (modp' ™+
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for plc, using the Chinese remainder theorem. We use the notation , for
an element of order 1 at y. Then a{a™') is prime to ¢. Again using the
Chinese remainder theorem, we can multiply a(e™!) by a suitable alge-
braic integer in k, prime to ¢, to make it an ideal (i.e. not fractional). Thus
the inclusions

I¢) —»1I

I l

PnlI{)—P

induce an isomorphism of factor groups
1) I(0)/P(c) = I/P,

where P(c) denotes the group of principal fractional ideals prime to ¢,
s0 that
P(c) = P n I(c).

We note that P(c) contains P,, and we have the tower of subgroups
I(c) D> P(c) D P..
We therefore have a surjective homomorphism
I(c)/P. — I(c)/P(c) = I/P.

Its kernel is P(c)/P,, which we shall now analyze.

We have the surjective homomorphism k* — P, which to each a € k*
associates the principal fractional ideal (). Its kernel is the group of units
U. Similarly, if k(c) denotes the subgroup of k* consisting of those ele-
ments whose ideal is prime to ¢, then we have a surjective homomorphism

k(c) — P(c)
given by
a— ().

The inverse image of P, is precisely the subgroup Uk, where U denotes
the group of units of %, thus giving rise to the diagram

k(c) — P(c)
| |
Uk, — P,
and the isomorphism
(2) k(¢)/Uk. = P(c)/Pe

Let RT denote the multiplicative group of real numbers > 0. If vis a
real absolute value, then k; = R™, and k¥*/k;} = {1, —1}. For p|c; let
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m(p) be its multiplicity. We consider the map

3) k(o) = TT (op/my®)* x IlI ky/kd
Plto v:e:.l

which to each a €k(c) associates its residue class in the corresponding
factor. If pis a prime ideal, then (o,/my®)* is the group of units (invertible
elements) in the residue class ring o,/mp®. Using the approximation
theorem, one sees at once that our map is surjective, and from the defini-
tions, it follows directly that its kernel is precisely %,. Thus we have a good
deseription of the factor group k(c)/k. as a direct product of local factors
shown in (3).
As in the rational case, we define the Euler ¢-function. We let

¢3(co) = order of the group (o,/my™)*
and

e(co) = IlI ep(co)-
plco
It is clear that

ep(te) = (Np — 1)Np™®—1,

We already see that I(c)/P. is finite, and the order of k(c)/k. is given in
terms of the Euler function.
Finally, we have the tower

k(C) S Uk Dk,
and we look at the factor group
@ Uk/k. = U/(U 0 k) = U/U,

where U, consists of those units = 1 (mod* ¢). Ir the above manner we
have unscrewed the group of c-ideal classes into various constituents,
which in particular allow us to write down a formula for its order. For
clarity, we write down the diagram of what we have done.

HOENI
| |
k() = Pt) » P
| l
U—- Uk — P,

l I
Uc— ke

Two opposite vertical bars represent isomorphisms of factor groups. For
each horizontal arrow, the group on the left is the inverse image of the
group on the right under the corresponding homomorphism.



[VI, §1] GENERALIZED IDEAL CLASSES 127

Theorem 1. The group of c-ideal classes I(c)/P, is finite. If h is the
class number of k, and h, is the order of I(c)/P,, and s(c) is the number of
real v|c, then
h«’(co)zam

Uy

It is a reasonable convention to define
e(6) = o(c0)2°9,

50 as to include the a.rchxmedean v into the definition of the Euler funection.
Then we can write

he =

__he(e)
he= 1009

We note that U, being of finite index in U, it has also
r=ry+rs—1

independent units, and the additive group of “log vectors” of elements
of U, is a lattice in R".

If {€,..., €} are independent units generating U/ modulo roots of
unity, and if {9,..., 7} are independent units generating U, modulo
roots of unity, then the logs of these units respectively generate lattices
in R’", denoted by log U and log U, respectively. We can define the
¢-regulator K, by

= |det(log| am: V)],

withi=1,...,rand j= 1, ..., r. Just as the regulator B can be
interpreted as the volume of a fundamental domain, so can we interpret
R, as the volume of a fundamental domain for log U, in R".

