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Abstract: Analogy between discrete and continuous
mathematics is motivation for flow of ideas between these
two different approaches to mathematics. This eventually
leads to the belief that any piece of continuous mathematics
has discrete analogue and vice versa. In this paper, we study
the dialogue between these two approaches to
mathematics.

Introduction

The first instance when analogy between discrete and continuous come into
attention was in my opinion formulation of continuous calculus of integral and
derivative by Newton and discovery of the discrete version by Leibnitz at the
same time.

It is worthy to note that they were both aware of this analogy. Because
discrete version of Taylor expansion was first formulated by Newtown and
continuous version was first formulated by Leibnitz. This analogy was
discovered in 17™ century and was further developed in number theory,
numerical analysis and algebraic geometry. One shall regard analogy between
algebraic geometry over C and those are F, an analogy between finite
and infinite mathematics. Arakelov Theory was another instance when
dialogue between discrete and continuous become crucial.

§1 Z asamodelfor R

Although Z serves well as a model for R but there is hardly any analogy
developed between mathematics over Z and mathematics over R in
number theory of Z and algebraic geometry of R . But if one treats R
as a continuous model for time, Z serves well as its discrete analogue. This
can be observed well in analogy between numerical solution of differential
equations and continuous analysis. Note that when Z is considered as a
model for R as time it is not necessarily then the case that Z embeds in

R as asubring. Any embedding as a subset which preserve the order will do.
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The points of Z are discrete in R but may converge to a finite point in
R or to infinity. Distance between consecutive points could remain constant
or exceed linearly or polynomially or exponentially.

Embedding of Z on R as a model for time should preserve order of
events and their direction in time, other than that we can have a floating
embedding. If one can make calculus for such embedding of Z in R it
would be very appreciated for mathematical modeling of the
satisfaction function in economics. Z as a subring of R should be studied
in the context of Diophantine equations.

§2. Diophantine equations

It looks like Diophantine equations are discrete analogue of algebraic
equations. But the phenomena appearing in these two parts of discrete and
continuous mathematics is by no means analogous. If we consider rational
solution of rational equations, there is a great deal of similarity between the
two, but the point is that Z is a ring and not a field. Even considering
solutions, which are negative integer, came into consideration after Fermat and
Descartes. Algebraic structure of rational solutions to elliptic equations
definitely has algebraic continuous analogue. But this phenomenon does not
happen over integers. Integer solutions are always finite. This kind of finiteness
has not analogue in continuous world. Finiteness of solutions to a polynomial
equation of one variable is by no means similar to finiteness of integer
solutions. The latter generalize to Bezout’s theorem and finiteness in
intersection theory over a compact algebraic variety, but this phenomenon has
Arakelov theory as its discrete analogue. One could say that functional
equations are a continuous analogue of Diophantine problems. But the theory
of functional equations is not advanced as much as finiteness theorems appear
in it. There is hardly any characterization of functional equations with similar
behaviors. Of course, solutions to functional equations could exist in
continuous families, but here we are only interested in finiteness results.

§3. Algebraic Lie groups and symmetric spaces

Algebraic Lie groups actioning on symmetric spaces is a field of interactions
between discrete and continuous mathematics. The simplest nontrivial
example being the actions of SL,( R ) on upper half plane. The phenomena of
covering spaces and fundamental group is discussed in a separate section. But
the phenomena of congruence subgroups and Hecke operators is another
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arithmetic phenomena, which hardly has any continuous analogue. Although
there is a dialogue between discrete and continuous mathematics in the study
of quotients of symmetric spaces under the actions of congruence subgroup
but one could hardly find any continuous analogue in arithmetic phenomena.
Taking numbers modulo N is in fact the map Z - Z / N which is
analogue of R-R/Z = s' . Therefore, one could say that tori are analogue
of torsions. Some other phenomena in the theory of modular forms, which
have analogues in geometric Langlands program, could be regarded as
geometric formulation of arithmetic phenomena. Unfortunately

SLz(N) _’SLz(Z/N)

has no continuous analogue like SL,( R ) — SLy( R/Z ) =SL,( S' ) but you
can form SL,( R ) / SL,( Z ) which is close to the concept of symmetric
spaces. May be one could put a ring structure on @®S'(n€z) Using
multiplication on R which serves our purpose. @S'-5S'(n€Z) Would be
the continuous analogue Z-2 / N . &S'(n€z) Isthe same as the group
ring G[ Z ], soitis a sort of well-known object.

