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Preface

The present volume is self-contained, but it is a part of a larger project. In
an earlier volume, entitled “Geometry and Algebra in Ancient Civilizations”, I
have presented my view on the prehistory of algebra and geometry from the
neolithical period to Brahmagupta (7th century A.D.). The present volume
deals with the historical period from al-Khwarizmi, the earliest author of an
“Algebra”, to Emmy Noether.

In this book I shall restrict myself to three subjects, namely Part One:
Algebraic Equations; Part Two: Groups; Part Three: Algebras.

My warmest thanks go out to all those who helped me by reading parts of
the manuscript and suggesting essential improvements: Wyllis Bandler
(Tallahassee, Florida), Robert Burn (Cambridge, England), Max Deuring’
(Gottingen), Jean Dieudonné (Paris), Raffaella Franci (Siena), Hans
Freudenthal (Utrecht), Thomas Hawkins (Boston), Erwin Neuenschwander
(Ziirich), Laura Toti Rigatelli (Siena), Warren Van Egmond (Miinchen).

In her usual careful way, Miss Annemarie Fellmann has typed the manu-
script. She has also drawn the figures and helped me, together with Erwin
Neuenschwander, in reading the proof sheets. Many thanks to both and to the
editorial staff and the production department of the Springer-Verlag for their
nice cooperation.

Zirich, March 1985 B.L. van der Waerden
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Algebraic Equations



Chapter 1
Three Muslimic Authors

It is beyond my competence to write a history of algebra in the Muslimic
countries. Every year new publications on the subject appear. I guess the time
has not yet come for a comprehensive history of Muslimic mathematics.
Therefore 1 shall restrict myself to three most interesting authors, whose main
works are available in modern translations, namely

A. Al-Khwarizmi,

B. Tabit ben Qurra,

C. Omar Khayyam.

Part A
Al-Khwarizmi

If we want to form an opinion on the scientific value and the sources of the
work of al-Khwarizmi, we have to consider not only his treatise on Algebra,
but also his other mathematical, astronomical, and calendaric work. The pre-
sent section will be divided into twelve subsections.

1. The Man and his Work

An excellent account of the life and work of Muhammad ben Musa al-
Khwarizmi has been given by G.J. Toomer in Volume VII of the Dictionary of
Scientific Biography, pages 358-365. From this account I quote:

Only a few details of al-Kwarizmi’s life can be gleaned from the brief notices in Islamic
bibliographical works and occasional remarks by Islamic historians and geographers. The epithet
“al-Khwarizmi” would normally indicate that he came from Khwarizm (Khorezm, corresponding
to the modern Khiva and the district surrounding it, south of the Aral Sea in central Asia). But
the historian al-Tabari gives him the additional epithet “al-Qutrubbulli”, indicating that he came
from Qutrubull, a district between the Tigris and Euphrates not far from Baghdad, so perhaps his
ancestors, rather than he himself, came from Khwérizm; this interpretation is confirmed by some
sources which state that his “stock” (asi) was from Khwarizm....

Under the Caliph al-Ma’mun (reigned 813-833) al-Khwarizmi became a member of the
“House of Wisdom” (Dar al-Hikma), a kind of academy of scientists set up at Baghdad, probably
by Caliph Hartin al-Rashid, but owing its preeminence to the interest of al-Ma'miin, a great
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patron of learning and scientific investigation. It was for al-Ma’'mun that al-Khwarizmi composed
his astronomical treatise, and his Algebra also is dedicated to that ruler.

From now on I shall omit all bars and dots. This simplifies the printing,
and it will not give rise to any misunderstanding.

2. Al-jabr and al-muqabala

The biographer Haji Khalfa states in his biographical lexicon (ed. Fliigel,
Vol. 5, p. 67) that al-Khwarizmi was the first Islamic author to write “on the
solution of problems by al-jabr and al-mugabala”. What do these two ex-
pressions mean?

The usual meaning of jabr in mathematical treatises is: adding equal terms
to both sides of an equation in order to eliminate negative terms. Another, less
frequent meaning is: multiplying both sides of an equation by one and the
same number in order to eliminate fractions. See George A. Saliba: The
Meaning of al-jabr wa’l mugabalah, Centaurus 17, p. 189-204 (1973).

The usual meaning of mugabala is: reduction of positive terms by subtract-
ing equal amounts from both sides of an equation. But al-Karaji also uses the
word in the sense: to equate. The literal meaning of the word is: comparing,
posing opposite.

The combination of the two words: al-jabr wal-mugabala is sometimes used
in a more general sense: performing algebraic operations. It can also just
mean: The science of algebra.

Let me give some examples of the use of these words in the work of al-
Khwarizmi. On page 35 of Rosen’s translation of the “Algebra of Mohammed
ben Musa”, the following problem is posed:

I have divided ten into two portions. I have multiplied the one of the two portions by the
other. After this I have multiplied one of the two by itself, and the product of the multiplication by
itself is four times as much as that of one of the portions by the other.

Al-Khwarizmi now calls one of the portions “thing” (shay) and the other
“ten minus thing”. Multipliying the two, he obtains in the translation of Rosen
“ten things minus a square”.

For the square of the unknown “thing” the author uses the word mal,
which means something like “wealth” or “property”. He finally obtains the
equation

“A square, which is equal to forthy things minus four squares”.

In modern notation, we may write this equation as

x2=40x —4x2.

Next the author uses the operation al-jabr, adding 4x? to both sides, thus
obtaining
5x2=40x
or
x2= 8x
from which he obtains x=8.
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Just so, on page 40, al-Khwarizmi has the equation
50 +x%=29+10x
which is reduced by al-mugabala to
21 +x2=10x.

In the introduction to his treatise the author states that the Imam al-
Mamun

“has encouraged me to compose a short work on calculating by Completion and Reduction,
confining it to what is easiest and most useful in arithmetic, such as men constantly require in
cases of inheritance, legacies, partition, lawsuits, and trade, and in all their dealings with another,
or where the measuring of lands, the digging of channels, geometrical computation, and other
objects of various sorts and kinds are concerned...”.

The full title of the treatise is “The Compendious Book on Calculation by
al-jabr and al-mugabala”. The treatise consists of three parts.

In the first part, al-Khwarizmi explains the solution of six types, to which
all linear and quadratic equations can be reduced:

1) ax?=bx

@) ax*=b

(3) ax=b

4) ax?+bx=c

) ax®+c=bx

(6) ax?=bx+c,

where a, b, and ¢ are given positive numbers.

Al-Khwarizmi gives rules for solving these equations, he presents demon-
strations of the rules, and he illustrates them by worked examples. We shall
discuss his demonstrations presently.

3. On Mensuration

The second chapter of the “Algebra” is concerned with mensuration. Since
Rosen’s translation was deemed unsatisfactory, Solomon Gandz published the
Arabic text together with a new English translation in his treatise “The
Mishnat ha-Middot and the Geometry of Muhammed ibn Musa Al-Khowa-
rizmi”, Quellen and Studien zur Geschichte der Mathematik A2 (Springer-
Verlag 1932).

The chapter consists mainly of rules for computing areas and volumes. For
instance, the area of a circle is found by multiplying half of the diameter by
half of the circumference. For finding the circumference, three rules are pre-
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sented. If the diameter is d and the periphery p, the three rules are

™ p=34d,
®) p=1/1042,
9) p=52832,

Note that the rule (7) is due to Archimedes, who proved that p is less than
3 1/7 times d and more than 3 10/71 times d. The same rule (7) is also given by
Heron of Alexandria in his “Metrica”, and in the Hebrew treatise “Mishnat
ha-Middot”, edited and translated by Solomon Gandz.

The rule (8) is also found in Chapter XII of the Brahmasphutasiddhanta of
Brahmagupta. See H.T. Colebrooke: Algebra with Arithmetic from the San-
skrit of Brahmegupta and Bhascara (London 1817, reprinted 1973 by Martin
Sdndig, Wiesbaden), p. 308-309.

Most remarkable is the rule (9), which is equivalent to the very accurate
estimate

(10) n~3.1416.

Al-Khwarizmi ascribes the rule (9) to “the astronomers”, and indeed the
same rule is found in the Aryabhatiya of the Hindu astronomer Aryabhata
(early sixth century AD). Verse II 28 of the Aryabhatiya reads:

Add 4 to 100, multiply by 8, and add 62000. The result is approximately the circumference of
a circle of which the diameter is 20000 (see W.E. Clark: The Aryabhatiya of Aryabhata, p. 28).

In the last chapter of my book “Geometry and Algebra in Ancient Civili-
zations” (Springer-Verlag 1983) 1 have shown that the estimate (10) was also
known to the Chinese geometer Liu Hui (third century AD). This estimate may
well be due to Apollonios of Perge (see p. 196-199 and p. 207-213 of my book).

Al-Khwarizmi states that in every rectangular triangle the two short sides,
each multiplied by itself and the products added together, equal the product of
the long side multiplied by itself. Thus, if a, b, ¢ are the sides, we have

a?+b*=c

The proof given in the text is valid only in the equilateral case (a=b). From
this fact we may safely conclude that al-Khwarizmt’s main source is not a
classical Greek treatise like the “Elements” of Euclid. Aristide Marre, who
published a French translation of al-Khwarizmi’s chapter on mensuration in
Annali di matematica 7 (1866), noted the insufficiency of the proof and added
that the author would never have been admitted to the Platonic academy!

An ancient Hebrew treatise exists which is closely connected, in contents
and terminology, with Khwarizmi’s chapter on Mensuration. The treatise is
entitled “Mishnat ha-Middot”. It was published, with an English translation
and excellent commentary, by Solomon Gandz in Quellen und Studien zur
Geschichte der Mathematik A2. By his arguments, Gandz has convinced me
that the author of the treatise was Rabbi Nehemiah, who lived about AD 150.
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The author knew how to compute the periphery of a circle as 34d. For the
area of a circle segment, he presents the same formula as Heron of Alexandria:

11 ey
A=(c+h)-§h+ﬁ(§>

in which ¢ is the chord and h the height of the segment. This formula is not in
al-Khwarizmi’s chapter on mensuration, but for the rest there are so many
similarities between this chapter and the Mishnat ha-Middot, that one is forced
to assume either a direct dependence, as Gandz does, or at least a common
source. It is also possible, as Gandz supposes, that al-Khwarizmi used a
Persian or Syrian translation of the Mishnat ha-Middot.

4. On the Jewish Calendar

No matter whether one does or does not accept the conclusion of Gandz
that al-Khwarizmi’s geometry was “verbally taken from the Mishnat ha-Mid-
dot”, in any case al-Khwarizmi was acquainted with Jewish traditions, for he
has written a treatise on the Jewish calendar. This treatise describes the Jewish
19-year cycle and the rules for determining on what weekday the month Tishri
begins. It also calculates the interval between the Jewish “era of the creation of
Abraham” and the Seleucid era, and it gives rules for determining the mean
longitudes of sun and moon. See E.S. Kennedy: Al-Khwarizmi on the Jewish
Calendar, Scripta mathematica 27, p. 55-59 (1964).

5. On Legacies

The third and largest part of the Algebra of al-Khwarizmi (p. 86-174 in
Rosen’s translation) deals with legacies. It consists entirely of problems with
solutions. The solutions involve only simple arithmetic or linear equations, but
they require considerable understanding of the Islamic law of inheritance. See
Solomon Gandz: The Algebra of Inheritance, Osiris 5, p. 319-391 (1938).

6. The Solution of Quadratic Equations

I shall now discuss in somewhat greater detail al-Khwarizmi’s solution of
the three types of mixed quadratic equations. In al-Khwarizmi’s own termi-
nology, the first type reads:

Roots and Squares equal to numbers.

For instance: one square and ten roots of the same amount to thirty-nine dirhems; that is to
say, what must be the square which, when increased by ten of its own roots, amounts to thirty-
nine?

The solution is: you halve the number of roots, which in the present instance yields five. This
you multiply by itself; the product is twenty-five. Add this to thirty-nine; the sum is sixty-four.
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Now take the root of this, which is eight, and subtract from it half the number of the roots, which
is four. The remainder is three. This is the root of the square you thought for; the square itself is
nine.

In modern notation, the equation is

x24+10x=39,
which can be transformed into
(x+5)*=39+25=064
x+5=]/—6—4 = 8
x=8-5 = 3.

Next, al-Khwarizmi presents a demonstration. He draws a square AB, the
side of which is the desired root x. On the four sides he constructs rectangles,
each having 1/4 of 10, or 2 1/2, as their breadth (see Fig. 1). Now the square

D

Fig. 1

together with the four rectangles is equal to 39. In order to complete the
square DH, we must add four times the square of 2 1/2, that is, 25, says al-
Khwarizmi. So the area of the large square is 64, and its side 8. Hence the side
of the original square is

§—5=3.

Al-Khwarizmi next presents another, simpler proof, in which rectangles of
breadth 5 are constructed only on two of the sides of the square AB (see Fig.
2). The result is, of course, the same.

Once more, we see that al-Khwarizmi’s source is not Euclid, for his first
proof is definitely more complicated than Euclid’s proof of proposition II 4,

A

Fig. 2
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which says that the square on a line segment a+b is equal to the sum of the
squares on a and b and twice the rectangle ab. The second proof of al-
Khwarizmi is similar to that of Euclid.

1 think this suffices to give the reader an idea of the style of al-
Khwirizmi’s treatise on al-jabr and al-mugabala. His treatment of the other
types of mixed quadratic equations is quite similar to that of the first type. The
other types are:

“Squares and numbers equal to roots”,

“Roots and numbers equal to squares”.

In each case, the solutions agree with those we learn at school, restricted to
positive solutions.

7. The Geography

Besides the Algebra and the treatise on the Jewish calendar, one more
treatise is extant in Arabic, namely the Geography (“Book of the Form of the
Earth”). It consists almost entirely of lists of longitudes and latitudes of cities
and localities. The work is a revision of Ptolemy’s “Geography”. Most proba-
bly it was based on a world map made by a commission of learned men
(possibly including al-Khwarizmi himself) on the order of Caliph al-Mamun.
For more details see Toomer’s article al-Khwiarizmi in the Dictionary of
Scientific Biography VII, p. 361 and 365.

8. On Hindu Numerals

A treatise of al-Khwarizmi on Hindu numerals is extant only in a Latin
translation, which was published first by B. Boncompagni under the title
“Algoritmi de numero indorum” (Rome, 1857) and next by Kurt Vogel under
the title “Mohammed ibn Musa Alchwarizmi’s Algorithmus” (Aalen 1963),
with a facsimile of the unique manuscript.

9. The Astronomical Tables

Al-Khwarizmi’s set of astronomical tables is available only in a Latin
translation of a revised version due to Maslama al-Majriti, who lived in
Cordova about AD 1000. This version differed from the original text of
Khwarizmi in several respects. First, the epoch of the original tables was the
era Yazdigerd (16 June 632), whereas al-Majriti used the era Hijra (14 July
622). Also, al-Khwarizmi’s table of Sines was based on the radius R=150,
whereas the extant tables have R =60.

The tables have been published, with a German translation and com-
mentary, by Heinrich Suter in Kongelige Dansk Vidensk. Selsk. Hist.-fil. Skrif-
ter 111, 1 (Copenhagen 1914). In the same Skrifter IV, 2 (Copenhagen 1962)
Otto Neugebauer published an English translation of the introductory chapter
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and a new, valuable commentary. For additions and corrections to this com-
mentary see C.G. Toomer’s review in Centaurus 10, p. 203-212 (1964-65).

If one studies E.S. Kennedy’s “Survey of Islamic Astronomical tables”,
Transactions American Philos. Soc. 46, p. 122-177 (1956), one sees that there
are two types of zijes, i.e. astronomical table sets: Ptolemaic and Non-Ptole-
maic. The Ptolemaic tables are based on Ptolemy’s “Almagest” or on his
“Handy Tables”. The non-Ptolemaic zijes, of which al-Khwarizmi’s table set is
the only extant example, are based on Persian or on Hindu tables or on both.
The non-Ptolemaic tables are less accurate, but more convenient than the
Ptolemaic ones. This, I think, is the reason why Khwarizmi’s tables remained
popular long after the better (Ptolemaic) tables were available.

Ibn al-Qifti says in his biography of al-Fazari about al-Khwarizmi:

He used in his tables the mean motions of the Sindhind, but he deviated from it in the
equations (of the planets) and in the obliquity (of the ecliptic). He fixed the equations according to
the method of the Persians, and the declination of the sun according to the method of Ptolemy.

What does this mean?

Let me begin with the last statement. In the zij of al-Khwarizmi there is a
table for finding the declination of the sun (Suter’s edition, p. 132-136, last
column but one). This table is based on the value 23° 51" of the obliquity of the
ecliptic, and it agrees with a table in Ptolemy’s “Handy Tables”. So here al-
Qifti is certainly right: the author of the tables determined the declination of
the sun “according to the method of Ptolemy”.

Concerning the “equations” of the planets, i.e. the corrections to be added
to the mean longitudes, we may note that the maximum values of these
corrections in the tables of al-Khwarizmi agree with those adopted in the
Persian table set “Zij-i Shah”. For this table set see E.S. Kennedy: The
Sasanian Astronomical Handbook Zij-i Shah, Journal of the American Orien-
tal Society 78, p.246-262 (1958). Obviously, when al-Qifti speaks of “the
Persians”, he has the Zij-i Shah in mind, which was still extant in the time of
al-Biruni and Ibn al-Qifti.

Thus we may conclude that one of the sources of al-Khwarizmi was the
Persian table set “Zij-i Shah™.

10. The “Sindhind”

I shall now discuss Ibn al-Qifti’s first statement: “He used in his tables the
mean motions of the Sindhind.” The word Sindhind is a corruption of the
Sanskrit Siddhanta, which is the usual designation of an astronomical textbook.
In fact, the mean motions in the tables of al-Khwarizmi are derived from those
in the “corrected Brahmasiddhanta” (Brahmasphutasiddhanta) of Brahma-
gupta. This was proved for the mean longitudes by J.J. Burckhardt, Vierteljah-
resschrift Naturf. Ges. Ziirich 106, p. 213-231 (1961), and for the apogees and
nodes by G.J. Toomer in his review of Neugebauer’s commentary to al-
Khwarizmi’s tables (Centaurus 10, p. 207).

Soon after AD 770, a Sanskrit astronomical work called by the Arabs
Sindhind was brought to the court of Caliph al-Mansur at Baghdad by a man
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called Kankah (or Mankah?), a member of a political mission from India. This
work was translated into Arabic. Based on this translation, Yaqub ben Tariq,
who is reported to have been at the court of al-Mansur together with Kankah,
composed a table set, which was called Zij al-Sindhind. According to the
Fihrist of el-Nadim (ed. Fligel, Vol. 1, p.274) the table set of al-Khwarizmi
was also called Zij al-Sindhind. It seems that al-Khwarizmi’s Zij was a revision
of an earlier table set based on the Sindhind, a revision into which some
elements and methods from the Zij-i Shah and from Ptolemy’s “Handy Ta-
bles” were incorporated.

11. The “Method of the Persians”

As we have seen, Ibn al-Qifti says that al-Khwarizmi “fixed the equations
according to the Method of the Persians”. What was this method?

I shall use the terminology and some notations of E.S. Kennedy’s classical
“Survey of Islamic Astronomical Tables” (Trans. Amer. Philos. Soc. 46). On
pages 148-151 of this survey Kennedy presents an abstract of the tables of al-
Khwarizmi, in which al-Khwarizmi’s method of finding the true longitudes of
the planets is explained.

Let 1 be the mean longitude of any planet. Its true longitude is calculated
by the formula

A=A+e +e,,

where e, is the “equation of the centre” and e, the “equation of the anomaly”.
For the sun and the moon we have only one equation e; due to the eccen-
tricity of the orbit. In al-Khwarizmi’s tables for the sun and the moon, the
function e, (x) is tabulated according to the formula

(12) eg(x)=(max e;)-sin x

in which x is the distance of the mean sun or moon from the apogeum of the
eccentric orbit:

(13) x=I—hap.

For the other planets, the calculation is more complicated. One first
calculates a preliminary value of the correction e,, calculated by plane tri-
gonometry from the triangle EPM in Fig. 3. In this drawing, the planet is
supposed to be carried by an epicycle, which is in turn carried by a concentric
circle. The angle e, can be tabulated as a function of the angle y (see H. Suter,
Tafeln des Muhammed ibn Musa Al-Khwarizmi, pages 136-167, Column 3).

But, says Kennedy, “the inventor of the theory apparently realized that the
two equations are not independent”. We are required to halve the equation
e,(y) and to add it to x, thus obtaining

(14) x'=x+1/2e,(y).
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P

Fig. 3

This x" is used to calculate the correction e;:
15) e;(x")=(max e,)-sinx’
which is subtracted from y, thus obtaining
(16) y'=y—e(x).

Now the longitude A can be calculated as
(17) A=l+e (x)+ey(y)

So one has to use the table for e, twice, first to find e;(x) and next e, (x'),
and the table for e, once to find e,()'). For the rest, one has to perform only
simple additions and subtractions. The procedure is simpler, but less accurate
than Ptolemy’s method.

As we have seen, al-Khwarizmi used in his tables the “Era Yazdigerd”. So
we may safely conclude that he learnt the “Method of the Persians” from the
latest version of the Zij-i Shah, which was composed under the last Sasanid
king Yazdigerd III (632-651). See for the history of this version pages 4-5 of a
joint paper of J.J. Burckhardt and myself: Das astronomische System der
persischen Tafeln, Centaurus 13, p. 1-28 (1968).

In earlier, predominantly Hindu texts we find a related, but slightly more
complicated method, which we have called “Method of the Indians™. It is
based on the formulae

(14) x'=x+1/2e,(y)
(15) ey(x")=(maxe,)-sinx’

(18) x"'=x"+1/2e,(x)
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(19) e;(x"")=(max e;)-sin x”
(20) y=y—e(x")
(1) A=A+e,(x")+ey(y).

This method was used by Aryabhata (Aryabhatiya, verses 22-24), by Brah-
magupta (Brahmasphutasiddhanta II, 34-38), and by other Hindu astronomers.
The difference as compared with the Persian method is that the table for e;(x)
is used twice: once with the argument x’ and once with the argument x”. The
difference is only small, for 1/2 e;(x’) 1s in most cases small, so that x” defined
by (18) does not differ much from x'.

In my paper “Ausgleichspunkt, Methode der Perser und indische Planeten-
rechnung”, Archive for History of Exact Sciences 1, p. 107-121 (1961), I have
shown that the “Method of the Indians” can be explained as a reasonable
approximation, if we suppose that a Greek author before Ptolemy, possibly
Apollonios of Perge, started with the model of an epicycle carried by an
eccentric circle. I suppose that this author assumed an “equant point” as in
Ptolemy’s Almagest, such that the motion on the eccenter appeared uniform as
seen from the equant point. He invented an approximation which enabled
the user of the tables to use only one-entry tables and additions and sub-
tractions. Ptolemy adopted the equant model, but he did not use the approxi-
mation. On the other hand, the Hindu authors adopted the simple method of
calculation, probably without knowing that it was based on the assumption of
an eccenter with equant point.

This seems to be the only hypothesis which explains Ptolemy’s equant
model, for which Ptolemy himself gives no justification whatever, as well as the
very sophisticated “Method of the Indians”, for which the Hindu authors give
no justification either.

12. Al-Khwarizmi’s Sources

We are now in a position to discuss the sources of al-Khwarizmi's work, in
particular of his Algebra. Three theories have been proposed. He may have
used classical Greek sources, or Hindu sources, or popular mathematical
writings belonging to the Hellenistic and post-Hellenistic tradition.

As Toomer notes in his article in the Dictionary of Scientific Biography,
both Greek and Hindu algebra had advanced well beyond the elementary stage
of al-Khwarizmi’s work, and none of the known works in either culture shows
much resemblance in presentation to al-Khwarizmi’s work. As we have seen,
his proofs of the methods of solution of quadratic equations are quite different
from the proofs we find in Euclid’s Elements. Also, as Toomer notes, al-
Khwarizmi’s exposition is completely rhetorical, like Sanskrit algebraic works,
and unlike the one surviving Greek algebraic treatise, that of Diophantos,
which has already developed quite far towards symbolic representation.

I feel that Toomer is right: we may exclude the possibility that al-
Khwarizmi’s work was much influenced by classical Greek mathematics.
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In favour of the Hindu hypothesis it may be argued that al-Khwarizmi did
write a treatise on Hindu numerals, that two of his estimates for = are also
found in Hindu sources, and that in Chapter 18 of the Brahmasphutasid-
dhanta of Brahmagupta, verse 18, a general rule for the solution of a quadratic
equation of type (4) is given. See for this rule H.T. Colebrooke: Algebra with
Arithmetic and Mensuration from the Sanskrit of Brahmagupta and Bhascara,
page 346.

In one case, in the section on Mensuration, al-Khwarizmi gives us a hint
concerning his sources. After having mentioned the estimate 3+1/7 for =,
which is “generally followed in practical life, though it is not quite exact”, he
says:

The mathematicians, however, have two other rules for that. The one of them is: multiply the
diameter with itself, then with ten, and then take the root of the product. The root gives the
circumference.

The other rule is used by the astronomers among them (my italics), and reads: multiply the

diameter with sixty-two thousand eight hundred and thirty-two and then divide it by twenty
thousand. The quotient gives the circumference.

Note that Aryabhata writes his estimate of 7 in just the same form as
62 832/20000.

We know already that al-Khwarizmi used Persian and Hindu sources in
composing his astronomical tables. We may suppose that he derived his
estimate of @ from one of these sources.

After the Greek and the Hindu hypotheses, we may discuss a third hy-
pothesis proposed by Hermann Hankel in his “Geschichte der Mathematik”
(Leipzig 1874), p. 259-264, and supported by H. Wiedemann in his article “al-
Khwarizmi” in the Encyclopaedia of Islam II, p. 912-913. These authors deny
all Greek influence on al-Khwarizmi and assert the prevalence of a native,
Syriac-Persian tradition.

In view of the close connection between the Hebrew treatise Mishnat ha-
Middot and the geometry of al-Khwarizmi, I feel we should extend the notion
“Syriac-Persian” to include Hebrew and other popular traditions as well. We
have to admit the existence of a tradition of popular mathematics in Egypt and
in the Near East in Hellenistic and post-Hellenistic times. Examples are the
mathematical papyri from Egypt discussed on pages 164-170 and 173-177 of
my “Geometry and Algebra in Ancient Civilizations”, and the “Metrica” of
Heron of Alexandria discussed on pages 181-188 of the same book.

The hypothesis of Hankel and Wiedemann was strongly supported by
Solomon Gandz, the editor of the “Mishnat ha-Middot”. I think I can do no
better than quote the final section of his introduction to the Mensuration of al-
Khwarizmi:

Al-Khowarizmi, the antagonist of Greek influence

At the umiversity of Baghdad founded by al-Ma’mun (813-33), the so-called Bayt al-Hikma,
“the House of Wisdom”, where al-Khowarizmi worked under the patronage of the Caliph, there
and then flourished also an older contemporara of al-Khowarizmi by the name of al-Hajjaj ibn
Yusuf ibn Matar. This man was the foremost protagonist of the Greek school working for the
reception of Greek science by the Arabs. All his life was devoted to the work on Arabic
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translations from the Greek. Already under Hartin al-Rashid (786-809) al-Hajjaj had brought out
an Arabic translation of Euclid’s Elements. When al-Ma’'mtn became Caliph, al-Hajjaj tried to
gain his favor by preparing a second improved edition of his Euclid translation. Later on (829-30)
he translated the Almagest. Now al-Khowarizmi never mentions this colleague of his and never
refers to his work. Euclid and his geometry, though available in a good translation by his
colleague, is entirely ignored by him when he writes on geometry. On the contrary, in the preface
to his Algebra al-Khowarizmi distinctly emphasizes his purpose of writing a popular treatise that,
in contradiction to Greek theoretical mathematics, will serve the practical ends and needs of the
people in their affaires of ineritance and legacies, in their law suits, in trade and commerce, in the
surveying of lands and in the digging of canals. Hence, al-Khowarizmi appears to us not as a pupil
of the Greeks but, quite to the contrary, as the antagonist of al-Hajjaj and the Greek school, as the
representative of the native popular sciences. At the Academy of Baghdad al-Khowarizmi repre-
sented rather the reaction against the introduction of Greek mathematics. His Algebra impresses
us as a protest rather against the Euclid translation and against the whole trend of the reception of
the Greek sciences.

Part B
Tabit ben Qurra

The Sabians

The great scientist Tabit ben Qurra al Harrani (836-901) was a “Sabian”
from Harran. What does this mean? In my explication I shall follow the two-
volume standard work of D. Chwolson: “Die Ssabier und der Ssabismus” (St.
Petersburg 1856, reprinted by Oriental Press, Amsterdam 1965).

According to Chwolson, we have to distinguish between two kinds of
Sabians: the genuine or Chaldaean Sabians and the pseudo-Sabians from Har-
ran, to which Tabit ben Qurra and al-Battani belonged.

The Chaldaean Sabians are mentioned in the Koran (II 59 and XXII 17)
among the believers in God, who have sacred books and shall not be per-
secuted.

Who were these Sabians? According to Chwolson, they were identical with
the Mandaeans, a gnostic sect living in Southern Mesopotamia near the moors
and lakes of Basra. See D. Chwolson: Die Ssabier I, p. 100-143, and E.S.
Drower: The Mandaeans of Iraq and Iran (1962).

The Sabians of Harran were quite different from the genuine Sabians
mentioned in the Koran. The historian Mas’udi says that the Sabians “who
have their homes in Wasith and in Basrah in Iraq differ from the Sabians of
Harran by their outer appearance” (see Chwolson: Die Ssabier I1, p. 376). Also,
their religion was different. For the Mandaeans in Southern Mesopotamia the
seven planets and the twelve zodiacal signs were evil powers, but the Har-
ranites built temples for the planetary gods (see Chwolson 11, p. 1-52 and 366-
379).

In the present chapter we are mainly concerned with the Harranite Sabians.
Their way of life was in several respects similar to the “Pythagorean Life” as
described by the Neo-Pythagorean lamblichos (see my book “Die Pytha-
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goreer”, pages 319-320). For instance, the Sabians as well as the Pythagoreans
were not allowed to eat beans.

These similarities were not accidental: the Sabians were fully aware that
they continued the tradition of the Pythagoreans. We happen to know that
Tabit ben Qurra translated two Neo-Pythagorean writings from Greek into
Arabic, namely the Arithmetical Introduction of Nikomachos of Gerasa, and a
part of the commentary of Proklos to the Pythagorean Golden Verses. See
Chwolson, Die Ssabier I, p. 559.

I shall now tell the story of how the Harranians came to call themselves
“Sabians”. The story is phantastic and difficult to believe, but if one studies the
testimonies quoted in the book of Chwolson, one cannot but agree with his
conclusions.

A Christian author named Abu Yusuf Yashu al-Qatr’i, who lived at the end
of the 9th century, wrote a book intending to reveal “the doctrines of the
Harranians who are known in our time as Sabians”. From this book we have
an apparently verbal excerpt in the Fihrist of al-Nadim (see Chwolson II,
p- 14-19). Abu Yusuf relates that the Caliph al-Mamun, on his campaign
against the Byzantine emperor, came to Harran and asked the inhabitants

“Are you Christians?” “No.”

“Are you Jews?” “No.”

On his next question “Have you got a sacred book or a prophet?” he did
not get a clear answer. So the Caliph said: Either you convert to Islam or to
one of the religions admitted by the Koran, or you shall be killed when I
return from my expedition.

Now a sheik from Harran, who was versed in Moslem law, gave them
(against good payment) the advise: Call yourself Sabians, for this is the name
of a religion recognized in the Koran. This they did, and from now on they
were called Sabians.

The Life of Tabit ben Qurra

According to the Fihrist (see Chwolson, Die Ssabier I, p. 532 and 547),
Tabit ben Qurra el-Harrani died in AD 901 and lived 77 solar years. This
would imply that he was born AD 824, but the Fihrist says that he was born
AD 836, and other sources give 826 as his birth year.

In his native town Harran he lived as a money changer, but his ideas about
religion led to a conflict (see Chwolson I, p. 482-490). He was brought before
the highest priest, who declared his doctrines heretical and prohibited his
entrance to the temple. Chwolson thinks that Tabit’s neo-Platonic philosophy
was judged a heresy. He first revoked his opinions, but afterwards he stated
them anew. He was excommunicated, and he left the city. It so happened that
he met Mohammed ben Musa ben Sakir, one of the famous “sons of Musa”:
Mohammed, Ahmed, and Hasan, who were great collectors of books and great
patrons of science (see H. Suter: Die Mathematiker und Astronomen der
Araber, p. 20-21). This Mohammed ben Musa took Tabit to Baghdad, allowed
him to live in his house, and introduced him to the Caliph. All this must have
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happened before AD 873, for in January 873 Mohammed ben Musa died (see
Suter: Die Mathematiker and Astronomen, p. 20).

According to al-Nadim and el-Qifti (see Chwolson I, p. 483 and II, p. 532)
Tabit succeeded in establishing at Baghdad a Sabian primate for the whole of
Irag. By this move, the situation of the Sabians was stabilized, and they were
respected in the whole country.

Tabit was highly esteemed for his writings in medicine, philosophy, mathe-
matics, astronomy, and astrology. He was also a most competent translator
from Greek and Syriac into Arabic. He translated works of Euclid, Ar-
chimedes, Apollonios, Autolykos, Ptolemaios, Nikomachos, Proklos, and
others (see Chwolson I, p. 553-560).

Barhebraeus reports in his Syrian chronicle that Tabit ben Qurra composed
circa 150 works in Syriac. For his works on astronomy and mathematics see
H. Suter: Die Mathematiker und Astronomen der Araber (1900), p. 34-38, and
Nachtrag, p. 162-163. Here I shall restrict myself to three treatises: one on
astronomy, one on algebra, and one on arithmetic.

On the Motion of the Eighth Sphere

Tabit has written a very interesting treatise, which is available only in a
Latin translation, entitled “De motu octave spere”. The Latin text was pub-
lished by C.F. Carmody: “The Astronomical Works of Tabit b. Qurra” (Ber-
keley 1960), p. 84-113. An English translation with commentary was presented
by O. Neugebauer in Proceedings of the Amer. Philos. Soc. 106, p. 291-299.

The “eighth sphere” of Tabit is the sphere of the fixed stars. Inside this
sphere one has to imagine the seven spheres of the moon, the sun, and the five
“star-planets”.