Ezample. We conclude this section by an example which is in some
sense “typical”. Let k = Q. Each prime ideal is represented by a prime
number p, and we let v, denote the real absolute value. Let m be an
integer >1, representing an ideal (m), and let ¢ =mv,. Then U,,_
consists of 1 alone. The group I(c) consists of those ideals prime to m,
and Q,,,_ consists of those positive rational numbers « such that

a=1 (mod*m).

Any class of I(mvy)/Pmy,, can be represented by an arithmetic progression
of positive integers prime to m. The generalized ideal class group is iso-
morphic to (Z/mZ)*, namely the multiplicative group of integers prime
to m, mod m. Thus we can view our generalized ideal classes as generaliza-
tions of arithmetic progressions tn number fields.
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§2. Lattice points in homogeneously expanding
domains

By a lattice in RY, we mean as usual & diserete subgroup of rank N.
Let L be such a lattice, and let D be a subset of R¥. We denote by 8D
the boundary of D (set of points in the closure of D, not lying in the
interior). We let tD denote the set of points iz, for t € R and z € D.
Then 3(tD) = tdD. We are interested in an asymptotic formula for
the number of points of L in £D. To get this, one has to make some assump-
tion on the smoothness of the boundary, as follows. Let S be a subset of
some euclidean space. A map

¢:8 > RY

is said to satisfy a Lipschitz condition if there exists a constant C such
that for all z, y € S we have

le(@) — oW)| = Clz — yl-

Let I* denote the unit cube in k-space, that is the set of points
(T1,...,2) with0 < z; £ 1. A subset T of RY is said to be k-Lipschitz
parametrizable if there exists a finite number of Lipschitz maps
¢;: I¥ — T whose images cover 7.

Let wy, ..., wy be a basis for the lattice L over Z. The set F of all
points

Loy 4 ¢+ -+ Intiy, 0=st<1

is a fundamental domain for L. Then the translations F, of F by
elements [e L cover RY and are disjoint. Every element of RBY has a
unique representative in ¥ modulo L.

We let Vol denote volume in N-space.

Theorem 2. Let D be a subset of RY and L a lattice in RY, with funda-
mental domain F. Assume that the boundary of D is (N — 1)-Lipschitz
parametrizable. Let A(t) = \(t, D, L) be the number of laitice poinis
in tD. Then

Vol(D) ~ N—
Vol(F) + 0@ ™Y,

AE) =

where the constant in O depends on L, N, and the Lipschiiz constants.

Proof. If a point | € L lies in ¢D, then F, intersects ¢tD. Furthermore,
either F; is contained in the interior of {D, or F; intersects the boundary
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of ¢tD. Let:

n(t) = number of I € L such that I € ¢D.
m(t) = number of [ € L such that F; C interior of tD.
b{(t) = number of I € L such that F; intersects atD.

Then
m(l) S n(t) £ m(t) + b(t),
and
m(t) Vol(F) < VoltD £ (m(t) + b(2)) Vol(F).
Hence

Vol D N

m(l) S 5t < mO+ b(2),

and to conclude the proof, it suffices to estimate b(t). Let ¢: IN ! — RY
be one of the parametrizing maps for a piece of the boundary of D, with
Lipschitz econstant C. Then /¢ parametrizes a corresponding piece of 3¢D.
Let [t] denote the largest integer < ¢, as usual. Cut up each side of the
unit cube V! into sides of length 1/[t]. We then get [{]¥~* small cubes,
The image under ¢ of each small cube has diameter < C,/[t], and hence
the image under fp of each small cube has diameter < C3. The number
of I € L such that F; intersects the image of such a small cube under ¢y
is then bounded by C’, where C” is a constant depending only on L and C.
Hence
b(t) < C'[fIN 1.

This proves our theorem.

§3. The number of ideals in a given class

Let I be the group of fractional ideals of k, and P the subgroup of
prineipal fractional ideals. We are interested in an asymptotic formula
for the number of ideals a in a given class of I/P such that Na = ¢, for
t — oo. More generally, we want such a formula for the ideals in a gen-
eralized class of I(c)/P, for some cycle c. We begin by sketching the
argument in the simplest case. We let a, b denote ideals (not fractional).

