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Preface 

The present volume is self-contained, but it is apart of a larger projecL In 
an earlier volume, entitled "Geometry and Algebra in Ancient Civilizations", I 
have presented my view on the prehistory of algebra and geometry from the 
neolithical period to Brahmagupta (7th century A.D.). The present volume 
deals with the historical period from al-KhwarizmI, the earliest author of an 
"Algebra", to Emmy Noether. 

In this book I shall restrict myself to three subjects, namely Part One: 
Algebraic Equations; Part Two: Groups; Part Three: Algebras. 

My warrnest thanks go out to all those who helped me by reading parts of 
the manuscript and suggesting essential improvements: Wyllis Bandler 
(Tallahassee, Florida), Robert Burn (Cambridge, England), Max Deuring t 
(Göttingen), Jean Dieudonne (Paris), Raffaella Franci (Siena), Hans 
FreudenthaI (Utrecht), Thomas Hawkins (Boston), Erwin Neuenschwander 
(Zürich), Laura Toti Rigatelli (Siena), Warren Van Egmond (München). 

In her usual careful way, Miss Annemarie Fellmann has typed the manu­
script. She has also drawn the figures and helped me, together with Erwin 
Neuenschwander, in reading the proof sheets. Many thanks to both and to the 
editorial staff and the production department of the Springer-Verlag for their 
nice cooperation. 

Zürich, March 1985 B.L. van der Waerden 
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Part One 
Algebraic Equations 



Chapter 1 
Three Muslimic Authors 

It is beyond my eompetenee to write a history of algebra in the Muslimie 
countries. Every year new publieations on the subjeet appear. I guess the time 
has not yet eome for a eomprehensive history of Muslimie mathematies. 
Therefore IshaJl rest riet myself to three most interesting authors, whose main 
works are available in modern translations, namely 

A. AI-Khwarizmi, 
B. Tabit ben Qurra, 
C. Omar Khayyam. 

Part A 
AI-Khwarizmi 

If we want to form an opinion on the seientifie value and the sources of the 
work of al-Khwarizmi, we have to eonsider not only his treatise on Algebra, 
but also his other mathematical, astronomieal, and calendarie work. The pre­
sent seetion will be divided into twelve subseetions. 

1. The Man and his 'Work 

An exeellent aeeount of the life and work of Mubammad ben Musa al­
Khwärizmi has been given by G.J. Toomer in Volume VII of the Dietionary of 
Seientific Biography, pages 358-365. From this aeeount I quote: 

Only a few details of al-KwärizmI's Iife can be gleaned from the brief notices in Islamic 
bibliographical works and occasional remarks by Islamic historians and geographers. The epithet 
"al-Khwärizml" would normally indicate that he came from Khwärizm (Khorezm, corresponding 
to the modern Khiva and the district surrounding it, south of the Aral Sea in central Asia). But 
the historian al-Tabarl gives hirn the additional epithet "al-Qutrubbulll", indicating that he came 
from Qu!rubull, a district between the Tigris and Euphrates not far from Baghdad, so perhaps his 
ancestors, rather than he hirnself, came from Khwärizm; this interpretation is confirmed by so me 
sources which state that his "stock" (a~i) was from Khwärizm .... 

Under the Caliph al-Ma'mün (reigned 813-833) al-Khwärizml became a member of the 
"Rouse of Wisdom" (Där al-l:likma), a kind of academy of scientists set up at Baghdad, probably 
by Caliph Rarün al-Rashld, but owing its preeminence to the interest of al-Ma'mün, a great 
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patron of learning and scientific investigation. It was for al-Ma'mun that al-Khwärizmi composed 
his astronomical treatise, and his Algebra also is dedicated to that ruler. 

From now on I shall omit all bars and dots. This simplifies the printing, 
and it will not give rise to any misunderstanding. 

2. Al-jabr and al-muqabala 

The biographer Haji Khalfa states in his biographical lexicon (ed. Flügel, 
Vol. 5, p.67) that al-Khwarizmi was the first Islamic author to write "on the 
solution of problems by al-jabr and al-muqabala". What do these two ex­
pressions mean? 

The usual meaning of jabr in mathematical treatises is: adding equal terms 
to both si des of an equation in order to eliminate negative terms. Another, less 
frequent meaning is: multiplying both sides of an equation by one and the 
same number in order to eliminate fractions. See George A. Saliba: The 
Meaning of al-jabr wa'l muqabalah, Centaurus 17, p. 189-204 (1973). 

The usual meaning of muqabala is: reduction of positive terms by subtract­
ing equal amounts from both sides of an equation. But al-Karaji also uses the 
word in the sense: to equate. The literal meaning of the word is: comparing, 
posing opposite. 

The combination of the two words: al-jabr wal-muqabala is sometimes used 
in a more general sense: performing algebraic operations. It can also just 
mean: The science of algebra. 

Let me give some examples of the use of these words in the work of al­
Khwarizmi. On page 35 of Rosen's translation of the "Algebra of Mohammed 
ben Musa", the following problem is posed: 

I have divided ten into two portions. I have multiplied the one of the two portions by the 
other. After this I have multiplied one of the two by itself, and the product of the multiplication by 
itself is four times as much as that of one of the portions by the other. 

Al-Khwarizmi now calls one of the portions "thing" (shay) and the other 
"ten minus thing". Multipliying the two, he obtains in the translation of Rosen 
"ten things minus a square". 

For the square of the unknown "thing" the author uses the word mal, 
which means something like "wealth" or "property". He finally obtains the 
equation 

"A square, which is equal to forthy things minus four squares". 
In modern notation, we may write this equation as 

Next the author uses the operation al-jabr, adding 4x 2 to both sides, thus 
obtaining 

5x 2 =40x 
or 

from which he obtains x = 8. 



AI-KhwärizmI 5 

Just so, on page 40, al-Khwarizmi has the equation 

which is reduced by al-muqabala to 

21 +x2 = lOx. 

In the introduction to his treatise the author states that the Imam al­
Mamun 

"has encouraged me to compose a short work on calculating by Completion and Reduction, 
confining it to what is easiest and most useful in arithmetic, such as men constantly require in 
cases of inheritance, legacies, partition, lawsuits, and trade, and in all their dealings with another, 
or where the measuring of lands, the digging of channels, geometrical computation, and other 
objects of various sorts and kinds are concerned ... ". 

The fuH title of the treatise is "The Compendious Book on Calculation by 
al-jabr and al-muqabala". The treatise consists of three parts. 

In the first part, al-Khwarizmi explains the solution of six types, to which 
all linear and quadratic equations can be reduced: 

(1) ax 2 =bx 

(2) ax 2 =b 

(3) ax=b 

(4) ax2 +bx=c 

(5) ax2 +c=bx 

(6) ax 2 =bx+c, 

where a, b, and c are given positive numbers. 
AI-Khwarizmi gives mies for solving these equations, he presents demon­

strations of the mies, and he illustrates them by worked examples. We shaH 
discuss his demonstrations presently. 

3. On M ensuration 

The second chapter of the "Algebra" is concerned with mensuration. Since 
Rosen's translation was deemed unsatisfactory, Solomon Gandz published the 
Arabic text together with a new English translation in his treatise "The 
Mishnat ha-Middot and the Geometry of Muhammed ibn Musa Al-Khowa­
rizmi", Quellen and Studien zur Geschichte der Mathematik A2 (Springer­
Verlag 1932). 

The chapter consists mainly of mIes for computing areas and volumes. For 
instance, the area of a circ1e is found by multiplying half of the diameter by 
half of the circumference. For finding the circumference, three rules are pre-
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sen ted. If the diameter is d and the periphery p, the three rules are 

(7) p=3td, 

(8) p=VlOd2 , 

(9) p= ~~g~~ d. 

Note that the rule (7) is due to Archimedes, who proved that p is less than 
3 1/7 times d and more than 3 10/71 times d. The same rule (7) is also given by 
Heron of Alexandria in his "Metrica", and in the Hebrew treatise "Mishnat 
ha-Middot", edited and translated by Solomon Gandz. 

The rule (8) is also found in Chapter XII of the Brahmasphutasiddhanta of 
Brahmagupta. See H.T. Colebrooke: Algebra with Arithmetic from the San­
skrit of Brahmegupta and Bhascara (London 1817, reprinted 1973 by Martin 
Sändig, Wiesbaden), p. 308-309. 

Most remarkable is the rule (9), which is equivalent to the very accurate 
estimate 

(10) n ~ 3.1416. 

AI-Khwarizmi ascribes the rule (9) to "the astronomers", and indeed the 
same rule is found in the Aryabhatiya of the Hindu astronomer Aryabhata 
(early sixth century AD). Verse 11 28 of the Aryabhatiya reads: 

Add 4 to 100, multiply by 8, and add 62000. The result is approximately the circumference of 
a circle of which the diameter is 20000 (see W.E. Clark: The Aryabhatiya of Aryabhata, p.28). 

In the last chapter of my book "Geometry and Algebra in Ancient Civili­
zations" (Springer-Verlag 1983) I have shown that the estimate (10) was also 
known to the Chinese geometer Liu Hui (third century AD). This estimate may 
weil be due to Apollonios of Perge (see p. 196-199 and p. 207-213 of my book). 

AI-Khwarizmi states that in every rectangular tri angle the two short sides, 
each multiplied by itself and the products added together, equal the product of 
the long side multiplied by itself. Thus, if a, b, c are the si des, we have 

The proof given in the text is valid only in the equilateral case (a = b). From 
this fact we may safely conc1ude that al-Khwarizmi's main source is not a 
c1assical Greek treatise like the "Elements" of Euc1id. Aristide Marre, who 
published a French translation of al-Khwarizmi's chapter on mensuration in 
Annali di matematica 7 (1866), noted the insufficiency of the proof and added 
that the author would never have been admitted to the Platonic academy! 

An ancient Hebrew treatise exists which is c10sely connected, in contents 
and terminology, with Khwarizmi's chapter on Mensuration. The treatise is 
entitled "Mishnat ha-Middot". It was published, with an English translation 
and excellent commentary, by Solomon Gandz in Quellen und Studien zur 
Geschichte der Mathematik A2. By his arguments, Gandz has convinced me 
that the author of the treatise was Rabbi N ehemiah, who lived about AD 150. 
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The author knew how to compute the periphery of a circle as 3td. For the 
area of a circle segment, he presents the same formula as Heron of Alexandria: 

1 1 (C)2 A={c+h)·-h+- -
2 14 2 

in which c is the chord and h the height of the segment. This formula is not in 
al-Khwarizmi's chapter on mensuration, but for the rest there are so many 
similarities between this chapter and the Mishnat ha-Middot, that one is forced 
to ass urne either a direct dependence, as Gandz does, or at least a common 
source. It is also possible, as Gandz supposes, that al-Khwarizmi used a 
Persian or Syrian translation of the Mishnat ha-Middot. 

4. On the Jewish Calendar 

No matter whether one does or does not accept the conclusion of Gandz 
that al-Khwarizmi's geometry was "verbally taken from the Mishnat ha-Mid­
dot", in any case al-Khwarizmi was acquainted with Jewish traditions, for he 
has written a treatise on the Jewish calendar. This treatise describes the Jewish 
19-year cycle and the rules for determining on what weekday the month Tishri 
begins. It also calculates the interval between the Jewish "era of the creation of 
Abraham" and the Seleucid era, and it gives rules for determining the mean 
longitudes of sun and moon. See E.S. Kennedy: AI-Khwärizmi on the Jewish 
Calendar, Scripta mathematica 27, p. 55-59 (1964). 

5. On Legacies 

The third and largest part of the Algebra of al-Khwarizmi (p. 86-174 in 
Rosen's translation) deals with legacies. It consists entirely of problems with 
solutions. The solutions involve only simple arithmetic or linear equations, but 
they require considerable understanding of the Islamic law of inheritance. See 
Solomon Gandz: The Algebra of Inheritance, Osiris 5, p. 319-391 (1938). 

6. The Solution of Quadratic Equations 

1 shall now discuss in somewhat greater detail al-Khwarizmi's solution of 
the three types of mixed quadratic equations. In al-Khwarizmi's own termi­
nology, the first type reads: 

Roots and Squares equal to numbers. 
For instance: one square and ten roots of the same amount to thirty-nine dirhems; that is to 

say, what must be the square wh ich, when increased by ten of its own roots, amounts to thirty­
nine? 

The solution is: you halve the number of roots, which in the present instance yields five. This 
you multiply by itself; the product is twenty-five. Add this to thirty-nine; the sum is sixty-four. 
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Now take the root of this, which is eight, and subtract from it half the number of the roots, which 
is four. The remainder is three. This is the root of the square you thought for; the square itself is 
nine. 

In modern notation, the equation is 

x 2 +lOx=39, 

whieh ean be transformed into 

(x+5? =39+25=64 

x+5=V64 8 

x=8-5 3. 

Next, al-Khwarizmi presents a demonstration. He draws a square AB, the 
side of whieh is the desired root x. On the four sides he eonstruets rectangles, 
eaeh having 1/4 of 10, or 2 1/2, as their breadth (see Fig. 1). Now the square 

D 

A 

B 

H 
Fig.l 

together with the four rectangles is equal to 39. In order to complete the 
square DH, we must add four times the square of 2 1/2, that is, 25, says al­
Khwarizmi. So the area of the large square is 64, and its side 8. Henee the side 
of the original square is 

8 -5=3. 