In modern astronomy the fixed stars are assumed to be nearly at rest and
the equinoxes to have a small retrograde motion with respect to the fixed stars:
the “precession of the equinoxes”. In Ptolemy’s theory the equinoxes are fixed,
and the stars are supposed to have a slow forward motion of 1 degree in 100
years.

Tabit noticed that this small amount is not confirmed by the observations.
The motion of the stars with respect to the equinoxes has to be much larger, at
least in the time after Ptolemy, if one accepts the very accurate observations
made under the reign of al-Mamun. To explain this, Tabit assumed an oscil-
latory (periodic) motion of the sphere of the fixed stars, the so-called “trepi-
dation”.

Another phenomenon which Tabit wanted to explain 1s an alleged decrease
of the obliquity of the ecliptic. The ancient Greeks had used a rough estimate
of 24°, Ptolemy had used a slightly smaller estimate due to Eratosthenes, and
the observers at Baghdad had found a still smaller obliquity, namely 23°33".

Tabit now constructed a model which would explain both phenomena: the
alleged trepidation of the fixed stars with respect to the equinoxes, and the
alleged decrease of the obliquity. He made the two opposite points “Beginning
of Aries” and “Beginning of Libra” on the sphere of the fixed stars move
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slowly on small circles, whose centres are opposite points of a fixed sphere. For
a detailed description of this model I may refer to the paper of Neugebauer
just mentioned.

Tabit’s treatise ends up with two small tables, from which the motion of the
two variable points “Beginning of Aries” and “Beginning of Libra” can be
computed.

Geometrical Verification of the Solution of Quadratic Equations

Tabit’s short treatise on this subject, entitled “On the Verification of Prob-
lems of Algebra by Geometrical Proofs”, is preserved in a single manuscript
Aya Sophia 24573. It was published with a German translation and com-
mentary by P. Luckey in 1941: Berichte iliber die Verhandlungen der sichs.
Akad. Leipzig 93, p. 93-112. I shall now translate parts of Luckey’s translation
into English. Since the logic of the treatise is perfect, I see no danger in this
procedure. The diagrams are not taken from the manuscript, but from Luckey’s
publication.

There are three fundamental forms (usiil, roots or elements), to which most problems of
algebra can be reduced:

The first basic form is: Wealth (mal) and roots are equal to numbers. The way and method of
solution by the sixth proposition of Euclid’s second book is as I shall describe: We make (Fig. 4)
the wealth equal to the square abgd, we make bh equal to the same multiple of the unit in which
lines are measured as is in the given number of roots, and we complete the area dh. Since the
wealth 1s abgd, the root is clearly ab, and in the domain of calculation and number it is equal to
the product of ab and the unit, in which the lines are measured.... Now a number of these units
equal to the given number of roots is in b h, hence the product of ab and bh is equal to the roots
in the domain of calculation and number. But the product of ab and bh is the area d h, because ab
is equal to bd. Hence the area dh is in this way equal to the roots of the problem. Hence the
whole are g h is equal to the wealth together with the roots.

g a
d b
+w
h
Fig. 4

Tabit’s explanation is cumbersome, because he cannot equate an area or
line segment with a number. He therefore introduces a unit of length, which I
shall denote by e. If the given equation is

x24+mx= n,
in which x is an unknown number, while m and n are given numbers, he
translates it into a geometrical equation

x24+mex=ne’
in which x and e are line segments. He continues:
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Now the wealth and the roots together are equal to a known number. So the area gh is
known, and it is equal to the product of ah and ab, because ab is equal to ag. So the product of
ha and ab is known, and the line bh is known, because its number of units is known. Thus
everything is reduced to a well-known geometrical problem, namely: The line bh is known. To it a
line ab is added, and the product of ha and ab is known.

Now in proposition 6 of book 2 of the Elements it is proved that, if the line bk is halved at
the point w, the product of ha and ab together with the square of bw is equal to the square of aw.
But the product of ha and ab is known, and the square of bw is known. So the square of aw is
known, hence aw is known, and if the known bw is subtracted, ab results as known, and this is
the root. And if we multiply it by itself, the square ab gh, that is, the wealth, is known, which is
what we wanted to prove.

Now comes the most interesting passage in the treatise:

This procedure agrees with the procedure of the people concerned with algebra in their
solution of the problem. When they halve the number of roots, this is just so as when we take half
of the line bh, and when they multiply it by itself, this is the same as when we take the square of
the halved line bh. When they add to the result the (given) number, this is just as when we add the
product of ha and ab, in order to obtain the square of the sum of ab and the halved line. Their
taking the root of the result is like our saying: The sum of ab and the halved line is known as
soon as its square is known.

The next sentence in the text is corrupt. The end of the sentence reads:

... to obtain the residue, just as we obtained ab. They multiplied (the residue) by itself, just as
we determined the square of ab, that is, the wealth.

In the same way Tabit treats the second type of equation
x*+b=ax

or “wealth and number is equal to roots”. He says:

The way and method of solution according to the second book of Euclid by means of
proposition 5 is, as 1 describe it: We make (Fig. 5) the wealth into a square abgd and we make ah
equal to such a multiple of the unit in which lines are measured as is in the given number of roots.
Obviously, ah is longer than ab, because the roots, which are in the domain of calculation the
product of ga and ah, are larger than the wealth. We complete the area gh, and we prove, as
before, that it is equal to the roots (that is, equal to the term ax) in the domain of calculation.
And if bg, which is the wealth (that is, the term x2) is subtracted from it, there remains d h equal
to the (given) number. So d h is known, and it is equal to the product of ab and bh, and the line
ah is known. So now the problem amounts to dividing a given line ah in b in such a way that the
product of ab and bh is known.

g a
d b
+w
h

Fig. 5
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g a
+w
d b
h
Fig. 6

Now in proposition 5 of the second book of Euclid it is proved that, if ah is halved at w, the
product of ab and bh together with the square of bw is equal to the square of aw. But aw is
known, and its square is known, and the product of ab and bh is known. So the square of bw is
known as a remainder, hence bw is known, and if it is subtracted from aw (Fig. 5) or added to it
(Fig. 6), ab results as known, and it is the root. And if we multiply it by itself, abgd is known, and
it is the wealth, and this is what we wanted to prove.

This procedure too agrees with the procedure of the algebra people (ahl al-jabr) in calculating
the problem. For it allows in both ways the application of addition and of subtraction of the line
wbh.

I think it is not necessary to translate the third part of the text, in which
the equation

“Number and Roots are equal to Wealth”
is solved by means of Euclid’s proposition 116, and the agreement with the
algebraic solution is proved in the same way as in the other two cases.

In al-Khwarizmi’s treatise, the science of algebra is denoted by the double
expression “al-jabr wal mugabala”. Tabit ben Qurra leaves out the second part
and refers just to the “solution by al-jabr” as opposed to his own solution by
geometry. The algebrists, to which al-Khwarizmi belongs, are called by Tabit
“those concerned with algebra” (‘ashab aljabr) or “the algebra people” (ahl al-
jabr). In the text, they are opposed to the geometers, to which Tabit himself
belongs.

Tabit judges it necessary to explain in great detail that the algebraic
solutions are in full accordance with Euclid’s geometrical solution. From this,
Luckey concludes that at least for some of his readers this connection between
geometry and algebra was new, and he raises the question: Was it new for the
“algebra people”? It seems to me that the answer must be “yes”, for otherwise
the whole treatise of Tabit would be superfluous.

As we have seen in the section on al-Khwarizmi, there were two opposite
trends or parties among the mathematicians and astronomers at Baghdad. One
of these trends was represented by al-Khwarizmi, who used Indian and Persian
sources for his astronomical tables, and who wrote his Algebra, “confining it
to what is easiest and most useful in arithmetics, such as men constantly
require in cases of inheritance”, and so on. On the other hand, we have “the
Greek school working for the reception of Greek science by the Arabs”, as
Gandz puts it. To this Greek school belonged al-Hajjaj, who translated Euclid
and Ptolemy, and Tabit ben Qurra.
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On Amicable Numbers

Two natural numbers m and n are called amicable, if each is equal to the
sum of the proper divisors of the other. For instance, the sum of the proper
divisors of 284 is 220, and the sum of the proper divisors of 220 is 284. This
pair of amicable numbers was known already to the ancient Pythagoreans (see
e.g. my “Science Awakening” I, p. 98).

Tabit ben Qurra has written a “Book on the Determination of Amicable
Numbers”. He proved: If p=3.2""'—1 and ¢=3-2"—-1 and r=9-2*""1—1 are
prime, then

M=2"pg and N=2"r

are amicable numbers.

Tabit’s book has been commented upon and partly translated by F. Woep-
cke: Notice sur une théorie ajoutée par Thabit ben Korra a larithmétique
spéculative des Grecs, Journal asiatique (4) 20, p. 420-429 (1852).

Tabit’s rule for obtaining amicable pairs was rediscovered by Pierre de
Fermat and René Descartes. Besides the well known pair 220 and 284, Fermat
found one more pair, namely

17296 =2* %23 x 47
18416=2*x 1151

(Oeuvres 11, p. 20-21). No doubt, he derived it by Tabit’s rule for n=4.
Descartes formulated Tabit’s rule explicitely and presented a third example:

9363584=27 x 191 x 383
9437056 =27 x 73727

(René Descartes, Oeuvres II, p. 93-94 and p. 148).

Now the question arises: How did Tabit find his rule?

The well known pair 220 and 284 has a factorization of the form

22pq and 2%r
in which p, g, and r are primes. So let us see whether we can find a pair
M=2"pq and N=2"r

such that M is the sum of the proper divisors of N and conversely.

I suppose that Tabit knew that the sum of all divisors of N (including N
itself) is

(14+24+...+2%(r+1)

and that the sum of all divisors of M is

(14+2+...+2"(pg+p+q+1)
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Now both sums are required to be equal to M + N. So we must have

(1) r=pq+p+gq
and
2) "'~ (pq+p+q+1)=2"pg+2"r.

Substituting (1) into (2), one obtains a condition for p and g:
©) @' =D (pq+p+q+1)=2"pq+2"(pq+p+q).

It is easy, though a little clumsy, to formulate the derivation of (3) in the
language of “rhetorical algebra” used by Tabit. By the operations al-jabr and
al-mugabala, (3) can be simplified to

@) 2"(p+q+2)=pq+p+q+1.

Putting p+1=P and g+ 1=0, (4) can further be‘simplified to
(5) 2"(P+Q)=PQ.

Adding 22" to both sides, and subtracting 2"(P + Q), one obtains

22n:PQ_2nP___2nQ+22n
or
22" =(P-2")(Q—2").

The two factors on the right hand side are either both positive or both
negative. If they were both negative, their product would be less than 22", so
they must be positive. Since their product is 22", we must have, assuming
P<Q,

P_anzn—l
Q~2"22"+t.

The simplest choice of ¢ is t =1, which leads to

P=2"+2" =3 x 2!
Q:2n+2n+1:6x2nA1

and thus to Tabit’s solution
p=3x2""1-1

g=3x2"—1
r=PQ—1=9x22""1_1.
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Another possibility is n=8 and t=7, which leads to a pair of amicable
numbers discovered by Legendre in 1830: 28 x 257 x 33023 and 2% x 8520191.

In the preceding calculation, we have assumed two algebraic identities,
namely

(6) (p+1)(g+1)=pg+p+q+1
(7) (P—-2(Q—2"=PQ—2"P—2"Q +22"

which are both easy to prove by the methods of Euclid’s Book 2. So the
derivation just given is well within the range of algebraic methods known to
Tabit.

After Fermat and Descartes, Leonard Euler was the first to take up the
problem of amicable numbers. Euler has written three papers on the subject,
all entitled “De numeris amicabilibus”. In the first paper of 1747 (Opera
omnia, series prima, Vol. 2, p. 59-61) Euler presented a derivation of the rule of
Tabit along the lines indicated here, and a list of 30 pairs of amicable numbers.
In the second paper of 1750 (Opera omnia, same volume, p. 23-107) Euler gave
a full exposition of his methods and presented an extended list of 62 pairs. In
his exposition, he solved two problems:

Problem 1. To find two amicable numbers apg and ar such that p, g, and r
are primes. Denoting by A4 the sum of all divisors of a and putting, as before, P
=p+1 and Q=¢+1, he finds an equation analoguous to our equation (5),
namely

(8) a(P+Q)=(a—A4) PO.

Putting

=é (b, c)=1
¢

Euler obtains
(cP—b)(cQ—b)=b>~

So, in order to find P and Q, one has to factorize b* into two different

factors.
By similar methods, Euler solves Problem 2: To find two amicable numbers

apq and ars.
In his third paper, published posthumously in Opera Omnia, series prima,
Vol. 5, p. 353-365, Euler presents four more examples, all of the form

apq and ar.

For more information about amicable numbers see the survey of Edward B.
Escott in Scripta Mathematica 12, p. 6172 (1946).
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Part C
Omar Khayyam

The Persian poet, philosopher, mathematician, and astronomer Omar ben
Ibrahim al-Hayyam, usually called Omar Khayyam, lived in the second half of
the eleventh century. His fame in the western world is mainly based on the
very free translation of his nearly 600 short poems of four lines each
(Ruba’iyat ) by E. Fitzgerald (1859),

In 1074 Omar Khayyam was called to Isfahan, where a group of outstand-
ing astronomers came together for the foundation of an observatory. “An
enormous amount of money was spent for this purpose”, says Ibn al Athir. See
Aydin Sahili: The Observatory in Islam (Tiirk Kurumu Basimevi, Ankara
1960).

Here we shall mainly be concerned with Omar Khayyam’s treatise “On the
Proofs of the Problems of Algebra and Mugabala”. My account will be based
on the French translation of Franz Woepcke: L’algebre d’Omar Alkhayyami
(Paris 1851). An English translation was published in 1950 by H.J.J. Winter
and W. Arafat in Journal R. Asiatic Soc. Bengal. 16, p. 27-77. For an edition
of the text with a new French translation and commentary see Roshdi Rashed
and Ahmed Djebbar: L'oeuvre algébrique d’Al-Khayyam, University of Alep-
po 1981.

In the introduction to his “Algebra” Omar Khayyam explains that “The
art of algebra” aims at the determination of numerical or geometrical unknown
quantities. This distinction between numbers and measurable magnitudes is
maintained throughout the treatise. The author mentions four kinds of measur-
able magnitudes: the line, the surface, the solid, and the time. He excludes
magnitudes of more than three dimensions such as the “square-square” and
the “quadrato-cube”, which are used by some algebrists.

The Algebra of Omar Khayyam

The algebra of Omar Khayyam is mainly geometric. He first solves linear
and quadratic equations by the geometrical methods explained in Euclid’s
Elements, and next he shows that cubic equations can be solved by means of
intersections of conics.

Omar knows very well that earlier authors sometimes equated geometrical
magnitudes with numbers. He avoids this logical inconsistency by a trick,
introducing a unit of length. He writes:

Every time we shall say in this book “a number is equal to a rectangle”, we shall understand
by the “number” a rectangle of which one side is unity, and the other a line equal in measure to
the given number, in such a way that each of the parts by which it is measured is equal to the side
we have taken as unity.

In Fig. 7 I have denoted the unity of length by e, and the sides of the
rectangle by x and y. The figure illustrates the equation 3=xy.
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Fig. 7

Omar Khayyam first solves quadratic equations by the usual methods.
Next he passes to cubic equations. Some of these, for instance,

(0 x3+ax?=bx

can be reduced to quadratic equations. The first type requiring conic sections
is

“A number is equal to a cube”
or, in modern notation
(2 x3=N.

Omar first solves an auxiliary problem, namely

“To find two lines between two given lines such that the four lines form a
continued proportion”.

If the two given lines are called AB=a and BC=b, the problem is, to find
x and y such that

3) a:x=x:y=y:b.

A+

a

b I D
|
1
|
i
1

— x
B b ¢ T

Fig. 8
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Omar draws two perpendicular line segments BA and BC, and he con-
structs two parabolas, both having their summit at B. The first parabola has
axis BC and “parameter” BC, the other has axis BA and “parameter” BA. In
modern notation, the equations of the two conics are

4) y?=bx and x2=ay.

Let D be their point of intersection. Then the perpendiculars x=DH and y
= DT satisfy (4) and hence (3).

Next, Omar considers the equation (2), in which N is a given number. He
constructs a rectangular block with base e? and height Ne. Now he has to
construct a cube equal to this block. In the case N=2 this is just the well-
known Greek problem of “doubling the cube”. Hippokrates of Chios had
proved that this problem can be reduced to the problem of finding two mean
proportionals x and y between two given line segments a and b. Omar
Khayyam proceeds just so. He solves the auxiliary problem (3) with a=e and b
=Ne, and he proves that the first intermediate x is the side of the required
cube.

All this is well-known from Greek texts. According to Eutokios, the so-
lution of (3) by means of the intersection of two parabolae is due to Menaich-
mos.

Next, Omar considers six types of cubic equations in which a binomial is
equated to a monomial, namely

) x3+ax=b

(6) x*+b=ax

() x>=ax+b
(8) x3+ax?=b

9) x*+b=ax?

(10) x3=ax?+bx.

In Omar’s terminology, the equation (5) is written as

“A cube and (a number of) sides are equal to a number”.

Omar first constructs a square c? equal to the given number b, and next a
block with base ¢? and height h equal to the given number b. This means, as
he has explained earlier, that the block with sides c, ¢, and h is made equal to
a block with sides e, e, and be, where ¢ is the unity of length and b be the
given number on the right hand side of equation (5). Thus, the equation (5) can
be written in the homogeneous form

(11) x34+c?x=c?h

in which ¢=AB and h=BC are given line segments.



Omar Khayyam 27

By
C
< C E h 8
z
D
y H

Fig. 9

To solve this equation geometrically, Omar constructs a parabola (see
Fig. 9) having its summit at B, its axis being BZ and its “parameter” AB=c.
Next he describes a semi-circle on the diameter BC=h. The semi-circle ne-
cessarily has a point of intersection D with the parabola. From D one draws
perpendiculars DZ and DE to BZ and BC. Omar now proves that DZ=x
solves the equation (11).

In modern terminology, let x=DZ and y=DE be the coordinates of D. The
equation of the parabola is

(12) xZ=yec,

or, in Omar’s own words: “The square of DZ will be equal to the product of
BZ and AB”. The equation of the circle is

(13) y2=x(h—x)

which Omar writes as a proportion

“BE isto ED as ED is to EC”.

Just so, (12) is written as a proportion:

“ABis to BE as BE is to ED”.

From these two proportions Omar concludes that EB=x is a solution, and
the only solution of his problem.

Just so, Omar writes the equation (6) in the homogeneous form

(14) x3+cth=c’x
and he solves it by intersecting the parabola

(15) ye=x?
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with the hyperbola
(16) y?=x(x—h).

The third equation (7) is solved in the same way, the only difference being
the sign of the constant term b.
The next equation (8) is written as

(17 x*+ax?=s3

where a and s are known line segments. Omar solves it by intersecting the
hyperbola
Xy=52

with the parabola
s(x+a)=y>

This solution is unnecessarily complicated, because it requires a preliminary
solution of the equation

s3=b

by means of two parabolae. It would be much simpler to set b=cd? and to
intersect the parabola

x*=cy
with the hyperbola
(x+a)y=d>

The next type (9) is solved by a similar method. Once more, the constant
term b is made equal to a cube s*. Omar notes that in this case the solution is
not always possible.

The last type (10) is reduced to

(18) x*=ax*+ac*
and solved by intersecting the hyperbola
xy=ac
with the parabola
y2=a(x—a).
Next, Omar discusses seven types of quadrinomial equations, namely
(19) x*+ax?+bx=c
(20) x*+ax*+c=bx
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(21) x*+bx+c=ax?

(22) c+bx+ax?=x3

(23) x}+ax*=bx+c
(24) x3+bx=ax*+c
(25) x3+c=ax®+bx.

The methods of solution are the same as in the trinomial cases. To solve
(19) one uses a circle and a hyperbola, to solve (20) two hyperbolae, and so on.

After this, Omar discusses equations in which terms like 1/x, 1/x?, and 1/x>
occur. His first example is

x3=10/x3.
Multiplying both sides by x?, one obtains

(x?)?=10

x3=7/10,

or in Omar’s own words, as translated by Woepcke:
“Donc la racine de dix sera le cube cherché”.
Omar notes that the equation

and hence

x2=a/x3

cannot be solved by the methods exposed by him, because it requires the
insertion of four mean proportionals between two given lines, as Ibn al-
Haitham has proved.

Omar Khayyam was not the first to solve cubic equations by means of
intersections of conics. At the end of his treatise he says that someone has told
him that Muhammad ibn al-Lait Abu al-Jud was the author of a treatise in
which he reduced the solution of cubic equations to conic sections, without
however treating all cases. In particular, he taught the solution of type (21) by
the intersection of a parabola and a hyperbola. On pages 84-85 of Woepcke’s
translation of the algebra of Omar Khayyam, the solution of (21) by Abu al-
Jud is described.

Omar Khayyam on Ratios

On page 251 of his book “Geschichte der Mathematik im Mittelalter”, A.P.
Juschkewitsch has drawn the attention to two very remarkable passages on
ratios in Omar Khayyam’s commentary “Discussion of Difficulties of Euclid”
(edited by Erani, Teheran 1936). Mrs. Yvonne Dold had the kindness to
translate the two passages directly from Arabic into English. In what follows, I
shall reproduce her translation.
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As Juschkewitsch notes, Omar Khayyam states that Euclid’s definition of
proportion is correct, but that it is not a true definition of the notion ratio.
The true meaning of a ratio is found in the process of measuring one magni-
tude by another magnitude. I shall now explain what this means.

Omar Khayyam defines a proportion of four magnitudes

(26) A:B=C:D

as follows:

All multiples of the first are cut off from the second until a rest remains less than the first, and
likewise all multiples of the third are cut off from the fourth until a rest remains less than the
third. And the number of multiples of the first on the second is like the number of multiples of the
third on the fourth. Moreover we cut off all multiples of the rest of the second from the first until
a rest remains less than the rest of the second, and likewise all multiples of the rest of the fourth
are cut off from the third until a rest remains less than the rest of the fourth. And the number of
multiples of the rest of the second is like the number of multiples of the rest of the fourth. Likewise
we cut off from the rest of the second all multiples of the rest of the first and we cut off from the
rest of the fourth all multiples of the rest of the third. And the number of both is equal. Likewise
we cut off all multiples of the rests one from the other according to the first part as we explained.
And the number of every rest from the first and the second is like the number of its corresponding
from the third and the fourth ad infinitum. Thus the ratio of the first to the second is inevitably as
the ratio of the third to the fourth. And this is the true proportionality in the geometrical manner.

The process described here is what the Greeks call Antanairesis or Ant-
hyphairesis: the continued mutual subtraction of two quantities A and B from
each other. The smaller of the two, say B, is subtracted from A as often as
possible, leaving a remainder R; less than B:

Rl = A —{d3 B
Next, R, is subtracted from B as often as possible:
R;=B—q,R,

and so on. The integer quotients

d1,925 ---

define the ratio A:B in the following sense: If C and D have the same
quotients as A and B, the proportion (26) holds.

From a passage on the Topica of Aristotle we know that this definition of
the equality of ratios was used by the Greeks before Euclid. See O. Becker:
Eudoxos-Studien I, Quellen und Studien Gesch. der Math. B2, p.311-333
(1933), or D.H. Fowler. Ratio in Early Greek Mathematics, Bulletin American
Math. Soc. (New Series) 1, p. 807-848 (1979).

Omar Khayyam also defines the relation

A:B>C:D
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by comparing the sequences of quotients

91,92, --- and  ¢,q3, ...

defining the two ratios. If m is the first index for which g, differs from g, and
if

dn<q, forodd m
or

4,>4q, foreven m,

then A:B is larger than C:D.

In a series of theorems Omar Khayyam proves that his definition of the
equality of ratios is equivalent to that of Euclid.

Next, al-Khayyam defines the multiplication of ratios, thus filling a logical
gap in Euclid’s Elements. See A.P. Juschkewitsch: Geschichte der Math. im
Mittelalter, p. 253-254.

In his definition of the multiplication of ratios, al-Khayyam assumes the
existence of a fourth proportional D to given quantities 4, B, C. He justifies
this assumption as follows: There always exist quantities M and N such that

C:M>A:B
and
C:N<A:B.

Now, because of the unlimited divisibility of continuous quantities, there
must be a D between M and N such that

C:D=A:B.

Oscar Becker has noted that the same kind of argument, namely: “Where
larger and smaller (quantities) exist, equals also exist” was also used by Greek
commentators of Aristotle. See Q. Becker: Eudoxos-Studien II. Warum haben
die Griechen die Existenz der vierten Proportionale angenommen? Quellen
und Studien Gesch. Math. B 2, p. 369-387.

Omar Khayyam also raises the question whether ratios can be regarded as
a kind of “number” in a larger sense. He writes:

Then there is the question about the ratio of the magnitudes: is it inherent the number
according to her nature, or a logical consequence of the number, or is it connected with the
number by something that follows from its nature without the need of any external factor?

Omar Khayyam leaves this “philosophical” question unanswered, but later
Arabic authors such as Nasir ad-Din at-Tusi consider all ratios as “numbers”.
See page 255 of the book of Juschkewitsch.



Chapter 2
Algebra in Italy

This chapter will be divided into three parts:

A. From Leonardo da Pisa to Luca Pacioli

B. Master Dardi of Pisa

C. The Solution of Cubic and Biquadratic Equations

Part A
From Leonardo da Pisa to Luca Pacioli

The methods of al-jabr and al-muqabala were made known in Italy first by
the Latin translation of the algebra of al-Khwarizmi by Gerard of Cremona,
and next by the work of Leonardo da Pisa (called Fibonacci). Leonardo was
followed by several other writers of arithmetical textbooks, of which Luca
Pacioli is best known. Before discussing the work of these authors, I shall first
explain how the need for such textbooks was created by the economic con-
ditions of the Italian merchants. In my exposition I shall gladly make use of
the contents of a very interesting lecture entitled “The Contributions of the
Italian Renaissance to European Mathematics”, presented by Warren Van
Egmond at a symposium held at Cortona in April 1983.

The Connection Between Trade and Civilization in Medieval Italy

In the early Middle Ages trade was mainly based on barter rather than on
the exchange of money. Long-distance commerce was in the hands of travelling
merchants, who exchanged their cargoes of goods at local fairs and markets.
Major centres of this trade were Venice, Genova, and Pisa. Merchants set out
by sea for the Arabic ports of North Africa and the Near East, carrying
timber, wool, and other products from the West and bringing back in exchange
fine silks, spices, jewels, and other precious goods.

In the thirteenth century the character of this economy changed radically.
Improvements in navigation eased the dangers of sea travel. The increased
circulation of coins made European economy predominantly monetary. The
invention of letters of credit, bills of exchange, accounting and bookkeeping
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made possible the rise of banking and international finance. All of these
developments worked together to create a new class of merchants, who lived in
the major manufacturing and trading centres. They bought goods and shipped
them to other representatives of the same company in other cities, for instance
in the East, where the goods were sold or traded for other goods. Control over
this vast network of representatives was maintained through a constant ex-
change of letters, bills, and reports. Im most cases the central office was based
in one of the cities of Italy, such as Lucca, Siena, or Florence.

The life of a sedentary merchant was far different from that of his travelling
predecessor. The early medieval merchant was a small tradesman, carrying his
inventory in his head or on a scrap of paper. He calculated on his fingers or
on a small abacus. On the other hand, the sedentary merchants and bankers
wrote and received letters, bills of exchange, reports, orders, and so on. They
had to calculate prices, to compute payments, to figure profits and losses.

For all these operations, they needed an efficient system of writing numbers
and performing written calculations. The Roman numbers were too cumber-
some: the Hindu-Arabic number system was much more efficient. The credit
for developing this number system and adapting it to merchant practices
belongs to a particular group of men, the so called “abbacists”.

According to Warren Van Egmond, whose exposition I am following here,
one has to distinguish between the Latin word abacus, which denotes a
calculating board, and the Italian word abbaco, which usually means “practical
arithmetic”.

Life and Work of Fibonacci

The life of Leonardo da Pisa is well known from the introduction of his
most famous work “Liber abbaci” (1202). In what follows, I shall follow the
excellent description of his life and work in Kurt Vogel’s article FIBONACCI
in the Dictionary of Scientific Biography.

Leonardo was a member of the Bonacci family, hence he calls himself “filio
Bonacci”, which was shortened to Fibonacci. His father, a secretary of the
republic of Pisa, was entrusted around 1192 with the direction of the Pisan
trading company in Bugia (now Bougie), Algeria. He expected his son Leo-
nardo to become a merchant, therefore he brought him to Algeria. Here
Leonardo learned how to calculate with Hindu-Arabic numerals. His business
trips took him to Egypt, Syria, Byzantium, Sicily, and southern France.

Around 1200 Leonardo returned to Pisa. During the next twenty-five years
he composed several works. Five of these are preserved:

1. Liber abbaci (1202, revised 1228),

2. Practica geometriae (1220),

3. a book entitled “Flos™ (1225),

4. a letter to the philosopher Theodorus, who lived in Sicily at the court of
the Hohenstaufen emperor Frederick II,

S. Liber quadratorum (1225).
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A treatise on Book X of Euclid’s “Elements”, containing a numerical
treatment of the irrationalities which Euclid had demonstrated by lines and
areas, is unfortunately lost.

Leonardo’s importance was recognized at the court of Frederick II. In
Leonardo’s writings several names of scholars living at this court in Sicily are
mentioned, including the astrologer Michael Scotus, whom Dante banished to
hell (Inferno XX, 115), the philosopher Theodorus, and the mathematician
John of Palermo. About 1225, when Frederick II held court at Pisa, the
astronomer Dominicus presented Leonardo to the emperor. On that occasion,
John of Palermo proposed several problems, which Leonardo solved promptly.

The first problem was, to find a number x such that x*+5 and x?>—5 are
square numbers. A solution, namely

x=3fy, X +S=(@h)P, ¥ 5=

was presented without proof in the book “Flos”, which Leonardo sent to
Frederick II. In the “Liber quadratorum” the solution was deduced by a
method, which will be explained in the course of the present chapter.

The second problem proposed to Leonardo was the solution of the cubic
equation

(1) x34+2x2+10x=20.

In the book “Flos”, Leonardo proved that the solution is neither an
integer, nor a fraction, nor one of the irrationalities defined in Book X of the
Elements of Euclid. He presented an approximate solution in sexagesimal form

as
1;22, 7,42, 33, 4,40.

According to Vogel (p. 610 of the article FIBONACCI) the 40 is too large
by about 14, so Leonardo’s accuracy is admirable. If he had applied the
method of “double false position” explained by himself in the “Liber abbaci”,
that is, the method of linear interpolation between a smaller value x; and a
larger value x,, he would have obtained a too small approximation. It is
possible that he used the so-called Horner method. This method, adapted to the
sexagesimal system, consists in putting x=1+y, and obtaining an equation for
¥, next putting 60y, =224y, and obtaining an equation for y,, and so on.

The history of the Horner method is very complicated. In principle, the
method was known already to the author of the Chinese treatise “Nine
Chapters of the Mathematical Art” ( Chiu Chang Suan Shu), who lived in the
Han-period, ie. between —150 and +150. See J. Needham: Science and
Civilization in China (Cambridge 1959), p.126-127. The method was also
known to the Arabic mathematician Jamshid al-Kashi. See P. Luckey: Die
Rechenkunst des Gamsid b. Mas’ad al-Kasi (Wiesbaden 1951). The method
was later rediscovered by Paolo Ruffini (1804) and W.G. Horner (1819). See F.
Cajori: A History of Mathematics, p. 271.

In 1240, the republic of Pisa awarded the “serious and learned Master
Leonardo Bigolli” a yearly salary of 20 pounds silver “in addition to the usual
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allowances, in recognition of his usefulness to the city and its citizens through
his teaching and devoted services”.
We shall now discuss the extant works of Leonardo.

1. The “Liber Abbaci”

The Italian masters of computation were called “maestri d’abbaco”. In this
sense the title of Leonardo’s most influential work is to be understood. It
appeared first in 1202. To the second edition of 1228 “new material has been
added, and superfluous removed”. It was edited by Baldassare Boncompagni in
Vol. 1 of the “Scritti di Leonardo Pisano” (Roma 1857). A summary of the 15
chapters of the “Liber abbaci” was given by Kurt Vogel in his article FIBO-
NACCI in the Dictionary of Scientific Biography.

In Chapters 1-7 the Hindu-Arabic numerals are introduced, and methods
of calculation with integers and fractions are taught.

Chapters 8-11 contain problems of concern to merchants. A remarkable
playful problem is the “problem of the 30 birds”. A man buys 30 birds:
patridges, doves, and sparrows. A patridge costs 3 silver coins, a dove 2, and a
sparrow . He pays with 30 coins. How many patridges, doves, and sparrows
does he buy?

The problem is, to solve the pair of equations

x+y+z=30
3x+2y+3z=30

in positive integers x, y, z. The only solution is x=3, y=3, z=22.

This problem is a variant of the “problem of 100 birds”, which is found in
Chinese, Indian, and Arabic sources. See Joh. Tropfke: Geschichte der Elemen-
tarmathematik I, fourth edition (by Kurt Vogel and others), p. 613-616 (1980).

Chapters 12 and 13 contain several types of recreational problems, some
leading to a linear equation, others to two or three linear equations with two
or three unknowns. For instance, we find on pages 228-243 a sequence of
problems concerning “buying a horse”. Leonardo begins with a simple case of
two persons. One says to the other: “If you give me one-third of your cash, I
can buy the horse.” The other replies: “If you give me a quarter of your cash, I
can buy the horse.” If s is the price of the horse, we have two linear equations
with two unknowns x and y:

x+1/3y=s
y+1/4x=s.

The problem is indeterminate, since s is not given. The solution in smallest

integers is given as
x=(3—-1)x4 8

y=@d-1)x3 =9
s=3x4—1x1=11
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Another case leads to 3 equations in 3 unknowns:

x+3(y+z)=s
(2) y+i(x+z)=s
z+3(x+y)=s.

To solve these equations, Leonardo introduces a new unknown
(3 xX+y+z=t.
Subtracting each of the three equations from (3), one obtains

3(y+2)=3(x+2)=%(x+y)=t—s=D

hence
y+z=3/2D
x+2z=4/3D
x+y=5/4D.

In order to obtain an integer solution, Leonardo puts D =24, thus obtain-
ing

y+z=36
x+z=32
x+y=30

x=13, y=17, z=19

This solution of the equations (2) had already been obtained by Dio-
phantos: Arithmetica I24.

The same problem of “buying a horse” occurs in a book of al-Karaji and
in other Arabic and Byzantine sources. See J. Tropfke: Geschichte der Elemen-
tarmathematik I (4th edition, by K. Vogel and others), p. 608-609.

