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Preface

This exposition of Galois theory was originally going to be Chapter 1 of the
continuation of my book Fermat’s Last Theorem, but it soon outgrew any
reasonable bounds for an introductory chapter, and I decided to make it a
separate book. However, this decision was prompted by more than just the
length. Following the precepts of my sermon *‘Read the Masters!” [E2], I
made the reading of Galois’ original memoir a major part of my study of
Galois theory, and I saw that the modern treatments of Galois theory lacked
much of the simplicity and clarity of the original. Therefore I wanted to
write about the theory in a way that would not only explain it, but explain it
in terms close enough to Galois’ own to make his memoir accessible to the
reader, in the same way that I tried to make Riemann’s memoir on the zeta
function and Kummer’s papers on Fermat’s Last Theorem accessible in my
earlier books, [E1] and [E3]. Clearly I could not do this within the confines
of one expository chapter.

And so I decided to write a short book—a sort of volume 13 of my work
on Fermat’s Last Theorem—devoted entirely to the basics of Galois theory.
There is very little in this book that is not already to be found, however
concisely and however lacking in proof, in Galois. The one major exception
is the material on factorization of polynomials (§§49-61), which is due to
Kronecker and which seems to me to be necessary to give clear meaning
to the computations with roots of algebraic equations that Galois and
Lagrange performed without inhibition and without comment.

The crux of Galois theory is, appropriately enough, Galois’ Proposition 1,
which is the following characterization of what we call the Galois group of
an equation. Let a, b, ¢, . . . be the n roots (assumed distinct) of an algebraic
equation f(x) = 0 of degree n. The Galois group is a certain subgroup of
the group of permutations of the roots a, b, ¢, . . . . Galois used it to deter-
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mine whether a given polynomial in the roots F(a, b, ¢, . . .) has a known
value—in modern parlance, to determine whether F(a, b,c,...) is in the
ground field. The characteristic property of the Galois group is that
F(a, b, c, . . .) has a known value if and only if

Fa,b,c,...) = F(Sa, Sb, Sc, . ..)

for all permutations S of the Galois group. Galois proved the existence and
uniqueness of a group with this property by constructing it, using what
later became known as a Galois resolvent. (This characterization of the
Galois group will be more recognizable to readers familiar with modern
formulations of Galois theory after they read the first corollary in §41. See
also §63.)

The major theorems of Galois, such as the theorems on the solvability of
equations by radicals, flow from the study of the relationship between
algebraic equations f(x) = 0 and the groups associated with them. Of
particular importance is the analysis of the way in which the group is reduced
when the field of known quantities is extended (Galois’ Propositions II-1V).

Some recent texts on Galois theory place mistaken emphasis on the
question of finding explicit quintic equations, with rational coefficients,
which cannot be solved by radicals. This is a moderately interesting result
(one not covered in this book) but it is not a key theorem of Galois theory.
Galois showed that an algebraic equation is solvable by radicals if and only
if the associated group is solvable. A given quintic with rational coefficients
can therefore be tested for solvability. Abel’s theorem that the general
quintic is not solvable states that the equation x* + Bx* + Cx* + Dx* +
Ex + F = 0—an equation with coefficients in the field Q(B, C, D, E, F)
obtained by adjoining five transcendental elements (variables) to Q—is not
solvable by radicals. (In Galois theory this follows from the fact that the
Galois group of this equation is the full group of 120 permutations of the
five roots.) In other words, no field extension of Q(B, C, D, E, F) obtained
by a succession of adjunctions of radicals can ever contain a root of the given
equation. This is what it means to say that the quadratic formula |

—B + /B* - 4C
2
and the much more complicated formulas for the cubic and quartic equations
(Exercises 1 and 2 of the Sixth Set) have no generalization to the quintic
equation. :
Having just mentioned the exercises, I hasten to reassure the reader that
the exercises are not essential to the book. The only proofs that are relegated
to the exercises are those that I believe to be too easy, or too much like other
proofs already covered, to spend time on in the text. Naturally, the reader
who does the exercises will have a far greater understanding of the subject,
and will learn many things not contained in the text, but to do all the exercises
will surely consume an enormous amount of time. The reader who has just

X =
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read the text will have covered all the propositions and methods of proof
that I consider to be basic to Galois theory.

What preparation do I assume on the part of the reader? Because termi-
nology changes so much from decade to decade and from field to field, I
have tried to assume as little terminology as possible. (When I completed
my undergraduate degree 25 years ago, I had had courses in advanced
calculus, determinants and matrices, differential equations, measure theory,
complex variables, etc., but I had never encountered the definition of a group
or an abstract vector space.) However, I have assumed a certain degree of
mathematical experience on the part of the reader, by which I mean experi-
ence in computation and mathematical reasoning. The main theorems of
Galois theory state, in the last analysis, that certain computations with
polynomials produce certain results. In most cases the computations are
too long to do, and the idea of the computation is what counts, not any
particular cases of it. The reader should have enough mathematical experi-
ence (and talent) to be able to conceive a general computation and its
properties after having done a few simple examples.

The approach of the book is consistently algebraic and constructive. The
fields considered are those obtained from the rational numbers by adjoining
a finite number of algebraic and/or transcendental elements. (Fields with
characteristic p are mentioned only in passing. Fields obtained by completion
processes—the real and complex numbers, algebraic extensions of p-adic
fields—are not considered at all.) The constructive approach implies that
theorems mean what they say. For example, when a theorem says that an
equation is solvable, the proof must give a procedure—however impractical
—for constructing a splitting field by the adjunction of radicals. I believe
that this approach is very much in tune with Galois’ conception of the
subject.

Liouville, in the “Avertissment” preceding his publication of Galois’
works in 1846, writes of the “vivid pleasure” he enjoyed when he realized
that Galois’ methods were correct and that his theorems could be rigorously
proved. I experienced what I imagine was a similar—if lesser—pleasure
when I realized that two patts of Galois’ memoir, which I at first thought
were mistakes, are perfectly correct. These are the places where Galois later
wrote “On jugera”, in the case of the first, and “Something in this proof
needs to be completed—1I haven’t the time” in the case of the second.

The *“ On jugera’ passage is the one where Galois proves the crucial lemma
stating that any rational function of the roots can be expressed as a rational
function of the Galois resolvent. Poisson had called Galois’ proof “in-
sufficient” but pointed out that the lemma followed from a theorem of
Lagrange. Galois, rather than elucidate his proof, laconically replied,
“That remains to be seen” (freely translated). My opinion is in §37.

The famous statement “I haven’t the time” occurs in a marginal note
Galois made, probably on the night before the duel, with regard to the proof
of his Proposition II, which he said needed to be “completed . Although his
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proof appears wrong at first because he adjoins one root r of an equation
and then uses other roots of the equation, and although Liouville [Gl, p. 492]
found it necessary to circumvent Galois’ proof entirely, I believe now that
the proof given in §44 is very close to what Galois had in mind, and that the
marginal note was merely prompted by the fact that he had changed the
statement of the Proposition, and realized that the proof needed to be
amended accordingly. (In fact, the Proposition, as stated, is false. The index
of the subgroup need not be 1 or p when p is not prime—it must simply be a
divisor of p.) A similar situation occurred with Proposition III, where
Galois again changed the statement, making it more general, at the last
minute, and had only time enough to say, “One will find the proof.”
Finally, I hope it is superfluous to add that, while I have said above that
most of what is in this book is already in Galois, the converse is far from
true. The book contains a rather complete account of Galois’ main memoir,
«Mémoire sur les conditions de résolubilité des équations par radicaux”
(Appendix 1 contains a translation of this memoir) but it does not make
any claim to cover his other works. These contain, I am told, remarkable
insights into a number of topics, including the theory of Abelian functions
and finite simple groups. I return to my perennial refrain: Read the masters.
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Galois

§1 Great mathematicians usually have undramatic lives, or, more pre-
cisely, the drama of their lives lies in their mathematics and cannot be appreci-
ated by nonmathematicians. The great exception to this rule is Evariste Galois
(1811-1832). Galois’ life story—what we know of it—is like a romantic novel.
Although he was making important mathematical discoveries when he was
still in secondary school, he was denied admission to the Ecole Polytechnique,
which was the premier institution of higher learning in mathematics at the
time, and the mathematical establishment ignored, mislaid, lost, and failed
to understand his treatises. Meanwhile, he was persecuted for his political
activities and spent many months in jail as a political prisoner. At the age of
20 he was killed in a duel involving, in some mysterious way, honor and a
woman. On the eve of the fatal duel he wrote a letter to a friend outlining his
mathematical accomplishments and asking that the friend try to bring his
work to the attention of the mathematical world. Against great odds, Galois’
few supporters did finally, 14 years after his death, succeed in finding an
audience for his work, and portions of his writings were published in 1846 by
Joseph Liouville in his Journal de Mathematiques. After that, recognition of
the great importance of his work came very quickly, and Galois began to be
regarded, as he is today, as one of the great creative mathematicians of all
time. '

§2 The purpose of this book is to convey the mathematical drama of
Galois’ work, so there will be no more mention of his short, unhappy life,* but

* For biographical information see Dupuy [D1], Kiernan [K1], Rothman [R1].
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one point needs to be made about its most dramatic feature, namely, the fact
that Galois was able, at such an early age and without the benefit of any
formal higher education, to make discoveries that would win him lasting
fame. Surely many aspiring young mathematicians have been discouraged by
Galois’ story, saying to themselves something like, “ Here I am already x years
old, x — 20 years older (younger) than Galois was when he died, and,
although I like math and have always done well at it, I would no more be
able to make a great discovery than I would be able to swim the Atlantic.”
How was Galois able to do it? Was he blessed with some superhuman gift that
put him in a class apart? [ think not. Of course, talent is essential, and few are
as talented as Galois. Still, talent alone is not enough. Galois had to reach the
point where he knew enough and had enough techniques at his command
to be able to move beyond what had been done before. The secret of how he
was able to do this is contained, I believe, in a passage in Dupuy’s biography
of Galois [D1, p. 206]: “Elementary algebra books never satisfied Galois
because he didn’t find in them the stamp of the inventors; right from his first
year of mathematics he turned to Lagrange.”

Lagrange’s Réflexions sur la Résolution Algébrique des Equations (1771)
is the treatise of Lagrange most likely to have inspired the creation of Galois
theory. It is an extraordinary work, written in a relaxed, discursive style
that was rather common in the eighteenth century, but is virtually unknown in
mathematical writing today. It discusses at length the central question of the
time in the theory of algebraic equations, namely: What is the essence of the
methods by which it is possible to solve equations of degrees 2, 3, and 4? Is it
possible to extend these methods to equations of higher degree and, if not, why
not? Lagrange gave an insightful answer to the first question, describing the
solutions of equations of low degree in terms of a unified technique now
known as the technique of the Lagrange resolvent.* His answer to the second
question, on the other hand, is quite inconclusive. He shows that the tech-
nique does not apply in an obvious way to equations of degree 5 or higher,
and he discusses some techniques—notably the technique of permuting the
roots of an algebraic equation—which are relevant to the applications of
Lagrange resolvents to equations of higher degree, but he gives no final
answer. In short, it is a paper that gives the reader as much information about
the problem as the author can provide and indicates the direction which the
author feels further work should take. Viewed in this way, Lagrange’s paper
seems the perfect source of inspiration for a Galois.

Thus, in order to appreciate Galois’ theory, it is natural first to review
Lagrange’s work. We will go much farther back than that—all the way to
ancient Babylon—and then review a few other aspects of the development of
algebra before discussing the main features of the work of Lagrange and then
moving on to his successors, Gauss and Galois.

* A very similar technique was used a few months earlier by Vandermonde (see §15), but this was
unknown to Lagrange.
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Quadratic Equations 1700 B.C.

§3 Archeological research in the twentieth century has revealed the
surprising fact that the peoples of Mesopotamia in the period around*
1700 B.c. had an advanced mathematical culture, including an excellent
sexagesimal system of arithmetic- and a knowledge of the Pythagorean
theorem (a millennium before Pythagoras!). Of particular relevance to the
theory of equations and Galois theory is the knowledge in this ancient
culture of a method for the solution of quadratic equations.

According to Neugebauer [N1], the technique commonly used in the
Babylonian texts to solve quadratic equations can be viewed as a reduction to
a normal form, followed by a method for solving the normal form. The
normal form was to find two numbers given their sum and their product. In
modern algebraic notation, this can be stated: Given two numbers p and s,
and given that xy = p, x + y = s, find x and y. The steps by which the Baby-
lonians solved this problem are as follows:

1. Take half of s.”

2. Square the result.

3. From this subtract p.

4. Take the square root of the result.

5. Add this to half of s; this is one of the two numbers and the other is s minus
this one.

For example, if the sum is 10 and the product is 21 then the successive
steps give 5, 25, 4, 2, 7 and 10 — 7 = 3. Thus the two numbers are 7 and 3.

That this normal form is indeed a quadratic equation can be seen by
multiplying the equation s = x + y by x to find sx = x? + xy = x2 + p.
In other words, x is a solution of the quadratic equation x2 — sx 4+ p = Oand,
by symmetry, so is y.

Conversely, the solution of any quadratic equation can in our notation
be viewed as the solution of a problem in normal form. Specifically, the equa-
tion ax® + bx + ¢ = 0 can be rewritten as x* 4 (¢/a) = —(b/a)x and the
solution of this equation is equivalent to finding two numbers whose sum is
—bj/a and whose product is c/a. The Babylonians could not reduce all
quadratic equations to a single normal form, however, because their arith-
metic did not include negative numbers. To deal with this fact, they had a
second normal form, in which the difference and the product of two numbers
were given. This is a technical problem of considerable historical interest—
it was only a few centuries ago that negative numbers became generally
accepted so that polynomial equations did not have to be divided into several
cases depending on the signs of the coefficients—but is of no importance to
the algebra of the problem and will not be considered further here.

* The texts cannot be closely dated. Neugebauer places them between 1600 and 1800 B.c.
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In modern algebraic notation (also only a few centuries old) the Babylonian
solution of the problem in normal form can be written

= SZ-— —I—S = X
x=J\2) “PTy YEITH

or, in a more familiar form,
s+ /s —4p
5 )

Thus it is fair to say that they knew the quadratic formula but that they spelled
out the steps of the procedure instead of expressing it as a formula in the way
we do.

How did they derive this procedure? Unfortunately, there is no indication
in the texts which survive. The point of these texts seems to have been to
convey, by means of several worked examples, the technique of solution. It is
entirely possible that the technique was discovered by an ancient
genius and that his successors merely adopted it because it produced correct
answers. On the other hand, it may be that some derivation was well under-
stood by many people at the time, but was transmitted orally or does not
happen to be among the texts that have been found.

X, )y =

Cubic and Quartic Equations A.p. 1500

§4 There was some progress in algebra in the 3000 years between the
Old Babylonian period and the Italian Renaissance, but it was not great. The
late Greek writer Diophantus (circa A.D. 250) introduced some abbreviated
algebraic notation, the Hindus used negative numbers on occasion, and the
Arabs constructed the solutions of cubic equations as points of intersection of
conic sections. When the Renaissance came, however, the advances in
algebra were enormous, and they opened the way to great progress in all
branches of mathematics.

In mathematics, the Renaissance was not a rebirth at all, but a period of
first vigorous growth. In ancient times, Europe had been a mathematical
backwater, and even the Romans were barbarians when it came to mathe-
matics. During the Middle Ages, Europe had learned about algebra (al-jabr)
from the Arabs and had begun to improve it by devising new symbols and
notations. Then, in the sixteenth century, an enormous advance was made—
the algebraic solution of cubic equations was discovered, and soon thereafter
the solution of quartic equations. '

The history of the discovery of these solutions and their exact description
in terms of the still quite clumsy notation of the period will not be necessary
in what follows. Instead, we will give just a brief account, in modern notation,
of the solutions themselves. (For more details see Kline [K2], pp. 263-270
and 282-284.)

§5 Suppose the cubic equation to be solved has the form x* + px +
g = 0. (An arbitrary cubic equation can be put in this form by dividing by the
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coefficient of x> and then taking a change of variable x' = x — ¢ with ¢ equal
to the coefficient of x? divided by 3.) Introduce two new variables ¢ and b and
set x = a — b. The desired equation is then a® — 3a2b + 3ab? — b® +
pa —pb +q=0, that is, a®> — b + (@ — b)(—3ab +p) + g = 0. If it is
stipulated that 3ab = p, then this equation takes the form a®> — b® + ¢ = 0.
If a solution (a, b) of these two equations 3ab = pand a® — b® + g = 0 in
two unknowns™ can be found, then, as is easily checked, the quantity x =
a — b is a solution of the original equation x> + px + g = 0. Multiplication
by 3°a® makes it possible to eliminate b from a® — b> + ¢ = 0to find 27a°® —
(3ab)® + 27a%q = 0, that is, 27a® + 27ga® — p® = 0. This is a quadratic
equation for a®. Let a be the cube root of a solution of this quadratic equation
and let b = p/3a. Then 3ab = p and a® — b* + ¢ = 0, which implies that
x = a — b is a solution of the given equation.

§6 For the solution of the quartic, assume that the equation has the
form x* + px* + gx + r = 0. (Again, an arbitrary quartic equation can
easily be put in this form.) Let this be put in the form x* = —px? — gx — .
Then, if a is a new variable, (x* + a)® = x* + 2ax? + a®> = (—p + 2a)x* —
gx + (—r + a®). In order to take a square root on the right side, this quad-
ratic function of x should have a single root—i.e. should be of the form
A(x + B)*—and by the quadratic formula this occurs if and only if g —
4(—p + 2a)(—r + a*) = 0. This is a cubic equation for a, which can (by the
above method) be solved for a. When ais a root of this equation, the right side
of the above expression of (x? + a)? has the form A(x + B)? where A4 is the
coefficient of x? and B is the coefficient of x divided by 24, that is,

_ 4 :
(x2+a)2_._( p+2a)(x 2(-p+2a))’

or, more simply,

x2+ = + _ 2(___ q ,
N A il Sl vy

which gives x as the solution of a quadratic equation.

§7 Of course the successful solution of the cubic and quartic equations
led to attempts to solve the quintic equation. It was not until almost 300 years
later, in the 1820’s, that it was shown, first by Abel, then by Galois, that it is
impossible to solve the quintic equation in the same manner that the cubic
and the quartic were solved, specifically, by using no operations other than
addition, subtraction, multiplication, division, and the extraction of roots.

During these 300 years the fruitful developments in algebra were in other

* There is no sharp distinction made here among the terms “variable”, “unknown™, and
“indeterminate . For the most part, ““variable” is used in this book. If a variable occurs in an
equation that is to be solved, it may be called an unknown. If it is to remain variable and is
being used primarily as a placeholder in a computation, it may be called an indeterminate.
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directions. One of the most important was a theorem discovered by Isaac
Newton, which is the subject of the next section.

Newton and Symmetric Functions

§8 Isaac Newton (1643-1727) is most famous for his discovery of the -
universal law of gravitation and for his use of that law to give an exact
mathematical description of planetary motion. Consequently, he is identified
in most people’s minds with mathematical physics and applied mathematics.
Even people who have some acquaintance with the history of mathematics
and who realize that Newton, with Leibniz, is regarded as the father of differ-
ential and integral calculus, tend to think of Newton’s mathematics as being
closely related to his physics, and his calculus as being primarily a tool in his
study of motion. Nevertheless, Newton’s contributions to pure mathematics
alone are sufficient to place him among the greatest geniuses in the history
of mathematics. This section is devoted to a theorem of pure algebra which is
of crucial importance to the later development of the subject and which
appears to be Newton’s creation.

A portion of this theorem was published in Newton’s Arithmetica Univer-
salis in 1707, after Newton was world famous and had ceased active scientific
work. It is cited by Gauss [G2, Art. 338] and Weber [W3, vol. 1, Sec. 46],
among others, and is generally known as Newton’s theorem. Of course the
Arithmetica Universalis was known to have been written long before 1707,
but it is only with the recent work of Derek T. Whiteside in analyzing, an-
notating, and publishing Newton’s notebooks and papers that it has been
possible to date many of Newton’s discoveries and, in the case of the theorem
under discussion, to know that he was aware at a very early date of the full
theorem, not just the portion given in the Arithmetica Universalis.

§9 Whiteside found in papers dating to 1665-1666, in the very earliest
phase of Newton’s career, the following formulas: Let r, s, t be the three roots
of a cubic equation x> + bx? + ¢x + d = 0, and let an expression like “every
risi” denote the sum of all distinct expressions of the form r's’ where r and s
are roots of the given cubic, ie. “every rs” = r’s + s% + t’r + 1t +
125 + s?r, “every r2” =r? + s2 +t%, “every r’s*?” = r2s%t?, etc. Then
Newton’s formulas* are

(everyr) = —b (1)
(every r¥) = b* — 2c )
(every r¥) = —b> + 3bc — 3d (3)
(everyrs) = ¢ 4)

(every r’s) = —bc + 3d (5
(every r’s) = b*c — 2¢* — bd (6)

* [N3, p. 517]. Newton took —r, —s, —t to be the roots of the equation, which simply changes
the signs of the formulas with odd degree.
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(every r’s?) = ¢* — 2bd (7)
(every 1°s?) = —bc? + 2b%d + cd ®)
(every r’s®) = ¢ — 3bcd + 3d? 9
(every rst) = —d (10)
(every r’st) = bd (11)
(every r’st) = —b%d + 2cd (12)
(every r’s?*t) = —cd (13)
(every r’s*t) = bcd — 3d? (14)
(every r’s3t) = —c*d + 2bd? (15)
(every r?s?t?) = 42 (16)
(every rPs?t?) = —bd? (17)
(every r3s3t?) = cd? (18)
(every ris*t?) = —d° (19)

He did not record in his notes the method by which he derived these
formulas, and we can only guess what lay behind them. However, it seems
likely that the choice to stop with third powers of the roots was arbitrary*
and that he could have given analogous formulas for higher powers. More-
over, the decision to deal with the three roots of a cubic, rather than the four
roots of a quartic or the five roots of a quintic, was also probably arbitrary.
In fact, a few pages later in Whiteside’s book, a passage from Newton’s
notebook is reproduced in which he gives the analogs of formulas (1)—(3)
for an equation of degree 8, namely, the formulast

(every r) = —p,
(every r?) = p? — 2q,
(every ¥*) = —p3 + 3pg — 3r,
(every r*) = p* — dpq + 4pr — 4s + 242,
(every r°) = —p® + 5p3q — 5p*r + Sps — 5t — 5pg® + Sqr,
(every r®) = p® — 6p*q + 6p3r — 6p*s + 6pt — 6v + 9p3g?
— 12pgr + 6gs — 2q°,
(every r’) = —p” + Tp3q — Tp*r + Tp3s — Tp2t + Tpv — 7y,
(every r®) = p® — 8pSq + 8p5r — 8p*s + 8p3t — 8p?v + 8py — 8z,
* Newton in fact had a specific goal in mind in the passage in question, namely, the derivation

of the explicit formula for the resultant of two cubics (see Exercise 8). For this goal he needed the
given formulas and only these.

T The first four of these formulas were published by Albert Girard in 1629. In Whiteside’s opinion,
Newton was not aware of Girard’s work. The formulas at the bottom of this page are taken from
Whiteside’s edition of Newton’s papers (vol. 1, p. 519). They are incorrect in the cases 6, 7, and
8. The formula for “every r®” is missing a single term 3r2. (Note that there is no u—in Newton’s
alphabet, ¢ is followed by v.) The correct formulas for “every r?” and “every r8” are much longer
than the formulas given here. I do not know whether the errors are Newton’s or Whiteside’s.
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where r runs over the eight roots of the 8th degree equation x® + px” +
gx® + x> + sx* + tx3 + ox* + yx +z = 0.

In other words, it appears likely that Newton was aware that there are
analogous formulas for all degrees, that is, that any symmetric polynomial
in the roots of an equation can be expressed in terms of the coefficients of that
equation. This theorem is the foundation stone of Galois theory, so it is
important to have a careful statement and proof of it before proceeding.
(It must be admitted, however, that neither a careful statement nor a proof of
it seems to have been published before the nineteenth century. Everyone
seemed familiar with it and used it without inhibition.)

The Fundamental Theorem on Symmetric Polynomials

§10 The first step in giving a careful statement of the theorem is to
remove the reference to roots of an nth degree equation, because these roots
may be irrational or complex and they are really extraneous to the theorem.
(Newton explicitly states in his formulas that the roots may be “false”,
i.e. negative, or “imaginary”.) The particular formulas (1), (4) and (10) in
Newton’s list, that is,

r +s +t = —b,
rs+st+tr= (20)
rst = —d,

are especially important and were probably rather widely known in Newton’s
time. (Whiteside [N3, p. 518, note 12] observes that the general case of these
formulas was published by Albert Girard in 1629 but says that “we may
assume” that Newton’s version of it, which he published in the Arithmetica
Universalis, was his “independent discovery”.) These formulas follow im-
mediately from the identity

x3 4+ bx?+cex+d=(x—rx— s)x —0),

when the right side is multiplied out and coefficients of like powers of x are
equated. The same procedure applied to

X"+ b X" by x4 b= (x — ) =) (X — 1)

shows that, in analogy to (20), the sum of all* (n

k) products of k of the r; is

equal to (— 1)*b,. That is, ~
ry +ry+--+r,= —by,
rirz -+ I”Il”3 + -4 T‘,,__lr,, = bz,

FiFgls + Fifaby + <o+ + Tyogbyo 1Ty = — b3,

Py e Ty = (—1)h,.

nl

* Here (Z) denotes the binomial coefficient m
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Let o, denote the polynomial on the left side of the kth equation, so that the
equation reads o, = (—1)*b,. Then g, is called the kth elementary symmetric
polynomialinr,r,, ..., r,. Herer,, r,, ..., r, areto be regarded as variables
or indeterminates, rather than roots of an equation, and 01, 0y,...,0, are
to be regarded as polynomials in these indeterminates. A polynomial in
F1sF25. .., Fy 18 simply a formal sum of terms of the form Ar4'r4? . . . pin where
A is a number (say a rational number for now) and the u’s are nonnegative
integers. A polynomial in r, r,,...,r, is said to be symmetric if it has the
property that interchanging any two of the r’s leaves the polynomial un-
changed—provided, of course, that two polynomials are regarded as being
equal when applications of the commutative laws of addition and multi-
plication can change one into the other. (For example, rs + st + ¢ is un-
changed by an interchange of r and s because rs + st + tr = sr + rt + ts.)
Clearly the elementary symmetric polynomials ¢, ¢,, ..., ¢, in 1 variables
are symmetric in this definition. _

In Newton’s formulas (1)-(19) the left sides are by definition symmetric
in r, s, and ¢, and the right sides are polynomials in b, ¢, and d or, what is the
same in view of (20), polynomials in ¢; =r 4+ s+, 0, = rs + st + tr,
and o3 = rst. Thus these formulas are all instances of the following theorem:

Fundamental Theorem on Symmetric Polynomials. Every symmetric poly-
nomial inry, ry, . . ., r, can be expressed as a polynomial in the elementary
symmetric polynomials 6,,0,, ... ,0,. Moreover, a symmetric polynomial with
integer coefficients can be expressed as a polynomial in oy, 6,, . . ., o, with
integer coefficients.

When the theorem is stated in this way, it deals with algebraic identities,
not with equations and roots. For example, Newton’s formula (3) is the
identity

P+ 8+ =0} - 30,0, + 30,
=(r+s+1)° =30+ s+ t)rs + st + tr) + 3rst.

However, if x" + byx""!' + b,x""? + --- + b, =0 is an nth degree
equation with n roots (in some sense) the formula o, = (—1)*b, makes it
possible to evaluate the elementary symmetric functions of the roots im-
mediately, without ever finding the roots themselves; then the theorem shows
that it is possible to evaluate any symmetric function of the roots without
finding the roots themselves. Moreover—a fact that will be very important
later on—if the b’s are rational numbers, then any symmetric polynomial
in the roots assumes a rational value.

§11 Proor. The proof of the fundamental theorem on symmetric
polynomials which follows is a simple computational procedure for finding,
given a symmetric polynomial, a representation in terms of elementary
symmetric polynomials. To say that the procedure is simple is not to say that
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it is practical, and in fact the procedure normally leads to an impossibly long
computation. This is to be expected when a computational procedure is
used to prove a nontrivial existence theorem; a simple and sure, but probably
very slow, method is best for proving existence, but, once existence has been
established, there are frequently ways to get to the desired answer much
more quickly in particular cases.

The proof will be by induction on the number of variables. If there is only
one variable, then there is only one eclementary symmetric polynomial
¢, = r, and the theorem is trivially true. Assume, therefore, that the theorem
has been proved for symmetric polynomials in n — 1 variables and let
G(ry, 75, . . ., Fy) bE @ Symmetric polynomial in n variables. Let the terms of G
be gathered according to the power of r, that they contain, to give

G(rl, }‘2,...,7’") = GO + Gii’n + Gzri 4 . + Gvr,‘;,

where G; (i=101,...,v) is a polynomial in the n—1 variables
FisTgse--» ey and v is the highest power of r, that occurs in G. Now since
G is unchanged when any two of the variables 7y, r3,...,7y—q aI€ inter-
changed, so is each G;. Therefore, by the induction hypothesis, each G; can
be written as a polynomial in the elementary symmetric functions in ry,
Fayenostnog L€ Ty, Toseis Tyt denote these elementary symmetric func-
tions, that is,

I

Ty 1'1'*“"2'4‘“""5“?,,_1,

Ty = FqF2 + FyFy + - A Fyp—o¥yp—1

Ty—1 = Ff2 " Ta-1
Then each G, can be expressed as a polynomial in the ’s, say
Gi(rla Faseves rn—i) = gi(q‘-ls T2s 00t Tn—l)

and, in addition, if G has integer coefficients then so do all the polynomials g;.
As before, let ¢4, 04, .- ., 0, be the elementary symmetric functions in n
variables. Then clearly the o’s and the 7’s satisfy the relations

gy = Tq + Fp,
Gy = Ty + FyTy,
03 = 13 + Fnla,

04 = Tg + TnTls;

o, =0+ rTu_1y,
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and these imply
Ty =01 — Iy
— _ 2
Ty = Oy — FyTy = 0y — V01 + Iy,

3
T3 = 03 — FyTy = 03 — Fy04 + FEG, — T3,

— — n—1,.n-1
Tn—I""'O’nhl_rnTn—z—an_l_rno-n—2+"'+(“1) Fu 7
0= Op = Fplp—y = Op — FyOy—q + -+ + (_1)nr:'

Let these expressions for 1,, 7,, ..., t,_, in terms of ¢’s and r, be substituted
into the equation

G = go(?) + 9:(Drs + g2 + -+ + g (D).

The resultis a polynomialino,,0,,...,0,_, andr,. Let the terms be gathered
according to the power of r, that they contain to give an expression of the
form _

G(ri, 125+ 5 m0) = fo(0) + fi(o)ry + folo)ra + -+ + flo)rh

where each f(o) is a polynomial in ¢,, 6,,...,0,-, which has integer co-
efficients if G does. If u > n then the degree of this polynomial with respect
to r, can be reduced using the relation

ey .._...2 — —_
re=rn oy — %0, 1 30— -+ (= 1) g,

found above. Therefore, by repeated use of this identity, the degree in r,
can be reduced to n — 1 and an identity of the form

G(rla Faseo. ,I‘,,) = fO(a) + fl(a)rn +oee b ﬂt—l(a)rﬁwi (1)

can be derived. Here each fi(o) is a polynomial in ¢, 0,, ..., s, which has
integer coefficients if G has integer coefficients. The proof will be completed
by showing that, in a relation of this form, if G is symmetric, then

Jofar o5 Jumr

are all necessarily 0 so that G(ry, r,,...,r,) = fo(64, 05,...,0,) as was to be
shown.

Both sides of (1) are polynomials in ry, r,, . .., r,. Therefore it is meaning-
- ful to interchange r, and r, in each side. This leaves G unchanged, by assump-
tion, and leaves f(o) unchanged because the ¢’s are symmetric. Therefore it
changes (1) into the same equation with r, in place of #,. In the same way,
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r, can be interchanged with any one of ry, r5,...,7,— . This gives an n X n
system of linear equations

Jo(0) + filo)ry + foo)r: + o+ + fumi(o)i ! = Glry, 72,5 10),
folo) + fi(o)r, + fz(a)ré L o ﬂz—1(0')"g_1 = G, 725> Tk

fol0) + S0 + o002 + -+ oo (O = Glrra T2, o7

in which the matrix of coefficients is [~ '], that is, has ri™! in the ith row
and jth column. The determinant of this matrix, regarded as a polynomial
inry,r,,...,r,,is obviously nonzero because no two of its n! terms contain
the 7’s to the same powers.* Thus the fact that multiplication of the column
vector (fo(0), f1(6),..., f,—1(c)) by this matrix gives the same result as
multiplication of the column vector (G, 0,0,...,0) by the same matrix
implies that these two column vectors are identical, as was claimed above
(see Exercise 30). ]

A slightly different way to reach the desired conclusion G = f, is to regard
the above n equations as saying that the polynomial F(X) = f,_ X"~ ! +
fic s X" 24 oo+ f1X + fo — G (with coefficients that are polynomials in
ry, Iy, ..., 1, has at least the nroots X = ry,r,,..., r,. Therefore (Exercise
29) it is divisible by (X — r )X —ry)--- (X — r,). This would imply
deg F > n if F(X) were not the zero polynomial, so F(X) = 0, which is to
Sany = Gafl = Ov.fz =0,.. 'Lf;l“I = 0.

Particular Symmetric Polynomials

§12 It was mentioned above that there is a theorem connected with the
fundamental theorem on symmetric polynomials that is traditionally known
as “Newton’s theorem.” Specifically, this theorem from the Arithmetica
Universalist is the following. For a given value of n, let 6y, 05, ..., 0, be
the elementary symmetric functions in n variables ry, 7,5, ..., F,, and let
s, for k = 1,2, 3, ... be the symmetric polynomial '

k
Se =715+ + -+ k.

By the fundamental theorem, each s, can be expressed in terms of the o’s.
In many situations it is useful to be able to find these expressions explicitly.
(When n = 8 they are given in §9 above.) “Newton’s theorem” is the relation

S ™ Sk-1014 + Sk_zo-_z R = (—l)knlsiak_i -+ (ml)kko'k = O
k=1,23..),

* This is the “Vandermonde determinant.” See note to §15.
1 [N2, p. 203 in the English translation.]
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where, as is natural, ¢; = 0 for j > n. Thus
sy — 0y =0,
S, — §:04 + 20, = 0,
S3 — 8,04 + §,0, — 3053 =0,
etc.

These relations make it easy to compute the s, when the o, are known, and
vice versa. In particular, given any polynomial, one can easily find the sum
of the kth powers of its roots without finding the roots. (See Exercises 15 and
16.)

§13 A symmetric polynomial of particular importance is the discriminant
[1(r; — r;)* where i and j run over all pairs of distinct integers 1 < i < j < n.
In the case n = 2the discriminantis (r; — r,)? = r? — 2r,r, + 13 = 0% — 4o,,
a formula which lies at the base of the solution of the quadratic equation. In
particular, the discriminant of the roots of a quadratic equation
x% + bx + ¢ = 0is (=b)*> — 4c, which shows that the two roots are equal if
and only if b* — 4¢ = 0. For more variables, the discriminant is increasingly
difficult to express explicitly in terms of the ¢’s. For example, for n = 3 it is
o303 — 46305 + 186,0,05 — 403 — 27035 (see Exercise 25). Thus, in par-
ticular, an equation of the form x® + px + g = 0 has multiple roots (its
discriminant is 0) if and only if —4p® — 27¢* = 0.

First Exercise Set

1. Show that if x and y are any two (real) numbers, and if s = x + ), p = xy, then
s? — 4p > 0. Thus if s> — 4p < O the problem s = x + y, p = xy has no (real) solution.

2. Show that the formula

s+ /8% —4p

2

X, Yy =

of §3 solves the problem algebraically in the sense that it gives a solution whenever
/5% — 4p is something with the property that its square is s> — 4p. Thus, in particular,
it is valid for s> — 4p < 0 when /s — 4p is regarded as a complex number.

3, The solution of the cubic in §5 should also be regarded as algebraic. 1t is not well
suited to the numerical solution of equations. Show that for the solution of x> + 6x = 20

it gives x = J10 + /108 — \3/- 10 + /108, To derive the solution x = 2, put

{Vi 10 + /108 in simpler form by solving (¢ + d\/g)3 = +10 + 6\/5 for ¢ and d.
(This example is from Cardan’s Ars Magna.) Show that the other two solutions of

x3 4+ 6x = 20 are not real.

4. Solve x3 = 3x + 2 by the method of §5. Use the solution that is obtained to find a
linear factor of x* — 3x — 2 and thereby to find two other real roots of the equation.
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Show that these roots are given directly by the method of §5 if one uses the complex roots
of w® = 1, thatis,w = 4[—1 + i\/g].

5. Find the complex roots of the equation of Exercise 3 by: (a) solving the quadratic
equation they satisfy; and (b) using complex values of a in the solution of the cubic.

6. Show that the solution of an nth degree equation of the form x" + ax"~' +
bx""2 4+ -+ + dx + e = 0 can be reduced to the solution of another such equation in
which a = 0 by the substitution x = y + C.

7. Show that the method of §6 solves x* + px? 4 gx + r = 0 algebraically in the sense
that it writes the left side of this equation as a product of two factors of degree 2 (which
can then be written as products of linear factors using the quadratic formula).

8. Newton’s objective in the passage where he gives the first set of formulas in §9 is to
determine, given two cubic polynomials, whether they have a common root. Let f(x) =
X3 + bx? + cx + d have roots 1, s, £, as in §9, and let g(x) = x> + Bx* + Cx + D.
Then g(x) and f (x) have a root in common if and only if g(r)g(s)g(t) = 0. Since g(r)g(s)g(t)
is a symmetric polynomial in r, s, t whose coeflicients are polynomials in B, C, D with
integer coefficients, this condition can be expressed in the form P(b, ¢, d, B, C, D)=0
where P is a polynomial with integer coefficients. Find P. [An easy but slightly long
computation. P has 34 terms.]

9. The polynomial P of the preceding exercise is called the resultant of x* + bx? +
ex + d and x* + Bx? + Cx -+ D. This gives the resultant of x* + (b/a)x? + (c/a)x +
(d/a) and x® + (B/A)x* + (C/A)x + (D/A) which, because these polynomials have the
same roots, it is natural to call the resultant of ax®> + bx? + cx + d and Ax® + Bx? +
Cx + D. Find this resultant. [Easy from Exercise 8.] This, in essense, is the form in
which Newton gives the answer. Prove that the resultant is O if and only if the two poly-
nomials have a root in common or 4 = a = 0, i.e. neither polynomial is in fact cubic. -

10. Use the resultant to reduce the solution of two equations in two variables f (x, y) =
0, g(x, y) = 0to the solution of polynomials in one variable in the case where fand g both
have degree 3 at most in x. In all likelihood, this is the application that Newton had in
mind and it is the reason he did not assume a = A = 1. (Rather rough arguments arc
all one can expect here, since the notion of a selution of an equation has yet to be spelled
out.)

11. Given apolynomialin nvariables f(x;, X5, . .. , X,), letitsterms be ordered as follows.
Arrange terms first according to the power of x; they contain: f = Apxt +
Ap_ X"V 4 ..o 4 A,x, + A, where the A’s are polynomials in x;, X3, ..., X, Next
arrange the terms of A; according to the powers of x, they contain: 4; = By xk + - -
+ By x, + B, then arrange the terms of B;; according to the powers of x5 they con-
tain, etc. Otherwise stated, put the terms of f in lexicographic order, where one term
precedes another in Jexicographic order if it contains x, to a higher power, or, if they
contain x, to the same power, it contains x, to a higher power, or, if they contain x,
and x, to the same power, it contains X, to a higher power, etc. Show that if / and
g are two polynomials in Xy, X,, ..., X, in lexicographic order then the leading term of
fg is equal to the leading term of f times the leading term of g.

12. Give a proof of the fundamental theorem on symmetric polynomials along the
following lines. Let G(x,, X3, ... , X,) be a symmetric polynomial, and let AXT'x5? - - - X,
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be its leading term (in lexicographic order). Then m, > m; > .-->m,and

My~ Mz m2—m m Rip My
Ao-l 2g2T M L glin 1T g in =

is a symmetric polynomial with the same leading term. Similarly, let g be the monomial
in 6,6,, ..., 6, with the same leading term as G — f, h the monomial with the same
leading term as G — f — g, and so forth. Show that eventually one of these differences
must be 0, and therefore that G can be written as a sum of monomials in o,,0,, ..., 0,
with coefficients that are integers if the coefficients of G are integers.

13. Use the method of the preceding exercise to derive formulas (1)-(19) of §9.

14. Give an alternate proof of the identity 1) — ;77! + 6,772 — ... + ¢, = 0 of §11.
15. Prove Newton’s Theorem (§12).

16. Use Newton’s Theorem to derive the formulas for “every #” (i = 1, 2,..., 8) in §9.

17. Find an equation of degree 2 whose roots are the cubes of the roots of x2 + ax + b.
Apply this to the equation x* + x + 1 to conclude that its roots are complex cube
roots of unity.

18. Find all quadratic equations x> + ax + b = 0 with the property that the squares
of the roots coincide with the roots.

19. Foragivensetx,, X,, ..., x, of n variables let (k,, k5, . . ., k;) denote the polynomial
which Newton would call “every x’§‘x’§ - xi».” that is, the sum of all distinct monomials
that can be obtained from x%'x42 - . - x}* by permutations of x,, X, ..., x,. (It h > n let
(ki k35 ..., ky) be the O polynomial) Prove the following rule for computing
(k1s ks, .. k,,)(m) Let 4 be the set of all functions (ki, k5, ..., kj.,) such that (1)
ki>ky>.- >k, and (2) the (h + 1)-tuple of mtegers (K, ks, ..., kpyy) is the
componentwise sum of two (h + 1)-tuples, one of which is a permutation of
(ky, k3, ..., k,, 0) and the other of which is a permutation of (m, 0,0, ..., 0). Then
(kyskq,. ,,)(m) Y seaCyf where ¢, is the number of distinct ways that the k-tuple
f=(k, ’2, ..., k,+1) can be written as a sum of two (h 4+ 1)-tuples in the prescribed
manner, or, what is the same, the number of terms in the sequence f = (k1, k5, ..., Kk}, ;)
that are equal to the value k] which contains m. For example, (1, 1)(1) gives 4 = (2, 1, 0),
(1, 1, 1); the first arises only as (1, 1, 0) + (1, 0, 0), but the second arises three ways—
(1,1,0) + (0,0,1), (1,0,1) 4+ (0,1,0), and (0,1,1) + (1,0,0). Therefore (1,1)(1) =
(2, 1)+ 3(1, 1, 1)

20. Using the preceding exercise, show that every symmetric polynomial with integer
coeflicients can be written as a polynomial in s; = x} + x5 + -+ xi (i =1,2,3,..))
with rational coefficients.

21. Prove (6) of §9 by expressing (3, 1) in terms of s, = r + 5+ t, 5, = 12 + 5% + t?,
s3=1r>+ s>+ £3,...as in the preceding exercise, and expressing Sy S35 83, ... 10
terms of &’s.

22. Show that the representation in the fundamental theorem on symmetric polynomials
is unique. In other words, show that if F(y,, y,, ..., y,) is a polynomial in n variables
with the property that substitution of the symmetric functions Oy, 02,...,0, I R
variables x,, x,, ..., x, in F gives the 0 polynomial F(s,, g, ...,0,) = 0, then F is
the 0 polynomial. '
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23. Prove the formula

1 1 1 1
a b ¢ d
a* b* * d?
a® » 3 &P

for the 4 x 4 Vandermonde determinant and its generalization to the n x n case.

= (d — ¢)(d ~— b)(d — a)(c — b)(c — a)(b — a)

24. Multiply a Vandermonde determinant by its transpose to prove the formula
S0 51 Sz 83
Sy S, S3 S84

So S3 84 S5

83 S5 S5 Sg
for the discriminant D of a 4th degree equation (see §13).

25, Use the analog of the formula of Exercise 24 to derive the formula for the dis-
criminant of a cubic given in §13.

26. Show that if f(x) = (x — r{)(x — ry)(x — r3) then the discriminant is the negative
of the resultant of fand its derivative f”. Use the formula of Exercise 8 to derive the form-
ula of §13.

27. Derive the formulas for sl, $5»...,5g in §9 by taking the log of (1 + ry)(1 + r5)---
A+r)=1+0,+0,+ -+ 0, using the series log(l +x)=x —3x? +4x* -
1x* + ... and equating terms of like degree.

28. A polynomial in three variables can be written in one and only one way in the form
F(6) + Fy(0)x + F3(0)x* 4+ F4(0)y + Fs(o)xy + F¢(o)x*y, where Fi(o) is a poly-
nomial in ¢, = X + y + 2, 0, = Xy + yz + zX, 05 = xyz. Write z* in this form. State
and prove an analogous theorem for polynomials in n variables.

29, Let F(X,ry,¥3,...,1,) be a polynomial in n +.1 variables X, ry, 15, ..., 1y, 52y
with integer coefficients. Show that if F has the property that substitution of r; for X
gives a polynomial that is identically Ofori = 1,2, ..., nthenF = (X —r )(X —rp)---
(X — r,)Q for some polynomial Q in X, ry, r,, ..., r, with integer coefficients.

30. In connection with the proof of §11, show that an n x n system of linear equations
Y a;;x; = y; in which the @’s, x’s, and y’s are polynomials in some fixed set of variables
71, P2, ..., ,—oOr in fact where the a’s, x’s, and y’s are elements of any commutative
ring without zero divisors—determines the x’s when the a’s and y’s are given unless
det(a;;) = 0
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A Method for Solving the Cubic

§14 The solution of the quadratic equation is expressed very succinctly
in the formula

x = 4(x + ) + (x — )] = Hx + ) + V& = 37 (1)

Here x and y are supposed to be the roots of a quadratic equation x? +
bx + ¢ = 0, so that polynomials symmetric in x and y have known values
expressible in terms of b and c¢; since x + y and (x — y)? are symmetric
polynomials, their values are known and can be substituted into (1) to give

the value of x. The only hitch is that . /(x — y)? has two values. If the other
one, y — X, is used in (1), the result is the other root y instead of x. Thus, in
either case, (1) gives a root of the equation and, since x + y is known,
the other root can then be found immediately. Since x + y = —b and
(x — ¥)* = (x + y)* — 4xy = b? — dc, the solution in (1) is the familiar one
H=b £ /b7 — 40,

A similar technique can be applied to the solution of the cubic. Let x, y, z
be the solutions of a given cubic equation, so that symmetric polynomials in
x, ¥, z have known values expressible in terms of the coefficients of the given
cubic. In a solution of the cubic analogous to (1), it is natural to expect that
cube roots will be involved rather than square roots. In the same way that a
quantity 4 has two square roots i\/z;, it has three cube roots \3/;, oc(\%:),
ocz(%), where \3/& is one of the cube roots (which is normally taken to be
the real cube root if u is real) and « is a primitive cube root of 1, that is,
«® = 1, # 1. There are two possible values for o and they satisfy the quad-
ratic equation a® + o + 1 = (¢* — 1)/(« — 1) = 0, which, by the quadratic
formula, gives a = (=1 + ./ —3)/2.

The analog of (1) for the solution of the cubic is

x=3x+y+z)+Kx+ay+ a2+ (x+ oy + az)]
=3[(x + y + 2) + J(x + oy + «?2)3 + Y+ @?y +02)’]. (2)

This formula requires that the quantities under the radicals, say u = (x + ay
+ oa’z)’and v = (x + o’y + az)?, be evaluated. This is easily done by observ-
ing that uv and u + v are symmetric in x, y, z and are therefore known. Clearly
uv and u -+ v are invariant under interchange of y and z because this opera-
tion merely interchanges u and v. They are invariant under the cyclic per-
mutation x — z — y — x because this carries u to

(z + ax + a?y)® = [z + x + ap)]® = u

and, in the same way, carries v to v. Since any permutation of x, y, z can be
obtained as a composition of interchanges of y and z and cyclic permutations,
it follows that uv and u + v are symmetric polynomials in x, y, z and can be
evaluated. (See Exercise 1.) Thus u and v can be evaluated using (1). Once
this is done, these values can be used in (2) to find x. One has no way of telling
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which is u and which is v, but since u and v enter symmetrically in (2) this is
no problem. What is a problem in using (2) is the choice of the cube roots of
u and v. Since there are three choices for each, there are nine values of (2).
Of these, two more,

y=1(x+ y+ 2) + oa¥(x + ay + o?2) + alx + o’y + a2)],
and

z=3(x+y+2)+ ax + ay + a?z) + o*(x + o’y + az)],

are the remaining solutions of the cubic, while the remaining six are not
solutions. One can thus use (2) to find nine values and then simply try all
nine in the cubic and reject those which fail to satisfy it. (For a better method
of selecting the three solutions from the nine values given by (2) see §16.)