AI-Khwarizmi next presents another, simpler proof, in whieh reetangles of 
breadth 5 are eonstrueted only on two of the sides of the square AB (see Fig. 
2). The result is, of course, the same. 

Onee more, we see that al-Khwarizmi's source is not Euclid, for his first 
proof is definitely more complicated than Euclid's proof of proposition II 4, 

A 

t8 
Fig.2 
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which says that the square on a li ne segment a + b is equal to the sum of the 
squares on a and band twice the rectangle ab. The second proof of al­
Khwarizmi is similar to that of Euc1id. 

I think this suffices to give the reader an idea of the style of al­
Khwarizmi's treatise on al-jabr and al-muqabala. His treatment of the other 
types of mixed quadratic equations is quite similar to that of the first type. The 
other types are: 

"Squares and numbers equal to raots", 
"Roots and numbers equal to squares". 
In each case, the solutions agree with those we 1earn at school, restricted to 

positive solutions. 

7. The Geography 

Besides the Algebra and the treatise on the Jewish calendar, one more 
treatise is extant in Arabic, namely the Geography ("Book of the Form of the 
Earth "). It consists alm ost entirely of lists of longitudes and latitudes of cities 
and localities. The work is arevision of Ptolemy's "Geography". Most proba­
bly it was based on a world map made by a commission of learned men 
(possibly including al-Khwarizmi hirnself) on the order of Caliph al-Mamun. 
For more details see Toomer's article al-Khwarizmi in the Dictionary of 
Scientific Biography VII, p. 361 and 365. 

8. On Hindu Numerals 

A treatise of al-Khwarizmi on Hindu numerals is extant only in a Latin 
translation, which was published first by B. Boncompagni under the title 
"Algoritmi de numero indorum" (Rome, 1857) and next by Kurt Vogel under 
the title "Mohammed ibn Musa Alchwarizmi's Algorithmus" (Aalen 1963), 
with a facsimile of the unique manuscript. 

9. The Astronomical Tables 

AI-Khwarizmi's set of astronomical tables is available only in a Latin 
translation of a revised version due to Maslama al-Majriti, who lived in 
Cordova about AD 1000. This version differed from the original text of 
Khwarizmi in several respects. First, the epoch of the original tables was the 
era Yazdigerd (16 June 632), whereas al-Majriti used the era Hijra (14 July 
622). Also, al-Khwarizmi's table of Sines was based on the radius R = 150, 
whereas the extant tables have R = 60. 

The tables have been published, with a German translation and com­
mentary, by Heinrich Suter in Kongelige Dansk Vidensk. Selsk. Hist.-fil. Skrif­
ter III, 1 (Copenhagen 1914). In the same Skrifter IV, 2 (Copenhagen 1962) 
Otto Neugebauer published an English translation of the introductory chapter 
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and a new, valuable commentary. For additions and corrections to this com­
mentary see CG. Toomer's review in Centaurus 10, p. 203-212 (1964-65). 

If one studies E.S. Kennedy's "Survey of Islamic Astronomical tables", 
Transactions American Philos. Soc. 46, p. 122-177 (1956), one sees that there 
are two types of zijes, i.e. astronomical table sets: Ptolemaic and Non-Ptole­
maic. The Ptolemaic tables are based on Ptolemy's "Alrnagest" or on his 
"Handy Tables". The non-Ptolemaic zijes, of which al-Khwarizmi's table set is 
the only extant ex am pie, are based on Persian or on Hindu tables or on both. 
The non-Ptolemaic tables are less accurate, but more convenient than the 
Ptolemaic ones. This, I think, is the reason why Khwarizmi's tables remained 
popular long after the better (Ptolemaic) tables were available. 

Ibn al-Qifti says in his biography of al-Fazari about al-Khwarizmi: 
He used in his tables the me an motions of the Sindhind, but he deviated from it in the 

equations (of the planets) and in the obliquity (of the ecliptic). He fixed the equations according to 
the method of the Persians, and the declination of the sun according to the method of Ptolemy. 

What does this mean? 
Let me begin with the last statement. In the zij of al-Khwarizmi there is a 

table for finding the declination of the sun (Suter's edition, p. 132-136, last 
column but one). This table is based on the value 23° 51' of the obliquity of the 
ecliptic, and it agrees with a table in Ptolemy's "Handy Tables". So here al­
Qifti is certainly right: the author of the tables determined the declination of 
the sun "according to the method of Ptolemy". 

Concerning the "equations" of the planets, i.e. the corrections to be added 
to the mean longitudes, we may note that the maximum values of these 
corrections in the tables of al-Khwarizmi agree with those adopted in the 
Persian table set "Zij-i Shah". For this table set see E.S. Kennedy: The 
Sasanian Astronomical Handbook Zlj-i Shah, Journal of the American Orien­
tal Society 78, p.246-262 (1958). Obviously, when al-Qifti speaks of "the 
Persians", he has the Zij-i Shah in mind, wh ich was still extant in the time of 
al-Biruni and Ibn al-Qifti. 

Thus we may conclude that one of the sources of al-Khwarizmi was the 
Persian table set" Zij-i Shah". 

10. The "Sindhind" 

I shall now discuss Ibn al-Qifti's first statement: "He used in his tables the 
mean motions of the Sindhind." The word Sindhind is a corruption of the 
Sanskrit Siddhanta, wh ich is the usual designation of an astronomical textbook. 
In fact, the mean motions in the tables of al-Khwarizmi are derived from those 
in the "corrected Brahmasiddhanta" (Brahmasphutasiddhanta) of Brahma­
gupta. This was proved for the mean longitudes by J.J. Burckhardt, Vierteljah­
resschrift Naturf. Ges. Zürich 106, p.213-231 (1961), and for the apogees and 
nodes by G.J. Toomer in his review of Neugebauer's commentary to al­
Khwarizmi's tables (Centaurus 10, p. 207). 

Soon after AD 770, a Sanskrit astronomical work called by the Arabs 
Sindhind was brought to the court of Caliph al-Mansur at Baghdad by a man 



AI-KhwarizmI 11 

called Kankah (or Mankah?), a member of a political mission from India. This 
work was translated into Arabic. Based on this translation, Yaqub ben Tariq, 
who is reported to have been at the court of al-Mansur together with Kankah, 
composed a table set, which was called Zij al-Sindhind. According to the 
Fihrist of el-Nadim (ed. Flügel, Vol. 1, p.274) the table set of al-Khwarizmi 
was also called Zij al-Sindhind. It seems that al-Khwarizmi's Zij was arevision 
of an earlier table set based on the Sindhind, areVISIOn into which some 
elements and methods from the Zij-i Shah and from Ptolemy's "Handy Ta­
bles" were incorporated. 

11. The "Method ofthe Persians" 

As we have seen, Ibn al-Qifti says that al-Khwarizmi "fixed the equations 
according to the Method of the Persians". Wh at was this method? 

I shall use the terminology and some notations of E.S. Kennedy's classical 
"Survey of Islamic Astronomical Tables" (Trans. Amer. Philos. Soc. 46). On 
pages 148-151 of this survey Kennedy presents an abstract of the tables of al­
Khwarizmi, in which al-Khwarizmi's method of finding the true longitudes of 
the planets is explained. 

Let I be the mean longitude of any planet. Its true longitude is calculated 
by the formula 

where e1 is the "equation of the centre" and e2 the "equation of the anomaly". 
For the sun and the moon we have only one equation el due to the eccen­
tricity of the orbit. In al-Khwarizmi's tables for the sun and the moon, the 
function el (x) is tabulated according to the formula 

(12) 

in which x is the distance of the mean sun or moon from the apogeum of the 
eccentric orbit: 

(13) 

For the other planets, the calculation is more complicated. One first 
calculates a preliminary value of the correction e2 , calculated by plane tri­
gonometry from the triangle EPM in Fig.3. In this drawing, the planet is 
supposed to be carried by an epicycle, wh ich is in turn carried by a concentric 
circle. The angle e2 can be tabulated as a function of the angle y (see H. Suter, 
Tafeln des Muhammed ibn Musa AI-KhwarizmI, pages 136-167, Column 3). 

But, says Kennedy, "the inventor of the theory apparently realized that the 
two equations are not independent". We are required to halve the equation 
e2(Y) and to add it to x, thus obtaining 

(14) x' = x + 1/2 e2(Y). 
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Fig.3 

This x' is used to calculate the correction el: 

(15) el (x') = (max ed· sin x' 

which is subtracted from Y, thus obtaining 

(16) y' = y - edx'). 

Now the longitude A. can be calculated as 

(17) 

So one has to use the table for el twice, first to find e1 (x) and next el (x'), 
and the table for e2 once to find e2(Y'). For the rest, one has to perform only 
simple additions and subtractions. The procedure is simpler, but less ace urate 
than Ptolemy's method. 

As we have seen, aI-Khwarizmi used in his tables the "Era Yazdigerd". So 
we may safely conclude that he leamt the "Method of the Persians" from the 
latest version of the Zij-i Shah, which was composed under the last Sasanid 
king Yazdigerd III (632-651). See for the history of this version pages 4-5 of a 
joint paper of 1.1. Burckhardt and myself: Das astronomische System der 
persischen Tafeln, Centaurus 13, p. 1-28 (1968). 

In earlier, predominantly Hindu texts we find a related, but slightly more 
complicated method, which we have called "Method of the Indians". It is 
based on the formulae 

(14) 

(15) 

(18) 

x'=x+l/2e2(Y) 

el (x') = (max el)· sin x' 

x" =x' + 1/2 edx') 



(19) 

(20) 

(21) 

Al-Khwärizmi 

e1 (x") = (max ed· sin x" 

y' = y- el (x") 

A =I + el (x") + e2(y'). 

13 

This method was used by Aryabhata (Aryabhatiya, verses 22-24), by Brah­
magupta (Brahmasphutasiddhanta 11, 34-38), and by other Hindu astronomers. 
The difference as compared with the Persian method is that the table for el (x) 
is used twice: once with the argument x' and on ce with the argument x". The 
difference is only small, for 1/2 e1 (x') is in most cases small, so that x" defined 
by (18) does not differ much from x'. 

In my paper" Ausgleichspunkt, Methode der Perser und indische Planeten­
rechnung", Archive for History of Exact Sciences 1, p. 107-121 (1961), I have 
shown that the "Method of the Indians" can be explained as a reasonable 
approximation, if we suppose that a Greek author before Ptolemy, possibly 
Apollonios of Perge, started with the model of an epicycle carried by an 
eccentric circle. I suppose that this author assumed an "equant point" as in 
Ptolemy's Almagest, such that the motion on the eccenter appeared uniform as 
seen from the equant point. He invented an approximation which enabled 
the user of the ta bl es to use only one-entry tables and additions and sub­
tractions. Ptolemy adopted the equant model, but he did not use the approxi­
mation. On the other hand, the Hindu authors adopted the simple method of 
calculation, probably without knowing that it was based on the assumption of 
an eccenter with equant point. 

This seems to be the only hypothesis which explains Ptolemy's equant 
model, for which Ptolemy himself gives no justification whatever, as well as the 
very sophisticated "Method of the Indians", for which the Hindu authors give 
no justification either. 

12. Al-Khwarizmi's Sources 

We are now in a position to discuss the sources of al-Khwarizmi's work, in 
particular of his Algebra. Three theories have been proposed. He may have 
used classical Greek sources, or Hindu sources, or po pul ar mathematical 
writings belonging to the Hellenistic and post-Hellenistic tradition. 

As Toomer notes in his article in the Dictionary of Scientific Biography, 
both Greek and Hindu algebra had advanced well beyond the elementary stage 
of al-Khwarizrni's work, and none of the known works in either culture shows 
much resemblance in presentation to al-Khwarizmi's work. As we have seen, 
his proofs of the methods of solution of quadratic equations are quite different 
from the proofs we find in Euclid's Elements. Also, as Toomer notes, al­
Khwarizmi's exposition is completely rhetorical, like Sanskrit algebraic works, 
and unlike the one surviving Greek algebraic treatise, that of Diophantos, 
which has already developed quite far towards symbolic representation. 

I feel that Toomer is right: we may exclude the possibility that al­
Khwarizrni's work was much influenced by classical Greek mathematics. 
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In favour of the Hindu hypothesis it may be argued that al-Khwarizmi did 
write a treatise on Hindu numerals, that two of his estimates for 1t are also 
found in Hindu sourees, and that in Chapter 18 of the Brahmasphutasid­
dhanta of Brahmagupta, verse 18, a general rule for the solution of a quadratic 
equation of type (4) is given. See for this rule H.T. Colebrooke: Algebra with 
Arithmetic and Mensuration from the Sanskrit of Brahmagupta and Bhascara, 
page 346. 

In one case, in the section on Mensuration, al-Khwarizmi gives us a hint 
concerning his sources. After having mentioned the estimate 3 + 1/7 for 1t, 

which is "generally followed in practical life, though it is not quite exact", he 
says: 

The mathematicians, however, have two other rules for that. The one of them is: multiply the 
diameter with itself, then with ten, and then take the root of the product. The root gives the 
circumference. 