§4. Z [i] as a model for C

Therole Z playsin R isplayedby Z [ilin C .Notethat z°-R® is
missing the multiplication structure both on continuous and discrete sides.
Solutions of Diophantine equations with coefficients in Z [i] could be
analogue of complex solutions of complex equations. One may expect that this
can be generalized to ring of integers of any number field but some aspect of

Z [i] are missing in general case. One can form again ( s'xS' )[ Z ]whichis
similar to S' [ Z ] in higher dimensions. But there is extra multiplication
structure coming from C . Maybe we should use the new notation ( s' )[

Z [i]], which is still in group-ring and not a new object. Note that there is a
map S' [ Z] -R / Z andan analogue s' [ Z [i]]l -C / Z [i] one
could consider polynomialson s' [ Z Jand s' [ Z [i]] and that could be
thought as analogue of real and complex polynomials. Structure on R" like
dot product and cross product on R® should have analogueson s' [ Z |
and S' [ Z ]°. One can think of S' [ Z ] as set of functions Z —S' or
sequence of elements on S' . In order to accommodate arithmetic simplicity
on S' [ Z ] we can assume that there sequences have only finitely many
non-zero elements. But without this assumption, we could have defined
multiplication also.
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§5. Discrete and Continuous dynamical systems

Moving from continuous to discrete dynamical systems is very easy: just
replace time R with its discrete analogue. The iverse direction is easy by
extending the total space. The discrete dynamics of f: M -~ M can be replaced
by a continuous analogue which obtained by (Mx 1)/Mx {1} - Mx {0}. If you
can consider the discrete analogue of this continuous dynamical system, you
reconstruct f if you make appropriate choices. This idea can be used to
associate a zeta function to periodic points of a dynamical system, which is
analogues to Selberg zeta function associated to closed geodesics. The analogy
between concepts in the fields of discrete and continuous dynamical systems
are well -know and popular and extended all over these research fields which
are developed parallel to each other. In this setting time is discrete or
continuous but space is continuous. One can think of discrete and continuous
space-time and physics over discrete space-time. The goal is to see continuous
physics as a limit of discrete physics and comparing these two features of
modeling the natural phenomena. All such analogy started from the discrete
and continuous versions of calculus developed by Newton and Leibniz.

§6. Discrete versus continuous calculus

We already noted the fact that the role of Newton and Leibniz in originating
discrete and continuous versions of calculus was mixed. During the first half of
the 20™ century discrete model were used for mathematical modeling of
natural problems and were taught in universities. In the second half engineers
started to learn that continuous models work as well. Numerical analysis is all
based on discrete model and on interaction between discrete and continuous
models. In fact, the discrete model of calculus embeds inside the continuity
model. Working with discrete space, which does not live inside a continuous
realm, is an almost impossible cast. There are physicists working on discrete
space-time, which does not include in the dialogue between discrete and
continuous we are considering here. These interactions are discussed in sequel
sections with the titles, limit of finite structures, the analogy between sum and
integral, the analogy between difference and derivative, on the convergence of
series, series as functions from Z to R and discrete holomorphic
functions.
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§7. Discrete holomorphic functions

Dodziak has a number of papers developing the discrete counterpart for the
notion of holomorphic functions. They came to my sight by introduction of my
teacher Siavash Shahshahani while we have a discussion on the existence of
discrete analogues for every continuous idea in mathematics. Dodziak works
with functions over 2z* which have incredible order and geometry. It is
difficult to extend this work to arbitrary discrete subsets of C since residing
in Zz* is a feature which should be present in such a generalization. In fact,
this feature is a blessing because it allows continuous model to be interpreted
as the limit of discrete models. Same principle hold in statistical mechanics,
which we will study in another section. Analogue of complex derivation exists
in the discrete models and in the limit coincides with classical complex
derivation. This limiting principle is an aspect of the dialogue between discrete
and continuous. Every continuous concept has a discrete analogue such that in
the limit it approaches the original concept. This is called the principle of
continuity. In some parts of mathematics, this is called discrete deformation, or
discretization of a concept. It is not at all the case that every discrete concept
has a continuous analogue in the limit. Many discrete structures do not even fit
in a system, which accepts continuous model as a limit.

§8. Sequences as functionsfrom Z to R

One of the main concepts that can be discretized is the concept of a function.
Function is an extension of the concept of number. In fact, a function is
continuous deformation of or a continuous family of numbers. This concept can
be discretized in two steps. First step is to consider function from Z to R
and second step is to integer sequence. Analogy between integer sequence
and continuous functions is very deep and is hardly explored. But analogy
between sequences and functions is well-known. Sum of the elements of the
sequence is analogue of integral of functions and difference operator is
analogue of derivative polynomials sequences and polynomial functions are
analogous objects, which can be induced from R into Z if we fix an
embeddingof Z in R .We will focus on each of these aspects in a separate
section. Integer sequences could also be polynomial or exponential or periodic.
But there are aspects in integer sequences, which hardly generalize to
continuous model like multiplicative sequences and rise of prime numbers. The
arithmetic world is much richer the analytic world. This is why the analogy
between knots and primes is a simplifying model in direction of translating to
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geometry. Complexity of knots is combinatorial but complexity of prime
numbers is deeper.