An original invention of Leonardo is the “series of Fibonacci”

0,1,1,2,3,5,8,13,21, ...

in which each term is the sum of the two preceding terms. Leonardo obtained
it as the solution of the problem: How many pairs of rabbits can be produced
from a single pair in a year if each pair begets a new pair every month, which
from the second month on becomes productive, and if death does not occur?
Chapter 14 is devoted to calculations with square roots and cube roots.
Leonardo begins by presenting some theorems from Euclid’s Book II in
numerical form, omitting the proofs, “because they are all in Euclid”. For
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square roots he has the well-known approximation
3 r
a’t+r~a+_—.
2a

For the cube root Leonardo presents a first approximation
r
4 ya+r~a+———s—==a
( ) (a+ 1)3_a3 1

and next a second approximation

141

+——  with n,=a—a3l.
' 3a,(a+1) ! !

(%) a,=a

According to Vogel (DSB, Article FIBONACCI, p. 608) the first approxi-
mation (4) was already known to al-Nasawi. In fact, it is a simple application
of the rule of “double false position”. As for the second approximation,
Leonardo says: “I have invented this mode of finding roots.”

Examples for his operations with radicals are

(©) Va1 T+1/4—/1=1/14
and

) 4+4/10=1/16+1/10+8%/10.

Chapter 15 is very interesting. In a first section, Leonardo solves the pair of
equations

(8) 6:x=y:9
9) x+y=21
as follows. From (8) he finds

xy=54
and next, using Euclid I, 5

(x—y)z_(x+y)2 _(21)2 54_225
2 )\ ) TR B

hence x —y=15, x=18, y=3.

In a second section, Leonardo presents applications of the Theorem of
Pythagoras. For instance, he solves the problem: On the line joining the basis
of two towers of given heights and given distance there is a spring which shall
be equally distant from the tops of the towers. Leonardo gives a numerical as
well as a geometrical solution (Liber abbaci, p. 398).



38 Chapter 2. Algebra in Italy

The third, most extensive section (p. 406—459) contains a systematic treat-
ment of linear and quadratic equations. Citing “Maumeth”, i.e. Muhammad
ben Misa al-Khwarizmi, Leonardo solves the six normal forms

ax?*=bx
ax’=c
bx=c
ax?+bx=c

ax>+c=bx (two solutions)

ax?=bx+c.

The unknown quantity x is called radix, its square quadratus or census, and
the constant term c numerus. The methods of solution are illustrated by

numerous examples.
The first example of a mixed quadratic equation is just the same as in the

algebra of al-Khwarizmi, namely
“census et decem radicis equantur 39”
or

x2+10x=39.

The solution is illustrated by a drawing (see Fig. 10):

a f 5 d
e ! > h
5 5 S
h g 5 c
Fig. 10

In other examples, one has to divide 10 into two parts x and 10—x
satisfying an auxiliary condition such as

X 10—x
=1/5.
10—x+ X 1/
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Leonardo also includes equations that can be reduced to quadratic equa-
tions. Thus, the set of equations

10
(10) y=—
X
yl
1 =2
(11) 7=
(12) 22=x?+y?
leads to a quadratic equation for x*:
(13) x8 +100x* = 10000.

2. The “Practica geometriae”

This work by Leonardo is extant in nine manuscripts, of which two are in
Paris and four in Rome. In his edition, Boncompagni used only one of the
vatican manuscripts. From Vogel’s article FIBONACCI I quote:

In his work Leonardo does not wish to present only measurement problems for the layman; in
addition, for those with scientific interests, he solves geometrical problems according to the method
of proof. Therefore, the models are, on the one band, Hero and the Agrimensores, and Euclid and
Archimedes on the other. Leonardo had studied the Liber embadorum of Plato of Tivoli (1145)
especially closely and took from it large sections and individual problems with the same numerical
values. This work of Plato was a translation of the geometry of Savasorda (Abraham bar Hiyya),
written in Hebrew, which in turn reproduced Arabic knowledge of the subject.

The Practica is divided into eight chapters (distinctiones), which are preceded by an in-
troduction. In the latter the basic concepts are explained, as are the postulates and axioms of
Euclid and the linear and surface measures current in Pisa.

In the first chapter, the proposition of Book II of the Elements of Euclid
are recalled.
In the second chapter

the duplication of the cube by Archytas, Philo of Byzantium, and Plato, which are reported by
Eutocius, are demonstrated, without reference to their source. The solutions of Plato and Archytas,
Leonardo took from the Verba filiorum of the Banii Misa, a work translated by Gerard of
Cremona. That of Philo appears also in Jordanus de Nemore’s De triangulis, and probably both
Leonardo and Jordanus took it from a common source. See M. Clagett, Archimedes in the Middle
Ages 1, p. 224 and 658-660.

The third chapter provides a treatment (with exact demonstrations) of the calculation of
segments and surfaces of plane figures: the triangle, the square, the rectangle, rhomboids (rum-
boides), trapezoids ( figurae quae habent capita abscisa), polygons, and the circle; for the circle,
applying the Archimedean polygon of ninety-six sides, n is determined as 864:275~3.141818....

For the surveyor who does not understand the Ptolemaic procedure of determining half-
chords from given arcs, appropriate instructions and a table of chords are provided. This is the
only place where the term sinus versus arcus, certainly borrowed from Arabic trigonometry,
appears. The fourth chapter is devoted to the division of surfaces; it is a reworking of the Liber
embadorum, which ultimately derives from Euclid’s lost Book on Divisions of Figures; the latter can
be reconstructed (see Archibald) from the texts of Plato of Tivoli and of Leonardo and from that
of an Arabic version.

In the sixth chapter Leonardo discusses volumes, including those of regular polyhedrons, in
connection with which he refers to the propositions of book XIV of Euclid.
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The seventh chapter contains the calculation of the heights of tall objects, for example, of a
tree, and gives the rules of surveying based on the similarity of triangles; in these cases angles are
obtained by means of a quadrant.

The eighth chapter presents what Leonardo termed “geometrical subtleties” (subtilitates) in the
preface to the Liber abbaci. Among those included is the calculation of the sides of the pentagon
and the decagon from the diameter of the circumscribed and inscribed circles... .

3. The Book “Flos”

In the section “Life and Work of Fibonacci” we have already discussed
Leonardo’s solutions of two problems proposed to him by Giovanni da Pa-
lermo, namely: to find a number x such that x*+5 and x2—5 are squares, and
to solve the cubic equation (1). Leonardo published his solutions in a book
entitled “Flos”, which he sent to Frederick II. We shall discuss his solution
presently.

In addition to these solutions, the book contains some examples of inde-
terminate problems. Most of these had also been treated in the “Liber Ab-
baci”. In some cases, negative solutions were interpreted as debts.

4. The Letter to Theodorus

The principal subject of this letter (Scritti di Leonardo Pisano 11, p. 247-252)
is the “Problem of the 100 birds”, a variant of which had been discussed
already in the Liber abbaci. In the letter, Leonardo develops a general method
for the solution of indeterminate problems.

A geometrical problem follows. A regular pentagon is inscribed in a
equilateral triangle. The solution is carried through to the point where a
quadratic equation is reached, and then a sexagesimal approximation is pre-
sented.

5. The “Liber quadratorum”

The main subject of this book is the solution of the pair of Diophantine
equations
x2 + 5= y2
x2—5=2z2

As we have seen, this was one of the problems which Giovanni da Palermo
had proposed to Leonardo. Leonardo first generalizes the problem to

x4+ C=y?

x2—C=z%

(14)

If x? and C form a solution of this problem, Leonardo calls the number C
congruum and the square x? quadratus congruentus.
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The pair of equations (14) is solved as follows. Adding, one obtains
(15) 2x% =y + 2%
By the substitution y=u+v and z=u—v this equation can be reduced to
x?=u?+v2
This is the equation of Pythagorean triples. Its solution is well known:
x=a’+b% u=2ab, v=b>—a%
If a and b are both odd, this solution can be divided by 2:

a*+b? b*—a?
= , u=ab, v= .
2 2

X

Thus, Leonardo obtains the theorem:
If a and b are relatively prime integers, and b>a, one has
(i) If a and b are both odd, then C=ab(b—a)(b+a) is a congruum, and its

congruent square is
, (a*+b*\?
X" = .

2

(i) If a is odd and b even or conversely, then C=4ab(b—a)(b+a) is a
congruum, and its congruent square is

x2=(a’*+b?>
For a=1 and b=9, Leonardo finds

C=720=5x 122
and
x=41, y=49, z=3L

Dividing x, y, z by 12, Leonardo obtains a solution of his problem with
C =5, namely

x=3+7, y=4+iy z=2+411

By the same method, Leonardo obtained solutions for other values of C.
His successors calculated solutions for still more values of C. See Raffaella
Franci: Numeri congruo-congruenti in codici dei secoli XIV e XV, Bollettino
di Storia delle Scienze Matematiche 4, p. 3-23 (1984).

Leonardo’s method differs from that of Abu Ga’far Muhammad ibn al-
Husain, who also solved the same problem. Abu Ga'far’s treatise “On the
Construction of Rectangular Triangles with Rational Sides”, in which his
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solution is contained, was translated into French by F. Woepcke in his paper
“Recherches sur plusieurs ouvrages de Leonardo da Pisa III: Traduction d’un
traité par Alhogain”, Atti dell’ Accademia Pontificia dei Nuovi Lincei 14,
p- 301-324 and 345-356 (1861).

For a general evaluation of Leonardo’s abilities and his sources see pages
611-612 of Vogel’s article FIBONACCI. Vogel is quite right: “With Leonardo,
a new epoch in Western mathematics began.”

Three Florentine Abbacists

In a very interesting paper entitled “Maestro Benedetto e la Storia
dell’Algebra”, Historia Mathematica 10, p. 297-317 (1983), Raffaela Franci and
Laura Toti Rigatelli have discussed the work of Maestro Benedetto and two of
his predecessors living in Florence in the fourteenth century, namely Maestro
Biaggio and Antonio Mazzinghi. I shall now summarize their work.

1. Maestro Benedetto

In 1463, Benedetto of Florence completed his great work “Trattato di
praticha d’arismetica”, consisting of 500 large pergament pages. For us, the
most interesting parts of this work are the books 13, 14, and 15, which deal
with algebraic equations.

Benedetto starts with the well-known “reghola de algebra amuchable”, that
is, with the solution of the six types of linear and quadratic equations

x’=px x*’+px=gq
x2=q x> +q=px
px=q x?=px+q.

According to Franct and Toti Rigatelli (Historia Math. 10, p. 300) this part
of Benedetto’s text is a literal Italian translation of a Latin translation of the
algebra of al-Khwarizmi.

Next, Benedetto introduces the well-known names for the powers of x, with
suitable abbreviations such as

x?=censo =c
x3 =cubo =b

x*=censo di censo=cc

and he presents rules of multiplication for these powers and their inverses and
for radicals like }/a and Va
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Benedetto next presents a long list of equations which can either be reduced
to quadratic equations or directly solved by radicals, for instance

10. x3+px?=qx

which can be reduced to

x*+px=g,
or

15. x*=px
which can be solved as
x= %/p.

In book 15, he adds to this list three more types

37. x*+px?=q
38. x*+q=px?
39 x4:px2+q

which can be solved first for x? and next for x.

2. Maestro Biaggio

In Book 14 of his Trattato, Benedetto presents a sequence of 140 numerical
problems derived from a lost “Trattato di Praticha” written by the Florentine
master Biaggio, who died circa 1340. Twenty-eight of these are mercantile
problems. The others are theoretical: they lead to algebraic equations all belong-
ing to the types solved by Benedetto in Book 13. One of these problems leads to
an equation

HZx2+Q2+)x+12=x

which, according to Biaggio followed by Benedetto, “non puo essere”. In fact,
this equation has no real roots.
Another problem of Biaggio leads to an equation

x*+x2=110.

The only positive solution is

x=1/10.
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3. Antonio Mazzinghi

In Book 15 of his Trattato, Maestro Benedetto has included a short bio-
graphy of Maestro Antonio, who was a member of the family of the Mazzinghi.
He had his atelier near Santa Trinita at Florence, and he became very famous,
not only in arithmetic and geometry, but also in astrology and music. He died
circa 1390.

From Antonio’s treatise “Fioretti” Benedetto quotes several rather difficult
problems, such as

To find numbers in continuous proportions such that their sum is 19 and the sum of their
squares 40.

In modern notation, the conditions for the three numbers x, y, z are

x+y+z=10
X:1y=y:z
x% 4 y? + 2% =40.

From these equations one derives first

2xy+2xz+2yz=100—40=60

xz=y*

and next, replacing the term xz by y?,

2(x+y+2)y=60

y=3

and finally
x+z= T
x24+2*=131

hence

x=HT7+)/13), z=%7-1/13).

It seems that Antonio Mazzinghi was the first to introduce, besides the
traditional name “cosa” for an unknown quantity, a special name for another
unknown. One of his problems reads: to find two numbers such that their sum
is 18 and the sum of their squares 27. He now assumes the first number to be
“una cosa meno la radice d’alchuna quantita”, and the second “una chosa piu la
radice d’alchuna quantita”. That is, he supposes the two numbers to have the

form
x—}y and x+}/y.

I feel we cannot but admire the mathematical ability of Maestro Antonio. In
their paper in Historia Math. 10, Franci and Toti Rigatelli conclude that many
algebraic methods usually ascribed to Luca Pacioli were already used by the
Florentine abbacists Biaggio, Antonio Mazzinghi, and Benedetto.
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Two Anonymous Manuscripts
Two Italian manuscripts from the Biblioteca Nazionale di Firenze, namely

Fond. Princ. IL.V. 152

and
Conv. Sopp. G.7. 1135,

contain very interesting methods for 'solving cubic equations. By the kindness of
Raffaella Franci I have seen a preprint of her paper “Contributi alla risoluzione
dell’equazione di 3° grado nel XIV secolo”, to be published in Festschrift
Gericke (Steiner-Verlag, Wiesbaden).

The first manuscript just mentioned contains a sequence of 22 equations
which can be reduced to quadratic or pure cubic equations. The sequence ends
with three types we have met already in the work of Benedetto, namely

20. ax*=bx*+c
21. ax*+c=bx?
22. ax*+bx?=c.

Next comes an extremely interesting passage concerning cubic equations of
the three types

23. ax3+bx?=c
24. ax3=bx2+c
25. ax3+c=hbx>2

For the solution of these equations, the author presents prescriptions as
follows. First the equations are divided by a and thus reduced to the case a=1.
In the case 23. we now have to solve an equation of the form

x*+px?=q.

Next, x-+3$p is introduced as a new unknown, which I shall call y. Thus one
obtains an equation of the form

(16) Y =ry+s.
If y is a solution of the equation (16), y is called “the cube root of s with

supplement »” (la radice cubica di s con l'aggiunta di r). For instance, the cube
root of 44 with supplement 5 is 4, because

43 =5x 4444,

If the supplement is left indetermined, it is always possible to find the root:
one has just to find a number y such that y* exceeds s. But if the supplement is
given, one has to proceed by trial and error.
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It may happen that in (16) the term s is negative. For instance, the equation

2x3 +36x% =704

leads to x+6=y and
17) y* =108y —80.

In this case, the author says that one has to find the cube root of “debito 80”
with supplement 108. Thus, negative numbers are regarded as debts. The so-
lution of (17), found by trial and error, is y=10.

The second manuscript discusses the same twenty-two types of problems
reducible to linear and quadratic equations as the first, and next two more types,
corresponding to types 23 and 25 of the first manuscript, but illustrated by
different numerical examples, namely by two examples for type 23:

24x3+81x*= 516 (solution x=2)

3x3+27x*=1620 (solution x=6)
and by one example for type 25:
16x*=x*+576  (solution x=12).
The method of solution is the same as in the first manuscript.

We now come to the best known author of this period:

Luca Pacioli

Luca Pacioli’s main work “Summa de arithmetica, geometria, proportioni e
proportionalita”, written in Italian in 1487, was printed at Venice in 1494. It was
very influential.

As compared with Fibonacci, Luca has a simpler algebraic notation. He
denotes the square root by R or R2, the cube root by R3, the fourth power root
by R4 or RR (Radix Radix). The unknown in an equation is denoted by co.
(cosa), its square by ce. (censo), its cube by cu. (cubo), its fourth power by ce.ce.
(censo censo). If a second unknown is introduced, it is called “quantitd”. For
addition and subtraction the signs p and m are used. Thus,

RV40mR320

means ]/40—]/320. The letter V indicates that the root has to be extracted
from the whole expression that follows (V= U = Universale).
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At the end of his book, Luca Pacioli states that for equations, in which

numero, cosa e cubo (n,x and x3)
or numero, censo € cubo (n,x? and x3)
or numero, cubo e censo de censo  (n,x> and x*)

occur, “it has not been possible until now to form general rules”.

Soon afterwards, these cubic and biquadratic equations were solved by
Scipione del Ferro, Tartaglia, Cardano, and Ferrari, as we shall see in Part C
of the present chapter. Before discussing the work of these sixteenth century
algebrists, we have first to consider a very remarkable abbacist living at Pisa in
the fourteenth century.

Part B
Master Dardi of Pisa

A little known work of Master Dardi of Pisa entitled “Aliabraa argibra” has
been examined by Warren Van Egmond in a recent paper “The Algebra of
Master Dardi of Pisa” in Historia Mathematica 10, p. 399421 (1983). I think I
can do no better than quote his Summary:

This article presents a summary list of 198 different types of equations and their rules of solution
found in an algebra text of the 14th century, which is attributed to an otherwise unknown master
Dardi of Pisa. The text is especially noteworthy for its unusual length, its adept handling of complex
equations involving radicals and powers up to the 12th degree, and its correct solution of four

irreducible cubic and quartic equations.

The importance of Dardi’s treatise for the history of algebra has already be
pointed out by Guillaume Libri in the second volume of his “Histoire des
Sciences Mathématiques en Italie” in a footnote on page 519.

Dardi’s treatise is extant in three Italian copies and one Hebrew translation,
which was written in 1473 by Mordechai Finzi at Mantua. Finzi states that
Dardi wrote his treatise in 1344.

Dardi’s list of problems begins with the six well-known types of linear and
quadratic equations. Next come cubic and biquadratic equations such as

7. ax3=n
8. ax3=bx
12. ax*=bx

which can be solved by extracting cube roots or square roots. After this, Dardi
presents a long sequence of equations (most of them involving radicals) which can
be reduced to quadratic or pure cubic equations, for instance

37. n=ax+]/—l;;.
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Four special cases inserted between nos. 182 and 183 deserve special attention,
because they involve irreducible mixed cubic and biquadratic equations. In
modern notation, these four equations can be written as

) cx+bx*+ax3 =n

¥ dx+cx*+bx3+ax*=n

(3) dx +cx?>+ax*=n+bx?

4 dx +ax*=n+cx?+bx>.

Dardi presents rules for the solution of these equations. However, as he
himself admits, his rules are valid only in the special cases considered, not in
general. In all cases, he first instructs us to divide all coefficients by a, so that,
for instance, Equation (1) is reduced to the simpler form

1) x*+bx*+cx=n

The solution of (1) is given as

®) x=3/(c/b)* +n—c/b.

Now the question arises: How did Dardi arrive at his rule (5)?
I don’t know the answer, but I may venture a hypothesis. In the work of al-
Khwarizmi and also in that of Leonardo da Pisa a quadratic equation

x’+bx=c

is solved by adding to both sides a constant such that the left hand side becomes
a complete square (x+b/2)>. Now let us try to add to both sides of (1') a
constant such that the left hand side becomes a cube (x+L)>. Under what
conditions does this procedure work?

Al-Khwarizmi and Leonardo da Pisa both illustrate the formula for the
square of (x+b/2) by a drawing like our Fig. 10. Now let us try to draw a
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similar diagram for (x+ L)* (see Fig. 11). Geometrically, it is clear that the larger
cube can be divided into eight parts:

one part x>, called “il cubo”,
three blocks x%L,
three blocks x IZ,
and one cube 2.

If one now supposes that these parts are just equal to the three terms on the
left hand side of (1') plus a constant term to be added to both sides, one obtains
three conditions that have to be satisfied, namely

(A) Added Term =0
(B) “Number of Cose” ¢ =3I1?
(C) “Number of Squares” b=3L.

Condition (A) can always be satisfied by a suitable choice of the added
term. Dividing (B) by (C), one obtains

L=c/b.

Now Dardi’s example is chosen in such a way that L=c/b satisfies (B) and
(C). The Equation (1') can now be written as

(x+LP}=n+D
and its solution 18

x=3n+DL —L=3n+(c/b)—c/b,

in full accordance with Dardi’s solution.
Dardi’s example of an equation (1) is

(1) x3 460 x2 + 1200 x = 4000.
In this case it is completely clear that the equation can be written as
(x +20)* =4000 + 8000 = 12000

and solved by extracting a cube root.

Dardi’s example (1') comes from a loan problem. The same problem is also
found in a manuscript entitled “Trattato d’Abaco” by Piero della Francesca,
the famous painter. See Gino Arrighi: ,Note di Algebra di Piero della Fran-
cesca”, Physics 9, p. 421-424 (1967). In this Trattato we find three loan problems,
two of which also occur, with exactly the same numerical data, in Dardi’s
treatise.

The first problem reads:

Someone lends to another one 100 Lira, and after 3 years receives 150 Lira with annual
capitalization of the interest. One asks at what monthly rate of interest the loan was given.
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The monthly rate of interest is expressed in denarii pro Lira, 1 Lira being
20 x 12 denarii. Thus, if the monthly rate of interest is x denarii pro 1 Lira, the
annual interest is 12 x denarii pro Lira, and the rate of interest is x/20. Thus one
obtains the equation

x\3
100 {1+—) =150
( +20>

or, if one multiplies by 80

(x+20)*=12000

which is just Dardi’s equation (1').
The second problem is similar. If the creditor gets 160 Lira after 4 years, the
equation for x becomes
(x+20)* = 256000

or
x*+80x3 42400 x? + 32000 x = 96000

which is Dardi’s equation (2). It can be solved by extracting a fourth power
root.

The originator of these three problems seems to be Dardi.

Dardi’s examples of Equations (3) and (4) are not of the same type. His
examples read

(3) x*+28 x2+720x=20x>+1800
and
4) x*+1120x=20x3+12x%+2800.

The problems leading to Equations (3') and (4') are both of the same form,
namely

Problem P. To divide 10 into two parts such that their product divided by their
difference is /g,

with g=18 in (3') and g=28 in (4).
If one part is called x and the other 10— x, we have

x(10—x)
(©) x—(lO—x)_l/g

with g=18 or g=28. In the first case we have

x2(10 — x)? = 18(2x — 10)?
or

7 x*—20x3+28 x*+ 720 x = 1800,

which is Dardi’s equation (3').
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In the second case, we have

x2(10 — x)? =28(2x — 10)?
or

®) x*—20x3 —12x%+ 1120 x =2800

which is Dardi’s equation (4).
Dardi’s solution of Equation (3) with a=1 reads

©9) x=4%/(c/4)? +n+b/d—)/d/2b

and his solution of (4) with a=1 reads just so.
How did Dardi arrive at this curious formula? Once more, I may venture a

hypothesis.
The Equation (6) may be written as a quadratic equation

(2x—10))/g=10x—x?

or
(10) x>—2(5-1/g)x=10Y/g.

The solution of (10) is

x=5—Vg+V/(5—Vg?+10/¢

or
(11 x=5-1g+V25+g.

On the other hand, the squaring of (6) yields

x2(10 ~x)?2 =g(2x —10)?

or
(12) x*+(100—-4g)x2+40gx=20x>+100g

and if we write this as
x*+ex?+dx=bx3>+n
we have

(13) b=20, ¢=100—-4g, d=40g, n=100g.
Now, if one inserts the values (13) in Dardi’s formula (9), one obtains

x=%/(25-2?*+100g +5-/g,

which accords with (11).
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Dardi’s problem was: How can I write the solution (11) in a form like (9), in
which not special numbers like 5 and g (equal to 18 or 28) occur, but only
expressions which can be calculated from the coefficients (13)?

Now let us try to find out how Dardi solved his problem. Let’s consider the
three terms of (11) separately.

The first term 5 was obtained by halving the 10 given in the Problem P, and
b=20 was found by doubling this term. So, the first term in (11) can only be
generalized to b/4. Thus, the second term in (9) is explained.

The second term ]/ g in (11) is the square root of the given number g (equal
to 18 or 28), and the coefficient d is 40 g, so if we divide d by 2b=40 we obtain
just g. Hence the third term in (9) is

~Vdj2b=~Vs.

The first term in (9) is more difficult to explain. I suppose that Dardi wanted
to obtain an expression analogous to his formula (5). In (5) the first term is a
third root of “something plus n”, where n is the constant term on the right hand
side of his equation (1). Just so, Dardi had obtained a solution of (2), in which a
fourth root of “something plus n” occurred. So I suppose that Dardi wanted to
write the third term of (11) in the form

Vsomething plus n.

He reached his aim by making the “something” equal to (c/4)?, for we have

Y(c/H?+n=%/(25-g)7+100¢
=3/(25+¢)* =1/ 25+¢.

Of course, may hypothesis is not proved, but it does at least explain the facts.
In any case we cannot but admire Dardi’s skill in finding his formula (9) without
the help of our algebraic notation.

Part C
The Solution of Cubic and Biquadratic Equations

The solution of the general cubic equation is due to the sixteenth century
Italian algebrists Scipione del Ferro, Tartaglia, and Cardano. I shall now de-
scribe their work, which is of fundamental importance for the history of algebra.

Scipione del Ferro

The general cubic equation

XB+ax?+bx+c=0
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can be reduced, by introducting a new variable
X =x+%a,

to the simpler form
x*+px+q=0.

If only positive coefficients and positive values of x are admitted, there are 3
types

(1) x3+px=q
2 x3=px+gq
(3) x*+q=px.

The first to solve equation (1) was Scipione del Ferro, who was professor at
the university of Bologna until his death in 1526. According to E. Bortolotti
(Periodico di Matematica, serie 4, Vol. 5, 1925, p. 147-184) he actually solved all
three problems (1), (2), (3), but this is not quite certain.

The fundamental idea underlying the solution of (3) is very simple. I shall
follow Cardano’s explanation of the method, given in his book “Ars Magna, sive
de regulis algebraicis” (first printed in Niirnberg 1545), Chapter 11. Cardano
starts with the example

4 x3+6x=20.

Cardano expresses this equation in the language of his “rhetorical algebra”,
as

“Let a cube and six time its side equal 20”.

Cardano’s idea is, to solve the equation (4) by putting

©) xX=u—0.

Cardano expresses this in geometric terminology as follows. He represents
our u by a line segment AC, and our v by CK, and then he says: “Marking off
BC equal to CK, I say that, if this is done, the remaining line AB is equal to
GH?” (that is, to our x).

-

Fig. 12
Substituting x=u—uv into (4), one obtains

x3+6x=(u—0)>+6(u—v)
.—_(u3 ~U3)——3MU(M—U)+6(M—*U)=2OA
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Now u and v are subjected to the following conditions
(6) ud—13=20
(7) 3uv= 6.
Then it follows that x =u —v satisfies the required equation
x3+6x=20.
In Cardano’s geometrical terminology the reduction of (u—wv)3 to
W =03 =3uv(u—r)

is very cumbersome, but the fundamental idea is the same.
It is easy to determine u and v from the conditions (6) and (7). From (7) one
finds
uv=2
hence

Now the difference and the product of the two cubes u* and v* are known,
and one finds

u3=1/108+10
v®=1/108 - 10,

so u and v are cube roots of known numbers, and we have

x=1/}/108+10—7/}/108 - 10.

Cardano formulates this as a general rule:

Cube one third the “number of sides” (i.e. one-third the coefficient of x). Add to it the square of
one-half the constant of the equation, and take the square root of the whole. You will put this
twice, and to one of the two you add one-half the number you have squared and from the other
you subtract one half the same. You will then have a binomium (1/108+10) and its apotome
(]/108— 10). Then, subtracting the cube root of the apotome from the cube root of the binomium,
the remainder is the required side.

Scipione del Ferro never published his solution: he only told a few friends.
Among these was his pupil Antonio Maria Fiore, from Venice. With his en-
trance into the scene, a dramatic development begins.

Tartaglia and Cardano
At this time challenge disputes, often for considerable sums of money, were a

normal form of competition in the learned world. A mathematics teacher in
Venice, Niccolo Tartaglia, born in Brescia in 1499, was very successful in these
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contests and won several prizes. Tartaglia, “the stutterer”, was his nickname; his
real name seems to have been Niccolo Fontana.

In 1535, Tartaglia was challenged to a problem-solving contest by Scipione
del Ferro’s pupil Fiore. There were to be 30 questions, and the loser was to pay
for 30 banquets. Tartaglia prepared a variety of problems, but Fiore had only
one arrow to his bow: all his problems were equations of the form (1). The night
between February 12 and 13; shortly before the experiation of the allotted time,
Tartaglia had an inspiration. He discovered the method of solution of equation
(1), and solved all 30 problems within a few hours. In the contest, Fiore proved
unable to solve most problems of Tartaglia and was declared the loser. The
honour alone was satisfaction enough to Tartaglia, and he renounced the 30
banquets.

Early in 1539, another actor entered the scene: Gerolamo Cardano, a famous
medical doctor, astrologer, philosopher, and mathematician, who lived in Mi-
lan. His life has been vividly described by Oystein Ore in his book “Cardano,
The Gambling Scholar” (Princeton 1953, reprinted by Dover, New York 1965).
Cardano had heard of Tartaglia’s discovery, and he approached Tartaglia, send-
ing the bookseller Zuan Antonio da Bassano to Venice as an intermediary. As
Tartaglia would not reveal his method, Cardano urged him to come to Milan
and to stay in his house; he promised Tartaglia to introduce him to the
marchese Alfonso d’Avalos, the military commander of Milan.

Tartaglia accepted the invitation. He had made some military inventions, and
he was eager to show them to the marchese.

After Tartaglia’s arrival at Milan, Cardano persuaded him to reveal the
secret of the solution of “the cube and the cose”, that is, of the equation (1).
Cardano swore an oath that he would never publish Tartaglia’s discovery. The
oath was sworn, according to Tartaglia’s account, on March 25, 1539.

Right after Tartaglia’s visit, Cardano succeeded in extending the method of
solution of Equation (1) to the other types (2) and (3). In these two cases, one has
to write the solution as u+v instead of u—v. For the rest, the calculation is just
the same. Thus in case (2) one has

x*—px=q
X=u-+v

X3 —px=ud+03+3uvu+v)—plutv)=¢q

3uv=p
uw+vd=q
w=sq+w
vi=ig—w
with
® w=y/(Ga*-@p)
and hence

)] x=u+v=%/%q+w+%/%q—w.
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But now a new difficulty arises. The difference under the root sign in (8) may
become negative. In this case, the so-called “casus irreducibilis”, no real square
root is possible. Yet, the equation can be solved in real numbers. In the “casus
irreducibilis” there are even three real roots. They may be obtained as follows.

In the “casus irreducibilis” we may write w=]/ ~c¢. The two expressions 3¢
+w and $q—w are complex conjugates. For the first cube root in (9) we have
three possibilities: the root may be multiplied by a cube root of unity. Because
of the condition 3uv=p, the second cube root in (9) must be chosen complex
conjugate to the first, so the sum is always real, no matter which of the three
possibilities is chosen.

Cardano knew about this difficulty, for in Chapter 1 of his “Ars Magna” he
presents a complete discussion of the number of positive or negative roots of
cubic equations of the types (1), (2), (3). He knows that in the cases (2) and (3), if
(3p)® exceeds (4 ¢)?, there are all in all three real roots. However, in explaining
the solution by means of cube roots, he carefully avoids the “casus irreducibilis”.
In all of his examples, w is always a root of a positive number, and there is only
one (positive) root.

In the “casus irreducibilis” one has to extract a square root from a negative
number. Such square roots, which we now call “imaginary”, occur also in
another chapter of the “Ars Magna”. In Chapter 37, Cardano poses the prob-
lem: To divide 10 in two parts, the product of which is 40. He writes:

It is clear that this case is impossible. Nevertheless, we will work thus: We divide 10 into two
equal parts, making each 5. These we square, making 25. Subtract 40, if you will, from the 25 thus

produced, as I showed you in the chapter on operations in the sixth book, leaving a remainder of
—15, the square root of which added to or subtracted from 5 gives parts the product of which is 40.

These will be 5+}/—15 and 5—1/ — 15.

Cardano next verifies that the two numbers thus obtained satisfy the
required conditions. He writes:

Putting aside the mental tortures involved, multiply 5 +]/—:B by 5 —]/— 15, making 25 —(—15),
which is +15. Hence this product is 40. ... This is truly sophisticated. ... (Translated by T.R.
Witmer: The Great Art or The Rules of Algebra by Girolamo Cardano, M.L.T. Press, Cambridge,
Mass. 1968.)

As far as I know, Cardano was the first to introduce complex numbers

a+7/ —b into algebra, but he had serious misgivings about it.

Lodovico Ferrari

In 1536, a youth of 14 years came into Cardano’s household as a servant. He
learned mathematics and developed into an eminent mathematician, Cardano’s
friend and secretary.

Ferrari discovered that the general equation of degree 4 can be reduced to a
cubic equation and hence be solved by means of square roots and cube roots.
Cardano explained Ferrari’s method in Chapter 39 of his “Ars Magna”, and he
stated that “it is Lodovico Ferrari’s, who gave it to me on my request”.

Cardano’s exposition of the method starts with a theorem about squares and
rectangles, which he explains as follows:
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K N H
M F
E
5 L
A B C G
Fig. 13

“Let the square AF be divided into two squares AD and DF, and two
supplements, DC and DE, and let me add the gnomon KFG around it in order
to complete the whole square AH (see Fig.13). I say that this gnomon will
consist of GC? plus twice the added line GC x C4, for FG is GC x CF, from the
definition given at the beginning of the second book of the Elements, and CF
equals CA by the definition of a square. Since, according to 1,43 of the
Elements, KF equals FG, the two surfaces GF and FK consist of GC x2CA,
and GC? equals FH, according to the corollary to II, 4 of the Elements. Hence
the proposition is clear. If, therefore, AD equals x* and CD and DE [each]
equal 3x% and DF equals 9, BA will equal x> and BC will necessarily equal 3.
Since, therefore, we shall wish to add more squares to DC and DE, these will be
CL and KM. In order to complete the whole square LMN is necessary. This, as
has been demonstrated, consists of the square of GC [plus 2GC x BC], one-half
the [original] number of squares, for CL is the surface produced by GC x AB, as
has been shown, and AB is x? because we assumed that AD is x* and, therefore,
FL and MN are made up of GC x CB, according to I, 42 of the Elements. Hence
the surface LMN (this is the number to be added) is GC x2BC (that is, times
the coefficient of x?, which is 6) plus GC times itself (that is, times the added
number of squares). This demonstration is our own.”