The other rule is used by the astronorners arnong thern (my italics), and reads: multiply the 
diameter with sixty-two thousand eight hundred and thirty-two and then divide it by twenty 
thousand. The quotient gives the circumference. 

Note that Aryabhata writes his estimate of 1t in just the same form as 

62832/20000. 

We know already that al-Khwarizmi used Persian and Hindu sources in 
composing his astronomical tables. We may suppose that he derived his 
estimate of 1t from one of these sources. 

After the Greek and the Hindu hypotheses, we may discuss a third hy­
po thesis proposed by Hermann Hankel in his "Geschichte der Mathematik" 
(Leipzig 1874), p. 259-264, and supported by H. Wiedemann in his artic1e "al­
Khwarizmi" in the Encyelopaedia of Islam H, p. 912-913. These authors deny 
all Greek influence on al-Khwarizmi and assert the prevalence of a native, 
Syriac-Persian tradition. 

In view of the elose connection between the Hebrew treatise Mishnat ha­
Middot and the geometry of al-Khwarizmi, I feel we should extend the notion 
"Syriac-Persian" to inelude Hebrew and other popular traditions as weIl. We 
have to admit the existence of a tradition of popular mathematics in Egypt and 
in the Near East in Hellenistic and post-Hellenistic times. Examples are the 
mathematical papyri from Egypt discussed on pages 164-170 and 173-177 of 
my "Geometry and Algebra in Ancient Civilizations", and the "Metrica" of 
Heron of Alexandria discussed on pages 181-188 of the same book. 

The hypothesis of Hankel and Wiedemann was strongly supported by 
Solomon Gandz, the editor of the "Mishnat ha-Middot". I think I can do no 
better than quote the final section of his introduction to the Mensuration of al­
Khwarizrni : 

AI-Khowarizrni, the antagonist of Greek influence 

At the university of Baghdad founded by al-Ma'mUn (813-33), the so-called Bayt al-I:Iikma, 
"the House of Wisdom", where al-KhowärizmI worked under the patronage of the Caliph, there 
and then flourished also an older contemporara o[ al-KhowärizmI by the name of al-I:Iajjaj ibn 
YUsuf ibn Matar. This man was the foremost protagonist of the Greek school working for the 
reception of Greek science by the Arabs. All his life was devoted to the work on Arabic 
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translations from the Greek. Already under Harün al-Rashld (786--809) al-ijajjäj had brought out 
an Arabic translation of Euclid's Elements. When al-Ma'miin became Caliph, al-ijajjäj tried to 
gain his favor by preparing a second improved edition of his Euclid translation. Later on (829-30) 
he translated the Almagest. Now al-Khowärizml never mentions this colleague of his and never 
refers to his work. Euclid and his geometry, though available in a good translation by his 
colleague, is entirely ignored by hirn when he writes on geometry. On the contrary, in the preface 
to his Algebra al-Khowärizml distinctly emphasizes his purpose of writing a popular treatise that, 
in contradiction to Greek theoretical mathematics, will serve the practical ends and needs of the 
people in their affaires of ineritance and legacies, in their law suits, in trade and commerce, in the 
surveying of lands and in the digging of canals. Hence, al-Khowärizml appears to us not as a pupil 
of the Greeks but, quite to the contrary, as the antagonist of al-Hajjaj and the Greek school, as the 
representative of the native popular sciences. At the Academy of Baghdad al-Khowärizml repre­
sented rather the reaction against the introduction of Greek mathematics. His Algebra impresses 
us as a protest rather against the Euclid translation and against the whole trend of the reception of 
the Greek sciences. 

Part B 
Tabit ben Qurra 

The Sabians 

The great scientist Tabit ben Qurra al Harrani (836-901) was a "Sabian" 
from Harran. What does this mean? In my explication I shall follow the two­
volume standard work of D. Chwolson: "Die Ssabier und der Ssabismus" (St. 
Petersburg 1856, reprinted by Oriental Press, Amsterdam 1965). 

According to Chwolson, we have to distinguish between two kinds of 
Sabians: the genuine or Chaldaean Sabians and the pseudo-Sabians from Har­
ran, to which Tabit ben Qurra and al-Battani belonged. 

The Chaldaean Sabians are mentioned in the Koran (II 59 and XXII 17) 
among the believers in God, who have sacred books and shall not be per­
secuted. 

Who were these Sabians? According to Chwolson, they were identical with 
the M andaeans, a gnostic sect living in Southern Mesopotamia near the moors 
and lakes of Basra. See D. Chwolson: Die Ssabier I, p.l00-143, and ES. 
Drower: The Mandaeans of !raq and Iran (1962). 

The Sabians of Rarran were quite different from the genuine Sabians 
mentioned in the Koran. The historian Mas'udi says that the Sabians "who 
have their hornes in Wasith and in Basrah in Iraq differ from the Sabians of 
Harran by their outer appearance" (see Chwolson: Die Ssabier H, p. 376). Also, 
their religion was different. For the Mandaeans in Southern Mesopotamia the 
seven planets and the twelve zodiacal signs were evil powers, but the Har­
ranites built temples for the planetary gods (see Chwolson H, p. 1-52 and 366-
379). 

In the present chapter we are mainly concerned with the Harranite Sabians. 
Their way of life was in several respects similar to the "Pythagorean Life" as 
described by the Neo-Pythagorean Iamblichos (see my book "Die Pytha-
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goreer", pages 319-320). For instance, the Sabians as weil as the Pythagoreans 
were not allowed to eat beans. 

These similarities were not accidental: the Sabians were fully aware that 
they continued the tradition of the Pythagoreans. We happen to know that 
Tabit ben Qurra translated two Neo-Pythagorean writings from Greek into 
Arabic, namely the Arithmetical Introduction of Nikomachos of Gerasa, and a 
part of the commentary of Proklos to the Pythagorean Golden Verses. See 
Chwolson, Die Ssabier I, p. 559. 

I shall now tell the story of how the Harranians came to call themselves 
"Sabians". The story is phantastic and difficult to believe, but if one studies the 
testimonies quoted in the book of Chwolson, one cannot but agree with his 
conclusions. 

A Christian author named Abu Yusuf Yashu al-Qati'i, who lived at the end 
of the 9th century, wrote a book intending to reveal "the doctrines of the 
Harranians who are known in our time as Sabians". From this book we have 
an apparently verbal excerpt in the Fihrist of al-Nadim (see Chwolson II, 
p. 14-19). Abu Yusuf relates that the Caliph al-Mamun, on his campaign 
against the Byzantine emperor, came to Harran and asked the inhabitants 

"Are you Christians?" "No." 
"Are you lews?" "No." 
On his next question "Have you got a sacred book or a prophet?" he did 

not get a clear answer. So the Caliph said: Either you convert to Islam or to 
one of the religions admitted by the Koran, or you shall be killed when I 
return from my expedition. 

Now a sheik from Harran, who was versed in Moslem law, gave them 
(against good payment) the advise: Call yourself Sabians, for this is the name 
of a religion recognized in the Koran. This they did, and from now on they 
were called Sabians. 

The Life of Tabit ben Qurra 

According to the Fihrist (see Chwolson, Die Ssabier I, p.532 and 547), 
Tabit ben Qurra el-Harrani died in AD 901 and lived 77 solar years. This 
would imply that he was born AD 824, but the Fihrist says that he was born 
AD 836, and other sources give 826 as his birth year. 

In his native town Harran he lived as a money changer, but his ideas about 
religion led to a conflict (see Chwolson I, p.482-490). He was brought before 
the highest priest, who declared his doctrines heretical and prohibited his 
entrance to the temple. Chwolson thinks that Tabit's neo-Platonic philosophy 
was judged a heresy. He first revoked his opinions, but afterwards he stated 
them anew. He was excommunicated, and he left the city. It so happened that 
he met Mohammed ben Musa ben Sakir, one of the famous "sons of Musa": 
Mohammed, Ahmed, and Hasan, who wcre great collectors of books and great 
patrons of science (see H. Suter: Die Mathematiker und Astronomen der 
Araber, p. 20-21). This Mohammed ben Musa took Tabit to Baghdad, allowed 
hirn to live in his house, and introduced hirn to the Caliph. All this must have 
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happened before AD 873, for in January 873 Mohammed ben Musa died (see 
Suter: Die Mathematiker and Astronomen, p. 20). 

According to al-Nadim and el-Qifti (see Chwolson I, p.483 and 11, p.532) 
Tabit succeeded in establishing at Baghdad a Sabian primate for the whole of 
Iraq. By this move, the situation of the Sabians was stabilized, and they were 
respected in the wh oIe country. 

Tabit was highly esteemed for his writings in medicine, philosophy, mathe­
matics, astronomy, and astrology. He was also a most competent translator 
from Greek and Syriac into Arabic. He translated works of Euclid, Ar­
chimedes, ApolIonios, Autolykos, Ptolemaios, Nikomachos, Proklos, and 
others (see Chwolson I, p. 553-560). 

Barhebraeus reports in his Syrian chronicle that Tabit ben Qurra composed 
circa 150 works in Syriac. For his works on astronomy and mathematics see 
H. Suter: Die Mathematiker und Astronomen der Araber (1900), p. 34-38, and 
Nachtrag, p.162-163. Here I shall restrict myself to three treatises: one on 
astronomy, one on algebra, and one on arithmetic. 

On the Motion of the Eighth Sphere 

Tabit has written a very interesting treatise, wh ich is available only in a 
Latin translation, entitled "De motu octave spere". The Latin text was pub­
lished by C.F. Carmody: "The Astronomical Works of Tabit b. Qurra" (Ber­
keley 1960), p. 84-113. An English translation with commentary was presented 
by O. Neugebauer in Proceedings of the Amer. Philos. Soc. 106, p. 291-299. 

The "eighth sphere" of Tabit is the sphere of the fixed stars. Inside this 
sphere one has to imagine the seven spheres of the moon, the sun, and the five 
"star-planets". 

In modern astronomy the fixed stars are assumed to be nearly at rest and 
the equinoxes to have a small retrograde motion with respeet to the fixed stars: 
the "precession of the equinoxes". In Ptolemy's theory the equinoxes are fixed, 
and the stars are supposed to have a slow forward motion of 1 degree in 100 
years. 

Tabit notieed that this small amount is not confirmed by the observations. 
The motion of the stars with respect to the equinoxes has to be mueh larger, at 
least in the time after Ptolemy, if one aecepts the very ace urate observations 
made under the reign of al-Mamun. To explain this, Tabit assumed an osciI­
latory (periodie) motion of the sphere of the fixed stars, the so-ealled "trepi­
dation". 

Another phenomenon whieh Tabit wanted to explain is an alleged decrease 
of the obliquity of the ecliptie. The aneient Greeks had used a rough estimate 
of 24°, Ptolemy had used a slightly smaller estimate due to Eratosthenes, and 
the observers at Baghdad had found a still smaller obliquity, namely 23° 33'. 

Tabit now eonstructed a model whieh would explain both phenomena: the 
alleged trepidation of the fixed stars with respeet to the equinoxes, and the 
alleged decrease of the obliquity. He made the two opposite points "Beginning 
of Aries" and "Beginning of Libra" on the sphere of the fixed stars move 
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slowly on small circles, whose centres are opposite points of a fixed sphere. For 
a detailed description of this model I may refer to the paper -of Neugebauer 
just mentioned. 

Tabit's treatise ends up with two small tables, from which the motion of the 
two variable points "Beginning of Aries" and "Beginning of Libra" can be 
computed. 

Geometrical Verification of the Solution of Quadratic Equations 

Tabit's short treatise on this subject, entitled "On the Verification of Prob­
lems of Algebra by Geometrical Proofs", is preserved in a single manuscript 
Aya Sophia 2457,3. It was published with a German translation and com­
mentary by P. Luckey in 1941: Berichte über die Verhandlungen der sächs. 
Akad. Leipzig 93, p. 93-112. I shall now translate parts of Luckey's translation 
into English. Since the logic of the treatise is perfect, I see no danger in this 
procedure. The diagrams are not taken from the manuscript, but from Luckey's 
publication. 

There are three fundamental forms (LI~ül, roots or elements), to which most problems of 
algebra can be reduced: 

The first basic form is: Wealth (mäl) and roots are equal to numbers. The way and method of 
solution by the sixth proposition of Euclid's second book is as I shall describe: We make (Fig. 4) 
the wealth equal to the square ab g d, we make b h equal to the same multiple of the unit in wh ich 
lines are measured as is in the given number of roots, and we complete the area d h. Since the 
wealth is ab g d, the root is clearly ab, and in the domain of calculation and number it is equal to 
the product of ab and the unit, in wh ich the lines are measured .... Now a number of these units 
equal to the given number of roots is in b h, hence the product of ab and b h is equal to the roots 
in the domain of calculation and number. But the product of a band b h is the area d h, because ab 
is equal to bd. Hence the area d h is in this way equal to the roots of the problem. Hence the 
whole are g h is equal to the wealth together with the roots. 

g.------,o 

df------lb 

w 

'------..... h 
Fig.4 

Tabit's explanation is cumbersome, because he cannot equate an area or 
line segment with a number. He therefore intro duces a unit of length, which I 
shall denote by e. If the given equation is 

x 2 +mx=n, 

in which x is an unknown number, while m and n are given numbers, he 
translates it into a geometrical equation 

x 2 +mex=ne2 

in which x and e are line segments. He continues: 
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Now the wealth and the roots together are equal to a known number. So the area g h is 
known, and it is equal to the product of a hand ab, because abis equal to a g. So the product of 
ha and abis known, and the line b h is known, because its number of units is known. Thus 
everything is reduced to a well-known geometrical problem, namely: The line bh is known. To it a 
line abis added, and the product of ha and abis known. 