§9. Limit of finite structures

This is a general dialogue between finite and infinite mathematics but in
arithmetic, it can be regarded as a transformer of mod p phenomena to p-adic
analogues. P-adic analogue in turn can be regarded as analogue of continuous
phenomena. Mahler has a p-adic analogue of Taylor series and analogy
between mathematics over R and over p-adic completions of Q which are
denoted by Q, . For example, there are physicists trying to do physics over

Q, or algebraic geometers trying to do algebraic geometry over the
completion of the algebraic closure Q namely 61) . This art is called rigid
geometry. This is another limiting procedure which embeds discrete objects
into p-adic objects and the p-adic objects are analogues to structure over R .
All concepts in calculus have p-adic analogues. This is the second route of
dialogue between discrete mathematics and continuous mathematics, which
passes through dialogue between finite and infinite mathematics. If someone
could see beyond the analogy between p-adic numbers and real numbers or
beyond the continuous and discrete models or beyond the finite and infinite
models of mathematical incarnations of truth, he or she has a very pure
understanding of the mathematical truth.

§10. The analogy between sum and integral

This analogy was evident even when the concept of integral was invented.
The symbol of integral is a large skew S. Series could be convergent or
divergent but analogy between sum and integral is beyond the convergent
series and convergent integrals. Archimedes developed the concept of sum of
infinitesimals, which was translated to the concept of integral of a function
after Newton and Leibniz. The fact that sum of infinitesimals is analogue of a
discrete sum of numbers, which is called series. Area and sum of a series could
both be finite or infinite. Double integrals are analogues of double sums.
Telescope sums and derivative of integral are also analogues, which will be
discussed in next section. Measure theory is an attempt to unify these
analogous concepts. Also, sum of functions as an analogue of sum of numbers
has continuous analogue in terms of integral, which in turn is easily formulated
in terms of measure theory. Formula combining infinitesimals and integrals are
hard for me to interpret. There are many features of the infinite mathematics,
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which are unknown to me. This is why | concentrate in convergent sums and
convergent integrals and | put aside a huge body of mathematics about
divergent series produced by Euler.

§11. On the convergence of series

The concept of a two- dimensional region in plane, which is of finite or
infinite area, and finite or infinite boundary and the concept of a three-
dimensional region in space of finite or infinite volume and of finite or infinite
boundary area, could be modeled in discrete mathematics. Boundary operator
is analogue of derivation. There could be that a series is divergent or
convergent and the derivative of the series is divergent or convergent. For a
Taylor series, these complications do not happen. A Taylor expansion is
convergent if its derivative is convergent. But the fact is that a Taylor series is a
very simple series of functions. The idea of telescope has continuous analogue,
which is in fact the fundamental theorem of calculus. Fundamental theorem of
calculus generalizes to Stokes theorem. | am not aware that how deep discrete
analogues of Stokes theorem are proved or even formulated but it should all be
under the shadow of analogy between difference and derivative. | think
discrete analogue of Stokes theorem should involve a discrete analogue of
differential forms, which according to my limited knowledge is not formulated
yet.

§12. The analogy between difference and derivative

This analogue leads to solution of difference equations, which is discrete
analogue of solutions of continuous differential equations. This theory is an
important part of numerical analysis. Finite element method is also a similar
analogous finite analogue of infinite systems. The latter analogy fits into the
dialogue of finite and infinite. But here we are concerned about the dialogue
between discrete and continuous. Stokes theorem suggest that counting on a
discrete realm on arbitrary manifold should be possible to be formulated. |
propose to work on lattices on affine manifolds. The complex analogue of

affine manifold is hard to deal with since the operator Z - % does not

preserve a lattice like Z [i] which brings complications. If we work with
logarithmic embeddingof Z into R° we may get into somewhere, but how
to formulate the higher dimensional analogue is not clear to me. In other
words, what is the complex analogue of lattices on an affine manifold? The
quotient of C/Z where Z is multiplicatively generated by a non-unit

Page 7 of 12



element is compact and this has higher dimensional analogue. May be we can
patch together some open subsets of C*"/z" in a way that we get a lattice of
locally compact quotients.