Let 8 be a given ideal class mod P, and let b be an ideal in the inverse
class. For each ideal a € £, the ideal ab is then a prineipal ideal (§) con-
tained in b (because we took a to be an ideal, so o C ). We have

Na <t if and only if N(ab) = N(¢) £ Nb-¢.
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Elements a, 8 of k are called equivalent if there exists a unit « such that
a = uf. Let j(R,!) be the number of ideals a € £ such that Na =< ¢,
Then j(8, ) is the number of equivalence classes of elements t € b, £ # 0,
such that N¢ £ Nb-£. Let U denote the group of units. Then U operates
on the number field &k, but we may also view U as operating on Euclidean
space
Ay(w) = RV = T k.
PESw

(If v is complex, we fix a definite identification of k, with C.) Namely, if
u € U, and (a,) is in RY, then

u(au) = (o'uu . a'u):

where g, is the embedding of k in k, corresponding to v.
Elements £, 7 of RY are said to be in the same orbit of U if there exists
a unit # such that § = us.
We can define the norm on RY = Ag(e0), namely if ¢ = (§,), then we let
Ne= II &3~
vESw
If £, 7 are in the same orbit of U, then clearly N = Ny. For ¢ € A3(x)

we have
N(tt) = t¥YN&.

We are of course interested in elements £ # 0 in b, and hence it is useful
to deal with the subset of A;(x) given by

Ji(o0) = II k:l

VESw

consisting of those elements having non-zero coordinates at all v € S,.
Then Ji(eo) is stable under the operation of U, and we can define the
notion of a fundamental domain D in Jx(oe), namely a subset such that
every orbit of U has a unique element in D. We can then say that j(£, ¢)
is the number of elements ¢ € b such that

¢)) N¢<Nb:t and teD.

If Y is a subset of Ax(o0) and £ > 0, we let Y(¢) be the subset of ¥ con-
sisting of those elements & such that N < {. Assume that we are able to
construct D such that tD = D for every real t > 0. Then

D@) = tY""D(Q).
With this notation, our conditions (1) are equivalent to the condition

2 t£€ D(Nb- ),
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and we get the fundamental formula:

J(Rs t) = >‘((Nb ° t)lle D(l): b)

In other words, the number of ideals a € ® such that Na < ¢ is equal to
the number of points of the lattice b lying in the domain

(Nb - ) D(1) = D(Nb - ).

This reduces the problem of computing j(&, t) to Theorem 2, §2, provided
that we can construet D(1) so as to satisfy the hypothesis of that theorem
(that is, Lipschitz parametrizable boundary).

For convenience, it is easier to construct a fundamental domain for a
free abelian subgroup of the unit group (i.e. disregard the roots of unity).
If we do that, and count the number of points of the lattice b in such a
domain, then we get w - (R, ), where w is the number of roots of unity in k.

The whole discussion can be applied more generally to ideal classes of
I(c)/P. as follows. We shall prove:

Lemma 1. Let ¢ be a cycle of k. Let V be a free subgroup of U, which
generates U, modulo roots of unily. Let Ji(oo, ) be the subset of Ji{on)
consisting of those £ such that &, > 0 if v is real, v|c. There exists a funda-
mental domain D for the operalion of V on Ji(o0, ) such that tD = D
if t > 0, and such that D(1) has an (N — 1)-Lipschitz parametrizable
boundary.

Let us postpone for a moment the proof of Lemma 1. Let & be an tdeal
class of I(c)/P., and let j(R, t) be the number of ideals a € & such that Na = .
Select b € . The map

a> ab = (&)

establishes a bijection between ideals of a € &, and U-equivalence classes
of elements £ satisfying the pair of conditions:

=1 (mod*¢), £=0 (modDb).
If w, denotes the number of roots of unity in U,, then we see that:

weJ(R, £) 1s equal fo the number of elements & salisfying
£t e b,
£ =1 (mod ¢),
t e D(Nb-t) = (Nb- )MV D(1).

We wrote £ =1 (mod ¢g) rather than £ =1 (mod* ¢) because our third
condition, that ¢ € D, already guarantees that o, > 0 if » is real, v,
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sinece D is contained in Ji(oc, ¢). The two congruences
£ =0 (mod b) and £ =1 (mod ¢g)

define a translation of the lattice (ideal) beg in RY = A;(c0), because if
%, is one solution of these congruences, then the map

E— E— &

gives a bijection of the set of solutions of these congruences and bcgy.
[Note that b, ¢y are relatively prime, and the Chinese remainder theorem
applies, i.e. z =0 (mod beg) if and only if z = 0 (mod ) and £ =0 (mod cg).]
Thus we have shown:

I;émr_r_na 2, Let the notation be as in Lemma 1, and let L be the laftice
obtained by translating ey by one solution of the two congruences above.
Then w j(R, t) is equal to the number of elemenis of L lying in

(Nb - ) V¥ D(1).