Now in proposition 6 of book 2 of the Elements it is proved that, if the line b h is halved at 
the point w, the product of ha and ab together with the square of b w is equal to the square of a w. 
But the product of ha and abis known, and the square of b w is known. So the square of a w is 
known, hence a w is known, and if the known b w is subtracted, ab results as known, and this is 
the root. And if we multiply it by itself, the square ab g h, that is, the wealth, is known, which is 
wh at we wanted to prove. 

Now comes the most interesting passage in the treatise: 
This procedure agrees with the procedure of the people concerned with algebra in their 

solution of the problem. When they halve the number of roots, this is just so as when we take half 
of the line b h, and when they multiply it by itself, this is the same as when we take the square of 
the halved line b h. When they add to the result the (given) number, this is just as when we add the 
product of ha and ab, in order to obtain the square of the sum of ab and the halved line. Their 
taking the root of the result is like our saying: The sum of ab and the halved line is known as 
so on as its square is known. 

The next sentence in the text is corrupt. The end of the sentence reads: 
... to obtain the residue, just as we obtained ab. They multiplied (the residue) by itself, just as 

we determined the square of ab, that is, the wealth. 

In the same way Tabit treats the second type of equation 

or "wealth and number is equal to roots". He says: 
The way and method of solution according to the second book of Euclid by means of 

proposition 5 is, as I describe it: We make (Fig. 5) the wealth into a square abgd and we make ah 
equal to such a multiple of the unit in which lines are measured as is in the given number of roots. 
Obviously, a h is longer than ab, because the roots, which are in the domain of calculation the 
product of ga and a h, are larger than the wealth. We complete the area g h, and we prove, as 
before, that it is equal to the roots (that is, equal to the term Cl x) in the domain of calculation. 
And if b g, wh ich is the wealth (that is, the term x 2 ) is subtracted from it, there remains d h equal 
to the (given) number. So d h is known, and it is equal to the product of Cl band b h, and the line 
a h is known. So now the problem amounts to dividing a given line a h in b in such a way that the 
product of ab and b h is known. 

gr-----,a 

df----lb 

w 

~-----'h 

Fig.5 
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g~-----~a 

w 

d~------Ib 

L-------Ih 
Fig.6 

Now in proposition 5 of the second book of Euc1id it is proved that, if ah is halved at w, the 
product of ab and b h together with the square of b w is equal to the square of a w. But a w is 
known, and its square is known, and the product of ab and b h is known. So the square of b w is 
known as a remainder, hence b w is known, and if it is subtracted from a w (Fig. 5) or added to it 
(Fig.6), ab results as known, and it is the root. And if we multiply it by itself, ab g d is known, and 
it is the wealth, and this is what we wanted to prove. 

This procedure too agrees with the procedure of the algebra people (ahl al-jabr) in ca1culating 
the problem. For it allows in both ways the application of addition and of subtraction of the li ne 
wb. 

I think it is not necessary to translate the third part of the text, in which 
the equation 

"Number and Roots are equal to Wealth" 
is solved by means of Euclid's proposition II 6, and the agreement with the 
algebraic solution is proved in the same way as in the other two cases. 

In al-Khwarizmi's treatise, the science of algebra is denoted by the double 
expression" al-jabr wal muqabala". Tabit ben Qurra leaves out the second part 
and refers just to the "solution by al-jabr" as opposed to his own solution by 
geometry. The algebrists, to wh ich al-Khwarizmi belongs, are called by Tabit 
"those concerned with algebra" (a$/:lab aljabr) or "the algebra people" (ahl al­
jabr). In the text, they are opposed to the geometers, to which Tabit hirnself 
belongs. 

Tabit judges it necessary to explain in great detail that the algebraic 
solutions are in fuH accordance with Euclid's geometrical solution. From this, 
Luckey concludes that at least for some of his readers this connection between 
geometry and algebra was new, and he raises the question: Was it new for the 
"algebra people"? It seems to me that the answer must be "yes", for otherwise 
the whole treatise of Tabit would be superfluous. 

As we have seen in the section on al-Khwarizmi, there were two opposite 
trends or parties among the mathematicians and astronomers at Baghdad. One 
of these trends was represented by al-Khwarizmi, who used Indian and Persian 
sources for his astronomical tables, and who wrote his Algebra, "confining it 
to what is easiest and most useful in arithmetics, such as men constantly 
require in cases of inheritance", and so on. On the other hand, we have "the 
Greek school working far the reception of Greek science by the Arabs", as 
Gandz puts it. To this Greek school belonged al-Hajjaj, who translated Euclid 
and Ptolemy, and Tabit ben Qurra. 
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On Amicable Numbers 

Two natural numbers m and n are caIled amicable, if each is equal to the 
sum of the proper divisors of the other. For instance, the sum of the proper 
divisors of 284 is 220, and the sum of the proper divisors of 220 is 284. This 
pair of amicable numbers was known already to the ancient Pythagoreans (see 
e.g. my "Science Awakening" I, p. 98). 

Tabit ben Qurra has written a "Book on the Determination of Amicable 
Numbers". He proved: If p=3·2"-1_1 and q=3·2"-1 and r=9·22"-1_1 are 
prime, then 

M=2"pq and N=2n r 

are amicable numbers. 
Tabit's book has been commented upon and partly translated by F. Woep­

cke: Notice sur une theorie ajoutee par Thäbit ben Korra a l'arithmetique 
speculative des Grecs, Journal asiatique (4) 20, p. 420-429 (1852). 

Tabit's rule for obtaining amicable pairs was rediscovered by Pierre de 
Fermat and Rene Descartes. Besides the weIl known pair 220 and 284, Fermat 
found one more pair, namely 

17296=24 x 23 x 47 
18416=24 x 1151 

(Oeuvres II, p. 20-21). No doubt, he derived it by Tabit's rule for n=4. 
Descartes formulated Tabit's rule explicitely and presented a third example: 

9363584=27 x 191 x 383 
9437056=27 x 73727 

(Rene Descartes, Oeuvres II, p. 93-94 and p. 148). 
Now the question arises: How did Tabit find his rule? 
The weIl known pair 220 and 284 has a factorization of the form 

in which p, q, and rare primes. So let us see whether we can find a pair 

such that M is the sum of the proper divisors of N and conversely. 
I suppose that Tabit knew that the sum of all divisors of N (including N 

itself) is 
(1+2+ ... +2")(r+1) 

and that the sum of all divisors of M is 

(1 + 2 + ... + 2n) (p q + P + q + 1). 
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Now both sums are required to be equal to M +N. So we must have 

(1) r=pq+p+q 

and 

(2) 

Substituting (1) into (2), one obtains a condition for p and q: 

(3) (2"+ 1 -1) (pq+ p+q + 1)=2" pq +2"(pq + p+q). 

It is easy, though a little clumsy, to formulate the derivation of (3) in the 
language of "rhetorical algebra" used by Tabit. By the operations al-jabr and 
al-muqabala, (3) can be simplified to 

(4) 

I 

Putting p + 1 = P and q + 1 = Q, (4) can further be simplified to 

(5) 2/1(P+Q)=PQ. 

Adding 22 " to both sides, and subtracting 2"(P + Q), one obtains 

or 

The two factors on the right hand side are either both positive or both 
negative. If they were both negative, their product would be less than 22 ", so 
they must be positive. Since their product is 22 ", we must have, assuming 
P<Q, 

P-2"=2,,-t 

Q-2"=2"+t. 

The simplest choice of t is t = 1, which leads to 

and thus to Tabit's solution 

P = 2" + 2"- 1 = 3 x 2"- 1 

Q=2"+2"+1 = 6 x 2"-1 

p=3 x 2,,-1_1 

q=3 x 2"-1 

r=PQ-1 =9 X 22,,-1_1. 
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Another possibility is n = 8 and t = 7, wh ich leads to a pair of amicable 
numbers discovered by Legendre in 1830: 28 x 257 x 33023 and 28 x 852019l. 

In the preceding calculation, we have assumed two algebraic identities, 
namely 

(6) 

(7) 

(p+ 1)(q + 1)= pq+ p+q + 1 

(P-2")(Q _2n)=PQ _2n P_2n Q +22n 

which are both easy to prove by the methods of Euclid's Book 2. So the 
derivation just given is weH within the range of algebraic methods known to 
Tabit. 

After Fermat and Descartes, Leonard Euler was the first to take up the 
problem of amicable numbers. Euler has written three papers on the subject, 
aH entitled "De numeris amicabilibus". In the first paper of 1747 (Opera 
omnia, series prima, Vol. 2, p. 59-61) Euler presented a derivation of the rule of 
Tabit along the lines indicated here, and a list of 30 pairs of amicable numbers. 
In the second paper of 1750 (Opera omnia, same volume, p. 23-107) Euler gave 
a fuH exposition of his methods and presented an extended list of 62 pairs. In 
his exposition, he solved two problems: 

Problem 1. To find two amicable numbers apq and ar such that p, q, and r 
are primes. Denoting by A the sum of aH divisors of a and putting, as before, P 
= p + 1 and Q = q + 1, he finds an equation analoguous to our equation (5), 
namely 

(8) a(P+Q)=(2a-A)PQ. 

Putting 

a b 

2a-A 
, 

c 
(b, c)= 1 

Euler obtains 

(cP-b)(cQ-b)=V 

So, in order to find P and Q, one has to factorize b2 into two different 
factors. 

By similar methods, Euler solves Problem 2: To find two amicable numbers 
apq and ars. 

In his third paper, published posthumously in Opera Omnia, series prima, 
Vol. 5, p. 353-365, Euler presents four more examples, aH of the form 

apq and ar. 

For more information about amicable numbers see the survey of Edward B. 
Escott in Scripta Mathematica 12, p. 61-72 (1946). 
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Part C 
Omar Khayyam 

The Persian poet, philosoph er, mathematician, and astronomer Omar ben 
Ibrahim al-Hayyam, usually called Omar Khayyam, lived in the second half of 
the eleventh century. His farne in the western world is mainly based on the 
very free translation of his nearly 600 short poems of four lines each 
( Ruba'iyat) by E. Fitzgerald (1859), 

In 1074 Omar Khayyam was caIled to Isfahan, where a group of outstand­
ing astronomers came together for the foundation of an observatory. "An 
enormous amount of money was spent for this purpose", says Ibn al Athir. See 
Aydin Sahili: The Observatory in Islam (Türk Kurumu Basimevi, Ankara 
1960). 

Here we shaIl mainly be concerned with Omar Khayyam's treatise "On the 
Proofs of the Problems of Algebra and Muqabala". My account will be based 
on the French translation of Franz W oepcke: L'algebre d'Omar Alkhayyami 
(Paris 1851). An English translation was published in 1950 by H.J.J. Winter 
and W. Arafat in Journal R. Asiatic Soc. Bengal. 16, p.27-77. For an edition 
of the text with a new French translation and commentary see Roshdi Rashed 
and Ahmed Djebbar: L'oeuvre algebrique d'AI-Khayyam, University of Alep­
po 1981. 

In the introduction to his "Algebra" Omar Khayyam explains that "The 
art of algebra" aims at the determination of numericalor geometrical unknown 
quantities. This distinction between numbers and measurable magnitudes is 
maintained throughout the treatise. The author mentions four kinds of measur­
able magnitudes: the fine, the surface, the solid, and the time. He excludes 
magnitudes of more than three dimensions such as the "square-square" and 
the "quadrato-cube", which are used by some algebrists. 

The Algebra of Omar Khayyam 

The algebra of Omar Khayyam is mainly geometric. He first solves linear 
and quadratic equations by the geometrical methods explained in Euclid's 
Elements, and next he shows that cubic equations can be solved by me ans of 
intersections of conics. 

Omar knows very weIl that earlier authors sometimes equated geometrical 
magnitudes with numbers. He avoids this logical inconsistency by a trick, 
introdueing a unit of length. He writes: 

Every time we shall say in this book "a number is equal to a rectangle", we shall understand 
by the "number" a rectangle of which one side is unity, and the other a line equal in measure to 
the given number, in such a way that each of the parts by which it is measured is equal to the side 
we have taken as unity. 

