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We have to start somewhere. It might as well be with three rational numbers
𝑎, 𝑏, and 𝑐 (with 𝑎 ≠ 0) and a quadratic equation

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0.

A little trick1 involving completing the square gives you a formula 1 It’s fun to remember how this
goes: assume 𝑎 = 1; now rewrite
your equation as

𝑥2 + 𝑏𝑥 + (𝑏/2)2 = (𝑏/2)2 − 𝑐,

and note that the left side is
(𝑥 + 𝑏/2)2.

𝑥 = 1
2𝑎
(−𝑏 ±√𝑏2 − 4𝑎𝑐) .

This formula shows you a couple of things.
Right away, you now have a tool with which to get very precise answers

to interesting questions. When the designers of a new tablet computer boast
its diagonal length of 30 centimetres, giving you a screen area of half a square
metre!, you get suspicious, and let 𝑑 be the diagonal and𝐴 be the area. So its
measurements are 𝑥 by𝐴/𝑥, where 𝑥2 +𝐴2/𝑥2 = 𝑑2. So your formula tells
you that 𝑥2 = 12 (𝑑

2 ± √𝑑4 − 4𝐴2), but since their numbers give 2𝐴 > 𝑑2,
you’re pretty sure that tablet isn’t gonna live up to the hype.

And you read somewhere that ancient Greeks liked to use rectangles with
the property that if you lop off a square with a single cut, what you’ll be left
with is a rectangle with the same proportions.What are those proportions?
Well, if the short side has length 1, the long side will have length 𝑥, where

𝑥 = 1
𝑥 − 1
.

Your formula tells you that

𝑥 = 1
2
(1 + √5)

= 1.618033988749894848204586834365

638117720309179805762862135448

622705260462818902449707207204⋯ .

There’s that rush of satisfaction at having a complete, tidy answer. You might
feel a twinge of annoyance that 𝑥 is not a nice rational number – you didn’t
get to just shout Six! orFive-twelfths! and do a mic-drop – but still, that’s the
answer in a relatively neat package.
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But the realisation that 𝑥 is not rational shows you a second thing:
the quest for a solution to your equation has forced you into to take on
more numbers than you had to start with. After all, 𝑎, 𝑏, and 𝑐were just
rational numbers. The question what is 𝑥? certainly made perfect sense
without knowing anything but rational numbers, but the answer doesn’t – to
understand it, you have to accept new numbers like√5.

In fact, now that you think of it, this isn’t the first time a problem forced
you contend with a new object: you learned to count with what we now call
the set

𝐍 ≔ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,… }.

Then you realised you also had to quantify nothing2, and after a sleepless 2 The introduction of the cipher 0
or the group concept was general
nonsense too, and mathematics was
more or less stagnating for thousands
of years because nobody was around
to take such childish steps … – A.
Grothendieck

night contemplating the void, you came to grips with the set

𝐍0 ≔ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,… }.

But then you found yourself trying to contemplate a number that when you
add it to 3 gives you 2.

—But three is bigger than two! —Yeah, but maybe it exists anyhow, like when
you owe more money than you have, or when you’re below sea level.—But
three is bigger than two! —Yeah, but look: I can consider solutions to any
equation 𝑥 + 𝑎 = 𝑏 with 𝑎, 𝑏 ∈ 𝐍0 …

Thus your universe grew a little:

𝐙 ≔ {… , −6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6,… }.

With that, your powers increased: now you can add, multiply, and subtract.3 3 And not that impoverished
subtraction where you only knew
how to make 𝑏 − 𝑎when 𝑏was at
least as big as 𝑎.

And you found yourself trying to find a number that when you multiply it
by two gives you three.

—But two doesn’t go into three! —Yeah, but when you put three equal line
segments together end to end, there definitely is a place that’s halfway between
the ends.—But two doesn’t go into three! —Yeah, but maybe it’s a new number
I could call 3/2, and it would be the solution to the equation 2𝑥 = 3. In fact,
for any𝑚, 𝑛 ∈ 𝐙, as long as𝑚 ≠ 0, I can add solutions to𝑚𝑥 + 𝑛 = 0…

Again your universe grew:𝐐. Now you can add, multiply, subtract, and
divide.