Let me explain this, using our modern algebraic notation. If we put AB=s,
BC=a, and CG=b, the theorem proved by Cardano is equivalent to the
identity

(s+a+b?=(s+a)*+2sb+2ab+b>

In the appliation of this identity to the solution of the biquadratic equation,
Cardano takes for s= AB the square of the unknown x, so that he obtains

(10) (x2+a+b?=(x*+a)*+2x*b+2ab+b%

In a biquadratic equation, the term x> can always be made to disappear, so
only terms with x* x2 x, and a constant term remain. As an example, Cardano
considers the equation

(11) x*+6x%+36=60x.
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In order to reduce the left-hand side to a square (x*+a)?, he adds 6 x? to
both sides, thus obtaining

12) (x?+6)? =6x2+60x.

Next he says:

Now if 6 x*+60x had a square root, we would have the solution. But it does not. Hence there
must be added to both sides alike enough squares and a number so that on one side there is a
trinomium with a root and on the other the same.

This means: if 6x>+60x would be the square of a binomium px+gq, we
would extract square roots from both sides of (12). But since 6 x*+60x is not a
complete square, we have to add a term 2bx? and a constant term to both sides
in order to obtain complete squares on both sides. Putting a=6 in the identity
(10), Cardano has an identity

(x24+6+b)2=(x2+6)>+2bx>+12b+b>

So, if one adds

2bx?+12b+b?

to both sides of (12), one obtains

(13) (x24+6+b)2=(6x>+60x)+(2bx*+12b+b?)
=(2b+6)x?+60x+(b*+12b).

Now b is chosen in such a way that the right hand side of (13) becomes a
complete square of a binomium p x+g¢. The condition for this is

(2b+6)(b? + 12 b) =302

or

2b%+30b% +72b=900
or
(14) b3 +15b +36b=450.

This is a cubic equation for b, which can be solved by the method explained
in an earlier chapter of Cardano’s book. The result is

b=7/190+1/33903 +3/190—1/33903 —5.

Now the right-hand side of (13) is a complete square, and one can extract
square roots from both sides, thus obtaining a quadratic equation for x.

Cardano and Ferrari now were in a awkward position. They had made
extremely important discoveries, but they could not publish them, because
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Cardano had sworn an oath by the Sacred Gospel never to publish Tartaglia’s
solution of the cubic equation, which formed the basis of their common work.

In the year 1543 Cardano and Ferrari decided to go to Bologna and ask
Annibale della Nave whether there was any truth in the rumours that Scipione
del Ferro had discovered the solution of the cubic equation even before Tarta-
glia. They were well received and readily given permission to examine the
posthumous papers of Scipione, in which the solution was clearly explained.

Now Cardano decided to publish the solution of the cubic and biguadratic
equation in his book “Ars Magna” (1545), stating clearly that the solution of
equation (1) had been discovered by Scipione del Ferro and rediscovered by
Tartaglia, that he himself had extended the solution to equations (2) and (3), and
that the solution of the biquadratic equation was due to Ferrari.

Tartaglia was furious. The very next year he published the story of the oath,
with all details, including the text of the oath.

Rafael Bombelli

Rafael Bombelli was the author of a very influential work in three books
entitled PAlgebra. It was first printed in Venice 1572, and next in Bologna 1579.

Bombelli admired Cardano’s “Ars Magna”, but he felt that Cardano had not
been clear in his exposition (“ma nel dire fu oscuro™). So he decided to write a
treatise that would enable a beginner to master the subject without the aid of
any other book.

Book 1 of Bombelli’'s Algebra deals with the calculation of radicals, in
particular of square roots and cube roots. Very remarkable is his approximation
of square roots by continued fractions. To approximate 1/2, Bombelli writes

1
(1) V2=1+-.
y
From this he finds
) y=1+)2.
By adding 1 to both sides of (1), one obtains

1
3 =24-.
) y ’

Substituting (3) into (1), Bombelli finds
1

V2=1+—~T.
24—
y
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I shall follow the usage to write this continued fraction as

1+11
2+ y

Continuing in this way, Bombelli obtains an infinite continued fraction

1/2-1_,_ 1 _1_.1_
T 24 24 247

If, after a finite number of steps, one neglects 1/y, one obtains an approxima-
tion of /2, for instance

-2

1+
or
1

14—
+2+

N Qe

1
2
1
2 ’

and so on.

Bombelli applies the same method to other square roots such as ]/ 13. He
obtains a first approximation

V13~3+4=3%
and a second approximation, replacing the 6 in the denominator by 6 +%,

44 3
~34—— =32,
V13 3+6+6 3

Chapter 2 of Bombelli’'s Algebra deals with the solution of equations up to
degree 4. For the cubic and biquadratic equations he follows Cardano. In
contrast to Cardano, he fully discusses the “casus irreducibilis”. Solving the
equation

) x3=15x+4

by the rule of Cardano, he finds

(5) x=y2+y ~121+y/2—y/-121.

Following Cardano, Bombelli calls the imaginary roots “sophistic”, but he
notes that the equation (4) is by no means impossible, for it has the root x=4.
He now investigates whether he can attach a meaning to the cube root of a
complex number. More precisely, he tries to equate the first cube root in (5) with

a complex number p+}/ —g:

(6) ]3/2+]/—121 =p+V —q.

This would yield

24 —121=(p*-3pg)+(Bp*—9V —q.
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This equation can be satisfied by putting

(7) 2=p*—3pq
and
(8) V-121=3p>—9)} —4q.

Now if these two conditions are satisfied, we also have

© V2V -121=p-Y —q.

Multiplying (6) and (9), Bombelli obtains

3/125=p*+¢
or

(10) q=5-p*
Substituting this into (7), one obtains a cubic equation for p:
(11) 4p3—15p=2.

A solution of this equation is p=2, and from (10) one has

g=5—4=1,
so we have
Y2+ —121 =24V -1
and
V22—V -121=2-7~1,
hence

x=32+1 —121 +y/2—}/ - 121
=2+Y -D)+2-Y -1)=4
After having found this result, Bombelli was very much satisfied. He writes:
“At first, the thing seemed to me to be based more on sophism than on truth,
but I searched until I found the proof.”

Bombelli introduced a notation for what we call +i, namely piu di meno, and
for —i, meno di meno. He presented rules of calculation such as

meno di meno uia men di meno fa meno,

which means

(=)x(=)=-1,

and he gives some examples of calculations involving complex numbers.
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I shall give an example of Bombelli’s notation. The expression
V24V -121=y/2+114,

which occurs in his solution of a cubic equation, is written as

Rec. L2p. di m. 11d.

Here R.c. means Radice cubica. The Letter L and the inverted L at the end
play the role of brackets: the cube root is to be extracted from the whole
expression between the L and the inverted L. The abbreviation p. di m. means
piu di meno.



Chapter 3
From Viéte to Descartes

Frangois Viéte

For the life of Frangois Viéte (1540-1603) see the article VIETE by H.L.L.
Busard in Dictionary of Scientific Biography X1V, p. 18-25.

Viéte was born in Fontenay-le-Comte on the river Vendée. He studied law
at the University of Poitiers, where he received a bachelor’s degree in 1560.
Four years later he entered the service of Antoinette d’Aubeterre as a secretary
and educator of her daughter Cathérine de Parthenay. His lectures on the
elements of geography and astronomy have been published in 1637 under the
title “Principes de cosmographie”. His “Harmonicon coeleste”, a treatise in
five books on Ptolemaic astronomy, is extant in several manuscripts.

In 1571, Viéte began to publish his “Canon mathematicus, seu ad tri-
angula cum appendicibus”. The publication of the first two books, dealing
with plane and spherical trigonometry, was finished in 1579. The last two
books of the Canon, on astronomy, have not been published.

In 1573, Viéte was appointed counselor to the parliament of Brittany at
Rennes, and in 1580 he became “maitre de requétes” at Paris, an office
attached to the parliament. In 1584 he was banished from the royal court, but
in 1589 he was recalled by Henri III and became counselor of the parliament
at Tours.

During the war against Spain, Viéte served Henri IV by decoding in-
tercepted letters written in a code. For details of his decoding see D. Kahn:
The Code Breakers (New York 1968), p. 116-118.

Viéte returned to Paris in 1594 and to Fontenay-le-Comte in 1597.

Most important for the history of algebra is Viéte’s “In artem analyticem
Isagoge” (Tours, 1591). His aim was, to revive the method of analysis explained
by Pappos in his great “Collection” and to combine it with the methods of
Diophantos. To the two kinds of analysis mentioned by Pappos Viéte added a
third, which he called “rhetic” or “exegetic” (from ényéouni=to lead, to show
the way), and which he defined as the procedure by which an unknown
magnitude is found by solving an equation.

Viéte was the first to use letters not only for unknowns but also for known
quantities. He used the consonants B, C, D, ... to denote known quantities, and
vowels A4, E, ... to denote unknowns.

In Chapter 3 of his “Isagoge”, Viéte explains his “Law of Hornogeniety”,
according to which only magnitudes of “like genus” can be compared or
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added. Thus, where we would write a quadratic equation as

bx?+dx=z,

Viéte writes
“B in A Quadratum, plus D plano in A, aequari Z solido”.

Namely, by Viéte’s Law of Homogeneity, if A4 (our x) and B (our b) are line
segments, D must be a plane area and Z a volume. Hence he writes “D plano”
and “Z solido”.

This law implies a serious restriction of the algebraic formalism. As we
have seen, Omar Khayyam managed to circumvent this restriction by in-
troducing a unit of length e. We shall see that Descartes used the same trick.

In Chapter 4, Viéte formulates the “canonical rules” of “species calcu-
lation”, that is, of calculation with letters, as opposed to calculation with
definite numbers.

In Chapter 5, Viete presents rules for solving equations. One operation
called “antithesis” is the transfer of terms from one side of an equation to the
other side, corresponding to what the Arabic algebrists call al-jabr. Another
operation is the division of all terms of an equation by one and the same
“species”, and so on.

In 1593 Viete published his “Zeteticorum libri quinque” (five books on
finding). In this work he explained the solution of several determinate and
indeterminate problems. Some of the problems are taken from the “Arith-
metica” of Diophantos. A typical example is the problem: to divide a number,
which is a sum of two squares, into two other squares.

In two further treatises Viéte discusses the geometrical solution of algebraic
equations. In the first, entitled “Effectionum geometricarum canonica recensio”,
he shows that the solution of quadratic equations can be constructed using
circles and straight lines only. For instance, in order to solve the equation

A*+AB=D? or A(A+B)=D?
Viete constructs two perpendicular line segments B and D, next he draws a

semi-circle centered at the midpoint of B. The two remaining parts of the
diameter are equal to A (see Fig. 14).

Fig. 14

In Viéte’s second treatise “Supplementum geometriae” (1593) he adds to
Euclid’s construction postulates for straight lines and circles one more pos-
tulate, namely: “To draw a straight line from a given point across any two
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lines (straight lines or a straight line and a circle) such that the intercept
between the two lines is equal to a given distance”. In the history of Greek
mathematics, constructions based on this postulate are called “neusis con-
structions”.

By means of this postulate, Viéte first solves the problem of constructing
two mean proportionals between two given line segments. The solution of this
problem immediately yields the doubling of a cube. Next, Viete solves the
trisection of an angle. By the same method he also constructs a regular
heptagon inscribed in a circle. Finally he shows that all geometrical problems
leading to cubic or biquadratic equations can be solved by means of neusis
constructions.

In the same year 1593, Viéte decided to publish book VIII of his “Variorum
de rebus mathematicis responsorum”. In Chapters 1-7 of this book he discusses,
once more, the doubling of the cube, the trisection of an angle, and the
construction of a regular heptagon. In Chapter 8 he considers the quadratix, in
Chapter 11 the lunules that can be squared, and in Chapter 16 he presents a
construction of the tangent at any point of an Archimedian spiral.

Most interesting is Chapter 18, in which = is represented as an infinite
product. The area of a polygon of 4 x 2" sides inscribed in a circle of radius 1
can be written as

with

and so on. Letting n go to infinity, one obtains

B 2

CiCyC3...

In 1593 the Dutch mathematician Adrianus Romanus proposed to all
mathematicians the problem of solving a certain equation of degree 45. The
ambassador of the Netherlands at the court of the French king Henri IV
claimed that nobody in France would be able to solve this problem. The king
thereupon informed Viéte of the challenge. Viéte saw that the equation was
solved by the chord subtending an arc of 8 degrees in a circle of radius 1.
Thus, the solution can be found by dividing the circumference into 45 equal
parts. During the same audience, Viéte presented one root of the equation, and
the next day all 23 positive roots. He published his solution in 1595 in a
treatise entitled “Ad problema, quod omnibus mathematicis totius orbis con-
struendum proposuit Adrianus Romanus, responsum’”.

In 1615, after the death of Viéte, his Scottish friend Alexander Anderson
published in one volume two papers of Viete entitled “De aequationem re-
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cognitione” and “De equationem emendatione”. In the latter paper Viéte dis-
cusses several methods of transforming equations. For instance, if one has one
root D of an equation, one can obtain an equation of lower degree. For this,
Viéte presents several examples.

Another example. Let a cubic equation

1) BA-A*=2Z
be given, and let E satisfy the condition
(2) E*—-Z=BE.

For us, this means that —E is a root of the original equation (1), but Viéte
does not acknowledge negative roots. From (1) and (2) he concludes

A’ +E*=B-(A+E)
or

(A+E)(A>~AE+E*)=B-(A+E).

Now one can divide by A+ E, and one obtains a quadratic equation for 4.

In the same paper, Viéte deals with the solution of biquadratic and cubic
equations. He starts with a biquadratic equation
3) A*=Z—BA.

If A*E2+1E* is added to both sides, one obtains
4) (A2 +3E*>?=Z—-BA+A*E*+1E*

The right hand side becomes a complete square, if E satisfies the equation

Z+LE*=B?/4E?

or

%) E®4+4ZE*=B?,

which is a cubic equation for E2. Viéte’s method is essentially the same as that
of Ferrari.

In Chapter 7 of the “Emendatione” a new method is taught for solving the
cubic equation

6) A*+3BA=2Z.
Viéte introduces a new unknown E by the equation

(7) B=E(A+E).
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Substituting (7) into (6) one obtains

A*+3AE(A+E)=2Z
and hence

(®) (A+E)?=2Z+E?3.

From (7) one can solve A+ E and substitute it into (8). One obtains a
quadratic equation for E3:

©) B3=2ZE3®+ES

which can be solved for E3 and hence for E:

(10) E=}VB*+Z*-Z

Now A4 can be formed from (7). In contrast to the method explained in
Cardano’s Ars Magna, one has to extract only one cube root. Yet, the final
result is the same as in Cardano’s method, for if one introduces another
unknown E’'= A+ E, one has

B=FE'(E'—A)
and one can derive, as before, a quadratic equation for E’3:

B*=E$~2ZE"

from which one obtains

(11) E=}VB*+2*+Z.

Now A=E'—FE is a differences of two cube roots, as in Cardano’s Ars
Magna.

Viete knows about the relation between the roots and the coefficients of an
equation. In Chapter 10 of the “Emendatione” he formulates a theorem:

Si 4 cubus ~B—D~G in A quad. +Bin D+Bin G+D in G in A, aequatur Bin D in G: A
explicabilis est de quadlibet illarum trium B, D vel G.

This means: If
A*+(—B—D—G)A*+(BD+BG+DG)A=BDG
then 4 equals any one of the three quantities B, D, or G.
Another paper published by Anderson is entitled “ Ad angulares sectiones
theoremata kaflodikddtepa” (Most General Theorems on Divisions of Angles).

In this paper, Viéte considers the trisection of an angle and uses it to obtain a
trigonometrical solution of a cubic equation in the “Casus irreducibilis”. If one
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puts, with an arbitrary radius R,

2Rcosp=A4
2Rcos3p=+B

one has the equation
(12) A*=3R*A+R*B,

and every cubic equation having three real roots can be reduced to this form
and solved by trigonometry.

Simon Stevin

Simon Stevin, born at Brugge in 1548, came to Leyden in 1582. Here he
published several books on mathematics and mechanics, all in Dutch. In his
opinion the Dutch language was, of all languages, the best to express ideas in
general, and scientific ideas in particular. Several mathematical expressions,
coined by Stevin, are still in use at Dutch schools. For instance, we still call
mathematics “wiskunde”, that is, the science of that what is certain (gewis).

Stevin was an excellent engineer. He built windmills, locks, and ports.
Maurits, the prince of Orange, the great leader in the war against Spain, used
Stevin as an adviser in buildung fortifications. Stevin’s book on this subject,
called “Stercktebouw”, became very popular. It influenced the famous French
builder of the fortifications Vauban.

In Stevin’s “Wereldschrift” (World Script) he defended the Coperican sys-
tem. His highly original books on mechanics were inspired by Archimedes.

Most influential was a booklet of 36 pages entitled “De Thiende” (The
Tenth), first published in 1585. In the same year Stevin brought out a French
translation: “La Disme”. For a facsimile of the Dutch edition with English
translation see “The Principal Works of Simon Stevin”, Vol. 2 (Amsterdam
1958), p. 371-454.

In this booklet, Stevin denotes the units by (@), their tenth parts by @, and
so on. As an example, I shall reproduce his multiplication of 0.000378 by 0.54:

@ O ®
37 8
5 4 Q
1 5 1 2
1 8 9 0

2 0 4 1 2

Decimal fractions were used by the Chinese and Arabs long before Stevin
(see J. Tropfke: Geschichte der Elementarmathematik, 4th edition, p. 106 and
110-112), but it was Stevin who made them popular in the West.
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Soon after Steving the decimal point came into use. For instance, on page
218 of Clavius’ “Astrolabium tribus libris explicato” (Rome 1593) one finds the
notation 46.5, and Napier, who published his table of logarithms in 1614, used
the decimal point systematically.

Of course, the decimal notation can be used for all real numbers, whether
rational or irrational. Like our engineers, Stevin does not make a distinction
between rational and irrational numbers. He says right at the beginning of his
book “L’arithmétique” (Leyden 1585):

Nombre est cela, par lequel s’explique la quantité de chacune chose,
and

Nombre n’est point quantité discontinue.... Il n'y a aucuns nombres irrationels, irréguliers,
inexpliquable, ou sourds.

Thus, with one stroke, the classical restriction of “numbers” to integers
(Euclid) or to rational fractions (Diophantos) was eliminated. For Stevin, the
real numbers formed a continuum. His general notion of a real number was
accepted, tacitly or explicitly, by all later scientists. According to Descartes,
Leibniz, and Newton, every ratio of one line to another can be expressed by a
“number”. For the wording of their definitions see J. Tropfke: Geschichte der
Elementarmathematik I, p. 137.

Stevin also accepted negative numbers, as did several of his predecessors.
However, he did not accept imaginary solutions of equations, because “they
don’t help us in finding real solutions”.

In his book “Stelreghel” (= Algebra) Stevin introduced several simplifi-
cations of the algebraic notation. Thus, he used + and - for addition and

subtraction, M and D for multiplication and division, ]/ for square root, ]/@)
for cube root, and so on.

Pierre de Fermat

For a survey of the life and work of Fermat see Michael S. Mahoney: The
Mathematical Career of Pierre de Fermat (1601-1665), Princeton University
Press 1973. A lively description of Fermat’s brilliant work in number theory
has been given by André Weil: Number Theory, An approach through history,
Birkhiuser, Basel 1983. Here we shall be concerned only with Fermat’s dis-
covery of the method of Analytic Geometry.

Analytic geometry was invented, nearly simultanuously and independently,
by Fermat and Descartes. The invention was not very difficult, but it was of
fundamental importance for the development of geometry and algebra. Its
primary aim was to solve geometrical problems by algebraic methods. Con-
versely, the method can also be used to apply geometrical methods to algebraic
problems.

Fermat’s exposition of the method of analytic geometry is explained in his
“Introduction to Plane and Solid Loci”. In January 1643, Fermat sent this
treatise to his correspondent Pierre de Carcavi. It was published after the death
of Fermat in his “Varia Opera” (1679), and again in a better edition in Vol. 1
of the “Oeuvres de Fermat” (1891).
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Fig. 15

What are “Plane and Solid Loci”? Fermat gives the following explanation:

Whenever the local endpoint of the unknown quantity describes a straight line or a circle, a
plane locus results, and when it describes a parabola, hyperbola, or ellipse, a solid locus results
(Mahoney’s translation).

Let me explain this. In Fermat’s “Introduction” a variable point I is
determined by two (orthogonal or skew) coordinates, which he denotes by A4
and E, using Viéte’s notation (see Fig. 15). The “local endpoint” is the endpoint
I of the ordinate E. So, according to Fermat’s explanation, a “plane locus” is a
circle or a straight line, and a “solid locus” is a conic section.

The first part of the “Introduction”, dealing with plane loci, was finished in
April 1636. This is clear from a letter to Mersenne, in which Fermat writes:

I have completely restored Apollonius’ treatise On Plane Loci. Six years ago I gave it to Mr.
Prades.... It is true that the prettiest and most difficult problem, which I had not yet solved, was
missing. Now the treatise is complete in every point, and I can assure you that in all of geometry
there is nothing comparable to these propositions (Mahoney’s translation).

What was this “most difficult problem”? This is clear from a letter to
Roberval, written in September 1636, in which Fermat first explains some
applications of his method of coordinates, and next continues:

I have omitted the principal application of my method, which is for finding plane and solid
loci. It has served me in particular for finding that plane locus that I earlier found so difficult: If
from any number of given points straight lines are drawn to a (variable) point, and if the sum if
the squares of the lines is equal to a given area, the point lies on a circumference given in position.

The solution of this “most difficult” problem is presented as Theorem II5
of the “Introduction”. Fermat first treats several special cases, in which the
given points lie on a straight line. Next he deals with the case in which one of
the given points (Q in Fig. 16) lies outside the line AE. To treat this case, he

o) 0
) M
% X
(= N
A R Y DB c E

Fig. 16
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introduces orthogonal coordinates for the point Q as well as for the variable
point I. The coordinates of I are IX and IY. Now the problem is easy to solve,
and there is no difficulty in extending the method to the general case.

In principle, the method of coordinates had already been used by Apol-
lonios in his “Conica”. See for this subject Otto Neugebauer: Apollonius-
Studien, Quellen und Studien Gesch. der Math. B2, p. 215-254. In the “Coni-
ca”, a variable point on a conic section is determined by two line segments,
usually called “abscissa” and “ordinate”. Following modern usage, I shall
denote the two line segments by x and y (see Fig. 17). If the point I varies on a
conic section, there is a definite algebraic relation between x and y, which is

called the “symptoma” of the curve.

Fig. 17 Parabola

In the “Conica”, the “symptoms” of the three conic sections are

Parabola y?=px (see Fig. 17)
Hyperbola y?:x(a+x)=p:a
y?:x(a—

Ellipse x)=p:a.
In Fermat’s “Introduction”, the equation of a straight line through the
origin reads
D-A=B-E

(see Fig. 18). Fermat formulates this as a theorem:
If D-A=B-E, then the locus of the point [ is a straight line.
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Fig. 19. Parabola

In the same way, the parabola is treated (see Fig. 19). Fermat shows:
If Aq. (that is, the square of A) equals D-E, the point I lies on a parabola.
The equation of the circle is written as

13) Bq.— Aq.=Eq.

and Fermat proves that all equations containing Aq and Eq and A and E
multiplied with given quantities may be reduced to this Equation (13), provided
the angle NZI is right and the coefficient of Agq. is equal to that of Eq.

At the end of his treatise, Fermat explains a general method to reduce any
quadratic equation in x and y to one of the special forms

ax=by straight line
xy=>b hyperbola
x2+xy=ay* pair of lines
x*=ay  parabola
b?—x2=y? circle
—x*=ay ellipse
b2+ x2=ay? hyperbola.

Thus every quadratic equation in x and y represents a straight line or a
conic section. The same result was proved, by a different method, by Descartes,
as we shall see presently.

René Descartes

Our algebraic notation is mainly due to René Descartes (1596—1650). Des-
cartes introduced this notation right at the beginning of his treatise “La
géomeétrie”, in which the principles of “analytic geometry” are explained. This
treatise is a part of Descartes’ great philosophical work “Discours de la
Méthode” (1637). Descartes obviously considered his “Géométrie” as a stan-
dard example to elucidate his general considerations concerning the method of
science.

The French text of “La Géométrie” has been published, together with an
English translation, by David Eugene Smith and Marcia Latham in 1954. It
was reprinted by Dover, New York.
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Fig. 20

Descartes begins by saying that “any problem in geometry can be reduced
to such terms that a knowledge of the lengths of certain lines is sufficient for
its construction”. Now the standard operations in arithmetic are: addition,
subtraction, multiplication, division, and the extraction of square roots. In
geometry, after having chosen a fixed line called “unity”, one can define five
operations on line segments corresponding to the arithmetical operations. Of
course, line segments can be added and subtracted. To multiply two line
segments BD and BC, if AB is taken as unity, one has only to join the points
A4 and C, and to draw DE parallel to CA; then BE is the required product (see
Fig. 20). In other words: the product ab=c is defined by the proportion

(14) e:a=b:¢c

where e is the unity.

One sees the advantage of this notation. In Greek geometry, the product of
two line segments is an area: it cannot be added to a straight line segment. On
the other hand, according to Descartes the product of two line segments is
again a line segment. Just so, the quotient of two line segments is a line
segment: if (14) holds, b is the quotient c/a.

1
t+

F 6 4 H

Fig. 21

The square root of a line segment is explained thus: One adds to GH a
segment FG=¢, one divides FH into two equal parts at K, one draws a
semicircle FIH with centre K, and one erects a perpendicular GI to FH. The
line segment GI is the required root (see Fig. 21).

Descartes now denotes his line segments by a, b, ..., and he writes

a+b,a—b,ab,g,]/a.
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He also writes
Vaa+bb

for the square root of a?+b?% Thus, all essentials of our algebraic notation
have been established by Descartes.

In contrast to Stevin, Descartes does not introduce the notion “real num-
ber”. For him, the quotient of two line segments is a line segment. Thus, he
avoids all logical difficulties connected with irrational numbers.

Descartes next shows how the equations

22=az+b?
y2=—ay+b?
z2=qz—b?

can be solved geometrically.

Next, Descartes turns to a kind of problems that had been discussed by
Euclid and Apollonios, namely the “problem of three or four lines”. If three
straight lines are given in position, and if line segments are drawn from a
variable point in given angles to those three lines, and if it is given that the
rectangle on two of these line segments is in a given proportion to the square
on the third; or if four straight lines are given, and if line segments are drawn
from a variable point in given angles to the four lines, and if the rectangle on
two of these line segments is in a given proportion to the rectangle on the two
remaining lines, then it is required to prove that the point lies on a given conic
section.

According to Pappos, Apollonios says in the third book of his treatise on
the “locus of three or four lines”, that Euclid had not solved this problem, and
that he himself too had not been able to solve it completely, nor had anyone
else. “This”, says Descartes “led me to try to find out whether, by my own
method, I could go as far as they had gone”.

Descartes next states that in the case of three or four lines the required
points lie all on one of the conic sections, or even in some cases on a circle or
straight line. He now proceeds to prove this by his own method of coordinates.

Let AB, AD, EF, and GH be straight lines given in position (see Fig. 22). It
is required to find points C such that the line segments CB, CD, CF, and CH
drawn from C to the four given lines satisfy the condition that CB- CD be in a
given proportion to CF- CH':

(15) CB-CD=o-CF-CH.

Let this condition be satisfied, says Descartes, and let the segments AB and
BC be called x and y. Thus, every point C is determined by two coordinates x
and y, the angle ABC being given.

It is very strange that orthogonal coordinates are called, after the latinized
name of Descartes, “Cartesian coordinates”. Descartes himself does not sup-
pose ABC to be a right angle.
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Fig. 22

Descartes next shows that all segments CB, CD, CF, and CH are linear
functions of x and y. It follows that the Equation (15) is a quadratic equation
for x and y. For every assumed value of y (or x) the corresponding value of x
(or y) can be constructed by solving a quadratic equation. Thus, the required
curve can be drawn, says Descartes.

In the second book of his Geometry, Descartes proceeds to investigate the
nature of the curves thus obtained. His notations are rather clumsy. He
reduces the Equation (15) to the form

2 befglx—b C
(16) y2:2my——rixy+——c—jig~x gngJS
z

ez®—cgzz

and next, simplifying the notations a little, he solves for y:

17) y=m~ﬁx+|/mm+0x+gxx.
z m

. n . . o
Introducing y—m+-— x=y" as a new coordinate, Descartes simplifies (17) to
z

(18) y’:l/n1m+0x+£xx
m

and he shows, using some theorems from the first book of the Conica of
Apollonios, that the curve is a conic section or a straight line.

Descartes’ method can be applied to any curve determined by a quadratic
equation. The final result is the same as that obtained by Fermat: Every
quadratic equation in x and y determines a conic section, or in exceptional
cases a straight line.



Chapter 4
The Predecessors of Galois

Modern algebra begins with Evariste Galois. With Galois, the character of
algebra changed radically. Before Galois, the efforts of algebrists were mainly
directed towards the solution of algebraic equations. Scipione dal Ferro, Tar-
taglia, and Cardano showed how to solve cubic equations, and Ferrari suc-
ceeded in solving equations of degree 4. Gauss proved that the cyclotomic
equation

x"—1=0

can be completely solved by radicals, and that every algebraic equation can be
solved by complex numbers a+ bi. Galois, on the other hand, was the first to
investigate the structure of fields and groups, and he showed that these two
structures are closely connected. If one wants to know whether an equation
can be solved by radicals, one has to analyse the structure of its Galois group.
After Galois, the efforts of the leading algebrists were mainly directed towards
the investigation of the structure of rings, fields, algebras, and the like.

The most important predecessors of Galois were Lagrange, Gauss, and
Abel. The work of Gauss on algebraic equations will be discussed in Chapter
S. In the present chapter, we shall discuss the work of Waring, Vandermonde,
Lagrange, Malfatti, Ruffini, Cauchy, and Abel on the solution of algebraic
equations.

Waring
If an equation of degree n
X"—a; x" 14, x" 22— +...=0

has n roots, it is well known since Viéte that the coefficients of the equation
are all equal to the elementary symmetric functions of the roots:
a; =Xy +X2+...+X"
Ay =X1X7+Xy X3+ ... +X,_1 X,
etc.
In his treatise “Miscellanea analytica” (Cambridge 1762), Edward Waring

has shown that all rational symmetric functions of the roots can be expressed
as rational functions of the coefficients of the equation. He first derives ex-
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pressions for the power sums

Sn=XT+x5+...+ x5

and next for arbitrary symmetric polynomials.

In a later treatise “Meditationes algebraicae” (Oxford 1770) Waring derives
another method for expressing symmetric polynomials. This method is the
same we find in modern textbooks (see e.g. Weber's Lehrbuch der Algebra,
second or third edition, p. 163-167).

Waring also investigates the solution of the “cyclotomic equation”

x"—1=0

and discusses the problem: to find equations that can be solved by sums of the

form
x= o+ otr + ...+ a,.

Thus, Waring is certainly one of the earliest predecessors of Galois theory.

Vandermonde

The mathematical work of Alexandre-Théophile Vandermonde has been
discussed in a very interesting paper of Lebesgue: “L’oeuvre mathématique de
Vandermonde”, L’enseignement mathématique, New Series 1, p. 203-223
(1955).

In 1770, Vandermonde presented to the Paris Academy a memoir entitled
“Sur la résolution des équations”. Starting with the well known solution of
quadratic and cubic equations, Vandermonde develops general principles upon
which the solution of equations may be based. He writes the solution of the
quadratic equation in the form

$xi+x;, 'H/(xl —Xx,)*].

Taking for the square root the two possible signs, one obtains the two
roots. Next he rewrites his formula as

3(xy +x2)+]/(x1 +x5)*—4x; x,],

thus introducing the elementary symmetric functions of the roots.
Vandermonde now asks whether the general equation of degree n can be
solved by a similar expression

1
;[(x1+-..+xn)+i/(p1x1+...+pnxn)"+" (p3x1+...+pax,)

S A P )]

in which py, ..., p, are the n-th roots of unity.



78 Chapter 4. The Predecessors of Galois

Today, expressions like

PiXit ...t PuXy

are called “Lagrange resolvents”. Lagrange introduced the same expressions in
a memoir to the Berlin Academy in 1771, as we shall see presently. The
memoir of Vandermonde, in which the same expressions occur already, was
presented to the Paris academy already in 1770, but it was published only in
1774.

In the case of the cubic equation, the method of Vandermonde and La-
grange leads at once to the solution. If i and j are the primitive third roots of
unity, one has

(X1 +ix,+jx3)}=S+3iX +3jY
with
S=x3+x3+x34+6x;x,x5
X =x}x,+x3x3+x3x,

Y=2x; x}3+x, x3+x3x3.

Here S and X + Y and XY are symmetric functions of the roots, so X and Y are
the roots of a quadratic equation. Next, expressions like x; +ix,+jx3 can be
obtained as cube roots, and x;, x,, x3 can be found.

For the biquadratic equation, Vandermonde modifies his approach a little.
For degrees larger than 4, his method does not yield a general solution, but in
special cases it works. Thus, Vandermonde succeeds in solving the equation

xt—1=0.

He first reduces it to an equation of degree 5 having the roots

1 2 3 4

p+p=t, pr4pT2 pP4p73 ptp
where p is a primitive eleventh root of unity. Next he solves this quintic
equation by introducing his “Lagrange resolvents”. These resolvents may be

written as

L=x,+ax,+0*x5+a’x,+0*xs

where o is a primitive fifth root of unity, while xy, ..., x5 are the roots of the
quintic equation. In order that I’ may be expressed rationally, the roots x;
must be taken in a definite order. In the special case of the eleventh roots of
unity this order can be found by trial and error, but for the general case a
proof is needed. As we shall see in the chapter on Gauss, the essential
requirement is, to prove that for every prime number p a “primitive root” g
mod p exists such that all integers not divisible by p are congruent to powers
of g. The expression “primitive root” is due to Euler, and Gauss has first
proved its existence.
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Vandermonde claims that the solution of the equation
x"—1=0

by his method will always be easy (“nous sera toujours facile”). It seems that
he did not see the difficulty of establishing an appropriate order of the roots.