In Fig. 7 I have denoted the unity of length by e, and the sides of the 
reet angle by x and y. The figure illustrates the equation 3 = x y. 
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Omar Khayyam first solves quadratic equations by the usual methods. 
Next he passes to cubic equations. Some of these, for instance, 

(1) 

can be reduced to quadratic equations. The first type requiring conic sections 
is 

"A nu mb er is equal to a cube" 

or, in modern notation 

(2) 

Omar first solves an auxiliary problem, namely 
"To find two lines between two given lines such that the four lines form a 

continued proportion". 
If the two given lines are called AB = a and Be = b, the problem is, to find 

x and y such that 

(3) a:x=x:y= y:b. 

~~~~--+---~----x 
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Omar draws two perpendicular line segments BA and BC, and he con­
structs two parabolas, both having their summit at B. The first parabola has 
axis BC and "parameter" BC, the other has axis BA and "parameter" BA. In 
modern notation, the equations of the two conics are 

(4) 

Let D be their point of intersection. Then the perpendiculars x = D Hand y 
=DTsatisfy (4) and hence (3). 

Next, Omar considers the equation (2), in which N is a given number. He 
constructs a rectangular block with base e2 and height Ne. Now he has to 
construct a cube equal to this block. In the case N = 2 this is just the well­
known Greek problem of "doubling the cube". Hippokrates of Chios had 
proved that this problem can be reduced to the problem of finding two mean 
proportionals x and y between two given line segments a and b. Omar 
Khayyam proceeds just so. He solves the auxiliary problem (3) with a = e and b 
= Ne, and he proves that the first intermediate x is the side of the required 
cube. 

All this is well-known from Greek texts. According to Eutokios, the so­
lution of (3) by means of the intersection of two parabolae is due to Menaich­
mos. 

Next, Omar considers six types of cubic equations in which a binomial is 
equated to a monomial, namely 

(5) x 3 +ax=b 

(6) x 3 +b=ax 

(7) x 3 =ax+b 

(8) x 3 +ax2 =b 

(9) x 3 +b=ax2 

(10) x 3 =ax2 +bx. 

In Omar's terminology, the equation (5) is written as 
"A cube and (a number of) sides are equal to a number". 
Omar first constructs a square c2 equal to the given number b, and next a 

block with base c2 and height h equal to the given number b. This means, as 
he has explained earlier, that the block with sides c, c, and h is made equal to 
a block with sides e, e, and be, where e is the unity of length and b be the 
given number on the right hand side of equation (5). Thus, the equation (5) can 
be written in the homogeneous form 

(11) 

in which c=AB and h=BC are given line segments. 
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To solve this equation geometrically, Omar constructs a parabola (see 
Fig.9) having its summit at B, its axis being BZ and its "parameter" AB=c. 
Next he describes a semi-circle on the diameter BC=h. The semi-circle ne­
cessarily has a point of intersection D with the parabola. From D one draws 
perpendiculars DZ and DE to BZ and Be. Omar now proves that DZ=x 
solves the equation (11). 

In modern terminology, let x=DZ and y=DE be the coordinates of D. The 
equation of the parabola is 

(12) x 2 = yc, 

or, in Omar's own words: "The square of DZ will be equal to the product of 
BZ and AB". The equation of the circle is 

(13) 

which Omar writes as a proportion 
"BE is to ED as ED is to EC". 
Just so, (12) is written as a proportion: 
"AB is to BE as BE is to ED". 
From these two proportions Omar concludes that EB=x is a solution, and 

the only solution of his problem. 
Just so, Omar writes the equation (6) in the homogeneous form 

(14) 

and he solves it by intersecting the parabola 

(15) 



28 Chapter 1. Three Muslimic Authors 

with the hyperbola 

(16) l=x(x-h). 

The third equation (7) is solved in the same way, the only difference being 
the sign of the constant term b. 

The next equation (8) is written as 

(17) 

where a and s are known line segments. Omar solves it by intersecting the 
hyperbola 

with the parabola 

This solution is unnecessarily complicated, because it requires a preliminary 
solution of the equation 

by means of two parabolae. It would be much simpler to set b = cd2 and to 
intersect the parabola 

with the hyperbola 

The next type (9) is solved by a simiIar method. Once more, the constant 
term b is made equal to a cube S3. Omar notes that in this case the solution is 
not always possible. 

The last type (10) is reduced to 

(18) 

and solved by intersecting the hyperbola 

xy=ac 

with the parabola 

Next, Omar discusses seven types of quadrinomial equations, namely 

(19) 

(20) 

x 3 +ax2 +bx=c 

x 3 +ax2 +c=bx 
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(21) x3 +bx+c=ax2 

(22) c+bx+ax2 =x3 

(23) x 3 +ax2 =bx+c 

(24) x 3 +bx=ax2 +c 

(25) x 3 +c=ax2 +bx. 

The methods of solution are the same as in the trinomial cases. To solve 
(19) one uses a eircle and a hyperbola, to solve (20) two hyperbolae, and so on. 

After this, Omar discusses equations in whieh terms like I/x, l/x2 , and l/x3 

oeeur. His first example is 

Multiplying both sides by x 3 , one obtains 

and hence 

or in Omar's own words, as translated by Woepeke: 
"Done la raeine de dix sera le cube eherche". 
Omar notes that the equation 

cannot be solved by the methods exposed by hirn, beeause it requires the 
insertion of four mean proportionals between two given Iines, as Ibn al­
Haitham has proved. 

Omar Khayyam was not the first to solve cubie equations by means of 
intersections of eonies. At the end of his treatise he says that someone has told 
hirn that Muhammad ibn al-Lait Abu al-Jud was the author of a treatise in 
wh ich he reduced the solution of eubic equations to eonie sections, without 
however treating all cases. In partieular, he taught the solution of type (21) by 
the interseetion of a parabola and a hyperbola. On pages 84-85 of Woepcke's 
translation of the algebra of Omar Khayyam, the solution of (21) by Abu al­
J ud is deseribed. 

Omar Khayyam on Ratios 

On page 251 of his book "Geschichte der Mathematik im Mittelalter", A.P. 
Juschkewitseh has drawn the attention to two very remarkable passages on 
ratios in Omar Khayyam's eommentary "Discussion of Difficulties of Euclid" 
(edited by Erani, Teheran 1936). Mrs. Yvonne Dold had the kindness to 
translate the two passages directIy from Arabie into English. In what folIows, I 
shall reproduee her translation. 
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As luschkewitsch notes, Omar Khayyam states that Euclid's definition of 
proportion is correct, but that it is not a true definition of the notion ratio. 
The true meaning of a ratio is found in the process of measuring one magni­
tude by another magnitude. I shall now explain what this means. 

Omar Khayyam defines a proportion of four magnitudes 

(26) A:B=C:D 

as folIows: 

All multiples of the first are cut off from the second until a rest remains less than the first, and 
likewise all multiples of the third are cut off from the fourth until a rest remains less than the 
third. And the number of multiples of the first on the second is like the number of multiples of the 
third on the fourth. Moreover we cut off all multiples of the rest of the second from the first until 
a rest remains less than the rest of the second, and likewise all multiples of the rest of the fourth 
are cut off from the third until a rest remains less than the rest of the fourth. And the number of 
multiples of the rest of the second is like the number of multiples of the rest of the fourth. Likewise 
we cut off from the rest of the second all multiples of the rest of the first and we cut off from the 
rest of the fourth all multiples of the rest of the third. And the number of both is equal. Likewise 
we cut off all multiples of the rests one from the other according to the first part as we explained. 
And the number of every rest from the first and the second is like the number of its corresponding 
from the third and the fourth ad infinitum. Thus the ratio of the first to the second is inevitably as 
the ratio of the third to the fourth. And this is the true proportionality in the geometrical manner. 

The process described he re is what the Greeks call Antanairesis or Ant­
hyphairesis: the continued mutual subtraction of two quantities A and B from 
each other. The sm aller of the two, say B, is subtracted from A as often as 
possible, leaving a remainder R 1 less than B: 

Next, R 1 is subtracted from B as often as possible: 

and so on. The integer quotients 

define the ratio A: B in the following sense: If C and D have the same 
quotients as A and B, the proportion (26) holds. 

From a passage on the Topica of Aristotle we know that this definition of 
the equality of ratios was used by the Greeks before Euclid. See O. Becker: 
Eudoxos-Studien I, Quellen und Studien Gesch. der Math. B 2, p.311-333 
(1933), or D.H. Fowler. Ratio in Early Greek Mathematics, Bulletin American 
Math. Soc. (New Series) 1, p. 807-848 (1979). 

Omar Khayyam also defines the relation 

A:B>C:D 
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by comparing the sequences of quotients 

defining the two ratios. If m is the first index for which qm differs from q;" and 
if 

qm <q~ for odd m 
or 

qm > q~ for even m, 

then A: B is larger than C: D. 
In aseries of theorems Omar Khayyam proves that his definition of the 

equality of ratios is equivalent to that of Euclid. 
Next, al-Khayyam defines the multiplication of ratios, thus filling a logical 

gap in Euclid's Elements. See A.P. Juschkewitsch: Geschichte der Math. im 
Mittelalter, p. 253-254. 

In his definition of the multiplication of ratios, al-Khayyam assurnes the 
existence of a fourth proportional D to given quantities A, B, C. He justifies 
this assumption as follows: There always exist quantities M and N such that 

C:M>A:B 
and 

C:N <A:B. 

Now, because of the unlimited divisibility of continuous quantities, there 
must be a D between M and N such that 

C:D=A:B. 

Oscar Becker has noted that the same kind of argument, namely: "Where 
larger and smaller (quantities) exist, equals also exist" was also used by Greek 
commentators of Aristotle. See o. Becker: Eudoxos-Studien II. Warum haben 
die Griechen die Existenz der vierten Proportionale angenommen? Quellen 
und Studien Gesch. Math. B 2, p. 369-387. 

Omar Khayyam also raises the quest ion whether ratios can be regarded as 
a kind of "number" in a larger sense. He writes: 

Then there is the question about the ratio of the magnitudes: is it inherent the number 
according to her nature, or a logical consequence of the number, or is it connected with the 
number by something that follows from its nature without the need of any extemal factor? 

Omar Khayyam leaves this "philosophical" question unanswered, but later 
Arabic authors such as Nasir ad-Din at-Tusi consider all ratios as "numbers". 
See page 255 of the book of Juschkewitsch. 



Chapter 2 
Algebra in Italy 

This chapter will be divided into three parts: 
A. From Leonardo da Pisa to Luca Pacioli 
B. Master Dardi of Pisa 
C. The Solution of Cubic and Biquadratic Equations 

Part A 
From Leonardo da Pisa to Luca Pacioli 

The methods of al-jabr and al-muqabala were made known in Italy first by 
the Latin translation of the algebra of al-Khwarizmi by Gerard of Cremona, 
and next by the work of Leonardo da Pisa (calIed Fibonacci). Leonardo was 
followed by several other writers of arithmetical textbooks, of which Luca 
Pacioli is best known. Before discussing the work of these authors, I shall first 
explain how the need for such textbooks was created by the economic con­
ditions of the Italian merchants. In my exposition I shall gladly make use of 
the contents of a very interesting lecture entitled "The Contributions of the 
Italian Renaissance to European Mathematics", presented by Warren Van 
Egmond at a symposium held at Cortona in April 1983. 

The Connection Between Trade and Civilization in M edieval I taly 

In the early Middle Ages trade was mainly based on bart er rather than on 
the exchange of money. Long-distance commerce was in the hands of travelling 
merchants, who exchanged their cargoes of goods at local fairs and markets. 
Major centres of this trade were Venice, Genova, and Pisa. Merchants set out 
by sea for the Arabic ports of North Africa and the Near East, carrying 
timber, wool, and other products from the West and bringing back in exchange 
fine silks, spices, jewels, and other precious goods. 

In the thirteenth century the character of this economy changed radically. 
Improvements in navigation eased the dangers of sea travel. The increased 
circulation of coins made European economy predominantly monetary. The 
invention of letters of credit, bills of exchange, accounting and bookkeeping 
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made possible the rise of banking and international finance. All of these 
developments worked together to create a new dass of merchants, who lived in 
the major manufacturing and trading centres. They bought goods and shipped 
them to other representatives of the same company in other cities, for instance 
in the East, where the goods were sold or traded for other goods. Control over 
this vast network of representatives was maintained through a constant ex­
change of letters, bills, and reports. Im most cases the central office was based 
in one of the cities of Italy, such as Lucca, Siena, or Florence. 

The life of a sedentary merchant was far different from that 'of his travelling 