(In this solution we have assumed, as did the mathematicians of the
eighteenth century, that the roots x, y, z exist in some sense and that the
problem is merely to give formulas for them. The problem of the existence
of roots is discussed beginning in §49.)

Lagrange (Vandermonde) Resolvents

§15 The solution of the cubic equation in the preceding article was first
given by the French mathematician Vandermonde in a presentation to the
Paris Academy in 1770 [V1]. Vandermonde went beyond the cubic to the
quartic and to certain higher degree equations, including the equation for
11th roots of unity (see §22). Unfortunately, although' Vandermonde was
still young at the time, and although this work demonstrated a great deal of
insight into the theory of equations, this is as far as his work went. It was
eclipsed a few months later by the publication of Lagrange’s extensive
Réflexions sur la Résolution Algébrique des Equations by the Prussian
Academy while Vandermonde’s work was still awaiting publication by the
Paris Academy. (It waited until 1774.)

(For an interesting account of Vandermonde’s career, see Lebesgue’s
essay [L2]. Although Vandermonde had insightful ideas in other areas of
mathematics as well, he does not seem to have followed these up either, and
he is remembered today only because the name “ Vandermonde deterrinant”
was given to a determinant which, ironically, does not occur in his work at
all.*)

* Lebesgue conjectures that this name was concocted by someone who misread a passage in
Vandermonde, mistaking superscripts for exponents. However, the formula a®b + b%*c + c?a —

a’*c — b%a — ¢*b = (a — b)(a — c)(b — ¢) does occur early in Vandermonde’s main treatise. If
the left side is written as a 3 x 3 determinant

a? b c?
a b ¢

1 1 1t

it is a “Vandermonde determinant” and the generalization to four or more variables is easy to
derive.
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Unlike Vandermonde, who was French but did not have a French name,
Lagrange had a French name but was not French. He was Italian (he was
born with the name Lagrangia and his native city was Turin) and at the time
of the publication of his Réflexions he was a member of Frederick the Great’s
Academy in Berlin. When he left Berlin in 1787 he went to Paris, where he
spent the rest of his life and where, of course, he was a leading member of the
scientific community; this has tended to reinforce the impression that he was
French. He was certainly the greatest mathematician of the generation
between Euler and Gauss, and, indeed, has a secure place among the great
mathematicians of all time.

§16 Aswas mentioned in §2, Lagrange’s Réflexions was a very long work
(in his Oeuvres it occupies 220 pages) that examines from all angles the
solution of equations of degree 2, 3, and 4, and seeks to deal with the algebraic
solution of equations of higher degree. His approach to the solution of the
cubic is essentially Vandermonde’s (though Lagrange was not aware of
Vandermonde’s work at the time) but he describes it in a somewhat different
way. For h1m as for Vandermonde, the basic idea is to consider the quantity
X + ay + a*z where x, y, z are the solutions of the cubic in question and
where « is a cube root of unity (« s 1). Let ¢ denote this quantity. Lagrange
observes that t has six values, depending on the order in which the roots
x, ¥, z are taken. These six values are the solutions of a 6th degree equation

JX) = (X = t)(X = )X = £3)(X — t)(X — t:)(X — tg) =

whose coefficients, being symmetric in the six values of ¢, are symmetric in
x, ¥, z and are therefore known quantities expressible in terms of the co-
efficients of the given cubic. Lagrange calls this the resolvent equation.
Although it is of higher degree than the original, it is solvable because it is
in fact a quadratic equation in X> and can be solved by solving a quadratic
and then taking a cube root.

The fact that the resolvent equation f(X) = 0 is quadratic in X3 is easily
seen by observmg that the values of ¢ can be ordered so that t, =z + ox +
oy = oty, ty = a3ty t; =X + 0z + o y, ts = aty, tg = a’t,, which glves
(X = 1) X — 1) X = t3) = (X — )X — at ) )(X — &’ty) = X* — ¢} and
f(X) = (X3~ t3)(X3 —13) = X% — (&3 + )X3 + 34, In the notation
above, u = t3,v = t3, and the coefficients of f (X) are precisely the quantities
u + v and uv whose expression in terms of the coefficients of the original
cubic gave the solution above. Once the six values of ¢ are obtained from
the solution of the resolvent equation, the solutions of the cubic are given
by xms[(x+y+z)+t1 + 14, y—3[(x+y+z)+oet1+at4] z =
i(x + y + z) + at, + o?t,] and the only problem is to identify ¢, and ¢,
among the six solutions of the resolvent equation.

Unlike Vandermonde, Lagrange deals with the problem of determining
which ¢’s to use in the formulas for x, y, z. Let t be any solution of the resolvent
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equation. Then the roots x, y, z can be reordered, if necessary, so thatt = x +
ay + a?z. Lagrange observes that (x + ay + o®z)(x + a’y + az) is sym-
metric in x, y, z and is therefore a known quantity, say w. (See Exercise 3.)
Once this observation has been made, the solution is simple. The three roots
of the cubic are 4[(x + y + 2) + t + (w/t)], 3[(x + y + 2) + ot + (W/an)],
and 4[(x + y + z) + 2t + (w/a?t)], where ¢ is any one of the six solutions
of the resolvent equation.

§17 The natural way to generalize Lagrange’s method to the solution
of quartic equations is to set t = x + iy —z —ir (=x + iy + i’z + i°r)
where i = ./ —1 is a primitive* 4th root of unity and x, y, z, r are the roots
of the quartic in question. Then ¢ has 4! = 24 different values according to
the order of x, y, z, r, and they satisfy a resolvent equation f (X ) = 0 of degree
24. Can the resolvent equation be solved and, if so, does its solution lead to
a solution of the original equation? The answer to these two questions, as
both Vandermonde and Lagrange showed, is yes (see Exercise 4), but, as
both of them also noted, there is an easier way to derive a solution of the
quartic from considerations of this type.

The analog of formula (2) of §14 would be

x=Hox+y+z+n+Jat+iy-z—i+Jx-y+z-n"
+ Y —iy —z+ %]

To use this it would be necessary to evaluate each of the quantities under
the radical signs. In particular, it would be necessary to evaluate the middle
one (x — y + z — r)*. But, in fact, the evaluation of this one quantity, which
is relatively easy using ideas that have already been introduced, is enough
to make possible the solution of the quartic equation as follows. Let ¢t =
x — y + z — r. Then the twenty-four permutations of x, y, z, ¥ produce only
six different values of ¢, namely, +(x —y+z—1r), *(x+y—z—7),
+(x — y — z + r), and each occurs four times. Let them be denoted by +¢;,
+t,, +t;. Then the resolvent equation associated with ¢ is of the form

X =X —t)HX + )X — )" (X + )X — )X + t3)*
=g(X)* =0

where g(X) = (X% — t)(X? — 3)(X? — t3). Thus ¢, 13, t2 are the roots of a
known cubic equation, because the coefficients of g(X) are symmetric in t3,
2, t2 and therefore symmetric in x, y, z, r. Since a cubic equation can be
solved, this means that t2, t2, t3 can be found and therefore, by taking square

* An nth root of unity o is said to be primitive if n is the least positive integer such that «" = 1.
Of the four 4th roots of unity (+ 1, +1) two are primitive (1)
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roots, so can +t,, +1¢,, +15. Since

N
If
Bl B B B

[x+y+z+r)+1t +1t,+15],
[(x+y+z+r)—t; +1, — 5],
[(x+y+z+r)+1t, —1t, —13],
[(x+y+z4+7r)—t; — 1ty + 5],

i

H

the solution of the quartic is reduced to the problem of assigning signs* to
t1» L2, t3. Let s; be any one of the six roots of g(X) = 0, and let s, be any
other root witht s, # —s;. Then a check of the possibilities shows that just
one root of the quartic occurs with the sign + in both s, and s,, and just one
with the sign — in both. Rename the roots so that x occurs with the sign +
in both s, and s, and r with the sign — in both. Of the remaining two roots,
let y be the one which occurs with the sign — in s, and let z be the last root.
With the roots so named, s, = ¢, and s, = t,. In short, any two distinct
solutions of g(X) = 0 can be taken to be ¢, and t,, provided only that one
is not the negative of the other. The above formulas can then be used to
find x, y, z, and r once ¢ is determined. This can be done simply by observing
that £,t,15 is symmetric in x, y, z, r and is therefore known, say t,t,t; = w.
(See Exercise 5.) Then t; = w/t;t, is determined by ¢, and t,, which com-
pletes the solution of the quartic.

§18 Consider now the extension of these ideas to the case of a quintic
equation. Let x;, x,, x5, X4, x5 be the roots of the equation and let t =
X; + X, + a°x3 + x4 + o*xs where o is a primitive S5th root of unity,

> =1, # 1.Thenthas5! = 120different values and it satisfies an equation
f(X) = 0 of degree 120 whose coefficients are symmetric polynomials in the
x’s and are therefore known If t; 1s a value of ¢ then so are at; = x5 +
ax, + o®x, + ..., and o?t;, o’t,, a*t;. Thus f(X) contains the factor}
(X =t )X —at )X — o2t (X — Pt )X —o*t) = X3 -3 and s,
actually, the product of twenty-four such factors. Thus, although f(X) has
degree 120, it is in fact a polynomial of degree 24 in X°. Is it possible to solve
f(X) =0 and, if so, can one use the solution to find x,, x,, x5, x4, x5?

Since it is easy (see Exercise 7) to find values ¢, t,, t3, t, of ¢t such that
Xy = 5[0y + X, + X3 + X4 + X5) + t; +t, + t3 + t,], the answer to the
second question is “yes” if one is prepared to resort to a good deal of trial

* As with the cubic, Vandemonde did not address this problem and contented himself with the
formulaz[(x + y + z + r) + ¢, + ¢, + t;] which gives eight values, four of which are roots of
the equation.

+ This is possible unless two of the roots of the original quartic are equal (see Exercise 8), a case
which can be ignored for the reason explained in §31.

I This formula makes use of the equation (x — 1)(x — a)(x — a?)(x — o®)(x — o¢*) = x5 — 1,
which follows from the fact that 1, «, a2, 3, a* are the roots of x* — 1.
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and error. Perhaps it would be possible to reduce the trial and error or even
to eliminate it altogether, as was possible in the cases of the cubic and the
quartic, but there is little point in pursuing this question unless there is
some hope that the answer to the first question is “ yes.” Neither Lagrange
nor Vandermonde thought this was very likely.

What is happening, clearly, is that the degree of the resolvent equation
f(X) = 0 is growing too rapidly. When n = 3 the resolvent equation has
degree 3! = 6 but actually has degree 2! = 2in X 3 and is therefore solvable.
When 1 = 4 it has degree 4! = 24 but actually has degree 3! = 6in X 4 With
ingenuity this particular equation of degree 6 can be solved. Alternatively,
if, in the case n = 4, the resolvent t = x; + ax, + o’x; + oa’x, witha = —1
instead of the primitive 4th root « = i is used, then the resolvent equation
f(X) = g(X)* is the 4th power of a 6th degree equation g(X) which is easily
solvable because it is actually a cubic in X 2. This trick cannot be used in the
case n = 5 because all 5th roots of unity other than 1 are primitive. Thus,
in the case n = 5 one is faced with the solution of an equation of degree 24
and, although it is a special equation, this seems an extremely difficult and
possibly hopeless task. At least Lagrange thought so.

§19 This is the essence of Lagrange’s Réflexions as far as the solution
of equations of low degree by radicals is concerned. He examines in detail
all the approaches that have been taken to the solution of cubic and quartic
equations and shows how they can all be interpreted as applications of one
method. A quantity ¢, called the resolvent, is obtained as the solution of an
auxiliary equation called the resolvent equation, and the roots of the original
equation are expressed in terms of t. Moreover, he shows that in the successful
cases the resolvent has the form x, + ax, + -+ + "~ 'x, where n is the
degree of the equation, where the x; are the roots of the equation, and where
« is an nth root of unity (not necessarily primitive). Such a quantity is now
known as a Lagrange resolvent. After remarking on the apparent failure of
the method for equations of degree 5 or greater, he proceeds to a very general
investigation of possible resolvents ¢ in terms of which one might hope to
express the roots of the equation. This investigation leads to no particular
conclusion—although it includes a general theorem of considerable impoz-
tance (see §29)—and leaves the subject in an unfinished condition well
designed to invite a young Galois to attempt to carry it further.

Second Exercise Set

1. Show that the six permutations of x, y, z can be obtained as compositions of the cyclic
permutation x — y - z — x and the interchange y < z.

2. Letuandvbeasin§l4and finduvandu + vintermsof oy = X + y + 2,0, = Xy +
yz + zx, and g3 = xyz.

3. Find (x + oy + a?2)(x + &y + az) in terms of 64, 0,, 03.
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4. Fill out the following sketch of a solution of the quartic equation based on the
resolvent t = x + iy — z — ir. (See Lagrange [L1], Section 48. Lagrange ascribes the
method to Bezout.) This quantity satisfies an equation of degree 24 which is an equation
of degree 6 in t*. Let n = ti where f is the complex conjugate of t. Then = is the
root of a known cubic. Then (i/2)(t + £)(t — ©) is the difference of the other two roots of
this cubic, and its square —(t* — 2:%F* + £*)/4 can be expressed in terms of 7. Thus ¢
satisfies a quadratic equation in t* whose coefficients are expressible in terms of 7. A
solution x of the original equation can be expressed in terms of ¢, £, a known quantity,
and x — y 4 z — r. The latter can be found either as in §17 or in terms of other values
of 1. ‘

S. Find the expression of ¢,t,¢; = w in terms of o,, 6,, 64, 6, Where, as in §17,t, =
X—y+z—nrnth=x+y—z—rniz=xX—y—2z+r

6. In the notation of Exercise 5, show that if t; = +t, or +¢5 then two roots of the
original equation are equal.

7. Find four values ¢, t,, t3, ty of t = x| + ax, + a®x3 + a®x, + a*xs, as in §18, such
that Xy = %[0'1 + ty -+ ty + t3 + f4]

8. Show that the six quantities
Tx—y+z—-r), x+y-—z—-1, t(x—y—-z+r)

contain two, say s and z, such that s # -+, unless at least three of x, ¥, z, r are equal.

Cyclotomic Equations

§20 Roots of unity are of great importance in algebra both because they
occur in connection with taking any root (if \'/E is any nth root of ¢ then the

most general nth root of ¢ is oc\'/E where a is an nth root of unity) and because
they occur in the Lagrange resolvent.

Roots of unity can be described transcendentally by the formula o =
cos(2nk/n) + isin(2nk/n) (where k = 1,2,...,n) because de Moivre’s
formula (cos 0 + i sin 6)" = cos nf + i sin n then gives " = cos(2nk) +
i sin(2nk) = 1. In view of the geometric meaning of the circular functions
sin x, cos x, this means that the roots of unity are the vertices of a regular
n-gon inscribed in the unit circle {|z| = 1} of the complex z-plane with
one vertex of the n-gon at z = 1. For this reason, the algebraic equation
x" = 1 satisfied by the roots of unity is called the cyclotomic equation—its
solution effects the division of a circle into n equal parts (cycle = circle,
tom = division or part).

One of the basic problems in the theory of the algebraic solution of
equations is to give algebraic solutions of the cyclotomic equations x" = 1.
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§21 In the case n = 3, the algebraic solution
e +oa+ 1 =@ — Dife—1)=0,

o = 4(—1+ /—3) was given above in §14. (The same solution can easily
be found geometrically as well. See Exercise 1.) In the case n = 4, the alge-
braic solution a2 + 1 = (@* — D/(a? — 1) = 0, « = / —1 is even easier. In
the case n =5, a primitive root o satisfies a* + o> + &> +a + 1 =
(® — 1)/ — 1) = 0. Thus it satisfies a quartic equation and an algebraic
solution is possible. However, instead of applying the general method of
solving quartic equations, it is easier to exploit the symmetry of the equation
a* + o2 + o® + o + 1 = 0toreduce it to a quadratic. This can be done by
dividing by o and noting that (¢ + o™ !)? = o« + 2 + o~ ? to write the
equation in the form (x + ¢ 1> — 2+ (@ +a )+ 1=0,9"+y—-1=0,

where y=o+a !. Then y=4(-1 i\/g) and o —ay+1=0,
o =4y + /y* — 4), from which it follows (see Exercise 3) that

WS-tV -2 i-00 /51472510

*= 4 ’ 4

are the four primitive 5th roots of unity. (The algebraic fact that the Sth roots
of unity can be expressed in terms of square roots corresponds to the geo-
metrical fact that a regular pentagon can be constructed by ruler and compass,
a fact which is a major feature of Euclid’s Elements. See Exercise 2.)

Ifn = jk where jand k are relatively prime, then it is easy to see (Exercise 4)
that the product of a primitive jth root and a primitive kth root of unity is a
primitive nth root of unity. Thus, (— 1)a is a primitive 6th root of unity, where
« is a primitive cube root of unity. More generally, since any n can be written
inthe formn = j- k- --- - mwhere the factors j, k, . .., m are prime powers and
are relatively prime, this fact shows that in order to be able to find primitive
nth roots of unity for an arbitrary positive integer n, it suffices to be able to do
this in the case where n is a prime power. The principal case is the case where
n is prime, and this is the case that will be treated here. It is then simple to
show (see Exercise 15) that the p"~ !st root of a primitive pth root of unity isa
primitive p"th root of unity.

Eleventh Roots of Unity

§22 For the next prime, n = 7, the trick used in the case n = 5 can be
imitated to give a® + o® + o* +o® +a? +a+1=@ — Diea~ 1) =
0,0 +a 3+t +al+a+at+1=079-3y+9-2+7y+
1 =0,9% + 9> — 2y — 1 = 0, wherey = o + a~ '. The cubic equation for y
can be solved (see Exercise 11) and the result used in w? —ay + 1 =0,

o =%y + /¥ - Htogivea.
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When this reduction technique is applied in the case n = 11, it reduces
(@' = Dae — ) =a'® +a® + -+ + a + 1 = Otoaquinticequation and
therefore does not in itself lead to an algebraic solution of the equation.

In his Réflexions, Lagrange observes that the solution of x!! = 1 leads to
aquinticequation, and leaves it at that. Vandermonde, on the other hand, gave
an algebraic solution of this problem, and, in this, far excelled Lagrange. His
method can be briefly described as an application of the Lagrange (Vander-
monde) resolvent to the quintic that comes from the above reduction. The
essence of hisidea can be seen more clearly, however, if one applies it not to the
quintic equation but to the original 10th degree equation

0% 4 0%+ +a+ 1= (!t = 1) —1)=0.

In order to apply the method of the Lagrange resolvent to a 10th degree
equation, one needs a 10th root of unity. Let f# be a primitive 10th root of
unity (that is, f is the negative of one of the primitive Sth roots found above)
and let o be the desired 11th root of unity. Then the roots of the equation
x4+ x% + ..+ x + 1 = 0area,a® o, ...,a'°% sothe Lagrange resolvent
is o + foa* + --- + p% o™ where (j, k,...,m) is some permutation of
(1, 2,...,10). The basic idea* behind the solution that follows is to put the
roots of (x!' — 1)/(x — 1) in the order o, &2, o*, a8, o, a'°, &°, o’, a3, «® in
which each root is the square of its predecessor. The associated Lagrange
resolvent is then

t = o + ﬁoc2 + [320(4 + ﬁ3O(8 + ﬁ40£5 + ﬁsazo + [))6069
+ 7" + oo + pouS,

The advantage of putting the roots in this order is that ¢'° is then a known
quantity, as will be shown below. More generally, let t;,, fori = 1, 2,..., 10,
be ¢ with 8 changed to f. (In particular, t,o = a + o® + o* + a® + .-+ +
a® = —1.) Then ¢! is known for all i and o = &5[t, + £, + -+ + t;o] =
Tol 19110 + 1960 + .. 4 191157, s0 that, except for the problem of choosing
the 10th roots, a primitive 11th root « has been found. Actually there is no
problem at all in choosing the 10th roots because the same argument that
shows that ¢} ° is a known quantity also shows that ¢;2}° ' is a known quantity
so that once ¢, has been chosen (and there are just ten possible choices, because
t1° is known) the values of t,, t3,..., t, are known and therefore so is
o= ig(t; + t, + -+ + t;o). This procedure is easily seen to give an 11th
root of unity o no matter which of the 10th roots of £1° is used (see Exercise 5).

(D

§23 The main step in this solution of x'! = 1 is to show that if ¢ is
defined by (1) of §22 then t!Y is a known quantity. What this means, in
essence, is that 19 can be expressed in terms of the known quantity f alone.

* In Lebesgue’s interpretation, Vandermonde was aware of the connection between the order he
chose for the roots of the quintic and the fact that 2 is a primitive root mod 11. This is probable
but by no means certain. See Lebesgue [L.2].
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Now 19 is, in the first instance, a polynomial in o and f. Thus, a typical term
of t19 is of the form Af/o* where 4, j, and k are nonnegative integers. Since
B% = land a*! = 1,onecanassume 0 < j < 9and 0 < k < 10. Now let the
terms with like powers of a be gathered to give an expression of the form

' = po(B) + pi(B)e + pa(P)o® + pa(P)et
+ pa(Bo® + ps(B® + pe(Ba'® (2)
+ -+ pro(Ba,

where p(p) is a polynomial of degree < 10 in § with integer coefficients.
What is to be shown is that t1° does not in fact involve .

The key fact is that changing o to «* changes t to B~ 't and therefore leaves
t'® unchanged. These two statements are immediate consequences of the
definitions of t and f. Therefore

po(B) + pi(Ba + pa(Be? + ps(Ba* + -+ + pro(Ba®
= po(B) + p1(B)* + po (Pt + pa(B)e® + -+ + pro(B)e,

from which

0 = [ps(B) — pro(A)lo + [p2(B) — p1(F)]or?
+ [p3(B) ~ pa(B)lo* + -+ + [p1o(B) — po(B)]ec®.

An equation of the form 0 = g,(B)a + g,(B)e® + qz(B)a* + -+« + gy0(B)a®
implies that g(f) =0, g,(B) =0,..., q.0o(f) = 0. (See Lemma 2 below.)
Therefore in (2) we have p;() = po(B) = p3(B) = -~ = p1o(B)- Let p(f)
denote their common value. Then 1% = po(B) + p(B)(e + o + o* + -+ +

a®) = po(B) + p(B)(—1) = po(B) — p(B) is independent of a, as required.
The proof that ;+1°~" is independent of o follows in exactly the same way
from the fact that changing « to «® multiplies t; by 7% so that ¢;11°" is
multiplied by B~ 1)*°" = B~ 1% = 1. Finally, the same Lemma 2 shows
(because ¢ = 0 would imply § =0, 2 =0, §° = 0,---) that ¢ # 0, which is
needed in the determination of t; once t;21° ~*is known. This technique reduces
the construction not only of an 11th root of unity but also of a pth root of

unity for any prime p > 2 to the two lemmas of the following article.

The Cases p > 11

§24 Lemma 1. For every prime p there is an integer g with the property that
every integer not congruent to 0 mod p is congruent to a power of g mod p.
Such an integer g is called a primitive root mod p.

If o is a primitive pth root of unity and if ¢ is a primitive root mod p then .
a, 08, 0, 08, . .., 0" " is a list of all the primitive pth roots of unity and,
in analogy with (1) of §22, onecanset t = o + Bo? + B2 + --- where fisa
primitive (p — 1)st root of unity. Then, exactly as in the case p = 11, ¢
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changes to f7 't when a is changed to «f; thus t* ~* and t;*~ !~ are unchanged
by a— of when ¢; is ¢ with " in place of §. Thus

o=@~ D7+, + -+ tp—1)

is a description of « in terms of known quantities and the (p — 1)st root of a
known quantity once Lemma 2 is proved.

Lemma 2. Let p be a prime, let o be a primitive pth root of unity, and let Bbea
primitive (p — 1)st root of unity. If P,(B), P,(p),..., P,_ ((B) are polynomials
in B with rational coefficients and if P(B)er + Po(B)e® + -+ + P,_ (B)a? ™! =
0then Py(B) =0, P,(B) = 0,..., P,_(B) = 0.

When ¢~ is written in the form po(8) + p,(B)o + po(B)e® + ps(B)af® + - - -,
the fact that it is invariant under o+ of shows that it is equal to po(f) +
PP’ + py(B)ef? + -, and subtraction of these equal quantities gives

0 = [ps(B) — pp—1(B)] + [p2(B) — py(B)]of + ---. Then, by Lemma 2,
pi(B) =p(B)="---=p,_(B)

and
P71 = po(B) + pi(B)o + o + 0¥ + -+ oY) = po(B) — pi(B)

is independent of « and can therefore be regarded as known. The (p — st
root of this known quantity can then be set equal to ¢. Since the same argument
shows that ¢;t?~ ! “*isknown, and that ¢ # 0, it follows that t;can be expressed
in terms of ¢ and known quantities. Therefore

.0€=(p-~1)_1(t1 +t2+t3+"'+tp_1)

has been found algebraically.
These two lemmas are of very different orders of difficulty. The first is not
-hard. (See Exercise 7.) It was evidently well known to be true in the eighteenth
century, but, according to Gauss, his proof of it in Article 55 of the Dis-
quisitiones Arithmeticae was the first rigorous proof of it to be published.*
The second, on the other hand, is rather hard. Gauss strongly imptied in the
Disquisitiones that he had a proof, but he did not give one.} For a proof, see
§71.

* See, however, p. XXIX of volume 3 of Euler’s Opera.

T Gauss’s statements about Lemma 2 are rather mystifying. At one point he seems to use a
generalization of Lemma 2 without proof (Art. 360, I, when he equates corresponding coefficients
in U and U’). At another point, he omits the proof that ¢ # 0, saying that it would be too long
(Art. 360, ITI). However, as was noted above, ¢ # 0 is an immediate consequence of Lemma 2.
Because of this gap in Gauss’s proof, it appears to me correct to say that the equation
(xP — 1)/(x — 1) = 0 for pth roots of unity had not been shown to be solvable by radicals prior

to Galois’ work. /

S’

/
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§25 The above method of constructing a pth root of unity o (when p is
prime) was given by Gauss in the final section of the Disquisitiones Arith-
meticae. This construction was not Gauss’s main objective, however. Rather,
he was interested in reducing the solution of the equation

x4 x4+ x+1=0

satisfied by a to the solution of a succession of equations of lower degree. It
will not be necessary to study his results in detail (see Exercises 8-13) but the
basic idea is simple enough to understand and is illuminating.

Let p be a given prime (p > 2) and let a be a primitive pth root of unity.
Let Q@(c) denote the field* of numbers of the form

g + a0+ axe’ + o0+ ot

where ay, dy, .- ., @ are rational numbers. (Here k is an arbitrarily large
positive integer, but, since o = 1, there is no point in taking k larger than
p — 1) If o can be expressed algebraically in terms of known quantities—that
is, expressed by an algebraic formula involving addition, subtraction, multi-
plication, division, and the extraction of roots of known quantitiest—then
so can all elements of Q(«). Conversely, since o is an element of Q(w), if all
elements of Q(o) can be expressed algebraically then of course a can. In
short, & can be expressed algebraically if and only if all elements of ((x) can.
Now of course the elements of the field of rational numbers Q can be expressed
algebraically in terms of the basic operations and the number 1. (In fact,
elements of @ can be expressed rationally in terms of 1, that is, without the
extraction of roots.) Gauss’s technique for the solution of the problem was to
construct a sequence of intermediate fields between the known field @ and the
unknown field @(e) and to regard the whole extension from Q to Q(«) as
being made up of a sequence of extensions in which one ascends the ladder
of intermediate extensions. ,

Specifically, let g be a primitive root mod p and let S: @(x) — Q(e) be the
operation of replacing o by of. (Since o, like o, is a primitive pth root of unity,
S is in fact a well-defined automorphism of the field Q(x).) By Lemma 2 of
§24, the only elements of Q(c) that are left fixed by S are the rational numbers. §
Let d be any divisor of p — 1 and let K, be the set of all elements of Q(x) that
are invariant under S%. As was just observed, K, = Q. At the other extreme,
since g?~! = 1 mod p, S?~! is the identity operation and K, = Q(x). The
intermediate fields mentioned above are the fields K, (d a divisor of p — 1).**

# This is a technical term that will probably be familiar to most readers. It will be explained, for
the benefit of readers to whom it is new, in §33.

T Since \'/I = 1isnot a primitive pth root of unity, extraction of a pth root of the known quantity
1 does not solve the problem.

1 This is in fact a special case of Lemma 2 which is much easier to prove than the full lemma. See
Exercise 8.

%% The elements o + St + S2f + -+ + S?™ ' "dol = o + o + G o of Qo)
are what Gauss called “periods.” Every element of K, can be written as a linear combination of
these periods with rational coeflicients.
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It is not hard to show that if d and D are divisors of p — 1 and if d divides
D—say D = qd—then K}, is a simple algebraic extension of K, of degree g.
Roughly speaking, this means that the expression of elements of K, in
terms of elements of K, involves the solution of an equation of degree q.
(See §§34-36 for the definition of simple algebraic extensions.) The degree
g of this equation is less than the degree p — 1 of the original equation for o
(unless d = 1 and D = p — 1), and by interposing as many intermediate
fields as possible Gauss was able to reduce the solution of the equation for «
to the solution of a succession of equations of lower degree. If these equations
of lower degree all have degrees less than 5 then they can be solved using the
solution of equations of degree 2, 3, and 4 (Lagrange resolvents).

Gauss claimed that the particular equations that occur in the solution
of the equation for a can always be solved by Lagrange resolvents (although
he did not call them Lagrange resolvents) even when their degree is greater
than 4. Specifically, he observed that the techniques applied above to the
extension from Q to Q(«) can also be applied (granted the appropriate
analogue of Lemma 2) to the extension from K, to K, to prove:

Let d and D be divisors of p — 1 and let d divide D, say D = qd. Then any given
element of Kp, can be expressed rationally in terms of elements of K, the
gth root of a particular element of K, and a primitive qth root of unity.

What is proved aboveisthecased = 1,D = p — 1, where the element to be
expressed is o.. In general, if y is the given element of K, the key to the solution
is the “Lagrange resolvent” |

t=y+ B8+ B2 S¥y + o 4 P8P,

where f is a primitive gth root of unity. Then ?is an element of K, so that ¢ is
the gth root of a known element. The expression of y in terms of ¢t and known
elements is then easy to accomplish using adaptations of the techniques used
in the previous case. (If y itself isin K thent = p(1 + g+ --- + 1~ ) = (,
and the procedure does not work, but in this case y is already known, by
assumption. A crucial step of the proof, which Gauss omits, though he
calls attention to it, is to show that t = 0 only when y is contained in a proper
subfield of K,.)

This theorem, unlike the special case d = 1, D = p — 1, provides a con-
struction of a primitive pth root of unity because it depends only on the
knowledge of a primitive gth root of unity, and because one can arrange the
construction so that q is always a prime (necessarily a divisor of p — 1). In fact,
prime values of g arise when one interposes, as it is natural to do, the maximum
number of fields K, between K,_; = Q(«) and K; = Q. (Exercise 9.) Thus,
once one has constructed all primitive pth roots of unity for all primes p less
than a given prime P one has all the necessary tools for constructing a
primitive Pth root—and hence all primitive Pth roots because the others are
the powers of any given one.,
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§26 The proof sketched above that the pth roots of unity for any prime p
can be expressed algebraically in terms of whole numbers, the four arithmetic
operations, and the extraction of roots, is entirely constructive. It tells
precisely how, with sufficient diligence and patience, one could find the actual
expressions. However, in practice these expressions are long, cumbersome,
and unilluminating, and are not worth the trouble of finding them. The
importance of the constructive proof lies in the information it gives about the
nature of the formulas, not in the formulas themselves.

An interesting consequence of Gauss’s proof is the fact that the regular
17-gon can be constructed with ruler and compass. This follows from the
observation thatif p = 17thenp — 1 =2-2-2-2,50 that in the sequence of
fields Q = K, « K, ¢ K, = Kg © K5 = Q(a), each extension can be
achieved by taking the square root of a known quantity. Since the operation
of taking a square root is easy to accomplish geometrically by a ruler and
compass construction (see Exercise 14) it follows that the 17-gon can be
constructed. The discovery of this fact, which Gauss made when he was only
18 years old, is said to have caused him to decide on a career as a mathe-
matician. In this particular case, p = 17, Gauss gave the complete formulas
for the roots of unity in the Disquisitiones Arithmeticae (Article 354).

In the same way, the regular p-gon can be constructed with ruler and
compass whenever p — 1 is a power of 2. Only five such primes are known,
namely, 3, S, 17, 257, and 65537. These primes are called Fermat primes.
(See [E1], pp. 23-25.)

Summary

§27 In Lebesgue’s opinion, Vandermonde had all the techniques neces-
sary for the construction of pth roots of unity at his command in the 1770’s.
Lebesgue even believed that Gauss knew what Vandermonde had done and
failed to acknowledge it only because Vandermonde gave no proofs. Such
speculations are almost impossible to confirm or refute.* Two questions of
the same sort that can probably never be answered are: Was Gauss influenced
by Lagrange’s Réflexions, and, if so, in what way? Gauss’s use of Lagrange’s
letter ¢ for what we call the Lagrange resolvent (Art. 360) suggests a connec-
tion. To what extent, if any, was Galois influenced by Gauss’s solution of the
cyclotomic equation? Galois does mention Gauss’s solution of the “binomial
equation”—that is, the cyclotomic equation—but only in passing.

The main ideas in the solution of the cyclotomic equation are:

(1) The Lagrange resolvent for the solution of an nth degree equation, that is,
the introduction of the quantity ¢ = x; + fx, + B3 + -+ + 7 'x,,
where x4, X5, . . - » X, are the roots of the equation and f is an nth root of
unity.

*Note added in second printing: See Loewy, A. “Inwieweit kann Vandermonde als Vorgéanger
von Gauf} beziiglich der algebraischen Auflésung der Kreisteilungsgleichungen x" = 1 angesehen
werden?” Jahresber. DMV 27 (1918) 189-195. My thanks to Olaf Neumann for this reference. -
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(2) Putting the roots of the cyclotomic equation (xf — D/(x — 1) in the
order «, o, o¥’, . .. given by a primitive root g mod p. This has the effect of
making the (p — 1)st power of the Lagrange resolvent of this equation a
known quantity (because o - of does not change t*~!, and, by Lemma 2,
this means it is independent of ).

(3) Representing all Lagrange resolvents (obtained by using other (p — 1)st
roots of unity f) in terms of one of them. This is accomplished by noting
that £;+™* is invariant under « - of and is therefore known. (t # 0 by
Lemma 2.) This gives the solution o = (¢ + ¢, + L3+ +t,_)p—1)
involving known quantities and the (p — 1)st root of a known quantity.

(4) Breaking the extension into extensions of prime order. Instead of a
(p — 1)st root of unity B in the Lagrange resolvent, one then needs a
gth root of unity where q is a prime < p- Therefore the prime roots of
unity can be found in succession.

None of these ideas seems to have been original with Gauss, but he was the
first to put them all together in a complete, clear, and rigorous way. Even he,
however, did not—because of the lack of a proof of what is called Lemma 2
above-—give a complete proof that pth roots of unity can be expressed in
terms of radicals. (The proof of the solvability of the equation by radicals was
not, after all, his objective. Moreover, he most probably did have a proof of
Lemma 2, even though he never published one.)

Third Exercise Set

1. Give the ruler and compass construction of the cube roots of 1.

2. Show that in order to construct a 5th root of unity (or an nth root of unity for any n)
it suffices to find its real part. Give a ruler and compass construction of the real part of
one of the Sthroots of unity given in §21. Compare to Euclid’s construction of the regular
pentagon. (Euclid’s Elements, Book 4, Proposition 11. See also Aaboe [A1], Chapter 2.)

3. Derive the formulas for the Sth roots of unity given in §21. Use them (preferably with
a pocket calculator) to calculate sin 72° and cos 72° and check the result.

4. Show that if j and k are relatively prime then the product of a primitive jth root of
unity and a primitive kth root of unity is a primitive jkth root of unity.

5. Show that the formula o = 75[t; + (t,£3)/3 + (£56])/t] + --+] of §22, where
t21%, t3t], ... are known quantities, gives an 11th root of unity when ¢, is replaced by
any 10th root of ¢1°,

6. Show thatift = o + fo? + p2¢% + ...asin§24 then(p — 1)~ [s + (£8P 35?73 4
(t3tP~%)/sP~* + ... is a primitive pth root of unity for any solution s of s 7! = 2~ 1,

7. Prove Lemma 1 of §24, which states that every prime has a primitive root.

8. Prove thatif ay, ay, ay, . . ., a, are rational numbers, if « is a pth root of unity o # 1,
and if ap + a;00 + a0 + - + a,0" = ay + a, 0 + a0 + - + a,o", then a, +
a;& + ao® + -+ + a,0"is equal to a rational number. Use the fact that o is not the root
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of any nonzero polynomial of degree < p — 1 with integer coefficients. (This'fact will
be proved in §64 and in Exercise 8 of the eighth set.)

9. In the case p = 19 of the construction of §25, find a sequence of two intermediate
fields K, ¢ K; < K, < K4 where the inclusions are all strict inclusions. Show that
for any p the maximum number of such intermediate fields is equal to one less than the
number of prime factors of p — 1, counted with multiplicities.

10, Use the method of §25 to derive the formulas of §21 for \5/1 . (In the first stage set
v, = aand d = 2 to find a resolvent ¢, whose square is invariant under S? where S: o0 —
2. In the second stage set y, = « + «*,andd = 2tofinda resolvent t, whose square is
rational.)

11. Gauss’s method of §25 applied to the case p = 7, D = 6,d = 2 gives an algebraic
expression for the solution y = « + o~ of the equation v + 92 — 2y — 1 =0 of the
beginning of §22. Find this expression (which involves the cube root of unity w).

12. Derive Gauss’s algebraic expression for cos(2n/17) in Section 365 of Disquisitiones
Arithmeticae:

1 1
cos(2n/17) = — = +1—6,/17 T V34— 2./17

+é\/;7+3\/ﬁ~\/34—2\/1—7-2 34+ 2./17.

[Evaluate numerically the elements of the fields K,, K,, K, in succession and use
this to evaluate the needed cosine (& + & /2, which is in Kg. The main technique
is the resolvent method described in §25. However, the problem is not entirely algebraic
because the signs of the radicals in Gauss’s formula must be determined by nonalgebraic
means. J

13. Give algebraic expressions of all eight values of cos(2nk/ 17) other than the trivial
value 1.

14. Find a ruler and compass construction for the square root, or, as Euclid would
express it, given a rectangle, construct a square with the same area. (Euclid’s Elements,
Book II, Proposition 14.)

15. Show that if « is a primitive pth root of unity (p = prime) then the p"~ !st root of
is a primitive p"th root of unity. ‘

Galois Resolvents

§28 For Lagrange, the “resolvent” of an equation had three crucial
properties.

(1) It is rationally expressible in terms of the roots of the equation and
known quantities (including rational numbers, the coefficients of the
given equation, and roots of unity).
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(2) Conversely, each of the roots of the equation can be expressed rationally
" in terms of it and known quantities.
(3) It is the solution of a solvable equation.

Here (1) describes the universe from which the resolvent is to be selected,
‘and (2) and (3) describe the properties of the resolvent through which it
solves the equation.

Lagrange doubted that it was possible to find a resolvent for the general
5th degree equation. However, he did not leave it at that. He gave serious
consideration to the question of determining which quantities satisfying (1)
also satisfied (2), and he proved in this connection a very important theorem
which, as will be shown below, can be taken as the basis of Galois theory. In
fact, Galois’ idea can be briefly described by saying that he realized that a
«resolvent” with properties (1) and (2) exists in all cases, and this “resolvent”
can be used to describe the form of the solutions fully enough to show that,
as Lagrange suspected, no resolvent with all three properties exists.

§29 Lagrange states the theorem in question as follows in his Réflexions
(Article 104):

“If t and y are any two functions [ polynomials] in the roots x', x", X", ..
of X + mx*~ 1 + nx*"% + [px*7> +]--- = 0 and if these functions are such
that every permutation of the roots x', x", X", . .. which changes y also changes
t, one can, generally speaking, express y rationally in terms of t and m, n,
p, ..., so that when one knows a value of t one will also know immediately the
corresponding value of y; we say generally speaking because if the known value
of t is a double or triple or higher root of the equation for t then the corresponding
value of y will depend on an equation of degree 2 or 3 or higher with coefficients
that are rational int and m,n, p, ....”

This theorem is Lagrange’s answer—and it is a very satisfactory answer—
to the problem of determining which elements with property (1) of the pre-
ceding article also have property (2). Rather than asking whether all roots can
be expressed rationally in terms of ¢ and known quantities, Lagrange asks
whether a function y of the roots (which could be a root) can be expressed
rationally in terms of ¢. If y can be expressed in terms of t, then surely any
permutation of the roots which leaves ¢ unchanged will not change y. The
theorem says that this necessary condition is, “ generally speaking”, sufficient,
that is, that if every permutation of the roots which leaves ¢ unchanged also
leaves y unchanged then y can be expressed in terms of t.

In order to see the situation in which the “generally speaking” provision
is necessary, let ¢ be a polynomial in the roots x, x”, x", ...of the given equa-
tion with coefficients that are known quantities. If ¢ is any permutation of
x', x", x", ... let ¢t be the polynomial in x', x", x", ... obtained by applying
¢ to the x’s in t. It may be that ¢t = t even when ¢ # identity. (For example,
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when n = 4and t =x’ + x" — x” — x" as in §17, the twenty-four permu-
tations of the x’s produce only six different polynomials ¢t.) The “equation
for t” is the polynomial F(X) = (X — t)(X — ¢ t)(X — ¢,1) -+ (X — ¢ t),
where t, 1, ¢, 1, ... is a list of all distinct polynomials that can be obtained
from ¢t by permutations of the x’s. The coefficients of F(X) are symmetric

polynomials in t, ¢t, P,t, ..., and, since a permutation of x', x", x", ...
merely permutes t, ¢, L, P, L, ..., they are therefore symmetric polynomials in
X, x", x", ..., which means that the coefficients of F(X) are known quantities.

Thus the polynomial F(X) is a known polynomial of which ¢ is a root.
Lagrange says that if ¢ is a simple root of F(X) and if ¢t = ¢ implies ¢y =y
then y can be expressed rationally in terms of ¢ and known quantities. If ¢ 18
a multiple root of F(X) (since F(X) = [J(X — ¢;t) this means that one of
the polynomials ¢;t has, although it is formally distinct from ¢, the same
numerical value when numerical values of the roots x', x”, x”, ... are used)
then y is not a rational function of ¢, but is a root of a polynomial whose
coefficients are rational functions of ¢ and whose degree is equal to the
multiplicity of t as a root of F(X).

For the sake of simplicity, Lagrange’s theorem will be proved only in the
case where F(X) has only simple roots, that is, where the formally distinct
polynomials t, L, ¢, ¢, ... are all numerically distinct. This is the only case

that is necessary for Galois theory.

§30 PRrOOF OF LAGRANGE’S THEOREM IN THE CASE WHERE THE EQUATION
FOR ¢ Has SIMPLE RooTs. Let  and y be given polynomials in the n roots, and
letty,t,,. . .,1 beallthe distinct polynomials in the roots that can be obtained
from ¢ by permutation of the roots. By assumption, any permutation which
leaves ¢t unchanged leaves y unchanged. Therefore, there are at most k
different polynomials that can be obtained from y by permuting the variables,
and there are polynomials y;, y,, - -, yi such that the permutations which
carry ¢ to t; carry y to y;. (Explicitly, let ¢4, ¢, . . ., ¢ be permutations such
that t; = ¢t and set y; = ¢;y. Every permutation ¥ can be written in the
formy = ¢;g wherei = lor2or...or kand where g is a permutation which
leaves ¢ unchanged (see Exercise 1). Then gy = y and yy = ¢;y = y;, so the
list ¥y, ¥5, ..., includes all polynomials of the form ¥y.)

The key to Lagrange’s theorem is to consider the k polynomials

Vi+ Yo+ Y
by + Yy, o Lo
2y, + By, + 0 4 G (1)

oty BTy A B e

These polynomials are symmetric (a permutation of x', x", x"”, ... merely
permutes the terms of each sum) and therefore their numerical values are
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known (expressible in terms of the coefficients of t and y and in terms of the
coefficients m, n, p, ... of the given ecﬁiation). What is to be shown is that y,
can be expressed rationally in terms of ¢, and known quantities. For this, it
suffices to apply Cramer’s rule. (Lagrange’s approach is more inclusive
because he does not make the simplifying assumption that F(X) has simple
roots.)

Cramer’s rule applied to the equations ) t{y; = c¢;, where ¢; is a known
quantity, gives y, = D,/A where A is the Vandermonde determinant
det(t)) = [Jx<: (t; — t) and where D, is the determinant obtained by
replacing the uth column of A by the column of known quantities c¢;. The
square of the denominator A* = [[,.;(¢; — 1) is simply the discriminant
of F(X) = ]—[(X — t;); by assumption this is not 0, and of course it is a known
quantity. It suffices, then, to show that the numerator of y, = D;A/A* can be
expressed rationally in terms of ¢,. In fact, it is easy to see that D, A is a poly-
nomialin ¢,. On its face, it is a polynomial in all the ¢; (and in the known quan-
tities ¢;). However, permutation of two of the ¢; other than ¢, changes the sign
of both D, and A, and therefore leaves D;A unchanged. Thus D,A can be
expressed as a polynomial in ¢, whose coefficients are symmetric polynomials
in t,, t3,..., . These coefficients can, by the fundamental theorem on
symmetric functions, be expressed in terms of the elementary symmetric
functions in k — 1 variables ©; =1t, + t3 + -+, T, = toty + taty + -+,
o Tyey =1yt5... t,. But,aswasseenin §11, 7, =0, — t{,7, =0, — t,0, + 13,
T3 = 03 — t;0, + tio, — 13, ..., where the ¢’s, being symmetric functions
of the ¢’s, are known quantities. Thus the 7’s and consequently D;A can be
expressed in terms of t; and known quantities, as was to be shown. ]

§31 Corollary. If one can find a polynomial t in the roots x', x", X", . .. with
the property that its n! different permutations are not merely formally distinct
(this would be easy to accomplish—for example by setting t = x" + 2x" +
3x" 4 -+) but also numerically distinct, then every permutation of the roots
changes t and the condition of Lagrange’s theorem is met by all polynomials y.
Therefore all polynomials in the roots, and, in particular, the roots themselves
can be expressed rationally in terms of (any) one numerical value of t.

In short, if such a ¢t can be found, then it is a “resolvent” in the sense that
(1) and (2) of §28 are satisfied. Such a ¢ is called a “ Galois resolvent” because
Galois was the first* to realize that there always exist such ¢’s and to realize
how useful they are in studying the solution of an equation even when they
do not satisfy (3) of §28. Of course it is impossible to find such a ¢ if two or
more of the roots x', x”, ... coincide, so Galois must—and does—exclude
equations in which this occurs. (This is not a real restriction because if
f(x) = 0 has multiple roots then it has roots in common with f'(x) = 0 and

* In his article [K 1] on the history of Galois theory, Kiernan erroneously states (p. 81) that
Lagrange had proved the existence of a Galois resolvent.
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the greatest common divisor of fand f”, which is a polynomial that can be
found using the Euclidean algorithm (§35), has as its roots the multiple
roots of f; then f divided by this greatest common divisor has the same roots
as f but they all occur with multiplicity 1. See Exercise 2.)