The quadratic formula fits nicely into this pattern of growth and mind-
expansion. As long as you know how to form the square root of any rational
number, you can use your formula to solve any equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0.
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That means accepting a bunch of new numbers like√3which at least are
reasonable geometrical distances, but also a bunch of numbers like the two
square roots of −1, neither of which could be the length of anything!4 If 4 —But the square of any number is

nonnegative!fact, as soon as you accept√𝑑 for a squarefree5 integer 𝑑, you earn the right
5 An integer is squarefree if the
only perfect square that divides it
is 1.

to solve any quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0with 𝑎, 𝑏, 𝑐 ∈ 𝐐 and
𝑏2 − 4𝑎𝑐 = 𝑞2𝑑 for some 𝑞 ∈ 𝐐.

That is, if you write𝐐(√𝑑) for the set of numbers of the form 𝑠 + 𝑡√𝑑
with 𝑠, 𝑡 ∈ 𝐐, then𝐐(√𝑑) is a field in which you can solve a nice fat family of
quadratic equations. Furthermore, you’re permitted to continue expanding
your mind:

𝐐 ⊂ 𝐐(√−1) ⊂ 𝐐(√−1)(√2) ⊂ 𝐐(√−1)(√2)(√3) ⊂ 𝐐(√−1)(√2)(√3)(√5) ⊂ ⋯

You can call the union of all these𝐾, then you’ve built yourself a very big
field in which you can find the roots of any quadratic polynomial with
rational coefficients. The quadratic formula permits you build the whole
tower just by adding a sequence of new square roots to𝐐.

•

Let’s pause the story and reflect. On one hand, we have a useful computa-
tional tool for giving definitive answers to particular questions. On the other
hand, it is telling us something structural and conceptual about the collection
of all solutions to a class of problem. Each of these perspectives is important,
and each is emblematic of a kind of mathematician.

On one hand, there are folks who are good at using their knowledge
to strike fast to find quick, clever, and sometimes unexpected solutions
to narrowly-delineated problems. The quadratic formula gives you a precise
expression for the golden ratio as 12 (1 + √5). These are hunters – they patrol
on the outside of a cluster of gazelles, waiting for the moment when one
becomes isolated from the herd, so they can strike with their overwhelming
power.

On the other hand, there are those who reflect on the patterns they
observe, and they develop large programs and concepts to understand
these patterns. They open up new avenues of research with the methodical
development of ideas. The quadratic formula shows us that we can enlarge the
field of rational numbers to contain the roots of quadratic polynomials, just by
adding in all the square roots of integers. These are farmers – they plant seeds,
water crops, watch the skies, spend time working with the soil, nurturing an
idea to the eventual harvest.
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There’s been a lot of discussion of these two kinds of mathematicians, but
perhaps not with these labels. Jean-Pierre Serre is a hunter, as is Sir Michael
Atiyah. Alexander Grothendieck was a farmer, as was Daniel Kan.6 Mymain 6 I too, am a pretty unmistakable

farmer.point is:

Hunters and farmers are both necessary.

These days especially, hunters are generally the ones to win the accolades
and get papers in the best journals. They ‘score’ higher. This is not hard to
understand: hunters speak directly to the limbic system, and solved problems
– particularly at this point in history – are the coin of the realm. At the
same time, however, the best farmers get to write for the ages and make an
indelible mark on the community.

Farmers’ work is expansive, quiet, and slow.We don’t typically leave the
farm unless we need to buy equipment. We need time: we don’t catch a quick
harvest between meetings. We work for a long time on a certain crop, harvest,
and then plant a new crop, adapted to the soil left behind. When we aren’t
at work, we are asleep. That’s not because we’re rushed or bullied; it’s simply
because there’s always something to do on the farm. You don’t have to be fast
to work on a farm, though a certain amount of physical strength is obviously
helpful.

By contrast, hunting is a hell of a lot more exciting, at least from the out-
side. Hunters may work over vast domains, or they may confine themselves
to relatively small areas where plenty of prey can be found. They spend
plenty of time stalking their prey, but their jobs are completed in very short
bursts. Speed and raw power are necessities, as are the right set of ‘accidents’
– just happening upon that herd of oryxes …The stakes are higher: whereas
harvests can vary by degree, a hunt is almost binary – either you solve the
problem or you don’t. As a hunter, there is a greater risk that you’ll fail
dramatically and go hungry.

You might be wondering – which are you?7 Your habits of mind, the 7 Are you a hunter or a farmer? Take
our online quiz and find out!results and ideas that captivate you, the kinds of mathematical objects you

find yourself wondering about and playing with – all of these will suggest a
direction. But here are some principles:

• Don’t deny yourself. There are a lot of hunters who try too hard to
be farmers for part of their careers, and a lot of farmers who try too
hard to be hunters for part of their careers.8 Follow up on your natural 8 I’ve fallen into this trap myself.

predilections. Don’t be afraid to love the mathematics you love.
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• At the same time, don’t try classify yourself too early. There’s no need to
get hung up on labels.9 You’ll even find that your attitudes may change as 9 There are even a handful of

people who have been successful
both at hunting and farming, and
they are amazing. Deligne’s a
good example.

you age.