predecessor. The early medieval merchant was a small tradesman, carrying his 
inventory in his head or on a scrap of paper. He calculated on his fingers or 
on a small abacus. On the other hand, the sedentary merchants and bankers 
wrote and received letters, bills of exchange, reports, orders, and so on. They 
had to calculate prices, to compute payments, to figure profits and losses. 

For all these operations, they needed an efficient system of writing numbers 
and performing written calculations. The Roman numbers were too cumber­
some: the Hindu-Arabic number system was much more efficient. The credit 
for developing this number system and adapting it to merchant practices 
belongs to a particular group of men, the so called "abbacists". 

According to Warren Van Egmond, whose exposition I am following here, 
one has to distinguish between the Latin word abacus, which denotes a 
calculating board, and the Italian word abbaco, which usually means "practical 
arithmetic". 

Life and Work of Fibonacci 

The life of Leonardo da Pisa is weIl known from the introduction of his 
most famous work "Liber abbaci" (1202). In what folIows, I shall follow the 
excellent description of his life and work in Kurt Vogel's article FIBONACCI 
in the Dictionary of Scientific Biography. 

Leonardo was a member of the Bonacci family, hence he calls hirnself "filio 
Bonacci", which was shortened to Fibonacci. His father, a secretary of the 
republic of Pisa, was entrusted around 1192 with the direction of the Pisan 
trading company in Bugia (now Bougie), Aigeria. He expected his son Leo­
nardo to become a merchant, therefore he brought hirn to Aigeria. Here 
Leonardo learned how to calculate with Hindu-Arabic numerals. His business 
trips took hirn to Egypt, Syria, Byzantium, Sicily, and southern France. 

Around 1200 Leonardo returned to Pisa. During the next twenty-five years 
he composed several works. Five of these are preserved: 

1. über abbaci (1202, revised 1228), 
2. Practica geometriae (1220), 
3. a book entitled "Flos" (1225), 
4. a letter to the philosopher Theodorus, who lived in Sicily at the court of 

the Hohenstaufen emperor Frederick II, 
5. Liber quadratorum (1225). 
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A treatise on Book X of Euclid's "Elements", contammg a numerical 
treatment of the irrationalities which Euclid had demonstrated by lines and 
areas, is unfortunately lost. 

Leonardo's importance was recognized at the court of Frederick H. In 
Leonardo's writings several names of scholars living at this court in Sicily are 
mentioned, including the astrologer Michael Scotus, whom Dante banished to 
hell (Inferno XX, 115), the philosopher Theodorus, and the mathematician 
lohn of Palermo. About 1225, when Frederick 11 held court at Pisa, the 
astronomer Dominicus presented Leonardo to the emperor. On that occasion, 
lohn of Palermo proposed several problems, which Leonardo solved promptly. 

The first problem was, to find a number x such that x 2 + 5 and x 2 - 5 are 
square numbers. A solution, namely 

was presented without proof in the book "Flos", which Leonardo sent to 
Frederick 11. In the "Liber quadratorum" the solution was deduced by a 
method, wh ich will be explained in the course of the present chapter. 

The second problem proposed to Leonardo was the solution of the cubic 
equation 

(1 ) x 3 + 2x 2 + 10x= 20. 

In the book "Flos", Leonardo proved that the solution is neither an 
integer, nor a fraction, nor one of the irrationalities defined in Book X of the 
Elements of Euclid. He presented an approximate solution in sexagesimal form 
as 

1; 22, 7,42,33, 4,40. 

According to Vogel (p. 610 of the article FIBONACCI) the 40 is too large 
by about 1 ~, so Leonardo's accuracy is admirable. If he had applied the 
method of "double false position" explained by himself in the "Liber abbaci", 
that is, the method of linear interpolation between a smaller value Xl and a 
larger value xz, he would have obtained a too sm all approximation. It is 
possible that he used the so-called Horner method. This method, adapted to the 
sexagesimal system, consists in putting X = 1 + Y land obtaining an eq uation for 
Yl, next putting 60Yl =22+yz and obtaining an equation for Yz, and so on. 

The history of the Horner method is very complicated. In principle, the 
method was known al ready to the author of the Chinese treatise "Nine 
Chapters of the Mathematical Art" (Chiu Chang Suan Shu), who lived in the 
Han-period, i.e. between -150 and + 150. See l. Needham: Science and 
Civilization in China (Cambridge 1959), p.126-127. The method was also 
known to the Arabic mathematician lamshid al-Kashi. See P. Luckey: Die 
Rechenkunst des Gamsld b. Mas'üd al-Kasl (Wiesbaden 1951). The method 
was later rediscovered by Paolo Ruffini (1804) and W.G. Horner (1819). See F. 
Cajori: A History of Mathematics, p. 271. 

In 1240, the republic of Pisa awarded the "serious and learned Master 
Leonardo Bigolli" a yearly salary of 20 pounds silver "in addition to the usual 
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allowances, in recognition of his usefulness to the city and its citizens through 
his teaching and devoted services". 

We shall now discuss the extant works of Leonardo. 

1. The "Liber Abbaci" 

The Italian masters of computation were called "maestri d'abbaco". In this 
sense the title of Leonardo's most influential work is to be understood. It 
appeared first in 1202. To the second edition of 1228 "new material has been 
added, and superfluous removed ". It was edited by Baldassare Boncompagni in 
Vol.1 of the "Scritti di Leonardo Pisano" (Roma 1857). A summary of the 15 
Ghapters of the "Liber abbaci" was given by Kurt Vogel in his artic1e FIBO­
NACCI in the Dictionary of Scientific Biography. 

In Chapters 1-7 the Hindu-Arabic numerals are introduced, and methods 
of calculation with integers and fractions are taught. 

Chapters 8-11 contain problems of concern to merchants. A remarkable 
playful problem is the "problem of the 30 birds". A man buys 30 birds: 
patridges, doves, and sparrows. A patridge costs 3 silver co ins, a dove 2, and a 
sparrow l He pays with 30 coins. How many patridges, doves, and sparrows 
does he buy? 

The problem is, to solve the pair of equations 

x+y+z=30 

3x+2y+tz= 30 

in positive integers x, y, z. The only solution is x = 3, y = 5, z = 22. 
This problem is a variant of the "problem of 100 birds", which is found in 

Chinese, Indian, and Arabic sources. See Joh. Tropfke: Geschichte der Elemen­
tarmathematik I, fourth edition (by Kurt Vogel and others), p. 613-616 (1980). 

Chapters 12 and 13 contain several types of recreational problems, some 
leading to a linear equation, others to two or three linear equations with two 
or three unknowns. For instance, we find on pages 228-243 a sequence of 
problems concerning "buying a horse". Leonardo begins with a simple case of 
two persons. One says to the other: "If you give me one-third of your cash, I 
can buy the horse." The other replies: "If you give me a quarter of your cash, I 
can buy the horse." If s is the price of the horse, we have two linear equations 
with two unknowns x and y: 

x+ 1/3 y=s 

y+ 1/4x=s. 

The problem is indeterminate, since s is not given. The solution In smallest 
integers is given as 

x=(3-1)x4 8 

y=(4-1)x3 9 

s=3x4-1x1=11. 
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(2) 

(3) 
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Another ca se leads to 3 equations in 3 unknowns: 

x+j-(y+z)=s 

y+!(x+z)=s 

z+!{x+ y)=s. 

To solve these equations, Leonardo introduces a new unknown 

x+ y+z=t. 

Subtracting each of the three equations from (3), one obtains 

i(y+z)=i(x+z)=~(x+ y)=t-s=D 

hence 

ing 

y+z=3/2D 

x+z=4/3D 

x+y=5/4D. 

In order to obtain an integer solution, Leonardo puts D = 24, thus obtain-

y+z=36 

x+z=32 

x+ y=30 

x=13, y=17, z=19. 

This solution of the equations (2) had al ready been obtained by Dio­
phantos: Arithmetica 124. 

The same problem of "buying a horse" occurs in a book of al-Karaji and 
in other Arabic and Byzantine sources. See J. Tropfke: Geschichte der Elemen­
tarmathematik I (4th edition, by K. Vogel and others), p. 608-609. 

An original invention of Leonardo is the "series of Fibonacci" 

0,1,1,2,3,5,8,13,21, ... 

in which each term is the sum of the two preceding terms. Leonardo obtained 
it as the solution of the problem: How many pairs of rabbits can be produced 
from a single pair in a year if each pair begets a new pair every month, wh ich 
from the second month on becomes productive, and if death does not occur? 

Chapter 14 is devoted to calculations with square roots and cube roots. 
Leonardo begins by presenting some theorems from Euclid's Book II in 
numerical form, omitting the proofs, "because they are all in Euclid". For 
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square roots he has the well-known approximation 

For the cube root Leonardo presents a first approximation 

(4) 3,t:3-;-: r 
Va +r~a+( 3 3 a+1) -a 

and next a second approximation 

(5) with rl =a-al. 

According to Vogel (DSB, Article FIBONACCI, p.608) the first approxi­
mation (4) was al ready known to al-Nasawi. In fact, it is a simple application 
of the rule of "double false position". As for the second approximation, 
Leonardo says: "I have invented this mode of finding roots." 

Examples for his operations with radicals are 

(6) 

and 

(7) 

Chapter 15 is very interesting. In a first section, Leonardo solves the pair of 
equations 

(8) 

(9) 

as follows. From (8) he finds 

and next, using Euclid II, 5 

6:x= y:9 

x+y=21 

xy=54 

(x- y )2_(x+ y )2 _(21)2 _225 -- - -- -xy- - -54--
2 2 2 4 ' 

hence x-y=15, x=18, y=3. 
In a second section, Leonardo presents applications of the Theorem of 

Pythagoras. For instance, he solves the problem: On the line joining the basis 
of two towers of given heights and given distance there is aspring which shall 
be equally distant from the tops of the towers. Leonardo gives a numerical as 
well as a geometrical solution (Liber abbaci, p. 398). 
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The third, most extensive section (p. 406-459) contains a systematic treat­
ment of linear and quadratic equations. Citing "Maumeth", i.e. Muhammad 
ben Müsä al-Khwärizmi, Leonardo solves the six normal forms 

bx=c 

ax 2 +bx=c 

ax 2 +c=bx (two solutions) 

ax2 =bx+c. 

The unknown quantity x is called radix, its square quadratus or census, and 
the constant term c numerus. The methods of solution are illustrated by 
numerous examples. 

The first example of a mixed quadratic equation is just the same as in the 
algebra of al-Khwärizmi, namely 

"census et decem radicis equantur 39" 
or 

The solution is illustrated by a drawing (see Fig. 10): 

a f 5 d 

e 
i 5 

h 

5 5 5 

h 9 5 c 

Fig.l0 

In other examples, one has to divide 10 into two parts x and 10-x 
satisfying an auxiliary condition such as 

_x_+ lO-x =V5. 
10-x x 
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Leonardo also includes equations that can be reduced to quadratic equa­
tions. Thus, the set of equations· 

(10) 
10 

y=-
x 

(11) 
y2 

Z=-
x 

(12) Z2=X2+ y2 

leads to a quadratic equation for x 4 : 

(13) x 8 + 100x4 = 10000. 

2. The" Practica geometriae" 

This work by Leonardo is extant in nine manuscripts, of which two are in 
Paris and four in Rome. In his edition, Boncompagni used only one of the 
vatican manuscripts. From Vogel's article FIBONACCI I quote: 

In his work Leonardo does not wish to present only measurement problems for the layman; in 
addition, for those with scientific interests, he solves geometrical problems according to the method 
of proof. Therefore, the models are, on the one hand, Hero and the Agrimensores, and Euc\id and 
Archimedes on the other. Leonardo had studied the Liber embadorum of Plato of Tivoli (1145) 
espeeially c\osely and took from it large sections and individual problems with the same numerical 
values. This work of Plato was a translation of the geometry of Savasorda (Abraham bar Hiyya), 
written in Hebrew, which in turn reproduced Arabic knowledge of the subject. 

The Practica is divided into eight chapters (distinctiones), which are preeeded by an in­
troduction. In the latter the basic concepts are explained, as are the postulates and axioms of 
Euelid and the linear and surface measures current in Pisa. 

In the first chapter, the proposition of Book II of the Elements of Euclid 
are recalled. 

In the second chapter 
the duplieation of the cube by Archytas, Philo of Byzantium, and Plato, which are reported by 
Eutocius, are demonstrated, without reference to their source. The solutions of Plato and Archytas, 
Leonardo took from the Verba filiorum of the Banü Müsli, a work translated by Gerard of 
Cremona. That of Philo appears also in Jordanus de Nemore's De triangulis, and probably both 
Leonardo and Jordanus took it from a common souree. See M. Clagett, Archimedes in the Middle 
Ages I, p. 224 and 658-660. 

The third chapter provides a treatment (with exact demonstrations) of the caJculation of 
segments and surfaces of plane figures: the triangle, the square, the rectangle, rhomboids (rum­
boides), trapezoids (figurae quae habe nt capita abscisa), polygons, and the circ\e; for the circ\e, 
applying the Arehimedean polygon of ninety-six sides, 1t is determined as 864:275~3.141818 .... 

For the surveyor who does not understand the Ptolemaic proeedure of determining half­
ehords from given ares, appropriate instruetions and a table of chords are provided. This is the 
only plaee where the term sinus versus arcus, certainly borrowed from Arabie trigonometry, 