Galois does not prove the existence of a Galois resolvent, he merely asserts
it (see Appendix 1). Moreover, he asserts that there exist Galois resolvents
of the special form ¢t = A'x’ + A"x" + A”x" + ---, where the coefficients
A, A", A", ... are suitably chosen integers. This is certainly a plausible state-
ment. Equality of two permutations of A'x" + A"x" + A”x" + --- is an
exceptional circumstance, one that imposes a condition on the A’s. One need
only choose the A’s in such a way that none of these conditions is satisfied.
The proof which follows is a carrying out of this idea. Since Galois gives no
mdication at all of a proof, there is no way of knowing whether this proof
resembles what he had in mind.

§32 Henceforth, let the n roots of the given equation be denoted g, b,
¢, ... . The assumption is that these roots are distinct, which is to say that the
discriminant (@ — b)*(a — ¢)*(b — ¢)* --- = D is not zero. (See §13.) What
is to be shown is that n integers A4, B, C, ... can be chosen so that the n!
numbers AS(a) + BS(b) + CS(c) + - - - are distinct, where S ranges over all
n! permutations of the roots @, b, c, . . . . Let & be the product of the squares
of the differences of these n! numbers, that is,

P = S[; [A(S(a) — T(a)) + BS®) — TGY) + --- T3,

where the product is over all n! (n! — 1)/2 pairs (unordered) of permutations
Sand T in which § # T. Let 4, B, C, ... be regarded at first as variables.
Then & is a polynomial in A4, B, C, ... whose coefficients are polynomials in
the roots a, b, ¢,.... Since & is obviously symmetric in the roots, these
coefficients are symmetric in the roots, so & is a polynomial in 4, B, C, ...
with known coefficients. Since 2 is a product of nonzero polynomials, it is
nonzero (Exercise 4). Therefore (Exercise 3) one can assign integer values to
A, B, C, ... 1in such a way as to make 2 # 0, as was to be shown.

§33 The basic use of the Galois resolvent is the following.

Let K denote®* the set of all quantities that are to be regarded as known.
K must include at least the rational numbers and the coefficients of the given
equation f (x) = 0, but it may include more—for example, there may be some
reason to regard certain roots of unity as known. Since sums, differences,
products, and quotients (with nonzero denominator) of known quantities
are known, K is what is called a “field.” (A field is a set with two operations—
addition and multiplication—in which the familiar associative, commutative,

* The fact that K is the initial letter of “known” is a pleasant coincidence. The use of K comes
from the fact that the set is what is known in German as a “Korper,” and in English as a “field.”
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and distributive laws hold, and in which subtraction and division—deter-
mination of x by @ + x = b or by cx = d when ¢ # 0—are possible.)

Let K(a, b, c, . ..) denote* the set of all elements which can be expressed as
polynomials in the roots a, b, ¢, ... of the given equation f(x) = 0 with
coeflicients in K. (The precise domain in which a, b, ¢, ..., and hence the
elements of K(a, b, ¢, ...), have their existence will be described later. At
first, 1t is probably easiest to think of f(x) as having rational coefficients, of
K as being the rational numbers, and of a, b, c, . . . as being complex numbers.
Ultimately, however, it will be important to be able to think of the coefficients
of f(x) as being literal, that is, as being elements of K that are transcendental
over the rationals. All that matters is that there be some field K(a, b, c, ...)
containing K and containing a complete set of roots a, b, c, ... of f(x) = 0.
Such a field is called a splitting field of 1)

In particular, t is in K(a, b, ¢, . ..). Let K(t) denote the set of all elements
of K(a, b, c,...) which can be expressed rationally in terms of ¢ with co-
efficients in K. Then the corollary of §31 can be expressed by the equation

K(a, b, c,...) = K(t),

that is, everything that can be expressed as a polynomial in the roots g, b,
¢, ... can be expressed rationally in terms of ¢ and vice versa. (It is not obvious
that a rational function of ¢ can necessarily be expressed as a polynomial in
a, b, c, ..., only that it can be expressed as a rational function in them.
However, as i1s noted at the end of §36, every rational functionina, b, c, . ..
can be expressed as a polynomial in a, b, ¢, ... .) This can be regarded as a
solution of the equation f(x) = 0 because, as will be shown in the next three
sections, K(f) can be described in a very explicit way, and it is a field. Thus,
the construction of K(t) which follows is a construction of a field K(¢t) =
K(a, b, c,...) which contains roots a, b, ¢, . .. of the given equation.

(Strictly speaking, the construction of K(¢t) which follows assumes that
there is some field in which f(x) = 0 has n roots, so that, for example,
K(a, b, c, ...) makes sense and provides a setting in which the computation
of the polynomial F(X) = [[s(X — St) can be carried out. In other words,
it constructs a field containing roots assuming there exists a field containing
roots. This assumption, which Girard, Newton, Lagrange, Galois, et al.
seem to have made without question, will be justified in §§49-61.)

Construction of the Field K(¢)

§34 Let f(x) = 0 be an equation of degree n with n distinct roots a, b,
¢, ...and let t be a Galois resolvent of this equation. Then K(a, b, c,...) =
K(t). The objective is to describe the field K() as explicitly as possible. By

* This notation should not be confused with the notation for functions. Here X is a set (the
known quantities) and K{a, b, c, - - -)is a larger set. Similarly, in the next paragraph, K(¢) is a set
containing both K and the element ¢, and the notation has nothing to do with functions.
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assumption, ¢ is a polynomial in a, b, ¢, . .. which has the property that the
n! elements St of K(a, b, c, .. .) obtained by substituting the roots a, b, c, . ..
into t in each of their n! possible orders are distinct elements of K(a, b, c, .. .).
(One can, in fact, assume that t is a linear polynomial with integer coefficients.)
The “equation for ¢,” as in §29, is the polynomial* F(X) = [[s(X — St),
where the product is over all n! permutations S of the roots. The coefficients
of F(X) are, in the first instance, in K(a, b, ¢, .. .), but since they are symmetric
polynomialsina, b, c, . .. they can, by the fundamental theorem on symmetric
polynomials, be expressed in terms of the elementary symmetric polynomials
in the roots q, b, ¢, ... and therefore in terms of the coefficients of the given
equation f(x) = 0. Thus, F(X) is a polynomial with known coefficients in K.

(The computation of F(X) is stupendously long in all but the simplest
cases, but in principle it can be carried out. Given the integers 4, B, C,. ..
which describe t = Aa + Bb + Cc + -- -, the coefficients of F(X) are ex-
plicit symmetric polynomials in a, b, ¢, . .. with integer coefficients. Express
them as polynomials in the elementary symmetric polynomials 6,,0,,...,0,
ina,b,c,....If the given equation is Box" + B;x""! + --- + B, = 0 then
o; = (=1)B;/Byfori=1,2,...,n, thatis,

f(x) = Bo(x —a)(x —b}(x —¢)....

This describes each o, as an element of K, and substitution of these values in
the symmetric polynomials gives the coefficients of F(X) as elements of K.)

The polynomial F(X) with coefficients in K has degree n! and leading
coefficient 1. Let F(X) = G(X)G,(X) ... G(X) be its factorization into
irreducible polynomials G{(X), G,(X), ..., G,(X) with coefficients in K and
leading coefficient 1. (A polynomial G(X) with coefficients in K is said to be
irreducible if there do not exist two polynomials g(X), h(X) with coefficients
in K such that G(X) = g(X)h(X) and such that g and h are of lower degree
than G. If one accepts the “obvious fact™ that a polynomial is either ir-
reducible or there is a factorization of it into two polynomials of lower
degree then it is obvious that such a factorization of F always exists.T For a
full discussion of the problem of factorization see §§49—-61.) The substitution
of t for X in F(X) gives,{ on the one hand, F(t) = 0 because F(t) can be

* In the remainder of the book, x is used to denote the variable in the original equation f(x) = 0,
and X is used to denote the variable in auxiliary equations relating to the Galois resolvent. Of
course there is no logical necessity to use different letters in the two cases, but it seems clearer
to do so.

+ The catch is that one might be unable to factor the given polynomial and at the same time be
unable to prove that no factorization exists.

T Here t is regarded as an element of K(a, b, ¢, . . .). Strictly speaking, the same letter ¢ should not
be used to represent both the polynomial in variables and the element of K(g, b, c, . ..) obtained
by replacing the variables by the roots a, b, ¢, . . . of the given equation. In what follows, ¢ for the
most part will represent the element of K(a, b, ¢,...). It is only in the expression St, which
represents the value of the polynomial when the roots a, b, ¢, ... are substituted in the order
indicated by S, that ¢ must be considered to be a polynomial in variables. (See Appendix 2, where
T is used to denote the polynomial and t,, ¢5, ..., t,; denote its n! images in K(a, b, c,...).)
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written as a product [ [s(t — S¢) in which one of the factors is 0, and gives,
ontheother hand, F(t) = G(t)G,(t) ... Gy(t). Therefore G,(1)G,(t) ... G(t) =
0and at least one of the factors G(t) must be* 0. In other words, the irreducible
factors G, G,,..., G, of F must include an irreducible polynomial of which
t is a root. The desired description of K(t) is then given by the following basic
theorem:

Theorem (Simple Algebraic Extensions). Let K be a given field and let G(X)
be an irreducible polynomial with coefficients in K. Then one can construct a
field K(t) such that

(1) K(¢t) contains K,

(2) K(2) contains an element t which is a root of G, that is, which satisfies
G(t) =0, and

(3) every element of K(t) can be expressed as a polynomial in t with coefficients
in K, that is, given any x € K(t) there are an integer v and elements by,
by,...,b,of K such that x = by + byt + - + b, ",

Moreover, any two such fields K(¢) are the same in a natural sense that will
be spelled out in §36.

Roughly speaking, the field K(¢) to be constructed can be described as
follows. Its elements are polynomials of degree < deg G in ¢ with coefficients
in K. Elements are added in the natural way. Elements are multiplied by
multiplying them as polynomials and then using the relation G(tf) = 0 to
reduce the product to a polynomial of degree < deg G. (For example, if
G(t) = t* + 1thenthe product ofat + band ct + disact® + adt + bet + bd
= ac(t* + 1) — ac + adt + bet + bd = (ad + be)t + (bd — ac). This s,
of course, the rule for multiplying complex numbers—here ¢t =/ —1.)
Clearly the set K(t) with the operations of addition and multiplication defined
in this way satisfies (1)—because the polynomials of degree 0 correspond
one-to-one to elements of K—and (2)—because G(t) = 0 by the definition
of t%%—and (3), by the very definition of the elements. The problem is to
show that K(t) defined in this way is a field, and the hard part here is to show
that division by nonzero elements is possible. The basis of the proof that K(t)
is a field is the Euclidean algorithm. This algorithm, which is one of the most
useful tools in algebra and number theory, is the subject of the next article.

§35 Let a(X) and b(X) be polynomials with coefficients in a field K. The
Euclidean algorithm is a method of finding a common divisor d{X) of a(X)
and b(X) which can be expressed in the form d(X) = A(X)a(X) + B(X)b(X),

* This “obvious fact” follows, in the last analysis, from the fact that the splitting field
K(a,b,c,...) is a field and therefore has no zero divisors. For now, let the elements of
K(a, b, c,...), i.e. polynomials in a, b, c, . . . with coefficients in K, be regarded as numbers. Then
the needed conclusion follows from the fact that a product of two numbers is zero only if one of
the factors is zero.
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where A(X) and B(X), and consequently d(X), are polynomials with co-
efficients in K. Then d(X) is clearly a greatest common divisor of a(X) and
b(X) in the sense that any polynomial with coefficients in K which divides
both a(X) and b(X) also divides d(X) = A(X)a(X) + B(X)b(X).

The Euclidean algorithm is based on the algorithm for division with
remainder. This is an algorithm which enables one to find, given two poly-
nomials a(X) and b(X) # 0 with coefficients in K, two other polynomials, the
quotient q(X) and the remainder v(X), also with coefficients in K, such that
a(X) = g(X)b(X) + r(X) and such that either r(X) = 0 or the degree of
r(X) is less than the degree of b(X). (In this context it is convenient to adopt
the convention that the polynomial 0 has degree — oo so that one can simply
say deg r < deg b.) The existence and uniqueness of g(X) and r(X) are easy
to prove by induction on the degree of a(X) since it is easy to see that if
deg a > deg b then subtraction of a suitable multiple of b from a will reduce
its degree. (See Exercise 18.) An algorithm for division of polynomials that
is analogous to ordinary long division—called synthetic division—is easy to
derive (Exercise 19).

In terms of the division algorithm, the Euclidean algorithm can be
described as follows. Let a(X) and b(X) be given and assume without loss of
generality that dega > degb. Use the division algorithm to write a =
qib + r,. If 7, # 0, use the division algorithm to write b= q,r, +ry. If
r, # 0, use the division algorithm to write ry = q3r; + 3, and so forth.
Since deg b > deg r; > degr, > - -+, eventually the remainder of the division
that is called for by the algorithm is 0. Let d(X) be the divisor of the division
that results in the remainder 0. Thus, if r; = 0, then d(X) = H(X), and
otherwise d(X) = r{X) where r(X) is the last nonzero remainder. It is to
be shown that d(X) divides both a(X) and b(X) and that it can be written
in the form d(X) = A(X)a(X) + B(X)b(X).

Let ro(X) denote b(X) and r_ ;(X) denote a(X). Then the divisions of the
Fuclidean algorithm are

ro1 = qifo + Ty
ro = 4,11 + g,

ry = g3ty + s,

Pi—z = ¢i"i—1 + Ti,
i1 = 4iv17is

where r, = d. The last equation shows that d divides r;_,. Then the next-to-
last equation shows that d divides r;_., (because it divides both terms on the
right), the third from last shows that d divides r;_3, and so forth. Thus d
divides all r’s, including r, = b and r_; = a, as was to be shown.

When the first equation is written in the formry, = r_; — qi7o = @ — 4;b,
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it shows that r; can be written as a linear combination of a and b. When the

second equation is written in the form r, = ry — g,r, and the expressions
ro=bandr, =a — q,bofryandr, in terms of a and b are substituted into
_it, it gives an expression of r, in terms of a and b. In the same way, the jth
. equation r; = r;_, — ¢;r;_ shows that a linear expression of r; in terms of
aand b can be deduced from similar expressions of ri—» and r;_. Thus
~d = r;can be expressed linearly in terms of aand b,d = Aa + Bb, as required.

§36 PROOF OF THE THEOREM ON SIMPLE ALGEBRAIC EXTENSIONS (§34). As
~ in the statement of the theorem, let K be a given field and let G(X) be an
- irreducible polynomial with coefficients in K. Let R be the set of all poly-
nomials in the variable X with coefficients in K. The elements of R can
be added and multiplied in the obvious way. Two elements of R will be said
to be equivalent (congruent mod G) if their difference is divisible by G, that
is, if their difference can be written as an element of R times G € R. This
defines an equivalence relation on R (the relation is reflexive, symmetric,
and transitive). Let L denote the set of equivalence classes. Then, because
the equivalence relation is consistent with both addition and multiplication
(if a(X) is equivalent to b(X) then a(X) + ¢(X) is equivalent to b(X) + ¢(X)
and a(X)c(X) is equivalent to b(X)c(X) for all ¢(X)), elements of L can be
added and multiplied. The mapping K — L which carries k€ K to the
equivalence class containing the polynomial k of degree 0 is a one-to-one
map, by means of which one can regard K as being contained in L. Let ¢
denote the class of the polynomial X. Then, by definition, G(¢) is the class of
G(X), which is the class of 0, which is identified withO e K. F inally, if y is any
element of L then y is the class of some polynomial h(X) = By X" + B, X" !
+ -+ B,; then h(t) = Byt™ + B;t"™' + -+ + B, is the class of ByX™ + -+~
+ B,, = h(X), that is, h(t) = y. Therefore L satisfies conditions (1), (2) and
(3) of the theorem. It is to be shown that L is a field.

Elements of L can be added and multiplied in natural ways and all the
axioms of arithmetic are obviously satisfied with the possible exception of
the axiom that division by nonzero elements is possible. Let y be a nonzero
element of L, say the class of h(X). By the Euclidean algorithm, one can find
a polynomial d(X) which divides both h(X) and G(X) and which can be
expressed in the form d(X) = A(X)W(X) + B(X)G(X), where A(X) and
B(X) are polynomials with coefficients in K. Since d(X) divides G(X) and
G(X) is irreducible, d(X) is either a nonzero constant in K or it is G(X) times
a nonzero constant in K. If it were G(X) times a nonzero constant of K then,
since it divides h(X), h(X) would be equivalent to 0 and y would be 0. Since
y is nonzero by assumption, it follows that d(X) is a nonzero constant, call
itd € K. Fromd = A(X)h(X) + B(X)G(X) it follows that 1 = d~ ' A(X)h(X)
+d™'B(X)G(X). Thus the element 1 of L, which is to say the class of the
polynomial 1, is the same as the class of d ~*A(X)h(X), which is the class of
d ™' A(X) times y. In short, the class of d ~1A(X ) is a multiplicative inverse
of y, and division by y is possible, as was to be shown.
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It remains only to specify the sense in which L is unique. Let L' be any
field satisfying (1), (2), and (3) for some ¢’ € L' which is a root of G. The claim
is that then there is a natural isomorphism L — L/, that is, a function L — L/
which preserves addition and multiplication and which is one-to-one and
onto. For this, let R be mapped to L' by sending h(X) € R to the element of
L’ obtained by substituting ¢’ for X and computing h(t") in' L. This mapping
preserves addition and multiplication. It is onto by property (3) of L. If
h(X) and h,(X) are equivalent, say h(X) — hy(X) = ¢(X)G(X), then
hy(t) — hy(t) = q(t)G(') = 0. Thus the function R —» L’ is compatible with
equivalence, and defines a function L — L'. It remains only to show that
this function is one-to-one. If the classes y, and y, have the same image in
L’ then the class y, — y, has the image 0. It is to be shown that this happpens
only when y; — y, = 0. This amounts to saying that any polynomial h(X)
for which h(t") = 0 must be divisible by G(X ). Let the Euclidean algorithm
be used to find a common divisor d(X) = AX)h(X) + B(X)G(X ) of h and
G. If h(z') = 0 then d(t') = A(¢)-0 + B()-0 = 0. Therefore d(X), which is
nonzero by definition, cannot be a polynomial of degree 0. Since d(X)
divides G(X) and G(X) is irreducible, this implies that d(X) is a nonzero
multiple of G(X). Since d(X) divides h(X), it follows that G(X) divides h(X),
as was to be shown. [

In summary, it has been shown how to find, for a given equation f(x) = 0
with coefficients in K, a Galois resolvent ¢ and an irreducible polynomial
G(X) with coefficients in K of which ¢ is a root. Here it is assumed that there
is some large field containing K in which f(x) = 0 has deg f rootsa, b, c, ...,
and that these roots are distinct. By the Corollary of §31, all the roots can be
expressed as rational functions of t, that is, the roots a, b, ¢, . . can be expressed
as elements of the field K(¢) obtained by adjoining a root t of the irreducible
polynomial G(X) to K using the theorem of §34. Thus K(t) contains deg f
roots of f(X), and the construction of the field K(t) represents in this sense
a solution of f.

Of course, this is not at all the sort of solution one had in mind at the
outset, and in particular it leaves entirely unanswered the question of
generalizing to higher degrees the solution by radicals of quadratic, cubic,
and biquadratic equations. What Galois did was to show how a solution by
a Galois resolvent can be made to yield enough information to answer many
questions about the algebraic nature of the solution and, in particular, the
question of whether a solution can be expressed in terms of radicals.

Note that K(t) is a field and that every element of K(t) can be expressed
as a polynomial in ¢t with cocfficients in K. Therefore, not only polynomials
in the roots a, b, ¢, ... with coefficients in K (the elements of the set
K(a, b, c,...) of §33), but in fact rational functions of the roots a, b,c,...with
coefficients in K can (provided the denominator is nonzero) be expressed as
elements of K(t), that is, as polynomials in t with coefficients in K (and
therefore as polynomials in a, b, ¢, . . .).
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- Galois’ Proof of the Basic Lemma

§37 The main tool in the above expression of K(a, b, ¢, .. .) in the simple
~ form K(¢) is Lagrange’s theorem of §29, which is used to show that the roots
.~ a,b,c,...can all be expressed as polynomials in the Galois resolvent ¢. This,
. however, is not the approach that Galois himself took. He mentioned neither
- Lagrange nor Lagrange’s theorem and instead stated and proved the crucial
fact as follows:

“Lemma II1. When the function® t has been chosen as above [that is, so that
it has n! different values when the roots are permuted], it has the property that
all the roots of the equation can be expressed rationally in terms of t.

“In fact, let ¢t = ¢(a, b, ¢, ...), which is to say t — ¢(a, b,¢,...) = 0. Let
us multiply all of the similar equations [sic] which one obtains in permuting
the roots, keeping only the first one fixed. This gives

(t = ¢la b, cd, .. )Nt — Pla,c,b,d,.. )t — ¢a, b,d,c,.. ),

which is symmetricin b, c,d, . .. ,and consequently can be written as a function
of a. We will then have an equation of the form F(t, a) = 0. But I say that one
can solve this for a. For this it suffices to seek the common solution of this
cquation and the given one. This solution [that is, a] is the only one they have
in common, because one cannot have, for example, F(t, b) = 0 without the
consequence (this equation havinga common factor with the similar equation)
that one of the functions ¢(q, . . .) was equal to one of the functions ¢(b,...),
which is contrary to the hypothesis. From this it follows that a can be expres-
sed as a rational function of ¢, and it is the same for the other roots.” (See
Appendix 1.)

When Poisson read Galois’ memoir in 1831, he made a note in the margin
next to thist proof saying “The proof of this lemma is insufficient, but it is
true by article 100 of the memoir of Lagrange, Berlin, 1771.” Galois replied
in a note on the manuscript, “On jugera,” that is, one will make up one’s
own mind. Perhaps he meant something like, “That remains to be seen.”

It is easy to understand Poisson’s position. Galois’ proof can be regarded
as, at best, a sketch, and therefore is certainly “insufficient” if one is in any
doubt as to the correctness of his theory and the accuracy of his reasoning.
In his report to the Academy (which formally involved Lacroix, but Lacroix
did not even sign it), Poisson said of Galois’ memoir as a whole that “We

* Galots used the letter ¥V for ¢.

T In the recent edition [G1] of Galois’ writings, the pair of asterisks indicating this note is badly
placed, indicating that it pertains to Lemma II rather than Lemma IIIL As is clear from both the
content and from the reproduction of the actual note in the front of the volume, it pertains to
Lemma IIIL. See also p. 491 of this edition for confirmation that the proof of Lemma III is the one

in question.
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have made every effort to understand Mr. Galois’ proof. His arguments are
not clear enough, nor developed enough, for us to be able to judge their
correctness. .. .” He hoped that Galois would improve and amplify his
exposition of his work, but concluded that “in the state in which it is now
submitted to the Academy, we cannot recommend that you give 1t your
approval.”* With the benefit of hindsight, one can see that Galois’ ideas
were correct and gave great insight into algebraic problems. At the time,
confronted with an incomprehensible manuscript and a 19-year-old author
who could well be asked to improve on it (and who was in trouble with the
police to boot), one might well decide to recommend to one’s colleagues that
they not endorse it.

Galois’ position is also easy to understand. He knew that his proofs were
correct and that his understanding of algebra far exceeded that of the men
‘who were judging his work. Moreover, he had twice been refused admission to
the Ecole Polytechnique, when he surely knew he was better qualified than
most who were accepted, and the previous year he had submitted a memoir
to the Academy to compete for a prize and it wasn’t even considered for the
prize because it was lost! After Poisson’s rejection of his paper, he became
extremely bitter and evidently gave no consideration at all to amplifying his
memoir and making it more understandable to the likes of Poisson.

On jugera. Is Galois’ proof sufficient? Of course, a proof is in the eye of the
beholder, so a flat answer yes or no cannot be given. To some extent the
answer depends on what one is allowed to assume as known. However,
assuming the existence of a field K(a, b, c, .. .) in which the given polynomial
has n distinct roots, one can amplify Galois’ argument slightly to give a
convincing proof of his Lemma III and therefore to make his theory quite
independent of Lagrange—something that Galois would probably have
insisted upon. The argument is as follows.} |

Let F(X, Y) be the polynomial obtained from the product of the (n — 1)!
expressions X — ¢(Y, b, ¢, d, ...) when the roots b, ¢, d, ... are permuted in
all possible ways, when the symmetric polynomialsin b, ¢, d, . . . are expressed
in terms of a (see the end of §30), and when a is replaced by Y. Then F(t, a) = 0,
as Galois says, and what is to be shown is that this equation can be solved
for a in terms of t. Let f be the given polynomial withroots a, b, ¢, ..... Let the
Euclidean algorithm be used to find the greatest common divisor of f(Y) and
F(t, Y) when both are regarded as polynomials in Y with coefficients in
the field K(¢). This gives d(Y) = A(Y)F(t, Y) + B(Y)f(Y) where d, 4, and
B are polynomials with coefficients in K(¢) and d(Y) is a divisor of both
F(t, Y) and f(Y). Since Y — a divides] both F(t, Y) and f(Y), it divides
*Taton [T1]. '

+ Note added in second printing: For further discussion of this point see Edwards, Harold M.,
A Note on Galois Theory, Archive for History of Exact Sciences, vol. 41 {1990} pp. 163-169. See
also Abel’s paper “Recherche de la quantité qui satisfait a la fois a deux équations algébriques
données” (Qeuvres vol. 1, p. 212).

1 Division of a polynomial g(Y) by Y — a gives g(Y) = g(Y)(Y — a) + r where r is constant.

Substitution of a for Y gives g(a) = r. Thus Y — adivides g(Y) (that is,r = 0)if and only if g(a} = 0.
This is known as the Remainder Theorem.
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d(Y). Galois contends that d(Y) has no other factors. Since f(Y) is a constant
times (Y — a)Y — b(Y — ¢)...,d(Y) is a (nonzero) constant times ¥ — 4
_ times a product of some subset of the factors Y —b, Y —¢, .... f Y—b
_ divides d(Y) then it divides F(t, Y), that is, F(t, b) = 0. To prove Galois’
- contention that d(Y) = y(Y — a) (y € K(¢), y # 0) it will suffice to prove that
= F(t, b) # 0 and, by symmetry, F(t,¢) # 0, ... .
The expressions of the elementary symmetric functions of n — 1 of the
roots in terms of the remaining root—namely 7, =6, — a, 7, = ¢, —
asy + a*, 13 = 03 — ac, + a’s, — a°,...—are independent of the choice
of the special root. Therefore F(X, Y) can also be described as the product
of all (n — 1)! expressions X — ¢(Y, a, ¢, d,...) when the roots a, ¢, d, ...
are permuted in all possible ways, when the symmetric polynomials in
a,c,d, ... are expressed in terms of b, and when b is replaced by Y. This shows
that F(t, b) is equal to the product of the (n — 1)! terms t — ¢(b, a,c,...) =
¢(a, b, c,...) — ¢(b, a, c, ...). Since by assumption these factors are not zero,
this shows that F(z, b) # 0 and consequently that d(Y) = (Y — a) (y € K(¢),
y # 0).

Setting ¥ = 0 in d(Y) = A(Y)F(t, Y) + B(Y)f(Y) gives y- (—a) € K(?).
Then division by —y gives a € K(t), as was to be shown. (See Exercise 9 for
an application of Galois’ method in a specific case.)

Fourth Exercise Set

1. As in §30, let ¢ be a polynomial in n variables x,, x,, ..., X,, let t;,¢,,..., t; be all
distinct polynomials in x4, x5, . . ., X, that can be obtained from ¢ by permutation of the
variables, and let ¢,, ¢,, ..., ¢, be permutations of the variables such that ¢; = ¢,t.
Show that if ¢ is any permutation of the variables then y = ¢, g—that is, first perform
the permutation g and then perform the permutation ¢,—where i = 1 or 2 or... or k

and where gt = 1.

2. Let f'be a polynomial with coefficients in a field K. Let f(x + h), which is a poly-
nomial in two variables x and h, be expanded f (x + h) = A(x) + B(x)h + C(x)h? + ...
as a polynomial in A with coefficients that are polynomials in x. Then A(x) = f(x).
The coeflicient B(x) of h is by definition the derivative of f(x), denoted f'(x). Show that
f(x) divided by its greatest common divisor with f’(x) has the same roots as f(x) and
has only simple roots.

3. Show that if K is a field, if x,, x,, X3, ... is an infinite sequence of distinct elements
of K, and if F(4, B, C,...) is a nonzero polynomial in n variables 4, B, C, ... with
coefficients in K, then it is possible to select values A = x;, B = x;, C = X, ... for the
variables 4, B, C, ... from the sequence x,, x,, X3, ... 80 that F(x;, Xz, X, ...) # 0.

4. Prove that a product of nonzero polynomials is nonzero.

5. Describe the field of complex numbers as a simple algebraic extension of the field
of real numbers.

6. Find (3 + 2,/2)" ! in the field Q(,/2) obtained by adjoining a root /2 of x* — 2 to
the field Q.
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7. Show that if a, b, ¢ are the roots of an irreducible cubic equation with rational co-
efficients then a — b is a Galois resolvent of the equation. [If an equation has a rational
root it is not irreducible, nor is it irreducible — by Exercise 2—if it has multiple roots.]

8. Lett = a — b be the Galois resolvent of an irreducible cubic treated in the preceding
exercise. Under the assumption that the irreducible cubic has the special form x* +
px + g (a change of variable puts any cubic in this form) find explicitly the 6th degree
polynomial F(X) of which ¢ is a root. Show that F(X) is reducible if the discriminant
—4p® — 2747 is a square. (It will be seen in Exercise 5 of the next set that F(X) is re-
ducible only if —4p® — 274> is a square, in which case it is a product of two irreducible
cubics.)

9, Use Galois’ method of §37 to express the roots a, b, ¢ of an irreducible cubic x> +
px + q = Oasrational functions oft = a — b. Of the three, ¢ has the simplest expression.
Verify that if ¢ is a root of the equation found in Exercise 8 then this rational function ¢
of tisaroot of x> + px + g = 0.

10. In the case of the equation x* — r = 0, express ¢ as a polynomial in t. Since the ratio
of any two roots is a cube root of unity, the field K(¢) must contain a square root of —3.
Find one.

11. Combine Exercises 8 and 9 to express a, b, ¢, the roots of an irreducible cubic x3 +
px + q = 0, as polynomialsint = a — b.

12. Galois’ derivation assumes the existence of a field in which the given equation
f(x) = 0has deg f roots. Prove without this assumption that the field K(¢), obtained by
adjoining a root ¢ of an irreducible factor of the polynomial found in Exercise 8, contains
three roots of x* + px + ¢ in the sense that x* + px + ¢ = (x — a)(x — b)(x — ¢)
~ where a, b, ¢ € K(¢).

13. The theorem of the primitive element states that if r, s, ¢, . . . is a finite set of elements
each of which is algebraic over K -—that is, each of which is a root of a polynomial with
coefficients in K—then K(r, s, t,...) = K(w) for some w. In other words, there is a
rational function w of r, 5, 1, . . . such that each of the elements r, s, ¢, . . . can be expressed
as a rational function of w. Show that this theorem is equivalent to the following one:
Let f be a polynomial with coefficients in K and, as in the text, let K(a, b, ¢, ...) be the
field of all rational functions in the roots g, b, ¢, ... of f. Given any subset of the roots
a,b,c,...thereisaue K(a, b, ¢, .. .) which is a rational function of the roots in the subset
and in terms of which each of the roots in the subset can be expressed as a rational
function. In short, K(u) = K(a, V', ¢, ...) where &, b', ', ... run over roots of the given
subset of g, b, ¢, ... .

14. Prove the theorem of the primitive element as it is reformulated in the preceding
exercise by generalizing Galois’ proof of §37. [Van der Waerden has stated [W1] that
Galois’ proof was the inspiration for his proof of the theorem of the primitive element,
although he does not explain the connection.]

15. It is obvious that anything expressible as a polynomial in the nroots a, b, c, ... of an
equation f(x) = 0 of degree n with coefficients in K can be expressed as a polynomial of
degree < n in each of the roots a, b, ¢, ... . Show that in fact it can be expressed as a
polynomial of degree < nin a, of degree <n-— 1 in b, of degree < n — 2ingc,...,and
not involving the last root at all.
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16. If you are familiar with the notion of an algebraic integer in an extension field of
- @, you can prove the existence of a Galois resolvent for an equation with rational
 coefficients and nonzero discriminant D as follows. Let g 1» 3, - .. a, be the roots of the
-~ equation. Let m be an integer such that ma; 1s an algebraic integer for i = 1, 2,...,n.
Then m"®~ 1D is an integer. Let py, p,, ..., p, be distinct prime integers which do not
- divide m""~ VD, Let A, be the product of py, p,, ..., p, except p;and let t = ¥ A;ma;.
- Then t is an algebraic integer and a Galois resolvent because if ). A;ma, ) = Y A;may;
- then ma, = ma,;, mod p;; if o(i) # (i) this gives m"® VD = 0 mod p;, contrary to
- assumption. Fill in this sketch.

" 17. Show that if f(x) = x> + px 4+ g has nonzero discriminant then Aa + Bb is a
Galois resolvent if and only if A # B.

18. Let b(X) be a given nonzero polynomial with coefficients in a field K. Suppose it is
known that every polynomial a(X) of degree < k can be written in the form a(X) =
g(X)b(X) + r(X) where deg r < deg b. Show that the same is true for polynomials a(X)
of degree k, and conclude that it is true for all polynomials a(X). Show also that g(X),
r(X) are uniquely determined by a(X), b(X).

19. Describe a computational scheme similar to long division for computing, given
polynomials a(X) and b(X) with coefficients in a field K, polynomials g(X) and r(X)
with coeflicients in the same field and with a(X) = g(X)b(X) + r(X),degr < degb.(Or,
write a computer program for doing this in the case K = Q. You may ignore the fact
that normal calculations on the computer imperfectly represent Q.)

Basic Galois Theory: The Galois Group

§38 As was seen above, the idea of the Galois resolvent is not a great
step beyond Lagrange’s work. It is simply the recognition that if one is willing
to drop the condition that the equation for ¢ be solvable then there is always a
“resolvent” ¢, that is, a polynomial ¢ in the roots such that every rational
function of the roots is a polynomial in . The great advance which Galois
made was to devise a means of analyzing the structure of the field K(z) of
rational functions of the roots which enables one, in theory, to determine
whether the roots can be expressed in terms of known quantities from K
and the operations of addition, subtraction, multiplication, division, and the
extraction of roots. The main tool in this analysis was the concept of what is
today called the Galois group of the field K(¢) over K.

Before proceeding to the discussion of the Galois group, it will be useful
to review briefly the notation and the notion of the Galois resolvent. Let K
be the field of quantities that are assumed to be known, and let f(x) = 0
be a polynomial equation of degree n with coefficients in K. Let a, b, ¢, . ..
be the roots of f(x) = 0. (Galois and his predecessors, going all the way
back to Girard 200 years earlier, seem to have taken it for granted that it was
meaningful to talk about the roots of f(x) and that there were precisely n
roots. They do not seem to have worried about where or what these roots
were. This question will be addressed in §49 et seq.) It will be assumed that
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therootsa, b, c, . ..aredistinct, a restriction which does not cost any generality
because there is a simple rechnique for replacing an equation f(x) =0
with multiple roots with another equation with the same roots, all occurring
once. (See §31.) Let K(qa, b, ¢, . ..) denote the field of all elements that can be
expressed as rational functions of the roots a, b, ¢,.... Then there is an
element 1t € K(a, b, ¢,...), called a Galois resolvent, with the property that
any given element of K(a, b, ¢, .. .) can be expressed as a polynomial in ¢ with
coefficients in K. In fact, ¢ can be taken to have the form t = Aa + Bb +
Cc + ---where A4, B, C, ... are integers. Let F(X) be the polynomial F(X) =
[](X — ASa — BSb — CSc — - --) with coefficients in K, where the product
is over all n! permutations S of the roots a, b, ¢, . . ., and let

F(X) = G(X)G(X) - - G(X)
be a decomposition of F into irreducible factors. (See §61 below.) Then F(t) =0,
and, consequently, ¢ is a root of one of the polynomials G;, say G,(t) = 0.
Then the field K(¢), which is isomorphic to K(a, b, c, . . .), can be represented
very concretely as the simple algebraic extension of K obtained by adjoining
a root of the irreducible polynomial G, (see §§34-36).

§39 Most readers probably have some acquaintance with the notion of
a finite group. Galois was the first* to introduce it, and he did so in the
following very concrete way.

An arrangement of the nroots a, b, ¢, . . . is simply a listing of them in some
order. A substitution of them is a one-to-one onto mapping of the roots to
themselves. Two arrangements can be regarded as representing a substitution,
namely, the substitution which transforms the first arrangement into the
second. For example, the ordered pair (abcdef, bacefd) represents the sub-
stitution which interchanges a and b, leaves ¢ fixed, and performs the cyclic
substitution d = e — f —d of d, e, and f. A presentation of a groupt is a list
of arrangements of a, b, ¢, ... with the property that the set of substitutions
which transforms the first arrangement in the list to each of the others is the
same as the set of substitutions which carry any other arrangement in the
list to the remaining ones. For example, :

a b c d e f
b a ¢ e [ d
a b ¢ [ d e
b a ¢ d e f
a b c e f d
b a ¢ f d e

* Note add in second printing: Although Galois was the first to use the word “group” in this way,
and although he was the first to represent a finite group in the way that is described in this section,
Cauchy certainly dealt with finite groups (see, for example, “Sur le nombre des valeurs qu’une
fonction peut acquerir, lorsqu’on y permute de toutes les manieres possible les quantités qu’elle
renferme”) and to some extent so did Lagrange and Ruffini.

tThe term “presentation of a group” is used differently in the literature of group theory.
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is a presentation of a group. If the columns are rearranged so that the 1st row
is in the order of the 4th row, say, the table becomes

b a ¢ d e f

S o R

e
/
d
e

o o o
L S - TR o SR oY
_ o ow,

f
d
e
/
a b ¢ f d e.

On the one hand, rearranging the columns does not alter the substitutions;
therefore, the two tables describe the same substitutions. On the other hand,
the rows of the second table are a rearrangement of those of the first, so these
substitutions are the substitutions which carry the 4th row of the first table
to the remaining rows. In order to show that the first table (and therefore
the second table) is a presentation of a group, one would have to show
that what was just shown to be true of the 4th row is true of the other rows
also. '

A group of substitutions is a set of substitutions that can be obtained in this
way from a presentation of a group, including the identity substitution which
carries the first arrangement to itself. Galois observes that a set of substitu-
tions is a group if and only if it is closed under composition, that is, if and only
if for any two substitutions S and T in the set, their composition ST is in the
set. The proof of this fact is left as an exercise to the reader (Exercise 1),
In the example above, let S be the substitution which carries the 1st row to the
4th (S is the interchange a < b) and let T be the one which carries the 1st
row to the 5th (T is the cyclic substitution d — e — f — d). Then S and T
commute, $* = T = identity, and the six rows of the table correspond to the
identity substitution, ST, T?, S, T, and ST2. Since this set of substitutions
is closed under composition, it follows that the table is a presentation of a
group.

The terminology introduced here is an adaptation of Galois’ terminology
intended to make Galois’ memoir easily accessible to a modern reader.
Galois calls an arrangement a “permutation.” Since the word “permutation”
usually means—and even in Galois’ day usually meant—what is called a
substitution above and in Galois’ memoir, it seems better to avoid this word
altogether. Galois is not very clear as to just what he means by a “group.”
For the most part he seems to mean what is called a presentation of a group
above,* but he also uses the phrase “group of substitutions”, by which he
surely meant what is called a group above. Since the modern meaning of the
word group is so firmly established, it would be foolish to use it in any other
way here. More exactly, what is called a group above is, of course, a subgroup
of the group of all substitutions (permutations) of the nroots a, b, ¢, . . . . This
is the only kind of group that will be considered here.

* See, for example, his Proposition I.



50 Galois Theory

§40 A subgroup of a group is simply a group which is contained in
another. In terms of a presentation of the group, a subgroup partitions the
presentation into a number of presentations of the subgroup. For example, if
the group is the group of all substitutions of the three letters a, b, ¢ and the
subgroup is the identity and the interchange a <» b then the three presenta-
tions

a b ¢ a ¢ b ¢c a b
(D
b a ¢ b ¢ a ¢c b a
of the subgroup taken together give a presentation of the whole group. The
number of presentations of the subgroup in a presentation of the group is
called the index of the subgroup. To say the same thing another way, the
number of substitutions in the subgroup must divide the number of sub-
stitutions in the group, and the quotient is called the index of the subgroup in
the group. These facts too are left to the reader to prove (Exercise 2).

Galois recognized the special importance of what are today called normal
subgroups, although he described them in a manner that is unfamiliar today.
As was just noted, a subgroup of index k of a group gives a partition of a
presentation of the group into k presentations of the subgroup. Galois singled
out those subgroups with the property that the various presentations of the
subgroup differ from one another by the application of a single substitution.*
For example, the subgroup presented in (1) above does not have this property
because no substitution of the letters in the first presentation gives the second
presentation. (No matter how the names of the letters in the first presentation
are changed, the letter in the 3rd column is the same in both rows, and this is
not true of the second presentation.) A subgroup which does have this
property is

a b ¢ ¢c b a
b ¢ a b a ¢ (2)
c a b a ¢ b.

(The group is all six substitutions of three letters. The subgroup of three
substitutions has these two presentations. The interchange of a and ¢ carries
the one presentation of the subgroup to the other, as does any interchange.)
Another such subgroup is Galois’ example

a b ¢ d a c d b a d b ¢
b a d c c a b d d a c¢c b 3)
c d a b d b a ¢ b ¢ a d

d ¢ b a b d ¢ a ¢c b d a

* For purposes of this definition, it is necessary to regard two presentations as being the same
whenever they consist of the same rows, even if they list these rows in a different order.
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(The group contains twelve substitutions of four letters. The subgroup
~ contains four substitutions. It should be checked that the three subpresenta-
_ tions present the same group. Clearly, the substitution which carries the
 1st row of any one of these three subpresentations to the st row of any
_ other also carries the following rows of the one to the following rows of the
. other.) It is a simple exercise (Exercise 3) to prove that a subgroup has this
- property if and only if it is true that, for any T in the group, and any § in the
subgroup, the substitution T~'ST is in the subgroup. Such a subgroup is
called a normal subgroup.

§41 The Galois group of the given equation f(x) = O withroots a, b, c, . . .
is the group with the following presentation. Let each of the roots a, b, c, . ..
be expressed in terms of the Galois resolvent ¢, say a = ¢ (t), b = ¢,(1),
c=¢Jt),..., where the ¢’s are polynomials with coefficients in K. As
above, let F(X) be the polynomial of degree n! whose roots are the n! distinct
elements ASa + BSb + CSc + --- of K(a, b, ¢,...), where ¢t = Aa + Bb +
Cc + ---and where § is one of the n! substitutions of a, b, ¢, . .. . Finally, let
G(X) be an irreducible (over K) factor of F(X) of which ¢ is a root. (See §38.)
The conjugates t', t", . .. of t (over K) are the other roots of G(X). The Galois
group of f(x) = 0 is presented by

¢a(t) ¢b(t) ¢c(t)'--’
6(t') Ht') ) ..., (1)
6(t") &) ¢,

The number of rows in the table—and therefore the number of elements in
the group—is equal to the number of roots ¢, ¢/, t”, . . . of G, which is equal to
deg G. (Note that the conjugates ¢, t”, .. . are all roots of F and are therefore
of the form ASa + BSb + CSc + --- where § is a substitution of g, b, c, ... .)

In order to justify this definition of the Galois group it must be shown
that:

(A) for any conjugate t’ of ¢, the elements ¢ (t), ¢y(t), P (t),... are an
arrangement of the Ist row ¢ (t) = a, ¢,(t) = b, ¢ (t) = ¢, .. .;

(B) the arrangements in the table present a group; and

(C) the group of substitutions of the roots a, b, c, . . . presented by the table is
independent of the choice of the Galois resolvent t.

In his proof of (A), and in several later proofs, Galois makes use of a
simple and very basic lemma:

Lemma L If g(X) and h(X) are polynomials with coefficients in a given field K,
if g(X) is irreducible, and if g(X) and h(X) have a common root, then g(X)
divides h(X).
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ProOOF. Let the Euclidean algorithm be used to write a common divisor
d(X) of g(X) and h(X) in the form d(X) = A(X)g(X) + B(X)h(X) where
A(X) and B(X) are polynomials with coefficients in K. If the common root
r of g(X) and h(X) is substituted into this equation the result is d(r) = 0.
Therefore d(X)hasdegree > 0. Since d(X) divides g(X) and g(X) is irreducible,
it follows that d(X) is a nonzero element of K times g(X). Since d(X) divides
h(X), it follows that g(X) divides h(X), as was to be shown. L]

Using this lemma, Galois proves (A) as follows. Since f(¢ (X)) is a
polynomial in X with coefficients in K, and since it has the root ¢ in common
with the irreducible polynomial G(X), by Lemma I it is divisible by G(X)
and every root of G(X) is aroot of f(¢,(X)). Similarly, every root of G(X)isa
root of £ (¢,(X)), f(¢p (X)), . . . . This shows that the entries in the presentation
(1) of the Galois group are all roots of the equation f(x) = 0. If two entries in
the same row are equal, there is an equation of the form ¢,(t') = ¢.(t'), where
d and e are roots of f(x) = 0 and t' is a root of G(X). By Lemma I, G(X)
divides ¢4(X) — ¢, (X) and therefore ¢t is a root of ¢ (X) — ¢.(X). Thus
d = ¢ t) = ¢,[t) = e. Thus, each row of the presentation of the Galois
group includes each root of f(x) = 0 at most once, and (A) follows.

Galois does not address (B) and (C) directly, but it is clear that he saw
them as consequences of his Proposition 1. His statement of this Proposition
requires rather a lot of explanation about the “substitutions” it is talking
about and the type of “invariance” it means. Therefore a reformulation of it
seems preferable to a quotation. I believe that this reformulation is faithful
to his meaning. *

Proposition 1. Let Y(U, V, W, . ..) be a polynomial in n variables with co-
efficients in K. Let ¥, be the element of K(a, b, c,...) obtained by setting
U=¢,), V=), W= ¢t),...inY. In other words, for U, V, W, ...
one substitutes the arrangement of the roots given in the row of the above table
(1) corresponding to t'. Similarly, let ¥,, ¥,., ¥, ~, . . . be defined by substituting
the corresponding row. Then ¥, is in K if and only if the elements ¥,, ¥,.,
Y,.,...areall equal. Loosely speaking, ¥(a, b, c, .. .) is a known quantity if and
only if it is invariant under all the substitutions of the Galois group.

PrOOF. Substitute U = ¢ (X), V = ¢, (X), W = ¢(X),...nP(U,V,W,...)
to obtain a polynomial ¥*(X) with coefficients in K. If ¥, is in K then
Y*X) - ¥,

is a polynomial with coefficients in K of which ¢ is a root. By Lemma 1,
G(X) divides ¥*(X) — ¥,, and therefore ¢’ is a root of this polynomial when
t' is any root of G. Thus ¥, — ¥, = 0 and, since ¢’ was arbitrary, ¥,.,, ¥,., ...

* For Galois’ statement, see Appendix 1.
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areallequal to ¥,. Conversely, if ¥,, ¥;., ¥,, .. . are all equal and if there are
_ kof them then

¥, = 75 [¥, + ¥, + ¥, + -] = T [F*(t) + P*() + P*@") + ---].
This is a symmetric polynomial in the roots ¢, ', t”, . . . of G(X) and can there-
- fore be expressed in terms of the coefficients of G(X). Since these coefficients
-~ arein K, it follows that ¥, is in K, as was to be shown. ]

In order to deduce (B) and (C) from Proposition I, it is helpful to observe:

~ Corollary. Let t be a Galois resolvent, let t' be one of its conjugates, and let S
~ be the substitution of the roots which carries the row of the above table (1)
corresponding to t to the row corresponding to t'. In short, let S(a) = ¢ (t),
- S(b) = (1), S(c) = pt"),.... Then S can be extended to an automorphism
 of the entire field K(a, b, c, . . .) over K, that is, a function S from K(a, b, c, .. ) to
itself which is the identity map on K, which carries sums to sums, products to
products, and agrees with the original S for the roots a, b, c, . . . .