• Regardless of whether you’re a hunter or a farmer, you must read everything.
That paper on abstract widgets might provide a tool that a skilled hunter
can deploy, and that masterstroke solution in that paper might be a special
case of a general pattern that a skilled famer can cultivate.

•

Let’s return to our story. It turns out that there’s a cubic formula too.10 If 𝑎, 𝑏, 10 This is usually credited to
various Italian mantematicians
from the 16th century – del Ferro
and Tartaglia most particularly.

𝑐, and 𝑑 are rational numbers (with 𝑎 ≠ 0), then the equation

𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0

can be solved, first by assuming 𝑎 = 1 and performing the substitution
𝑥 = 𝑡 − 𝑏/3 to get it to the form

𝑡3 + 𝑝𝑡 + 𝑞 = 0.

Then the formula says that the three solutions are all of the form

(−𝑞/2 + √(𝑝/3)3 + (𝑞/2)2)
1/3
+ (−𝑞/2 − √(𝑝/3)3 + (𝑞/2)2)

1/3
.

One has to mumble something now about how to select the cube roots
correctly, but it can be done. This formula shows you that the roots all lie in a
field obtained by tacking on a square root and then a cube root:

𝐐 ⊆ 𝐐(√𝑟) ⊆ 𝐐(√𝑟)(𝛼1/31 ) ⊆ 𝐐(√𝑟)(𝛼
1/3
1 )(𝛼

1/3
2 ),

where 𝛼1,𝛼2 ∈ 𝐐(√𝑟).
There’s a quartic equation too, discovered soon after by Ferrari. By

dividing and substituting, you reduce to a monic without a 3rd degree term.
Then some clever substitutions let you turn this into a combination of cubics
and quadratics. The general formula is far too much for a mere mortal to
remember, but gazing upon its intricacies leads you to ask yourself:

What exactly are we achieving when we write these formulas?

On one hand, there is a certain kind of fun and satisfaction at seeing these
impressively enormous formulas – though maybe that satisfaction is waning
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as these formulas get more involved. On the other, we are actually saying
something conceptual about the roots of our polynomials: if 𝑓 a polynomial
𝑎𝑛𝑥𝑛 +⋯ + 𝑎0. Expressing the roots of 𝑓with radicals is really saying that
the roots of 𝑓 all lie in a field 𝐹 ⊇ 𝐐 that can be obtained via a sequence of
field extensions

𝐐 = 𝐹0 ⊆ 𝐹1 ⊆ ⋯ ⊆ 𝐹𝑛 = 𝐹

in which11 𝐹𝑖+1 = 𝐹𝑖(𝛼
1/𝑝𝑖
𝑖 ). 11 Here, the 𝑝𝑖 ’s are prime.

The next task, to generate a formula to solve the quintic, sat around
unsolved for the next three centuries. It was Abel (following an incomplete
proof by Ruffini) who was the first to show that for 𝑛 = 5, there are quintic
equations whose roots can’t be expressed with radicals. In fact, here’s one
now:

𝑥5 − 𝑥 − 1 = 0.

This has one real root and two distinct pairs of complex conjugate roots, but
none of them can be expressed with radicals.

Abel’s proof is the classic work of the hunter. It’s a sequence of moves that
are mostly simple, ingenious, and precisely adapted to the problem at hand.
As you read his argument,12 you get the strong impression of someone who 12 Michael Rosen wrote an

excellent exposition of the
argument in the American
Mathematical Monthly in 1995.

isn’t setting up a theory or establishing a general way of thinking about these
objects – he’s going in for the kill.

By contrast, Galois’s proof, which is the one we now usually teach, has
all the hallmarks of a farmer. Galois isn’t telling you how to prove the
unsolvability of the quintic; he’s telling you how to think of any problem of
this kind13. In keeping with his farmerly nature, his papers were rejected – a 13 and if you’re lucky, solve it!

few times, it seems.

One thing I abhor is the stifling clouds of exaltation that settle in around
some mathematicians who do good work. Galois’s biography is most cer-
tainly romantic and entertaining, but too often you see an unsettling sort of
idolatry emerge when one speaks of Galois. Excellent and underappreciated
mathematician though he was, Galois was just another form of life. If he
walked into the room now, we wouldn’t have to avert our gaze. This unwar-
ranted mystification is a terrible trap that mathematics finds itself in all too
often. These people aren’t magicians; they toiled for years with their ideas
and computations.