§13. Statistical mechanics

One can do statistical mechanics over a Riemann surface or over any
manifold. One can do physics over arbitrary manifold and make the statistical
computation converge in the limit to continuous way of doing mechanics.
Usually this model is used to understand the local to global behavior of gas and
get hands on concepts of thermodynamics but it can be done for any piece of
classical mechanics. Although this approach originated under the philosophy of
local to global but it can be definitely viewed under the shadow of dialogue
between discrete and continuous. You can consider solids and liquids as
superposition of large number of points and assuming local correlations
between them and deduce global formulas of classical mechanics by
superposition. Same formulas can be used for models of continuous objects
and this forms a dialogue between discrete and continuous by forming an
analogy. The same goes between any two discrete and continuous models of
any phenomena in nature. There are abstract analogues of statistical thinking
on Riemann surfaces or on higher dimensional spaces, which deal with this
concept, which are not necessarily generated from nature. The sources of ideas
are both from nature and metaphysics. It is impossible for human to create a
concept from nothingness.

§14. Fundamental group and covering spaces

This is one the most important dialogues between discrete and continuous. In
some special cases, this happens in Lie groups and symmetric spaces also. This
theory was originated by Poincare. Fundamental group is the discrete object
approximating the quotient space. For example, hyperbolic, elliptic and
parabolic Riemann surfaces can be determined completely by their
fundamental group and in fact, this is how the concept of hyperbolic groups
was originated by Gromov. The hierarchy of covering spaces is very similar to
hierarchy of finite field extensions. One can think of this analogy in the
formalism of analogy between function fields and number fields, but the
analogy between discrete and continuous is not present in this formulation.
The general format is properly discontinuous action of a group on a space,
where one considers the group as being a discrete analogue of the space. In
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fact, the relative space obtained by quotient of the original space by the action
of the group can be thought as geometric analogue of group acting. It is not
that any distribution of discrete points on a continuous space could serve as an
analogue between discrete and continuous objects. This distribution should be
optimal in some sense.

§15. Distributions of points on a space

What we mean here is distribution of finitely many points or a discrete set of
points on a space. This is different from equidistribution of an infinite set. This
is very similar to a discrete realm inside a continuous realm as was theorized by
Riemann on his paper on philosophy of spaces. One example would be
distribution of internet nods on the surface of earth and all the problems of
communication related to that. Another example is distribution of data to
mobile phones of customers using a network of correlative antennas. An
abstract example would be if we want to distribute n points on a unit sphere,
an asking under which pattern the minimum distance of two of the points is
maximum. The question is how well the discrete space serves as a model for
continuous space. One can ask the same question for infinite in a non-compact
space. Suppose every unit disc contains a point of the discrete space, for what
patterns of the discrete space the minimum distance between its points is
maximum. Imagine this question over a hyperbolic Riemann surface, so that
you see how non-trivial it may geometrically look. One can use physical
intuition to understand these examples better. If n points on a unit sphere repel
each other what are the stable patterns. Can you formulate the analogue for
infinitely many points.

§16. Packing and circle packing

Packings of centrally symmetric objects inside centrally symmetric spaces a
nice example of well distribution set of discrete points on a continuous realm.
For example, packing of sphere by equal balls, packing of circle by equal disks,
or packing of square by equal squares. Packing by non-equal objects is much
more complicated and much more interesting. It would be more interesting if
we consider mobile case when a few points are given inside a circle and they
grow at the same time and push each other when these grown circles touch
and we ask what is the final pattern of such a packing. One can introduce an
analogue problem of packing for squares inside a square or rectangles inside a
rectangle. Of course, this problem makes sense for any set of small particles on
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e-neighborhood growing around them and letting them push each other away.
This problem is mathematically interesting but not related to the dialogue
between discrete and continuous. A particular example of packing is
tessellation of a square by not necessarily equal squares or tessellation of a
square by not necessarily equal rectangles. The centers of tile are much better
approximation to the ambient space rather than those given by packings,
which are not tessellations.

§17. Modular forms

Modular forms are related to symmetric spaces, which are related to the
dialogue between discrete and continuous, but there are other hidden aspects
of this dialogue in the world of modular forms. Modular forms, which are
eigenforms of hecke operators, serve as arithmetic objects, which are highly
rigid and discrete. Part of this rigidity is due to g-expansion and part of this
rigidity can be understood in the language of L-functions, which we will study
in corresponding sections. But the main feature we want to mention here is the
Shimura-Taniyama-Weil conjecture proved by Andrew Wiles. Langlands was the
first person who believed that all motives over number fields are modular and
Shimura-Taniyama-Weil conjecture was trivial to him. Motives over number
fields are arithmetic objects and one cannot have a continuous family of them.
If we assume they are defined over ring of integers of a number field it is more
clear why these arithmetic objects are discrete. On the other hand, modular
forms form a vector space, which is generated, by arithmetic modular form. By
arithmetic modular form, we mean those having g-expansions with integer
coefficient. This is a dialogue between discrete and continuous. A lattice in a
vector space are made exactly those elements, which are defined over ring of
integers.