ProoF. An element of K(a, b, c, . . .) can be written as a polynomial in ¢. Since
t can be assumed to be a linear polynomial in g, b, c,..., an element of
K(a, b, c, ...) can therefore be written as a polynomial in a, b, c, ... . In other
words, any given element of K(a, b, c,...) can be written in the form
Y(a, b, c,...) where ¥ is a polynomial in n variables with coefficients in K.
If there is an automorphism extending S, it clearly must carry this element to
W(Sa, Sb, Sc, ...). One could define the effect of the automorphism on the
given element to be W(Sq, Sb, Sc, .. .) if it were known that this definition was
independent of the choice of the representation W(a, b, ¢, ...) of the given
element. But this follows immediately from Proposition I because if
Y(a, b, c,...) = ®(a, b, c, . . .) then their difference is 0, which lies in K, and by
Proposition I the substitution Sof the roots leaves their difference unchanged,
that is, W(Sa, Sb, Sc,...) = ®(Sa, Sh, Sc, .. .), as was to be shown. ]

- Corollary. Let t be a Galois resolvent, let t' be one of its conjugates, and let S
be the corresponding substitution of the roots as in the previous corollary. Let
s be any other Galois resolvent of the same equation. Then there is a conjugate
s"of ssuch that S is equal to the substitution of the roots corresponding to s and 5.

PROOF. Since s 1s in K(a, b, ¢, . . .), the extension of S defined in the preceding
corollary applies to s. Define s’ to be S(s). If H(x) is an irreducible polynomial
of which s is a root, then application of S to H(s) = 0 gives H(s") = 0,
so that s’ is a conjugate of s. Now if a = ¥ (s), where ¥, is a polynomial
with coefficients in K, then application of S to both sides gives S(a) =
Y (Ss) = Y ,(s). Similarly, S(b) = ,(s"), S(c) = ¥ (s'),...,as wasto beshown.

[
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Now (B) follows immediately from the last corollary because this corollary
shows that if ¢’ is any conjugate of ¢ then (set s = t') the substitutions of the
‘roots that result from changing ¢ to one of its conjugates are the same as those
that result from changing ¢’ to one of its conjugates. (The conjugates of ¢
coincide with those of ¢’ because in both cases the conjugates are the roots of
G.) Since (C) follows even more immediately from the last corollary, this
completes the justification of the above definition of the Galois group of the
equation f(x) = 0 as a group of substitutions of the roots of the equation.
Moreover, it shows that the elements of the Galois group can also be re-
garded as automorphisms of the field K(a, b, c, . ..) over K—a fact which is
not stated explicitly by Galois, but which is fundamental in most modern
formulations of his theory.

Examples

§42 Galois gives two examples of Galois groups of equations. The
first is what he calls an “algebraic” equation, by which he means an equation
in which the coefficients are indeterminates rather than numbers. For such
equations, he says that the group is the set of all n! substitutions of the roots
“because in this case the symmetric functions [of the roots] are the only ones
that can be determined rationally,” that is, are the only ones in K. In other
words, only symmetric functions of the roots can be expressed in terms of the
coefficients and therefore, by Proposition I, the group must contain all
substitutions. This is rather plausible, but the proof is far from obvious.
(See §67.)

His other example is the group of the equation x?™% + x?72 + .-« +
x + 1 = 0 satisfied by the primitive pth roots of unity where p is prime. Here
if a is any root of the equation the other roots are % a°,...,a? " 1. If Sis any
element of the Galois group, then S(a) = a* for some k=1, 2,...,p — 1
(because S(a) is a root). Thus the effect of S on any root is known because
S(a’) = S(ay = o™ (S is an automorphism). The substitutions S(a’) = o
are more conveniently described by choosing a primitive root g mod p
(see §24) and setting a = a, a; = a}, a, = aj, az = aj,.... Then § carries
a; to a;,,, where p is defined by S(ao) = a,, because S(a,) = S(ag) =
S(ao)y’ = a% = a,, 1, S(ay) = G, 5, .... Thus the group of this equation is
contained in the group presented by

a; a, das g
a, as dg ... 44 (1)
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The group depends on the field K of known quantities. Galois, clearly
considering the case where K is the field of rational numbers, states, without
- proof, that the group is the set of all p — 1 substitutions presented in the
~ table above. The proof of this fact uses a theorem of Gauss (Exercise 10).

- Another example of interest is an equation of the form x? = k where the
- known quantities K include k and a primitive pth root of unity o (with p prime).
~If a is any root of the equation x? — k = 0 then the other roots are aa,
“o?a,...,oP 'a. If S is any substitution of the Galois group then S(a) = o’a
for some j and all values of S are given by S(o*a) = o*S(a) = o* *Ja (because S
~ is an automorphism that leaves the elements of K fixed). Thus

a oa ofa ... ofPlg

oa ofa ola .- a

o?a ola o*a .- ol
()

o la a aa ... o 2a

is a presentation of a group containing the Galois group. Since this is a group
with p elements, and since the number of elements in a subgroup must there-
fore divide p, the Galois group is either the entire group presented above or it
is the group containing the identity alone. In the latter case, by Proposition I,
every element of K(a, b, ¢,...) is in K and the equation already has p roots
in K. Otherwise the Galois group is the group presented above. A simple
consequence of this observation is that if k does not have a pth root in K and
if K contains a primitive pth root of unity then the polynomial x¥ — k is
irreducible over K (see Exercise 4).

As a final example, consider the equation x* + 1 = 0 (the equation for the
primitive 8th roots of unity). If a is any root then so are >, a°, and a’, and the
group of the equation is easily seen to be contained in the group presented by

As before, if K is the field of rational numbers, then the Galois group of the
equation is the entire group of four elements presented above (Exercise 11).

For explicit presentations of the Galois groups of cubic equations, see
Exercises 6 and 7.
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Fifth Exercise Set

1. Show that a set of substitutions of n objects a, b, ¢, ... is a group if and only if it is
closed under composition.

2. Show that a subgroup H of a group G partitions a presentation of G into presentations
of H and, in particular, that the number of elements in H divides the number of elements
in G. [Assume a presentation of G in which no two arrangements are equal, so that the
number of arrangements is equal to the number of elements in G.]

3. Show that a subgroup H of a group G is normal in the sense defined in §40 if and only
if, for every Sin Hand Tin G, T~ 'STis in H.

4, Show that the Galois group acts transitively on the roots of a factor of f if and only if
the factor is irreducible over K. (To say that the group acts transitively on the roots
means that given any two roots a and b there is a substitution of the group which carries
atob.)

5. Let f(X) be an irreducible cubic equation. Show that the Galois group of f'is either
the full group of all six substitutions of the roots a, b, ¢ of f or it is the three element
normal subgroup presented in (2) of §40. Show that the latter case occurs if and only if
the discriminant of f'is a square.

6. Let x> + px + g be an irreducible cubic whose discriminant is a square, say P? =
—4p® — 27¢%. Let K(¢) be obtained by adjoining a root ¢ of 2 + 3pt + P = 0. Give
explicit second degree polynomials a, b, ¢ in t with coefficients in K which are roots of
x? + px + ¢ = 0 in K(t). Show that ' = b — c and " = ¢ — a are conjugates of ¢ and
find the Galois group.

7. In the case where the discriminant of the irreducible cubic x* + px + ¢ is not a
square, give the explicit factorization of F(X) (Exercise 8 of the Fourth Set) into linear
factors over K(¢).

8. Let f(x) be an irreducible cubic whose Galois group has three elements. Then every
element of K(t) can be wrltten as a polynomial of degree < 3 in t with coefficients in K.
In particular, 1, a, and a® can be so expressed, where a is any root of f. Show, without
computation, that these equations can be solved for ¢ as a polynomial in a. Thus the
other roots of f can be expressed as polynomlals in a. Find these expressmns assuming
o, = 0. Apply them in the cases f(x) = x> —3x + 1 and f(x) = x> — 2 to express
the remaining two roots in terms of a given one.

9. Show that the polynomial F(X) of §38 has the property that all of its irreducible
factors have the same degree.

10. Gauss proved that, for prime integers p, the polynomial Xl XPi o+ X
1 is irreducible over the rational field Q. A proof of this fact will be given in §64. Making
use of it, prove that the Galois group of (x*—1)/(x — 1) = 0is the group Galois de-
scribed (§42).

11. Prove that the Galois group of x* + 1 =0 over Q is the group presented in §42.

12. Find the Galois group of x® — 1 = 0 over Q.
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13. Show that the subgroup presented in Galois’ example in (3) of §40 is normal.

14. A group is called cyclic if it contains a substitution S with the property that every
clement of the group is a power of S. For example, the groups presented in (1) and.(2)
“of §42 are cyclic. Show that every subgroup of a cyclic group is cyclic.

" 15. Show that a subgroup of index 2 is always normal.

" 16. Let K be a field which contains a pthroot of unity o # 1, where p is prime. Show that,
as stated in §42, if a and b are any two roots of x” — k = 0 (k € K) then b = o’a for some
integer j.

17. Show that the automorphism of K(a, b, c, . ..) over K described in the first corollary
of §41 carries t to t'.

18. Leta, b, ¢, ... be the roots of an equation f (x) = 0 and let ¢ be any primitive element
of the field K(a, b, ¢, . ..) (see Exercise 13 of the Fourth Set). Show that the irreducible
equation with coefficients in K of which ¢ is a root has degree equal to the number of
elements in the Galois group of f (x) = 0 over K, that it splits into linear factors over K(¢),
and that Galois’ presentation of the Galois group, (1) of §41, is valid for ¢ (even though ¢
is not necessarily a Galois resolvent).

Basic Galois Theory: The Groups of Solvable Equations

§43 The essence of Galois” achievement was to determine the conditions
imposed on the Galois group of an equation by the assumption that the equation
is solvable by radicals. The first step in doing this, naturally, is to state very
explicitly what it means to say that an equation is solvable by radicals.

It will be simplest to assume a strong meaning for “solvable by radicals,”
namely, that all roots (not just one root) of the equation can be expressed in
terms of known quantities and the operations of addition, subtraction,
multiplication, division by nonzero quantities, and the extraction of roots.
In fact, it can be shown (Exercise 4) that if one root of an irreducible equation
can be expressed in this way then all can, but this is a fine point that can wait.

If the expression of a root involves taking a jth root and j is not prime,
then j = j,j, where j, and j, are smaller than j, and instead of taking a jth
root one can take a j,th root of a j,th root. If j; or j, is not prime, it can be
further decomposed, until in the end the expressions of the roots of f(x) = 0
involve taking roots of prime order only. Moreover, since, as Gauss showed,*
the pth roots of unity for any prime p can be expressed in terms of radicals,

* As was noted in §24, Gauss’s proof was in fact incomplete because he did not prove Lemma 2.
It will be convenient to overlook this incompleteness for now and to take it for granted that pth
roots of unity can be expressed in terms of radicals. As will be shown in §65, Galois theory can be
used to prove this theorem by an argument different from Gauss’s. (See also Exercise 5.)
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use can be made of pth roots of unity in a solution by radicals. This means
that, whenever a pth root of a known quantity is taken, all pth roots of the
quantity are known, because all others are obtained from any one by multiply-
ing by pth roots of unity.

The four arithmetic operations can be performed on known quantities
without leaving K —that is the definition of a field. However, if the solution
calls for taking a pth root, say of a quantity k of K, then although it is possible
that there is a pth root of k in K, most likely it will not be possible to do this
within K and the realm of known quantities will have to be extended to
include the needed pth root of k. Galois called such an extension of the known
quantities the adjunction of a pth root, and this name has been used ever
since. The result of an adjunction is a new, larger field K’ o K whose elements
can all be expressed rationally in terms of \’/E and quantities in K. (The
theorem on simple algebraic extensions can be applied to obtain such a
field K’ provided x? — k is shown to be irreducible. It was noted in §42
" that this is the case when K contains primitive pth roots of unity. It is even
true—see Exercise 6 of the Eighth Set—without this assumption. However,
Galois ignored the technicality of constructing K', and consideration of it
here will be postponed to §62.) If the solution involves the extraction of
another root not already contained in K, then it will be necessary to perform
another adjunction K” o K’, say of a p,th root of an element k, of K’, and
so on, until one arrives at a field K* which contains all the quantities that
are involved in the solution of the equation. ,

Thus, if the given equation f(x) = 0 is solvable by radicals, there is a
sequence of fields K « K'< K" < -+ < K" which starts with the known
quantities K, adjoins at the ith stage a p;_;th root of an element k;_, of
K% 1 to K% D to obtain K, and ends with a field K* which contains n
roots a, b, c, . . . of the given equation f(x) = 0. Moreover, it can be assumed
~ that K" ¥ contains primitive p;_ th roots of unity.

It is clear that if the field K of known quantities is extended then the
Galois group either remains the same or is reduced to a subgroup. This
follows from the correspondence between the rows of the presentation of the
Galois group and the roots ¢, t', t”, . .. of the irreducible factor G(X) of F(X)
of which ¢ is a root: if K is enlarged then G(X) may no longer be irreducible,
and the roots of the irreducible factor of F(X) of which ¢ is a root may be a
proper subset of ¢, ¢, t”,...,in which case the new Galois group will be
.a proper subgroup of the old one. Thus, as the field increases K < K' <
K" < ... = K®, the Galois group decreases. In the end, the roots a, b,c,...
have become “known” quantities—that is, quantities in K%' —and, by
Proposition I, must all be left unchanged by all substitutions of the Galois
group. Thus, by the time K is reached, the Galois group has been reduced
to the identity substitution.

The main step in Galois’ analysis of solvable equations is to study the
way the group of an equation can be reduced by the adjunction of a pth
root of a known quantity when the pth roots of unity are known.
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 §44 Galoss states in his Propositions IT and III the main facts about the
~ way in which the Galois group is reduced when the field of known quantities
j}g K is extended. The only case that will be needed in what follows is the one
. in which K is extended by the adjunction of a pth root when it already has
- pth roots of unity. For Galois’ more general propositions see Exercises 6
. and 7.

- Proposition. Consider, as above, the Galois group of an equation f (x) = 0 over
~ the field K. Let p be a prime, let K contain pth roots of unity, and let K' = K
~ be the extension of K obtained by adjoining the pth root of an element k of K.
- Then the new Galois group (that of f(x) = 0 over K') is either the same as the
old one or it is a normal subgroup of index p.

PROOF. As above, let ¢ be a Galois resolvent of f (x) = 0, let F(X) = [ [ (X — St)
- be the polynomial of degree n! with coefficients in K of which the »n! distinct
versions of ¢t in K(a, b, ¢, ...) are roots, and let G(X) be the irreducible factor
of F(X) over K of which ¢ is a root. Moreover, let F(X) be factored into
irreducible factors over K’ and let H(X) be the factor of which ¢ is a root.
Since K’ o K, Galois’ Lemma I implies that H(X) divides G(X). A presenta-
tion of the old Galois group (that of f(x) = 0 over K) is obtained by ex-
pressing the roots of f(x) = 0 as rational functions of ¢ with coefficients in
K—say a = ¢ (t), b = ¢u(t), ¢ = ¢(t),...—and listing the arrangements
Q") &), pLt),...0f a, b, c, ... as t' ranges over the deg G distinct roots
of G(X) = 0. Since K’ © K, a presentation of the new group (that of f(x) = 0
over K') is obtained, using the same ¢’s, when ¢’ is subjected to the stronger
condition that it be a root of H(X). Thus, the new group is the subgroup of
the old group presented by the deg H rows of the presentation of the old
group corresponding to roots of H(X) (a subset of the roots of G(X)). It is
to be shown that either deg G = deg H, or deg G = p deg H and the sub-
group is a normal one. . '

Since H(X) has coefficients in K’ = K(r), where r is a pth root of k, and
since every element of K' can be expressed as a polynomial in r with co-
efficients in K, H(X) can be written in the form H(X) = H(X, r) where
H(X, Y)is a polynomial in two variables with coefficients in K. Given such
a polynomial H(X, Y), consider the polynomial

WX) = H(X, NH(X, ar)H(X, o2r) - - - H(X, aP~ 17),

where a € K 1s one of the primitive pth roots of unity assumed to exist in K.
Then h is a polynomial in X with coefficients that are symmetric polynomials
in the p roots r, ar, &’r, ..., o’ ~ !r of the auxiliary equation Y? — k = 0. By
the fundamental theorem on symmetric functions, it follows that the co-
efficients of 4 are in K.

On the other hand, since G(X) has coefficients that are in K’, Galois’
Lemma I implies that H(X, r) divides G(X) with a quotient with coefficients
in K(r), say G(X) = H(X, r)Q(X, 7).
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Lemma. If U(X, r) = V(X, )W(X, r) where U, V, and W are polynomials in
two variables with coefficients in K (so that U(X, r), V(X, r), and W(X, r) are
polynomials in one variable X with coefficients in K(r) = K" then U(X, a'r) =
VX, dr WX, o) foralli=1,2,....

PrROOFOF LEMMA. The polynomial U(X, Y)— V(X, Y)W (X, Y) canbeexpanded
in the form @ (Y)X” + ®,_ (V)X ™' + -+ + @o(Y). Substitution ofrforY
gives 0 = O,()X" + @, (NX""! + -+« + ®y(r). Therefore r is a root of
each of the polynomials ®,(Y), ®,_(Y),..., ®o(Y) with coefficients in K.
Since Y? — k is irreducible over K (see §42), Galois’ Lemma I implies that it
divides all the @’s. Therefore U(X, Y) = V(X,YW(X, Y) + (Y" — k)O(X, Y),
where Q(X, Y) is a polynomial in two variables with coefficients in K.
Substitution of o'r for Y then gives the desired conclusion. [

Therefore G(X) = H(X, &'r)Q(X, o'r) for i = 1,2,..., p. Multiplication
of these p equations gives G(X)* = h(X)q(X) where q(X) has coefficients in
K. Galois’ Lemma I can be used to divide this equation p times by G(x) to
find 1 = [A(X)/G(X)] - [q(X)/G(X)?~7]. Therefore h(X) = const. G(X Y for
some integer j, where the constant is a nonzero element of K. Comparison
of the degrees of the polynomials on the two sides of this equation gives
p-deg H = j-deg G. Since deg G/deg H is the index of the new Galois
group as a subgroup of the old, this shows that the index divides p (with
quotient j). Since p is prime, it follows that the index is 1 or p, as was to be
shown. All that remains to be shown is that when the index is p the new group
is a normal subgroup of the old.

When deg G/deg H = p, j in the above equation is 1, that is,

const. G(X) = H(X, nH(X, or) - - H(X, oa?~'r). (1)

Just as the deg H arrangements ¢,(t), ¢(t), ¢(t), ... of a, b, ¢, ... corre-
sponding to roots ¢’ of H(X) = 0 give a presentation of the new group as a
subgroup of the old (see above) so do the arrangements corresponding to
the roots t' of any other factor on the right side of (1) (because these factors
are factors of F(X) irreducible over K). By the description of normal sub-
groups in §40, what is to be shown is that if 7, is any root of H(X, r)and if ¢
is any root of G(X), then the substitution which carries a = ¢ () to ¢ (1), b
to (1), ¢ to Pt'), ... carries the arrangement @ (t,), ¢p(ty), ¢(t1), ... l0an
arrangement of the form ¢(t}), §5(t}), 1), . .. where t} isaroot of the same
factor H(X, o'r) of (1) that ¢’ is. To this end, let ¢, = () be an expression
of ¢, as a polynomial in t with coefficients in K. Then H(y(X), r) is a poly-
nomial in X with coefficients in K’ of which ¢ is a root (by the assumption
on t,). Therefore (Lemma I) it is divisible by H(X,r). The lemma then
implies that H@W(X), «'r) is divisible by H(X, «'r) for all i. In particular, if
t; is defined to be y(t') then t; and t' are roots of the same factor H(X, o'r)
of (1). Thus it will suffice to show that the substitution corresponding to
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t — 1 carries ¢ (t;) to ¢, (t1), Pp(t1) to ¢u(r1), etc. But this follows immediately
from the first corollary of §41, which shows that ¢ — ¢’ corresponds to an
automorphism of the field K(a, b, c, ...) = K(t) which leaves elements of K
fixed; application of this automorphism to y(z) = t, carries it to Wy(t') = ¢}
and therefore carries @, (t;), du(ty), ... to @ (t)), P,(tY), ..., as was to be
shown. [

§45 The preceding two articles show that if f(x) = 0 is solvable by
radicals then its Galois group G has a sequence of subgroups G > G’ >
G" = --- © G such that each group G is a normal subgroup of prime index
in its predecessor G“~ Y, and such that the final subgroup G consists of the
identity substitution alone. Indeed, for this one needs only to take the se-
quence of field extensions K « K'« K" < --- = K™ implied by the
solution by radicals, to take the Galois groups of the equation f(x) = 0
relative to each of the fields K", and to disregard groups that coincide with
their predecessors.

A group G is said to be solvable if it has such a sequence of subgroups. Thus
it has been shown that if an equation* f(x) = 0 is solvable by radicals then
its Galois group is solvable. Galois showed that this necessary condition
for solvability by radicals is also sufficient. More specifically, he showed
that if G is the Galois group of f(x) =0 over K and if G G o --- > G?
is a sequence of subgroups of G in which each G is a normal subgroup of
prime index in its predecessor and G = {identity} then there is a sequence
of field extensions K ¢ K’ ¢ K" < --- = K™ such that K® contains all
the roots of f(x) = 0 and such that each extension K¢V < K@ is obtained
by adjunction of a pth root of a quantity in K%~ ! for some prime p
(depending on i). The main element in the proof of this fact is the proof of a
converse of the proposition of §44. This converse is the subject of the next
article. ‘

§46 Proposition. Let G be the Galois group of f(x) = 0 over K and let
G’ be a normal subgroup of G of prime index p. Assume also that K contains a
primitive pth root of unity o, that is, a solution of ® = 1 witha # 1. Then there
is an element k of K such that if K' > K is the field obtained by adjoining a
pth root of k to K then the Galois group of f(x) = 0 over K’ is G'.

PRrOOF. The basic idea of the proof is the idea of the Lagrange resolvent, an
element whose pth power is known. In fact, in his proof of this proposition,
Galois uses an element of the form 0 + a6, + «?0, + --- + o~ '0,_ which
is reminiscent of the Lagrange resolvent or, perhaps more immediately, of
Gauss’s use of an analogous technique in the reduction of the finding of pth
roots of unity to the extraction of roots. (See §25.)

* For reasons explained in §31, only equations f(x) = 0 with distinct roots need be considered.



62 Galois Theory

The objective is to determine 6, 04, 0,, ..., 0, in such a way that the
Galois group merely permutes them cyclicly; then 6 + «f; + 0?0, + -
+a?~19,_, is multiplied by a power of « by elements of the Galois group,
and its pth power is invariant under the Galois group, so that, by Proposition
I (§41), the pth power is a known quantity.

For his choice of §, Galois simply says that it should be an element of
K(a, b, ¢, ...)—"a function of the roots”—which is invariant under G’ but
not invariant under G. (However, at this crucial point—and one should think
of Poisson here—Galois says the opposite of what he means and requires
that 6 “not vary for other substitutions” than those in G’ instead of “does
not remain invariant for other substitutions.”) In a marginal note, he in-
dicates the following proof that such 6’s exist.

Let G be presented as in Galois’ definition of the Galois group, with the
rows corresponding to conjugates of the Galois resolvent z. Let ¢, ¢/, ..., t*™
be the conjugates of ¢ which correspond to rows in the presentation of the
subgroup G’ < G. (Then y is the number of substitutions in G’ and py the
number in G.) The coefficients of C(X) = (X — t)(X — )+ (X — t#7V)
are the elementary symmetric functions of ¢, ¢, ..., t*~ " and are therefore
invariant under the substitutions of G’ because these substitutions merely
reorder t, t, ..., t* ™. If the coefficients of C were invariant under G then,
by Proposition I, they would all be in K, and ¢ would be a root of the poly-
nomial C(X) of degree u with coefficients in K, contrary (by Lemma I of
§41) to the fact that ¢ is the root of an irreducible polynomial of degree up
with coefficients in K (because up is the number of elements in the Galois
group over K). Therefore, at least one coefficient of C(X) is not invariant
under G and has the properties required of 0.

Let 0 be chosen and let S be a substitution of the Galois group which does
not leave 6 invariant, say S0 = 0, # 0. Define 6, to be S6,, 6, to be 50,, and
so forth. Galois says that “since p is a prime number, this sequence cannot
end until the term 6,_,, after which one has 6, = 6, 0,4, = 04, and so
forth.” However, he gives no proof. In order to prove that 8; = 6, ; if and
only if j is divisible by p, one can proceed as follows.

Think of the presentations of G as being arranged into p presentations of
G.Ifa,b,c,...is the arrangement in the 1st row of the first presentation of
G’ then Sa, Sh, Sc, ... occurs in a different presentation of G’ because S is
not in G'. Then, because G’ is by assumption a normal subgroup, the presen-
tation of G’ in which Sa, Sb, Sc, ... occurs is obtained simply by applying S
to the first presentation of G’. Thus, S acts* on the p presentations of G'. If
P represents the first presentation of G’ then S(P), S%(P), S3(P),... are

* More generally, if G’ is a normal subgroup of index » in G then G acts on the n presentations
of G’ contained in a presentation of G; since two elements S and T of G act in the same way
on these # presentations if and only if S™'T is in G’, the quotient group G/G’ acting on the »
presentations gives a presentation of G/G’. The notion of a quotient group does not seem to be
needed elsewhere in the book, so it has been circumvented here. The main idea in the proof of
the present proposition is that G/G’, being a group of prime order, must be cyclic.
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presentations of G'. Let v be the least positive integer such that S*(P) = P.
Then S” applied to an arrangement in P is another arrangement in P and S*
is in G'. Therefore, for any presentation P, of G/, 8"(P,) = P,. If 1 < j<v
then S%(P,) P, because $/(P;) = P, would imply S/(P) = P, contrary to
the definition of v. Therefore, the action of S divides the p presentations of G’
into subsets containing v presentations each. Since v > 2 and p is a prime, it
follows that v = p. This shows that S” is in G’ and therefore that SP§ = 6.
If $%0 = 0 for 1 <j < p then, since there are integers a and b such that
aj = bp + 1(thatis,jisinvertible mod p), it follows thatf = $/6 = S%0 = ...
= §40 = STl = S0, contrary to assumption. Therefore, as Galois stated,
6,8, 0,,...,0,_, are all distinct, but 0,=10,0,., =86,,. o Moreover, if
T is any substitution in the Galois group, then T(P) = S/(P) for some j
because P, S(P), S*(P), ..., S*~ }(P) covers all the presentations of G'. This
shows that any substitution T in the Galois group is equal to a substitution in
G’ (namely, S™T) followed by a power S’ of S. |

Now let r = 0 + afl; + 00, + -+ + «P~10,_,. Galois’ “proof” of the
proposition is merely to state that r? is invariant under the Galois group,
and is therefore known, and that an extension K’ of the desired type is
obtained by adjoining a pth root of this known quantity. The steps here can
be filled in as follows.

A crucial part of the proof, which Galois makes no mention of, is the
proof that r 5 0. For this, let r; = 0 + a/f; + «>0, + -+ + o~ Vg _
forj=1,2,...,p — 1. Since o/ is a pth root of unity and o/ # 1, r; can be
used in place of r in the arguments that follow. Therefore one can assume
that r # O unless all the r’s are zero, thatis, r; =r, = .+ = r,—1 = 0. But
if all the r’s were zero then

ritrn At =P - 1004 @+ o+ 4 ar ),
-+ (Olz +OC4 e 0(2"_2)92 4o
=pf—-0—0, -0, -
would also be zero, that is, pf = 0 + 0, + - + 0,-,; this would give S0 =
s[S0+ 86, + -+ S0, 1=1[0, +0, + - + 0,-1 + 0] =0, contrary to
assumption. Thus r # 0 can be assumed. If T is any element of the Galois
group then, as was noted above, T = S/U where U is in G’ and j is an inte-
ger, 0 <j < p. Now Uf =0 so U, = USO = SS'USO = SO = 6,, because
S~'USisin G’ by virtue of the fact that G’ is a normal subgroup of G. Similarly,
Ub, =0,, ..., Ub,_, =0, ,. Therefore Ur = r and Tr = S’ = 6, + af,, +
o+ a?7'0, = aPJr, from which it follows that T(r?) = (Try? = r?. Thus
r? is invariant under the Galois group and by Proposition I is an element of
K, say r? = k. :

Now let K’ be the subfield K(r) of K(a, b, ¢, .. .), that is, all elements of
K(a, b, c,...) that can be expressed as polynomials in r with coefficients
in K. By the Proposition of §44, the Galois group of f(x) = 0 over K’ is
either G or a normal subgroup of G of index p. It cannot be G because
Sr = o~ 'r 5 r(becauser # Oand o~ % 1), which shows that S is an element
of G which does not leave all elements of K’ fixed. Thus the Galois group of



64 Galois Theory

f(x) = 0 over K’ is a normal subgroup G” of G of index p. If T is in G” then
Tr = r, and, as above, T = S/U where U € G'. Since Tr = SUr = S =
«f Jr,and r # 0, the equation Tr = rimplieso? 7/ = 1,0/ = o = 1, pdivides
j, §Y = identity, T = U, and therefore T is in G'. Thus G” = G'. Since both
subgroups have index p in G, it follows that G” = G’, and the proof of the
proposition is complete. ]

§47 Theorem. Let f(x) = 0 be an equation with distinct roots whose
Galois group G over the field K is solvable, that is, has a sequence of subgroups
G>G;> Gy, -2 G, in which each G; is a normal subgroup of prime
index in its predecessor and G, contains the identity substitution alone. Then
f(x) = 0 can be solved by radicals, that is, one can construct a sequence of
field extensions K < K' < K" < --+.< K™ such that f (x) = 0O has n = deg f
roots in KW and such that the elements of any K can be expressed rationally
in terms of elements of its predecessor and a fixed radical of a fixed element of
its predecessor—in fact the elements can be expressed as polynomials in the
radical with coefficients in K¢~ 1

Proor. This follows immediately from the proposition of the preceding
article, except for the problem of assuming the existence of roots of unity in
K. Let a sequence of subgroups of G be given as in the statement of the
theorem, and let p,, p,,..., p, be the primes which occur as indices of
subgroups in the sequence. Then, as Gauss showed, the p,th roots of unity
can be obtained by adjoining a succession of radicals to the rational field Q
and a fortiori by adjoining radicals to K. (See note in §43.) Repetition of this
process constructs a field KW > K@~V 5 ... o K’ > K which contains all
pith, p,th, ..., p.,th roots of unity. Let G be the Galois group of f(x) =
over K™, Then G is a subgroup of G and the proposition of the preceding
article will easily prove the theorem if it is shown that G o G n G, o
GnG,> . .2 Gn G, = {identity} is* a sequence of subgroups of G in
which each subgroup is a normal subgroup of prime index 1n its predecessor
and the indices which occur are all included among the prime indices p,,
P2, .-, py. Thus, the theorem will follow if it 1s shown that:

Lemma. If G, is a normal subgroup of G,_, with prime index p and if G is any
subgroup of a group containing G,_ , then either G, 0 G is equal to G,_; n G or
it is a normal subgroup of index p.

PROOF. As was seen in the proof of §46, every element of G;_; permutes the
p presentations of G, contained in a presentation of G,_,. Therefore every
element of G,.; n G permutes these presentations of G,. Moreover, an
element of G;_, acts as the identity permutation of them if and only if it

* More precisely, it becomes such a sequence when groups which coincide with their predecessors
are omitted.
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lies in G;. Thus G,_; n G = G; n G if and only if no element of G,_, n G
moves a presentation of G;. Otherwise some element S of G,_, N G moves
a presentation of G; and, as was seen in §46, S permutes the p presentations
cyclicly. In this case, the p images of a presentation of G, » G under powers
of S comprise a presentation of G,_; n G, which shows that G, n G is a
normal subgroup of index p. ]

§48 This ends the statement of the basic facts of Galois theory. In brief,
the theory associates to a given equation f(x) = 0, over a given field K, a
finite group called its Galois group, and shows that the equation can be
solved by radicals if and only if its Galois group is solvable. Galois used the
theory to derive the known solutions of equations by radicals, to show that
the general equation of degree > 5 cannot be solved by radicals, and to
prove a theorem about the solution of irreducible equations of prime degree
by radicals. It is clear that he saw these as simply the first applications which
would be the most accessible and striking ones for his contemporaries.
Unfortunately for mathematics, he did not live to develop the more pro-
found applications and extensions of his theory. Even today, mathematics
is probably the poorer as a result of this tragedy.

The following thirteen articles (§§49-61) are devoted to giving a firmer
foundation to Galois theory by spelling out more carefully what is meant by
“the roots a, b, ¢, ...” of a given equation. This will give a clearer meaning
to the field K(a, b, ¢, ...) and therefore to the Galois resolvent. Following
§61, Galois theory will be briefly reviewed and Galois’ applications, along
with some others, will be given.

Sixth Exercise Set

1. Show that the six-element group of all substitutions of three letters is solvable by
finding a sequence of subgroups with the required properties. Use this sequence of
subgroups and the method of the text to give a method of solving cubic equations. Be
as explicit as possible.

2. Do the same for the twenty-four element group of all substitutions of four letters.

3. Let a, b, c, d be the roots of a quartic equation and let P = ab + cd, Q = ac + bd,
R = ad + bc. Show that the discriminant of the cubic of which P, Q, R are the roots is
equal to the discriminant of the quartic of which a, b, ¢, d are the roots. Use this fact to
find the discriminant of the quartic. [Assume that a + b + ¢ + d = 0 to simplify the
computations. Describe how the formula in this special case can be used to find the
general formula without carrying this out.]

4. Show that if one root of an irreducible equation can be expressed in terms of radicals
then all roots can. [Let K, K’ be as in the proposition of §44 and let f be a poly-
nomial with coefficients in K which is irreducible over K. Show that if f = g,g, - g
is a factorization of finto factors irreducible over K’ and if all roots of g, can be ex-
pressed in terms of radicals then all roots of f can be expressed in terms of radicals.]
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5. Prove as a corollary to the proposition of §46 that for any prime p the pth roots of
unity can be obtained by adjoining a succession of radicals to the rational field Q.

6. Galois changed his statement of Proposition I, possibly on the night before his duel,
eliminating the assumption that the degree of the auxiliary equation be prime. In all
likelihood he intended to state:

If a root r of an irreducible polynomial of degree m is adjoined to K, then the index of the
new Galois group (that of f = 0 over K(r)) in the old Galois group (that of f = 0 over K)
is a divisor of m.

Prove this. [A slight modification of the proof in the text.] Historical note: Galois’
actual statement that the old group is partitioned into “groups” shows that he was not
using the word “group” in the modern sense, because it is not the substitutions, but the
arrangements, that are partitioned. Each “group” in the partition is a presentation of a
subgroup of the old group; these subgroups are conjugates (not necessarily distinct)
of the new group.

7. Prove Galois’ Proposition I1I (also added to his treatise at a later time, possibly on
the night before his duel):

If. in Proposition 11, all roots of the auxiliary equations are adjoined to K then the new
group is a normal subgroup of the old.

8. Liouville’s proof of Proposition 1I did not follow Galois’ suggestion of a proof. He
let G(X), the irreducible polynomial over K of which ¢ is a root, be decomposed G(X) =
H (X)HyX)...H(X) as a product of irreducible polynomials with coefficients in
K(r). For a polynomial g(X) with coefficients in K(r), let the norm Ng(X) be the poly-
nomial with coefficients in K obtained by replacing r in g(X) by each of the m values r, ',
..., r™~ D multiplying these m polynomials, and replacing symmetric polynomials in
the i’s by their values in K. Then G™ = NG = NH, -NH;,----- NH,. Each NH, is
therefore a power of G. This power is the same in all cases because the H’s have equal
degree. Thus m = vy, where v satisfies NH; = G". Thus p = deg G/deg H divides m, as
was to be shown. Fill in the steps of this proof.

9. Prove Galois’ Proposition IV: If u is in K(a, b, ¢, ...)—that is, if u is a polynomial in
the roots a, b, ¢, . . . of f(x) = 0— then the Galois group of f (x) = 0 over K(u) is equal to
the subgroup of the Galois group of f(x) = 0 over K consisting of those substitutions
which leave u fixed.

10. Prove Dedekind’s “reciprocity theorem” of Galois theory (1855, first published in
1982, [S17): Let fand g be irreducible polynomials with coefficients in K. Let f decompose
into irreducible factors f = f, f; ... f, over K(b) where b is a root of g. Similarly, let g
decompose g = g4, - .- g, over K(a) where a is a root of f. Then y = v and the g; can
be reordered in such a way that the ratio of deg f, to deg g, is the same for all
k=1,2,..., n [Show that g; and a; are roots of the same f; if and only if there is an S
in the Galois group of fg = 0 over K with Sa; = a; and Sb; = b, where b = b,isa
fixed root of g. Fix a root a; of f and define g, to be the factor of g over K(a,)
of which S~ b, is a root, where S is in the Galois group of fg = 0 over K and Sa, is a
root of f,. Show that deg f; /deg f = deg g, /deg g by showing both are the proportion of
S’s carrying a, to a root of f; (or b, to a root of g).]

'11. Deduce from Dedekind’s theorem of Exercise 10 that if fis a poi'ynomial with coeffi-
cients in K a%d if K’ is obtained from K by adjoining all roots of a polynomial g with
coefficients in K then all irreducible factors of f over K’ have the same degree.
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12. Relate the solution of the cubic in Exercise 1 to the solution in §5.

13. Prove that if K’ is an extension of K then the Galois group of f(x) = 0 over K’
coincides with its Galois group over K if and only if K(a, b, ¢,...) n K’ = K. (Both
K(a,b,c,...)and K’ are contained in K'(a, b, c, .. .).) In other words, the Galois group is
reduced if and only if one of the newly adjoined quantities in K’ can be expressed ration-
ally in terms of the roots of fand previously known quantities.

Roots and Splitting Fields

§49 Galois and his predecessors talked about “the roots” a, b, c, ... of
an equation without saying what these roots were or justifying the assump-
tion that roots exist. Questions of mathematical existence are among the
most profound questions in the philosophy of mathematics, and it would be
difficult if not impossible to guess how Galois, Lagrange, Vandermonde,
Newton, Girard, and the other founders of modern algebra might have
answered these questions had they dealt with them. The answers that are
given below are essentially the ones given several decades after Galois’ work
by Kronecker, who was not only a great mathematician but also an im-
portant philosopher of mathematics.

The central assumption of Galois theory, which Galois did not justify
and which was not justified in the exposition of Galois theory above, is the
assumption that it is meaningful to talk about the field K(a, b, ¢, ...) of all
“functions of the roots” a, b, c, . .. of the given equation f(x) = 0. In modern
terminology, such a field is a special case of what is called a splitting field

for f(x).

Definition. Let f(x) be a polynomial with coefficients in a field K. A splitting
field for f(x) is a field L which contains K and which has the property that
f(x) can be written as a product of polynomials of the first degree with
coefficients in L. ‘

If any splitting field L of f(x) over K is known, then Galois’ constructions
of the Galois resolvent and the Galois group can be carried out within L.
If, say, f(x) = (ot;x + B o, x + B) -+ (a,x + B,) where o; and f; are in-
L, then one can set a = —f,/oy, b = —f,/0,, ¢ = —f3/03,... to find
J(X) = o0, ... o (x — a)(x — b)(x — ¢)....Assuming, as always, that q, b,
¢, ... are distinct (that is, f'(x) has no factor in common with f(x)), one can
find (see §32) a Galois resolvent t = Aa + Bb+ Cc +--- (4, B, C, ...
integers) as an element of L. Then K(a, b, c,...) = K(t) is a subfield of L
and all the constructions of Galois theory are meaningful in terms of L.
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To establish a firm foundation for Galois theory, it will suffice, therefore,
to prove the existence of a splitting field for any given polynomial. This is a
much more satisfactory way of stating the problem than to say that in some
sense it is meaningful to speak of “the roots” of an equation. What is to be
shown is that there is a mathematical structure within which computations
can be carried out and within which the given equation has roots.

§50 The so-called fundamental theorem of algebra proves the existence
of a splitting field for any equation f(x) = 0 with rational coefficients or
even with coefficients from the field of complex numbers. This theorem
states that a polynomial equation Ax" + Bx""* + .- + C = 0, in which the
coefficients A, B, ..., C are complex numbers,n > 0, and A # 0, always has a
complex root. Gauss devoted much effort to giving a rigorous proof of this
theorem. Given that the equation Ax"+ Bx"~!+ ... + C=0 has a root, say
a, one can then divide by (x — a) to obtain a polynomial of lower degree with
complex coefficients and the process can be repeated to write Ax" +
Bx"~! 4 ... as a product of linear factors A(x — a)(x — b) ... . Thus the
field of complex numbers is a splitting field for any polynomial with complex
coefficients.

There are two major reasons why this theorem is not a suitable foundation
for Galois theory (and therefore not a suitable “fundamental theorem™ of
algebra). The first is that Galois theory applies to equations that do not
have complex coefficients. In fact, the first objective of Galois theory was to
prove that the general quintic equation x° + Ax* + Bx® + Cx? + Dx +
E = 0, in which the coefficients are variables (see the Preface), is not solvable
by radicals in the way that the general quadratic, cubic, and quartic equations
are.

The second reason is that it is not a theorem of algebra at all. The complex
numbers, like the real numbers, are constructed by transcendental means,
involving limits or Dedekind cuts in some essential way. Accordingly, the
proof of the theorem involves topological considerations, limits, and other
nonalgebraic ideas, and the roots it provides are described in a transcendental
rather than an algebraic way.

Of course, if there were no alternative, then these objections could both
be overruled as being aesthetic rather than substantial. However, there is a
natural approach to the foundations of the subject which overcomes both
objections very easily.

Construction of a Splitting Field

§51 The theorem on simple algebraic extensions (§34) constructs a field
containing a root of a given irreducible polynomial. It can be used to construct
a splitting field of a given polynomial f as follows.
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If the given polynomial f with coefficients in a given field K is irreducible
then the theorem of §34 gives a field K(a) containing K and containing a root
a of f(x) = 0. Otherwise [ is reducible, say f' = f; f; where f; and f, have
coefficients in K and have degree less than deg f. If either f; or £, is irreducible,
say f; is, then the theorem on simple algebraic extensions constructs a field
K(a) containing K and a root a of fi(x) = 0. Since f = f, f,, a is a root of
f, and this gives an extension of K which contains one root (at least) of f.
If neither f; nor f, is irreducible then f; = f3 f4, fo = f5 fe¢ Where f5 and f,
have degree less than deg f;, /5 and f; degree less than deg f, . If any one of the
factors f = f; f4 f5 fe is irreducible then, as before, the theorem on simple
algebraic extensions can be used to construct a field K(a) o K containing
one root (at least) of f. Since each factorization reduces the degree, this
process must eventually lead to an irreducible factor of f and therefore to an
extension field K(a) = K containing a root of f.

Let K(a) o K be a field containing a root a of f. Then by the Remainder
Theorem (§37) f(x) = (x — a) f(x) where f has coefficients in K(a) and
degree one less than deg f. The entire process can now be repeated to give a
field K(a, b) which contains K(a) and one root (at least) of f. Then f(x) =
(x — a)(x — b)f(x), where f has coefficients in K(a, b). Repetition of this
process deg f times gives a field K(a, b, ¢, .. .) in which f has deg f roots and
splits into linear factors. Thus K(a, b, ¢, .. .) is a splitting field of f, as desired.

The Need for a Factorization Method

§52 The argument of the preceding article raises a fundamental question
in the philosophy of mathematics. Is it valid to say that a given polynomial
fis either factorable or irreducible? On its face, the search for a factorization
of a polynomial involves infinitely many trial factors. Is it valid to imagine
that these trials can all be carried out to determine whether the polynomial is
reducible?

For the last 80 years or so, largely as a result of the influence of Cantor
and Hilbert, such arguments have been widely accepted among mathema-
ticians, despite the objections of Brouwer and his followers in the intuitionist
school. In my opinion, the objections are entirely correct. The argument of
the preceding article does not prove the existence of a field with the required
property. Rather, it is an indication of how one might construct such a field
if one were able to factor polynomials or prove they are irreducible whenever
it is called for.

What is at issue is the nature of mathematical “existence.” The Cantorian
school believes in some form of existence in an unseen world of Platonic
ideals. To me, such existence has little, if any, meaning. The only satisfactory
proof that a field exists is one that shows explicitly how computations in the
field are to be performed—how to represent elements of the field, what it
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means to say two elements are equal, how to multiply elements, and so
forth. In other words, the only satisfactory proof is a construction of the
field.

Whether or not one believes that something can be proved to exist without
having been constructed, almost everyone will agree that a constructive proof
is to some extent preferable and will acknowledge that there is some value
in making the effort to give a constructive proof of the existence of a splitting
field. For me, this effort is necessary to put Galois theory on a firm foundation.

§53 As the argument of §51 shows, in order to prove the existence of a
splitting field for a polynomial with coefficients in a field K, it suffices to prove
that there is a method of factoring polynomials with coefficients in K and a
method of factoring polynomials with coefficients in each of the fields K(a),
K(a, b), ... that occur in the construction. Here a method of factoring
polynomials is a procedure which can be applied to any given polynomial
and will arrive after a finite number of steps at either a factorization of the
polynomial or a proof that it is irreducible. The remainder of this section
(ending with §61) is devoted to the factorization of polynomials.

Of course the method of factorization depends on the coefficient field K,
and it would be unreasonable to expect to be able to factor polynomials over
all fields, because the notion of a field is such a general one. For what fields
K should one attempt to find factorization methods? Since Galois theory
must at the very least apply to polynomials with rational coefficients, it
must at the very least be shown that there is a factorization method for the
coefficient field Q of rational numbers. This alone is not enough to establish
Galois theory for polynomials with rational coefficients because, even
when K = @, the second stage of the construction of §51 calls for a factoriza-
tion over Q(a), the third stage for a factorization over Q(a, b), and so forth.
In order to prove in one stroke that all these factorizations are possible, it 1s
natural to try to prove that given a factorization method for the coefficient
field K, one can find a factorization method for the coefficient field K(a) obtained
by adjoining to K a root a of an irreducible polynomial with coefficients in K.
This will be proved below, and it will follow from this and the preceding
theorem that there is a splitting field for any polynomial with rational
coefficients. Finally, Galois himself clearly thought of his theory as applying
to equations with literal as well as numerical coefficients, so to put this part
of the theory on a firm foundation it is necessary to study coefficient fields
which contain indeterminates. The relevant construction here is the ad-
junction of an indeterminate to a given field K. If a denotes the indeterminate,
this gives the field K(a) = {p/q: pand g are polynomials in a with coefficients
in K and ¢ # 0}, in which the operations of arithmetic are carried out in the
obvious way and in which p,/q, and p,/q, are regarded as being equal if
p1q> = P24 Such an extension K(a) is called a transcendental extension of
K, as opposed to the adjunction of a root of an irreducible polynomial, which
is called an algebraic extension of K. Fields containing several “indeter-
minates” can be obtained-by adjoining the indeterminates serially in this
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way. Factorization over such fields is made possible by the theorem that
given a factorization method for the coefficient field K, one can find a factoriza-
tion method for the coefficient field K(a) obtained by adjoining to K an indeter-
minate a. These three theorems combine to prove that there is a factorization
method for any coefficient field K that is obtained from the rational number
field Q by a finite number of algebraic and/or transcendental adjunctions.
Therefore, by the argument of §51, there is a splitting field for any polynomial
with coefficients in any such field.

Unique Factorization into Irreducibles

§54 It will be useful to begin the investigation of the factorization of
polynomials with coefficients in a field K with the observation that if a
particular polynomial can be written as a product of irreducible poiynomlal
then this can be done in essentially only one way. The qualification “essen-
tially only one” is necessary here in order to take account of the fact that
if ¢ is any nonzero element of K then one factor can be multiplied by ¢ and
another can be multiplied by 1/c, which changes the factorization in a
superficial way. The statement about unique factorization can be made
precise as follows.

A nonzero polynomial of degree O0—that is, a nonzero element of K
regarded as a polynomial—is called a unit. A polynomial* f is called
irreducible if it is not a unit and if the only factorizations of it (into factors
with coefficients in K) are the trivial ones in which one factor is a unit (and,
consequently, the other is the inverse of this unit times f). The theorem of
unique factorization then states that if f, f,... f, = g,9, ... g, where the
f’s and g’s are all irreducible polynomials then y = v and the g’s can be
reordered in such a way that each ¢, (i = 1, 2, ..., u) is a unit times the cor-
responding f:.