In Chapter 5, we shall explain Gauss’ solution of the problem.

Gauss does not quote Vandermonde. Why not? In his paper on Vander-
monde quoted right at the beginning of the present section, Lebesgue has
discussed this question. He first notes that Gauss has seen the Histoire de
I’Académie for the year 1771, in which Vandermonde’s memoir was published.
According to Lebesgue, Gauss knew the work of Vandermonde. Lebesgue
quotes an entry in a notebook of Gauss, in which a paper of Vandermonde on
topological questions is mentioned, which appeared in the same volume as
Vandermonde’s paper on algebraic equations. Lebesgue assumes that Gauss
was influenced by Vandermonde’s work on the cyclotomic equation. Now why
did he not quote Vandermonde in his “Disquisitiones arithmeticae”?
Lebesgue’s explanation is: Vandermonde did not prove his assertion, and
Gauss regarded any mathematical assertion as valuable only if it is accom-
panied by a full proof. Lebesgue judges this rigorous point of view “profonde-
ment injuste”. In his opinion, no discovery in mathematics has ever been made
by deductive logic. Discoveries always result from “un travail de création de
I'imagination”: the rigorous proof comes afterwards.

Lagrange

Joseph Louis Lagrange was of Italian origin: he was born in Torino in
January 1736. In 1771 he presented an extremely interesting memoir to the
Berlin Academy: “Réflections sur la résolution algébrique des équations”. It
covers 217 pages in Volume 3 of the “Oeuvres de Lagrange” (published by J.-
A. Serret in 1869). I shall now summarize the most interesting parts of this

Memoir.
Lagrange first considers a cubic equation, which can be written as

1) x34+nx+p=0.

The solution is well known from the “Ars magna” of Cardano. It can be
written in the form
2 Xx=r+s,

where r* and s* are the roots of a quadratic equation. Lagrange shows that r
and s can be expressed as functions of the three roots a, b, ¢ of the equation (1):

(3 r=1/3(a+ab+a*c)
(4) s=1/3(a+0a?b+ac),



80 Chapter 4. The Predecessors of Galois

where o is a primitive third root of unity:
%) a’+a+1=0.

The same results can also be obtained by a direct method, says Lagrange.
He starts with an arbitrary linear function of the roots a, b, ¢

(6) y=Aa+Bb+ Cc.

By permuting the roots one obtains a set of six expressions, which are the
roots of an equation of degree 6. If it is required that this equation contains
only powers of y3, it can be shown that the coefficients A4, B, C are necessarily
proportional to 1,a,a® or to 1,a% a. Thus one obtains, once more, the ex-
pressions (3) and (4).

Several fundamental ideas of Galois theory are already present in this part
of the treatise of Lagrange. First, the idea that one should express intermediate
quantities (like r and s) as rational functions of the roots a,b,c. Secondly,
Lagrange shows that it is useful to study the behaviour of rational functions
like (6) under permutations of the roots. Finally: expressions like (3) and (4),
formed by means of roots of unity and called “Lagrange Resolvents”, are very
useful. As we have seen, the same expressions had already been introduced by
Vandermonde in 1770.

Next Lagrange considers a biquadratic equation, which can be written as

(7 x*+nx?+px+q=0.

Lodovico Ferrari has shown that the solution can be obtained by first solv-
ing a cubic equation

8) y*—5ny*—qy+4(4nqg—p?)=0.

Lagrange shows that the roots of this equation can be expressed as func-
tions of the roots a, b, ¢, d of the original equation:

©) u=%(ab+cd), v=3%i(ac+bd), w=3(ad+bc).

If the roots are permuted, the function u gives rise to only three functions
u, v, w. This explains why u is a root of a cubic equation.

Very interesting from the historical point of view is Section 100. In this
section Lagrange considers rational functions f(x’,x", ..., x™) of the roots of a
general equation of degree n. The roots are considered as independent vari-
ables or, as we say today, “indeterminates”. Lagrange himself once uses the
expression “indéterminée”.

Two functions ¢ and y of the roots are called similar (semblable) if all per-
mutations of the roots that leave ¢ invariant also leave y invariant, and con-
versely. Lagrange now proves a theorem which will be quoted as “Theorem
100”, namely:
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If all permutations which leave t invariant also leave y invariant, then y can
be expressed as a rational function of t and the coefficients of the given equation.

The idea of the proof is as follows. Let ¢, t”, ..., t" be the different values
the function ¢ assumes when the roots are permuted, and let y', )", ...,y be
the corresponding values of y. The number = is a divisor of n!, and t satisfies
an equation 0=0 of degree n. Hence any function T of t can be written as

(10) T=N,+N;t+N,t*+...+N,_ "L

Let T, T”,... be the values of T corresponding to the values t',t", ... of t.
Lagrange forms the sum Ty’ +T"”y"+... and expresses it as a linear function
of the indeterminates Ny, ..., N, _:

(11) T'Y+T'y +..=MoNy+ M, Ny +...+M,_,N,_,.

Now in order to compute ) one has only to specify the coefficients
Ny, Ny, ...,N,_; in such a way that T, T",... all become zero. This means
that the polynomial (10) is required to have the roots t”,t",.... If this poly-
nomial is multiplied by t—t, it has to be divisible by the polynomial §. Thus
one obtains

(12) (t—t)T=cH

with constant c. This condition gives rise to a set of linear equations for
N,, N,,...,N._;, which can be solved by elementary calculations, provided the
polynomial 6 has no double roots. Lagrange chooses N,=1, but this is not
always possible, and it is not essential for his proof.

Lagrange applies his theorem to equations of degrees 2, 3, and 4. About the
quintic he says:

“I1 serait a propos d’en faire I'application aux equations du cinquiéme degré et des degrés
supérieurs, dont la résolution est 4 présent inconnue; mais cette application demande un trop
grand nombre de recherches et de combinaisons, dont le succés est encore dailleurs fort douteux.”

Lagrange also considers special equations such as the “cyclotomic equa-
tion”
x"—1=0

but he does not go very far. The complete solution of this equation by means
of radicals was given by Gauss in 1801 in his admirable “Disquisitiones arith-
meticae”.

Malfatti

Lagrange presented his “Réflections” to the Berlin Academy in 1771. One
year earlier, in 1770, Gianfrancesco Malfatti presented to the Accademia delle
Scienze di Siena a highly interesting treatise on quintic equations entitled “De
aequationibus quadratocubicis dissertatio analytica”. It was published in the
Atti della Accademia di Siena in 1771.
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According to Raffaela Franci and Laura Toti Rigatelli (Atti del Convegno
su G.F. Malfatti, Ferrara, 23-24 ottobre 1981, p. 179-203), Malfatti’s treatise is
written in bad latin and contains many printing errors, so that it is not easy to
read it. However, Franci and Toti Rigatelli have given a very lucid explanation
of Malfatti’s ideas. The following summary is based on their account.

Malfatti first considers a cubic equation

(1) x3+3ax+b=0.
Following Euler, he considers a root x satisfying the linear equation
) x+my/f>+ny/f=0.

To eliminate the third roots, Malfatti uses a method of Manfredi. Replacing

%/f by oc%/f and by o? %/f, where « is a third root of unity, and multiplying (2)
by the two linear functions of x thus obtained, Malfatti obtains an equation of
degree 3:

(3) x3=3mnfx+m?f*+n?f=0.
Putting f=1, one gets

4 x*=3mnx+m?+n>=0.
This equation is equivalent to (1), provided

mn=—a
m3+n=b.

©)

From this pair of equations one can find m* and n* and hence m and n.
Now Malfatti applies the same method to the quintic equation

(6) x*+5ax*+5bx*+5cx+d=0.
He wants to obtain a root x of (6) from the equation
7 x+m%/f4+p%/f3+q%/f2+"%/f:0-

Replacing 3/f by «3/f, a®3/f, &> /1, a*}/f, where o is a fifth root of unity,
and multiplying (7) by the linear expressions thus obtained, Malfatti obtains a
“canonical equation” of degree 5 for x. Putting f=1 and equating the coef-
ficients of the canonical equation with those of (5), Malfatti obtains a set of
conditions for m, p, ¢, n. To simplify these conditions he puts

mn=y, pq=u
and
25uy—5a*+5¢/3=z.
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After tedious calculations Malfatti ends up with an equation of degree 6 for
z. In the general case this equation has no rational factor of degree 1 or 2 or 3,
but if it has, the given equation (6) can be solved by radicals. On can then
determine first z and next m, p, ¢, n, and one finally obtains the roots:

Xo=—(m+p+q+n)

x,=—(am+a’p+o’q+oa*n)
(8) x,=—(a*m+a*p+aqg+a’n)

x;=—(*m+ap+a*q+a’n)

xo=—(a*m+a®p+a’q+an).

It is easy to solve the linear equations (8) for m,p, g, n. It follows that
m, p, g, n are linear functions of the roots, and that z is a biquadratic function
of the roots.

Independent of Malfatti, Lagrange too constructed a “resolvent” z, which is
a function of the roots assuming six values when the roots are permuted. This
function is “similar” to Malfatti’s z in the sense of Lagrange, for both are
invariant under a group of 20 permutations of the roots x,. In modern no-
tation the permutations of this group can be defined by the formulae

) K=gk+h (modS5)

with g=1,2,3 or 4, and h=0,1,2,3 or 4. We shall see that the same group
plays an important role in the theory of Galois.

Ruffini

Paolo Ruffini, born 1765, was a student and admirer of Lagrange. He pub-
lished several papers claiming to prove that the general equation of fifth degree
or higher cannot be solved by radicals. His first treatise, published in 1898 in
Bologna (Opere matematiche di Paolo Ruffini, Vol. 1, p. 1-324), is entitled

“Teoria generale delle equazioni, in cui si dimostra impossibile la soluzione
algebraica delle equazioni generale di grado superiore al quarto”,
which means:

General theory of equations, in which it is proved that the algebraic so-
lution of the general equations of degree larger than four is impossible.

A few years later Ruffini wrote a small treatise entitled “Rischiarimenti e
risposte alle obbiezioni” (Elucidations and Answers to Objections), which was
found among his manuscripts and printed in Opere matematiche, Vol. 1,
p. 327-342.

A second memoir on the solution of equations of degrees larger than 4 was
published in Volume 9 of the Memorie di Matematica e Fisica della Societa
Italiana delle Scienze (Modena 1802), and republished in Ruffini’s Opere I,
p- 345-406.
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Finally, in 1813, Ruffini published a third memoir entitled “Riflessioni in-
torno alla soluzione delle equazioni algebraiche generali” (Opere II, p. 155-
268), in which the ideas of his earlier memoirs were further elaborated.

Ruffini’s methods were essentially those of Lagrange. He considered ra-
tional functions of the roots of a general equation of degree n. If p is the
number of permutations that leave such a function unaltered, p is a divisor of
n!, and the number of different values the function assumes if the roots are
permuted is n!/p. As Lagrange had already shown, such a function is a root of
an equation of degree n!/p. Ruffini studies in great detail the set of p per-
mutations leaving the function unaltered. In particular, he shows that in the
case of the quintic the degree n!/p can be 2 or 5 or 6, but not 3 or 4, which
means that a resolvent in the sense of Lagrange satisfying an equation of de-
gree 3 or 4 is impossible. If n!/p is not 2, it must be divisible by 5. If n!/p is 5,
resolvents of degree 5 exist, but they cannot be reduced to binomial equations

z5—m=0.

Ruffini claims to have proved that the general quintic equation cannot be
solved by radicals, but his proof is not conclusive, because it is based on the
hypothesis that these radicals can all be expressed as rational functions of the
roots. It was Abel who first completed the proof by showing that the radicals
needed for solving an equation can always be chosen as rational functions of
the roots of the equation and of certain roots of unity.

Ruffini’s proof was not well received by his contemporaries and successors.
Malfatti criticized Ruffini’s proof and concluded that there still remain doubts
whether the general solution of the quintic equation is impossible. Malfatti’s
note, entitled “Dubbii proposti al socio Paolo Ruffini sulla sua dimostrazione
della impossibilita di risolvere le equazioni superiori al quarto grado”, was
published in Vol. 11 of the Memorie di Matematica e Fisica della Societa Ita-
liana delle Scienze, p. 579-607.

Carnot and Legrendre expressed similar doubts. See p. 59 of B.M. Kiernan:
Galois Theory from Lagrange to Artin, Archive for History of Exact Sciences
8, p. 40-154 (1971).

Cauchy seems to have considered Ruffini’s proof as conclusive (see p. 60 of
Kiernan’s paper), but Abel expressed his doubts thus:

Le premier, et, si je ne me trompe, le seul qui avant moi ait cherché a démontrer
limpossibilité de la résolution algébrique des équations générales, est le géométre Ruffini; mais son

mémoire est tellement compliqué qu’il est trés difficile de juger de la justesse de son raisonnement.
Il me parait que son raisonnement n’est pas toujours satisfaisant.

A thorough study of Ruffini’s work and its relation to the theory of sub-
stitution groups is due to Heinrich Burkhardt. It was published in 1892 under
the title “Die Anfinge der Gruppentheoriec und Paolo Ruffini” in Zeitschrift
fiir Mathematik und Physik 37, Supplement (Abhandlungen zur Geschichte der
Mathematik VI), p. 121-159. Burkhardt shows that several fundamental no-
tions of the theory of permutation groups are already present in the work of
Ruffini. In particular, Ruffini distinguishes between what we now call transitive
and intransitive groups.



Abel 85
Cauchy

Ruffini had proved that the number of different values which a non-sym-
metric rational function attains cannot be less than 5, unless it is 2. Cauchy
generalized this result of Ruffini to functions of n variables. His paper of 1815
containing this generalization is entitled “Sur le Nombre des Valeurs qu’une
Fonction peut acquérir, lorsqu'on y permute de tous les maniéres possible les
quantités qu’elle renferme”, Journal de ’Ecole Polytechnique, cahier 17, tome
10, p. 1-28 (Oeuvres completes d’Augustin Cauchy, 2™ série, Vol. 1, p. 64-90).

Let n be the number of independent variables, and p the largest prime num-
ber contained in n. Cauchy proved: The number of different values of a non-
symmetric rational function of n variables cannot be less than p, unless it is 2.

Cauchy introduced a distinction between permutations and substitutions. If
one writes the n variables in any order, one has a permutation. A substitution is
the passage from one permutation to another. The passage from the permu-
tation 1.2.4.3 to 2.4.3.1 is denoted by

1.2.4.3
(2 .4.3. 1)'

Galois used the same terminology, although not consistently. He defined the
notion “group of substitutions”. In later times, the “substitutions” of Cauchy
and Galois were often called “permutations”, in agreement with the original
meaning of the Latin verb permutare.

Cauchy also defined products of substitutions. The product ST is obtained
by first performing S and next T. The same convention was used by Galois.

During the years 1844-1846 Cauchy published a sequence of papers on
substitutions. He calls two substitutions “similar”, if they partition into cycles
in the same way. He proves that P and @ are similar if and only if Q is equal
to R™'PR. He also proves that the order of any group of substitutions is
divisible by the order of any substitution in the group, and that the order of
any group of substitutions on n variables is a divisor of n!. The latter theorem
had already been proved by Lagrange. Cauchy’s proof is the same as that of
Lagrange: the group of all substitutions is partitioned into cosets of the
subgroup. The same method was used later on by Jordan in order to prove

that the order of any subgroup of a finite group divides the order of the group.
Jordan generously attributed this theorem to Lagrange and Cauchy.

Abel

Still in his teens, the extremely gifted young mathematicien Niels Henrik
Abel (born 1802) thought that he could solve the general quintic equation, but
he soon discovered his error. In the spring of 1824 he succeeded in proving
that a solution by radicals is impossible. At his own expense he published a
pamphlet in French entitled “Mémoire sur les équations algébriques” (Oeuvres

complétes de Niels Henrik Abel, publiées par L. Sylow et S. Lie, Vol. 1, p. 28-
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33), in which he presented a completely clear proof of this impossibility. A
new, more elaborated version of the same proof was published in 1826 in
Crelle’s Journal fiir die reine und angewandte Mathematik, Vol. 1, under the
title “Démonstration de I'impossibilité de la résolution algébrique des équa-
tions générales qui passent le quatriéme degré (Oeuvres I, p. 66-87). The main
ideas are the same in both papers, but some parts were expanded and other
parts simplified in the later paper.

Abel makes use of the results obtained by Lagrange and Cauchy concern-
ing the number of values a function of n variables can attain if the variables
are permuted. However, the essential point in his proof is the first step, which
is quite new.

Abel starts with an equation

(1) y —ay*+by*—cy*+dy—e=0

in which the coefficients are “general”, that is, they are just letters or inde-
pendent variables. Supposing that one can express y as a function of the coef-
ficients by means of radicals, Abel states that one can write y as

@ y=p+p, R'™+p,R*™4 . +p, R

where m is a prime number. The quantities R,p,p,,...,P,_, are supposed to be
expressions of the same form as y, involving other radicals, and so on until one
arrives at rational functions of the coefficients of the original equation. In the
terminology of Galois, one starts with the field of rational functions of
a,b,c,d, e with constant coefficients, and one “adjoins” one radical with prime
exponent after the other. Among the constant coefficients Abel always includes
the m-th roots of unity, where m is any one of the prime exponents used in the
solution.

One can suppose, says Abel, that R'™ cannot be expressed as a rational
function of a,b,...,p,py,p,,... for otherwise the adjunction of the radical
would be superfluous. One can also suppose that in (2) not all coefficients
P1sP2»--. Are zZero.

In his first paper Abel supposes p, =0 (in his second paper he shows that
this restriction is not essential). Now replacing R by R/pY, one can make p,
equal to 1. Putting R™ =z, one has

(3) y=p+z+p,zt+...+p, 2" "
Substituting this value into (1), one obtains a result of the form
4 q+q,z4+q,2*+...+q,_ 2" '=0
in which ¢,4,,4,,... are polynomials in a,b,... p;,p,,... and R.
Now comes the crucial step. Abel asserts: For (4) to be valid, it is necessary

that
q=0,4,=0,...,q9,,_,=0.
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The proof is very ingenious. The two Equations (4) and
5 Z"—R=0

have a root z in common. If ¢,¢q,,... are not zero, the number of roots they
have in common is at most m—1. Let k be this number. Then, by calculating
the largest common divisor of the polynomials on the left of (4) and (5), one
can find an equation of degree k

(6) r+rz+rnz 4. +n2=0.

For the continuation of the proof I shall follow the simplified exposition in
Abel’s second paper. If the polynomial on the left of (6) is factorized, one of the
factors must be zero. Thus, one obtains an irreducible equation for z:

(7 to+tyz+...+t, 2" +2#=0.

One can suppose, says Abel, that it is impossible to find an equation of the
same form of lower degree. This equation has its y roots in common with the
equation (5). Now all roots of this latter equation are of the form az. The
degree p is at least 2, for otherwise z would be a rational function of
a,b,p,py,P2,-.-. 1t follows that the equation (7) has at least two roots z and
oz

®)

tod+tizHtz24 4t 2* 7 +2¢=0

totatyz+alt, 22+ . 4o e, 2T ot 2 =0,

Multiplying the first equation by «* and subtracting it from the second, one
obtains an equation of degree less than g, which is impossible. Hence in (4) all
coefficients q,44,...,4,,_, must be zero.

The equation (4) was obtained by substituting (3) into (1) and using (5).
Now (5) is satisfied not only by z but also by

oz, o%z,...,a" Lz

Hence, replacing R'™ in (2) by o*RY™ ..., one always obtains roots of the

equation (1). These roots are all different, hence m cannot be larger than 5, and

if the roots thus obtained are called y,,...,y,, one has
yi=pt+z+pyz®+. . 4p, 2"

y,=p+az+aip,zt+...+a™ " tp, 2"t

Yp=p+a™ lz4+a""2p, 2%+ .. toap, Z" N

These equations can easily be solved for p,z,p, 2%, ...,p,_, 2"~ *. It follows
that p,p,,...,p_; and z=R"™ are rational functions of the roots y,,...,y5 of
the equation (1). Of course, R=2z" is also a rational function of the roots.



88 Chapter 4. The Predecessors of Galois

The quantity R may be given as a rational function of an earlier radical
v'/". This function can be written as

9) R=S+v'"+8,v*"+ .. +8,_, "= D"

If this quantity is treated in the same way as the y of equation (2), one sees
that either the adjunction of v'/" is unnecessary, or the quantities v*™",§,S,, ...
can be expressed as rational functions of the roots y,,...,y5. By repeating the
same reasoning one concludes that all irrational quantities occurring in the
expression of the roots y are rational functions of these roots.

This is just the hypothesis from which Ruffini started in his proof of the
unsolvability of the quintic equation. This hypothesis is now fully justified.

From this point onwards, Abel was able to use the methods and results of
Lagrange, Ruffini, and Cauchy. In particular, he used (and quoted) the result of
Cauchy which says that the number of values a rational function can attain
cannot be 3 or 4, which implies that the number m can only be 2 or 5. Abel
discusses the two cases m=5 and m=2 separately, and he concludes that in
both cases the solution of the general quintic equation by radicals is im-
possible.

Two months before his death in 1829, Abel published another paper, en-
titled “Mémoire sur une classe particuliére d’équations résoluble algébrique-
ment”, Crelle’s Journal fiir die reine und angewandte Mathematik, Vol. 4 (Oeu-
vres I, p. 478-514).

This memoir deals with a particular class of equations of all degrees which
are solvable by radicals. To this class belongs the cyclotomic equation x"—1
=0. Abel proves the following general theorem:

If the roots of an equation are such that all roots can be expressed as
rational functions of one of them, say x, and if any two of the roots, say 6x
and 0, x (where 0 and 6, are rational functions) are connected in such a way
that

(10) 00, x=0,0x,

then the equation can be solved by radicals.

Today, groups in which multiplication is commutative are called Abelian,
and equations having the property (10) are called, since Kronecker (1853), Abe-
lian equations.

Abel’s theorem just stated is a special case of a main theorem of Galois
theory, which says:

An equation is solvable by radicals if and only if its Galois group G is
solvable, that is, if G possesses a composition series

GoH,oH,>..oH,=E

in which all indices are prime numbers. It is easy to see that every finite Abe-
lian group is solvable. Galois presented a proof of his main theorem to the
Academy of Paris in May 1829, in the same year in which Abel’s paper was
published.
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Carl Friedrich Gauss

The most important contributions of Gauss to the theory of algebraic equa-
tions are:

first, the complete solution of the “cyclotomic equation”
1) x"—1=0

by means of radicals,

second, the proof that every polynomial in one variable with real coef-
ficients is a product of linear and quadratic factors. This theorem implies what
we now call the “fundamental theorem of algebra”: Every polynomial f(x)
with complex coefficients is a product of linear factors.

We shall now discuss these two extremely interesting contributions.

The Cyclotomic Equation

The equation (1) is called cyclotomic, because its solution is closely con-
nected with the construction of a regular polygon of n sides inscribed in a
given circle.

To see this, one has only to note that the equation (1) has n complex roots

2) cosQrnk/m)+isin@nk/m) k=0,1,2,...,n—1.

This trigonometric solution was known to De Moivre and Euler long be-
fore Gauss. Now if one represents the complex numbers a-+ib by points in the
plane with orthogonal coordinates (a,b), it is clear that the complex numbers
(2) are represented by the vertices of a regular n-gon inscribed in the unit
circle. Hence, if one succeeds in solving the equation (1) by means of square
roots, one can construct the regular n-gon with ruler and compass.

The Pythagoreans already knew how to construct regular polygons of
3,4, 5, and 6 sides. Their constructions can be found in Book 4 of the Elements
of Euclid. For the ascription of this book to the Pythagoreans see my book
“Die Pythagoreer” (Artemis-Verlag, Ziirich 1979), p. 348-351.

Lagrange solved the equation

3) x5—1=0
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as follows. One root is x=1. The others are roots of the equation

x*+x34+x24+x+1=0,

which can be written as

4 2 +x" )+ (x+x"H)+1=0.
Putting

(5) x+x"t=y

one obtains

(6) y*+y—1=0.

This quadratic equation can be solved for y, and next (5) can be solved for
x. It follows, once more, that the regular pentagon can be constructed by
means of ruler and compass.

Euclid’s construction is also based on the solution of a quadratic equation.
Proposition 11 in Book 2 of Euclid’s Elements reads in the translation of
Heath:

To cut a given straight line so that the rectangle contained by the whole and one of the
segments is equal to the square on the remaining segment.

If the given straight line is called a and the second segment y, Euclid’s
problem is, to solve the equation

(7) ala—y)=y>

In his solution of the problem II, 11 Euclid first solves the equivalent equa-
tion

®) y*+ay=a’

and next he subtracts the rectangle ay on both sides, thus obtaining the so-
lution of (7). If the given segment a is taken as a unit of length, it is seen that
(8) is the same as Lagrange’s equation (6).

In Book 4, Euclid uses the solution of (7) in his construction of the regular
pentagon. Just so, Lagrange uses the solution of (6) for the solution of the
cyclotomic equation (3).

Lagrange next applies the same method to the equation

) x11—1=0
(Oeuvres III, p. 246). Dividing by x—1 and next by x°, Lagrange obtains

(10)  (*H+x )+ +x" Y+ +Hx )+ +x" )+ (x+x" 1) +1=0.
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Putting again
x+x 1=y

one obtains a quintic equation for y.

Lagrange left it at that, but Vandermonde succeeded in solving the quintic
equation by radicals, as we have seen in Chapter 4.

At the age of not quite 19 years, Gauss discovered that the regular 17-gon
can be constructed with ruler and compass. In Chapter 7 of the famous work
of Gauss entitled “Disquisitiones arithmeticae” the full proof of the solvability
of the equation (1) by radicals was given. The equation

12) x7—-1=0

is treated as a special case. Since we do not know how the young Gauss found
the solution of (12) and hence the construction of the 17-gon, we have no other
choice than to follow Gauss and to treat the general case first.

Gauss first shows that the general equation (1) can be reduced to the spe-
cial case in which n is prime, by writing n as a product of powers of primes. A
special case, namely n=15, was already known to Euclid. Euclid shows: if one
can inscribe in a circle a regular triangle and a regular pentagon, one can also
inscribe a regular polygon of 15 sides.

Dividing (1) by x—1, one obtains the equation

(13) X=x""'4x""2+4+.. +x+1=0.

Supposing n to be prime, Gauss first proves that the polynomial X is ra-
tionally irreducible. Next he announces his main result: If n—1 is a product of
factors « v ..., the equation (1) can be solved by solving equations of degrees
o, B,7,.... For instance, if n is 17, we have

n—1=2%

so the equation (12) can be solved by solving four quadratic equations, and
hence the 17-gon can be constructed with ruler and compass. More generally,
if n—1 is a power of 2, which happens for

(14) n=3,5,17, 257, 65537,

the regular n-gon can be constructed with ruler and compass.

The primes mentioned in (14) were known to Gauss. Other primes of the
form 2™+1 are not known up to the present day (December 3, 1982).

Still supposing n to be prime, Gauss denotes by r any one of the roots of
(13). Now the roots are

(15) rrd

Two powers r* and r* are multiplied by adding the exponents and reducing
the sum A+ modulo n.
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Gauss next notes that every rational function of the roots can be written as
(16) A+Ar+ A" r 4.+ A DL

To simplify the notation, Gauss writes [4] instead of r*. Thus, the roots (15)
are rewritten as

17 [11,12]3,...,[n—1].

In Chapter 111 of the Disquisitiones, Gauss has proved: if n is prime, the
multiplicative group of integers modulo n is cyclic, i.e. a “primitive element” g
exists such that all exponents not divisible by n are congruent to powers of g.
So the roots (17) can be reordered and written as

(18) (1], [e]. &%), .-, [g" %]

This reordering is an essential point in the theory of Gauss. The exponents
of g are called indices. They play the role of logarithms: two powers of g are
multiplied by adding their indices (modn—1).

Now let e be any divisor of n—1. Putting

n—1l=ef
and

e

g°=h,

Gauss considers the set of roots
[A1,[AKL[AR?],...,[AR 1],

where A is an arbitrary integer incongruent to zero (modn), and he forms the
sum

(19) (LA=[2]+[AR]+ AR ]+ ...+ [AR 1]
These sums are independent of the choice of g. They are called periods.
Gauss elucidates the formation of the periods by working out the example
n=19. I prefer to give the example n=17, elaborated by Gauss in Section 354

(Werke, Vol. I, p.437). As a primitive element (mod 17) Gauss chooses g=3.
Thus, the indices (mod 16)

i=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15
give rise to the powers of 3 (mod 17)
u=g'=1,3,9,10,13,5,15,11,16,14,8,7,4,12,2, 6

and to the roots

3.9 .10 6
[#]:r”’:r,r ,F ’r ,...,7’ .
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The divisors of n—1=16 are
e=1,2,4,8,16

corresponding to
f=16,8,4,2,1.

There is only one period (16,1), namely the sum of all roots. There are two
periods with f=8, namely

@, 1)=[11+ 91+ [13]+[15]+[16]+[8]+[4]4+[2]

e 8,3)=[31+[10]+ 5]+ [113+[14]+[71+[12]+[6].

There are four periods with f=4, namely

4,1), (4,3), (4,9), (4,10).
There are eight periods with f=2, such as
@2 )=[11+[16]=r+r ",

and there are 16 periods with f=16, namely the single roots.

Gauss also considers the period (f,0), which is a sum of f units and hence
equal to f.

In Section 345 Gauss proves a general theorem to the effect that a product
(£LA)-(f)
can be expressed as a sum of periods thus:
(20) LA L=+ 0+ LA+ + (LA + )+
Now let us apply formula (20) to the case n=17. The sum
(8,1)+(8,3)
is the sum of all roots and hence equal to —1. The product
(8,1)-(8,3)

can be computed by (20): it is —4. Hence (8,1) and (8, 3) are the roots of the
quadratic equation

1) Y +y—4=0.
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By solving this equation, one obtains (8,1) and (8,3). Next (4,1) and (4,9)
can be computed by the same method. Their sum is (8,1) and their product
—1, so they are the roots of the quadratic equation

(22) x2—(8,1)x—1=0.
Just so, (4,3) and (4, 10) are the roots of the equation
(23) x2—(8,3)x—1=0.

By the same method the periods (2,4) and finally the roots [u] can be
obtained as roots of quadratic equations.
In the general case, one has to factorize n—1

n—1=afy...

and to solve equations of degrees «,f8,7,.... In § 359, Gauss shows that these
equations can be solved by radicals.

1 suppose that these examples are sufficient to explain the main ideas of
Gauss on the subject of the cyclotomic equation.

The “ Fundamental Theorem”

In the notation of Gauss, every algebraic equation of degree m can be writ-
ten as

(24) X"+ Ax" 14 Bx" "2+ ...+ M=0

or X=0. The so-called “Fundamental Theorem of Algebra” says that every
polynomial X with real or complex coefficients can be factored into linear
factors in the field of complex numbers.

It is sufficient to prove the theorem for polynomials with real coefficients,
for if X has complex coefficients, the product XX is real, and its factorization
implies the factorization of the factors X and X. So Gauss is justified in re-
stricting himself to real polynomials X.

In his first proof Gauss does not introduce complex numbers. He proves
the fundamental theorem in the following form:

Every polynomial X with real coefficients can be factored into linear and
quadratic factors.

Gauss considered the theorem so important that he has given four proofs.
The principles, on. which the first proof is based, were discovered by Gauss in
October 1797. The first proof was published in 1799, the second and third in
1816, and the fourth in 1849. The fourth proof is based on the same principles
as the first. Here I shall restrict myself to the first three proofs.
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All four proofs have been translated from Latin into German by E. Netto
and published under the title “Die vier Gauss’schen Beweise fiir die Zerlegung
ganzer algebraischer Funktionen in reelle Faktoren ersten oder zweiten Gra-
des”, Ostwald’s Klassiker der exakten Wissenschaften, Vol. 14 (Leipzig 1913).

The First Proof

The first proof of Gauss was published in his dissertation (Werke III, p. 1-
30). Before exposing his own proof, Gauss critizes earlier proofs given by
d’Alembert, Euler, Fontenex, and Lagrange. His main objection is that in all
these proofs the existence of roots is presupposed. It is shown that the roots
can be obtained as complex numbers, provided they exist in some sense or
other. There are other objections to the single proofs, which will not be dis-
cussed here.

Gauss starts with a real polynomial

(25) X=x"+Ax""'4+Bx""?+...+Lx+M,

in which x is an indeterminate (“unbestimmte Grofe”). What he wants to
prove is that a linear or quadratic factor of X exists. A real linear factor im-
plies the existence of a real root +r, where r is positive or zero. An irreducible
quadratic factor implies the existence of two complex roots

(26) r(cos ¢ +isin ¢),
hence the quadratic factors can be written as

27) x?—2xrcosp+r:  (r>0).

Substituting one of the roots (26) into the equation X =0 and separating
the real and imaginary parts, one obtains a pair of real equations for r and ¢:

(28) rmcosmep+Art~tcos(m—1)p+...+Lrcosp+M=0
(29) rsinmo+Ar"tsin(m—1)¢+ ...+ Lrsinp=0.

Gauss notes that Euler obtained this pair of equations by using complex
numbers. Gauss avoids complex numbers: he derives (28) and (29) directly
from the assumption that the polynomial X has a linear factor x+r or a
quadratic factor (27).

Gauss interprets (28) and (29) as equations of algebraic curves in polar
coordinates, and he proceeds to prove that these curves intersect in at least one
point. If this is proved, it follows that X has a linear or quadratic factor, and
by continuing the process one obtains a factorization of X into linear and
quadratic factors.
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The equation (28) is called U =0, and (29) is called T=0. To illustrate the

proof, I have drawn the curves U=0 and T=0 for the case of a quadratic
equation

=0

7=0
Fig. 23

In orthogonal coordinates x and y we have two curves of order m. The axis
y=0 is always a part of the second curve T=0.

Gauss now studies the intersections of the two curves with a circle of radius
R, and he proves:

For a sufficiently large radius R there are exactly 2m intersections of the
circle with T=0 and 2m intersections with U=0, and every point of intersection
of the second kind lies between two points of intersection of the first kind.