appears. The fourth chapter is devoted to the division of surfaees; it is a reworking of the Liber 
embadorum, whieh ultimately derives from Euclid's lost Book on Divisions of Figures; the latter ean 
be reconstructed (see Arehibald) from the texts of Plato of Tivoli and of Leonardo and from that 
of an Arabie version. 

In the sixth chapter Leonardo discusses volumes, inc\uding those of regular polyhedrons, in 
eonnection with whieh he refers to the propositions of book XIV of Euc\id. 
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The seventh chapter contains the caIculation of the heights of taU objects, for example, of a 
tree, and gives the rules of surveying based on the similarity of triangles; in these cases angles are 
obtained by means of a quadrant. 

The eighth chapter presents what Leonardo termed "geometrical subtleties" (subtilitates) in the 
preface to the Liber abbaci. Among those incIuded is the caIculation of the sides of the pentagon 
and the decagon from the diameter of the circumscribed and inscribed circIes .... 

3. The Book "Flos" 

In the section "Life and Work of Fibonacci" we have al ready discussed 
Leonardo's solutions of two problems proposed to hirn by Giovanni da Pa­
lermo, namely: to find a number x such that x 2 + 5 and x 2 - 5 are squares, and 
to solve the cubic equation (1). Leonardo published his solutions in a book 
entitled "Flos", which he se nt to Frederick 11. We shall discuss his solution 
presently. 

In addition to these solutions, the book contains some examples of inde­
terminate problems. Most of these had also been treated in the "Liber Ab­
baci". In some cases, negative solutions were interpreted as debts. 

4. The Letter to Theodorus 

The principal subject of this letter (Scritti di Leonardo Pisa no H, p.247-252) 
is the "Problem of the 100 birds ", a variant of which had been discussed 
already in the Liber abbaci. In the letter, Leonardo develops a general method 
for the solution of indeterminate problems. 

A geometrical problem folIows. A regular pentagon is inscribed in a 
equilateral triangle. The solution is carried through to the point where a 
quadratic equation is reached, and then a sexagesimal approximation is pre­
sented. 

5. The "Liber quadratorum" 

The main subject of this book is the solution of the pair of Diophantine 
equations 

x2+5= y2 

X2-5=Z2. 

As we have seen, this was one of the problems which Giovanni da Palermo 
had proposed to Leonardo. Leonardo first generalizes the problem to 

(14) 
x 2 + C=y2, 

X2_C=Z2. 

If x 2 and C form a solution of this problem, Leonardo calls the number C 
congruum and the square x 2 quadratus congruentus. 
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The pair of equations (14) is solved as follows. Adding, one obtains 

(15) 

By the substitution y = u + v and z = u - v this equation can be reduced to 

This is the equation of Pythagorean tripies. Its solution is well known: 

If a and bare both odd, this solution can be divided by 2: 

a2 +b2 

X=--- u=ab 2' , 

Thus, Leonardo obtains the theorem: 
If a and bare relatively prime integers, and b> a, one has 

41 

(i) If a and bare both odd, then C = ab(b - a)(b + a) is a congruum, and its 
congruent square is 

2= (a2+b2)2 
x 2 . 

(ii) If a is odd and b even or conversely, then C=4ab(b-a)(b+a) is a 
congruum, and its congruent square is 

F or a = 1 and b = 9, Leonardo finds 

and 
x=41, y=49, z=31. 

Dividing x, y, z by 12, Leonardo obtains a solution of his problem with 
C=5, namely 

x=3+-tz, y=4+-b, z=2 +iz. 

By the same method, Leonardo obtained solutions for other values of C. 
His successors calculated solutions for still more values of C. See Raffaella 
Franci: Numeri congruo-congruenti in codici dei secoli XIV e XV, Bollettino 
di Storia delle Scienze Matematiche 4, p. 3-23 (1984). 

Leonardo's method differs from that of Abu Ga'far Muhammad ibn al­
Husain, who also solved the same problem. Abu Ga'far's treatise "On the 
Construction of Rectangular Triangles with Rational Sides", in which his 
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solution is contained, was translated into French by F. Woepcke in his paper 
"Recherches sur plusieurs ouvrages de Leonardo da Pisa III: Traduction d'un 
traite par Alhoryain", Atti delI' Accademia Pontificia dei Nuovi Lincei 14, 
p. 301-324 and 345-356 (1861). 

For a general evaluation of Leonardo's abilities and his sources see pages 
611-612 of Vogel's article FIBONACCI. Vogel is quite right: "With Leonardo, 
a new epoch in Western mathematics began." 

Three Florentine Abbacists 

In a very interesting paper entitled "Maestro Benedetto e la Storia 
delI'Algebra", Historia Mathematica 10, p. 297-317 (1983), Raffaela Franci and 
Laura Toti Rigatelli have discussed the work of Maestro Benedetto and two of 
his predecessors living in Florence in the fourteenth century, namely Maestro 
Biaggio and Antonio M azzinghi. I shall now summarize their work. 

1. Maestro Benedetto 

In 1463, Benedetto of Florence completed his great work "Trattato di 
praticha d'arismetica", consisting of 500 large pergament pages. For us, the 
most interesting parts of this work are the books 13, 14, and 15, which deal 
with algebraic equations. 

Benedetto starts with the welI-known "reghola de algebra amuchable", that 
is, with the solution of the six types of linear and quadratic equations 

x 2 =px x 2 +px=q 

x 2 =q x 2 +q=px 

px=q x 2 =px+q. 

According to Franci and Toti Rigatelli (Historia Math. 10, p.300) this part 
of Benedetto's text is a literal Italian translation of a Latin translation of the 
algebra of al-Khwarizmi. 

Next, Benedetto introduces the well-known names for the powers of x, with 
suitable abbreviations such as 

x2 =censo =c 

x 3 =cubo =b 

x4 = censo di censo = c c 

and he presents rules of multiplication for these powers and their inverses and 

for radicals like Va and Va. 



From Leonardo da Pisa to Luca Pacioli 43 

Benedetto next presents a long list of equations which can either be reduced 
to quadratic equations or directly solved by radicals, for instance 

10. 

which can be reduced to 

or 

15. 

which can be solved as 

x=VP. 

In book 15, he adds to this list three more types 

37. 

38. 

39. 

X4+pX2=q 

x4+Q=pX2 

X4=pX2+q 

which can be solved first for x2 and next for x. 

2. Maestro Biaggio 

In Book 14 of his Trattato, Benedetto presents a sequence of 140 numerical 
problems derived from a lost "Trattato di Praticha" written by the Florentine 
master Biaggio, who died circa 1340. Twenty-eight of these are mercantile 
problems. The others are theoretical: they lead to algebraic equations all belong­
ing to the types solved by Benedetto in Book 13. One of these problems leads to 
an equation 

which, according to Biaggio followed by Benedetto, "non pUD essere". In fact, 
this equation has no real roots. 

Another problem of Biaggio leads to an equation 

The only positive solution is 

x=V10. 
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3. Antonio Mazzinghi 

In Book 15 of his Trattato, Maestro Benedetto has included a short bio­
graphy of Maestro Antonio, who was a member of the family of the Mazzinghi. 
He had his atelier ne ar Santa Trinita at Florence, and he became very famous, 
not only in arithmetic and geometry, but also in astrology and music. He died 
circa 1390. 

From Antonio's treatise "Fioretti" Benedetto quotes several rat her difficult 
problems, such as 

To find numbers in continuous proportions such that their sum is 19 and the sum of their 
squares 40. 

In modern notation, the conditions for the three numbers x, y, z are 

x+y+z=lO 

x:y=y:z 

x 2 + y2 + Z2 = 40. 

From these equations one derives first 

2xy+2xz+2yz= 100-40= 60 

XZ=y2 

and next, replacing the term x z by y2, 

and finally 

hence 

2(x+ y+z) y=60 

y= 3 

x =-!-(7 +V13), z=-!-(7 -VB). 

It seems that Antonio Mazzinghi was the first to introduce, besides the 
traditional name "cosa" for an unknown quantity, a special name for another 
unknown. One of his problems reads: to find two numbers such that their sum 
is 18 and the sum of their squares 27. He now assurnes the first number to be 
"una cosa meno la radice d'alchuna quantita", and the second "una chosa piu la 
radice d'alchuna quantita". That is, he supposes the two numbers to have the 
form 

x-VY and x+Vy· 

I feel we cannot but admire the mathematical ability of Maestro Antonio. In 
their paper in Historia Math. 10, Franci and Toti Rigatelli conclude that many 
algebraic methods usually ascribed to Luca Pacioli were already used by the 
Florentine abbacists Biaggio, Antonio Mazzinghi, and Benedetto. 
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Two Anonymous Manuscripts 

Two Italian manuscripts from the Biblioteca Nazionale di Firenze, namely 

Fond. Princ. II.V. 152 
and 

Conv. Sopp. G.7. 1135, 

contain very interesting methods forsolving cubic equations. By the kindness of 
Raffaella Franci I have seen a preprint of her paper "Contributi alla risoluzione 
dell'equazione di 3° grado nel XIV secolo", to be published in Festschrift 
Gericke (Steiner-Verlag, Wiesbaden). 

The first manuscript just mentioned contains a sequence of 22 equations 
which can be reduced to quadratic or pure cubic equations. The seqllence ends 
with three types we have met already in the work of Benedetto, namely 

20. 

2l. 

22. 

Next comes an extremely interesting passage concerning cubic equations of 
the three types 

23. 

24. 

25. 

ax 3 +bx2 =c 

ax 3 =bx2 +c 

ax 3 +c=hx2 • 

For the solution of these equations, the author presents prescnptlOns as 
folIows. First the eqllations are divided by a and thus reduced to the case a = l. 
In the case 23. we now have to solve an equation of the form 

Next, x+tp is introduced as a new unknown, wh ich I shall call y. Thus one 
obtains an equation of the form 

(16) y3=ry+s. 

If y is a solution of the equation (16), y is called "the cllbe root of s with 
supplement r" (la radice cubica di s con l'aggiunta di r). For instance, the cube 
root of 44 with supplement 5 is 4, because 

If the supplement is left indetermined, it is always possible to find the root: 
one has just to find a number y such that y3 exceeds s. But if the supplement is 
given, one has to proceed by trial and error. 
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It may happen that in (16) the term s is negative. For instance, the equation 

leads to x+6= y and 

(17) 

In this case, the author says that one has to find the cube root of "debito 80" 
with supplement 108. Thus, negative numbers are regarded as debts. The so­
lution of (17), found by trial and error, is y = 10. 

The second manuscript discusses the same twenty-two types of problems 
reducible to linear and quadratic equations as the first, and next two more types, 
corresponding to types 23 and 25 of the first manuscript, but illustrated by 
different numerical examples, namely by two examples for type 23: 

24x 3 +81x2 = 516 (solutionx=2) 

3x3 + 27 x 2 = 1620 (solution x = 6) 

and by one example for type 25: 

16x2 = x 3 + 576 (solution x = 12). 

The method of solution is the same as in the first manuscript. 

We now co me to the best known author of this period: 

Luca Pacioli 

Luca Pacioli's main work "Summa de arithmetica, geometria, proportioni e 
proportionalita", written in Italian in 1487, was printed at Venice in 1494. It was 
very influential. 

As compared with Fibonacci, Luca has a simpler algebraic notation. He 
denotes the square root by R or R2, the cube root by R3, the fourth power root 
by R4 or RR (Radix Radix). The unknown in an equation is denoted by co. 
(cosa), its square by ce. (censo), its cube by cu. (cubo), its fourth power by ce. ce. 
(censo censo). If a second unknown is introduced, it is called "quantita". For 
addition and subtraction the signs p and mare used. Thus, 

RV40mR320 

means V 40 - V 320. The letter V indicates that the root has to be extracted 
from the whole expression that follows (V= U = Universale). 
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At the end of his book, Luca Pacioli states that for equations, in which 

numero, cosa e cubo (n, x and x 3 ) 

or numero, censo e cubo (n, x 2 and x 3 ) 

or numero, cubo e censo de censo (n, x3 and x 4 ) 

occur, "it has not been possible until now to form general rules". 
Soon afterwards, these cubic and biquadratic equations were solved by 

Scipione deI Ferro, Tartaglia, Cardano, and Ferrari, as we shall see in Part C 
of the present chapter. Before discussing the work of these sixteenth century 
algebrists, we have first to consider a very remarkable abbaeist living at Pisa in 
the fourteenth century. 

Part B 
Master Dardi of Pisa 

A little known work of Master Dardi of Pisa entitled "Aliabraa argibra" has 
been examined by Warren Van Egmond in arecent paper "The Algebra of 
Master Dardi of Pisa" in Historia Mathematica 10, p.399-421 (1983). I think I 
can do no better than quote his Summary: 

This article presents a summary list of 198 different types of equations and their rules of solution 
found in an algebra text of the 14th century, which is attributed to an otherwise unknown master 
Dardi of Pisa. The text is especially noteworthy for its unusual length, its adept handling of complex 
equations involving radicals and powers up to the 12th degree, and its correct solution of Cour 
irreducible cubic and quartic equations. 

The importance of Dardi's treatise for the history of algebra has already be 
pointed out by Guillaume Libri in the second volume of his "Histoire des 
Sciences Mathematiques en Italie" in a footnote on page 519. 

Dardi's treatise is extant in three Italian co pies and one Hebrew translation, 