The proof of this theorem is exactly the same as the proof of unique
factorization for integers. As for integers, the key step is to prove:

Theorem. Irreducible polynomials are prime, that is, if an irreducible poly-
nomial f divides a product gh of two polynomials then it must divide one of the
factors.

PROOF. As for integers, the key step in the proof of this fact is the Euclidean
algorithm (see §35). Let f, g, h be as in the statement of the theorem. The
Euclidean algorithm applied to f and g gives a polynomial of the form
d = af + bg where a and b are polynomials and where 4 divides both
Jfand g. Since f'is irreducible and d divides f, either d is a unit or it is a unit
times f. If it is a unit times f then, since d divides g, it follows that /' divides g

* According to this definition, 0 is not irreducible. In the study of factorization, 0 plays no role,
and therefore it is irrelevant whether one chooses to call it irreducible.
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and f divides one of the factors of gh, as was to be shown. If d is a unit, then
dh = afh + bgh shows that f divides dh (f divides gh by assumption) and
therefore that fdivides k. Thus f'divides either g or h, as was to be shown. [

The deduction of uniqué factorization from this theorem will be left to
the reader (Exercise 1).

Factorization Over

§55 It will be shown below (§§56 and 57) that a method for factoring
polynomials with rational coefficients can be obtained by first finding a
method for factoring polynomials with integer coefficients and by using
this in the factorization of polynomials with rational coefficients. Consider,
therefore, the factorization of polynomials with integer coefficients. In this
case the units, the elements which divide 1 and therefore divide everything,
are just the polynomials 1 and —1. A polynomial is irreducible if it is not a
unit and if the only factorizations of it (into factors with integer coefficients)
are the trivial ones in which one of the factors is a unit. The first objective
is to give a method of factoring polynomials with integer coefficients, that is,
a method which can be applied to a (nonzero) polynomial with integer
coefficients to produce, in a finite number of steps, either a factorization of
the polynomial or a proof that it is irreducible. The following simple method
is due to Kronecker.

The factorization of polynomials of degree 0 is ordinary factorization of
integers, which can be accomplished in a finite number of steps by simple
trial and error. Therefore, let f(x) be a polynomial of degree n > 0 with
coefficients in Z. If f has -a nontrivial factorization f(x) = g(x)h(x) over Z
then either g or h must have degree < n/2. Therefore it will suffice to give a
procedure which either gives a nontrivial factor of f(x) of degree < n/2 or
shows that there is no such factor.

Kronecker’s method is based on the fact that a polynomial of degree m is
completely determined once m + 1 of its values are known. For example, if
g, and g, are polynomials of degree < m and if g,(0) = g,(0), g,(1) =
g2(), ..., g.(m) = g,(m) then g, and g, are identical, because g1 — g, 18
then a polynomlal of degree < m that is divisible by x(x — DEO—2) -

(x — m), and only the zero polynomial satisfies these conditions.* Moreover,
the Lagrange interpolation formula

(x = D)(x —2)...0c — m)
O e

X(x—=2Dx—3)...(x —m)
D Ta i, d=m "

o

gives an explicit formula for a polynomial with rational coefficients which

* Note the p"araille with the argument at the end of §11.
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has degree at most m and agrees with g at 0, 1, 2,..., m and is therefore
identical with g. Thus, if the values of g at 0, 1, ..., m are known, g is known.

Now if f(x) = g(x)h(x) where f, g, h have integer coefficients then, for
each integer j, g(j) divides £ (). If f(j) = O for any j then f(x) is divisible by
X — j and this is a nontrivial factorization of f(x) (into factors with integer
coefficients) unless f(x) = +(x — j), in which case f(x) is irreducible.
Therefore it can be assumed that f(j) # 0 for 0 < j < n/2. Then, for each s
f(j) has a finite number of divisors (because it has no divisors with absolute
value greater than | f(j)|). Thus there is a finite set of possibilities for the
values of g(0), g(1), . .., g(m) where m is the greatest integer < n/2 and g(x)
is a polynomial of degree < m that divides f(x). (Explicitly, there are
HoMi - - - [y Sets of possible values where y; is the number of divisors of
f(j).) Let each of these sets of values be listed, and with each of them list the
corresponding polynomial (1). Strike from the list all entries in which (1)
does not have integer coefficients, all entries in which division of f(x) by (1)
leaves a remainder or gives a quotient whose coeflicients are not integers,
and all entries in which (1) is + 1. If any entry survives, it gives a nontrivial
factorization of f(x). Otherwise f(x) is irreducible over Z. This ‘completes
. the factorization of polynomials over Z.

§56 Now let f'(x) be a nonzero polynomial with rational coefficients and
degree > 0. Let d be a nonzero integer divisible by the denominators of all
of the coefficients of f (x) (for example, let d be the product of all the denom-
inators). Thend - f(x)is a polynomial with integer coefficients, say d - f(x) =
F(x). Regarded as a polynomial with rational coefficients, F(x) is a unit times
f(x); therefore, a factorization of f(x) into irreducible factors implies one of
F(x) and conversely. Regarded as a polynomial with integer coefficients,
F(x) can be factored F(x) = F,(x)F,(x)... F,(x) by the method of the
preceding article into factors F;(x) that are irreducible as polynomials with
in/teger coefficients. This method gives a factorization of F(x) into poly-
nomials irreducible over Q in the sense defined above because a polynomial
with integer coefficients which is irreducible over Z (that is, a polynomial which
is not +1 and has no factorization into polynomials with integer coefficients
other than the trivial ones in which one of the factors is +1) when regarded
as a polynomial with rational coefficients is either a unit (if its degree is 0) or
is irreducible (if its degree is > 0). This important fact is proved as Corollary
1 to the theorem of the next article.

§57 Theorem. Let F, G, and H be polynomials with integer coefficients
such that F is irreducible over 7 and F divides GH. Then either F divides G or
F divides H. (Here “divides™ means that the quotient has integer coefficients.)
In other words, in the ring of polynomials with integer coefficients, irreducible
elements are prime. (See the analogous theorem in §54.)

Corollary 1. If F(x) is a polynomial with integer coefficients that has degree > 0
and is irreducible over Z, then F(x) is irreducible over Q. ‘
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The deduction of Corollary 1 from the theorem is Exercise 2. In the proof
of the theorem that is given below, Corollary 1 is proved directly.

Corollary 2. A representation of a polynomial with integer coefficients as a
product of irreducibles is unique up to the order of the factors and their signs.
That is, if F\F,...F, = GG, ... G, and the F’s and G’s are all irreducible
then u = vand it is possible toreorder the G’ssothat F; = £G;(i = 1,2,..., ).

The deduction of this corollary is left as an exercise. It is even easier than
the analogous statement in §54. (See Exercise 1.)

PROOF OF THE THEOREM. Consider first the case deg F = 0, that is, the case
where F is a prime integer p. This case of the theorem is known as Gauss’s
lemma.* Let p be a prime integer which divides GH. It is to be shown that p
divides G or H. If G(x) = a,x* + a,_;x"~' + --- 4 a, is not divisible by p
then there is a largest index i such that p does not divide a;. Similarly, if
H(x) = b,x” + b,_;x""* + «-- + b, is not divisible by p then there is a
‘Jargest index j such that p does not divide b;. The coefficient of xt*/in GH is
oot @y 1bjq + ab; + a;_1bjyy + -+ and this coefficient is not divisible
by p because a;b; is not divisible by p (p is prime) but the terms preceding it
are divisible by p (because a;. 1, @;+2, - - - are) and the terms after it are also
divisible by p (because b;. 1, b;4,,... are). (In short, if i is the degree of
G mod p and j is the degree of H mod p then i +j is the degree of GH mod p.)
Thus, if neither G nor H is divisible by p then GH is not divisible by p. The
contrapositive of this statement is Gauss’s lemma.

The next step in the proof of the theorem is to prove Corollary 1. For this,
assume F(x) is irreducible over the integers and assume F(x) = g(x)h(x)
where ¢ and h are polynomials with rational coefficients. Let this equation
be multiplied by a suitably chosen positive integer j to put it in the form
jF = G,(x)H,(x) where G, and H, have integer coefficients and the same
degrees as g and h respectively. If p is any prime factor of j then, by Gauss’s
lemma, p divides either G, or H, and the equation can be divided by p to
give j'F(x) = G,(x)H,(x) where j' = j/p and G, and H, have integer co-
efficients. Similarly, any prime factor of j’ can be divided out and the process
can be continued until one arrives at an equation of the form F = G3H;.

* The name “ Gauss’s lemma” is used for various closely related propositions. The one which
Gauss actually stated (Art, 42 of Disquisitiones Arithmeticae) was: If g and h are polynomials in
one variable with rational coefficients and with leading coefficients 1, and if gh has integer co-
efficients, then g and h both have integer coefficients. This can be deduced from the case deg F =0
of the theorem as follows. Let ¢ and d be the least common denominators of the coefficients of
g and h respectively, that is, the least positive integers such that cg = G and dh = H have
integer coefficients. If p is a prime that divides ¢d, then p divides GH = cdgh because gh has
integer coefficients. By the theorem, p divides G or H; say it divides G. Since the leading coefficient
of G = cg is ¢, it follows that ¢/p is an integer. Since G/p = (c/p)g has integer coeflicients, this
contradicts the definition of ¢. Similarly p cannot divide H, so there is no p, and cd = 1. Thus
¢c=d=1andg = G, h = H have integer coefficients, as was to be shown.
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Since F 1s irreducible over Z, either G; = +1 or H; = +1. Since G, has the
same degree as g and H 5 the same degree as k, this shows that eithergor hisa
unit. Hence F is irreducible over Q.

Thus, by the theorem of §54, the equation F = GH implies that F divides
G or H when they are considered as polynomials with rational coefficients,
say G = FQ. It is to be shown that the quotient Q has integer coefficients.
Again, multiplication by a suitable positive integer puts this equation in the
form jG = FQ, where Q, has integer coefficients, and again the prime factors
of j can be divided out one by one. Since F is irreducible over Z and deg F > 0,
F is not divisible by any integer. Therefore, these divisions leave F unchanged
and lead to an equation G = FQ, where Q, has integer coefficients, as
desired. - O

Factorization Over Transcendental Extensions

§58 This completes the proof that there is a factorization method for the
coefficient field Q. It remains to show that if there is a factorization method
for the coefficient field K then there is also one for the coefficient field K(a)
where a is either algebraic or transcendental over K. The case where a is
transcendental over K is easier and is used in the proof of the case where a is
algebraic, so the transcendental case will be considered first.

Let f(x)=A,x* + A,_;x*" 1 + ...+ A, be a polynomial with co-
efficients A4; in K(a) where a is transcendental over K and where K is a
coefficient field for which there is a method of factorization. By definition,
the A’s are quotients of polynomials in a with coefficients in K. This equation
can be multiplied by a suitable nonzero polynomial g(a) (for example, the
product of the denominators of the 4’s) to give g(a) f(x).= F(a, x), where
F(a, x) 1s a polynomial in x whose. coefficients are polynomials in ¢ with
coefficients in K—or, what is the same, where F(a, x) is a polynomial in two
variables a and x with coefficients in K. Since g(a) is a unit of K(a), the factor-
ization of f(x) over K(a) is therefore equivalent to the factorization of F(a, x)
over K(a). This can be accomplished in two steps:

(1) Show that F(a, x) can be factored F(a, x) = F,(a, X)F,(a, x) ... F (a, x)
where each F; (4, x) is a polynomial in two variables which is irreducible
in the sense that the only factorizations F; (a, x) = g(a, x)h(a, x) of F;as a
product of two polynomials in two variables are the trivial ones in which
one of the factors is a nonzero element of K.

(2) Show that a polynomial in two variables which is irreducible in this
sense is, when it is regarded as a polynomial in x with coefficients in
K(a), either a unit (if it does not contain x) or irreducible (if it does).
Thus f(x) = g(a)"'F(a, x)Fy(a, x) ... F (a, x) expresses f(x) as a unit
times a product of irreducible polynomials in x with coefficients in K(a),
as required.
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[Note the analogy with the method of factoring polynomials with co-
efficients in Q. There, jf(x) = F(x) where F(x) has coefficients in Z. One
shows that (1) F(x) = F{(x)F,(x) ... F (x) where the Fy(x) are polynomials
that are irreducible as polynomials with integer coefficients and (2) such
polynomials F,(x) are either units or are irreducible over Q.]

To establish (1) is simple using a trick of Kronecker explained in the next
article. The proof of (2) is almost exactly the same as the proof in the
analogous case already considered, and will be left as an exercise (Exercise 3).

§59 The factorization of polynomials with coefficients in K(a) (a
transcendental over K) reduces, therefore, to the factorization of polynomials
in two variables with coefficients in K. Kronecker gave the following trick
for reducing the factorization of polynomials in two variables to the fac-
torization of polynomials in one variable. Since, by assumption, the latter
problem can be solved, this will provide a factorization method for poly-
nomials with coefficients in K(a).

Let f(a, x) be a polynomial in the two variables a and x with coefficients
in K. Let n be the degree of fin x. If n = 0 then f'is a polynomial in a alone
and can therefore be factored. Assume, therefore, that n > 0. Let N be any
integer greater than n, and let f(r) = f(¢", t). If f can be factored, say f = gh,
then f can be factored f = gh where §(r) = g(t", t), i(t) = h(t", 1). Since every
integer >0 can be written in just one way in the form iN + j where i > 0 and
0 < j < N, and since g has degree < N in x (because f does), it is easy to see
(Exercise 5) that g determines g uniquely. To factor f'it will suffice, therefore,
first to find all possible factors § of f, next to find, for each of them, the corre-
sponding g, and finally to check whether any of these g’s divides /. All possible
factors § of f (counting two factors as being the same if one is an element of
K times the other) can be found by using the factorization method for poly-
nomials in one variable to write f as a product of irreducible factors 7 =
14, ... ¢, and letting g range over all products of subsets of the ¢’s. The
~other two steps of the process are simple computations, and this completes
the description of the factorization method.

Factorization Over Algebraic Extensions

§60 It remains to show that if polynomials can be factored over K then
they can be factored over K(a) where a is algebraic over K, say where ¢(a) = 0
where ¢ is a polynomial of degree n > 1, with coefficients in K, which is
irreducible over K.

Let f(x) be a polynomial with coefficients in K(a) of degree > 0. The main
technique in the proof is to take the norm of f(x) with respect to K(a) over
K —which is a polynomial with coefficients in K—and to factor it. Loosely
speaking, the norm Nf(x) of f(x) is obtained by replacing each a which
occurs in f(x) successively by @', a”,...,a" 1), where these are the other
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roots of ¢, and setting Nf(x) equal to the product of these n polynomials;
since the coefficients of Nf(x) are symmetric in the roots a, @, ..., a" ™! of
¢, they are in K. However, this cannot be used as a definition of Nf(x)
because it assumes that there is some field (or at least some ring) containing
“alltootsa, d'.a". ..., of ¢, in which the multiplication can take place, and the
existence of such a field is a large part of what is to be proved. Thus another
approach must be taken to the definition of Nf(x).

Let K(a) be regarded as a vector space of dimension n over K and let
multiplication by an element of K(a) be regarded as an automorphism of the
vector space. Then this automorphism has a determinant and this deter-
minant can be defined to be the norm of the corresponding element of K(a).
This definition has the disadvantages that it does not immediately give a
definition of the norm of a polynomial f (x) with coeflicients in K(a) and that
it uses the language of vector spaces, with which the reader may not be
familiar. Both of these objections can be removed by making the definition
more explicit:

An element of K(a) can, by the definition of K(a), be written in just one
way in the form A, + A,;a + A,a> + -+ + A,_,a"" ' where the A’s are in
K. For any given element of K(a), say y, let M, be the n x n matrix M, =
(A4;;) of elements of K defined by u-a’ = }i=g A;al (i=0,1,...,n — 1)and
let the norm of u be defined by N(u) = det(M ). This definition of the norm
of an element of K(a) extends immediately to give norms of polynomials with
coefficients in K(a), because if F(x, y, ...) is a polynomial in any number of
variables with coefficients in K(a) then the elements A4;; of My can be defined
in the same way as before; the A;; are polynomials in the same variables as
occur in F, with coefficients in K, and the determinant of M is a polynomial
in these variables with coefficients in K which is defined to be N(F). It
follows from the definition of matrix products that if F and G are polynomials
with coefficients in K then Mz = My Mg, and therefore, from the fact that
the determinant of a product is the product of the determinants, that N(FG) =
N(F)N(G). Finally, if F has all its coefficients in K then A;;is 0 if i # jand is
F if i = j, so that N(F) = F" in this case. |

With Nf(x) so defined, let its factorization into irreducible factors (as a
polynomial with coefficients in K it can be factored)be Nf(x) = F F,... F,.
For each i = 1, 2, ..., v, let the Euclidean algorithm be used to find the
greatest common divisor of fand F;, which is a polynomial with coeflicients
in K(a). If this is a proper divisor of f then f will have been factored. However,
this may not produce a factorization of f'even when one exists; for example,
if £ is any polynomial with coefficients in K which is irreducible over K then
Nf = f" and the greatest common divisors are all f'and are never proper
divisors of feven though f'may not be irreducible over K(a). (The polynomial
¢ is irreducible over K but not over K(a).) For sucha polynomial, one might
try applying the same technique to f(x + a) instead of f (x). This polynomial
has its coefficients in K(a) but not in K, so the factors of its norm will be
different from f(x + a), and the greatest common divisors now may well
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include a proper factor of f(x + a); if so, then a factorization f(x + a) =
g(x)h(x) will have been found, and this will give a factorization f(x) =
g(x — a)h(x — a)as required. If this fails, one might try f (x + 2a)orf(x — a)
or f(x 4 3a), etc. One of Kronecker’s basic techniques in the theory of
algebraic functions was the method of undetermined coefficients. For him it
was natural, therefore, to consider, instead of f(x + na) for various values
of n, the polynomial f(x + ua) where u is a new variable. When this is done,
the above method does give a factorization of f'unless f'is irreducible.

Specifically, let f(x + wa) be regarded as a polynomial in the two variables
x and u with coefficients in K(a). Then N f(x + ua) is a polynomial in x and
uwith coefficients in K. As was seen in the preceding article, such a polynomial
can be factored into irreducible factors (assuming that polynomials in one
variable can be factored over K), say Nf(x + ua) = G(x, )G, (x, u)...
G, (x, u). Now both f (x + ua) and G(x, u) can be regarded as polynomials in
the one variable x with coefficients in the field K(a, u) obtained by adjoining
the indeterminate v to K(a) (a transcendental extension of K(a)). As such,
they have a greatest common divisor with coefficients in this field which can
be found using the Euclidean algorithm, say d,(x). Then f(x + ua) =
di{(x)qx) where d; and g; have coefficients in K(a, u). This equation can be
multiplied by the product of the denominators of the coefficients of d; and
q; to find an equation of the form H,(u) f(x + ua) = D{x)Q,(x) where H;is a
polynomial in u with coefficients in K(a), and where D; and Q, have co-
efficients that are elements of K(a, ) without denominators, that is, poly-
nomials in u with coefficients in K(a). This means that D; and Q; can be
regarded as polynomials in two variables, say D{x, u) and Qfx, u), with
coefficients in K(a). With u = 0 this will give a factorization of f(x) over K(a)
unless H,(0) = 0. However, if H(0) = 0 then H(u) has no constant term, so
D{x, u)Q(x, u), when regarded as a polynomial in u that has coefficients
that are polynomials in x, has no constant term; in this case either D, or Q;
has no constant term and a factor of u can be cancelled on both sides. Thus
it can be assumed that H0) # 0. Then f(x) = H{0)™ 'D,(x, 0)Q,(x, 0) is a
factorization of f(x) over K(a). It is a proper factorization unless deg D,(x, 0)
= deg d; is either 0 or deg f. Thus, in order to prove that the method described
above is a factorization method for polynomials over K(a) it will suffice to
show that if f (x) has the property that the d(x) all have degree O or deg f then
[ is irreducible over K(a).

Assume, therefore, that deg d; is always 0 or deg f. It will first be shown
that, for at least one value of i, deg d; = deg f. For each i there are polynomials
A;, B; with coefficients in K(a, u) such that d{(x) = 4,(x)f(x + ua) +
Bi(x)G{(x, u). If deg d; = 0 in all cases, then the product of these expressions
for d; would give an element of K(a, u) on the left and an expression of the
form Af 4+ BGG, ... G, on the right (the only term of the product without

/" an f has the product of the G’s). Since G,G, ... G, = Nf, this would show

that the greatest common divisor of f(x + wa) and Nf(x + ua), when they
are regarded as polynomials in x with coefficients in K(a, u), was 1. To prove
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 that this is impossible, it will suffice to prove that f(x + ua) divides
 Nf(x + ua),aproperty of the norm that would be immediate if it were defined
~as the product of the conjugates of f.

 Lemma. If F(x,y,z...) is a polynomial in any number of variables with
coeﬁlaents in K(a), and if N(F) is defined as above, then F divides N(F) when
0 both are regarded as polynomials with coefficients in K(a).

~ PROOF. Let X be a new variable and consider the norm of the polynomial
. F— X. This can be expanded as a polynomial in X, say N(F — X) =
A X"+ A X! -+ A, where the A; are polynomials in the same
variabies as F with coefﬁcients in K. (It is clear from the definition that
. N(F — X) has degree nin X and in fact that A, = (—1)") With X = 0 this
. equation gives N(F) = A4,. With X = Fit gives 0 = A F" + 4, F"" ' +
.+ A,. (See Exercise 14.) Thus N(F) = 4, = F(—A F"~ ! — A,F""? —
— A, ), which proves the lemma. ]

Thus there is at least one i for which deg d; = deg f. It is to be shown that
this implies that f(x) is irreducible over K(a). Suppose that f(x) = g(x)h(x)
where g and h have coefficients in K(a). Thenf(x + ua) = g(x + ua)h(x + ua)
and Nf(x + ua) = Ng(x + ua)Nh(x + ua). Since G(x, u) is an irreducible
factor of Nf(x -+ ua), and since factorization of polynomials in two variables
with coefficients in a field is unique (Exercise 3), G; must divide Ng(x + ua)
or Nh(x + ua). Supposeit divides Ng(x + ua). Since d; dividesboth f(x + ua)
and G,, and since deg f = deg d;, f(x + ua) divides G; and therefore divides
Ng(x + ua) when these are regarded as polynomials in x with coeflicients
in K(a, u). It will suffice to show that f(x + ua) divides Ng(x + ua) only
when deg g = deg f because this will show that the only factorizations
f = gh of f are the trivial ones.

Let j = deg g and k = deg f. Since f(x + ua) divides Ng(x + ua) as a
polynomial in x with coefficients in K(a, u), there is an equation of the form

H@u) Ng(x + ua) = f(x + ua)Q(x, u),

where H clears out the denominators and where all terms are polynomials
with coeflicients in K(a). Consider the terms of the highest combined degree
in this equation. In f(x + ua) the terms of highest degree are an element of K
times (x + ua)’. Thus (x + ua)* divides the terms of highest degree on the
left. In H(u) the term of highest degree is a nonzero element of K(a) times
a power of u, say u". The terms of highest degree in the matrix M+ ,q) are
of degree j and come from the leading term of g(x + ua) = c(x + uay +
Therefore Ng(x + ua) = det M 4,4 = N(c(x + ua)’) + terms of degree
less than nj. Since the terms N(c(x + ua)) = N(c)N(x + ua) of degree
nj are nonzero (1 = N(1) = N(c)N(¢™ ') and N(x + ua) = x" + ---) these
are the terms of highest degree in Ng(x -+ ua). Therefore, as a polynomial in
x and u with coefficients in K(a), (x + ua)* divides u"N(x + ua)’. It is to be
shown that this implies that j > k and therefore that j = k.
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Set u = — 1. Then (x — a)* divides N(x — a)’. By the lemma above, x — a
divides N(x — a), say N(x — a) = (x — a)q(x). Then (x — a)* divides
(x — a)q(x)’, which is to say that (x — a)*~/ divides g(x)’. Unless k = j, it
follows that x — a divides g(x), that is, that (x — a)* divides N(x — a). It
will suffice, therefore, to prove that if a is the root of an irreducible polynomial
d(a) = 0 over K then (x — a)* does not divide N(x — a) when both are
regarded as polynomials with coefficients in K(a).

This can be proved as follows. Taking the norm of the equation ¢(x) =
(x — a)q(x) shows that ¢(x)" = N(x — a)- Ng. By the unique factorization
of polynomials with coefficients in K and the fact that ¢ is irreducible, it
follows that N(x — a) is a nonzero element of K times a power of ¢(x). Since
both are of degree n, N(x — a) is a nonzero element of K times ¢(x), and it
suffices to show that (x — a)? does not divide ¢(x). If (x — a)* did divide
¢(x) then differentiation* of the equation ¢(x) = (x — a)?q,(x) would show
that ¢'(x) had the factor x — ain common with ¢(x). Since $(x) is irreducible,
it would follow (Galois’ Lemma I) that ¢(x) divided ¢'(x), which is impossible
becausedeg ¢ = n >2anddeggd’ =n—1>0. d

§61 This completes the proof that polynomials with coefficients in K
can be factored whenever K is a field obtained from the rational field Q by a
finite number of algebraic or transcendental adjunctions. Three remarks
are in order in connection with this proof. The first is that, although most
of the ideas are to be found in Kronecker’s Grundziige ([K4], §4), the one
really hard part—namely, the proof of the preceding article that if the greatest
common divisors of f(x + ua) and the irreducible factors of Nf(x + ua) do
not give a factor of f(x) over K(a) then f(x) is irreducible over K(a)—is not
to be found in Kronecker. He merely says that this is “easy to see”. The
basic idea of the proof given above is taken from van der Waerden [W2].
By the way, Kronecker motivates the introduction of f(x + ua) in much the
same way that this was done above, saying that it is necessary to insure that
the coefficients involve a.

Second, if F, denotes the field of integers modulo a prime p, then there is
a factorization method for polynomials with coefficients in F, because there
are only a finite number of factors to try. All of the above arguments apply
to give a factorization method for polynomials over fields obtained from F,
by a finite number of transcendental or algebraic adjunctions except the
very last step, where it is stated that ¢’ cannot be divisible by ¢. In fact, if ¢
is a polynomial of the form ¢(x) = W(x?), then ¢'(x) = Y'(x?) - px”~ ' and,
since p = 0 in F,, or in any extension of F,, ¢'(x) = 0 and ¢"is divisible by
¢. The proof applies under the additional assumption that ¢(x) does not

* The derivative of a polynomial g(x) can be defined, without using limits, as the polynomial
¢'(x) obtained by expanding g(x + k) in the form g(x + &) = A(x) + B(x)h + C(x)h* + - - - and
setting B(x) = ¢’(x). The basic differentiation formulas (cg)’ = cg’, (9 + h)' =g + I, (gh)’ =
g'h + gh’ are all easily established. The elementary facts concerning formal differentiation of
polynomials with coefficients in a given field are covered in Exercise 2 of the Fourth Set.
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divide ¢'(x). A simple algebraic extension is called separable if ¢ does not
divide ¢’, where ¢ is the irreducible polynomial of which a root is being
adjoined. (The separability condition can also, by Exercise 10, be stated in
any of the following three forms: (1) ¢’ # 0. (2) ¢ 1s not a polynomial in x?.
(3) There is a splitting field for ¢ in which it has deg ¢ distinct roots.) The
above arguments show that if K is any field obtained from F, by a finite
number of transcendental or separable algebraic extensions then polynomials
with coefficients in K can be factored. This suffices, by the argument of §51,
to construct a splitting field for any polynomial with coefficients in such a
field K, provided the polynomial has distinct roots (i.e. is relatively prime to
its derivative). As will be seen in Exercises 10-15 of the Eighth Set, Galois
theory applies, with minor modifications, to the solution of equations with
coefficients in such a field K.

Finally, it must be remarked that the computations required to factor
polynomials—and therefore to construct the splitting field and the Galois
group—are too long to be carried out except in very simple cases.* Kronecker
at one point (loc. cit.) says that the computation can be done “theoretically.”
- Galois puts it more pungently. “If now you give me an equation that you
have chosen at your pleasure, and if you want to know if it is or is not solvable
by radicals, I need do nothing more than to indicate to you the means of
answering your question, without wanting to give myself or anyone else
the task of doing it. In a word, the calculations are impractical.” (Galois,
[G1], p. 39.)

Seventh Exercise Set

1. Given the theorem of §54, prove that if f, f, ... f, = ¢19, . . - g, where the f’s and g’s
are all irreducible, then x = v and the g’s can be reordered, if necessary, so that f; is a
unit times g; foralli = 1,2,..., u.

2. Deduce Corollary 1 of §57 from the theorem.

3. Prove:

Theorem. Let K be a field over which polynomials can be factored. In the ring Kla, x]
of polynomials in two variables with coefficients in K, irreducible elements are prime.

Corollary 1. If F(a, x) € K[a, x] is irreducible and if it has degree > 0 in x, then it is
irreducible when considered as a polynomial in x with coefficients in K(a).

Corollary 2. A representation of an element of K[a, x] as a product of irreducibles is
unique up to the order of the factors and multiplication by units (nonzero elements of K).

4. Show that a polynomial in x with coefficients in K(a) is a unit (that is, a nonzero
element of K(a)) times a polynomial in two variables. Show also that a factorization of
a polynomial into irreducible factors implies such a factorization of any unit times the
polynomual.

* Of course much larger cases can be handled with modern computing machines. Algorithms for
factoring polynomials are being studied very actively today, and Galois’ imaginary calculations
are becoming more and more feasible.
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5. In the notation of §59, give an algorithm for computing g when g is given.
6. Factor 2x* + 8x> + 9x? + 2x — 3.

7. Let K = Q(a) be the simple algebraic extension of Q obtained by adjoining a root q
of the irreducible polynomial x* + x + 2. Find the norm of 2a + 1. Show that this is
the number obtained by forming the product of the three conjugates of 2a + 1 in the
splitting field and expressing this as a symmetric polynomial in the roots.

8. Prove the following generalization of Gauss’s lemma.:

If g and h are polynomials with rational coefficients and if gh has integer coefficients, then
any coefficient of g times any coefficient of h is an integer.

9. Show that the norm of a polynomial with coefficients in K(a) can also be defined as
the product of its conjugates. That is, let f be a polynomial in any number of variables
with coefficients in K(a), where a is algebraic over a field K in which polynomials can
be factored, let ¢ be the irreducible polynomial with coefficients in K of which a is a root,
and let L = K(a, b, c, . ..) be a splitting field of ¢ in which a, b, c, ... are the roots of ¢.
Let f,, f.,... be the polynomials obtained by changing all a’s in the coefficients of f to
b, c,..., respectively, and let g = ff, f..... Then g = Nf. [First consider the case
L = K(a). Then Ng = Nf-Nf,- Nf..... On one hand Ng = ¢", and on the other
hand Nf-Nf,-Nf.---- = N f" Unique factorization of polynomials then implies that
g = CNf where CeK satisfies C" = 1. Applying this to X — f instead of f gives
X"+ ---+g=CX"+---+ Nf), from which g = Nf. Then if L = K(t), where
t is a Galois resolvent, N, f =[] fs, = g* where N, denotes the norm of a polynomial
with coefficients in L = K(¢). The Galois group of ¢(x) = 0 over K(a) has k elements be-
cause this is the number of elements in the Galois group that leave a fixed. Therefore
t is the root of an irreducible polynomial of degree k with coefficients in K(a). Therefore
a'tifor0 < i< n 0 <j < kare a basis of K(t) over K. When this basis is used to com-
pute the norm of a polynomial with coefficients in K(a) it shows that N, f*= (N, f)*.]

10. Show that the three alternative definitions of separability given in §61 are equivalent
to the definition that was given. [ Note that in any extension of F,, the identity (x + y)* =
x? + y? holds.]

11. A field of characteristic p (that is, a field which contains F, as a subfield where p is
a prime integer) is said to be perfect if every element of the field has a pth root. Prove:
(1) F, is perfect.

(2) Every simple algebraic extension K(a) of a perfect field K is perfect.

(3) Every algebraic extension of a perfect field is separable.

(4) A transcendental extension K(a) of a perfect field K is not perfect.

12. .Show that if K has characteristic p and contains an element b with no pth root, and
if K(a) is obtained from K by adjoining a root a of x” — b then the norm of a polynomial
with coefficients in K(a) is just its pth power.

13. The analog of the theorem of §34 for transcendental instead of algebraic extensions
states: Let K be a field. Then there is a field K(¢) containing K and containing an element
t such that:

(1) every element of K(r) can be expressed rationally in terms of t and elements of K ; and
(2) if f(X) is a polynomial with coefficients in K and if f(t) = Oin K(r) then f(X) = 0.

Moreover, if K(¢) and K(t') are any two such fields then there is an isomorphism K(t) —
K(#") which carries elements of K to themselves and carries t to t. Prove this theorem.
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14. Asin §60, let F be a polynomial (in any number of variables) with coefficients in an
algebraic extension K(a) of K. Let N(X — F) be the norm of X — F as it is defined in
§60. This is a polynomial in the variables of F and in the additional variable X with
coefficients in K. Show that substitution of F for X in this polynomial gives the zero
polynomial.

Review

§62 It was shown in the preceding section that, if K is the field of rational
numbers @, or any field obtained from @ by a finite number of adjunctions,
either algebraic or transcendental, then there is a factorization method for
polynomials with coefficients in K. By the argument of §51, it follows that
if fis any polynomial with coefficients in K then there is a splitting field for
/, that is, a field L containing K such that f'is equal to a product of linear
polynomials with coefficients in L. Thus f(x) = k(x — a)(x — b)(x — ¢)...
where kisin Kanda, b, ¢,...arein L.

Given a splitting field L for f, the field K(a, b, ¢, ...) on which Galois
theory is predicated exists as a subfield of L, and all the constructions of the
theory can be carried out. It is easy to see that any two fields K(a, b, c, ...)
obtained in this way as subfields of splitting fields Lof f over K are isomorphic
(1e. there is a one-to-one correspondence between the elements of the two
fields in which sums correspond to sums, products to products, and elements
of K to themselves). For example,* one can observe that the polynomial
F(X) =[] (X — St) of degree n! of which a Galois resolvent t (see §32) is a
root has coefficients which are symmetric functions of the roots a, b, c, . . . of
fwith coeflicients in K ; therefore these coefficients of F are known elements
of K independent of the choice of L. If t' is any one of the n! roots of F in L,
then ¢ is in the subfield K(a, b, c,...) of L and, by Lagrange’s theorem,
K(t') = K(a, b, c,...). Now t' is a root of an irreducible factor G(X) of F
over K and, by §34, the field K(t') is isomorphic to the field obtained by
adjoining a root of this irreducible polynomial to K. Since 1’ was arbitrary,
this shows that K(a, b, c, ...} is isomorphic to the field obtained by adjoining
to K a root of any irreducible factor of F. Thus K(a, b, c, .. .) is independent
of L, up to isomorphism. It is therefore legitimate to call this the splitting
field of fover K.

The Galois group of f(x) = 0 over K can be defined as the group of all
automorphismst of the splitting field K(a, b, ¢, ...) of f over K that leave all

* This method of proof assumes that the roots a, b, ¢, . . . are distinct or, what is the same, that
the greatest common divisor of f'and /" has degree 0. As was observed in §31, if f does not have
this property, then it is easy to construct another polynomial /*, with the same roots as £, which
does have this property.

T An automorphism is an isomorphism of a field with itself.
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elements of K fixed. In terms closer to those Galois used, it is the group of all
permutations of the roots g, b, c, . . . that can be extended to be automorphisms
of the entire splitting field K(a, b, ¢, . . .) which leave all elements of K fixed.*

The Fundamental Theorem of Galois Theory

§63 The basic fact of Galois theory is that the elements of the Galois

group, which leave elements of K fixed by definition, leave only the elements
of K fixed, that is:

If an element of the splitting field K(a, b, c, ...) is left fixed by all the auto-
morphisms of the Galois group then it is in K.

This, in effect, is Galois’ Proposition I (see §41).
It is only a short step from this proposition to what is often called the
fundamental theorem of Galois theory:

Let K' be a field contained in the splitting field and containing K. Then the
Galois group of f (x) = 0 over K' is a subgroup of the Galois group of f(x) = 0
over K. This assignment of subgroups to subfields is a one-to-one onto corre-
spondence between such subfields K' and subgroups of the Galois group.

By Proposition I, the Galois group of f(x) = 0 over K’ determines K’ as the
subfield of elements it leaves fixed. This shows that the correspondence is
one-to-one, that is, that different subfields correspond to different subgroups.
To show that it is onto, let G’ be a subgroup of the Galois group, let K’ be the
subfieldT of the splitting field left fixed by all elements of G’, and let G” be the
subgroup corresponding to K'. Then G = G” because G” contains all auto-
morphisms of the splitting field which leave K’ fixed. It was shown in §46
that if G’ is a proper subgroup of the Galois group of f(x) = 0 over K’ then
there is an element not in K’ that is left fixed by all automorphisms in G'.
Under the assumptions that have been made, therefore, G’ is not a proper
subgroup, that is, G’ = G” and G’ corresponds to the subfield K'. Therefore
the correspondence is onto. ]

* Galois’ description of the elements of the group as substitutions of the roots, as opposed to
automorphisms of the splitting field, has the advantage that extension of the field K to a field K’
reduces the Galois group to a subgroup. (See §43.) This is not the case when elements of the group
are regarded as automorphisms of the splitting field because then the two groups contain auto-
morphisms of different fields, K(a, b, ¢, - - -yand K'(a, b, c. - - *).

T 1f S'is an element of the Galois group then it is clear that the elements of the splitting field that
are left fixed by S form a subfield containing K. Thus the intersection of these subfields over any
set of S’s is a subfield containing K.



§63. Fundamental Theorem of Galois Theory (So-called) 85

The usual statement of the “fundamental theorem of Galois theory” also
includes statements about the degrees of the field extensions; these statements
too follow easily from Galois’ Proposition 1.

The degree of a field extension K’ > K, denoted [K': K], is defined to be
the dimension of K' as a vector space over K. This positive integer is defined
as follows. A finite subset s;, s, ..., s, of K’ is said to span K’ over K if every
element of K’ can be written as a linear combination ks, + kys, + -
+ k, s, with coefficients k; in K. A subset 5y, 5,,..., s, is said to be linearly
independent over K if there is no nontrivial linear relation k;s, + kys, + - -
+ k,s, = 0, with coeficients k; in K, that is, if the only such relation is the
one in which the k; are all 0. A subset sy, 55, ..., s, is said to be a basis of K’
over K if it both spans K’ over K and is linearly independent over K. It is
simple linear algebra (Exercise 1) to prove that if there is a finite subset of
K’ which spans K’ over K then there is a basis of K’ over K, any two bases
of K’ over K have the same number of elements, and the transition between
two bases sy, s,,..., s, and s}, s, ..., s, is effected by an invertible n x n
matrix (k;;) of coefficients from K in the formula s; = Y "i_; k;;s;.

Given an equation f(x) = 0 with coefficients in K, let G be its Galois
group and let L be its splitting field. It was seen above that intermediate
fields K, K < K’ < L, correspond one-to-one to subgroups G’ of G. /n this
correspondence [L : K'] is equal to the order of G' and [K': K] is equal to the
index of G" in G. This is easily proved. First, since L = K(¢) and since 1, t,
t%, ..., 1" ' is a basis of K(t) over K, where n is the degree of the irreducible
polynomial with coefficientsin K of which tisaroot,[L: K] =[K(t): K] =n.
But » 1s also the order of the Galois group. Thus [L: K] is the order of the
Galois group of f(x) = 0 over K. Thus [L: K'] is the order of G, because
G’ 1s the Galois group of f(x) = 0 over K'. Therefore, the index of G’ in G,
that is, the order of G divided by the order of G',is [L : K]/[L : K']. Thus the
final statement to be proved is [L: K] = [L: K'][K’: K], which follows

from the fact that if s, s,, ..., s, is a basis of K’ over K and uy, u, ..., i,
is a basis of L over K’ then the myu elements s;u; are a basis of L over K
(Exercise 2). O

A final observation which will be useful in the applications is that if f(x)
has no multiple roots then f(x) is irreducible over K if and only if the Galois
group of f(x) = 0 over K acts transitively on the roots, that is, if and only if
for any two roots a and b of f(x) = 0 in the splitting field there is an auto-
morphism S in the Galois group with S(a) = b. For, if f(x) = g(x)h(x) is a
nontrivial factorization of f'and if a and b are roots of g and h respectively
then application of any element S of the Galois group to g(a) = 0 gives
g(Sa) = 0 and shows that Sa # b; therefore the action of the Galois group
is not transitive. Conversely, if the action of the Galois group is not transitive,
say if a and b are roots of f and no element of the Galois group carries a to b,
let ay, a,, ..., a, be the roots of f that are of the form Sa for some S; then
g(x) = (x — a;)(x — a;)...(x — a,) is a proper divisor of f (b is a root of
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/ but not of g) with coefficients in K (it is unchanged by the Galois group)
so f 1s reducible over K. M

Construction of pth Roots of Unity

§64 It was observed in §42 that the Galois group of x” — 1 = 0 over Q
(p a prime) is a subgroup of the group of cyclic permutations presented by
al a2 03 . n e ap— 1
as ay dg ... di (1)
ap,—y a dz ... ap-2»

wherea,, ay, ..., a,_;aretheroots of (x? — 1)/(x — 1) = xP71 + xP72 4 ...
+ x + 1 ordered by choosing a primitive root g mod p and setting a;,, =
af. Galois stated without proof that the Galois group in this case is equal to
the entire (p — 1)-element cyclic group.

Since it is clear that no proper subgroup of (1) acts transitively on the a’s,
in order to prove Galois’ statement it will suffice, by the last proposition of
the preceding article, to prove that f(x) = xP"' + xP"2 + .-+ + x + 1 is
irreducible over Q. This very important fact had been rigorously proved by
Gauss in the Disquisitiones Arithmeticae (Art. 341), so of course Galois could
take it as known. Although Gauss’s proof is straightforward and not difficult,
it can be simplified—or at least shortened—somewhat. The proof which
follows is due to Kronecker [K3].*

Let L be a splitting field for f(x) = x*~! + ..+ + x + 1 over Q. Ifais any
root of fin L then g # 1 and ¢®* — 1 = (a — 1)f(a) = 0. For any positive
integer j, it follows that (@ — 1)f(a’) = a’? — 1 =1 — 1 = 0 so that either
@’ = 1orf(a’) = 0. Butif ¢/ = 1 and a” = 1 then p divides j because other-
wise their greatest common divisor is 1 = A4j + Bp, where A and B are
integers, and a = a' = (a/)*(@?)® = 1#1® = 1, contrary to assumption. Thus
a, a®, a®,...,a"" " are all roots of f. They are distinct because if @/ = a'**
then a/(a* — 1) = 0, and either a = 0 (which is impossible) or @* = 1 (which
implies that p divides k). Thus f(x) = (x — a)}(x —a*)...(x —a? "D is a
factorization of f'over L, and in fact over (a).

If g(x) is any polynomial with integer coeflicients, then, by the fundamental
theorem on symmetric functions, g(a)g(a®) ... g(a?~ ') can be expressed as a
polynomial in the coefficients of f with integer coeflicients. Thus
g(@)g(a®) ... g(a?~ 1) is an integer. Kronecker’s proof is based on the fact
that this integer is congruent to g(1)~! mod p. To prove this fact, let G(x) =
g(x)g(x?) ... g(x?~1). Then G is a polynomial with integer coefficients, say

* For a shorter but trickier proof see Exercise 8.
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G(x)=Ay+ A1x+ Ay x* +---. Now G(1)+ G(a) + G(a®) + --- + G(@®™ V)
can be computed in two ways. On the one hand, it is equal to

Agp+ A0+ A4,- 04+ A4, -0+ A4, p+A4,:,-0+--,

because 1 + a/ + a® + .- 4+ a? VW = f(a) is equal to p if @/ = 1 and is
equal to 0 if a’ # 1. In particular, G(1) + G(a) + --- + G(a’~ ') is an integer
divisible by p. On the other hand, itisg(1)* ™! + (p — Dg(a)g(a®) ... g(a®™ "),
because G(1) = g(1)*" ! and G(¢/) = G(a) for j =1, 2,..., p — 1 because
replacement of a by a/ merely permutes the factors of G(a) (Exercise 3).
Thus g(1)*~! + (p — Dg(a)g(@®) ... g(a>") = 0mod p and, as desired,
gla)g(a?) ... g(a* 1) = g(1)» ! mod p. If f(x) = g(x)h(x) is a factorization
of f, then, since f has leading coefficient 1, g and h can be multiplied by
rational numbers to make their leading coefficients equal to 1 without
changing their product f = gh. Then by Gauss’s lemma (§57) g and h have
integer coefficients. It will suffice to show that the only such factorizations
are the trivial ones in which one factor is 1. Since f(1) = p, the factorization
f(1) = g(Dh(1) must be trivial, say g(1) = + 1. Then, by the lemma,
gl@g@®)...g@® Y =g(1)» ' =1 mod p. On the other hand, from
gh(x) = f(x) = (x — a)}(x — a?) ... (x — a?~ 1), it follows from unique-
ness of factorization of polynomials over Q(a) that g(x) is an element of Q(a)
times a product of factors x — a’. If deg g > 0 it would follow that g(a’) = 0
for some j, from which 0 = g(a)g(a®)...g(@* ") =g(1)» ' =1 mod p.
Since this is impossible, deg g = 0, as was to be shown. Ll

§65 Since the Galois group of x” — 1 = 0 over Q is the cyclic group of
order p — 1, the problem of solving this equation by radicals amounts to the
problem of finding a sequence of subgroups of this group to show that it is
solvable. Such subgroups are easy to give explicitly. Let S; denote the
substitution which carries the 1st row of (1) to the (i + 1)st row, for i =
0, 1,...,p — 2. Then §; followed by S; is equal to S;,; whenever i > 0,
j=20,i+j<p~—1 and if §; is defined for all integers i by setting S; = §;
wheneveri = jmod p — 1then S;S; = S, ;for all integers i and j. In particu-
lar, these substitutions commute. If H is any subgroup, then its order divides
p — 1, say p — 1 = hq where h is the order of H. If §, is any element of H
then the powers of S; form a subgroup of H and therefore the number of
distinct powers of S; divides h, that is, if j is the least integer such that § = S,
then j divides h. Thus $? = S,. Since §¥ = §,,. it follows that ik is divisible
by p — | = gh, which is to say that i is divisible by ¢g. Thus S; must be one of
the h substitutions S,, S,,....,8,, = So. This shows that for each divisor
hof p — 1 there is one and only one subgroup of order h, namely,

{Sq, qu, PP Sp"—l - So}

where g = (p — 1)/h. Then a sequence of subgroups of the desired type
GoH, oH,>---o H, ={S,} corresponds to a sequence of divisors
p+~1>h >hy,>hy>--->h,=1 of p—1 with the property that
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h;/h;., is prime. Such a sequence gives a prime factorization p — 1 =
piPz .- pywherep, = (p — V/h,p, = hy/h,. ..., p, = hy_1/h,. Conversely,
given such a prime factorization of p — 1, let H, be the subgroup of G of
order p,41Px+2 - -- Py- Then the sequence of subgroups

GmHobHID"'DH‘,x{SO}

shows that G is solvable because the commutativity of H; implies that all
its subgroups—and in particular H;, ; —are normal.

Thus the Galois group of x? — 1 = 0 over Q is solvable, and, by basic
Galois theory, the equation is solvable by radicals. There is one point that
needs to be observed, however: the theorem of §47, which states that an
equation with solvable Galois group is solvable by radicals, assumes Gauss’s
theorem that pth roots of unity can be obtained by adjoining radicals, and
therefore cannot be used in a proof of Gauss’s theorem. The proof of Gauss’s
theorem can be based instead on the proposition of §46 as follows.