In preparing this talk, I was tooling about on the Internet to learn a bit
about how Galois understood his groups. I stumbled upon a messageboard
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where someone was educating themselves on some Galois theory, and asked
a pretty reasonable question about how one connected two ideas they’d
seen. I then saw the responses, which varied from the revoltingly elitist14 14 —You can’t learn Galois theory

properly just from a book.—
Bollocks. This stuff isn’t a secret;
the books are excellent and clear;
this stuff is out there for everyone.

to obfuscatingly worshipful.15 There is no place for such nonsense in our

15 —Only a genius like Galois could
see this.—Bollocks! This person
wasn’t even asking a hard question.
Stop letting your idol (idle?)
reverence get in the way of your
comprehension.

subject.

Standing in awe is an unsuitable posture for a mathematician.

We’ve accepted that expressing the roots of a polynomial 𝑓 with radicals
is really saying that the roots 𝜃1,… , 𝜃𝑛 all lie in a field 𝐹 ⊇ 𝐐 that can be
obtained via a sequence of field extensions

𝐐 = 𝐹0 ⊆ 𝐹1 ⊆ ⋯ ⊆ 𝐹𝑛 = 𝐹

in which 𝐹𝑖+1 = 𝐹𝑖(𝛼
1/𝑝𝑖
𝑖 ).

Note that at each stage, adding in one 𝑝𝑖-th root of 𝛼𝑖 is meant to add
in all the others as well. If you think about where the 𝑝𝑖-th roots of 1 sit
inside𝐂, you’ll notice that these roots can be permuted cyclically, but
there’s something fishy about other permutations – they aren’t algebraic. To
make that precise, we’ll say that a permutation 𝜎 of some finite collection
of elements 𝑟1,… , 𝑟𝑛 in a field extension 𝐸 ⊇ 𝐸′ is 𝐸-algebraic if, for any
polynomial 𝐹 ∈ 𝐸[𝑥1,… ,𝑥𝑛] in 𝑛 variables with coefficients in 𝐸, one has

𝐹(𝑟1,… , 𝑟𝑛) = 0 if and only if 𝐹(𝑟𝜎(1),… , 𝑟𝜎(𝑛)) = 0.

That is, 𝐸-algebraic permutations are those that don’t destroy algebraic
relations among the elements with coefficients from 𝐸. When I look at the
roots of a quadratic equation, for example, the fact that it’s only a change in
sign on the square root in the quadratic formula is basically ensuring that
swapping them is an algebraic operation.

This is a key observation: the solutions of a linear equation are unique,
but the solutions of a general polynomial equation 𝑓(𝑥) = 0 have a higher
order unicity; they aren’t unique, but if 𝑓 is irreducible, then the algebraic
permutations of the roots act transitively.

So when we look at a sequence of field extensions

𝐐 = 𝐹0 ⊆ 𝐹1 ⊆ ⋯ ⊆ 𝐹𝑛 = 𝐹,

in which 𝐹𝑖+1 = 𝐹𝑖(𝛼
1/𝑝𝑖
𝑖 ), we see a sequence of cyclic groups𝐶𝑝𝑖 , which

are the groups of 𝐹𝑖-algebraic permutations of the 𝑝𝑖-th roots. Expressed
differently, the field automorphisms of 𝐹𝑖+1 that fix 𝐹𝑖 form the group
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𝐶𝑝𝑖 . Now, when we look at the group𝐺 of field automorphisms of 𝐹, this
filtration of fields produces a composition series of𝐺whose quotients are the
cyclic groups𝐶𝑝𝑖 .

But now we discover an obstruction to our ability to express the roots of
𝑥5 − 𝑥 − 1 in terms of radicals: one can do this if and only if the𝐐-algebraic
permutations of the roots 𝜃1,… , 𝜃5 form a group with a composition series
whose quotients are cyclic of prime order. However, one computes directly
that every permutation of the roots of 𝑥5 − 𝑥 − 1 is𝐐-algebraic. But the
symmetric group 𝛴5 has a short composition series: 1 ⊂ 𝐴5 ⊂ 𝛴5, and𝐴5 is
not cyclic.

•

Galois theory is a piece of 20th century mathematics that somehow
slipped into the 19th century. Instead of contemplating objects – such as
roots of polynomials – as isolated entities, Galois compels us to look at them
along with the isomorphisms between them. This little idea turns out to be
the gift that keeps on giving …

•