‘We are therefore in the situation discussed in Chapter V, §2. Observe
that the volume of a fundamental domain for beg in RY is the same as the
volume of a fundamental domain for the translated lattice L.

Theorem 3. Let ¢ be a cycle of k, and let § be a class of I(c) modulo P..
Then
J(R, 1) = pd + O@*HY),

where
_2"'(2m) R,
Pe= wa/di Ne ’

and:

R, is the c-regulaior,

Ne = 2°“Ne,,

s(c) zs the number of real vic,

w, 18 the number of roots of unity in U,

dy, is the absolule value of the discriminant of k.

In particular, if & is an ordinary tdeal class modulo principal ideals, then

9"(2m)"2R
wVdx

where R is the regulator, w the number of roots of unity in k, and dy s as
above.

iR 1) = t+ 0@,
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Proof. In Chapter V, §2, we had computed the volume of a fundamental
domain for the lattice of an ideal beg, and found it equal to

27 "2NbNcoV ds.

In view of Lemma 2, there remains only to prove Lemma 1, i.e. construct
a suitable fundamental domain for V in Ji(o0, ¢), and to prove that

Vol D(1) = 2n—*@greR,.

We shall essentially follow Hecke to do this.
We proceed to construct D. Let
g:Ji(0,0) > J] R,

vE S,

be the homogenized log map given by

— ll£41l
g(k) = ( - -1 log N ')ues.,,-

As usual, ||| = [£&[Y>. Then we see at once that the image of g is con-
tained in the hyperplane H consisting of all elements z such that
Z z,,=21+---+z,-1+,-2=0.
vESy

Let {91,..., n-} be a set of generators for V and let ¢(%;) = yi- - Then
{y1,.-.,Ys} is 2 basis for a lattice in H, and is the usual image of these
units under the log mapping, because for any n € V we have Ny = 1.
We let F' be the usual fundamental domain for this lattice in H, namely
the set of all linear combinations

Clyl+"‘+cryr, 0§Cq<1.
Let
D = g~ Y(F).

It is immediately verified that D is a fundamental domain for the action
of V on Ji(wo, ¢) and that for any real £ > 0 we have tD = D, This last
condition comes from the fact that

legl Ul
N(p™™ g

We nole that D(1) is bounded, because for each coordinate £, of an
element of D, we have

|&] < NgVNePT,
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where B is a bound for the elements y;. Hence if ¢ € D(1), we have
IEvl = e

We shall now simultaneously see that the boundary of D(1) is (N — 1)-
Lipschitz parametrizable, and compute the volume of D(1).
For this purpose, we use polar coordinates, namely

(pivo‘i) (1"=1J"'!1.1+T2)
such that 0 £ p; for all 4, and

0,'=:i:1 if-i=1,...,r1but8,-=1ifv.-[c
0<6; £ 27 fi=r+1,...,71+ 12

The inverse image of our domain D(1) in the polar coordinate space is
described by the conditions

1472

o< JIT st =1
Q S nam o
logp; — zlog JI pi* = 2 ¢qlog [ojng|
i=1 g==1
with0 = ¢, < 1forgq=1,...,r. These conditions (3) do not involve

any of the angles 6;.

Let us denote by P the set of (pi,. - ., Pry4r,) satisfying 0 < p; and
also satisfying conditions (3), i.e. the inverse image of D(1) in the polar
coordinate space. For the Lipschitz parametrizability of the boundary
of D(1), it will suffice to show that the boundary of P in (r; + r3)-space is
(ry + ro — 1)-Lipschitz parametrizable. Furthermore, we have

Vol D(1) = 2”—,(:)(2"—)’2[ e fpn+1 C U Pritrg dp1 - dpriyry

where the integral is taken over P. We change variables, and consider the
cube S in (ry + rg)-space with variables (u, ¢, ..., c,), satisfying the
Inequalities

O<uzs1l
@ {
0=Zc¢ <1,
We have a bijection f:S — P between this cube S and P, given in one
direction by

e (5 o ) = ).

g=1
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In the other direction, we have

1472
u= ]I o,

i=1
and the numbers ¢, are uniquely determined by (py, . . ., pr,4r,) because
the determinant det |o;m,((j,¢ = 1, ..., r) does not vanish. This deter-
minant is in fact the E-regulator, by definition.