For any positive integer n let K" be the splitting field of f(x) =
[1,<n (x* — 1) over Q, where p ranges over prime integers. Since K™ con-
tains pth roots of unity whenever n > p, in order to show that pth roots of
unity can be expressed in terms of radicals it will suffice to show that K™
can be obtained from Q by a finite number of adjunctions of radicals. Since
K® = Q, this is true for n = 2. Suppose that K"~ 1 can be so constructed.
If n is not prime then K~ = K% has already been constructed. Suppose,
therefore, that n is prime, say n = p. The Galois group of x? — 1 = 0 over
K®=1 s a subgroup of its Galois group over Q. All such subgroups have
been described above, and it has been noted that they are all solvable. Since
K®~ 1 contains all the needed roots of unity, the proposition of §46 shows
that the splitting field of x? — 1 over K™Y can be constructed by the
successive adjunction of a finite number of radicals to K%~ 1), and in fact it
gives a determination of specific adjunctions that will achieve this. Since
the splitting field of x” — 1 over K~V is K, this gives the construction of
K® asdesired. (This is, in effect, the construction of Gauss that was described
in §25.) :

Solution by Radicals

§66 Let f(x) = 0 be an equation with coefficients in a field K. A solution
by radicals of such an equation is a sequence of field extensions K < K, <
K, < --- < K, in which, for each i, K; is obtained by adjoining the p;th root
of an element of K;_, to K;_,, where p; is a prime and K;_; contains a
primitive p;th root of unity, and in which K, is a splitting field for f. By the
proposition of §44, it is clear that if such a solution exists then the Galois
group G of f(x) = 0 over K is solvable, that is, there is a sequence of sub-
groups G = Hy > H,; = --- > H, = {identity} such that H; is a normal
subgroup of H;_, of index 1 or p; where p; is prime. Conversely, if there is
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such a sequence of subgroups of the Galois group, then the construction of
the preceding article with K in place of € can be used to adjoin all the pth
roots of unity for primes p that divide the order of the Galois group. This
adjunction to K may reduce the Galois group of f (x) = 0 to a subgroup, but,
as was shown in §47, a subgroup of a solvable group is solvable, Thus the
proposition of §46 can be applied, because the needed roots of unity are all
present in K, to construct a splitting field by radicals. Thus:

Theorem. An equation is solvable by radicals if and only if its Galois group is
solvable.

§67 The only example of a Galois group Galois himself gave, other than
the Galois group of x? — 1 = 0 over @, was the example of an equation
with literal coefficients, which he stated has as its Galois group the full group
of all n! permutations of the n roots.

Theorem. Let K be afield and let K’ = K(A,, A,, ..., A,) be the field obtained
by adjoining n indeterminates to K. Then the Galois group of the equation
X"+ A X"+ A, X" 4o+ A, = 0 over K’ is the full group of all n!
permutations of the roots.

PRrOOF. Let a, a,, ..., a, be another set of n indeterminates and let L =
K(a, a,, ..., a,). Then, as is easily proved by induction, elements of L can
be written in the form p/q where p and g are polynomials in ay, a,,..., a,
with coefficients in K and g # 0. Two such representations p,/q, and p,/q,
represent the same element of L if and only if p,g, = p,4q;. The n! element
group of permutations of ay, a5, ..., a, acts on L in the obvious way by
permuting a’s in a representation p/q because if pyg, = p,q, and if S is any
permutation of a,, a,,...,a, then clearly Sp,-Sq, = Sp,-Sq,. Let o,
G,,...,0, € Lbethe elementary symmetric polynomialsina,,a,, ..., a,and
let K’ be mapped to L by substituting (— 1)/g; for A; in elements of K'. This
mapping is well defined because if Py, Q,, P,, @, are polynomials in the 4’s
with P,Q, = P,Q, and if p,, q;, p2, g are the corresponding symmetric
polynomials in the a’s then of course p,q, = p,q,. Moreover, the mapping
is one-to-one, that is, if p,q, = p,q, then P,Q, = P,Q,, because a symmetric
polynomial can be represented in only one way as a polynomial in the o’s
(Exercise 22 of the First Set). Also, this mapping K’ — L carries elements of
K to themselves. Thus the extension K' > K can be regarded as being
contained in L and A4, regarded as being equal to (— 1Ys;. Then the equation
X AXT o Ay =X X" ko, = (= a)(x —ay) ...
(x — a,) shows that L is a splitting field for this polynomial. Therefore
K'(a,,a,,...,a,) = L is the splitting field of this polynomial over K. Since
any permutation S of the a’s acts on the splitting field leaving K’ fixed, the
theorem follows. U

(For another proof of this theorem see Exercise 7.)
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Corollary. The general nth degree equation is solvable by radicals for n < 4.

PROOF. Let G be the group of all twenty-four permutations of 4, b, ¢, and d.
Since the group of two permutations of a and b, and the group of six permu-
tations of a, b, and ¢ can be regarded as subgroups of G, and since a subgroup
of a solvable group is solvable, it will suffice to show that G is solvable. This
Galois does in the form of a tableau:

abcd acdb adbc
badc cabd dacb
cdab dbac becad
dcba bdca chda.

(See (3) of §40.) Here the set of all twelve arrangements presents a twelve-
element normal subgroup of index 2in S, . The three sets of four arrangements
present (in three ways) a four-element normal subgroup of index 3 in this
twelve element group. The first two (or in fact any two) arrangements in the
first set of four present a two-element normal subgroup of index 2 in the four
element group. Finally, the identity is a normal subgroup of index 2 in this
two element group. U]

Corollary. Any equation® of degree < 4 is solvable by radicals.

PROOF. One need only solve the general equation and then substitute the
values of the coefficients in the general solution. L]

Note that the ancient solution of the quadratic equation is a solution of
this type.

Corollary. In order to prove that the general nth degree equation is not solvable
by radicals for n = 5 it suffices to prove this for n = 5.

PrOOF. The group of permutations of five letters can be regarded as a sub-
group of the group of permutations of n letters for n > 3. Therefore the latter
cannot be solvable if the former is not. L]

Corollary. The general nth degree equation is irreducible.

Proor. Its Galois group acts transitively on the roots. ]

* It is assumed here, as elsewhere in the text, that the field K of known quantities is obtained
from @ by the adjunction of a finite number of algebraic and/or transcendental elements.
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Solvable Equations of Prime Degree

§68 Theorem (Galois). If an irreducible equation has prime degree p
and is solvable by radicals, then the roots of the equation can be ordered
Ay, dys - .., A, in Such a way that the substitutions S of the Galois group are
all of the form S(a;) = a,;.s, where a; is defined for all integers i by Setting
a; = a; for i = jmod p, where r and s are integers, and where r # 0 mod p-

Corollary. The general 5th degree equation is not solvable by radicals. There-
Jore the general nth degree equation is not solvable by radicals for n > 5.

DEeDUCTION OF COROLLARY. It was shown in the previous article that the first
statement implies the second. Since the general 5th degree equation is irredu-
cible and of prime order, the theorem shows that if it were solvable by radicals
then the substitutions in its Galois group would all have the form S(a;) =
ayi+s- Since r % 0 mod 5,  can have four values mod 5 and s can have five
values mod 5, so there are only twenty different substitutions of this type.
Therefore the Galois group would contain at most twenty substitutions,
rather than the 120 = 5! that it does contain. J

Corollary. An irreducible equation of prime degree is solvable by radicals
if and only if it has the property that all its roots can be expressed rationally
in terms of any two of them.

This rather strange corollary is the principal result of Galois’ memoir.
No doubt Galois was attempting to state a theorem which went beyond
Abel’s theorem on the unsolvability of the quintic and which showed the
power of his techniques but did not refer to the Galois group in its statement.
Unfortunately, it did not catch the fancy of his readers at the French Academy
of Sciences. Its deduction from the theorem is left as an exercise (Exercise 4).

PRrOOF oF THE THEOREM. The first step in the proof is Galois’ Proposition VI,
which states that if K < K, « K, « --- < K,, is a solution of f(x) = 0 by
radicals, and if f(x) is irreducible of prime degree p, then f(x) is irreducible
over all the intermediate fields K, K, K, ..., K, until it splits into linear
factors in K,. More precisely, in a field extension of the type which occurs in
a solution by radicals—say the adjunction of a gth root to a field which
contains gth roots of unity (¢ = prime)—an irreducible polynomial either
remains irreducible or splits into q factors of equal degree. The proof of this is
an easy adaptation of the arguments of §44 (Exercise 5). (Alternatively, this
statement follows immediately from Dedekind’s “reciprocity theorem” of
Exercises 10 and 11 of the Sixth Set.) Thus when f'(x) is irreducible of prime
degree p, it remains irreducible unless it splits into factors of degree 1, and the
splitting into factors of degree 1 can occur only with the adjunction of a
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pth root. This also shows that the next-to-last group in the sequence of sub-
groups corresponding to the solution K ¢ K; = --- < K, which is the
group of automorphisms of the splitting field K, over K ,_ 4, is cyclic of order
p. Thus the roots can be numbered a,, a,, . .., a, in such a way that

ay sy ap
a, 4asj ay
ap a, ap_l

is a presentation of this group.

Let S be a substitution of the roots which occurs in the preceding subgroup,
and let S be represented as a permutation of the integers mod p by setting
S(a;) = ag, ;. Because the group presented above is a normal subgroup, the
application of S to this presentation gives another presentation of the same
group

sy dszy -+ dsp)
dszy Aszy -+ dsq)
dswy 9say -+ Gsp-1y

The fact that the substitution which changes the 1st row to the 2nd row must
also change the Ist row of the first presentation to another row of that
presentation means that there is an r # O mod p such that ag,) = asqy+.»
ds(3y = ds2)+r» - - - » Where the subscripts are interpreted mod p. Thus

SQ2) = S(1) +r,
S(3) = S2) + r = S(1) + 2r,
S4) = S3) + r = SQ1) + 3r,

SN=SH+ (G- Dr=r+s,
where s = S(1) — r.

Thus the preceding group contains only substitutions of the prescribed
type. Now consider the group which precedes this one. For the same reason
as before, if Tis any substitution of this group, then the substitution which
carries the arrangement ap(;yayq) ... rp) 1O Areydra) - - - gy must be a
substitution of the normal subgroup and therefore there must be integers
r and s such that |

TQ) = rT(1) + s,
TG) = rTQ) + s =r*T() + rs + s,
T@) =rTQR) +s=r’T() + r’s +rs + s,

T()= P IT() + (2 + 13 + - 41+ Ds,
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Since TN =T(p+ D =rPT) + (P~ + P72 + --. 4+ r + 1)s, and since
P = r by Fermat’s theorem, (1 — )T() ="' +r""2 + ... 4 + Ds.
Multiply by 1 ~ rto find (1 — #)*T(1) = (1 — #")s = (1 — r)s. If r #£ 1 then
T(1) = (1 — r)~'s. But then in the same way, T(2) = T(p + 2) = r*T(2) +
("' + ..« 4+ r + 1)s, which leads to T(2Q) = (1 — )" s = T(1), which is
impossible. Thereforer = land T2) = T(1) + 5, T(3) = T(2) + 5, T4) =
T(3) + s, etc. As was seen above, this implies that T'is a substitution of this
same linear form T(j) = r’j + 5"

In the same way, the group preceding this one can contain only linear
substitutions, and the same applies to all preceding groups, including the
original one, which is the Galois group of f(x) over K. L]

The Galois Group of x" — 1 = 0

§69 The cyclotomic equation x" — 1 = 01is one of the simplest and most
important algebraic equations. Therefore its Galois group is of particular
interest. In the case where n is a prime p, it was seen above that, as Galois
stated, this group is a cyclic group of order p — 1. For general n, the answer
is easy to guess but not at all easy to prove:

By regarding roots of x" — 1 = 0 as complex numbers, one sees that there
is always a primitive root a = cos(2n/n) + i sin(2n/n), that is, a root a with
the property that a' % 1 for i=12...,n—1 Then x"—~1=
(x — a)(x — a*)---(x — a")becausea, a%,...,a" = larenrootsof x" — 1 =
0 and they are distinct because if i and j are positive integers with a'™/ =
a‘ then @’ = 1, which implies j > n. Thus the elements S of the Galois group
can be regarded as permutations of the roots g, a® a®,...,a" = 1. Since
S(a’) = S(a)’, S is known once S(a) is known. Suppose S(a) = o/ (1 < j < n).
Then j must be relatively prime to n because if d > 1 divided both j and n,
say j = dJ, n = dN, it would follow that S(@) = S(@)" = oV = ¢ =1 =
S(1), contrary to the fact that a¥ # 1 (N < n) and S is one-to-one. With this
limitation, that j be relatively prime to n, the permutations a + o’ form a
group as follows.

Let a be a symbol and let the 1st row of a table consist of the symbols
a’ where j ranges over all integers 1 < j < n that are relatively prime to n.
Let the table consist of one row for each entry in the 1st row, and let the row
corresponding to @’ be obtained by replacing a with @’ in the Ist row and
reducing all exponents mod n so they lie between 0 and n. (See §42 for this
table in the case n = 8.) This table is a presentation of a group which is
commonly denoted by (Z/nZ)*, the multiplicative group of invertible classes
of integers mod n. It was seen above that the Galois group of x" — 1 = 0
over Q) is in a natural way a subgroup of (Z/nZ)*. In the case where » is prime,
the Galois group was seen to beT all of (Z/nZ)*. In view of this, and in view

T The group is the same despite the fact that the presentation of (Z/nZ)* that is described above
is not the same as (1) of §64 because the rows and columns are ordered differently.
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of the fact that there is no obvious way to pick out a subgroup of (Z/nZ)*,

it is reasonable to guess that in all cases the Galois group of x" — 1 = 0 over
Q is all of (Z/nZ)*. This is the theorem to be proved.

§70 Theorem. The splitting field of x" — 1 over Q is of the form Q(a)
where a is a primitive nth root of unity (that is, a" = 1 but a#1fori=
1,2,...,n— 1). The primitive nth roots of unity in Q(a) are the elements
a’ where 1 < j < n and j is relatively prime to n. Finally, the elements of the
Galois group, which must carry a to other primitive nth roots of unity, carry a
to all other primitive nth roots of unity a’. Thus the Galois group is (Z/nZ)*.

PROOF. It must first be shown that the splitting field of x" — 1 over Q con-
tains a primitive nth root of unity. This can be done by induction on the
number of distinct prime factors of n as follows.

First suppose n has only one prime factor, thatis, n = p* where p is prime
and k > 0. Then x" — 1 has the factorization (x"? — 1)g(x) where g(x) =
X1~ WP 4 =20 L4 x"P 4 | The splitting field of x" — 1 contains a
root b of g(x). Let i be the least positive integer such that b'=1.Theni<n
and i divides n because n = gi + r where 0 < r < i;since 1 = b" (because b
is a root of g and therefore of x" — 1) = b%*" = (b')%" = b" (because b =1
by assumption) the definition of i is contradicted unless r = 0. Since n = P,
it follows that i is a power of p. If i were not n = p* then it would divide
n/p = p*~ !, which would imply b"” = 1 and substitution of b in g(x) would
give 1 + 14 --- + 1 = p, contrary to the definition of b. Therefore i = n,
that is, b is a primitive nth root of unity.

Now suppose it has been shown that the splitting field of x" — 1 over Q
contains a primitive nth root of unity whenever n has fewer distinct prime
factors. Specifically, let n = mp* where m is not divisible by p and suppose
the splitting field of x™ — 1 over Q contains a primitive mth root of unity,
call it ¢. Since the splitting field of x" — 1 over Q contains splitting fields of
both x™ — 1 and x** — 1 over @, this field contains both a primitive p“th
root of unity b and a primitive mth root of unity c. Let a = bc. Thenais a
primitive nth root of unity. This can be proved as follows. Clearly a is an
nth root of unity because both b and c are. It is to be shown that if a' = 1then
iis divisible by n. The Buclidean algorithm can be used to write 1 = Am + Byt
because 1 is the greatest common divisor of m and pF.1fa' = 1israised to the
mth power one finds 1 = b™c™ = b™. This implies that p* divides mi and
therefore that n = p*m divides mi = Ammi + Bp“mi (n divides both terms on
the right). Similarly, raising a’ = 1to the p*th power shows that p*i is divisible
by n. Therefore i = Ami + Bp*i is divisible by n, as was to be shown.

Therefore the splitting field of x* — 1 over Q is of the form Q(a), where
a is a primitive nth root of unity. (a,a%, ..., a" =1 are distinct roots of
x" — 1 = 0.) Every primitive nth root of unity is an nth root of unity and
therefore has the form &’ for some j. As was noted in §69, if @’ is a primitive
nth root of unity then j is relatively prime to n. Conversely, if j is relatively
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prime to n then 1 = An + Bj for some integers 4 and B and therefore g =
(a")*(a’)? = (a’)®; thus every power of a can be expressed as a power of a/
(negative powers of a are equal to positive powers of @~ ) and @’ is a primi-
tive nth root of unity. Thus the primitive roots of unity are the powers o’
ofa, 1 < j < n,in whichis relatively prime to n. The last and main statement
of the theorem is that for every such j there is an element of the Galois group
of x" — 1 over Q which carries a to o’. |

Let x" — 1 be factored into irreducible polynomials over @. Since x" — 1
has leading coefficient 1, one can assume without loss of generality that all
factors have leading coefficient 1. Then, by Gauss’s lemma (§57), all the
irreducible factors of x” — 1 have coefficients in Z. Let a be a primitive nth
root of unity in the splitting field of x" — 1 over Q and let f(x) be the irredu-
cible factor of x” — 1 of which a is a root. The Galois group of x" — 1 over
@ acts transitively on the roots of f(x) since otherwise the method at the end
0f§63 would give a proper divisor of /. Thus the main statement of the theorem
amounts to saying that a’ is a root of f(x) for every J relatively prime to n.

Proposition. Let a be a primitive nth root of unity (in some algebraic extension
of Q) and let f (x) be an irreducible polynomial with coefficients in Z and leading
coefficient 1 of which ais aroot. Let q be a prime integer which does not divide n.
Then a‘ is a root of f(x).

This appears at first to be weaker than the preceding statement because
J was merely assumed to be relatively prime to n, whereas g is assumed to be
prime. However, any j relatively prime to n is of the form J=pps...p,
where the p’s are prime and do not divide x. By the proposition, a” is a root
of f(x). Since it is also a primitive nth root of unity, the proposition implies
then that (a”*)P? is a root of f(x). Repetition of this argument v times shows
that a?'72""P» = ¢/ is a root of f(x). Therefore the theorem will follow once
the proposition is proved.

PROOF OF PROPOSITION (Dedekind, 1857). Lét f1(x) be the irreducible factor
of x" — 1 with leading coefficient 1 of which a?is a root. If b is any other root
of f(x) then, as was noted above, there is an automorphism in the Galois
group of x" — 1 over @ which carries a to b. Since such an automorphism
carries roots of f; to roots of f; and carries a? to b%, b%is a root of f1. Therefore
the gth power of any root of fis a root of f;. Conversely, since there are in-
tegers A and B with Ag+Bn=1, a=a"*?*5" =", the same argument applied
to roots of f; shows that the Ath power of any root of f; is a root of f. Therefore
Sfand f; have the same number of roots, and if

) =Kx-a(x-5)...(x —d)
is the splitting of fover Q(a) then
J1(0) = (x — a®)(x — bY) ... (x — d%)
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is the splitting of f,. Thus the coefficients of f, are the elementary symmetric
functions in a4, b, ..., d%

The main trick in Dedekind’s proof is to use Fermat’s theorem (Exercise
9) in the form of the statement that if F(X, Y, ..., Z) is a polynomial in any
number of variables with coefficients in Z then

FX,Y,...,Z2) = F(X%, Y% ..., Z% + qQ(X, Y, ..., Z)

where Q is a polynomial with integer coefficients. When this formula is
applied to an elementary. symmetric polynomial in the roots a, b, ¢, ...
of f, 0 is a symmetric polynomial in a, b, ¢, . .. and therefore is an integer by
the fundamental theorem on symmetric functions. Therefore each coefficient
of f,(x) differs by an integral multiple of g from the corresponding coeflicient
of 1. In short,

J1(x) = f(x) + q h(x),

where h(x) is a polynomial with integer coefficients.

Now if a% is not a root of fthen fand f; are distinct factors in the irreducible
factorization of x™ — 1. Iff,(x)is replaced by f(x) + gh(x) in this factorization
the result is an equation of the form

X" =1 = fx)?P(x) + q(x),

where ¢(x) and (x) are polynomials with integer coefficients. Differentiation
of this equation gives one of the form

nx"" 1 = f(x)®(x) + q¥(x), 6

where ®(x) and W(x) have integer coefficients. Very briefly, an equation of
this form is impossible because it says that f(x) divides a nonzero constant
times a power of the irreducible polynomial x mod g; by the unique factoriza-
tion of polynomials mod g, this would imply f(x) was a nonzero constant
times a power of x mod ¢, and this contradicts the fact that f(x) divides
x" — 1.

To spell out the argument that (1) is impossible a little more fully, note
first that one can assume without loss of generality that all coefficients A4,
of @ lie in the range 0 < A, < ¢ (because ®(x) can be changed to O(x) —
gA(x) and W(x) can be changed to W(x) + f(x)A(x) to give another equation
of the same form in which the A4; are altered by arbitrary multiples of g).
The leading term of f(x) is 1, so the leading term of f (x)®(x) is A, x* ¥ where
pu is the degree of @ and v the degree of £ If u + v = n, (1) would give 0 = A,
plus a multiple of g, which is impossible. If ¢ + v < n — 21t would given = 0
plus a multiple of g, which is also impossible. Therefore 4 + v =n — 1. On
the other hand, since f(x) divides x" — 1, its constant term must divide — 1
(set x = 0) that is, its constant term is + 1. If 7 is the least index such that
A, # 0,and ift < n — 1 then (1) gives 0 = + A, plus a multiple of g, which
is impossible. Thus © > n — 1, which contradicts t < pu=n—-1-v<
n— 1.
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Therefore a? must be a root of f(x) and the proposition is proved. Ll

§71 The theorem of the preceding article can be used to plug the gap
in Gauss’s proof that x? = 1 can be solved by radicals, because it implies
Lemma 2 of §24, that is:

Corollary. Let p be a prime and let n = p(p — 1). The splitting field of x" — 1
over Q contains both a primitive pth root of unity, say o, and a primitive (p — 1)st
root of unity, say B. If Py(B)a + Py(B)a? + -+ + P,_;(P)a?~ ! = 0 where
the P’s are polynomials in B with rational coefficients then P () = P,(f) = ...
= Pp—l(ﬂ) = O

DEDUCTION OF COROLLARY. Let @ = oaff. Since p and p — 1 are relatively
prime, it was shown above that a is a primitive nth root of unity (n = p(p — 1)).
The idea of the proof is to consider the Galois group of x" — 1 = 0 over the
field Q(p). The elements of this group are those elements of the whole Galois
group of x" — 1 = 0 over @ which leave f fixed. Such an element carries
a to a and carries B to itself. Since a — a’ and B is a power of g, f > .
Since f is a primitive (p — 1)st root of unity and f/ = f, the elements of the
Galois group of x" — 1 over Q(B) are those elements a — o’ of the whole
group for which j is 1 more than a multiple of p — | and, of course, 1 <j <n
and j is relatively prime to n = p(p — 1). The values of j are thus 1, 1 +
(p—D,1+2p-1D,1+3p—=1,....,1 +(p—=1)p— 1)—that is, 1, p,
2p — 1,3p = 2,..., p* — 2p + 2—except for the second value p, which is
not relatively prime to n. Therefore the Galois group of x" — 1 =0 over
Q(B) has exactly p — 1 elements. This implies (§63) that [Q(a): Q(B)] =
p — 1. But a relation of the form

p—1
; Py =0

implies Y 27! P(B)B* ~'a’~! = 0. If at least one of the P’s were nonzero and
if k were the largest integer for which P,(f) # 0, then one could move the
term with i = k to the other side of the equation and divide by its coefficient
to express a* ! as a combination of lower powers of a and elements of the
field Q(B). This would imply that every element of Q(a) could be expressed
as a linear combination of 1, a, a?, ..., @~ ? with coefficients in () and
therefore would imply [Q(a): Q(f)] <k -1 <k <p -1, contrary to
what was found above. Therefore the P’s must all be 0. 0

Eighth Exercise Set

1. A vector space Vover a field K is a set whose elements can be added to each other
and multiplied by elements of K in such ways that the natural axioms apply: vy + v, =
vy + 0y, (0) + V) + 03 = vy + (3 + 03), k(v + vg) = kvy + kvy, (ky + k) = kv +
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k,v, and, lastly, any equation of the form v = kv, + kyvy + -+ + knv, 10 Which
D, Vys Uge-nna D arein ¥k koo .k, are in K, and k; # 0, has a unique solution
y, in V. Show that if a finite subset of Vspans Vthen V has a finite basis, any two
bases have the same number of elements, and the transition from one basis to another
is given by an invertible square matrix of elements of K. (See §63 for definitions.)

2. If K < K' < L are three fields, if s;,55,....5, 15 @ basis of K’ over K, and if
Uy, Uy, . .- Uy is @ basis of L over K, show that the mn elements s;u; are a basis of L
over K.

3. In the notation of §64, show that G(a') = G(a) when j is not divisible by p.

4. Deduce the second corollary to the theorem of §68. [Galois’ indication of a proof
(Appendix 1) seems difficult to complete. Good use can be made of “Cauchy’s
Theorem”: If a prime integer p divides the number of elements in a group then the group
must contain an element of order p, that is, a substitution not the identity whose pth
power is the identity. For a proof of Cauchy’s Theorem see McKay [M1].]

5. Let K be a field containing pth roots of unity (p = prime) and let K’ be obtained
from K by adjoining a pth root of an element of K. Prove that if ' (x) is an irreducible poly-
nomial with coefficients in K then either fis irreducible over K' or it has p irreducible
factors of equal degree.

6. Let K be a field, and let p be a prime. Show that if k is an element of K
which has no pth root in K then f(x) = x” — k is irreducible over K. In other words,
if x? — k is reducible then it has at least one linear factor.

7 1t was shown in Exercise 28 of the First Set that a polynomial in x;. X,,...,X, can
be written in one and only one way as a sum of terms F(o)x§x$ - - - xir where F(o) is
symmetric and where the sum has n! terms, one for each choice of the exponents ¢; that
satisfies0 < ¢; <n—i(i=12,...,n). Use this to prove that the Galois group of the
general equation of degree n is the full group of n! substitutions of n objects.

8. Prove the Eisenstein Irreducibility Criterion: If f(x) = x" + a XU xR
+ g, is a polynomial with integer coefficients and if there is a prime integer p which
divides ay, d,, - . ., a, but does not divide a, twice then f(x) is irreducible over Q.
[Consider the factors of an assumed factorization mod p.] Apply this to the polynomial
[(x + 1) — 1]/x to conclude that (X? — DAX — 1) is irreducible over Q.

9. Prove Fermat’s Theorem in the form it is used in §70: If p is a prime integer and if
F(X,Y,Z,..)isa polynomial in one or more variables X, Y, Z, ... with integer coeffi-
cients then all coefficients of F(X, Y, Z, ...)* — F(X?, Y?, ZP, ...) (which is obviously a
polynomial in the same variables with integer coefficients) are divisible by p. [The
essential fact was already used in Exercise 8.]

10. Show that Galois’ Proposition I applies without change to fields of characteristic
p provided f(x) = O hasno multiple roots. Specifically, show that if K is a field obtained
from the finite field of integers mod p by the adjunction of a finite number of separable
algebraic and/or transcendental elements, if f(x) = 0 is an algebraic equation with
coefficients in K, and if f(x) and f'(x) have greatest common divisor 1, then there is a
group of automorphisms of the splitting field K(a, b, ¢, ...) of fwith the property that a
polynomial ¥(a, b, ¢, .. Jintherootsa, b, c, ... of fis in K if and only if ¥Y(a, b,c,...) =
W(Sa, Sb, Sc, ...) for all § in the group. [If K is infinite, the proof of §32 gives a Galois
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resolvent and the entire proofis the same. If K is finite, there may be no Galois resolvent,
but there is a primitive element for the splitting field, which is sufficient. ]

11. Show that the method of §31 of dividing f(x) by its greatest common divisor with
f'(x) works —that is, gives a new polynomial with the same roots as f and no multiple
roots, so that Proposition I can be applied to the splitting field of f—unless f(x) is
divisible by a polynomial in x?.

12. Show that if K has characteristic p as in Exercise 10, if every element of K has a
pth root in K (such a field with characteristic p is called perfect), and if f (x) is any poly-
nomial with coefficients in K, then there is a polynomial g(x) with coefficients in K
which has distinct roots and the same splitting field as f(x). Thus Proposition I can be
applied to the splitting field of f(x). Show that if K is finite then every element of K has
a pth root in K.

13. (Artin-Schreier Theorem, Part ) Let K have characteristic p and let K’ be obtained
by adjoining a root of x” — x — a to K for some a in K. Show that the Galois group of
any equation f(x) = 0 with distinct roots over K’ either coincides with its Galois group
over K or is a normal subgroup of index p.

14. (Artin-Schreier Theorem, Part II) Let K have characteristic p, let f(x) = 0 have
coefficients in K and distinct roots, and let H be a subgroup of the Galois group of
f(x) = 0 over K which is normal of index p. Show that there is an ¢ in K such that
adjunction of a root of x* — x — a = 0 to K reduces the Galois group to H. [ Difficult. ]

15. (Solution of solvable equations.) Let K have characteristic p as above and let f(x)=0
(with distinct roots) have a solvable Galois group. Show that a splitting field for f can
be constructed by a finite sequence of adjunctions of one of two types: (i) solutions of
x? = a where q is prime, g # p, a is already constructed, and gth roots of unity already
adjoined, and (ii) solutions of x? — x = a where a is already constructed.

16. A field extension is said to be normal if any irreducible polynomial with coefficients
in'the smaller field which has a root in the bigger field splits into linear factors over the
bigger field. Show that in the “fundamental theorem of Galois theory” (§63) normal
subgroups of the Galois group correspond to normal extensions of K. (In particular,
the splitting field, which corresponds to the subgroup containing the identity element
alone, is normal.)

17. Show that every normal extension of K of finite degree is the splitting field of some
polynomial with coefficients in K. This shows that the “fundamental theorem of Galois
theory™ can be stated as a theorem applying to normal (separable) algebraic extensions
rather than to splitting fields of polynomaals.

18. Prove that if K’ is a normal extension of K and if the norm of an element of K’
relative to K is defined as in §60 then the norm is equal to the product of the conjugates;
that is, det(M) = N(a) = | | Sa, where M is the n x n matrix of elements of K which
represents multiplication by « relative to some basis of K’ over K and where the product
is over all elements S of the Galois group of K’ over K. [See Exercise 9 of the Seventh
Set.]

19. Show that if K’ is a normal extension of K and if g is an irreducible polynomial with
coefficients in K then the irreducible factors of g over K’ all have equal degree.






APPENDIX 1

Memoir on the Conditions for Solvability
of Equations by Radicals

by Evariste Galois

Translated by Harold M. Edwards

PRINCIPLES

I shall begin by establishing some definitions and a sequence of lemmas,
all of which are known.

Definitions. An equation is said to be reducible if it admits rational divisors;
otherwise it is irreducible.

It is necessary to explain what is meant by the word rational, because it
will appear frequently.

When the equation has coefficients that are all numeric and rational, this
means simply that the equation can be decomposed into factors which have
coefficients that are numeric and rational.

But when the coefficients of an equation are not all numeric and rational,
one must mean by a rational divisor a divisor whose coefficients can be
expressed as rational functions of the coefficients of the proposed equation,
and, more generally, by a rational quantity a quantity that can be expressed
as a rational function of the coefficients of the proposed equation.

More than this: one can agree to regard as rational all rational functions
of a certain number of determined quantities, supposed to be known g priori.
For example, one can choose a particular root of a whole number and regard
as rational every rational function of this radical.

When we agree to regard certain quantities as known in this manner, we
shall say that we adjoin them to the equation to be resolved. We shall say
that these quantities are adjoined to the equation.

- With these conventions, we shall call rational any quantity which can be
expressed as a rational function of the coefficients of the equation and of a
certain number of adjoined quantities arbitrarily agreed upon.
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When we make use of auxiliary equations, they will be rational if their
coeflicients are rational in our sense.

One sees, moreover, that the properties and the difficulties of an equation
can be altogether different, depending on what quantities are adjoined to it.
For example, the adjunction of a quantity can render an irreducible equation
reducible.

Thus, when one adjoins to the equation

x" -1

= 0, where nis prime,

x—1
a root of one of Mr. Gauss’s auxiliary equations, this equation decomposes
into factors, and consequently becomes reducible.

Substitutions are the passage from one permutation to another.

The initial permutation one uses to describe substitutions is entirely
arbitrary when one is dealing with functions, because there is no reason, in a
function of several letters, for a letter to occupy one position rather than
another.

Nonetheless, since one can hardly comprehend the idea of a substitution
without that of a permutation, we shall frequently speak of permutations,
and we shall consider substitutions only as the passage from one permutation
to another.

When we want to group substitutions we shall make them all proceed
from the same permutation.

As it is always a question of problems in which the initial distribution of
the letters is immaterial, in the groups which we consider one should have
the same substitutions no matter which permutation one starts from. Thus
if the substitutions § and Tare in such a group, one is certain of having the
substitution ST.

These are the definitions that we thought we should recall.

LeMmA L An irreducible equation cannot have a root in common with a
rational equation without dividing it.

Because the greatest common divisor of the given irreducible equation
and the other equation will also be rational; therefore, etc.

LemMmA I1. Given any equation with distinct roots a, b, ¢, ..., one can always
form a function V of the roots such that no two of the values one obtains
by permuting the roots in this function are equal.

For example, one can take
V=Aa+ Bb+ Cc + ...,

A, B, C, ... being suitably chosen whole numbers.
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L emma III. When the function Vis chosen as indicated above, it will have the
property that all the roots of the given equation can be expressed as rational
functions of V.

In fact,* let

V= d¢a,b,cd,...),
or
V— ¢ b,cd,..)=0.

Let us multiply together all the similar equations which one obtains by
permuting in these all the letters, leaving just the first one fixed; this will
give the following expression:

(V_' qb(aa bs ¢, ds . ))(V— ¢(aa & ba ds <. ))(V - d)(a’ b, da .f: C, .. '))' )

which is symmetric in b, ¢, d, etc., . . ., and which can consequently be written
as a function of a. We will therefore have an equation of the form

F(V,a) = 0.

But I say that one can extract from this the value of a. For this it suffices to
look for the common solution of this equation and the given one: for one
cannot have, for example,

F(V,;by=0

unless (this equation having a common factor with the similar equation) one
of the functions ¢(a, . ..) is equal to one of the functions ¢(b,...); which is
contrary to the hypothesis.

It therefore follows that a can be expressed as a rational function of V,
and it is the same for the other roots.

This propositiont is stated without demonstration by Abel in his post-
humous memoir on elliptic functions. {

* We have transcribed word-for-word the demonstration that we gave of this lemma in a
memoir presented in 1830. We attach as an historical document the following note which
M. Poisson felt he needed to make upon it.

“The demonstration of this lemma is insufficient ; however, it is true according to n® 100 of
the memoir of Lagrange, Berlin, 1771.”

On jugera. (Author’s note.)

1+ It is remarkable that one can conclude from this proposition that every equation depends on
an auxiliary equation with the property that all the roots of this new equation are rational
functions of one another. For the auxiliary equation for V is of this type.

Moreover, this remark is a mere curiosity; in fact, an equation which has this property is not
in general any easier to solve than any other. (Author’s note.)
1 This appears to be a reference to §1 of Chapter 2 of Abel’s ““ Précis d’une théorie des fonctions
elliptiques™” [A2, p. 547]. Elsewhere [G1, p. 35] Galois says “It would be easy for me to prove that
I was unaware even of the name of Abel when I presented my first researches on the theory of
equations to the Institute, and that Abel’s solution could not have appeared before mine.”
(Translator’s note.)
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Lemma IV. Suppose one has formed the equation for ¥, and that one has
taken one of its irreducible factors, so that Vis the root of an irreducible
equation. Let ¥, V', V", ... be the roots of this irreducible equation. If
a = f(V) is one of the roots of the given equation, f (V") will also be a root
of the given equation.

In fact, in multiplying together all the factors of the form V —
¢(a, b, ¢, ..., d) in which one applies to the letters all possible permutations,
one obtains a rational equation which is necessarily divisible by the
equation in question; therefore V' can be obtained by an exchange of letters
in the function V. Let F(V, a) = 0 be the equation that one obtains in perm-
uting in V all the letters except the first; then one will have F(V', b) = 0,
where b may be equal to a, but is certainly one of the roots of the given equa-
tion. Consequently, just as the given equation and F(V, a) = 0 combine
to give a = f(V), the given equation and F(V’, b) = 0 combine to give b =
Jv).

With these principles set forth, we shall proceed to the exposition of our
theory.

PROPOSITION 1

Theorem. Let an equation be given whose m roots are a, b, ¢, . .. . There
will always be a group of permutations of the letters a, b, c, ... which will
have the following property:

1. that each function invariant* under the substitutions of this group will be
known rationally;

2. conversely, that every function of the roots which can be determined
rationally will be invariant under these substitutions.

(In the case of algebraic equations, this group is none other than the set
of all 1-2-3...m permutations of the m letters, because in this case the
symmetric functions are the only ones that can be determined rationally.)

(In the case of the equation (x" — 1)/(x — 1) = 0, if one supposes that

* Here we call a function invariant not only if its form is unchanged by the substitutions of the
roots, but also if its numerical value does not vary when these substitutions are applied. For
example, if Fx = 0 is an equation, Fx is a function of the roots which is not changed by any
substitution,

When we say that a function is rationally known, we mean that its numerical value can be
expressed as a rational function of the coefficients of the equation and the quantities that have
been adjoined. (Author’s note.)
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a=rb=r%c=r" .., gbeingaprimitive root, the group of permutations
will be simply this one:

abed . .. k,

bed . .. ka,

cd ... kab,

----------

kabc ...i [sic;i precedes k].

In this particular case, the number of permutations is equal to the degree
of the equation, and the same will be true for equations all of whose roots

are rational functions of one another.)

DEMONSTRATION. No matter what the given equation is, one can find a
rational function V of the roots such that all the roots are rational functions
of V. With such a ¥, let us consider the irreducible equation of which Vis a
root (Lemmas III and IV). Let V, V', V”, ..., V@ 1 be the roots of this

equation.

Let ¢V, ¢V, ¢,V ..., ¢._,V be the roots of the given equation.
Let us write the following n permutations of the roots:

V), PV, ¢V, ¢2V, PR
V), oV, bV, b, V", ey,
(V”), ¢V”, ¢1 V”, ¢’2fo, ey e,

“« . .. e EECEEE

ey .y .y .y Lers
(V(n- 1))’ ¢V(n-— 1)’ d)l V(n— 1)’ ¢2V(n——1), e, d)m— ! V(n— 1)’

I say that this group of permutations has the stated property.
In fact:

1. Every function F of the roots invariant under the substitutions of this
group can be written as F = YV, and one will have

YV =YV =YV =-.. = yyoe-1,

The value of F can therefore be determined rationally.
2. Conversely, if a function F is determinable rationally, and if one sets
F = yV, one will have

YV=yV =yV" = ... =y VoD

because the equation for ¥ 'has no commensurable divisor and V satisfies
the rational equation F = /¥, F being a rational quantity. Therefore
the function F will necessarily be invariant under the substitutions of the
group written above.

Thus, this group has the double property given in the theorem. The
theorem is therefore demonstrated.
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We will call the group in question the group of the equation.

ScuoLiuM. Clearly in the group of permutations under discussion the dis-
position of the letters is of no importance, but only the substitutions of the
letters by which one passes from one permutation to the other.

Thus one can give a first permutation arbitrarily, provided the other
permutations are always deduced from it using the same substitutions
of the letters. The new group formed in this way will obviously have the
same properties as the first, because in the preceding theorem all that
matters is the substitutions which one can make in the functions.

ScHoLiuM. The substitutions are independent even of the number of roots,

PROPOSITION 1I

Theorem. If one adjoins to a given equation the root r of an auxiliary irredu-
cible equation*®

(1) one of two things will happen: either the group of the equation will not
be changed; or it will be partitioned into p groups, each belonging to the
given equation respectively when one adjoins each of the roots of the
auxiliary equation; '

(2) these groups will have the remarkable property that one will pass from
one to the other in applying the same substitution of letters to all the
permutations of the first.

(1)t If, after the adjunction of r, the equation for ¥ mentioned above
remains irreducible, it is clear that the group of the equation will not be
changed. If, on the other hand, it can be reduced, then the equation for V
decomposes into p factors, all of the same degree and of the form

FV, N X fWr) x f(V, ) x ...,

r, ¥, ¥, ... being the other values of r. Thus the group of the given equation
also decomposes into groups, each containing the same number of permuta-
tions, because each value of ¥ corresponds to a permutation. These groups
are, respectively, those of the given equation when one adjoins successively
L E,

* The original version included the words “of prime degree p” which Galois later struck
out, perhaps the night before the duel. Thus the letter p, which occurs in the statement of property
(1), is intended to be the degree of the auxiliary equation. For the correct statement of the prop-
osition, it should be modified to say that “the group will be partitioned into j ‘groups’ where j
divides p.” If p is prime then the partition is into 1 “group” or p. (Translator’s note.)

+ There is something that needs completing in this demonstration. I haven’t the time. (Author’s
note.)
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(2) We saw above that the values of ¥ were all rational functions of one
another. In view of this, let ¥ be a root of f(¥,r) =0, and F(V) another. It
is then clear that if V' is a root of f(V, ") = 0, F(V") will be another.*

With this stated, I say that one obtains the group relative to ' by applying
the same substitution of letters throughout to the group relative to r.
In fact, if one has, for example,

¢ ,F(V) = &,V

one will also have (Lemma I},
P F V) = b, V"

Therefore, in order to pass from the permutation (F(V)) to the permutation
(F(V") one must make the same substitution as one must in order to pass
from the permutation (V) to the permutation (V).

The theorem is therefore demonstrated.

(1832. PROPOSITION III

Theorem. If one adjoins to an equation all the roots of an auxiliary equation,
the groups in Theorem II will have the further property that each group
contains the same substitutions.

One will find the proof.t)

PROPOSITION 1V

Theorem. If one adjoins to an equation the numerical value of a certain
function of its roots, the group of the equation will be reduced in such a way
as to contain no permutations other than those which leave this function
invariant.

In fact, by Proposition I, every known function must be invariant under
the permutations of the group of the equation.

* Because one will have f(F(V), r) = a function divisible by f(V, r). Therefore (Lemma I)
FUR(V)Y, ¥') = a function divisible by f(V, r'). (Author’s note.)

+ This is a revision made in 1832, The original version was:

PROPOSITION III

TueoREM. If the equation for r has the form r? = 4, and if the pthroots of unity have already been
adjoined, the p groups of Theorem I will have the further property that the substitutions of
letters by which one passes from one permutation to another in each group are the same for all
the groups.

In fact, in this case it does not matter which value of r one adjoins to the equation. Con-
sequently, its properties must be the same after the adjunction of any value of r whatever. Thus
its group must be the same as far as the substitutions are concerned (Proposition I, Scholium).
Therefore, etc. (Translator’s note.)
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PROPOSITION V

ProBLEM. In which case is an equation solvable by simple radicals?

I shall observe first that in order to solve an equation it is necessary to
reduce its group successively until it contains only one permutation. For,
when an equation is solved, any function whatever of its roots is known, even
when it is not invariant under any permutation.

With this set forth, let us try to find the condition which the group of an
equation should satisfy in order that it can be thus reduced by the adjunction
of radical quantities.

Let us follow the sequence of possible operations in this solution,
considering as distinct operations the extraction of each root of prime
degree.

Adjoin to the equation the first radical to be extracted in the solution.
One of two things can happen: either by the adjunction of this radical the
group of permutations of the equation will be diminished, or, this extraction
of a root being only a preparation, the group will remain the same.

In any case, after a certain finite number of extractions of roots the group
must find itself diminished because otherwise the equation would not be
solvable.

If at this point it occurs that there are several ways to diminish the group
of the given equation by the simple extraction of a root, it is necessary, in
what we are going to say, to consider only a radical of the least possible
degree among all the simple radicals which are such that the knowledge of
each of them diminishes the group of the equation.

Therefore let p be the prime number which represents this minimum degree
such that the extraction of a root of degree p diminishes the group of the
equation.

We can always suppose, at least in relation to the group of the equation,
that a pth root of unity a is included among the quantities that have already
been adjoined to the equation. For, since this expression can be obtained by
extractions of roots of degree less than p, its knowledge does not alter in any
way the group of the equation.

Consequently, according to Theorems 11 and I11, the group of the equation
should decompose into p groups having in relation to one another this
double property:

(1) that one passes from one to the other by one single substitution;
(2) that they all contain the same substitutions.

I say that, conversely, if the group of the equation can be partitioned into
p groups which have this double property, one can, by a simple extraction of
a pth root, and by the adjunction of this pth root, reduce the group of the
equation to one of these partial groups.
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Let us take, in fact, a function of the roots which is invariant under all
substitutions of one of the partial groups, and does not vary [sic] for any
other substitution.*

Let 6 be this function of the roots. _

Let us apply to the function 0 one of the substitutions of the total group
which it does not have in common with the partial groups. Let 8, be the
result. Apply the same substitution to €, and let 8, be the result, and so forth.

Since p is a prime number, this sequence can end only with the term 6, _,,
after which one will have 8, = 0, 0,,, = 0,, and so forth.

In view of this, it is clear that the function

(0 + 0(91 + OCZGZ + o+ c‘(p_l()p— l)p

will be invariant under all the permutations of the total group, and conse-
quently will now be known.

If one extracts the pth root of this function and adjoins it to the equation,
then by Proposition IV the group will no longer contain any substitution
other than those of the partial groups.

Thus, in order for it to be possible to reduce the group of an equation by
simple extraction of a root, the condition stated above is necessary and
sufficient. | |

Let us adjoin to the equation the radical in question; we can now reason
with respect to the new group as with respect to the preceding one, and it
must be possible to decompose it too in the manner indicated, and so forth,
until a group is reached which contains only one permutation.

ScHoLIUM. It is easy to observe this process in the known solution of general
equations of the fourth degree. In fact, these equations are resolved by means
of an equation of the third degree, which itself requires the extraction of a
square root. In the natural sequence of ideas, it is therefore with this square
root that one must begin. But in adjoining this square root to the equation
of fourth degree, the group of the equation, which contains twenty-four
substitutions in all, is decomposed into two which contain only twelve. When
the roots are designated by @ b ¢ d here is one of these groups:

abed acdb adbc
badc cabd dach
cdab dbac becad

dcba bdca chda

* For this it suffices to choose a symmetric function of the various values assumed by a function
invariant under no substitutions when it is subjected to the permutations of one of the partial
groups. (Author’s note.)
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Now this group itself splits into three groups, as is indicated in Theorems
II and IIL Thus, after the extraction of a single radical of third degree just
the group

abcd
badc
cdab
dcba
remains, and this group again splits into two groups
abcd cdab
badc dcba.

Thus, after a simple extraction of a square root,
abed

badc

remains, which will be resolved, finally, by a simple extraction of a square
root.

One obtains in this way either the solution of Descartes or that of Euler.
For even though the latter extracts three square roots after the solution of
the auxiliary equation of third degree, it is well known that two suffice,
because the third can then be derived rationally.

We will now apply this condition to irreducible equations of prime degree.

APPLICATION TO IRREDUCIBLE EQUATIONS OF PRIME
DEGREE

PROPOSITION VI

LEMMA. An irreducible equation of prime degree cannot become reducible
by the adjunction of a radical. [Sic. Galois evidently means that it cannot
become reducible without being solved completely. ]

For,if r, ¥, ", ... are the various values of the radical and if Fx = 0 is the
given equation, Fx would have to split into factors

flx, ) xf,r)x...,

all of the same degree, which is impossible, at least unless f(x, r) is of the first
degree in r. [x]

Thus, an irreducible equation of prime degree cannot become reducible
unless its group is reduced to a single permutation.
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PROPOSITION VII

ProBLEM. What is the group of an irreducible equation of prime degree n if
it is solvable by radicals?

By the preceding proposition, the smallest group possible before the one
which contains only a single permutation will contain p permutations. But
a group of permutations of a prime number n of letters cannot contain just
n permutations unless each of these permutations can be derived from any
other by a cyclic substitution of order n (see the memoir of Mr. Cauchy,
Journal de 'Ecole, 17).