Gauss presents a complete proof of this lemma. He next notes that the 4m
points change only very little if R is made a little larger or smaller. In modern
terminology we would say that the 4m points are continuous functions of R.
Gauss does not prove this continuity: he only says that it is “easy to see”.
Next Gauss studies the behaviour of the branches of the curves U=0 and T=0
inside the circle, and he asserts: There exists a point of intersection of a branch
of the first curve with a branch of the second curve. For this conclusion he
gives an intuitive, geometrical proof. He denotes the point of intersection of the
circle with the negative x-axis by 0, the next neighbouring point on the circle
by 1, and so on, as in Fig. 23. The odd numbers denote points on U =0, the
even numbers points on T=0. Now he says: If a branch of an algebraic curve
enters a certain domain, it must also leave the same domain somewhere. In a

footnote he adds:

It seems to be well demonstrated that an algebraic curve neither ends abruptly (as it happens
in the transcendental curve y=1/logx), nor does it quasi loose itself after an infinite number of
windings in a point (like a logarithmic spiral). As far as I know nobody has ever doubted this, but
if anybody requires it, I take it on me to present, on another occasion, an indubitable proof.

If this starting point is accepted, it follows that every “even point” is con-
nected with (at least) another even point by a branch of the curve T=0, and
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every “odd point” with another odd point by a branch of the curve U=0.
Now, however complicated these connections may be, one can show that a
point of intersection always exists. This is proved as follows.

Suppose that no point of intersection exists. The point 0 is connected with
the point 2m by the x-axis. The point 1 cannot be connected with any point on
the other side of this axis without intersecting the axis. So, if the point 1 is
connected with the odd point n, we must have n<2m. Just so, if 2 is connected
with »', we must have n' <n. Note that the difference n'—2 is even, because 2
and n' are both even. Continuing in this way, one finally finds a point h con-
nected with h+2. But now the branch which enters the circle at the point h+1
must necessarily intersect the branch connecting h with h+2, contrary to our
hypothesis. Hence there exists a point of intersection.

From this exposition one sees that the first proof of Gauss is based upon
assumptions about the branches of algebraic curves, which appear plausible to
our geometrical intuition, but which are not strictly proved by Gauss. Alexan-
der Ostrowski has shown in a very interesting paper “Uber den ersten und
vierten Gauss’schen Beweis des Fundamentalsatzes der Algebra”, that all as-
sumption made by Gauss can be justified by indubitable proofs. Ostrowski’s
paper was first published in Nachrichten der Gesellschaft der Wissenschaften
Gottingen 1920, and reprinted in Gauss® Werke X, 2.

The Second Proof

The second proof is purely algebraic. The only suppositions made about
the field of real numbers are:

1° that every real equation of an odd degree has a real root,

2° that every quadratic equation with complex coefficients has two complex
roots.

The idea underlying the second proof is simple, but the working out is
rather difficult. Gauss starts with a real polynomial of degree m
(30) Y=x"—Lx" '+ L' x""2—. 4.

If one supposes for a moment that Y can be factored into linear factors
(31) Y=(x—a)(x—b)(x—c)...
in some field extension, then a linear combination

(32) (@a+b)t—ab

can be formed with a new indeterminate t. If the roots a,b,c,... are permuted,
the linear function (32) assumes

m=imm+1)
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values, hence it is a root of an equation of degree m’. The roots of this auxilia-
ry equation are linear functions of ¢ of the form (32). As soon as one root of
the auxiliary equation is known, a+b and ab are known, so a and b can be
expressed by means of square roots. This remains true if the indeterminate ¢ is
specialized in such a way that different linear functions (32) remain different
after the specialization.

Now if m is a number of the form

(33) m=2"k
where k is odd, the degree of the auxiliary equation is of the form

(34)

m=2+"1K

where k' is again odd.

As soon as a complex root of this auxiliary equation is known, two roots a
and b of the original equation can be computed as complex numbers by ex-
tracting a square root.

Continuing in the same way, one finally arrives at an equation of an odd
degree. The coefficients of this equation are symmetric functions of the roots
a,b,... with real coefficients, so they are known real numbers. Since the degree
is odd, this equation has at least one real root. Going back trough the se-
quence of auxiliary equations, one can compute at least one complex root of
the original equation.

In this simplified form, the proof works if it is known that the equation
Y=0 has m roots a,b,... in some extension of the field of real numbers. The
existence of such an extension can be proved by Kronecker's method of
“symbolic adjunction”: the proof can be found in any textbook of modern
algebra. However, Gauss does not follow this road. He constructs his auxiliary
equations without assuming the existence of the roots. For instance, he con-
structs the auxiliary equation of degree m’ as follows.

First, the special polynomial (30) is replaced by a polynomial y, the roots of
which are indeterminates a,b,c, ...

(35) y=(x—a)(x—b)(x—c)....

Gauss next forms an auxiliary polynomial { in a new variable u, defining (
as the product of the m’ expressions

(36) u—(a+b)t+ab

obtained by permuting the roots. This polynomial { is symmetric in the inde-

terminates a,b,c,..., hence it can be expressed in a unique way as a poly-
nomial in u and t and the coefficients of y, which are the elementary symmetric
functions of a,b,c,.... After this, the coefficients of y are replaced by the coef-

ficients L', L', ... of the given polynomial (30), and thus the auxiliary poly-
nomial Z is obtained.
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In Sections 12-15 Gauss proves a theorem:

If the discriminant of Y is not zero, the discriminant of Z cannot be zero.

The proof of this theorem covers four pages in Netto’s translation. Right at
the beginning of the proof Gauss says: “The proof of this theorem would be
extremely simple if we could presuppose that Y is a product of linear factors.”

Afterwards Gauss substitutes for ¢ such a real value that the discriminant of
Z is still different from zero, and he shows: if a root of Z is known, a pair of
roots of the original polynomial Y can be computed. Obviously, he first de-
rived his method of finding a root of Y from the assumption that Y is a pro-
duct of prime factors, and afterwards he reshaped his proofs so as to make
them independent of this assumption.

The Third Proof

The third proof of Gauss is much simpler. According to his own testimony
he found this proof by continued thinking after the second proof was printed
in 1816.

Gauss starts with a polynomial

(37 X=z"4+Az" "' 4+Bz" 2+ . +Lz+M
with real coefficients. He puts

(38) rmcosmo+Ar"~lcos(m—1)p+...+Lrcosgp+M=t
(39) rsinme+Ar"~tsin(m—1)p+...+ Lrsingp=u
The expressions ¢t and u are the same as the expressions U and T in Gauss’

first proof. They are the real and imaginary parts of the complex expression
obtained by substituting

(40) z=r(cos ¢ +isin @)

into (37).
The derivatives of t and u with respect to ¢ are called —u’ and +t. Thus
we have

t=mr"cosmp+(m—1)Ar"~'cos(m—1)d+...+Lrcos¢
W=mr"sinmo+(m—1)Ar"'sin(m—1)¢p+...+ Lrsine.

Gauss now proves that
tt'+uu

is positive for a sufficiently large value R of r, no matter what value ¢ has. It is
easy to see that this is true. For large r the main terms of ¢ and u are

r"cosm¢e and r"sinme
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and the main terms of t' and u’ are
mr"cosm¢e and mr"sinme.

So the main term of tt' +uu' is

mr?™(cos? m ¢ +sin*m @) =mr>"

which is positive.
The second derivatives of ¢t and u with respect to ¢ are called —u” and
+t

(41) t'=m*r"cosme+...+Lrcose
(42) W' =m?r"sinme+...+Lrsin .

Gauss wants to show that there is a point in the plane at which ¢t and u are
both zero. As we have seen, the existence of such a point implies the existence
of a complex root of the polynomial X. If this root is real, X has a linear
factor, and the process can be continued. If the root is not real, X has a qua-
dratic factor, and the process can also be continued.

Suppose no point with t=u=0 exists, then t?+u? is always different from
zero, and the function

(P +u?) @t +uu)+tw —ut) —(tt +uw)?

“3) y= Ty

1s everywhere finite. Note that the factor r in the denominator cancels out,
because t',u’,t",u” are divisible by r. Now Gauss considers the double integral

(44) Q=([ydrde,

integrated from r=0 to r=R and from ¢=0 to ¢=360°. One can integrate
first with respect to r or first with respect to ¢: the result is the same. The
indefinite integral with respect to ¢ is

tu —ut

(45) jydfP—*—m

for if one differentiates the function on the right with respect to ¢, one obtains
just y. Now the function on the right has the same value for ¢ =0 as for ¢
=360°, so the integral on the left, taken from 0 to 360, is zero. This implies

(46) Q=0.
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On the other hand, if one integrates first with respect to r, one obtains the

indefinite integral
tt'+uu
47) {ydr= PR

For r=0 this expression is zero, and for r=R it is positive, as we have seen.
So the integral on the left, extended from O to R, is positive, and hence @ is
positive, contrary to (46). So the hypothesis that t and u are never both zero
leads to a contradiction.

It is very easy to follow the proof of Gauss step by step. But how did he
find his proof? In particular, how did he find the complicated expression y
defined by (43)? I don’t know, but I can make a guess.

We may consider X =t+iu as a function of the complex variable

(48) z=r(cos ¢ +isin @).
Geometrically speaking, the function
X(z)=X(r,p)=t+iu

defines a mapping of the z-plane into the X-plane. In the X-plane we may also
introduce polar coordinates:

49) X =s(cos f+isin f).

‘We now have
u

(50) tgf=—.

Differentiating (50) with respect to ¢ and r one obtains

ap tt'+uu  tt'+ud
51 T —cos? = =
1) 1) B t? 2 +u?
and

op tu —ut’  tu —ut
52 P cos2p T
2 ar o B rt? r(t? +u?)

Differentiating once more, one obtains

oU_av

53 o=l
3) ar do

Gauss himself makes use of the equations (53), from which he concludes

[ydr=U and ([yde=V.
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So it seems quite possible that he arrived at his complicated function y by
differentiating U with respect to r and V with respect to ¢. He could know
beforehand that 0U/dr and 0V/d¢ are equal, because U and V are the deriva-
tives of one and the same function § with respect to ¢ and r.

It is true that the angle f is not uniquely defined: it is defined only modulo
2w, but in a neighbourhood of any point (r,¢) the angle f is a differentiable
function of r and ¢, so the total differential

dp=Ude+Vdr

is well-defined. It is possible that Gauss wanted to avoid the use of multi-
valued functions like f, and that this was the reason why he used only the
derivatives U,V and y in his proof.

We now ask: How does the angle f vary when the point z moves on a
large circle r=R in the z-plane?

In his first proof, Gauss has shown: if ¢ goes from 0 to 2=, and if R is
sufficiently large, the point X passes m times through the first, second, third,
and fourth quadrants (in this order), which implies that f goes from zero to
m-27. Now let us calculate [dp. Because of (51), we obtain

(54 p2m)—pO)=fdp=[Ude.

This difference must be a multiple of 27. Since U is positive, it is a positive
multiple, say m’-2n. From Gauss’ first proof we know that m’ is equal to m, the
degree of the polynomial X, but Gauss does not need this result. For his pres-
ent proof, it is sufficient to know that [ Ude is positive.

As long as t*+u? is not zero, the integral (54) is a continuous function of r,
so the integer m’ cannot change, and the integral [ Ud¢ remains constant. On
the other hand, it is positive for r=R and zero for r=0. Thus one obtains a
contradiction.

It is quite possible that Gauss had this simple proof in mind. However, he
found a way to avoid the use of the multivalued angle f§, writing the integral
[Udg as a double integral

jUdgo=”ydrd(p

and interchanging the order of the integrations. Because [ydo is always zero,
the double integral is zero, but on the other hand [Udg is positive for suf-
ficiently large R. Thus Gauss obtained a contradiction.



Chapter 6
Evariste Galois

Evariste Galois was born in October 1811. Twenty years and seven months
later he died in a duel. In the meantime he had created one of the most
important and beautiful theories in the history of algebra: the Theory of Galois.

The dramatic story of his life is well known. One may consult the classical
biography of Paul Dupuy: “La vie d’Evariste Galois” in Annales de I’Ecole
Normale, série 3, Vol. 13, p. 197-266, or the more recent biography “Evariste
Galois” by L. Kollros, also in French, in “Kurze Mathematiker-Biographien”,
Birkhauser-Verlag, Basel 1978.

The Work of Galois

The mathematical works of Galois have been published first in 1846 by
Liouville in his Journal de Mathématiques. They were reprinted in 1897 by
Gauthier-Villars with an introduction by Emile Picard. A more complete,
critical edition of all preserved letters and manuscripts, prepared by R. Bour-
gne and J.-P. Azra, was published by Gauthier-Villars in 1962 under the title
“Ecrits et mémoires mathématiques d’Evariste Galois”.

Galois’ first published paper was an article of eight pages on continued
fractions in Annales de Mathématiques de Gergonne, Vol. 19, p. 294-302
(1828). In this paper, Galois proved:

If one of the roots of an equation of arbitrary degree (with rational
coefficients) is an immediately periodic continued fraction, then another root is
also a periodic continued fraction, which one obtains by dividing —1 by the same
continued fraction, written in the inverse order.

This is a nice addition to the results of Euler and Lagrange on continued
fractions.

In May 1829, Galois presented a first account of his investigations on the
solution of algebraic equations to the Académie des Sciences de Paris. A
second memoir, on equations of prime degree, was presented eight days later,
on Junel. Both papers were sent to Cauchy, who lost them. They have never
been found. ‘

In February 1830, Galois presented to the Academy another memoir on the
solution of algebraic equations. This time the Academy gave the paper to its
perpetual secretary Fourier. But Fourier died before he could examine the
paper. The manuscript has not been found among his papers.
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In April 1830 a short note of Galois was published in the Bulletin des
Sciences mathématiques of Férussac (Oeuvres mathématiques de Galois, 1897,
p- 11-12), in which some of the main results of his Academy memoir were
announced without proofs. The first and most important theorem announced
in this paper reads:

In order that an equation of prime degree be solvable by radicals, it is
necessary and sufficient that, if two of its roots are known, the others can be
expressed rationally.

This theorem implies that the general equation of degree 5 cannot be
solved by radicals.

In the same year 1830, Galois published two more little papers on ques-
tions of analysis and on the numerical solution of equations (Oeuvres, 1897, p.
9-10 and 13-14).

Of great importance for the history of modern algebra is another paper
“Sur la théorie des nombres”, published in Férussac’s Bulletin in June 1830
(Oeuvres, 1897, p. 15-23), in which Galois determined the structure of finite
fields. An account of the contents of this paper will be given at the end of the
present chapter.

In January 1831 the Academy received a third, revised version of Galois’
great memoir. It was entitled “Mémoire sur les conditions de résolubilité des
équations par radicaux”. The text of this memoir can be found in the Oeuvres
mathématiques (1897), p. 33-50. A critical edition with marginal notes, includ-
ing corrections made by Galois himself, was published in “Ecrits and mémoires
mathématiques d’Evariste Galois” (Paris 1962), p. 37-109.

The Academy asked the members Poisson and Lacroix to write a report on
the manuscript. Poisson examined it carefully, but he declared that he could
not understand it. The complete text of Poisson’s report has been published by
René Taton in a paper entitled “Les relations d’Evariste Galois avec les
mathématiciens de son temps”, Revue d’histoire des sciences et de leurs appli-
cations I (1947), p. 114-130. The report ends thus (my translation):

We have done our utmost to understand the demonstrations of Galois. His reasonings are not
sufficiently clear, nor are they developed so far that we could judge their exactness, and we are not
even able to give an idea of his reasoning in the report. The author states that the proposition
which is the special object of this memoir is a part of a general theory, which is susceptible of
many applications. It often happens that several parts of a theory, elucidating each other, are
easier to grasp as a whole than isolated. Therefore, to form a definite opinion, one might wait until
the author will have published his work as a whole. But in the present state of the part submitted
to the Academy we cannot propose to give it your approbation.

The Duel

Galois had no opportunity to explain his complete theory. During these
years he took part in numerous anti-monarchist riots. He was imprisoned
twice. In May 1832 he was forced to accept a duel. He was sure that he would
be killed. In a letter to his political friends he wrote:

“Je meurs victime d’une infAme coquette.”
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It has been said that his opponent wanted to kill him in order to get rid of
a dangerous republican, but this rumour is not confirmed by Galois’ own
testimony, for at the end of his letter he writes.

“Pardon pour ceux qui m’ont tué, ils sont de bonne foi.”

I suppose Galois himself had more information about the motives of those
who challenged and killed him than his friends, who suspected political mo-
tives. When he says “ils sont de bonne foi” he must have been convinced that
their motives were sincere. In a letter written to two of his friends on the eve of
the duel he writes

Votre tiche est bien simple: prouver que je me suis battu malgré moi, C’est-a-dire aprés avoir
épuisé tout moyen d’accommodement, et dire si je suis capable de mentir, de mentir méme pour un
si petit objet que celui dont il s’agissait.
and in another letter to his political friends

Je prends le ciel & témoin que c’est contraint et forcé que j’ai cédé a une provocation que jai

conjurée par tous les moyens.
Je me repens d’avoir dit une vérité funeste a des hommes si peu en état de 'entendre de sang-

froid. Mais enfin jai dit la vérité.

JPemporte au tombeau une conscience nette de mensonge, nette de sang patriote.

The duel took place on May 30 1832. He used the night before the duel to
write a long letter to his friend Auguste Chevalier, in which he explained the
fundamental ideas of his theory. This letter was published in September 1832
in the Revue encyclopédique, and republished in the Oeuvres (1897), p. 25-32.
It ends thus:

Tu feras imprimer cette Lettre dans la Revue encyclopédique.

Je me suis souvent hasardé dans ma vie 4 avancer des propositions dont je n’étais pas sir;
mais tous ce que jai écrit 1a est depuis bientdt un an dans ma téte, et il est trop de mon intérét de
ne pas me tromper pour quon me soupgonne d’énoncer des théorémes dont je n'aurais pas la

démonstration complete.
Tu prieras publiquement Jacobi et Gauss de donner leur avis, non sur la vérité, mais sur

P'importance des théorémes.
Apreés cela, il y aura, j’espére, des gens qui trouveront leur profit & déchiffrer tout ce gachis.
Je tembrasse avec effusion.
Le 29 mai 1832. E. Galois.

The next morning Galois was shot.

The Memoir of 1831

For us, who have learnt Galois Theory from a textbook or from a course of
lectures, it is not so difficult to understand Galois’ memoir as it was for
Poisson.

Galois starts with an equation f(x)=0. The coefficients are supposed to be
known quantities, for instance rational or irrational numbers or just letters. All
rational functions of these coefficients are called rational. One may also adjoin
other quantities, for instance m-th roots of rational quantities, and consider as
rational in a larger sense all rational functions of these quantities, says Galois.
In modern terminology one would say that a certain “ground field” is pre-
supposed, which may be extended by adjunctions in the course of the in-
vestigations.
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If a polynomial f(x) can be factored without leaving the ground field, it is
called reducible, otherwise irreducible.

As a rule, but not consistently, Galois uses the words permutation and
substitition in the same sense as Cauchy. A permutation is an ordering of a
finite set, and a substitution is a passage from one ordering to another (or the
same) ordering.

Galois now considers groups of substitutions having the property: if S and
T belong to the group, so does ST.

If a polynomial f has a root in common with an irreducible polynomial g,
then f is divisible by g. This is Galois’ first lemma. It is also the first theorem
in the 1829 memoir of Abel. The lemma implies that the field extension K(V)
obtained by adjoining a root V of an irreducible polynomial g(x) is completely
known as soon as the ground field K and the polynomial g are known. In
modern terminology the field K(V) is isomorphic to the residue class ring
K[x]/(2).

Galois next proves: If an equation g(x)=0 has no multiple roots and if g, b,
¢, ... are its roots, one can always form a function V' of the roots such that all
values of V obtained by permuting the roots are different.

For instance, one can take

) V=Aa+Bb+Cc+...

with conveniently chosen integers 4, B, C, ..., says Galois.
From this lemma, Galois deduces a special case of what we now call the
“Theorem of the Primitive Element”:

Lemma 3. If V is chosen as before, all roots a, b, ¢, ... are expressible as
rational functions of V.
To prove this important lemma, Galois puts

V=o¢p(a,b,c,...).

He now permutes the roots b, ¢, ... in all possible ways, keeping fixed only
root a, and forms the product

[V—ol(a,b,c,...)]- [V-—olac,b,...)]-....
This is a symmetric function of b, ¢, ..., which are the roots of the

polynomial
g(x)/(x —a),

hence it can be expressed as a rational function of a. So we have an equation

@) F(V,a)=0.
This equation and

&) g@=0

have in common only one root a, for it cannot happen that, for instance,
F(V,b) is zero, says Galois.
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Now if two equations like (2) and (3) have only one root a in common, this
root can be computed rationally. Hence a is a rational function of V.

Galois is right in saying that F(V,b) cannot be zero, for F(V,b) is a product
of factors

[V—e(b,a,c,..)]-[V-o0(b,c,a,..)]-...

in which the permutations (b, g, ¢, ...) etc. are all permutations of (a, b, c, ...) in
which b comes first, while the others (a, ¢, ...) are permuted in all possible
ways. This follows from the definition of F(V,a), as H.M. Edwards has pointed
out in his book “Galois Theory” (Springer-Verlag 1984), p. 44-45. Namely:
since all expressions ¢(b, a, ¢, ...) etc. are supposed to be different from V
=g@(a, b, ...), it follows that F(V,b) is different from zero, and so are F(V,c¢),
etc.

Poisson made a marginal note to Lemma 3, saying: “The proof of this
lemma is insufficient, but it is true by article 100 of the memoir of Lagrange.” It
is easy to understand Poisson’s attitude. Galois’ proof is only a sketch, and did
not elaborate his statement that F(V,b) is not zero. Poisson’s last statement “It
is true by article 100 of Lagrange” is correct, for in article 100 of Lagrange’s
“Réflexions” a complete proof of the lemma is given.

In my opinion Galois was right in claiming that his proof is essentially
correct, but Poisson was right in declaring that it is incomplete.

In modern notation we may now write

(4) K(a, b, c,..)=K(V)

where K is the ground field. The “primitive element” V is a root of an
irreducible equation. Let
v,v,ve,...,ye-n

be the roots of this equation. Lemma4 says: If a=¢(V) is a root of the
original equation, ¢ (V') will also be a root. The proof is easy.
Next comes the main theorem:

Proposition 1. There is a group of permutations of the letters a, b, c, ... such

that
1° Every function of the roots, invariable under the substitutions of the

group, is rationally known;
2° conversely, every function of the roots rationally known is invariable under
the group.

Galois’ terminology is not consistent. He first speaks of “permutations” and
next of “substitutions” forming the group, but what he wants to say is com-
pletely clear.

To prove this theorem, Galois expresses the roots as rational functions of V:

oVioV,...,0,,_, V.
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He next writes down the permutations

eV, ¢, ¥, @,V N
eV, 0.V, o,V s Py V'

GV, VO, VO, g, VD

and he states that the “group of permutations” (meaning the corresponding
group of substitutions) satisfies the required conditions. The proof is very short,
but it is not difficult for a modern reader to elaborate the single steps.

Galois next investigates how the group of the equation changes when the
ground field is extended by the adjunction of a root or of all roots of an
auxiliary equation. It is clear that after the adjunction the Galois group will be
a subgroup H of the original group G. If H is a proper subgroup, G can be
decomposed as follows:

(5) G=H+HS+HS +...

or, alternately, as

6) G=H+TH+TH+....

These two decompositions are most clearly explained in the letter to
Chevalier (Oeuvres de Galois, 1897, p. 25-32).

The two decompositions do not always coincide, says Galois. If they do
coincide, the decomposition is called “proper”. In modern terminology, this is
the case when H is an “invariant subgroup”, or “normal divisor” of G. In
particular, if all roots of an auxiliary equation are adjoined, the two decom-
positions will coincide. This is Proposition III of Galois. The proof is omitted
(“On trouvera la démonstration”).

Galois now comes to his main problem: In what case is an equation
solvable by radicals?

One can, of course, restrict oneself to radicals of prime degree p. Every time
a p-th root is extracted, Galois supposes the p-th roots of unity to be adjoined
beforehand. This is not an essential restriction, because Gauss had proved
already that the p-th roots of unity can be expressed by means of radicals of
degrees less than p.

Let us suppose that the adjunction of a radical r, root of an equation

N xP —5=0,
leads to a reduction of the Galois group. Because the p-th roots of unity
o,a2,...,aP=1

are in the ground field, the same reduction is obtained by adjoining all roots of
the equation (7). By Proposition III, the decomposition (5) will be a proper
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decomposition, that is, the subgroup H is a normal divisor. Galois stated, but
did not prove, that the number of terms in the decomposition (5) {which we
call the index of H in G) is just the prime number p. Conversely, if G has a
normal divisor H of prime index p, one can reduce the Galois group G to the
subgroup H by adjoining a radical of degree p. This is proved as in our
textbooks by taking a function 6 invariant under the subgroup H and forming
a “Lagrange resolvent”

(8) z=0+ab +a’0,+.. . +af710,_,
where « is a p-th root of unity, while 6,, 6,, ... are obtained from 6 by the
substitutions

S,82,...,8°1

representing the cosets in the decomposition (5).
It follows that an equation g(x)=0 is solvable by radicals if and only if a
sequence of subgroups
GoH,oH,>..oH, =E

exists, such that every H, is a normal divisor of the preceding H, _, or G, while
all indices are prime. If this is the case we say that the group G is solvable.

Galois next supposes that the equation f(x)=0 is irreducible and of prime
degree n. He proves: The equation can be solved by radicals if and only if each
of the substitutions of G transforms x, into x,. by a linear transformation of k
modulo n:

k'=ak+b (modn).

The Galois group of the general quintic equation is not of this form, hence
this equation cannot be solved by radicals. Thus, Abel’s result follows from the
theory of Galois.

In the last version of his Academy memoir Galois quoted Abel, but at the
time when he sent his first version to the Academy he did not even know the
name of Abel. His main sources were the works of Lagrange, Gauss, and
Cauchy.

Galois Fields

Both Abel and Galois had a clear notion of what we now call “field”.
Galois states right at the beginning of his great memoir:

“One can agree to consider as rational every rational function of a certain
number of quantities regarded as known a priori”, and he goes on to explain
what he means by adjoining a certain quantity to the field of quantities
considered as known.

The fields considered by Abel and Galois in their papers on the resolution
of equations all contain the rational number field. In modern terminology they
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are fields of characteristic zero. If the characteristic were p, the equation
xP—1=0

would have only one root x=1, whereas Abel and Galois always suppose that
the p-th roots of unity are all different.

However, in his paper “Sur la théorie des nombres”, which was published
in 1830 in the Bulletin des Sciences de Férussac (Oeuvres de Galois, Paris 1897,
p- 15-23) Galois constructs finite fields, the so-called Galois-Fields. He states
from the very beginning that his object is to consider algebraic structures in
which all quantities, multiplied by p, are considered to be zero. In his own
words, translated into English, he says:

If one agrees to regard as zero all quantities which, in algebraic calculations, are found to be
multiplied by p, and if one tries to find, under this convention, the solution of an algebraic
equation Fx=0, which Mr. Gauss designates by the notation Fx=0, the custom is to consider
integer solutions only. Having been led, by my own research, to consider incommensurable
solutions, I have attained some results which I consider new.

From these words it is clear that the starting point of Galois was the
calculus of congruences modulo a prime p, initiated by Gauss. It was known
that residue classes modulo p can be added, subtracted, and multiplied, and
that the congruence

ax=b (modulo p)

can always be solved in rational integers, provided a is not congruent to zero.
In other words, the residue classes modulo p form a field.
Gauss had also considered congruences of higher degrees such as

x?=a (modulo p),

but he admitted rational solutions only. Galois now asks whether one can
introduce irrational solutions, that is, whether one can enlarge the residue class
field by the adjunction of roots not contained in the original field.

Galois supposes the polynomial Fx to be irreducible modulo p. He asks
whether one can solve the congruence Fx=0 by introducing new “symbols”,
which might be just as useful as the imaginary unit i in ordinary analysis.

Galois calls i one of the roots of the congruence Fx=0 of degree v. He
forms the p* expressions

(A) ataji+a,i’+...+a, ;"7

where a, a,, a,, ..., a,_, are integers modulo p. These p” elements form what
we call today a “Galois Field” GF(p").

It is easy to show that the expressions (A) form a field, that is, that they
satisfy the well known rules of addition, subtraction, multiplication, and di-
vision.



Galois Fields 111

Galois now takes an element « of the form (A), in which the coefficients a,
a,, ..., a,_; are not all zero. The powers «, a2, ... cannot be all different, hence
a power «" must be equal to 1. If n is the smallest integer for which o" is 1, the
expressions

must be all different. In modern terminology, they form a subgroup of the
multiplicative group of the Galois field.

Multiplying these numbers by another element f=0, one obtains a coset of
the subgroup. Going on in the same way, one finds that all cosets together
form the whole multiplicative subgroup of order p*—1, and that the exponent n
is a divisor of p* —1. Hence one has

P’ =1,

Next one proves, says Galois, as in the theory of residue classes modulo p,
that there exist “primitive roots” for which n is exactly p*—1. All other non-
zero elements of the Galois field are powers of a primitive element «. The
proof of the existence of such an element, given by Gauss for the case of the
residue class field modulo p, works just as well in the case of GF(p”).

We now see that all elements of the Galois field, including zero, are roots
of the polynomial

(B) xP" —x

and that every irreducible polynomial Fx of degree v is a divisor of the
polynomial (B). If « is one of the roots of such a polynomial, the others are

L A
This follows from the well known congruence
(F x)? =F(xP).

At the end of his treatise, Galois reverses the situation. He starts with any
field extension of GF(p) in which the polynomial (B) can be completely factor-
ized. Restricting himself to the subficld generated by the roots, he takes a
“primitive element” i of the subfield. Such an element always exists according
to a theorem known to Abel, says Galois. Every such i is a root of a (modp)
irreducible polynomial Fx. No matter which irreducible polynomial of degree
v one chooses, one always obtains the same field GF(p*). In most cases, the
simplest way to obtain such a polynomial is “par tatonnement”, says Galois,
by trial and error. As an example, he takes p=7 and v=3. The polynomial
x3—2 is irreducible (mod7), and a root i of this polynomial generates the field

GF(T3).
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The Publication of Galois’ Papers

Galois’ “Mémoire sur les conditions de résolubilité des équations par
radicaux” was published in 1846, fourteen years after the death of Galois, by
Liouville in his Journal de mathématiques pures et appliquées 11, p. 381-444.
In an “Avertissement” preceding the memoir, Liouville reproduces the letter of
Galois to Chevalier and adds:

Inserting in their Recueil the letter one has just read, the editors of the Revue encyclopédique
announced that they would soon publish the manuscripts left by Galois. But this promise has not
been kept. However, Monsieur Auguste Chevalier has prepared the work. He has given us, and
one will find in the pages to follow:

1° A memoir on the conditions of solvability of equations by radicals, with an application to
equations of prime degree,

2° A fragment of a second memoir, in which Galois treats the general theory of those
equations which he calls primitive.

We have preserved most of the notes which Monsieur Auguste Chevalier had added to the
memoirs just mentioned. These notes are all marked A.Ch. The unsigned notes are by Galois
himself.

We will complete this publication by some other fragments drawn from the notes of Galois.
Without having great importance these notes might still arouse the interest of the geometers.

The notes mentioned by Liouville in the last sentence have been published
by Jules Tannery (Manuscrits de Evariste Galois, Gauthier-Villars, Paris 1908),
and again in “Ecrits et mémoires d’Evariste Galois” (Paris 1962).

Liouville also states that he experienced great joy when he realized, after
filling a few slight gaps, that the method by which Galois proved his beautiful
theorem was completely accurate.

For more information on the activities of Liouville, Hermite, and Serret
during the years 1846-1854 1 may refer to a very interesting paper by B.M.
Kiernan in the Archive for History of Exact Sciences 8, p. 40-154 (1971)
entitled “Galois Theory from Lagrange to Artin”. Section 11 of this paper
deals with the publication of Galois’ papers and the reaction of the French
mathematicians to this publication. The next section of the present chapter is
mainly drawn from Kiernan’s paper.

Hermite, Puiseux, and Serret

The French mathematician Charles Hermite (1822-1882) was a pupil of the
same Louis Richard who taught Galois. In 1842, at the age of twenty, he
published a paper “Considérations sur la résolution algébrique de I'équation
du cinquiéme degré”, in which he sketched with great clarity and precision
Lagrange’s ideas concerning the general quintic equation.

In 1847 or earlier Hermite wrote a letter to Jacobi, in which he mentioned
Galois” work on elliptic functions. So Hermite was acquainted with the work
of Galois at a date shortly after the publication of the memoirs of Galois in
1846 or even earlier.

In 1850, Victor Puiseux published a fundamental paper entitled “Re-
cherches sur les functions algébriques” in Vol. 15 of Liouville’s “Journal de
mathématiques pures et appliquées”, p. 365-480. In this paper, Puiseux con-
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siders an algebraic function w of a complex variable z defined by an equation

9) f(z,w)=0

in which f(z,w) is a polynomial in w, irreducible in the field of rational
functions of z. In the neighbourhood of any point z, which is not a “branch
point”, the roots wy, w,, ..., w, of the equation (9) can be expanded as
convergent power series in z —z,. If z, is a branch point, one has to use powers
of z—z, with fractional exponents. These power series are called up to the
present day “Puiseux series”.

If one starts with a non-branch point z, and if one makes z move on a
closed path, avoiding the branch points and ending at z,,, one will end up with
a permutation of the original roots wy, ..., w,. These permutations obviously
form a group, but Puiseux does not use the word “groupe”. In Jordan’s “Traité
des substitutions” this group is called “groupe de monodromie”.

In the following year 1851, Hermite published a short paper in which he
showed that the group of substitutions of the roots w,, ..., w, considered by
Puiseux is just the Galois group of the equation (9), if €(z) is the ground field.
Thus, an important link between Galois theory and complex function theory
was established (Oeuvres d’Hermite I, p. 276-280).

Liouville conducted a series of seminars on Galois theory. The seminar was
attended by Joseph-Alfred Serret, the author of a very influential “Cours
d’algébre supérieure”. In the first edition of this textbook (published in 1849)
one finds a proof of the fundamental third lemma of Galois, which reads in the
text of Serret (3" edition, Vol. 2, p. 413):

If
f(x)=0

is an equation of degree n, which has no equal roots, and if
V=0(Xg Xy, e X, 1)

is a rational function of the roots x, x4, ..., X,_;, chosen in such a way that the 1-2-...-n values
which it takes when the roots are permuted are all different, then one can express the roots x,, x,,
x as rational functions of V.

vy Xy

The proof given by Serret is just the proof of Galois, which we have
discussed earlier.

Some time before 1854 Hermite sent to Serret a proof of a theorem of
Galois which says: An irreducible equation of prime degree is solvable by
radicals only if all roots can be rationally expressed by any two of the roots.
Serret inserted this proof in the second edition of his “Cours d’algébre su-
périeure”, which came out in 1854. Serret also included a French translation of
a paper of Kronecker “Uber die algebraisch auflosbaren Gleichungen”, pre-
sented to the Berlin Academy in 1853 (Kronecker’s Werke IV, p. 1-11).