The Jacobian determinant of our map is easily computed. For instance,

we find

1 .
pifdu = % and  dp;/dc, = p;log |omgl-

Hence the Jacobian determinant of f is

1 1 log |0'1’71| et log oy 7.l

N .. . . M
Pri+1 Pryr, 1 log la'r1+r2"11[ <o log lo'r|+rz7fr|

Adding the first r rows to the last after multiplying the j-th row by N,
we find that this Jacobian determinant is equal to

1

— 27*R,.
Pri41" " Pritry

Hence

Vol D(1) = 271—*)(27)"2 fs 2~"2R. dp = 2O R,

where p is Lebesgue measure. The volume of the cube S is of course equal
to 1, and we have computed the volume of D(1) as desired.

Finally, as to the parametrizability, only the exponent 1/N of u is not
continuously differentiable. But this is harmless: We just reparametrize
the cube, letting say » = uY with another variable u;. We then get a
continuously differentiable parametrization of the closed cube (compact)
onto the closure of P, given by

T
p; = uy exp (Z cq log ltfmql> .
g¢=1

It follows immediately that the boundary of P is (r; 4+ rs — 1)-Lipschitz
parametrizable, because the boundary of our closed cube trivially has
this property. This concludes the proof of Lemma 1, and also the proof of
our main result, Theorem 3.



CHAPTER VII
Ideles and Adeles

In classical number theory, one embeds a number field in the Cartesian
product of its completions at the archimedean absolute values, i.e. in a
Euclidean space. In more recent years (more precisely since Chevalley
introduced ideles in 1936, and Weil gave his adelie proof of the Riemann-
Roch theorem soon afterwards), it has been found most convenient to
take the product over the completions at all absolute values, including
the p-adic ones, with a suitable restriction on the components, to be
explained below. This chapter merely gives the most elementary facts
concerning the ideles and adeles (corresponding to a multiplicative and
additive construction respectively), and their topologies. In each case,
we prove a certain compactness theorem, and construct a fundamental
domain, Although we use the existence of fundamental domains later,
we shall not need any explicit form for them. '

Given any group scheme over the ring of integers o of a number field,
one can take its points in the adele ring, and one can try to prove similar
results. This leads into the arithmetic theory of algebraic groups, and we
do not deal with it here. Suffice it to say that the ideles turn out to be
the points of the multiplicative group scheme in the adele ring.

§1. Restricted direct products

Let & be a number field. For each absolute value » on k (normalized to
induce one of the standard absolute values on Q), we have the completion
k, of k which is one of three types of fields: The reals, the complex, or a
p-adic field. We call v by the corresponding name.

The additive group k, (also written k;) is locally compact, and so is
the multiplicative group k¥. Each one contains a ecompact subgroup in
the p-adic case, namely the p-adic integers or the p-adic units which are
open in k} and k¥ respectively.

We shall now deseribe a general procedure which allows us to take a
restricted produet of these groups.

Let {#} be a set of indices, and for each v, let G, be a locally compact
commutative group. For all but a finite number of », let H, be a compact

137
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open subgroup of G,. The restricted direct product of the G, with
respect to the H, is the subgroup @ of the direct product consisting of
elements all but a finite number of whose components lie in H..

If S is a finite set of indices v, including at least all » for which H, is
not defined, then we denote by Gs that subgroup of G for which all com-
ponents out51de S are in H,. Then

GS—HG,xHH

2ES

is a direct product of locally compact groups, 2ll but a finite number of
which are compact. Thus G is a loeally compact group (product topology),
and we make G into a locally eompact group by decreeing that each such
G's is an open subgroup.

Each G, is embedded.in G on the v-component, as a closed subgroup.

The restricted product of the additive groups k, with respect to the
local integers 9, (defined only when » = #, for some p) is called the adele
group of k and is denoted by A or simply A. We call Ay the S-adeles.

The restricted product of the multiplicative groups k¥ with respect to
the units U, of 9, is called the idele group of k& and is denoted by J; or
simply J. (The topology on the idele group is not the topology induced
on it as a subset of the adeles!) We call J 5 the S-ideles.

We can embed the number field % in the adeles on the diagonal. Since
an element « of k is a p-adic integer for all but a finite number of p, and
since we can view a as embedded in each k,, the vector (o, o, @, ...) is
an adele.