Thus the next-to-the-last group will be of the form

Xo X1 Xy X3 ve Xn—1

Xy Xa X3 Xz .. . Xn-1 Xo

X3 X3 vee een e Xy Xp X1 (G)
Xn-1 Xo X1 Xu—2

Xg» X1» X2, -« » X, 1 Deing the roots.

Now the group which immediately precedes this one in the sequence of
the decompositions must be made up of a certain number of groups having
all the same substitutions as this one. But I observe that these substitutions
can be expressed as follows: (Let us set x, = x4, X,41 = Xq,.... It is clear
that each of the substitutions of the group (G) can be obtained by putting
X+ 10 place of x, throughout, ¢ being a constant.)

Let us consider any one of the groups similar to the group (G). According
to Theorem II, it can be obtained by applying one and the same substitution
throughout the group, say by putting x, in place of x, throughout the
group (Q), f being a certain function.

Since the substitutions of this new group must be the same as those of
the group G, one must have

flk+ o) =f(k)+C,
C being independent of k.
Therefore.

flk + 2¢) = f(k) + 2C,

........................

fk + me) = f(k) + mC.
If ¢ = 1and k = 0, one finds
f(m) = am + b,

which is to say
fk = ak + b,

a and b being constants.
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Therefore the group which precedes immediately the group G cannot
contain any substitutions other than those of the form

Xr  Xak+b

and consequently can contain no cyclic substitutions other than those of the
group G.

One can apply the same argument to this group that was applied to the
preceding one, and it follows that the first group in the order of the decompo-
sitions, that is, the actual group of the equation cannot contain any substi-
tutions other than those of the form

Xk Xak+b
Therefore “if an irreducible equation of prime degree is solvable by radicals
then the group of this equation can contain no substitutions other than
those of the form

Xk Xak-+b
a and b being constants.”

Conversely, I say that when this condition holds the equation will be

solvable by radicals. In fact, consider the functions

(o + ax; + o®x; + -+ " I, ) =Xy,
(xg + X, + Xy, + -+ + 0" xpo1ya)" = Xo

(X() + 00X, + OCZ-)(:2112 +oee a"wzx(n~l)a2)n = Xaz’
a being an nth root of unity and a a primitive root of n.

It is clear that in this case any function that is unchanged by cyclic sub-
stitutions of the quantities X,, X,, X,2,... will be immediately known.
Therefore one can find X, X,, X,2,... by the method of Mr. Gauss for
binomial equations. Therefore, etc.

Thus, for an irreducible equation of prime degree to be solvable by radicals,
it is necessary and sufficient that every function invariant under the substitu-
tions ’

Xk Xak+b
be rationally known.
Thus the function
(X, - X)X, - X)X — X))
must be known, no matter what X 1s.

It is therefore necessary and sufficient that the equation which gives this
function of the roots admit, no matter what X is, a rational value.

If the given equation has rational coefficients, the auxiliary equation will
also have rational coefficients as well, and it will suffice to determine whether
this auxiliary equation of degree 1-2-3...(n — 2) does or does not have a
rational root. And one knows how to do this.

This is the method that one must use in practice. But we are going to
present the theorem in a different form.
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PROPOSITION VIII

Theorem. In order for an irreducible equation of prime degree to be solvable
by radicals, it is necessary and sufficient that once any two of the roots are
known the others can be deduced from them rationally.

In the first place, it is necessary because, the substitution

Xp  Xak+b

never leaving two letters in the same place, it is clear that when two roots of
the equation are adjoined, by Proposition IV, the group is reduced to a single
substitution.

In the second place, it is sufficient: because in this case, no substitution of
the group can leave two letters in the same place. Consequently the group
will contain at the very most n(n — 1) permutations. Therefore it will contain
only a single cyclic substitution (otherwise it would have at least p? [sic;
should be n*] permutations). Therefore each substitution of the group Xx,,
X i, must satisfy the condition

fltk+c¢)=fk + C.

Therefore, etc.
The theorem is therefore demonstrated.

Example of Theorem VII

Let n = S. The group will be the fol]owing one:
abede
bcdea
cdeab

deabc
eabed

acebd
cebda
ebdac
bdace
daceb

aedch
edcba
dcbae
chaed
baedc

adbec
dbeca
becad
ecadb
cadbe



APPENDIX 2
Synopsis

Let K be a field obtained from the rational field Q by a finite number (possibly
none) of simple algebraic and/or transcendental extensions. Let fbe a poly-
nomial in one variable with coefficients in K. Then (§§49-61) there is an
algebraic extension L = K(a, b, ¢, .. ) of K, called the splitting field of f over
K (unique up to isomorphism), such that f(x) = k(x — a)(x — bY{(x — ¢)...,
where k € K, where a, b, c, ... are the roots of fin L, and where the roots
a, b, c,...generate L over K.

Galois seems to have taken for granted—as did his predecessors—the
existence of a splitting field, that is, of some universe in which the operations
of arithmetic (+, —, X, =) could be performed and in which a given equa-
tion f(x) = 0 had deg f roots. The first major step in Galois’ theory was to
give a quite explicit description of the splitting field L= K(a,b,c,...)as a
simple algebraic extension K(r) of K. This he did as follows.

Letn = deg f,andlet T = AU + BV + CW + ---bealinear polynomial
in n variables U, V, W, ... with coefficients 4, B, C, ... in the ring of integers
7. Bach of the n! ways of substituting the n roots a, b, ¢, ... € L in place of
the variables U, V, W, ... of T gives an element of L. Let &5, t5,...,tn be
these n! elements of L. When T has the property that £, t,,..., {y are
distinct elements of L, T is called a Galois resolvent of f(x) = 0 over K.
It is easy to show (§32) that if the roots a, b, ¢, ... € L are distinct then the
coefficients 4, B, C,...€Z of T can be chosen in such a way that T'is a
Galois resolvent. (If a, b, ¢, ... are not distinct then obviously no choice of 4,
B, C, ... makes T a Galois resolvent. A simple meodification of the construction
shows, however, that in this case, too, L = K(t}isa simple algebraic extension
of K-—see §31.) Galois proved (§37) that if T is a Galois resolvent and if ¢
is any one of its n! images in L then ¢ is a primitive element of L over K.
Otherwise stated, he proved that every root a, b, c, ... of f can be expressed
as a rational function of . (More generally, Galois showed that if T is any
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rational function of the roots a, b, c, ... which has n! distinct images in L then
L = K(t) when t is any one of these images.)

If T is a Galois resolvent and if ¢, t,,...,t, are its n! distinct images in
L then the coefficients of the polynomial

FX) = (X = ;)X —15)...(X — 1)

are symmetric functions in the t; and can therefore be expressed as sym-
metric polynomials in a, b, c, ... with coefficients in Z. Therefore, by the
fundamental theorem on symmetric functions (§10), F(X) is a polynomial
with known coeflicients in K. Let F = G,G, ... G, be a decomposition of
F into factors G, that are irreducible over K (see §§53-60). The roots of any
one of the irreducible factors G; of F over K are a subset of the roots
ti, ty,...,t, of F, and Galois showed, therefore, that any root of any irre-
ducible factor G; of F is a primitive element of L over K. This shows that
the splitting field, assuming it exists, can be described very explicitly as the
simple algebraic extension (§34) of K obtained by adjoining a root of any
irreducible factor of the known polynomial F. (In particular, the irreducible
factors G; of f all have the same degree, and all of them split into linear
factors when one root of any one of them is adjoined to K.)

Galois associated to the equation f(x) = 0, with coefficients in the field
K(and with distinct roots), a group of substitutions* of the roots a, b, ¢, . ..
in the following way. Let T be a Galois resolvent, let F(X) = [J(X — ;) be
the associated polynomial as above, and let G be a factor of F irreducible
over K. Then the splitting field L = K(t) is (up to isomorphism) the simple
algebraic extension of K obtained by adjoining a root t of G, and K(t) con-
tains deg G distinct roots of G. The uniqueness assertion of the theorem on
simple algebraic extensions implies that ¢, and t, are roots of G in K(t)
if and only if there is an automorphism of K(t) over K which carries ¢,
to t,. Thus there are degG automorphisms of K(t) over K. Since K(t) =
K(a, b, c,...), an automorphism of K(t) over K is determined by its effect
on the roots a, b, ¢, ... . The Galois group of f(x) = 0 over K is the group of
substitutions of a, b, ¢, ... obtained in this way from automorphisms of
K(t) over K. It is not difficult to show (§41) that the Galois group is indepen-
dent of the choice of the Galois resolvent T, the irreducible factor G of F,
and the root t of G in L.

If the field K is extended, say to K’ = K, the Galois group of f(x) = 0
over K’ is in a natural way a subgroup of its Galois group over K. To see this,

* It would be more natural, in modern terminology, to call a one-to-one mapping of the n roots
a, b, ¢, ... tothemselves a “permutation’ rather than a “substitution.” In the book, *‘substi-
tution’” has been used in accord with Galois’ usage. Galois appears to have at first used * per-
mutation™ to mean both a substitution, in this sense, and an arrangement or ordering of
a, b, c, .. .; he then appears to have tried to change his terminology to use ““substitution” for
substitutions and *‘permutation” for arrangements. (Some uses of ‘*permutation™ for sub-
stitutions remained.) Because of this confusion, I have tended to avoid the word * permutation.”
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note first that the same Galois resolvent T can be used in both cases. There-
fore the same F(X) is to be factored. The difference is that the factor G(X) of
F(X) that was irreducible over K may not be irreducible over K'. Let H(X)
be a factor of G(X) that is irreducible over K'. Since a root t of H is also a
root of G, the field K'(t) obtained by adjoining a root ¢ of H to K’ contains
a field K(t) obtained by adjoining a root t of G to K. Therefore, an auto-
morphism of K'(t) over K' restricts to an automorphism of K(t) over K,
which shows that any substitution of a, b, ¢, ... obtained from an auto-
morphism of K'(t) over K’ can also be obtained from an automorphism of
K(t) over K, as was to be shown.

One way to describe the problem of solving an algebraic equation is to
say that the field of known quantities K is to be extended until it includes a
complete set of roots a, b, ¢, . .. of the given equation f(x)=0. If an extension
field K’ of K does contain n roots a, b, c, ... of f(x) = 0 then the Galois
group of f(x) = 0 over K’ consists of the identity substitution alone, because
automorphisms of K'(t) over K’ leave all elements of K'—in particular
a, b, ¢, ...—fixed. Conversely, if the Galois group of f(x) = 0 over K’ con-
sists of the identity substitution alone then deg H = 1, and the degree of
K'(t) as an extension of K’ is 1, which is to say that the splitting
field K'(a, b, ¢, ...) over K’ is no extension at all, and the roots a, b, ¢, ..
are already in K'. :

Thus, the problem'is to extend K in such a way as to reduce the Galois
group of f(x) = 0 to the identity substitution alone. If the solution is to be
accomplished “by radicals,” then the extension of K should be a succession
of adjunctions of roots of equations — “pure equations” Gauss called them —
ofthe form x™ — k = O where misa positive integer and k is a known quantity.
Therefore the problem of solving an equation with radicals turns on the
question of determining what reductions of Galois groups can be achieved
by adjunctions of this type. Galois gave the answer:

One can assume without loss of generality that m is prime, say m = p,
and that K contains pth roots of unity (§65). Then, if f(x) = 0 is an equation
with coefficients in K, and if K’ is obtained from K by adjoining the pth root
of an element of K, the Galois group of f(x) = 0 over K’ is either the same
as its group over K or it is a normal subgroup of index p (§44). Conversely,
if the Galois group of f(x) = 0 over K has a normal subgroup of index p
then there is an element k of K such that adjunction of a root of X — k = 0
to K reduces the Galois group to the given subgroup (§46).

This proposition is the main element in the proofthat an algebraic equation
is solvable by radicals if and only if its Galois group is solvable, that is, if
and only if the Galois group G has a sequence of subgroups

GG, 2 G, 2G,

in which each subgroup is a normal subgroup of prime index in its predeces-
sor and in which G, contains only the identity substitution (§47).
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Other basic facts of Galois theory covered in the book are: The Galois
group of the general nth degree equation (with literal coefficients—that is,
coefficients that are transcendental over Q) is the full symmetric group of all
n!substitutions of the roots (§67). The Galois group of x? — 1 = 0(p = prime)
over Q is cyclic of order p — 1 (§64). More generally, the Galois group of
x" — 1 = 0 over Q is isomorphic to the multiplicative group of invertible
integers mod n (§§69-70). An irreducible equation of prime degree p is
solvable by radicals if and only if its Galois group is isomorphic to a subgroup
of “linear” substitutions i+ ai + b (a % 0 mod p) of the (additive) group
of integers mod p (§68). In particular, the general 5th degree equation is not
solvable by radicals. Since the symmetric group on five letters is a subgroup
of all larger symmetric groups, and since a subgroup of a solvable group is
solvable, it follows that the general nth degree equation for n > 5 is not
solvable by radicals.

The Dedekindian tradition, which has dominated algebra for the last
century, formulates basic Galois theory somewhat differently. A group is
associated not to an equation f(x) = 0 with coefficients in K but to a normal
extension field L o K. The group, denoted Gal(L/K), associated to the
normal extension L = K is all automorphisms of L which leave elements of
K fixed. As was seen above, the Galois group of f(x) = 0 over K is iso-
morphic to Gal(L/K), where L = K(a, b, c, . ..) is the splitting field of f over
K, and where the isomorphism is given simply by restricting automorphisms
in Gal(L/K) to the n-element subset {a, b, c, ...} of L.

The advantage of this formulation is that it shows that the group depends
(up to isomorphism) only on the splitting field. In particular, the group of
an equation f(x) = 0 which has multiple roots can be defined in the same
way as that of an equation with simple roots, whereas Galois™ definition
assumes simple roots. The advantage of Galois’ original formulation is that
it defines the group in a way that makes evident the crucial fact that ex-
tending the field K reduces (or leaves unchanged) the Galois group (§62).

In the modern formulation, one needs to start with a large field Q contain-
ing all extension fields of K that will be considered. The “fundamental
theorem of Galois theory” states that there is a one-to-one correspondence
between subgroups of Gal(Q/K) and subfields of  which contain K(§63).
The essence of this theorem is still Galois’ Proposition I, which states that
an element of a splitting field is invariant under the Galois group only if it
is'in the ground field —or, in Galois’ terms, a rational function ¢(a, b, c, .. .)
of the roots is known if and only if ¢(a, b, ¢, ...) = ¢(Sa, Sb, Sc, .. .) for all
permutations S in the Galois group (§41).
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In modern terminology, a permutation group is a subgroup of the group of
automorphisms of an n-element set for some positive integer n. (An auto-
morphism of a set is a one-to-one mapping of the set onto itself.) This, by
and large, is what Galois meant by a “group,” but Galois’ conception of a
group was strongly influenced by a particular method of presenting groups,
one that is unfamiliar to modern readers.

Let G be a permutation group operating, for example, on the five letters
a, b, ¢, d, e. Choose any arrangement of the five letters, say the alphabetical
order abcde. Application of any element of G to this arrangement gives
another arrangement. If G has k elements then application of them to abcde
gives a list of k arrangements of a, b, ¢, d, e, including the arrangement abcde
corresponding to the identity element of G. Let these k arrangements be
listed in k rows with the initial arrangement abcde in the first row. Then,
since an element of G is determined by its effect on any one arrangement, the
list of k arrangements of a, b, ¢, d, e determines G as the automorphisms which
carry the 1st row of the list to other rows of the list.

It is easy to show that a list of k arrangements of a, b, ¢, d, e arises in this
way from a permutation group G if and only if it has the property that,
given any two arrangements in the list, the automorphism which carries
the one to the other carries the first arrangement in the list to one of the other
arrangements in the list. For example, in

abcde
badce
cdabe
dcbae

the automorphism which carries the third arrangement to the fourth (namely,
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a <> b, ¢ < d) carries the first to the second. In the same way, the auto-
morphism which carries any row to any other carries the 1st row to some row
in the list.

A central role in Galois theory is played by the normal subgroups of a
group. Of course Galois did not use this term, and the concept itself appears
only in the unfamiliar and rather confusing statement of his Propositions
II and III. An understanding of these propositions requires an examination
of the way in which Galois imagined the Galois group of an equation as a
“group” of arrangements of the above type.

Let G be the Galois group of f(x) = 0 over K. According to the synopsis
in Appendix 2, G is obtained by choosing a Galois resolvent AU + BV +
CW + ---, forming the polynomial F(X) = [] (X — t;), where t,,¢,,...,t,
are the n! distinct images of AU + BV + CW+ ... in K(a, b, c, .. .) obtained
by substituting a, b, c, . . . in all possible orders for U, V, W, .. ., and factoring
F(X) into irreducible factors* F(X) = G,(X) - G,(X)--- G,(X) over K. The
splitting field K(a, b, c, . . .) is isomorphic to the field K(r) obtained by adjoin-
ing to K a root ¢ of any one of the irreducible factors G(X) of F(X).

The factorization F(X) = G{(X)G,(X)---G,(X) partitions the roots
ti,ty,..., L, of F(X) into those that are roots of G, (X), those that are roots
of G,(X), etc. Since the t; correspond, by their definition, to arrangements of
a, b, ¢, ..., this partitions the n! arrangements of g, b, c, ... into v nonover-
lapping subsets. (Galois would call these subsets “groups” of arrangements
of a, b, ¢, ....) It is virtually the definition of the Galois group (and surely
the way Galois thought of it) to say that any one of these subsets presents G
as a group of automorphism of the finite set a, b, ¢, ... in the manner spelled
out above. In particular, since the Galois group is independent of the choice
of the Galois resolvent and the choice of the factor G,(X), all v subsets present
the same group of automorphisms of @, b, c, ... .

Now let H be the subgroup of G which is the Galois group of f(x) = 0
over an algebraic extension field K’ of K. It is natural to assume, because -
every algebraic extension can be obtained by a succession of simple algebraic
extensions (in fact, the theorem of the primitive element states that one will
suffice), that K’ = K(r) is a simple algebraic extension of K obtained by
adjoining a root r of an irreducible polynomial g(x) with coefficients in K.
One obtains presentations of H by factoring F(X) = H{(X)H(X) - - H,(X)
into polynomials H(X) that are irreducible over K’ and using this factoriza-
tion to partition the n! arrangements of a, b, ¢, ... into u subsets, each of
which is a presentation of the Galois group H of f(x) = 0 over K'. Because
K < K’, Galois’ Lemma I (§41) implies that each polynomial G,(X) is equal
to a product of a subset of the H,(X). In this way, the k arrangements of
a, b, ¢,...in any one of the v presentations of G are partitioned into k/j
presentations of H, where j is the number of elements in H. However, this is

* The coincidence of the letter G for the Galois group and for the factors Gi(X) of F(X) is un-
fortunate but should cause no confusion.
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not the partition of the k arrangements in a presentation of G into k/j “ groups”
to which Galois refers in his Proposition I1.

Let H(X) be any irreducible factor of F(X) over K’ and let G(X) be the*
irreducible factor of F(X) over K which is divisible by H(X). Any element of
K’, and in particular any coefficient of H(X), can be written as a polynomial
in r with coefficients in K. Therefore H(X') can be written in the form H(X) =
H(X, r) where H(X, Y) is a polynomial in two variables with coefficients in
K. Consider the polynomial

H(X, r) HX, #') HX, ¥) . .., 1)

where r, 7, ", ... are the roots of g(x) = 0. This is a product of polynomials
in X with coefficients in the splitting field K(r, ¥, 1, ...) of g(x). However,
since it is symmetric in r, ¥, ", ..., its coeflicients are in fact in K. (It is, of
course, the norm of H(X) over K. See §60.)

By assumption, G(X) = H(X, rQ(X, r) where Q(X, Y) is a polynomial
in two variables with coefficients in K. This implies that if G(X) —
H(X, Y)Q(X, Y) is written in the form @ (Y)X" + ®,,_ (Y)X" ' + ...+
@, (Y), the polynomials ®(Y) are all divisible by g(Y) (by Galois’ Lemma I,
because substitution of r for Y must give the zero polynomial). Therefore
G(X) = H(X, r)Q(X, ') for any root ' of g in K(r, ¥, ¢",...). Therefore
any root of.any H(X, r') is a root of G(X). Galois observed that the poly-
nomials H(X, ¥') partition the roots of G(X) because if two of these poly-
nomials have a single root in common they have the same roots (and there-
fore, up to a nonzero multiple, they are the same polynomials). Moreover,
this partition of the roots of G(X) has the important property that it is con-
sistent with the action of the Galois group in the sense that if ¢, and ¢, are
roots of the same H(X, r') and if t; and ¢} are their images under any element
of the Galois group of f(x) = 0 over K (here t, and ¢, are identified with the
corresponding arrangements of g, b, ¢, ...) then t, and ¢| are roots of the
same H(X, r”). This can be proved very simply as follows.

Because every root of G(X) (and in fact every element of K(a, b, ¢, ...))
can be expressed rationally in terms of any one root of G(X) (§37), there is a
polynomial y(X) with coefficients in K such that £, = ¥(t,). Therefore the
pelynomials H(W(X), #') and H(X, ) with coefficients in K(#') have the
common root t,. Since H(X, #') is irreducible over K(+), Galois’ Lemma I
implies that H(W(X), ') = H(X, ¥ )R(X, r'). Then, as above, HY(X), Y) —
HX,Y)R(X,Y) = ¥ (X" + ¥,_ (X" ! 4+ ... 4+ ¥,(Y) where each
YY) is divisible by g(Y). Therefore HW(X), r") = H(X, r)R(X, r") for
all roots " of g. Thus if t;, is a root of H(X, "), so is Y(ty) = t}. In particular,
if t, = tyis aroot of both H(X, #') and H(X, r")and if t; = Y(t,) is any other

* These irreducible polynomials are defined only up to multiplication by nonzero elements of K.
It is natural to think of them as having leading coefficient 1 so that they are of the form | [ (X — 1))
where ¢; ranges over a subset of 1, t5, ..., t,.
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root of H(X, r') then t, = t| = () is also a root of H(X, r") which shows
that if H(X, ") and H(X, r") have a root in common their roots coincide.
This partition of the roots of G(X) into subsets consisting of the roots of
H(X, ¥') for various roots v of g(x) = 0 is the “partition of the group into
subgroups” that is the subject of Galois’ Proposition I1. It was just shown to
have property (2) of Proposition II. That it has property (1) is the “quelque
chose a compléter” of which Galois wrote at the last minute. It is easy to
fill this small gap provided one makes the obvious modification “the group
of the equation will be partitioned into subgroups, the number of which
divides the degree of the auxiliary equation” in the statement of property (1):
The partition of the roots of G(X) corresponds to a factorization

G(X) = [T HCX, 1), @

where r) ranges over a subset of k/j of the roots r, ¥, v’,... of g(x) = 0.
Taking the norm of this equation over K gives G(X)*89 = N(X)*/ where
N(X) is the norm of H(X, r), that is, the polynomial (1) with coefficients
in K. Since G(X) is irreducible over K, it follows that N(X) is a power of
G(X), say N(X) = G(X)". Therefore deg g = m-(k/j), which shows that
k/j divides deg g, as desired.

The proof of Proposition III, which Galois said “one will find” is also
easy to supply. If all roots of g(x) = 0 are adjoined, the resulting extension
K' = K(r, v r",...) can be obtained by adjoining one root s of another
auxiliary equation g(x) = 0, namely an equation g of which a Galois re-
solvent of g(x) = 0 is a root. When g is replaced by g the factorization (2)
takes the form G(X) = [] H(X, 5), where s runs over some subset of the
roots of § and H(X, s®) is an irreducible polynomial with coefficients in
K(s"). But the fields K(s"”) are all equal to K' = K(, ¥, ", ...). Therefore
(2) is a decomposition of G(X) into irreducible polynomials with coefficients
in K'. Therefore each H(X, s®) is an irreducible factor of F(X) over K.
Therefore the roots t; of F(X) that are roots of H(X, s¥) give a presentation
of the Galois group of f(x) = 0 over K’, which shows that the groups con-
tain the same substitutions of a, b, ¢, ... for all s, as Proposition III states.

If G is a k-element permutation group represented by a list of k arrange-
ments of a, b, ¢, ..., and if H is a j-element subgroup of G, then there is a
natural way to partition the k arrangements into k/j presentations of H;
namely, two arrangements lie in the same subset of the partition if there 1s
an element of H which carries one to the other. At the same time, there is
another, less natural, way to partition the k arrangements into k/j subsets;
namely, one can pick one of the k/j presentations of H mentioned above and
apply elements of G to it to obtain the other subsets of the partition. For
example, if G is the full six-element symmetric group on three letters and if
H is the two-element subgroup generated by a « b then the first partition is

abc acb cab

bac bca cha
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and the second (when the first of these three presentations of H is chosen) is
abc ach bca
bac cab cha,

where the second pair is obtained from the first by applying any element of
G which puts b in place of ¢, and the third pair is obtained from the first
by applying any element of G which puts a in place of ¢. Each pair of the
second partition presents a subgroup of G, but these subgroups are conjugate
to each other, not equal. The second partition occurs naturally in* Galois’
Proposition IT because this proposition deals with the various subgroups of
the Galois group one obtains by adjoining various roots of g(x) = 0.

The natural way to define a normal subgroup H of G is as a subgroup for
which the two methods of partitioning give the same result. Or, more simply,
one can say that H is normal in G if the first partition is consistent with the
action of G in the sense that application of any element of G to the arrange-
ments in any subset in the first partition gives the arrangements of another
subset in the first partition. The reader will have no difficulty in proving that
this definition coincides with the usual one. '

* Galois’ description in Proposition II of the partition as a *“ partition into p groups” shows that
he did not always use the word **group” in the modern sense.



Answers to Exercises

First Exercise Set
L s> ~4p=(x — y)>
2. The product of these two expressions is [s* — (/s* — 4p)*] = p and their sum is s.

3. The method of §5 leads to 27a® + 27(—20)a® — 6 = 0 and hence to a® = 10 +
\/Z:S_. Then b =4 -~ 20 = —10 + \/I& The equation (c + d\/?_a)3 = +10 +
\/ 108 splits into ¢(c? + 9d%) = +10, d(c* + d*) = 2. If one tries to find an integral
solution, one quickly findsd = 1, ¢ = +1. Thusa =1 + ﬁ, b= —1+ \/5, X = 2.
The factorization x* + 6x — 20 = (x — 2)(x? + 2x + 10) shows that the product of
the other two roots is 10 and their sum is —2. Apply Exercise 2.

4. 27a° + 27 (=2)-a®> —(=3=0 gives a®>=1, a=1, b= —1, x = 2. Since
x? — 3x — 2 = (x — 2)(x* + 2x + 1), the other two roots are both —1. If g = @ =
H-1+ 1\/5] then b= —l/w= —w? and x=a — b= w + w? = —1. Similarly
x=—lifa=ad=w '

5. From Exercise 3, they are roots of x* + 2x + 10 and therefore are —1 + 3i. If
a=1+/3 is replaced by (1 +/3) = (1/2)(—=1—+/3 + ii,/3 + 3i) and b by
(=1 + /3)/w the result is x = —1 + 3i. Similarly, @ = 0X(1 + /3) leads to x =
—1 = 3i

6. By the binomial theorem, the term in y"~* is (nC + a)y"~*. When C is chosen to be
—a/n this term is absent.

7. Choose a as in §6. Then x* + px? + gx + r = f(x)f_(x) where f.(x) = x? +
a+./—p+2alx—2"g(—p+ 2a)""].

8. Pis D? plus a sum of thirty-three terms, one for each term on the right side of (1)-(19).
For example, there are six terms in g(r)g(s)g(t) in which one root occurs to the third
power, one to the second, and one to the first, namely, BC - (every r3s%f). By (14), this
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contributes the terms BChcd — 3BCd* to P. P = —d* + Bed* — B*bd* + B3d? —
Cc*d + 2Chd* + BChcd — 3BCd* — B*Ccd — C*b%d + 2C%cd + BC?bd — C3d —
3Dbcd + 3Dd? + 2DBb*d + DBcd + 17 more terms obtained from these by reversing
the sign and interchanging B with b, C with ¢ and D with d, that is, D* — bCD? 4+
b?BD? — ...,

9. Multiply each term of P by the power of 4 and the power of @ needed to make it of
degree3in 4, B,C,Dand ina, b, c,d, thatis, — 4°d*> + A*Bcd* — AB*bd* + B’ad* — ...,
Every term contains A or a,so P = Qifa = A = 0. If a # 0 then f(x) can be factored by
§5 as a(x — r)(x — s)(x — t). Then P = 0 if and only if g(r)g(s)g(t) = 0, which is true
if and only if f has a root in common with g.

10. Here 4, B, C, D, a, b, c, d are polynomials in y, and consequently P is a polynomial
in y. If (x, y) is a root of both equations then X is a root of both f(x, ¥) and g(x, y), which
shows that P(3) = 0 unless A(¥) = a(¥) = 0. This gives a finite set of values of y unless
A = a = 0or P = 0. For each of the J’s in this finite set, solve the equations f(x, J) = 0,
g(x, y) = 0 to find all common solutions X. If 4 = a = 0 then f and g are quadratic at
most in x and a similar procedure can be followed using the resultant of two 2nd degree
equations. If P = 0 without 4 = 0 then there is at least one value of X for each value of
y, hence co solutions. In this case it is to be expected that fand g have a common factor

h(x, y).

11. Ifm,, m, are monomials, and if m, precedes m, in lexicographic order, then obviously
myms precedes m,m,. Therefore one of the monomials which goes into fg precedes all
the others, namely, the product of the leading terms.

12. The leading terms decrease in lexicographic order and the sequence therefore
terminates.

13. For example, if G = every r’s® then f = ¢3. From the expansion (x + f + 7)* =
every a® + 3 every «?f + Gafy with o = rs, f = st,y = tr, one finds o3 = every r’s® +
3 every r’s’t + 6r2s%t2%. The leading term of G — f= —3 every r’s’t — 6ris*t* is
—3r3s%. Thus g = —36,0,065 = —3(every r3s’t + 3r?s%t?) = —3 every rs’t — 9
every r’s*% G — f — g = 3r’5%*? = 365. Thus G = 0} — 36,6,05 + 303 = —
3bcd + 3d>. '

14. One way is to set x = r, in the identity (x —r)(x —ry) - (x — 1) = X" —
o X" g, x"E — L

15. If k = n, the identity s, — 0,5, + - - = 0 follows from summation of the identity
of Exercise 14 over all variables. The case k > n follows from this one when k — n of
the variables are set equal to 0. The case k < n follows from:

Lemma. A symmetric polynomial of degree k < n in n variables can be written in just one
way as every f(x, X;, ..., X,) where f is a symmetric polynomial of degree k.

17. x* + (@® — 3ab)x + b* = 0.

18. b=b1a=2b—a* hencex’? =0,x2 —x=0,x2 -~ 2x+1=0,x>+x+1=0
are the only four such equations.

19. By virtue of the lemma in the answer to Exercise 15, one can assume thatn = h + 1.
Then the product is Y x7'x5?... x; where (m,, m,, ..., m,) ranges over all n-tuples of
the form t,(k;, k..., k;, 0) + 7,(m, 0,0, ..., 0) where 7, and 7, are permutations
that change the things they act on. (Thus there are n choices for 7, and n times as many
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terms in the product as in (k,, k,, .. ., k,).) The product will be known once all n-tuples
(my, my, ..., m,) are known in which m; > m, > --- = m,. The rule is a method for
counting these n-tuples. [ The early editions of [W2] contained an exercise in which this
rule was misstated. ]

20. Let a symmetric polynomial of the form (ki, k..., k,) be called special of length
h. The formula for (k,)(k,, ks, ..., k,) gives an expression of (k;, k,, ..., k;) as a poly-
nomial with rational coeflicients in special polynomials of length < h. Repeated use of
this expresses any symmetric polynomial in terms of special polynomials of length 1,
which are the s,.

21, (3,1) = (3X(1) — (4) = 535, — s4. By Newton’s theorem, s; = 64, 54 — 0,5; +
0,8, — 0351 + 404 = 0,50 (3, 1) = 0,5, — 6358, + 40, = 036, — 205 — 0,05 + 4a,.
Here 0'1 = ‘““b, 0'2 = C, 0-3 - “““d, and 0'4 - 0.

2. Let F=A,y"+ A,_,y" ' +..-+ A, where the A’s are polynomials in
Vis Va» -« -5 Yu—1. f F # 0, then one can divide by a power of y,, if necessary, to give an
F with the same property for which 4, # 0. Substitution of x, = 0 shows that 4, is a
polynomial of one fewer variables with the same property as F. Repetition gives a poly-
nomial of no variables with these properties, which is impossible.

23. Both sides are polynomials of degree 0 + 1 + 2 + --- + (1n — 1) in the variables
which contain the term a®b'c?d? ... with coefficient + 1.

Lemma. If f(xy, X3, ..., X,) is a polynomial then f(x,, X,, X3, ..., X,) = 0 if and only if
FCet, Xzs vy X)) = (X1 — X2)9(X15 X3, .. ., X,,) fOr SOme polynomial g.
For the proof see Exercise 29. Use the lemma to show not only that the polynomial on

the left contains all the factors on the right but also that its quotient by any set of these
factors still contains the remaining factors.

26. f'(r) = (r; — r)(r; — 1)
27, 5y = (52/) + (53/3) — (sa/B) + - = (0, + 02 + -+ + 0,)
. _%(0.1_1_0-2_;.....-}-0'")2-1-....

The terms of degree 4, for example, give —(s,/4) = 04 — 320,05 + 03) + ¥(30l0,) —
154, The resulting formula for s, was first given by Waring in the eighteenth century.

28. 7% = (¢? — 0,) — 0,x — 0,y + xy. A polynomial in n variables x,, x,, ..., x, can
be written in one and only one way in the form Y F;;. (o)xixjx%.. where0 <i<n -1,
0<j<n-20<k<n-—3,....This is obvious for n = 1. Suppose it is known for
n — 1. A given polynomial can then be written in the form ) G;x} where

G; =) F()x4x}...
where the F’s are polynomials in the elementary symmetric functions t,7,,..., 7,y in
Xy, X3,...,%, and where p < n — 2,v <n —3,.... The s can be expressed in terms
of x, and ¢’s, and the degree in x, reduced to <nto give an expression in the desired form.
It remains to show that an expression of this form ) F(oy, 65,...,0,)x1X} xk... can

be the 0 polynomial in the x’s only if all F’s are zero. Let o, be replaced by
(—D'[x% — 6,x2" ! + 0,x77% — -+ + 6,-,x,]. The result is an expression

Z G(alv Gyyeno :Gn—i)xilxéxg' .

of the same form except that G does not involve o, and the degree in x, is unrestricted.
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Substitution of x, = 0 and the inductive hypothesis show that the terms free of x, are
identically 0. Divide by x, and repeat this argument to conclude that the G’s are identi-
cally 0. If the F’s are free of o, then they are identical to the G’s and therefore equal to 0.
Otherwise, the terms of highest degree in o, that occur among the F’s, and, among these,
the ones that appear in front of the highest power of x,, would give a nonzero G in front
of the terms in x, of highest degree, which is impossible.

29. Suppose it has been shown that F = (X — ry)... (X — ri-1)Q; where Q; is a poly-
nomial in X, ry,ry,...,F,. Division of polynomials can be used to write @, =
(X — r)Q;+, + Ry, where R;, | is of lower degree in X than X — r;, that is, where X
does not occur in R, ;. Substitution of r, for X in F gives on the one hand 0 (by assump-
tion) and on the other hand (r; — r{)(r; — r2)...(ri — ri- )Ry = 0. Since a product
of polynomials is 0 only if one of the factors is O, R;, | = Oand F = (X - FOX —ry)...
(X — r)Qis1

30. Given any solution x;, X;, . . ., X,, substitution of the column vector yi, y2, ..., y,
for the jth column of the matrix a;; gives a matrix whose determinant is known (it
involves a’s and y’s) and the value of this determinant is x;det(a;;) (the determinant
function is linear in columns, and it is 0 if two columns are equal). This determines x;
unless det(a;;) = 0.

Second Exercise Set

1. Let ¢ be the cyclic permutation and t the interchange. Then the six permutations
id, ¢, 62, 1, o7, g’ are distinct because if ¢t/ = ¢"7" then ¢'~™ = 1"/, which implies
O.i—m = id = ‘E"—j, o.i - O'm, ™ = .rj.

2. By direct computation,
u = s; + 605 + 3x%y + y*z + 22x) + 30} (xy* + yz* + zx?)

and v is u with y «» z or, what is the same, with & <> o2 Then v + v = 253 + 1205 — 3
(every x2y) = 202 — 90,0, + 2705, and u is the cube (67 — 30,)° of the answer to
Exercise 3. (These formulas are in Lagrange {L1], Section 8.)

3. O-% - 362.

4. n=tE=(x — 2>+ (y =) =5, — 2(xz + yr), which has only three values
m,, Ty, T3 when x, , z, r are permuted. Thus (X — 7;)(X — 7, )(X — =3) has known
coeflicients.

i(t + Dt — b) = ix — 22)Qiy — 2ir) = —4(xy + zr — xr — yz) = *2m, F 2m3,
—t8 4+ 2t%0? — 1t = 4t (m, — )P = A[(n, + ma)? — dnyma]

and 7, + 7, and 7,7, can be expressed in terms of 7 = n; and known quantities. This
gives rise to an explicit factorization of the equation for ¢ into twenty!mnearfactors.
x = (o, +t+TF+u)dwhereu =x — y + z — r. If t, is a value of ¢ other than it or
7 then +Re(r,) + Im(r,) has four values, two of which are among the four values
+Re(t) + Im(t) and one of which is u. This gives two values for x, one of which is a
solution. I do not know how to determine t, so that u = Re(t,) + Im(t,).

5. Straightforward multiplication gives t,t,¢5 = every x> — every x%y + 2.every xyz.
In the notation of Exercise 19 of the First Set, every x%y = (2,1) = 2}(1) — (3) =
S8y — 83. Thus tltztg, = 253 — 8195, + 20'3 = O':is d 4010'2 -+ 80'3.
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7. The main fact is that 1 + o + o® + o® + o* = (1 — &®)/(1 — «) = 0. There are
many ways to choose t,, t,, t3, t4 ; for example, leave x, alone and cyclically permute
Xg, X3, X4, X5-

8. If no three of x, y. z, r are equal then they can be reordered to make x # y, z # r.
Thenx —y+z—~t# t(—=x+y+z—1).

Third Exercise Set

4. Let X = 1 and y* = 1 be primitive roots of unity. If (xy)™ = 1 then (xy)"/ = 1, from
which y™ = 1. It follows that mj is divisible by k. Since j and k are relatively prime, m
is divisible by k, say m = gk. Then (xy)* = x% = 1, from which j divides ¢. Thus jk
divides m.

5. Changing « to a2 in the formula gives
o = {5[B7't + (L)(B)° + (LB + ... ]

Thus, changing ¢ to §~ 't in the formula gives o®. Similarly, changing « to «?" in the
formula shows that this 11th root of unity is given by the formula when t is replaced by
B~*. Thus each 11th root a, o, o3, &, ..., a1 can be obtained by using a suitable root
B ¥ of x'° = 11° and these roots B %t all give 11th roots of unity.

7. See [E1], Appendix A.2. Here is an outline of Gauss’s other proof. Let y(d) be the
number of integers mod p whose orders mod p are exactly . If any integer has order
d mod p then all d of its powers satisfy x* — 1 = 0 mod p. Show that this congruence has
at most d roots. Thus if Y(d) > 0 then x? = 1 mod p has d roots. Show that ¢(d) of them
have order d, where ¢(d) is the number of integers less than d relatively prime to d.

Thus p — 1 = Y 4,- 1¥(d) < Y gp-19(d). Prove that S ap-19(d) =p—1 and that
&(p — 1) > 0. Conclude that y(p — 1) > 0, as desired. Note that this proof also shows,

more generally, that the multiplicative group of any finite field is cyclic.
8. Use the argument of §24 with f = 1.

9. K, cK,c K¢ Kg,0r Ky ©« Ky < Kg = Ky, oOr K, cK;c Kgco Kig. In
general, what is sought is a sequence 1 <d, <d, <--- <d, =p— 1, where d;|d; 4 -
Then p — 1 = (d,/d,— )dp—/dp=2)...(d/1) is a product of m factors > 1.

10- tl == O - 0t4,

=02 —24+a>=—-3—1y,,

ty =y, — S(yp) =+ a* —a® — o
and by direct computation t3 = 5. Then 2y, =t + y, + S(y2) =1, — | and 2a =
t, + o+ o = t; + 7y, gives the final formulas.
11. Set t; = (@ + a~ ) + wi(e® + a™2) + w¥(e® + «”%) and compute f,t;, t3t,.
y = (—1 4+t + 7t~ 1)/3 where t is the cube root of 7(2 + 3w).
12. Ifuisanyelement of K, thenu = af + bSOwheref = o + S% + S + -+« + St
and a and b are rational. To evaluate 1 by the method of §25 one uses the resolvent u —
Su = (a — b)(® — SO). Lett = 0 — S0. Straightforward computation gives t* = 17. The
sign of t is + because t = ¢; — ¢3 + g — 7+ €4 — C5 + €3 — Cg where ¢, =

2 cos(2mk/17); the only negative quantities in this sum are —c; and cg, which are more
than compensated for by ¢, and ¢; — ¢, as is clear from a diagram and can be verified
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easily. Therefore t = \/ﬁ, and u — Su = (a — b)\m. Since u + Su= —a—>b, it
follows that u =34[—a — b+ (a - b)\/}ﬁ]. Otherwise stated, u = af + bSO can
be found using 0 = (=1 + /17)/2, 8 = (=1 — /17)/2. Similarly, if ue K, then
u = an + bSy + ¢Sy + dS°y where n = o + S*o + S8« + S'%x and q, b, ¢, and d are
rational. It will suffice, therefore, to find 7, S, S, S3. Since # + §%7 = 0 and Sy +
S3; = S0 are known, it will suffice to find # and Sy. The corresponding resolvents are
s=1—8%=c, —Cg+C4—C, and Ss =3 — ¢y + €5 — Cg, DOth of which are
positive,. Computation gives $?=8~0=(17~ \/1_’7)/2, from which (Ss)* =
S@ —0) =17+ \/ﬁ)/2, and all elements of K, can be evaluated. Finally, let { =
o + o=t = o + S8 The resolvent { — $*¢ = ¢, — ¢, is positive, and its square can be
computed. The desired quantity (/2 can then be found.

13. Let
Cxoc—i—SBoz,r]=C+S“C,B=11+qu,tm8~—sax29+1,S=,1._32,1
=2 —0r={—-8=2—-n

The desired quantity is {/2 = (4r + 25 + t — 1)/16. Explicit computation gives t* = 17,
s =17 — )2, r* =8+ 4 —2Sy. From n =(2s + ¢ — 1)/4, the value S% =
(—2s + t — 1)/4 follows. The value of Sy is less obvious. It suffices to find Ss. From
(s-Ss)? = s2-8(s?) = (17 — (17 + t)/4 = 4-17 we have s-Ss = +2¢. Examination
of the coefficient of o in s - Ss gives s - Ss = 2t. This gives the formula

¢ 1 t

s 1

5 16+16+8i8\/17+3t——23#4S5.

Application of S* merely changes the sign of the radical. Therefore the eight desired
values are given by the four formulas obtained from this one by applying S° 81,52, 8% to
sand ¢ in this one and evaluating Ss using Ss = 2t/s. These values are in the field Q(, s, q)
where 2 = 17, s> = (17 — 1)/2, and ¢*> = 17 + 3t — 2s — 8ts™'. They can be realized
as real numbers by setting ¢ = \/ﬁ, s =334 — 2\/ﬁ, and evaluating S’t, Ss ac-
cordingly.

15. Let 0 be the p"~ ‘st root of a. Then 8 to the power p” is 1.If 0" = 1 then #* = 1 where
d is the greatest common divisor of k and p". Then, if d # p", o is a power of 04 =1,
which is impossible. Therefore p"|k.

Fourth Exercise Set
1. Determine i by Yt = ¢;t and set g = &; 'y

2. First prove that (f + ¢g) = f' + ¢ and (fg) = f'g + fg'. Clearly the derivative of
a constant is 0 and the derivative of /(x) = x is 1. Prove by induction that the derivative
of f(x) = (x — @y is n(x — a)" ' forn=2,3,.... I f(x) is a given polynomial and if
a is one of its roots then f(x) = (x — a)'q(x) for some integer n > 0, where g(x) is a
polynomial not divisible by x — a or, what is the same, of which a is not a root. (See note
on the Remainder Theorem in §37.) Then (x — a)"~ ! divides both terms of f”, while
(x — a)* divides one term but not the other, so (x — ay'~! divides d(x) but (x — a)"
does not. Let Q(x) = f(x)/d(x). Then (x — a)" divides f(x) = d(x)0(x) but not d(x),
from which one can deduce that a is a root of Q(x). If (x — a)* divided Q(x) then
(x — a)"* ! would divide f(x).
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3. First consider polynomials in one variable F(4). A root of a polynomial implies a
factor. Therefore F(x,) # 0 for some k = 1,2,...,deg F + 1. Once the theorem is
known for polynomials in n — 1 variables, and for one variable, it is easy to deduce for
n variables.

4. In lexicographic order, the leading term of the product is the product of the leading
terms.

5. Adjoin a root i of x* + L.

6. The method of §36 calls for finding a g.c.d. of 2x + 3 and x* — 2. From x* — 2 =
(x/2 — D(2x + 3) + 1, this is achieved by 1 = 4(x* — 2) — (2x — 3)(2x + 3), which
gives 3 — 2\/5 as the inverse. Alternatively, one can “rationalize the denominator.”

7. Equality of any twoof a —b,a —¢,b~a,b—c,c—a, ¢ — b implies either the
- equality of two of @, b, ¢, or implies that one root times 3 isa + b + ¢ and therefore that
this root is rational.

8.
X—@—bDX~—Cb—-NX—(c—a)=X*+[a—-b)b—c)+(b—c)c—a)

+c—aa—-blX —(@—b)b—c)e—a)y=X>+3pX + P

where P is so defined. Then F(X) = (X?+ 3pX + PXX® +3pX — P) = X° +
6pX* + 9p2X? — P2 and P? = (a — b)*(b — a)(c — a)’ = — 4p*> — 27¢>. If P’ has a
square root in K, this gives a factorization of F(X).

9. F(t,a) = 0 where F(X, Y) is found by expressing (X — (Y — H)}X — (Y - ¢)) in
terms of a and putting Y in place of a. This gives (X — YR +Gb+o)X—-Y)+
be=(X — Y)* —a(X — Y) + (ab + bc + ca) — a(b + c),hence F(X, Y) = (X — Y)? —
Y(X — Y)+p+ Y?>=X?—-3XY+43Y? + p. Thus 3a*> — 3ta +t* + p = 0. This
combines with a® + pa + ¢ = 0 to give a2p + 2t*)/3 + (3q — t* — pt)/3 = 0. Similar
computations apply to b and ¢ to give

t 3/ gq ) . t 3( q ) . 3q
a =—-— - . = - = ==L — .
2 2\p+ 12 2 2\p+1+? t?+p

Of course the other two can be deduced from any one of these without further recourse
to Galois’ method. Computation of ¢* entails the evaluation (2 + p)® = ° + 3pt* +
3p2? + p? = — 3pi* — 6p?t* — 3p — 27q* (because t® + 6pt* + 9p*t* + dp® + 27¢° =
0) from which ¢® + pe + g = 0 follows easily.

10. ¢ = t*/9r.afc = (°/6q) — 3. (/39)* = — 271*/9r* = =3,

11. 15 + 6pt* + 9px? + 4p* + 27¢% = (t* + p)(t* + 5pt* + 4p?) + 274°.

Therefore (¢ + p)~! = — (t* + Spt? + 4p»)/27¢%, ¢ = — (t* + 5pt* + 4p*)/9q, a =
(t — )2, b = (—t — ¢)/2. (Note that q # 0.)

12. In Exercise 9, ¢ = 3q(¢* + p)~! is derived from t* + 3¢ + 4p = O and ¢® + pc +
g = 0. Conversely, if ¢ is defined by this formula, where t© + 6pr* + 9p*t* + 4p> +
27¢* = 0 then an easy computation gives (% + 3¢% + 4p)(¢* + p)? = 0. Therefore
(t* = —p would imply g = 0) t* + 3¢* + 4p = 0. Then ¢ + pc + g = 0 can be de-
rived either by reversing the steps in the derivation of ¢ = 3q(t* + p)~ ! or as in Exercise
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9.Seta=(t —c)/2,b=(—t~c)2.Then(x — a)(x — b) = x> + ex + (c* — t*)/4 =
x* 4+ ¢x + ¢* + p, so that (x — a)(x — b}Yx —¢) = x> — > + plx — ¢) = x> + px +
g, as desired.