The third edition of Serret’s “Cours d’algebre” (1866) contains a thorough
exposition of the theory of Galois. Serret says

“I have followed the order of the propositions which Galois adopted, but very often I had to
fill out the inadequate proofs.”
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According to Kiernan, Serret’s main contribution is notational. For Serret,
the Galois group is a group of substitutions in the sense of Cauchy. He
introduces the notation of what we today call “conjugate subgroups™. If H is a
subgroup consisting of m substitutions

1,818 eesSm_1s
then a conjugate subgroup consists of
,TS, T~ TS, T, ..., TS, T~

Serret’s textbook was very influential. Many editions followed the third
edition. A German translation by G. Wertheim was published in 1868.
We now return to the year 1852, and turn to Italy.

Enrico Betti

The first to present an exposition of Galois theory according to the ideas of
Galois, but with more complete proofs, was Enrico Betti, a very interesting
personality in the history of algebra and algebraic topology. His name is
known to topologists because it is connected with the so-called “Betti-num-
bers” or “homology numbers”.

Actually, these numbers were not invented by Betti, but by Henri Poincaré,
who was inspired by a paper of Betti. The history of this invention has been
studied in a paper by Maja Bollinger “Entwicklung des Homologiebegriffs” in
Archive for History of Exact Sciences 9, p. 94-170 (1972). 1t is worthwile to
summarize the main facts about “Betti numbers” here.

In Riemann’s “Gesammelte mathematische Werke” (1871) one finds a post-
humous “Fragment on Analysis Situs”, in which Riemann defines what we
now call “homology numbers modulo 27, that is, numbers of linearly inde-
pendent homology classes for non-oriented cycles with integers modulo 2 as
coefficients. Riemann proves that these numbers are independent of the choice
of the basic cycles. His method of proof is just the same by which Steinitz later
proved that the degree of a finite field extension does not depend on the choice
of the basis. One finds the proof in every textbook of modern algebra.

Riemann visited Betti in Italy. In a letter dated 21 January, 1871, he calls
Betti “carissimo amico”. It appears that Riemann explained his ideas concern-
ing homology numbers to Betti.

In 1871 Betti published a paper “Sopra gli spazi di un numero qualunque
di dimensioni” in Annali di matematica pura e applicata (2) 4, p. 140-158
(1871). The ideas underlying this paper are just the same as in the fragment of
Riemann, and Betti says expressly that his proof of the independence of the
homology numbers from the choice of the basis is the same as a proof given by
Riemann for the special case of closed paths on a Riemann surface. However,
Betti’s proof is not correct, as Heegard and Maja Bollinger have shown. Betti
misunderstood Riemann’s ideas in several respects.
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Poincaré, inspired by Betti’s paper, developed a completely correct ho-
mology theory. He considered oriented cycles, multiplied by rational numbers,
so his homology is a “homology with admitted division”, as we say today. The
numbers of linearly independent cycles of all dimensions less than m on a
manifold of dimension m are called, in honour of Betti, “nombres de Betti”. On
an orientable closed surface, for instance on the Riemann surface of an alge-
braic function, these numbers happen to be equal to the homology numbers
modulo 2 studied by Riemann and Betti, but in general they may be different.

Just as Betti elaborated Riemann’s ideas on homology, he also elaborated
the theory of Galois in a paper “Sulla risoluzione delle equazioni algebriche”,
published in 1852 (Opere matematiche I, p. 31-80). In the introduction to this
paper he writes, referring to the work of Galois and Abel:

“The conditions for solvability by radicals of equations of prime degree can thus be held
determined and proved by the procedures of both of these mathematicians. The conditions remain
to be determined for equations of non-prime degree, and much on this is found proposed by
Galois and Abel in different ways, but without proof, in their posthumous papers. To fill in these
gaps is the main intention of my work” (Kiernan’s translation).

In fact, Betti provided proofs for several theorems which Galois merely
stated. A good example is given on page 107 of Kiernan’s paper in Archive for
History of Exact Sciences 8.

Betti is quite near to the modern notion of a quotient group. If H is a
normal subgroup of G, Betti assumes that the representatives S; of the cosets
S;H can be chosen in such a way that they form a group. In this particular
case the group formed by the representatives S; is isomorphic to what we call
the quotient group G/H.

For more details on Betti’s memoir I may refer to the paper of Kiernan.

Betti’s exposition of Galois theory, being written in Italian, was not as
influencial as that of Serret, whose “Cours d’algebre supérieure” remained a
standard text for a long time: the sixth edition appeared as late as 1928.

The Second Posthumous Memoir of Galois

As we have seen, Galois completely determined the structure of the Galois
groups of solvable, irreducible equations of prime degree p. Since an equation
is irreducible only if its group is transitive, and solvable only if the group is
solvable, the theorem proved by Galois is equivalent to the following:

A transitive group of permutations of degree p (that is, on p letters) is
solvable only if its permutations can be written as

k'=ak+b (modp).

In a second, unfinished memoir published in 1846 (Oeuvres, p. 51-61)
Galois investigates the more general case in which the group is supposed to be
primitive.
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A transitive group is called primitive, if it is impossible to divide the letters
into several subsets of more than one elements each:

{ay, .18, {0 155 8am)s -

in such a way that the group transforms each subset either into itself or into
another one of the subsets.

Obviously, a transitive group of prime degree p is always primitive. Galois
now considers non-prime degrees, and he proves:

If a solvable group is primitive, its degree must be a power of a prime.

" Galois’ proof of this theorem is not easy to understand, but it is correct.
Camille Jordan presented an elaborate proof in his “Traité des substitutions”
(1870). In this monumental volume, Jordan developed an exhaustive classifi-
cation of solvable primitive groups of degree p".

The theorem just mentioned had been announced already, together with
other results, in Galois’ published paper of 1830 entitled “Analyse d’un mé-
moire sur la résolution algébrique des équations” (Oeuvres, 1897, p. 11-12). His
preliminary results on primitive groups were far surpassed by those of Jordan.

The remainder of the second memoir of Galois deals with primitive groups
of degree p%. The memoir is unfinished. It ends with a question and with the
words “C’est ce que je vais rechercher”.
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Camille Jordan

On the life and work of Camille Jordan (1838-1922) one may consult the
excellent obituary of Henry Lebesgue, read at the Paris Academy in June 1923,
and reprinted in Jordan’s Oeuvres IV, p. X-XXIX.

Jordan was born at Lyon. At the age of 17, he was admitted to the Ecole
Polytechnique as the first in rank, with 19.8 points out of 20. In 1876 he
became professor at the same Ecole.

The name of Jordan is well known to all mathematicians of my generation
because of his excellent “Cours d’analyse”, a considerably enlarged elaboration
of his lectures at the Ecole Polytechnique. As far as I know, this is the earliest
textbook in which the whole of classical analysis is presented as a unified,
completely logical theory. For instance, Jordan was the first to present, in the
second and later editions of his Cours d’Analyse, clear definitions of the
notions “volume” and “multiple integral”, and he specified conditions under
which a multiple integral can be evaluated by successive integrations. For me,
every single chapter of the Cours d’analyse is a pleasure to read.

Jordan’s Traité

Jordan’s monumental work of 667 pages “Traité des substitutions et des
équations algébriques”, published in 1870 by Gauthier-Villars, is a masterpiece
of mathematical architecture. The beauty of the edifice erected by Jordan is
admirable.

In the preface to his Trait¢ Jordan gives due credit to his predecessors:
first of course to Galois, who “invented the principles of Galois theory”, and to
Betti, who wrote “an important memoir, in which the complete sequence of
theorems of Galois has been rigorously established for the first time”. Next,
Jordan mentions the contributions of Abel, Hermite, Kronecker, and Brioschi
concerning the Galois groups of certain division problems of elliptic and
Abelian functions, and the investigations of the geometers Hesse, Cayley,
Clebsch, Kummer, Salmon, and Steiner, who studied a multitude of geometri-
cal problems to which the methods of Galois can be applied. Finally, he
acknowledges his indebtedness to the “Cours d’algébre” of Serret, saying:

It is the careful study of this book that initiated us into Algebra and inspired in us the desire
to contribute to its progress.

When Jordan says that he was initiated into Algebra by the book of Serret,
this is certainly true, but it is not the whole truth. An explanation of Galois
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theory is found only in the third edition of Serret’s “Cours d’algébre”, which
appeared in 1864, but three years earlier Jordan had already quoted Galois in
his Thése de doctorat (Oeuvres de Camille Jordan I, 1961, p. 1-82). Right in
the first chapter of this Thése Jordan introduces the notion “systéme conjugé”
according to Cauchy. Such a system consists of substitutions A, B, ... and their
products such as

A*BFC'BF ...

This system is, of course, a group in the sense of Galois, and in fact, in
Chapter III of his Thése, Jordan writes:

Il est facile de voir, en effect, que la condition nécessaire et suffisante pour qu'une équation
soit irréductible, est que le systéme conjugé qui lui correspond et que Galois nomme son groupe,
soit transitif.

It follows that Jordan’s initiation into Galois theory is not only due to
Serret, but also to Galois himself. Jordan must have seen the fundamental
memoir of Galois before 1861, for his Thése was published in 1861 in the
Journal de I’école polytechnique 12, p. 113-194.

In 1870, when the Traité was published, Jordan was already famous.
Scholars from all parts of Europe came to Paris to see him. Sophus Lie came
from Norway and Felix Klein from Germany. Klein and Lie were good friends
at that time: they lived in Paris in adjacent rooms from April to June 1870,
and this stay was of decisive importance for their later work on continuous
and discrete groups of transformatiens. Klein writes about Lie and himself:

We lived room-to-room and sought scientific inspiration mainly in personal contact, especially.
with younger mathematicians. I was greatly impressed by Camille Jordan, whose Traité des
substitutions had just been published. It appeared to us as a book with seven seals (Felix Klein,
Gesammelte math. Abhandlungen I, p. 51).

Most of Jordan’s early papers on Galois theory and on groups of sub-
stitutions were incorporated in his Traité. An excellent commentary to this
part of Jordan’s work, by Jean Dieudonné, can be found in Volumel of
Jordan’s Oeuvres (1961).

Following the chronological order, I shall first discuss Jordan’s work on
groups of Euclidean motions, and next present a summary of his Traité.

On Groups of Motions

In 1867, Jordan published a short note in the Comptes Rendus of the Paris
Academy entitled “Sur les groupes de mouvements”, in which he announces a
complete determination of all possible groups of displacements of rigid bodies
in Euclidean 3-space. In 1868-1869 the enumeration of these groups was
presented in a two-part memoir entitled “Mémoire sur les groupes de mouve-
ments”, Annali di Matematica 2, p. 167-215 and 322-345.

The displacements considered by Jordan are helicoidal motions not only of
a limited rigid body, but of the whole space. Particular cases are the rotations
and translations. A group of motions is defined to be a set containing the
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product AB of any two elements of the set. Jordan tacitly assumes his groups to
contain the inverses A~! as well. Moreover, he restricts himself to topologi-
cally closed sets. This restriction is evident already in the CR-note, for here
Jordan announces a proposition which he calls “la plus essentielle et la plus
délicate a établir”, namely:

“Let P and P’ be two motions chosen at will. One can in general, and with
some exceptions, obtain any motion by a convenient combination of P and
P

It is clear that products composed from P and P’ form, in any case, a
denumerable set and not the whole group. But if one takes the closure of the
set of products, one obtains, apart from special cases, the whole group.

Jordan’s work on groups of motions was inspired by the “Etudes cristallo-
graphiques” of Bravais. In fact, Jordan states that several important special
cases of his enumeration problem had been treated already by Bravais. He also
says that his problem of determining all groups of motions can also be
formulated thus:

“To determine all systems of molecules which can be superposed to them-
selves in several ways.”

Jordan first determines all closed groups of translations and next all closed
groups of rotations having one fixed point in common.

The determination of the translation groups is easy. There are four types of
discrete groups of translations, generated by 3 or 2 or 1 or no linearly
independent translations. There are three types of continuous groups of trans-
lations, of dimensions 3 and 2 and 1. Combining a continuous group of
dimension 1 or 2 with a discrete group, one finds three mixed types. So there are
just 10 types of topologically closed groups of translations.

The closed groups of rotations are not so easy to find. Discrete groups of
rotations are, according to Jordan:

1) cyclic groups C,, C,, Cs, ...,

2) dihedral groups D,, Dg, Dy, ...,

3) the tetrahedral group,

4) the octahedral group,

5) the icosahedral group.

Continuous groups of rotations are

6) the group of all rotations having a common fixed point O,

7) the group of rotations about a fixed axis.

Combining the last group with a rotation inverting the axis, one
obtains

8) the group consisting of all rotations about an axis a and all “full turns”
about axes b drawn through O and perpendicular to a.

Next Jordan undertakes the gigantic task to find all closed groups of
motions by combining the rotations with translations. In modern terminology
his method may be explained thus:

From all helicoidal motions of the group G one may take the rotational
parts, thus obtaining a group of rotations R and a morphism

G—-R.
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The kernel of this morphism is the group T of all translations in G. Hence
R=G/T.

So, in order to obtain the group G, one has to find all possible extensions
of the normal subgroup T such that the factor group is isomorphic to R. This
1s, in fact, Jordan’s method.

Jordan’s enumeration is not complete. Leonhard Sohncke noted, in the
Historical Introduction to his book “Entwicklung einer Theorie der Kristall-
strukturen” (Leipzig 1879), that all crystallographic groups listed in §20 of
Chapter 6 of his book are missing in Jordan’s list. Sohncke found this lacuna
because he had investigated, by quite a different method, the regular point
systems in the plane.

In spite of this deficiency, Jordan’s pioneering work is admirable. Sohncke
used Jordan’s method to determine all three-dimensional crystallographic
groups preserving the orientation, thus paving the way towards the complete
enumeration of all crystallographic groups by A. Schoenflies and E.S. von
Fedorow in the years 1889-1891. For the history of these investigations see J.J.
Burckhardt: Zur Geschichte der Entdeckung der 230 Raumgruppen, Archive
for History of Exact Sciences 4, p. 235-246 (1967), and also J.J. Burckhardt:
Der Briefwechsel von E.S. von Fedorow und A. Schoenflies 1889-1908, same
Archive 7, p. 91-141 (1971).

Jordan’s memoir was not the earliest paper concerning Euclidean displace-
ments and their composition. As early as 1758, Euler published a paper “Du
mouvement des corps solides autour d’une axe variable” (Opera omnia, series
secunda, Vol. 8, p. 154-193). Among other things, Euler proved that every
displacement of a rigid body can be expressed as a product of an axial rotation
and a translation. To describe rotations, he introduced the “Euler angles”,
which are still used by physicists.

Recently, Jeremy Gray has called attention to a nearly forgotten paper of
Olinde Rodrigues: “Des lois geométriques qui régissent les déplacements d’un
systeme solide dans I'espace, et de la variation des coordonnées provenant de ces
déplacements considérés indépendamment des causes qui peuvent les pro-
duire”, Journal de Math. (1) 5, p. 380-440 (1840). In this paper, Rodrigues
proves that every displacement of a rigid body is the resultant of a rotation
and a translation along the axis of the rotation. Jordan considers this result as
well known, but he does not mention Rodrigues.

Following Euler, Rodrigues describes a rotation by four parameters g, h, I,
0, the first three determining the direction of the axis. He develops explicit
formulae for the resultant of two rotations, and he stresses the fact that this
product is not commutative. See J.J. Gray: Olinde Rodrigues’ paper of 1840 on
Transformation Groups, Archive for History of Exact Sciences 21, p. 375-385
(1980)

We now come to Jordan’s Traité des substitutions.
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On Congruences

The first “Book” of Jordan’s Traité is entitled “Des congruences”. In this
book Jordan first summarizes the main results of Fermat and Gauss on
congruences between integers and on power residues. Next he expounds, fol-
lowing Galois, the structure theory of what we call Galois Fields GF(g).

Transitive and Primitive Groups of Substitutions

More than one-third of Jordan’s Traité is occupied by Book 2: “On Sub-
stitutions”. In Chapter 1 of this book, Jordan deals with substitutions (or, as
we now call them, permutations) in general. He proves that the order of a
subgroup H of a group G is a divisor of the order of the whole group.
Following Cauchy, he proves that a group whose order is divisible by p
contains an element of order p.

Next, Jordan defines the notions “transitive” and “primitive”. A group is
called “k-fold transitive” or “transitive of order k”, if it transforms any k
distinct letters into any other k distinct letters. Jordan mentions a 5-fold
transitive group of substitutions on 12 letters discovered by Mathieu, and he
proves some theorems on the order of transitivity. The work of Mathieu will
be discussed in the next chapter together with the work of Cauchy, Serret, and
Jordan on the possible values of the index i of a subgroup of S,.

For a summary of later papers of Jordan on primitive and on multiply
transitive subgroups of S, see J. Dieudonné, Vol. I of Jordan’s Oeuvres, pages
XXX to XXXIIL

Series of Composition
A composition series of a group G is a sequence of groups
GoHoH' =»...ol

in which every term is a normal subgroup of the preceding one, and in which
no intermediate normal subgroups can be inserted. Jordan proves that the
quotients of the orders of successive groups are uniquely determined by the
group, apart from their order. This fundamental theorem occurs already,
though without proof, in Jordan’s “Commentaire sur Galois” in Math. An-
nalen 1 (1869) on p. 152.

In 1889 Otto Hélder proved the stronger “Jordan-Holder Theorem”, which
says that the factor groups

G/H, H/H', ...
are uniquely determined but for their order and but for isomorphisms.

Our modern definition of the notion “factor group G/H” by means of
cosets is due to Holder. However, the same notion occurs implicitly in an 1875
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paper of Jordan entitled “Sur la limite de transitivité des groupes non alternés”
(Oeuvres I, p. 365-396). On p. 371 of this paper Jordan defines:

Two substitutions s and t permutable with a group H are called congruent modulo H, if one
has

s=th

were h is a substitution in H.

Jordan now considers a sequence of substitutions s;,s,,... permutable with
H and incongruent modulo H, such that for all « and f one has a relation of
the form

S¢Sp=s, modH.

In this ease Jordan says that s,,s,,... form “un groupe suivant le module
H”, and he denotes this group by G/H, where G is the group generated by
54,85,.... Contrary to our usage, he does not require H to be contained in G.
In our notation we would denote Jordan’s quotient group by

G/GnH),

and indeed, Jordan states that the order of G is the product of the orders of
the factor group G/H and the intersection of G and H.

Jordan next defines “isomorphisms”, which are what we today call homo-
morphisms or just morphisms. One-to-one morphisms are called by Jordan
holoedric, the others meriedric.

Next Jordan considers the alternating group A4,. He shows that it is
generated by cycles (abc), and that it is the only non-trivial normal subgroup
of §,, except for n=4. A corollary says: The group A, is simple if n exceeds 4.

Linear Substitutions

The extremely interesting Chapter 3 of Book 2 of Jordan’s Traité (p. 88-249)
deals with what Jordan calls linear substitutions, and what we write in matrix
form as

x'=Ax.

In most cases, the field of coefficients is a prime field GF(p), but in some
cases, the prime field is extended to a Galois field GF(p*). For instance, on
p. 114-126, in order to reduce the matrix 4 to the well-known “Jordan Normal
Form”, Jordan had to adjoin to the ground field the roots of the “characteris-
tic equation”

Det(A—A1)=0.

On the history of the Jordan Normal Form see Thomas Hawkins: “Weier-
strass and the Theory of Matrices”, Archive for History of Exact Sciences 17,
p. 119-163 (1977). In Section 4 of this paper, Hawkins shows that Weierstrass,
in his theory of Elementary Divisors, had already defined a normal form
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equivalent to that of Jordan. Weierstrass presented his fundamental memoir
“Zur Theorie der bilinearen und quadratischen Formen” to the Berlin Acad-
emy in 1868 (Monatsberichte, p.311-338=Werke 2, p. 19-44), two years be-
fore the publication of Jordan’s Traité.

On p. 128-137 of his Traité Jordan uses his normal form to determine the
set of linear substitutions commuting with a given substitution A.

According to Dieudonné (Oeuvres de Jordan, p. XIX), Jordan’s research on
linear substitutions was motivated by three different theories. First, in Jordan’s
method of constructing solvable groups (Book 4 of the Traité) linear groups
appear quite naturally. Secondly, the same groups present themselves in the
theory of the division of periods of Abelian functions studied by Hermite,
Kronecker, and Clebsch. Finally, the studies of Mathieu on multiply transitive
groups induced Jordan to study the group of projectivities of a projective line
over a Galois field.

Jordan’s main problem is the study of the composition of what we now call
the “classical groups” oyer the Galois field GF(p). In the following summary I
shall call the groups by their modern names introduced by Dickson and
modified by van der Waerden and Dieudonné, but I shall also mention some
deviating names given by Jordan.

The groups studied by Jordan are:

the General Linear Group GL(n,p) of all invertible linear transformations
of n variables (mod p),

the Special Linear Group SL(n,p) consisting of all linear transformations
with determinant 1, '

the corresponding projective groups PGL(n,p) and PSL(n, p),

the Symplectic Group Sp(2n,p), called by Jordan “groupe abélien”, which
transforms the alternating bilinear form

¢=Z(xkyn+k—xn+k}’k)
1

into itself (modulo p),

the corresponding projective group PSp(2n,p),

the “groupes de Steiner”, which are affine groups of transformations trans-
forming a quadratic form in 2n variables into itself (modulo 2),

orthogonal groups O(n,p,Q) transforming a quadratic form @ into itself
(modulo p, where p is an odd prime),

orthogonal groups 0O(2n,2,Q) which Jordan calls “groupes hypoabéliens”,
because they are contained in the “groupe abélien” Sp(2n,2).

In many of these cases, Jordan proves that these groups or their subgroups
of index 2 are simple.

In 1901, L.E. Dickson published his classical treatise “Linear Groups with
an Exposition of the Galois Field Theory”, in which he extended Jordan’s
results to arbitrary Galois fields GF(q). The subject was further developed by
later authors, notably J.A. de Séguier and J. Dieudonné. For the history of the
subject see B.L. van der Waerden: Gruppen von Linearen Transformationen
(Springer-Verlag 1935, reprinted by Chelsea 1948), and J. Dieudonné: Sur les
groupes classiques (Paris, Hermann 1948).
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The projective group PSL(2,p) can be considered as a group of fractional
linear transformations in GF(p)

, az+b
Z =
cz+d

with ad—bc=1. This group, which is called “group of the modular equation”,
plays an important réle in the theory of modular functions. It was investigated
by Galois (Oeuvres 1897, p. 28) and by Serret, Hermite, Mathieu, and Kirkman.
Its subgroups were discussed by Betti, Hermite, Jordan, and Sylow, and com-
pletely determined by Gierster in 1881. See the article “Endliche Gruppen” by
H. Burkhardt in Enzyklopiddie der math. Wissenschaften I, 1, p. 216, and my
“Gruppen von linearen Transformationen”, p. 8.

The symplectic groups were important for Jordan because they occur as
Galois groups of the problem of the division of periods of Abelian functions
having 2n periods. Jordan mentions this fact in his 1869 paper “Sur les
équations de la division des fonctions abéliennes” in Math. Annalen I, p. 585~
591 (=0Oeuvres I, p231-239). In a footnote he adds: “Nous devons a M.
Kronecker la communication de cet important résultat.”

Jordan’s Presentation of Galois Theory

In 1869, Jordan published an exposition of Galois theory entitled “Com-
mentaire sur Galois”, Math. Annalen I, p. 142-160. With slight changes, the
content of this paper was incorporated into the Traité (p. 253-274).

On p. 385-397 of the Traité the exposition is continued. Following Galois,
Jordan shows that an equation can be solved by radicals if and only if its
Galois group is solvable, that is, if its composition factors are prime numbers.

Next, Jordan derives another, more convenient criterion. He shows
(Theorem IX on page 395):

For a group L to be solvable, it is necessary and sufficient that a sub-
sequence of normal subgroups of L exists:

lcFcGcHc...cL

such that the substitutions of each group in the sequence are permutable
modulo the preceding subgroup. In other words, it is required that the factor
groups

F/1, G/F, H/G, ...
are all abelian.

Why is this criterion more convenient? Suppose one wants to decide
whether a given group G is solvable. If one follows Galois, one has to find out
whether a normal subgroup of prime index exists, and a normal subgroup of
this normal subgroup, and so on. But if one follows Jordan, one has only to
examine normal subgroups of the whole group G.
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Geometrical Applications

Chapter 3 of Book 3 of the Traité (p. 301-333) is devoted to geometrical
applications of Galois theory.

I. The first section is entitled “Equation de M. Hesse”. In 1844, Ludwig
Otto Hesse has proved (Gesammelte Abh., p. 123-135) that a plane cubic curve
has nine inflexion points lying on twelve straight lines. If the curve is real, only
three of the nine inflection points are real. Jordan denotes the nine points by
the symbols

©0 ©1) (02
ao (1 (@12
0 21 2

Nine indeterminates are introduced, which are denoted by the same sym-
bols (x y). The twelve lines now correspond to products

ey (X" y)(x"y")
that satisfy the relations

x+x +x"'=y+y +y'=0 (mod3).
The sum of all these products is called ¢. Thus we have
@ =(00)(01)(02)+(10)(11)(12) + ... +(02) (20) (11).

Jordan now proves that the Galois group of the equation on which the nine
inflexion points depend, reduces itself to those substitutions of the nine inde-
terminates (x y) that do not change the expression ¢. This group is formed by
the inhomogeneous linear transformations

X'=ax+by+o (mod 3)
y=dx+by+od  (mod3).

The order of the group is
(32-1)(3*-3)=48,

and the group is solvable.

In determining the Galois group, Jordan tacitly supposes the given cubic to
be “generic”, that is, he supposes the coefficients of its equation to be inde-
pendent indeterminates. In special cases, for instance if one of the inflexion
points is rational, the group may be smaller.

II. The next section is entitled “Equations de M. Clebsch”. In a paper of
Alfred Clebsch “Uber die Anwendung der Abelschen Funktionen in der Geo-
metrie” (Journal fiir Math. 63, 1864, p. 189-243) the problem was discussed:
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Given a plane quartic curve, to determine a cubic curve whose intersections
with the quadric are all fourfold. According to Clebsch, the problem leads to
an equation X of degree

45=4096.

Jordan now determines the Galois group of the equation X. The method is
similar to that applied in Section L

In the same Section II, Jordan discussed several similar contact problems
proposed by Clebsch.

I11. The next problem, also due to Clebsch, is the problem of straight lines
on a quartic surface having a double conic. According to Clebsch there are 16
such lines. Jordan again determines the Galois group of the problem.

IV. The problem of the 16 singular points on the “surface of Kummer” is
treated by the same method. For the definition of the Kummer surface see E.E.
Kummer: Uber die Flichen vierten Grades mit sechzehn singuliren Punkten,
Monatsberichte der Berliner Akademie 1864, p. 246-260.

V. The most interesting geometrical problem discussed by Jordan is the
problem of the 27 lines on a cubic surface. For the history of the subject see A.
Henderson: The Twenty-seven Lines upon the Cubic Surface, Cambridge Tracts
in Math. 13 (1911). The existence of these lines was discovered in a cor-
respondence between Cayley and Salmon. Cayley found that there are lines on
the surface, and Salmon found that there are (in general) just 27 lines. Our
Plate 1 shows a model of a cubic surface with 27 real lines. The model itself is
in Gottingen in the Mathematical Institute.

A complete description of the configuration of the 27 lines was given by
Jakob Steiner in Crelle’s Journal fiir Mathematik 53, p.133-141 (Steiner’s
Werke 11, p. 651-659). One of Steiner’s result is: any one of the lines, say a,
meets ten other lines, which form with a five triangles. Thus there are 45
triangles on the surface.

A rigorous proof of the existence of the 27 lines and the 45 triangles can be
found in my “Einfiihrung in die algebraische Geometrie” (Springer-Verlag
1939, second edition 1973) p. 148-153. _

Jordan’s occupation with the 27 lines begins early in 1869. In a first note in
the Comptes Rendus of the Paris Academy (Oeuvres I, p. 199-202) he defines
the symplectic group Sp(2n,p), and he notes that Sp(4,3) is just the Galois
group of the equation of the 27 lines on the cubic surface. In a second note
(Oeuvres 1, p.203-206) Jordan explains the relation between the symplectic
group and the 27 lines in greater detail, referring for full proofs to his forth-
coming Traité. In the same year 1869, he published in Journal de math. (2)
14 (Oeuvres I, p. 249-268) a paper in which the structure of the Galois group is
derived by a purely combinatorial method, independent of its connection with
the symplectic group. The content of this paper was incorporated into the
Traité, p. 316-329.

Jordan denotes the 27 lines by single letters a,b,.... If a is any one of the
lines, the 5 triangles containing a are denoted by

abc,ade,afg, ahi,akl
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Plate 1

The 16 remaining lines that do not meet a are called, in a quite definite

order:
m,n,p,q,r,s,t,u,
and
m/7 n/’ pl7 q” r/7 S/’ t/7 ul'
Now the 45 triangles can be written down as
!

abc,ade,....Ips.

The Galois group of the problem is certainly contained in the group of
substitutions of 27 indeterminates a, b, ...,u’ transforming the function

¢=abc+ade+...+1ps
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into itself. I shall call this group G'. Its order is
27 x 10 x 8 x 24 =51 840.

Jordan now claims that G=G’, and he presents arguments in favour of his
assertion. In my opinion his proof is not sufficient, but the result is correct, as
we shall see in the next section.

In his first note in the Comptes Rendus Jordan notes that the problem of
the 27 lines is closely connected with the problem of the 28 double tangents of
a quartic plane curve. I shall now explain this connection.

The 28 Double Tangents of a Plane Quartic

For the history of this subject see the article “Spezielle ebene algebraische
Kurven” by G. Kohn and G. Loria in the Enzyklopddie der math. Wis-
senschaften III C 5, especially p. 517-542.

From the well-known Pliicker formulae one easily deduces that a plane
quartic curve without multiple points has just 28 double tangents. For a
rigorous algebraic proof of this fact see K.G.B. Jacobi: Beweis des Satzes, dass
eine Kurve n-ten Grades im allgemeinen 3 n(n—2)(n*> —9) Doppeltangenten hat,
Journal fiir Math. 40, p.237-260 (1850). Our Fig. 24 shows a quartic curve
having 28 real double tangents.

The first to investigate the configuration formed by the 28 double tangents
and their points of contact was Jacob Steiner in 1855 (Journal fiir Math. 49,

Fig. 24
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p. 265-272=Werke II, p. 605-612). He shows: if one starts with a pair of
double tangents (x;,y,) there are 5 other pairs (x;,y;) (i=2,3,4,5,6) such that
the 8 points of contact of any two pairs (x;,y;) and (x,,y,) always lie on a
conic. Such a set of 6 pairs (x;, y,) is called a Steiner complex. There are just 63
Steiner complexes.

Three double tangents whose contact points lie on a conic form a syzygetic
triple (from Greek syn=together and zygos=yoke). If a set of double tangents
does not contain any syzygetic triple, the set is called asyzygetic.

Most important for the determination of the Galois group of the 28 double
tangents is a generation of the quartic curve discovered by Aronhold (Monats-
berichte der Berliner Akademie 1864, p. 499-523). Aronhold’s method may be
explained as follows.

Seven given points in the plane determine, in general, a linear set of cubic
curves passing through the seven points. Any two curves of the set intersect in
two more points. If the two points coincide, the curves have a common tangent
at that point (see Fig. 25). These oo! common tangents form a “curve of class
4”, that is, the dual of a quartic curve.

Now consider the dual situation. Instead of the cubic curves passing
through seven given points we may consider, with Aronhold, the linear set of
curves of class 3 containing seven given lines. Every pair of these curves has
two more lines in common. If they coincide, the two dual curves have a point
of contact, and these points of contact lie on a quartic curve.

Aronhold shows that the seven given lines form a maximal asyzygetic set of
double tangents of this quartic, and that the other 21 double tangents can be
constructed rationally from the seven. Every quartic curve without double

Fig. 25
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points can be obtained by this construction, and every asyzygetic set of seven
double tangents can be used to generate the quartic. For rigourous proofs of
these statements see H. Weber: Lehrbuch der Algebra II, second edition,
p- 425-447.

Now it is easy to determine the Galois group P of the equation determin-
ing the 28 double tangents. One starts with a “generic” set of seven lines, that
is, one assumes the inhomogeneous coordinates of these lines to be inde-
pendent indeterminates. Now one constructs the curve; it will be a generic
quartic curve. There are

8 x 36=288

asyzygetic sets of seven lines, and in each of the sets there are 7! ways of
numbering the lines. Any one of the numbered sets can be replaced by any

other of the
288 x71=1451520

numbered sets. Every such replacement yields an automorphism of the field of
rational functions of the coordinates of the seven lines, and these isomorphisms
leave the quartic invariant. These automorphisms form the Galois group P.

I have used the modern expressions “automorphism” and “generic”, but
the same ideas can also be expressed in the terminology of Galois and Jordan:
see again Weber’s Lehrbuch, p. 447-454.

On p. 454-458 Weber proves that the group P is simple.

The relation between the 28 double tangents and the 27 lines on a cubic
surface was established by M. Geiser in 1868. His paper “Uber die Dop-
peltangenten einer ebenen Kurve vierten Grades” was published in Math.
Annalen I, p. 129-138. Geiser’s method can be explained as follows.

From an arbitrary point 4 on the cubic surface, not lying on one of the 27
lines, one draws all tangents to the surface. Apart from the tangents at A,
which form the tangential plane, all tangents lie on a quartic cone. The
intersection of the cone with an arbitrary plane = is a quartic curve. The
tangent plane at A intersects # in a double tangent of the quartic. The other 27
double tangents lie in the planes connecting A with the 27 lines on the cubic
surface.

The Galois group of the 27 lines can now be obtained from that of the 28
double tangents as follows. In the latter group, considered as a group of
permutations of the double tangents, take the subgroup that leaves invariant
the double tangent lying in the tangential plane. This subgroup permutes the 27
other double tangents, and hence it induces a group of permutations of the 27
lines on the cubic surface. This group G is the Galois group of the 27 lines. Its
order is, obviously,

1451520

28

As we have seen, Jordan constructed a group G’ of just this order, and he
proved that the Galois group G is contained in G'. Since the orders are equal,
Jordan’s assertion G=G"' is justified.