Similarly, we can embed the muitiplicative group k* in the ideles be-
cause a non-zero element of k is a p-adic unit for all but a finite number of p.

We can define the trace on adeles. Let E be a finite extension of k and
z an adele of £, z = (z,), w € Mz. We define its trace TrE(z) to have
v-component

Z Try(zw).

wlz

Then its trace is an adele of k.
Similarly, we define the norm of an idele @ = (a,) of E to be the idele
N£(a) whose v-component is

H Nw(aw)-

wiv

According to Corollary 3 of Theorem 2, Chapter II, §1, these definitions
are consistent with the embedding of k in A and k* in J, and the usual .
definition of norm and trace on field elements. In other words, the fol-
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lowing diagrams are commutative:

ES Ag E*S g
Tr | | Tr N | | N
kE’Ak k*?-f};

Theorem 1. The additive group k 7s embedded as a discrete subgroup of
the adeles A. The muliiplicative group k* is embedded as a discrele sub-
group of J.

Proof. Let a € k. To say that o is close to 0 in the adele topology means
that |a|, £ 1 for all but a finite number of v and |af, is very small for a
finite set of ». By the produet formula, this implies that « = 0. Hence
0 is an isolated element of & in A. It follows that k is discrete in A. The
same argument applied to an element a of k* close to 1 shows that k* is
discrete in J.

§2. Adeles

We observe that the adeles form a topological ring (with zero divisors)
if we define multiplication componentwise. If @ is an idele and z is an
adele, then az is an adele. The map

he:A— A

given for each idele ¢ by the formula h.(zr) = ax is a topological linear
automorphism of the additive group A onto itself.

Let us denote by S, the set of archimedean absolute values in the
canonical set of absolute values M.

Theorem 2. We have
k4 As, = A.
The factor group A/k is compact.

Proof. The first statement means that given any adele z, there exists
an element « of k such that £ — a has integral components at all valua-
tions ». This is an easy extension of the Chinese remainder theorem, and
can be done for instance as follows. Given z € A, let m be a rational
integer such that mz has integral components for all non-archimedean ».
Let S be the set of primes p of o; such that pjm. We can find an algebraic
integer e in k such that

mz=a (mod p’)
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for all p in S and large v, by the ordinary Chinese remainder theorem.
Then z — «/m will be integral for all p if v is sufficiently large.
The field k can be viewed as embedded in Euclidean space

II % = R"Y,

vESw
and in that case, the integers o; form a lattice of rank N = [k:Q] in RY.

To show that A/k is compact, we observe that given z € A we can

translate it by an element of k£ into Ag,. We can then translate an element
of As, by an integer in oz in such a way that the resulting adele has
bounded components at all # € S, because o; has maximal rank in RY.
Hence every element of A/k has a representative in a compact subset of
Ag.. This proves that 4/k is compact.

It is in fact easy to construct a fundamental domain for A/k. .

Theorem 3. Let wy,...,wy be a basis for the integers ox of k over Z.
Let F, be the subset of

IT &

vESw

spanned by the vectors Y tiw; with 0 < t; < 1. Then

F= T 0,X Fe
vESaw

1s e fundamental domain for A mod k.

Proof. Given z € A we can bring it into Ag_ by translation with an
element of k, uniquely determined up to an element of o,. Restricting the
components ¢; to lie in the half-open interval as above determines this
algebraic integer uniquely if we require that the translation have a repre-
sentative in F.

§3. Ideles

In this section we carry out an investigation similar to that of the
adeles, but applied to the multiplicative ideles.

‘We denote by S any finite set of absolute values in M} containing the
set S, of archimedean absolute values.

For each v € My, corresponding to a p-adic valuation, we have the
p-adic integers o, and the units U, of 9,. Both of these are compact groups.

Each idele a has components a, € k¥, all but a finite number of which
lie in U,. We define

lalls = liaslls
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and

llall = llalle = H llalls.

”Ak

All but a finite number of terms of this product are equal to 1, so the
product is well defined. Furthermore, the map

e |a]

defines 2 homomorphism

J—o Rt

of J onto the multiplicative group of positive real numbers. Thig map is -

obviously continuous, and its kernel is a closed subgroup of J, denoted
by JO.

By the product formula, k* is contained in J, and is a closed discrete
subgroup of J9.

There is a natural homomorphism of J onto the fractional ideals o