13. Let /(X), f(X), f(X),... be polynomials with coefficients in K of which r, s, ¢, ...,
respectively, are roots. Set /' = f, f. f,.... Then fis a polynomial with coefficients in
K and r, s, t,...1s subset of its roots.

14. Assume without loss of generality that the polynomial in question has no multiple
roots. For simplicity of notation, let a, b, ¢ be the given subset of @, b, ¢, d, .... Use
the argument of §32 to find a rational function ¢ of three variables such that the
n(n — 1){n — 2) values ¢(a, b, ¢), ¢(a, b, d), ¢(a, c, d), ... are all distinct. As before, one
can assume ¢(x, y, z) has the special form Ax + By + Cz where A4, B, C are integers.
Set u = ¢(a, b, c) and F(X, Y) = (X — @(Y, b, 0))(X — ¢(Y, b, d))... where the product
has (n — 1)(n — 2) terms, where the symmetric polynomials in b, ¢, d, ... are expressed
in terms of a, and a is replaced by Y. Then a is the only common root of f(Y), and
F(u, Y), as before, and this shows that a can be expressed rationally in terms of u.
Similarly, b and ¢ can be expressed rationally in terms of u.

15. See Exercise 28 of thé First Set.
17. Explicit computation of 9 (see §32) gives D(4 — B)? where D is the discriminant.

18. Say a(X) =a, X* + ... and B(X) =b, X"+ ---. Il k < v set g(X) =0, HX) =
a(X). Otherwise let ¢(X) = a(X) — (a/b,)H(X)X*™". By the induction hypothesis
o(X) = Q(X)b(X) + R(X). Set g(X)=Q(X) + (a/b)X*™", (X)=R(X). If 0=
g(X)b(X) + r(X)then g(X) = 0because otherwise deg yb would be greater thandeg(—r).

Fifth Exercise Set

1. Let the substitutions S,, S,,...,S,, form a group. Then, by definition, there are
arrangements A, 4,,..., A, which present the group. This implies that 5;(4;) is of
the form A, for all i, j. Thus S,(S(A4))) = S(A4,) = A,. Since §, o §, carries 4; to A, it is
one of the substitutions S,, S,, ..., S,, and they are closed under composition. Now
suppose S;, S,, ..., S, are closed under composition. Because all powers of S, are in
the finite set S, S5, ..., S,., there must be integers i > j > 0 for which S% = SJ. Then
Then S 70 84 = 84 and S/ is the identity substitution. If / = j + 1 then S, is the
identity. Otherwise $i777 ! is a substitution in the set and is inverse to S,. In any case,
then, the identity is among the substitutions §,, S,, ..., S,, and every substitution in the
set has an inverse in the set. Let 4 be any arrangement and let 4; = S,(A4). The substitu-
tion which carries the ith arrangement to the jth is then ;5 !. It is to be shown that for
any k the substitutions $;S {tforj=1,2,...,m coincide with the substitutions S, S, !
forr = 1,2,..., m That each j corresponds to one and only one r follows from S;S7 ' =
S.S: .S, =8;S7!S,and S; = §,5;'S,.

2. Let the arrangements A4, 4,,..., A, be a presentation of the group G =
{84, S5, ..., Sy}, where it is assumed that no two A’s are equal, so that one and only
one S is the identity. Let H = {S,, S,,..., S,,} be a subgroup of G. Renumber the A’s
sothat A, A,, ..., A, are the arrangements to which elements of H carry 4,. (A4, is one
of these because H contains the identity.) It was seen in the preceding answer that if A
is any arrangement and if {S,, S,. ..., S,,} is any group then S,(4), S;(A), ..., S,,(4) is
a presentation of the group. Thus 4,, 4,, ..., A4, is a presentation of H. By the same
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token if M > m then §,(4,,+1), Sa:(Am+ 1) - -. SufA4, 4 1) 1s @ presentation of H. It is
clear from the definition that if two presentations have an arrangement in common then
they contain exactly the same arrangements. Therefore the second presentation is
disjoint from the first one and A,,; {» A+ 2 ..., Ay can be renumbered to make
A1y Amizs -y Ay the arrangements of the second presentation of H. Similarly, if
M > 2m then A,,,, 4, ..., Ay can be renumbered so that 4, ,, Ayp42,..., A;, are
a presentation of H. This process terminates with a renumbering of the original presen-
tation of G in which, for each j, 0 < j < M/m, A;,1 1, Ajmrzs -, Ajman IS @ presenta-
tion of H.

3. Let A,, A,, ..., Ay be a presentation of G. It was shown in the preceding exercise
that the A’s can be renumbered so that 4,1, Ajm+2,. .5 Ajmim 1S @ presentation of
Hforj=0,1,...,(M/m) — 1. Suppose this presentation presents H as a normal sub-
group. Then for j=0,1,...,(M/m) — 1 there is a substitution T; such that
T(A,), T(A3),..., T(A,) and Ajpsy, Ajsas -+ Ajm+m are the same presentation of
H, that is, contain the same arrangements, though possibly in a different order. If T'is
any element of G then T(A,) = Ajp4y for some j=0,1,...,(M/m) — 1 and k =
1,2,...,m. Thus T(4,) = T(A,) for some r = 1,2,...,m. Since A, = S,(A,) where
S,eH, T= TS, for S,e H. It follows that for s = 1,2,...,m, T(4,) = T,S(A,) =
T;5,8(A,) = T(A) = Ajp4+, for some u=1,2,...,m The arrangements T(4,),
T(4,),..., T(A,) are therefore included among A, 1, Ajs 25 - -+ Ajmsm- Since there
are m distinct arrangements in both cases, they coincide and T(A4,), T(4,), ..., T(4,,)is
a presentation of H. Therefore, for any Se H, ST(4,) is of the form T(A4,) for i < m.
Thus T~'S Tcarries A, to A;, which shows that T~'S Tis in H, as was to be shown.
Now suppose that T7'S T is in H whenever S is in H and T in G. It is to be
shown that any one of the presentations A+, Ajm+25++» Ajm+m can be obtained
from any other by application of a single substitution T. It will suffices to find, for each
Jj» a T; such that T(A4,), T{A4,),..., T(4,) contains the same arrangements as A, ,
Ajmizs v s Ajmam. For this, let T; be the substitution which carries A to 4, . For
k=1,2,....,m, T(4) = TS(A;) = TS, T (Ajn+1) = S(Aj+,) where S, € H and
therefore §'e H. It follows that T(A,) is one of the arrangements A ;4 1, A2+ os Ajmne
Therefore these presentations coincide, as was to be shown.

4. Let g be a factor of f. A factorization g = g,g, of g into polynomials of lesser degree
partitions the roots of g into two disjoint (because / has no multiple roots) nonempty
subsets, namely, the roots of g, and the roots of g, . Since g,(a) = 0 implies ¢,(S(a)) = 0
for all substitutions S in the Galois group (S gives an automorphism which leaves the
coeflicients of g, fixed because they are in K) no S can carry a to a root of g, and the
action is not transitive. Conversely, if the action is not transitive, let a be a root such that
not every root is of the form S(a). Let /(X) = [[ (X — S(a)) where S(a) ranges over all
distinct roots of f which have the form S(a). Then A(X) divides g(X) and it has positive
degree less than deg g. When it is multiplied out, it has coeflicients in K(a, b, c, . . .) that
are invariant under the Galois group (a substitution of the Galois group merely permutes
the factors of h), which shows, by Proposition 1, that they are in K.

5. Enumeration of the subgroups of the full group (there are six altogether) shows that
only these two act transitively. By Exercise 8 of the Fourth Set, F(X) = (X® + 3pX + P)
(X? + 3pX — P).Thus, if P € K then F factors and the Galois group has three elements.
Conversely, if the Galois group has three elements then P = (@ — b)}(b — ¢)(c — a)e K
by Proposition 1.
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6. By Exercises 8 and 11 of the Fourth Set, ¢ = —(t* + 5pt* + 4p*)/9q is a root of
x3 4 px +q when t is a root of X® + 6pX* +9p*X> +4p* +27¢*. f £> + 3pt + P=0
then ¢ = (Pt — 2pt® — 4p?)/9q. The other roots of x> + px + g = 0 are represented as
elements of K(f) by a = (t — ¢)/2, b = (—t — ¢)/2. Define t' = b — ¢ = (—1 — 3¢)/2
and " = ¢ — a = (—t + 3c)/2. Then, because t* + 3¢*> + 4p = 0 (Exercise 12, Fourth
Set),(X — XX — t") = X2+ tX + £ + 3p,(X — )X — )X — ") = X> + 3pX +
P. This shows that ¢, ¢ are conjugates of ¢ in K(¢). Replacement of ¢ by ¢’ in a = ¢,(t),
b = ¢y(t),c = p[t) givesrootsa’,b',c'of x* + px + q = 0.Sincet = a — b,t' = a — b
Therefore, because the six versions of a — b are all distinct and because ¢’ = b — c,
d = band b’ = c. Therefore ¢’ = a. Alsot” = ¢ — a = b’ — ¢'is the image of t'. Repeti-
tion of ¢+t carries ¢ to t’, a to ¢, b to a, and ¢ to b. A third application of
ti— t’ gives the identity of K(%).

7. The expressions of a, b, ¢ as polynomials in ¢ were found in Exercise 11, Fourth Set.
The preceding exercise gives (X — (X — )X — ¢y = X* + 3pX + P where P =
—~¢3 — 3pr. Thus (X — (X — )X — )X + DX + XX + ") = (X° + 3pX ) —
P? = F(X).

8. If the expressions of 1, a, a® in terms of 1, ¢, t* can not be solved for I, ¢, ¢*
in terms of 1, a, a® then 1, a, a? satisfy a linear relation a-1 + f-a + y-a® = 0 (with
«, B, 7 in K) contrary to the assumption that a is the root of an irreducible cubic. b, ¢ =
—(a/2) + (6pa® — 9qa + 4p?)/2P. In the first case b, ¢ = a® ~ 2, —a® —a + 2. In the
second, b, c =(— 1% \/:5).:;/2. In the second case it is assumed, of course, that
\/73 e K so that the discriminant is a square.

9, The roots of F in K(a, b, ¢, .. .) all have the form AS(a) + BS(b) + CS(c) + ... =5
where S is a substitution of the roots a, b, ¢, .. . . Therefore tg is a Galois resolvent. The
degree of the irreducible factor (over K) of F of which ¢ is a root is the number of substi-
tutions in the Galois group, and this is independent of tg.

10. It was shown in §42 that the Galois group contains no other substitutions than the
ones presented in (1). By Exercise 4, the Galois group must contain at least one substi-
tution which carries a4 to g; for each i = 0,1,2,..., p — 2. Therefore all p — 1 of the
substitutions presented must occur.

11. The problem is to prove that x* + 1 is irreducible. The equation
(x* + ax + b)(x* + ex + d) = x* + 1

can be solved for a, b, ¢, d to find x* + 1 = (x? + x/2 + 1)(x* = x\/2 + 1). Thus
there is no factorization over Q.

12. Roots of x* + 1 are roots of x® — 1. Therefore the analysis of §42 shows that the
substitutions of the Galois group applied to these four roots can contain only those
presented in §42, and no two substitutions of the group have the same effect on the roots
of x* + 1. If the group had fewer than four elements then a root of x* + 1 would satisfy
an equation of degree < 4 with rational coeflicients.

13. Let S be the substitution which carries abed to bade, T the one which carries abed
to cdab, and U the one which carries abed to acdb. Then $2 = T? = identity, ST = TS,
and the subgroup is I, S, T, ST Also U® = I Computation gives U™ 'SU =
ST, U™'T U = §. If these are written SU = UST, TU = US, they show that any
SITIU = US'T* for suitable r, 5. It follows that any composition of S, 7, U can be reduced



Answers to Exercises 133

to the form S'T9U*fori =0or 1,j =0or 1, k =0, 1, or 2. These are the twelve sub-
stitutions of the group. Since

(SITIU*)~ YS*TPYS'TIUY) = U™FTISTIS* T SITIUE = U~tk= Dy ~tge vy yh—1
— U—(k—l)SrTsUk— 1’

it can be seen that every such substitution can be reduced to the form S*T®. Therefore
the subgroup is normal by Exercise 3.

14. Let S be such that every element of G is a power of S. Let n be the least positive in-
teger for which S" = I.Ifkis a positive integer with S* = I and if d is the greatest common
divisor of nand k then d = An + Bk, by the Euclidean algorithm, and $ = (S")*($¥)® = I.
Thus d > n. Therefore d = n and n divides k. It follows that $ = I if and only if j = 0
mod n. The same argument shows that if H is a subgroup of G and if m is the least positive
integer for which $™ is in H then §/ is in H if and only if j = 0 mod m, i.. if and only
if §7is a power of ™.

15. The subgroup divides a presentation of G into two presentations of the subgroup H.
If Tis any element of G that is not in H, then Tapplied to an arrangement in either
presentation of H must carry it to an arrangement in the other presentation since other-
wise Te H. The two presentations of course contain equal numbers of arrangements,
so this shows that T'carries either presentation to the other. Therefore H is normal.

16. Since (b/a)” = k/k = 1, what is to be shown is that any root of x? = 1 is a power of
o Ifi > jand o = o/ then o'~/ = 1. If i — j is not divisible by p then Ap + B(i — j) = 1
for some 4 and B and « = o787 ) = 1% = 1, contrary to assumption. Therefore
1,0, o, ..., P ! are all distinct. Use induction and the Remainder Theorem to prove
that a polynomial of degree n has at most n distinct roots.

17. t = Aa + Bb + ... (for simplicity—the same proof applies to Galois resolvents
t that are not linear). Thus ¢ is a root of X — 4¢(X) — Bo(X) — ... = 0. By Lemma
I, soist’. Thust’ = Ad,(t') + Bd,(t') + ..., as was to be shown.

18. Let elements of the Galois group be viewed as automorphisms of K(a, b, c,...) =
K(t). Denote them by S, S,,...,S,. Then G(X)=[](X — S;t) has coefficients
invariant under the Galois group and therefore in K. G(X) is irreducible because any
factor must be divisible by at least one X — S;t and therefore by all. (If S;¢ = S;t then
i = j because if S,t = t then S, = identity.) The expressions a = ¢,(t), b = (), ...
exist by virtue of the definition of “primitive element.” Application of S, S,,..., S, to
these expressions gives the presentation of the Galois group.

Sixth Exercise Set

‘1. The arrangements abc, bca, cab, present a normal subgroup of index 2 in which the
identity is a normal subgroup of index 3. Let the three subgroups of this sequence be
written Gg © G3 o G,, where the subscripts denote the number of elements. To im-
plement Galois’ method, one must choose, for each consecutive pair of groups in the
sequence —in this case two pairs—a polynomial in the roots that is invariant under the
smaller group but not under the larger. In this case, one can choose a®h + b’c + c’a
and a. The general method then calls for setting A = a?b + b%c + c*a — ab* — bc* —
ca®. Then A? is invariant under G4 and can therefore be expressed in terms of the coeffi-
cients of the equation. Moreover, any polynomial in the roots F(a, b, ¢) which is
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invariant under G, can be written r -+ sA where r and s are invariant under G¢. Finally
the general method calls for setting U = a + ab + a®c. Then U? is invariant under G,
and every polynomial in the roots can be written x + yU + zU? where x, y, and z are
polynomials in the roots that are invariant under G,. Then A and U are radicals (A? is
known and U3 = r + sA where r, s are known) and every polynomial in the roots can
be written in the form r, + s;A + r,U + ;AU + 13 U* + s3 AU? where the 1's and
s’s are known. In particular, g, b, and ¢ themselves can be written in this form.

In the explicit solution, assume for the sake of simplicity that a + b + ¢ = 0, Le,
the given cubic has the form x* + px + g = 0. Then A? = —4p® — 27¢* can be found
by a relatively easy computation in symmetric functions. (Exercise 25 of the First Set.)
Another computation gives

U3 = a® + b + ¢ + 6abe + 3a(a®b+ b2c + c*a) + 3a2(ab® + be” + ca®).
To write this in the form U3 = r + sA, interchange a and b and add to find
2 + S(A — A) = 2a* + 2b° + 2¢* + 12abc

+ (3o + 302)a®h + bPc + a + ab® + be? + ca?),

F=a® + B+ ® + 6abc — 3 every a’h = — 3q — 6q — 3-3q = —274/2. Similarly,

25A = oA — 3a?A, s = 3o — a?)/2 = 3/ —=3/2. Thus U and A can be explicitly
expressed as radicals
A =/ —dp* — 27¢%,

U= H~279 + 30/ =3)/2-

=@+ b+)+ U+ @+ b +oc)=U+ U,

3b = 02U + U, 3c = aU + a2U’, to express a, b, ¢ (and hence all polynomialsina, b, c)
in terms of A, U, and known quantities, it will suffice to so express U'. Now UU’ =
a® + b? + ¢ — (ab + be + ca) = —3p is known. Thus U'= —3p/U. To avoid
division by U, multiply numerator and denominator by U? to find U’ = —-3pU?/
(—27g + 3A\/—-—3)2“*. Now multiply numerator and denominator by —27q —

3A./ —3 and simplify to find
U = —U?*9q + A/—3)/6p*.

(The case p = 0 does not occur, of course, in the general cubic, i.e. when the coefficients
are letters. If p = 0 then the equation has the simple solution a‘f’/— ,where i =0, 1, 2)
Since ./ —3 = o — o, the solution can then be written

Since

|
87 [6p2U — 9qU?* — (& — «®AU?],

a =
b= z“é; [026p2U — 9qalU? — a(o — a*)AU],

1
T [w6p*U — 990 U? — o®(a — aH)AU?).
P

If the equation is of the more general form x3 + rx% + sx + t, then the solution can
be derived from the special case by setting p = s — (r2/3), q =t — (rs/3) + (2r3/27) in
the above formulas and subtracting r/3 from each of the roots.
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2. Galois’ presentation (3) of §40 gives G,4 > G,, @ G, © G, © G,. Since a subgroup
of index 2 is normal (Exercise 15 of the Fifth Set) one needs only to show that G, is
normal in G,,. This is Exercise 13 of the Fifth Set. Again, one needs to choose for each
successive pair of subgroups in the sequence a polynomial in the roots invariant under
the smaller but not under the larger. Such polynomials are, for example, A = Vander-
monde determinant = +(a — b)(a — c)(a — d)}b — c)(b — d)(c — d), ab + cd,-a + b,
a. Again, the general method calls for setting U = (ab + c¢d) + a(ac + db) +
a*(ad + be), V=a+ b — ¢ — d, W= a — b, and writing an arbitrary polynomial in
a, b, ¢, d as a polynomial in A, U, ¥, W with known coefficients and in expressing A,
U, V, W as radicals.

A? is symmetric in a, b, ¢, d and therefore can be expressed in terms of the coefficients
of the given equation. For the explicit expression, see the next exercise. Now U = P 4
aQ + o®*R where P = ab + cd, Q = ac + bd, R = ad + bc. The preceding exercise then
gives explicit expressions for P, @, R in terms of the elementary symmetric functions in
P, Q, R, two explicit radicals, U and A, and the cube root of unity . Since the elementary
symmetric functions in P, Q, R are symmetric in a, b, ¢, d (this is a special feature of the
choice P =ab + ¢d and would not be the case if the equally valid choice
P = (a — b)(c — d) had been made) this expresses P, Q, R in terms of radicals U, A and
the coefficients of the given equation. Explicitly, P + Q@ + R = ¢,. Moreover, PQ =
a’be + b*ad + c*ad + d*be, from which it is clear that PQ + QR + RP =Y a%bc.
Now 0,03 = ) a’bc + 4abcd, so PQ + QR + RP = 6,65 — 404. PQR = Y a’bcd +
Y.a?b?ct. Y aPbed =6, Y. 4> = a,(0} — 20,) and o% =Y a?bh%c? +2) a*bied =
Y a*b*c® + 20,0,,50 PQR = 636, + 0% — 40,0,. (The A in the formulas of the pre-
ceding exercise differs from the A above in its definition; the fact that they are equal is
the basis of the next exercise.)

Next,

V2 = a% 4 2ab + b% + ¢* + 2¢d + d® — 2(a + b)c + d)
=@+ b+ +d) +4ab+cd) — 23 ab = 4P + o3 — 4o,.

Thus V is the square root of an expression in A and U. The expression of W as the square
root of an expression in A, U, and Vcan be obtained by introducing V, =a — b — ¢ + d
and Vs=a—b+c—d; then Vi =4R + ¢} - 40,, V3 =40 + 0? — 45,, and
VV, Vs =3 a® + 205 — ) a’b.Fromo} =Y a* +3Y a*b + 60ando,0, = Y. a%bh +
3 Y abe, it follows that VV,V; = ¢} — 40,6, + 805. Then 2W =V, + ¥, and
4W? = V3 + 2(VV, Vi)V~ ! + V3 is an expression in U, A, and ¥, Of course division
by V can be avoided by writing

V7l =VV"2=V@4P + ¢} — 46,)" " = V(4Q + ¢} — 40,)4R + o — 40,)/D

where the denominator D is (4P + X)(4Q + X)4R + X) = X> + 4X*(P+ Q + R) +
16X(PQ + OR + RP) + 64PQR, where X = o7 — 40,. This gives W as an explicit
radical. Finally, 4a =(a+ b + c + d) + V + 2W gives a in terms of radicals. Then
b = a — Wexpresses b. The other two roots can be expressed in terms of W' = ¢ — d,
and this can be expressed in terms of the radicals A, U, V, W by means of W' =
(@ — R)/W where, as before, division by Wcan bé expressed in terms of multiplication
by expressions in A, U, V, W and division by a polynomial in o4, 0,, 03, 04.

3. P- Q= (a~— d)b — c). Thus

(P—0)Q —R)YR —-P)= f(a—b)a~c)a—d)b—c)b—d)c—d=
+ Vandermonde determinant of a, b, ¢, d.
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The discriminant of the quartic is therefore equal to the discriminant of the cubic
X*— (P + Q + R)X* + (PQ + OR + RP)X — PQR = 0.

By the formulas of the preceding exercise, this is the cubic x> — g,x* + (0,03 — 404)x —
(630, + 0% — 40,0,). If the quartic has the form x* + ax® + fx + y where ¢, =0
then, by the formula of §13, this discriminant is

—128a2y? + 160*y — 4o®f? + 144 af?y + 256y° — 27p%

4. The suggested lemma proves the theorem, because a succession of extensions like
the one of the proposition of §44 gives, by assumption, a root of the given irreducible
polynomial and hence an irreducible (linear) factor whose roots can be expressed in
terms of radicals. Thus all roots of one of the irreducible factors at the next-to-last
stage can be expressed in terms of radicals, and so forth, until one arrives at the desired
conclusion. The lemma says, in effect, that if all roots of g, can be expressed in terms of
radicals then so can all roots of g, for all i. In other words, if the Galois group of g, over
K'is solvable then so is the group of g; over K. If g, # fthenadaptations of arguments of
§44 show that f(x) = g(x, r)g(x, ar)g(x, a?r) ... glx, o~ ¥y where g(x, y) is a polynomial
in two variables with coefficients in K and where the factors on the right are irreducible
over K’ = K(r). Moreover, g(x, ar) = g(x, Tr) for some substitution T of the Galois
group of f(x) = 0 over K because f is irreducible over K. Thus, given any two of the
polynomials g(x, /) there is a suitable power T/ of Twhich carries roots of one to roots
of the other and leaves elements of K fixed. If u is a Galois resolvent of the first (over K)
then T7u is a Galois resolvent of the second. When u is used to construct a presentation
of the Galois group of the first, T applied to this construction gives a presentation of
the Galois group of the second. Therefore a sequence of subgroups of the required type
for the first Galois group implies one for the second.

5. The Galois group of (x? — 1)/(x — 1) over any field (of characteristic 0) is a subgroup
of the cyclic group of order p — 1 (see §42). Therefore the Galois group is solvable. If
K contains pith roots of unity for all the indices that occur in this sequence of
subgroups— which is guaranteed if it contains p;th roots of unity for all prime factors
p; of p — 1—then, by the proposition of §46, all pth roots of unity can be obtained by
adjoining radicals to K. Thus it suffices to show that all p;th roots of unity can be obtained
by radical adjunctions to @, where p;|p — 1. An induction now sets in. See §65.

6. As in the proof of §44, G(X) = H(X, r™MQ(X, r'") for all m roots r, ¥/, r",...,r" "V
of the auxiliary equation. Then

G(X)" = W(X)q(X)
where
MX) = H(X, nH(X, r)H(X,r")....
This gives h(X) = const. G(X) for some j, from which m = j - (deg G/deg H), as desired.

7. To adjoin all roots is the same as to adjoin a Galois resolvent u of g(x) = 0 over K.
Any other root «’ of the irreducible polynomial satisfied by u is a rational function of u.
Therefore the polynomials H(X, u), H(X, '), H(X, u"), ... all have coefficients in the
same field K(u) and are irreducible over that field. Therefore, any two of them which
have a root in common have identical roots. As in §44, their product is const. - G(X) for
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some j. Since the H’s have simple roots, every root of G is a root of exactly j of the
H’s. Therefore the s can be rearranged, if necessary, so that

G(X) = const. H(X, wWH(X, u)H(X, u") - - - H(X, u®D),

where p is the number of u’s. This partitions the presentation of the old group into p/j
presentations of the new, and the proof that the new is a normal subgroup of the old is
as in §44.

8. See §54 on unique factorization of polynomials and §60 on norms of polynomials.

9. Any substitution of the group over K(u) is obviously in the group over K, and it
leaves u fixed by Proposition 1. Conversely, if S is a substitution in the group over K,
if Su = u, and if H(X) is a polynomial in X with coefficients in K(u) of which ¢ is a root
then application of S to H(t) = 0 gives H(St) = 0. Thus the group over K(u) contains
the substitution which carries @ (t), du(t), (1), - . - to §,(St), Py(St), ¢(St), ... and this
is the substitution S.

10. By Exercise 4 of the Fifth Set, the Galois group of fg = 0 over K(b,) acts transitively
on the roots of f;. By Exercise 9, this Galois group contains the substitutions of the
Galois group of fg = 0 over K that leave b, fixed. Conversely, any such substitution
carries roots of f, to roots of f,. The suggested rule assigns at least one index
k =1,2,..., ptoeachfactor of g over K(a;),and assigns each index to at least one factor.
It needs to be'shown that it never assigns different indices to the same factor. By the
preceding, this amounts to showing that if S, and S, are given then there is a T, with
T,b, = b, and T,S,a, = S, a, ifand only if there isa T, with T, a, = a, and T, ST 'b, =
S5 b, . This follows from the formula T, = S, IT,S,. Since the S’s act transitively on
the a’s (Exercise 4 of the Fifth Set) the number of §’s that carry a, to a; is the same for
all j, call it N. Then N - deg f = number of S’s and N - deg f, = number of $’s that carry
a, to a root of f,. But Sa, is a root of f, if and only if $7'b, is aroot of
gi. Thus deg f,/deg f = proportion of §’s that carry a; to a root of f, = proportion of
$’s such that S™'b, is a root of g, = deg g,/deg g.

11. K’ can be obtained from K by adjoining a Galois resolvent u of g over K. Let
G(X) = 0 be the irreducible polynomial with coefficients in K of which u is a root.
If K” is an extension of K then the irreducible factors of G over K" all have the same de-
gree, namely, the number of substitutions in the Galois group of g = 0 over K". Apply
Dedekind’s theorem in the case K’ = K(u), K" = K(a) where a is a root off.

12. The solution of §5 is 4 — B where A and B are determined by 274° + 27¢4° —
p® = 0,34B = p. The solution of Exercise 1 is (U + U")/3 where U is an explicit element
of a field obtained by adjoining first a square root, then \/——_3, and then a cube root,
and where UU’ = — 3p. In the new field, the quadratic equation satisfied by 4° has two
solutions, ane of whichis (U/3). If A = U/3then B = —U'/3 and the solutions coincide.
If A = «/U/3, then the solution coincides with one of the other solutions in Exercise 1.
The product of the two solutions for 4% is (—p/3)° = (UU’/9)3, so the other solution is
(U'/3)* and the three solutions are again given by Exercise 1.

13. Anelement of K’ in K(a, b, ¢, .. .) but not in K would be moved by some element of
the Galois group over K (Proposition I) but by no element of the Galois group over K,
so the two groups would not coincide. Conversely, if the two groups do not coincide,
the argument of §46 shows that some element of K(a, b, c, ...) not in K is invariant under
the smaller group, i.e. is in K.
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Seventh Exercise Set

1. If £ > O, then, since f; divides f; f, ... f, =g192 - - - g,» f1 divides either g, or g, ... g,.
Ifit divides g, ... g, it divides either g, or g3 g, - . . ¢., etc. Thus f; divides g, org, or ...
or g,. In particular, v > 0. Renumber the g’s so that f; divides g,,say g, = ¢, f;. Repeti-
tion of this argument p times gives v > u. g; = ¢, f; (i = 1. 2,..., ) for some rearrange-
ment of the g’s, and consequently 1 = 4,49, ... ¢, 0u+1--- g,. Since an irreducible poly-
nomial can not divide 1, v > u is impossible. The ¢’s are units because they divide I.

2. The proof of Corollary 1 given in the'proof of the theorem deduces it from Gauss’s
lemma, that is, from the case deg F = 0 of the theorem.

3. Let F(a, x) € K[a, x] be irreducible. First suppose F has degree 0 in x, i.e. F € K[a].
Then, directly from the definitions, F divides G = Gy + Gyx + G, x> + --- + G,x"€
K[a, x], where G; e K[a], if and only if it divides each G; as an element of K[«a]. Since
F isirreducible in K[a], it is prime (§54). The argument of §57 then shows that F divides
GH only if it divides G or H. Now let F contain x. If it were reducible as a polynomial
in x with coefficients in K(a) (K with a transcendental element a adjoined), say F = gh,
then multiplication by a suitable element of K[a] (polynomials in a with coefficients in
K) would give f(a)F(a, x) = G(a, x)H(a, x), where f, G, H are polynomials in the in-
dicated variables with coeflicients in K. Factor f into irreducibles and divide by them
one-by-one to find F(a, x) = G(a, x)H ((a, x) where G, H, are polynomials in ¢ and
x, contrary to assumption. Thus F is irreducible over K(a). Irreducible polynomials are
prime, so if F divides GH € K[a, x] then F divides G or H as a polynomial in x with
coefficients in K(a), say G = FQ where Q has coefficients in K(a). Then the denominators
of Q can be cleared to give g(a)G(a, x) = F(a, x)Q,(a, x) where g and Q, are polynomials
in the indicated variables. Division by the irreducible factors of g gives G(a, x) =
F(a, x)Q(a, x), i.e. F divides G in K[a, x]. Corollary 1 was proved above. Corollary 2
follows as in Exercise 1.

4. If the given polynomial is f(x) = A,x" + --- + A, where the A’s are rational func-
tions of g, and if D(a) is the product of the denominators of the A’s then D(a) - f(x) is a
polynomial in two variables, say F(a, x), and f(x) = F(a, x)/D(a) is a representation in
the desired form. The second statement follows from the observation that a unit times an
irreducible polynomial is irreducible.

- 5, Fisasum of terms ¢t/ where c € K, j > 0. Given such a term, write j = rN + s where
0 < s < N. The corresponding term of g is ca"x’.

6. The values at x = —2, —1,0, 1, 2 are —3, —2, —3, 18 =2.32 133 = 7.19. The
leading coefficient, which can be regarded as the value at oo, is 2, so any factor must
have leading coefficient + 1, +2. The values at —3, —4, . .. are easily seen to be positive,
so there is no integer root, and therefore no factor x — a. The only possible factors
2x — a would correspond to roots at halfintegers, and these could occur only in the
intervals [ — 3, —2], [0, 1] where the sign changes. However, neither — 24 nor £ is a root.
Thus the polynomial is irreducible unless it has a factor of the form 2x? + gx + p.
Here p = —3, —1, 1, or 3. Try p = 1. If v, and v, are the values of this polynomial at
—1 and —2 respectively then g = 3 — v, and g = (9 — v,)/2. Since v,|2 and v,]3,
the first gives g = 5, 4, 2, 1 and the second gives g = 6, 5, 4, 3. The value at 1 of 2x* +
gx + 1 = 3 4 g does not divide 18 for g = 4 or 5, so there is no factor 2x* + gx + 1.
The polynomial 2x? + 2x — 1 has acceptable values at —2, —1, 0, 1, but not at 2. The
desired factorization is (2x? + 4x + 3)(x? + 2x — 1).
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7. The determinant of the matrix whose rows are 1 20,0 1 2, and —4 —2 1, in that
order, is —11. (1 + 2a)(1 4+ 2b)Y(1 + 2¢) =1+ 2(a + b + ¢) + 4(ab + bc + ca) +
8abc =1+2.-0+4-1+ 8(—2)= —1L

8. Let d be the least common denominator of the coefficients of g so that dg = G where
G has integer coefficients and no prime divisor of d divides G. Similarly, let eh = H
Since gh = F has integer coefficients, de divides deF = GH. A prime factor of d cannot
divide G and must therefore divide H. In this way, all prime factors of d can be divided
one-by-one into H, and it follows that all coefficients b, of H are divisible by d. Similarly,
all coefficients a; of G are divisible by e. Thus, a coefficient a;/d of g times a coefficient
b,/e of h gives a product (a,/e)(b;/d), which is an integer.

9. g is invariant under the Galois group and therefore has coefficients in K. The norm
can be defined using any basis of K(a) over K because det(Q ~'MQ) = det(M). In par-

ticular, the basis 1, b, b2, ..., "~ ! can be used, and application to - a' = 3 ¢;;a’ of an
element of the Galois group which carries a to b gives f,-b' = ¢;;b’, from which
Nf = det(c;;) = Nf,. Thus Ng = Nf- Nfy- Nf.-... = (Nf)". The key equation N, f =

(N, ) follows from the fact that the matrix whose determinant is N, f'is made up of k
copies down the main diagonal of the matrix whose determinant defines N, f, one copy
corresponding to ), at/, a®t/, ..., a" 't/ foreachj = 0,1,...,k — L.

10. It is to be shown that four conditions are equivalent: (A) ¢ divides ¢". (B) ¢' = 0.
(C) ¢(x) = Y(xP). (D) In a splitting field for ¢, two roots of ¢ coincide. (A) = (B)
because a polynomial divides no polynomial of lower degree except 0. (B) = (C) because
the formula for the derivative shows that ¢’ = 0 only when powers of x not divisible by
p all have coefficient 0. (C) = (D) because if a, is a root of ¢ then af is a root of y,
x — a? divides y¥(x), and x? — af = (x — a,)" divides §(x), so a, is a p-fold root, at
least, of ¢. (D)= (A) because if (x — ay)* divides ¢ then x — a, divides d = gc.d.
(¢, ¢"); because ¢ is irreducible, d = ¢ or c¢ where ¢ € K is nonzero; because x — a,
divides d, d # ¢, d = c¢, and ¢ divides ¢'.

11. For any ne F,, Fermat’s theorem gives n” = n, that is, every element of F, is its
own pth root. Suppose a is the root of an irreducible polynomial of degree 2. Then the
elements of K(a) can be written uniquely in the form u + va + wa® where u, v, w e K. It
is to be shown that for every u, v, we K there are x, y, z€ K such that x” + y*a® +
2Pa*? = u + va + wa?. This is the same, since every element of K can be written as a
pth power, as showing that there are r, s, t€ K with r + sa” + ta*? = u + va + wa’,
that is, 1, a?, a®” are a basis of K(a). This is true unless there are r, s, (€ K
not all zero, with r + sa” + ta®? = 0. Such a triad would give (x + ya + za®)’ =

x + ya + za* = 0 with x, y, z not all zero, which is impossible. The same argument
applies when « is the root of an irreducible polynomial of any degree. To prove (3) note
that if @(x) = Y(x?), say ¢(x) = x** + .-+ + a;x? + -+« + @, then ¢(x) = w(x)
where w(x) = x* + -+ + b;x’ + -+- + b, and b? = a;. Therefore ¢(x) = Y(x) implies
¢ is not irreducible. (4) follows from the observation that if a is transcendental over K
then a = f(a)?/g(a)” is impossible.

12. N(F)P = N(FP) (norm of a product) = (F?)? (the coefficients of F? are in K). The
argument of Exercise 9 then gives N(F) = F?

13. Existence is proved by the construction indicated in §53. By (1), the field constructed
in this way can be mapped onto any K(t'). By (2), this map is an isomorphism.
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14. My is a matrix whose entries are polynomials with coefficients in K. Let v be the
column vector 1,a,a%,...,a" L. Then My_;-v = (X — F). v where the multiplication
on the right signifies multiplication of each entry of v by X — F. Substitution of F for
X gives M - v = 0, from which det(M) = 0, as was to be shown.

Eighth Exercise Set

1. Suppose vy, v5, ..., v, span V. If they are not linearly independent then one of them,
say v,, can be expressed as a linear combination of the others. Thus vy, v,,..., v,
span. Repeat until the spanning vectors are linearly independent. (From a constructive
point of view, one must make some mild assumption about the way V is presented in
order to know that, given a finite set of vectors, one can either find a nontrivial linear
relation among them or show there is none.) A basis of n elements amounts to an iso-
morphism of Vwith the vector space K" of n-tuples of elements of K. A mapping of K"
to K™ which respects the vector space structures is represented by an m x n matrix,
It is to be shown that such a mapping can be invertible only if m = n. Prove that m
homogeneous linear equations in n unknowns have a nontrivial solution when m < n
(solve one equation for one unknown in terms of the others and substitute to reduce to
m — 1 equations in n — 1 unknowns) so that K" — K™ cannot be one-to-one if m < n.

2. Any element x of L can be written in the form x = Y a;u; where g; € K'. Each g, can
be written a; = ) by;s; where b;;€ K. Thus x = ) b;;s;u;. If x = 0 then necessarily all
a; are 0, from which all b;; must be 0.

3. Multiplication by j mod p is one-to-one (if ju = jv mod p then p divides j(u — v) and
4 = v mod p) and therefore onto. Thusforeachi = 1, 2,...,p — 1 there is one and only
one k=1,2,...,p ~ 1 such that jk = i mod p. Since g(a’*) = g(a"), this shows that
G(a’) = G(a).

4. If the equation is solvable by radicals, the elements of the Galois group can be
represented as transformations of the form i+ ri 4+ s (¥ # 0 mod p). If i and j are both
fixed under such a transformation and i # j mod p then r = 1, s = 0 mod p. Thus, after
two distinct roots of the equation are adjoined, the Galois group is reduced to the identity
element, that is, all roots are rational functions of the two that were adjoined. Conversely,
suppose the Galois group has the property that each of its elements, except for the
identity, leaves at most one root fixed. Using the fact that the group acts transitively on
a set with p elements, one can show that the number of elements is divisible by p. Therefore
the group contains an element of order p, say S. The proof of the theorem shows that it
will suffice to show that the powers of § are a normal subgroup of the Galois group.
To this end, let T be an element of the Galois group. Then TST ™! is an element of order
p.Letay, a,, ..., a, be the roots of fand for each i = 1,2, ..., p let 1(i) be the integer
mod; p defined by TST ™ 'a; = $*9a;. Since (i) # 0 mod p, the p values i correspond
to p — 1 values u(i) and there are distinct values of i with the same u(i), that is, distinct
roots g; that are left fixed by ST*TST ! for some u. By assumption, then, § #TST ™!
is the identity, that is TST ™! = $*, and the powers of S are a normal subgroup, as de-
sired.

5. Let f be the given polynomial with coefficients in K and let f; be an irreducible
factor of fover K’ = K(r). As in §44, f1(x, r).f1(x, ar) ... f1(x, «" " 'r) is a constant times
a power of f(x), say f (x)". Two of the factors f;(x, «'r) have a root in common if and only
if they have the same roots. Since f'and f; have simple roots, each root of f'is a root of
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exactly j of the factors f,(x, a'r). This partitions the p factors into subsets each con-
taining j factors. If j = [ then fis irreducible over K'. If j = p then f has been factored
in the required way.

6. Van der Waerden gives the following proof. Over the splitting field, f(x) =
[ [dx — o'r) where r? = k and « is a primitive pth root of unity. If g(x) is a nontrivial
factor of f(x) with leading coefficient one and if b is its constant term then b = o*r* where
u and v are positive integers and u < p. Then b? = r*? = k¥ There are integers A and B
with Ap + Bu = 1. Then k = k*PkP* = (k“bP)?, q.e.d. To prove the theorem more
straightforwardly, note that it amounts to saying that a subgroup of the p(p — 1)-element
group of linear transformations i+>ri + s (r ¥ 0 mod p) of the integers mod p is
transitive unless some integer mod p is invariant under all transformations in the sub-
group. Let H be a subgroup of this group, let j be an integer, and let {j;, j,,...,j,} be
the orbit of j under H, that is, all classes of integers mod p which contain integers S(j)
where Se H. If S:i+»>ai + bisin H, then, mod p, the integers aj, + b, are a rearrange-
ment of the j’s. Therefore, summation gives ao + pub = ¢ mod p, where ¢ = j, +
ja + -+ +j,. If u < p, one can divide this congruence by u mod p—which is to say,
multiply by the B above—to find that the class of Bo is fixed under S for all S € H.

7. Let K be the given coefficient field and let L = K(x, x,, ..., x,) be the field obtained
by the (transcendental) adjunction of »n variables x, x,, ..., x, to K. Elements of L
can be expressed as quotients of polynomials. Because numerator and denominator
can be multiplied by the conjugates of the denominator (the polynomials obtained by
permuting the variables of the denominator) one can assume without loss of generality
that the denominator is symmetric. Thus elements of L can be written in the form
ZR(a)xi‘x‘ff ... xi~ where the R(o¢) are rational functions in ¢,,6,....,06,€L, and
this representation is unique. The rational functions R(o) therefore form a subfield K”
of L over which L is a vector space of dimension n!. Clearly L is the splitting field of the
polynomial (X — x )X —x;)...(X —x)=X"—0,X + 0,X* —.-- £ 6, with
coefficients in K”. Since the degree of the splitting field is the order of the Galois group,
the Galois group contains all n! substitutions of the roots x,, x,,..., x,.

8. If fis reducible over Q it is reducible over Z. Since f(x) = x" mod p, the only factors
mod p are nonzero constants times powers of x mod p. If f has a nontrivial factorization
over Z the constant terms of both factors must therefore both be 0 mod p. This implies
that the constant term of f is divisible by p?, contrary to assumption. The coefficients
of f(x) = [(x + 1)» — 1]/x satisfy the conditions so f is irreducible. Therefore so is
f(X — 1), because f(X — 1) = g(X)h(X) implies f(X) = g(X + Dh(X + 1).

9. In the expansion of (y + z)? all binomial coefficients except the first and the last
are divisible by p. Thus if the statement to be proved is true of F and G it is true of
F + G. It is true of any monomial with coefficient + 1. Every polynomial can be written
as a sum of such monomuals.

10. Let K’ be an extension of K and let both be finite. What is to be shown is that
K’ = K(t) for some t. Since every field with characteristic p contains the field F, of
integers modulo p, it will suffice to show that every finite field K’ is of the form F, (t)
for some t. Let g be the number of elements in K'. Then every nonzero ¢lement g of K’
satisfies a?~ ! = 1 and every element of K’ is a root of x? — x = 0. Now g is a power of
p, namely, g = p" where n = [K':F,]. The derivative of x? — x is therefore — 1, which
implies that x? — x has no multiple roots. Thus x? — x = [ ] (x — t,) where ¢; ranges over
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all g elements of K'. Every nonzero element ¢ of K" is a (¢ — I)st root of unity and K’ =
F(¢)if and only if ¢ is a primitive (g — 1)st root of unity. For each divisor a of g — 1 let
#(a) denote the number of primitive ath roots of unity in K. Then a = Y ¢(j) where |
runs over all divisors of a. Since these are the same equations satisfied by the Euler
¢-function (¢(a) = number of positive integers less than a relatively prime to a) ¢
coincides with the Euler ¢-function, and, in particular, ¢(g — 1) > 0.

11. Let O(x) be the greatest common divisor of f and f”. Let g be an irreducible factor
of fover K, say f = g"h where g ¥ h. Then f” is divisible exactly n — 1 times by g unless
ng' = 0,ie. unlessn = pv (v > 0) or g’ = 0. If g’ = 0 then g is a polynomial in x”, and
if n = pv then g(x)" = g(x?)", so in both cases f is divisible by a polynomial in x?
Otherwise the roots of g are simple roots of /0.

12. The argument of Exercise 11 gives f(x) = Q(x)R(x?), where Q has distinct roots
which are not roots of R(x?). By Fermat’s theorem R(x”) = S(x)” where the coefficients
of S are the pth roots of the corresponding coefficients of R. Thus every root of f(x) is a
root of Q(x)S(x). If S(x) does not have distinct roots, repeat. The pth power map x + x?
is a homomorphism of K to itself (Fermat’s theorem) that is one-to-one (x* = 0 implies
x = 0). If K is finite it must be onto.

13. Ifbisaroot of x> — x — asois b + 1. This gives p distinct roots. The arguments of
§44 are easily modified to prove the proposition.

14. What is needed is an analog of the “ Lagrange resolvent” of §46.1f 6,, 0,, ..., 0, =
0, are determined, as in §46, with S8, = 0,, then the sum s = 0, + 20, +.-+
(p— 10, satisfies Ss=5— (0, +0, + -+ 0,)=5— k where k is in K. With
W =k~ 's this gives SY = — 1. Then ¥, ¢ + 1,...,¢ + p—1 are the roots of
x? — x = Y? — y € K, and the proof can follow §46. This fails if s = 0. If s = 0 one can
try the same argument with 0 replaced by 6% and 6°, etc. If this fails for all powers of 0
then the p x p Vandermonde determinant |6/ =0, ie. [T, — 6,) = 0, which is
impossible.

15. Use the Proposition of §46, Exercise 14, and the fact that gth roots of unity can be
constructed using roots of unity for prime exponents less than g.

16. Let g(X) be irreducible over K and let ¢ be a root of g in the splitting field. Then
all distinct images Sa of a under the Galois group are roots of g (9(Sa) = Sg(a) = S(0) =
0) so the product g(X) = [ [ (X — Sa) over distinct Sa divides g(X ). Since g(X) is irredu-
cible and g(X) has coefficients in K, g is a constant multiple of g. Thus the splitting field
is a normal extension. Now let K’ be the subfield of the splitting field corresponding to
the subgroup H of the Galois group G. Suppose H is a normal subgroup. If g isirreducible
over K and has a root a in K’, and if b is any other root of g then b = Sa for
some S. Then for any Tin H, S"!TS = Tye H and Tb = TSa = STqa = Sa = b,
so be K’ and K’ is normal. Conversely, suppose K is a normal extension of K. If Te H,
SeG,and ae K’ then §(X) = [] (X — Sa)is irreducible, as above, so Sa € K'. Therefore
TSa = Sa, S™'TSa = a. Since §™!TS leaves all elements of K’ invariant, S “1TSeH
and H is normal.

17. By the theorem of the primitive element (Exercises ,13, 14, Fourth Set) K' = K{1)
where t is a root of an irreducible polynomial with coefficients in K. Since K’ is normal,
it is a splitting field for this polynomial.
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18. Let b = [ [ Sa. The norm of a product is the product of the norms. The norm of
any Sa is the norm of q, as one finds by applying S to the basis used to define the norm.
Thus Nb = (Na)" where n = number of elements in the Galois group = [K':K].
On the other hand, Nb = b" because b e K. Thus Na is b times an nth root of unity.
To see that this root is + 1 apply the argument just used to [ [ (X — Sa) in place of ]| Sa.
This is a polynomial F(X) with coefficients in K. One finds F(X)" = [N(X — a)]". By
unique factorization of polynomials, F(X) is a constant in K times N(X — a). Since
both have leading coefficient 1, the constant is 1. Set X = 0.

19. See Exercise 11, Sixth Set. A more direct proof, not using Dedekind’s theorem, is
not difficult to give using the approach of §44.
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