§19. g-expansions

All versions of modular forms that | know, elliptic modular forms, Hilbert
modular form, Siegel modular forms, Jacobi modular forms, have a g-expansion
formulations. Modular forms have many different formulations. | know of
automorphic, moduli, g-expansion, symmetric space, Galois representation
formulations. g-expansion among other formulations has the feature of being
local. These modular forms with integer coefficients in g-expansion generate
the vector space of all modular forms. But they are not necessarily the same as
modular forms defined over Z in the moduli space. Finding a geometric
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lattice generating the space of modular forms is a challenge. Action of Hecke
correspondences on modular forms can be translated to the language of g-
expansion, which is the case in all different formulations of modular forms. Of
course, these correspondences are arithmetic so they also act on modular
forms with g-expansion with integer coefficients. This action can be extended
to modular forms with arbitrary coefficient. A vector space admitting invariant
lattices under group actions is a dialogue between discrete and continuous. In
this setting, it says that the study of the discrete actions precedes the study of
continuous actions because it has arithmetic structure.

§20. L-functions and Zeta functions

L-functions and zeta functions are arithmetic objects. We cannot have a
continuous family of L-functions with Euler product, or else the Riemann
hypothesis cannot be true. This discrete nature of L-functions does have
continuous analogue or anything to do with continuity in the same sense as g-
expansions. L-functions are not a discrete set inside a continuous realm. On the
other hand I-functions are analytic functions with zeros and poles and this is a
continuous feature these objects. Special values is again a link and a dialogue
between continuous and discrete, especially when one tries to interpret the
special value in terms of the motive or modular form the L-function is
associated to. There should be on the other hand zeta functions associated to
all arithmetic objects for example finitely generated function fields over Q or
over finite fields or any other arithmetic structure, through associating a
arithmetic variety on the way or not. For example, one associate zeta functions
to Galois representations and so on, even if they don’t come from geometry
and we expect special value be interpreted in terms of invariants of arithmetic
objects. This is the general dialogue between continuous and discrete
associated to all arithmetic objects.

§21. Homology and cohomology over Z with torsion

Homology and cohomology with integer coefficients gives a lattice inside the
corresponding homology and cohomology with coefficients in R and in a
sense it is the same analogy between discrete and continuous we discussed
before, but there is a new feature here and that is the torsion part which is
eliminated where one tensors with R . Although torsion is also
corresponding to a geometric concept, but is cannot be considered a discrete
object approximating a continuous realm. This brings us to a new realm of
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finite objects which are discrete and do not necessarily have continuous
analogue. Linear groups over finite fields have analogues in other fields, but
this analogy is not of the same type of the analogies we discussed before.
There are many finite groups for example that are not related to continuous
objects directly. So, this is a philosophy to find continuous objects analogues to
every piece of finite structure, and in this practice many new kinds of analogy
between discrete(finite) and continuous will arise. Cyclic groups are analogues
to S' and any groups can be thought as symmetry of geometric objects or
finite subgroups of symmetries of objects with more symmetry. There is in fact
an ambiguity in the claim that cyclic are approximating S' , because direct
sum of cyclic groups should be analogues to direct sum of S' 's but
sometimes direct sum of cyclic group is cyclic.

§22. Z, as amodel for circle s'

i

We know that if m=p,“...p,* is prime decomposition of m then Z, =

@Z,. . Therefore, we have to understand Z,. . The questionis ©DZ, is
always cyclic, but what about Z,.€Z, . For example what shall we say about

Z,DZz, ?lsitanalogue of S' oranalogueof S'@S' = T' ? Orboth? The
latter seems unreasonable. We can solve this riddle by considering Z,®Z,
as a subgroup of the smallest Z, containing both. Then we get a map

Z,DZ,~Z, .There is another approach as and that would be embedding
finite Abelian group @©Z,. as a subgroup of the least number of cyclic groups
possible and then we will have a new concept of rank of a commutative finite
group. | think the best choice will be starting with the assumption that any
cyclic group is analogues to s' and extensions of cyclic groups are analogues
to extension of S' . One can relate this to covering spaces and fundamental
groups, which we discussed before and also relate them to symmetric space
and also there is an analogue of hecke operators. On all these formulations, the
corresponding dialogue between discrete and continuous holds.
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