=51840.
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On p. 329-333 Jordan investigates the Galois group of the 28 double
tangents by another method. He considers the problem of Clebsch: To find all
curves of order n—3 having 4 n(n—3) points of contact with a given curve of
order n. The method of Clebsch uses Abelian functions. For n=4 one has the
problem of finding the double tangents of a quartic curve.

Application of Galois Theory to Transcendental Functions

In Chapter 4 of Book 3 of his Traité, Jordan applies the theory of Galois to
problems concerning transcendental functions.

Let me first remind the reader that Jordan makes a distinction between the
algebraic Galois group of an equation

@) f(zw)=0

and its monodromy group with respect to the complex variable z. Let the
coefficients of the equation (1) be taken from a field of constants K, which may
also contain variable parameters. In forming the algebraic Galois group of the
equation (1), one takes as a ground field the field K(z) of rational functions of z
with coefficients in K. The algebraic group is a group of permutations of the
roots wy,...,w,. It contains as a subgroup the monodromy group defined by
Puiseux and Hermite. If the field of constants K is enlarged by the adjunction
of certain algebraic elements, the algebraic group is reduced to the monodromy
group.

I shall now summarize the single sections of Jordan’s Chapter 4 (p. 334~
382).

I. Jordan first considers the problem of determining cos(x/n) if cosx is
given. The quantity cos(x/n) is linked to cosx by an equation of degree n,

whose roots are
x+2pn
(p)=cos————

and the monodromy group of the equation is formed by the substitutions
p'=p+m (modn).

This is also the Galois group of the equation after the adjunction of
cos(2n/n) to the ground field. If the ground field is the field of rational
numbers, the substitutions of the algebraic Galois group are of the form

p'=ap+b (modn).

I1. Jordan now passes to the theory of elliptic functions.
Let u=A(z) be the inverse function of

u dv
21/ (1—v)(1—k2v?)
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Its derivative is

X(@) =y (1-22(2)(1 - k% 22(2)).

Now if 1(z) and A'(z) are given, 1(z/n) is a root of an equation of degree n>.
The roots of this equation are

(Pa)=2 <z+pa:l+q w’)

where w and o’ are the fundamental periods of the elliptic function A(z).
Supposing n to the prime, Jordan shows that the substitutions of the Galois
group of the equation are all of the form

pP=ap+bg+m (mod n)
(2) ’ ’ ’ ’
g=ap+bg+m (modn).

If one adjoins to the field K the constants
Ma/n), X(w/n), A(w'/n), X'('/n),

the Galois group will be reduced to the monodromy group

pP’=p+m (modn)
qg=q+m (modn).

Since this group is abelian, the resolution of the equation for A(z/n) offers
no problem. Jordan’s main problem is: to find the Galois group of the
equation of degree n? determining

Mw/n) and A'(w/n)

where o is any primitive period. The roots of this equation are all of the form

pa=1(P11Y).

Eliminating the root A(0/n), one is left with an equation of degree n®>—1.
The monodromy group of this equation with respect to the complex variable k
consists of linear transformations of the form

p*=ap+bgq (mod n)
g*=a'p+b'gq (modn)

with ab’—a’'b=1 (mod n). These transformations form the group SL(2,n).
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III. In the preceding Sections I and II, the functions under consideration
were the inverse functions of Abelian integrals on algebraic curves of genus 0
or 1. Now Jordan passes to the case of genus 2. In this case we have
hyperelliptic integrals

u+vo

==

where A(v) is a polynomial of degree 6, and the inverse functions are Abelian
functions of two complex variables having 4 periods. Following Hermite,
Jordan investigates the division problem of these functions, and he ends up
with the symplectic group Sp(4, p).

In the case p=3 he finds that the group PSp(4,3) is isomorphic to the
simple group G of the 27 lines on a cubic surface.

IV. In the last section of Book 3 Jordan investigates the possibility of
solving equations by means of transcendental functions. In particular he dis-
cusses the methods of Hermite, Kronecker, and Brioschi for solving equations
of degree 5 by means of modular functions and elliptic functions. For higher
degrees, Jordan shows that such a solution is impossible.

On Solvable Groups

The fourth book of the Traité is devoted to the problem: to comstruct, for
any given degree d, all solvable transitive groups of substitutions on d letters.
This is what Jordan calls Problem A.

Jordan shows that Problem A for non-primitive groups can be reduced to
the same problem for primitive groups, and that primitive groups necessarily
have degree d =p", where p is prime.

Galois has solved Problem A for groups of degree p, and he has found
some partial results for primitive groups of degree p*. Jordan now undertakes
to solve Problem A for primitive groups of degree p".

A group of linear transformations of variables x;, ..., x, (mod p) is called in
modern terminology irreducible, and in Jordan’s terminology primaire, if it is
not possible to find linear functions y,, ..., y. of the X;, in number less than n,
which are transformed by the group into linear functions of themselves.

Jordan now shows that Problem A can be reduced to Problem B:

B. To construct the maximal solvable irreducible groups contained in the
linear group GL(n, p).

A special case of Problem B is Problem C:

C. To construct the maximal solvable irreducible groups contained in the
symplectic group Sp(2n,p) or in one of the hypoabelian groups O*(2n,2) or
0+t(2n+1,2)

The pages 410-662 are devoted to the solution of the Problems B and C.
Jordan’s method is recursive. He indicates a method for solving his problems
for groups of degree p" supposing that they are solved for lower degrees
p™ (m<n). He finally arrives at a complete classification of the groups in
question.
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In a sequence of papers, published between 1871 and 1875 and republished
in Oeuvres I, p.277-495, Jordan has completed and extended the results
obtained in the Traité. His last two papers on the construction and classifi-
cation of solvable permutation groups, published in 1908 and 1917 and re-
published as papers (121) and (126) in Oeuvres II, have been summarized by J.
Dieudonné in his introduction to Oeuvres I, p. XXXIV-XLI.



Part Two
Groups



Chapter 8
Early Group Theory

What is early, what is late? Be it sufficient to say that the present chapter
deals mainly with the nineteenth century, but if the subject matter requires it, I
shall extend my account to the first half of the twentieth century.

After the appearance of Jordan’s Traité in 1870, a fundamental change of
character of the theory of groups took place. Before 1870, only two kinds of
groups were considered, namely groups of substitutions (or permutations) and
groups of geometrical transformations. After 1870, the abstract notion “group”
was developed in several steps, notably by Kronecker (1870), Cayley (1878),
von Dyck (1882), and Weber (1882). The modern definition of a group by
means of axioms was given for abelian groups by Kronecker (1870), for finite
groups by Weber (1882), and for infinite groups by the same Weber (1893). The
whole development of these notions has been described in great detail by H.
Waussing in his book “Die Genesis des abstrakten Gruppenbegriffs” (1969).

After the introduction of the abstract notion “group” the main problem of
group theory was: to investigate the structure of groups independent of their
representation by permutations or transformations, and only afterwards to
study these representations.

Accordingly, the present chapter will be divided into four parts:

A. Groups of Substitutions

B. Groups of Transformations

C. Abstract Groups

D. The Structure of Finite Groups

Part A
Groups of Substitutions

Early Theorems Concerning Subgroups of S,

The earliest authors who investigated groups of substitutions were La-
grange, Ruffini, and Cauchy. They were mainly concerned with “generic” (or
“general”) equations of a given degree n, that is, with equations in which either
the coefficients or the roots x,...,x, are independent variables. They were
interested in forming auxiliary equations, if possible of lower degrees. For this
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purpose, they considered rational functions
Jx15 %)

and they asked: How many different values does the function f assume if the
roots are permuted? If fi, ..., f; are these values, they will be the roots of an
auxiliary equation of degree s:

(t=f)(t—f2)...(t=1)=0.

For this reason, our early authors were very much interested in the possible
values of s.

If H is the subgroup of S, that transforms f into itself, the cosets of H
transform f into fi, ..., f;- So the number s is just the index of H in S,,.

For instance, if n=4 and f is the function

f=x1x3+x3 X4,

the index s is 3, and f is a root of a cubic equation. This was noted already by
Lagrange, and it was the basis of his solution of the quartic equation.

The case n=4, in which an auxiliary equation of lower degree can be used
to solve the original equation, is an exception. If n exceeds 4, the index s is
either 2 or at least n. This was proved by Cauchy in 1845 (Comptes Rendus
Acad. Paris 21, p. 1101).

In S5 there is a subgroup L of index s=6 and order 20, namely the group
of linear index substitutions

kK'=ak+b (mod5H).

If f is a function invariant only under this subgroup, it takes six different
values if the roots are permuted, and these values are the roots of an auxiliary
equation of degree 6. The permutations of S5 induce permutations of the six
values, hence S5 is isomorphic to a transitive subgroup H of index 6 in Se.

This subgroup H is again an exception. For n> 6 every subgroup of index n
in S, leaves one of the x; invariant. This was proved by J.A. Serret in a paper
entitled “Mémoire sur le nombre de valeurs que peut prendre une fonction
quand on y permute les lettres qu'elle enferme”, Journal de Math. (1) 15, p.
1-44.

In the same paper Serret proves:

If s>n and n>8, then s=2n.
Later authors have shown that this is true for all n> 6. Serret also proves:

If s>2n, then s=1/2 n(m-—1).
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More results concerning the possible value of the index s were obtained by
Mathieu, Jordan, Sylow, Netto, Frobenius, Borchert, Maillet, and Miller. See the
article of H. Burkhardt in Enzyklopédie der math. Wissenschaften I, 1, p. 213f.

Mathieu

Two very interesting papers of E. Mathieu on multiply transitive groups of
substitutions were published in 1861 and 1873 respectively. The first paper is
entitled “Mémoire sur I'étude des fonctions de plusieurs quantités, sur la
maniére de les former et sur les substitutions qui les laissent invariables”,
Journal de Math. (2) 6, p. 241--323 (1861).

In this paper Mathieu explains a general method to obtain multiply tran-
sitive groups. In particular he constructs a five-fold transitive group of sub-
stitutions on 12 letters. In the same paper he announces the existence of a five-
fold transitive group of permutations of 24 letters. The construction of this
group is described in a second paper entitled “Sur la fonction cing fois
transitive de 24 quantités”, Journal de Math. (2) 18, p. 2546 (1873).

The starting point of Mathieu’s constructions is the projective linear group
of fractional linear transformations

, az+b
Zz =
cz+d

with coefficients from a Galois field K =GF(q). This group is treefold transitive
on the projective line over K. Starting with this group, Mathieu succeeds in
constructing his five-fold transitive groups, by ingenious artifices.

Sylow

In the spring of 1872 the Norwegian mathematician M.L. Sylow presented
to the Mathematische Annalen a paper of fundamental importance for the
structure theory of finite groups, entitled “Théorémes sur les groupes de
substitutions”.

This paper, published in Math. Ann. 5, p. 584-594, contains full proofs of
eight theorems. Most interesting are the following four:

Theorem I. If p* is the largest power of the prime p contained in the order
of the group G, there is a subgroup H of order p* If the normalizer of H is of
order p*m, the order of G is

pPm(pr+1).
Theorem II. The group G contains exactly pr+1 subgroups of order p®

One obtains them by transforming one of them by the substitutions of G, each
of the subgroups being produced by p*m different transformants.
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Theorem I11. If the order of a group G is p% p being prime, every sub-
stitution 8 of the group can be expressed by the formula

0=6,0%065...60;,_,

with
0%=1
r=0
08 =05 05
65 =63 61 64
and h

9—1009=00
0-10,0=0406,
0_1629=0%6? 62

Note that 6§, is in the centre and generates a subgroup of order p. Modulo
this subgroup 6, is again in the centre, and so on. It follows that groups of
order p* are solvable.

As a corollary, Sylow states:

If the order of the Galois group of an algebraic equation is a power of a
prime, the equation is solvable by radicals.

A more detailed analysis for the case of a transitive group H yields

Theorem 1V. If the degree of an irreducible equation is p? and if the order of
its group is also a power of the prime p, each one of its roots can be obtained
by a sequence of f§ abelian equations of degree p.

Sylow notes that the special case p=2 of this theorem has already be
obtained in 1871 by M.J. Petersen.

In 1887, G. Frobenius published a new proof of Sylow’s theorems. His paper
in Crelle’s Journal fiir Math. 100, p. 179-181, is entitled “Neuer Beweis des
Sylowschen Satzes”. He first notes that every finite group can be represented as
a group of substitutions of its own elements, so that Sylow’s proof is valid for
abstract groups as well, but he does not want to use this representation.
Following Weber, Frobenius defines an abstract finite group by four pos-
tulates, and he presents a new proof of Sylow’s theorems based on these
postulates.

Part B
Groups of Transformations

As we have seen at the beginning of Chapter 7, Leonard Euler and Olinde
Rodrigues analysed the structure of the group of rigid motions in 3-space, and
Camille Jordan undertook a systematic investigation of the closed subgroups
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of this group. It seems that Jordan was the first to use the word “groupe” for
groups of geometrical transformations.

Next we have to discuss the investigations of Arthur Cayley and Felix
Klein on non-Euclidean geometry, of Felix Klein on discrete groups of frac-
tional linear transformations, and of Sophus Lie on continuous groups.

Non-Euclidean Geometry

On the work of Arthur Cayley see the excellent article by John D. North in
the Dictionary of Scientific Biography. Cayley’s work in all parts of algebra
and geometry has been extremely influencial. In a sequence of papers entitled
“Memoirs upon Quantics”, written between 1854 and 1878, Cayley laid the
foundations of the Theory of Invariants.

In his “Sixth Memoir upon Quantics”, published in 1859 in Vol. 149 of the
Philos. Transactions of the Royal Society, Cayley first develops the projective
geometry of points, lines, and conics in the projective plane, starting with
coordinates (x,y,z) of points and (&,#,{) of lines. I shall denote these coor-
dinates by (xy, x5, x3) and (uy,u,, u3). A quadratic form

S x)=Zagxix (au=an)
defines a conic. The polar form
FOe,y)=2 anx: y
defines the polar of a point y. The covariant form
Flu,u)=2 A; u; uy,

in which the A;, are proportional to the subdeterminants of the matrix (a;),
defines the “dual conic” formed by the tangents of the original conic. One can
also start with a dual conic F and form the covariant f by means of subde-
terminants.

Cayley next develops a theory of “distances” by assuming a fixed conic
which he calls “the absolute”. He defines the “distance” between two points x
and y by
LY

Vi)V 3,y

) Dist(x, y)=cos~

and the “distance” or angle between two lines by

F(u,v)

2 D = -1 Y
2) ist(u, v) = cos ]/F(u, Vo0
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Cayley shows that Dist(x, y) is the integral of an infinitesimal distance ds,
taken over a straight path of integration from x to y. If y lies on the path of
integration from x to z, it follows that

(3) Dist(x, y)+ Dist(y, z) = Dist(x, 2).

Cayley considers two special cases. In the first case the form is positive
definite and can be written as

£, x)=x3+x3+x3.

In this case we have

F(u,u)=u?+u3+uj

and

) Dist(x, y)=cos~! X1Y1+X2Y2+X3)3
Vxi+x3+x31yi+13+ 53

(5) Dlst(u U)=COS_1 ul Ul+u2 U2+U3 U3

]/u%+u%+u§]/vf+u§+v§

The lines and planes passing through a fixed point O in Euclidean 3-space
can be considered as “points” and “lines” in a projective “plane”, and (4) is
the well known formula for the angle between two vectors in 3-space. It
follows that the “distances” between the “points” and “lines” in the projective
“plane” just defined are the angles between lines and planes passing through
0. These “points” and “lines” form, in the terminology of Felix Klein, an
“elliptic plane”.

The second case considered by Cayley is a limiting case. One obtains it by
starting with the positive forms

f(x,x)=ex}+ex3+x3

F(u,u)=u?+u3+eu3

and letting ¢ go to zero. One obtains in the limit

feox)=x3

Fu,u)=u?+u3.

The conic f=0 is the line at infinity, counted twice. The dual conic F=0 is a
pair of pencils of lines defined by the points at infinity (1,i,0) and (1, —1,0).
These points are just the “points circulaires” of Poncelet, so called because
they are common to all circles in the Euclidean plane. One obtains in the limit,
introducing inhomogeneous rectangular coordinates x and y,

(6) Dist(P, P)=)/(x—x)* +(y—y)?



Groups of Transformations 143

and

Uy Uy +UZ Uy
— ——>
Vid+ud /vl +o3

7 Dist(u, v)=cos ™!

that is, one gets the Euclidean distance between two points and the Euclidean
angle between two lines.

What we call “projective geometry” is called by Cayley “descriptive geome-
try”. According to Cayley, one passes from projective geometry to metrical
geometry by fixing a conic and calling it “the absolute”. He concludes:

Metrical geometry is thus a part of descriptive geometry, and descriptive geometry is all
geometry and reciprocally ...

Today we do not share this restricted view of geometry. For us, projective
geometry is not “all geometry”. For instance, topology and Riemannian geo-
metry are not parts of Cayley’s “descriptive geometry”.

Felix Klein, in his two papers “Uber die sogenannte Nicht-Euklidische
Geometrie”, in Math. Annalen 4 (1871), p. 573-625 and Math. Annalen 6 (1873),
p- 112-145, distinguishes two types of Non-Euclidean geometry, which he calls
“elliptic” and “hyperbolic”. In the elliptic case the quadratic form f(x,x)
defining the absolute conic is positive definite: the conic has no real points,
and we can use Cayley’s formulae (4) and (5). Klein’s “elliptic plane” can be
obtained from a sphere in Euclidean 3-space by identifying opposite points.

Besides this elliptic plane and the Euclidean plane considered by Cayley,
Klein investigates a third case in which the absolute conic is a non-singular
conic having real points. As a model, one can take a circle in the Euclidean
plane. The forms defining the conic and its dual conic are now

®) flx,x)=—x}-x3+x3
&) Flu,u)=u?4+ul—ul.

Klein’s model of the “hyperbolic geometry” of Lobatchewsky and Bolyai is
obtained by restricting oneself to inner points of the circle:

f(x,x)>0,
and to lines containing inner points:
F(u,u)>0.
In this case formula (2) defining the “distarllce” or angle between two lines
can be retained, but (1) has to be modified. If x and y are inner points of the

circle, the intersections of the connecting line with the circle can be obtained
from a quadratic equation

A3 f06x)+2 41 22 f (%, y)+ 43 f (v, ) =0.
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The equation has two real roots, hence we have

J06, 92 =1 (x,%) f(,y)>0.
So the argument of the function cos™*!
cosine is purely imaginary.

Felix Klein now replaces the arc cosine by the logarithm of a cross-ratio. If
P and Q are the points formerly called x and y, and if A and B are the points
of intersection of PQ with the conic, the cross-ration of 4 and B with respect
to P and Q is a projective invariant, and its logarithm is Klein’s “distance”.

By the way, Cayley’s “distance” (1) 1s just equal to +i/2 times Klein’s
distance.

When Volume 2 of Cayley’s Collected Papers appeared in 1889, Cayley
added a note to his “sixth memoir”, saying that Klein’s replacement of the arc
cosine by a logarithm is a great improvement.

In Klein’s first paper on non-Euclidean geometry no groups are considered,
but in the second paper of 1873 the notion of “transformation group” occurs.
Klein considers invertible transformations of a manifold, and he defines the
notion “group”, as in Jordan’s Traité, by the property: if 4 and B are in the
group, so is AB. Later on, Klein has seen that it is necessary to require that
A~ is in the group if 4 is.

In §3 of Klein’s second paper on non-Euclidean geometry in Math. An-
nalen 6, Klein introduces a group he calls “Hauptgruppe”. It is generated by
the Euclidean displacements, the similarity transformations, and the reflexions.

In §4 Klein explains that each one of the different “methods of geometry”
is characterized by a group of transformations. This is also the fundamental
idea in Klein’s famous “Erlanger Programm” (1872). On the history of this
“program” see David E. Rowe: A Forgotten Chapter in the History of Felix
Klein’s Erlanger Programm, Historia Mathematica 10, p. 448-457 (1983).

According to Klein, projective geometry deals with those properties of
figures that are invariant under projective transformations, Euclidean geometry
with properties invariant under the “Hauptgruppe”, and so on. The groups of
the elliptic and hyperbolic geometries are the groups of projectivities trans-
forming a conic (or in three dimensions a quadratic surface) into itself.

in (1) is larger‘than 1, and the arc

Felix Klein and Sophus Lie

Klein and Lie became friends at Berlin. In 1870 they went to Paris, where
they lived in adjacent rooms for two months. As we have seen in Chapter 4,
they were very much impressed by Camille Jordan, whose Traité des sub-
stitutions had just appeared.

In 1871 a joint paper of Klein and Lie entitled “Uber diejenigen ebenen
Kurven, welche durch ein geschlossenes System von einfach unendlich vielen
vertauschbaren linearen Transformationen in sich ilibergehen” was published in
Math. Annalen 4, p. 424-429.
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The expression “geschlossenes System von linearen Transformationen™ in
the title just means “group of linear transformations”. In fact, the authors
state:

The expression “closed system of transformations” corresponds to what in the theory of
substitutions is denoted by the term “group of substitutions”.

The groups considered by Klein and Lie are one-dimensional continuous
groups. In a footnote the authors state correctly that all one-dimensional
continuous groups are commutative. In the same footnote the authors give an
example of a three-dimensional continuous group which is not commutative,
namely the group of projectivities of a plane that transform a conic into itself.
From this paper one sees that Lie’s ideas about continuous groups of transfor-
mations began to take shape about 1870.

In later years, the ideas of the two friends went into different directions. Lie
developed his theory of continuous groups and applied it to the study of
differential equations, whereas Klein mainly investigated discrete groups. Dis-
crete groups of fractional linear transformations play an important role in the
study of automorphic functions.

The testimonies of Klein and Lie on their early friendship and their later
divergent development are reproduced on p. 153 of the book of H. Wussing:
Die Genesis des abstrakten Gruppenbegriffs (Verlag der Wissenschaften, East-
Berlin 1969).

On the further development of the theory of discrete groups and automor-
phic functions see the article “Automorphe Funktionen” by R. Fricke in
Encyclopiddie der mathematischen Wissenschaften II1B4 (1913), and also my
report “Gruppen von linearen Transformationen”, Ergebnisse der Mathematik
1V, 2 (Springer 1935).

Felix Klein on Finite Groups of Fractional Linear Transformations

In June 1875, Felix Klein submitted to the Math. Annalen an important
paper entitled “Uber binire Formen mit linearen Transformationen in sich
selbst” (Math. Annalen 9, p.209-217). In this paper he determined all finite
groups of fractional linear transformations of a complex variable z:

az+b

10 ! = .
(10) z cz+d

These transformations transform circles into circles, while preserving the
orientation of the function-theoretical z-plane. If the points and circles in the
plane are transferred to a sphere by means of a stereographic projection, one
obtains transformations of the sphere into itself preserving the orientation,
which can be extended to projective transformations of the real projective
space P; into itself. These projectivities are, in the terminology of Klein,
hyperbolic motions. Conversely, every orientation-preserving projective transfor-
mation that transforms the sphere into itself yields a fractional linear transfor-
mation of the complex variable z. So the problem of determining all finite
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groups of transformations (10) is equivalent to the problem of finding all finite
groups of hyperbolic motions in P;.

Klein first notes: if a hyperbolic motion has a finite order, it must be a
“rotation” leaving invariant all points of an axis connecting two real points on
the sphere. Next he proves: if the product of two rotations is again a rotation,
the axes must intersect in a point inside the sphere. From this he concludes: all
axes of rotations belonging to the finite group G intersect in one point, which
is a fixed point of the group.

We may assume, Klein says, that this fixed point is the centre of the
sphere. In this case the rotations are Euclidean rotations. Now the finite
groups of Euclidean rotations are known from a classical investigation of
Jordan (see Chapter 7). They are:

1) Cyclic groups,

2) Dihedral groups,

3) the tetrahedral group,

4) the octahedral group,

5) the icosahedral group.

Thus, Klein’s problem is completely solved.

A direct derivation of the types of finite groups of fractional linear transfor-
mations was given by H.H. Mitchell in 1911 (Transactions Amer. Math. Soc.
12, p. 208-211).

The icosahedral group is isomorphic to the alternating group As. Hence
the icosahedron can be used to illustrate the Galois theory of the quintic
equation. This was done in Klein’s very nice booklet “Vorlesungen iiber das
Ikosaeder und die Auflosung der Gleichungen vom fiinften Grad” (Leipzig
1884).

Sophus Lie

The Norwegian Sophus Lie, the founder of the theory of “Lie Groups”, was
born at Nordfjordeid in December 1842. An account of his life and work was
given by H. Freudenthal in the Dictionary of Scientific Biography, Vol. S8,
p. 323-327.

According to Lie’s own biographical statements, his friendship with Felix
Klein, whom he met at Berlin in the winter 1869/70, was of great importance
for his later work on groups of transformations. In the summer of 1870, Lie
discovered his famous contact transformation, which transforms straight lines
into spheres (see Sophus Lie: Gesammelte Abhandlungen, Vol. 1, p. 93-96). In
1871 Lie obtained a scholarship from the university of Christiania, and in 1872
he finished his PhD-thesis entitled “Over en Classe geometriske Transfor-
mationer” (Gesammelte Abhandlungen, Vol. 1, p. 105-214, in German).

During this time Lie developed his integration theory of partial differential
equations. According to Freudenthal, this theory is “now found in many
textbooks, although rarely under his name”. For a survey of this theory see
Freudenthal’s article in D.Sc.B. mentioned before.

Lie’s investigations on the integration of differential equations induced him
to consider groups of transformations transforming a differential equation into
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itself. It is true that these investigations were published only much later (1882—
1883) in a sequence of papers (Gesammelte Abhandlungen 5, p.238-313 and
362-424), but we know from Engel’s introduction to this volume 5 that Lie’s
occupation with this subject began at least ten years earlier. Engel informs us
that a treatise on differential equations, which Lie intended to write, has
remained unwritten. Engel continues (Vol. 5, p. VIII):

This is a pity, for Lie attached great weight to just these applications. Originally he had
developed his whole theory of transformation groups only because this theory was the instrument
he needed to treat his integration problems.

In the present chapter, I only want to discuss the pre-history of Lie’s theory
of finite-dimensional continuous groups. The theory itself will be discussed in
Chapter 9.

Part C
Abstract Groups

The subject matter of the present Part C has been treated more fully by H.
Wussing: Die Genesis des abstrakten Gruppenbegriffes, East-Berlin 1969.

Abstract algebraic structures, defined solely by the laws of composition of
theirs elements, occur already at an early stage. For instance, the rules for
adding and multiplying complex numbers a+bi were explained as early as
1560 in Bombelli’s “Algebra”.

As we have seen in Chapter 6, Galois defined his “Galois Fields” GF(q) by
describing the laws of composition of the elements. The same holds for Hamil-
ton, who discovered the algebra of quaternions in October 1843, as we shall
see in Chapter 10.

It is very remarkable that abstract fields and algebras were discovered at
such an early stage. In the case of groups the history took a different course.
Galois introduced groups of substitutions in 1829, and Jordan investigated
groups of motion in 1867. The first to introduce abstract abelian groups,
defined by the rule of composition of their elements, was Kronecker in 1870.
The first steps towards the general notion of an abstract group was taken by
Cayley in 1854 and 1878, and the first clear definition of this notion was given
by Walter van Dyck in 1882. In the same year, Heinrich Weber presented
another, equivalent definition.

I shall now describe the development in greater detail, starting with the
work of Euler and Gauss on number theory.

Leonhard Euler
In a paper entitled “Theoremata circa residua ex divisione potestatum

relicta” (Theorems on the residues left by the division of powers), published in
1761 (Opera omnia, series prima, Vol. 2), Euler divides the powers a* of any
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integer a by a prime p, and considers the remainders of this division. If a is not
divisible by p, there is a power a* which yields residue 1, and if A is the least
integer having this property, the powers

yield just A different residues. Euler now proves that 4 is a divisor of p—1. The
method is the same by which Lagrange proved that the order of any element
in a group of substitutions is a divisor of the order of the group, and by which
Jordan proved that the order of any subgroup of a finite group is a divisor of
the order of the group, namely: the set of all non-zero residues modulo p is
divided into cosets

(r,ar,a®r,...,a* 1)

As an application, Euler presents a “more natural” proof of a theorem of
Fermat

a’~'=1 (modp)

which he had proved earlier by means of the expansion of (a+ b)P.

Carl Friedrich Gauss

In the last part of his “Disquisitiones arithmeticae”, Gauss defines a “com-
position” of binary quadratic forms as follows.
If a form

F=AX?+2BXY+CY?
can be transformed into a product of two forms
f=ax?+2bxy+cy?, f'=ax?*4+2b Xy +cy?

by a substitution

e

vy
vy,

X=pxx'+p'xy +p"yx'+p
Yquxl+qlxyl+ql/yxl+q/ll
then Gauss says that F is transformable into ff’, and if the six integers

1 e "o I

pqd'—qp,pqd"—qp’,....,0" 94" —q"p

have no common factor, he says that F is composed from the forms f and f".
The form f is called primitive, if a,b,c have no common factor. If the

primitive forms f and f’ have the same discriminant D, it is always possible to

find a form F which has the same discriminant, and is composed of f and f".
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Two forms f and g are defined to be in the same class, if f can be
transformed into g by a linear transformation

!

x=oax+fy
y=yx'+0y

having determinant 1. Gauss proves: if F is composed from f and f’, the class
of F is uniquely determined by the classes of f and f’. So the composition of
forms yields a composition of classes, which is commutative and associative.
In modern terminology, the classes of primitive forms having a given discrimi-
nant form a finite abelian group. The umit element of the group is repre-
sented by the principal form

x*—-Dy>.

Ernst Schering

Ernst Schering, a pupil of Gauss, investigated the structure of the group of
classes of binary quadratic forms of a given discriminant D. His paper “Die
Fundamental-Classen der zusammensetzbaren arithmetischen Formen” was
published in 1869 in the Abhandlungen of the Gottingen academy 14, p. 3-13.
In this paper he proved that the group of quadratic forms having a given
discriminant possesses a set of generators 4, B, C, ... of orders a,b,c, ... such that
every class can be uniquely expressed as a product

A*BECY ...

in which a runs over the residue classes modulo a, and f over the residue
classes modulo b, etc. This is what we now call the “fundamental theorem on
finite abelian groups”.

Implicitly, the same result had already been obtained by Abel in his paper
on equations having a commutative Galois group (Oeuvres I, p. 499). As we
shall see presently, the “fundamental theorem” holds for every finite abelian

group.

Leopold Kronecker

The first German mathematician who fully realized the importance of the
investigations of Abel and Galois on the solvability of algebraic equations was
Leopold Kronecker. In 1853 he published a paper “Uber die algebraisch
auflosbaren Gleichungen, erste Abhandlung”, Bericht iiber die Verhandlungen
der Akademie Berlin 1853, p. 365-374. In this paper he announces the impor-
tant theorem:

“The roots of every abelian equation with integer coefficients can be repre-
sented as rational functions of roots of unity.”
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As we have seen in Chapter 7, Kronecker also investigated the Galois
group of the problem of the division of abelian functions having 2n periods.
He found that this Galois group is just the symplectic group Sp(2n,p), and he
informed Jordan of this fact.

In 1870, Kronecker published a paper entitled “Auseinandersetzung einiger
Eigenschaften der Klassenzahl idealer komplexer Zahlen”, Monatshefte der
Berliner Akademie 1870, p. 881-889. In this paper, Kronecker introduces the
notion of an abstract abelian group. He considers a finite number of elements

8.0, ...

such that from any two of them a third element f(6,8") is defined according to
a fixed rule. He supposes the commutative and associative laws

f16,0")=1(6",6)
16, f(0",0")=1(f(6,6"),6").

Later on, he uses instead of f(6',8") the simpler product notation 8- 6".

Kronecker next proves the fundamental theorem on finite abelian groups,
which asserts, for every finite abelian group, the existence of a “fundamental
system” of generators 84,6,, ... of orders n;, n,, ..., such thst

1) the expression

0’{‘0’520’53 (hi=1,2,...,n,~)

represents all elements 6, and every element just once.

2) every n; is divisible by n;,

3) the product nyn, ... is equal to the order of the group.

Kronecker notes that this theorem is in full accordance with the results of
Schering.

We now turn to England.

Arthur Cayley

In 1854, Cayley published two papers under the title “On the Theory of
Groups, as Depending on the Symbolic Equation 6"=1" in Philos. Magazine
of the Royal Society London, Vol. 7. He starts with a symbol @ representing
an operation on quantities x, y,.... He writes

O, y,...)=(,y,...).

If x',y,... represent a permutation of x,y,..., the operation @ is “what is
termed a substitution”, says Cayley. If the operand is a single quantity x, the
symbol @ is an “ordinary function symbol”

Ox=x"=fx
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The symbol 1 “will naturally denote the operation which leaves the oper-
and unaltered”, and ® @ denotes the “compound operation”. Cayley notes that
these symbols @ are not in general commutative, but are associative.

Next, Cayley introduces the notion of a group table. He says

A set of symbols
LaB, ...

all of them different, and such that the product of any two of them ... belongs to the set, is said to
be a group. It follows that if the entire group is multiplied by any one of the symbols, either as
further or as nearer factor, the effect is simply to reproduce the group; or what is the same thing,
that if the symbols of the group are multiplied together as to form a table, thus:

Further factors

1 o B
1 1 o B
o? Bo

nearer factors

BB ap B

that as well each line as each column of the square will contain all the symbols 1,¢,5,. ...

The next step towards the abstract definition of groups was made by
Cayley in 1878. In his paper “The Theory of Groups”, American Journal of
Mathematics 1, p. 50-52 he writes:

A set symbols &, B,7,... such that the product «f of each two of them (in each order, af or
Ba) is a symbol of the set, is a group ...

A group is defined by the laws of combination of its symbols.

and he formulates the problem: to find all finite groups of a given order n.
He also states that every finite group of order n can be represented as a group
of substitutions upon n letters. He say:

But although the theory as above stated is a general one, including as a particular case the
theory of substitutions, yet the general problem of finding all groups of a given order n, is really
identical with the apparently less general problem of finding all groups of the same order n which
can be formed with the substitutions upon n letters.

To prove this proposition, Cayley uses the group table. He tacitly supposes
that the multiplication of the symbols o, f,7, ... in his definition of a group is
associative:

(«p)y=0(B7).

He also supposes that the group has a unit element, and that every line and
every column of the multiplication table contains all elements of the group. We
may say that the abstract notion of a finite group was present in his mind, but
that he did not clearly state the conditions the multiplication « § has to satisfy.
In this respect, Kronecker’s earlier paper of 1870 on abelian groups was better,
for Kronecker clearly formulated the commutative and associative laws.

In 1882, the abstract notion “group” was defined with complete clarity,
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