which was written in 1473 by Mordechai Finzi at Mantua. Finzi states that 
Dardi wrote his treatise in 1344. 

Dardi's list of problems begins with the six well-known types of linear and 
quadratic equations. Next co me cubic and biquadratic equations such as 

7. 

8. 

12. 

which can be solved by extracting cube roots or square roots. After this, Dardi 
presents a long sequence of equations (most of them involving radicals) which can 
be reduced to quadratic or pure cubic equations, for instance 

37. n=ax+~. 
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Four special cases inserted between nos. 182 and 183 deserve special attention, 
because they involve irreducible mixed cubic and biquadratic equations. In 
modern notation, these four equations can be written as 

(1) 

(2) 

(3) 

(4) 

=n 

dx+cx 2 +bx3 +ax4 =n 

dx +cx2 +ax4 =n+bx3 

dx +ax4 =n+cx2 +bx3. 

Dardi presents rules for the solution of these equations. However, as he 
himself admits, his rules are valid only in the special cases considered, not in 
general. In aIl cases, he first instructs us to divide all coefficients by a, so that, 
for instance, Equation (1) is reduced to the simpler form 

(1 ') 

The solution of (1') is given as 

(5) x=V(c/W+n-c/b. 

Now the question arises: How did Dardi arrive at his rule (5)? 
I don't know the answer, but I may venture a hypothesis. In the work of al­

Khwärizmi and also in that of Leonardo da Pisa a quadratic equation 

is solved by adding to both sides a constant such that the left hand side becomes 
a complete square (x + b/2)2. Now let us try to add to both sides of (1') a 
constant such that the left hand side becomes a cube (x + L)3. Under what 
conditions does this procedure work? 

AI-Khwärizmi and Leonardo da Pisa both iIlustrate the formula for the 
square of (x + b/2) by a drawing like our Fig. 10. Now let us try to draw a 

L 

x L 

Fig.11 
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similar diagram for (x + L? (see Fig. 11). GeometricaUy, it is clear that the larger 
cube can be divided into eight parts: 

one part x 3, called "il cubo", 

three blocks x2 L, 

three blocks xe, 
and one cube IJ. 

If one now supposes that these parts are just equal to the three terms on the 
left hand side of (1') plus a constant term to be added to both sides, one obtains 
three conditions that have to be satisfied, namely 

(A) Added Term =L3 

(B) "Number of Cose" c =3L2 

(C) "Number of Squares" b=3L. 

Condition (A) can always be satisfied by a suitable choice of the added 
term. Dividing (B) by (C), one obtains 

L=clb. 

Now Dardi's example is chosen in such a way that L = clb satisfies (B) and 
(C)' The Equation (1') can now be written as 

(x+L?=n+IJ 
and its solution is 

x=Vn+IJ -L=Vn+(clb? -clb, 

in fuU accordance with Dardi's solution. 
Dardi's example of an equation (1) is 

(1') x3 + 60x2 + 1200x=4000. 

In this case it is completely clear that the equation can be written as 

(x + 20)3 = 4000 + 8000 = 12000 

and solved by extracting a cube root. 
Dardi's example (1') comes from a loan problem. The same problem is also 

found in a manuscript entitled "Trattato d'Abaco" by Piero della Francesca, 
the famous painter. See Gino Arrighi: "Note di Algebra di Piero deUa Fran­
cesca", Physics 9, p. 421--424 (1967). In this Trattato we find three loan problems, 
two of which also occur, with exact1y the same numerical data, in Dardi's 
treatise. 

The first problem reads: 

Someone lends to another one 100 Lira, and after 3 years receives 150 Lira with annual 
capitalization of the interest. One asks at what monthly rate of interest the loan was gi.ven. 
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The monthly rate of interest is expressed in denarii pro Lira, 1 Lira being 
20 x 12 denarii. Thus, if the monthly rate of interest is x denarii pro 1 Lira, the 
annual interest is 12 x denarii pro Lira, and the rate of interest is x/20. Thus one 
obtains the equation 

100 (1 + ;oY = 150 

or, if one multiplies by 80 

(x + 20)3 = 12000 

which is just Dardi's equation (1'). 
The second problem is similar. If the creditor gets 160 Lira after 4 years, the 

eq uation for x becomes 

(x + 20)4 = 256000 
or 

x4 + 80 x3 + 2400 x 2 + 32000 x = 96000 

wh ich is Dardi's equation (2'). It can be solved by extracting a fourth power 
root. 

The originator of these three problems seems to be Dardi. 
Dardi's examples of Equations (3) and (4) are not of the same type. His 

examples read 

(3') x4 +28 x 2 + nox =20x3 + 1800 

and 

(4') 

The problems leading to Equations (3') and (4') are both of the same form, 
namely 

Problem P. To divide 10 into two parts such that their product divided by their 
dijJerence is V g, 

with g = 18 in (3') and g = 28 in (4'). 

(6) 

If one part is called x and the other 10 - x, we have 

x(lO-x) Vg 
x-(lO-x) 

with g = 18 or g = 28. In the first ca se we have 

or 

(7) x4 -20x3 + 28 x' + nox= 1800, 

which is Dardi's equation (3'). 
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In the seeond ease, we have 

or 

(8) 

whieh is Dardi's equation (4'). 
Dardi's solution of Equation (3) with a= 1 reads 

(9) x = V(C/4)2 + n + b/4 - v' d/2b 

and his solution of (4) with a = 1 reads just so. 
How did Dardi arrive at this eurious formula? Onee more, I may venture a 

hypothesis. 
The Equation (6) may be written as a quadratic equation 

or 

(10) 

The solution of (10) is 

or 

(11) 

On the other hand, the squaring of (6) yields 

or 

(12) 

and if we write this as 

we have 

(13) b=20, c=100-4g, d=40g, n=l00g. 

Now, if one inserts the values (13) in Dardi's formula (9), one obtains 

x=V(25 - g)2+ 100g + 5 -v' g, 

whieh aeeords with (11). 
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Dardi's problem was: How can Iwrite the solution (11) in a form like (9), in 
which not special numbers like 5 and g (equal to 18 or 28) occur, but only 
expressions which can be calculated from the coefficients (13)? 

Now let us try to find out how Dardi solved his problem. Let's consider the 
three terms of (11) separately. 

The first term 5 was obtained by halving the 10 given in the Problem P, and 
b=20 was found by doubling this term. So, the first term in (11) can only be 
generalized to b/4. Thus, the second term in (9) is explained. 

The second term V g in (11) is the square root of the given number g (equal 
to 18 or 28), and the coefficient d is 40 g, so if we divide d by 2 b = 40 we obtain 
just g. Hence the third term in (9) is 

The first term in (9) is more difficult to explain. I suppose that Dardi wanted 
to obtain an expression analogous to his formula (5). In (5) the first term is a 
third root of "something plus n", where n is the constant term on the right hand 
side ofhis equation (1). Just so, Dardi had obtained a solution of(2), in which a 
fourth root of "something plus n" occurred. So I suppose that Dardi wanted to 
write the third term of (11) in the form 

o/something plus n. 

He reached his aim by making the "something" equal to (C/4)2, for we have 

0/(C/4)2 + n = 0/(25 - g)2 + 100 g 

=0/(25+g)2 =V25+g. 

Of course, may hypothesis is not proved, but it does at least explain the facts. 
In any case we cannot but admire Dardi's skill in finding his formula (9) without 
the help of our algebraic notation. 

Part C 
The Solution of Cubic and Biquadratic Equations 

The solution of the general cubic equation is due to the sixteenth century 
Italian algebrists Scipione deI Ferro, Tartaglia, and Cardano. I shall now de­
scribe their work, wh ich is of fundamental import an ce for the history of algebra. 

Scipione deZ Ferro 

The general cubic equation 
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ean be redueed, by introdueting a new variable 

x'=x+ta, 

to the simpler form 

If only positive eoeffieients and positive values of x are admitted, there are 3 
types 

(1) 

(2) 

(3) 

x 3 +px=q 

x 3 =px+q 

x 3 +q=px. 

The first to solve equation (1) was Seipione deI Ferro, who was professor at 
the university of Bologna until his death in 1526. Aeeording to E. Bortolotti 
(Periodieo di Matematiea, serie 4, Vol. 5, 1925, p. 147-184) he aetua11y solved a11 
three problems (1), (2), (3), but this is not quite eertain. 

The fundamental idea underlying the solution of (3) is very simple. I sha11 
follow Cardano's explanation of the method, given in his book "Ars Magna, sive 
de regulis algebraieis" (first printed in Nürnberg 1545), Chapter 11. Cardano 
starts with the example 

(4) 

Cardano expresses this equation in the language of his "rhetorieal algebra", 
as 

"Let a eube and six time its side equal 20". 
Cardano's idea is, to solve the equation (4) by putting 

(5) x=u-v. 

Cardano expresses this in geometrie terminology as folIows. He represents 
our u by a line segment AC, and our v by CK, and then he says: "Marking off 
BC equal to CK, I say that, if this is done, the remaining line AB is equal to 
GH" (that is, to our x). 

A B c K 

Fig.12 

Substituting x=u-v into (4), one obtains 

x 3 +6x=(u _V)3 +6(u -v) 

=(u3 _v3 ) - 3 u v(u -v) + 6(u -v) =20. 
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(6) 

(7) 
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Now u and v are subjected to the following conditions 

3uv= 6. 

Then it follows that x = u - v satisfies the required equation 

In Cardano's geometrical terminology the reduction of (U-v)3 to 

is very cumbersome, but the fundamental idea is the same. 
It is easy to determine u and v from the conditions (6) and (7). From (7) one 

finds 
uv=2 

hence 

Now the difTerence and the product of the two cubes u3 and v3 are known, 
and one finds 

u3 =V108 + 1O 

v3 =V108-1O, 

so u and v are cube roots of known numbers, and we have 

x=YV108 + 10 -YV108-10. 

Cardano formulates this as a general rule: 
Cube one third the "number of sides" (i.e. one-third the coefficient of x). Add to it the square of 

one-half the constant of the equation, and take the square root of the whole. You will put this 
twice, and to one of the two you add one-half the number you have squared and from the other 
you subtract one half the same. You will then have a binomium (V 108 + 10) and its apotome 
(V 108 -10). Then, subtracting the cube root of the apotome from the cube root of the binomium, 
the remainder is the required side. 

Scipione deI Ferro never published his solution: he only told a few friends. 
Among these was his pupil Antonio Maria Fiore, from Venice. With his en­
trance into the scene, a dramatic development begins. 

Tartaglia and Cardano 

At this time challenge disputes, often for considerable sums of money, were a 
normal form of competition in the learned world. A mathematics teacher in 
Venice, NiccolD Tartaglia, born in Brescia in 1499, was very successful in these 
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contests and won several prizes. Tartaglia, "the stutterer", was his nickname; his 
real name seems to have been Niccolö Fontana. 

In 1535, Tartaglia was challenged to a problem-solving contest by Scipione 
deI Ferro's pupil Fiore. There were to be 30 questions, and the loser was to pay 
for 30 banquets. Tartaglia prepared a variety of problems, but Fiore had only 
one arrow to his bow: all his problems were equations of the form (1). The night 
between February 12 and 13; shortly before the experiation of the allotted time, 
Tartaglia had an inspiration. He discovered the method of solution of equation 
(1), and solved all 30 problems within a few hours. In the contest, Fiore proved 
unable to solve most problems of Tartaglia and was declared the loser. The 
honour alone was satisfaction enough to Tartaglia, and he renounced the 30 
banquets. 

Early in 1539, another actor entered the scene: Gerolamo Cardano, a famous 
medical doctor, astrologer, philosopher, and mathematician, who lived in Mi­
lan. His life has been vividly described by Oystein Ore in his book "Cardano, 
The Gambling Scholar" (Princeton 1953, reprinted by Dover, New York 1965). 
Cardano had heard of Tartaglia's discovery, and he approached Tartaglia, send­
ing the bookseller Zuan Antonio da Bassano to Venice as an intermediary. As 
Tartaglia would not reveal his method, Cardano urged him to come to Milan 
and to stay in his house; he promised Tartaglia to introduce hirn to the 
marchese Alfonso d'Avalos, the military commander of Milan. 

Tartaglia accepted the invitation. He had made some military inventions, and 
he was eager to show them to the marchese. 

After Tartaglia's arrival at Milan, Cardano persuaded hirn to reveal the 
secret of the solution of "the cube and the cose", that is, of the equation (1). 
Cardano swore an oath that he would never publish Tartaglia's discovery. The 
oath was sworn, according to Tartaglia's account, on March 25, 1539. 

Right after Tartaglia's visit, Cardano succeeded in extending the method of 
solution of Equation (1) to the other types (2) and (3). In these two cases, one has 
to write the solution as u + v instead of u - v. For the rest, the calculation is just 
the same. Thus in case (2) one has 

with 

(8) 

and hence 

(9) 

x 3 -px=q 

x=u+v 

x3 - px=u3 +v3 +3u v(u+v)-p(u+v)=q 

3uv=p 

U3 +V3 =q 

u3 =tq+w 

v3 =tq-w 

x=u+v=Vtq+w+V-tq-w. 
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But now a new difficulty arises. The difference under the root sign in (8) may 
become negative. In this case, the so-called "casus irreducibilis", no real square 
root is possible. Yet, the equation can be solved in real numbers. In the "casus 
irreducibilis" there are even three real roots. They may be obtained as folIows. 

In the "casus irreducibilis" we may write w = vi - c. The two expressions t q 
+ wand t q - ware complex conjugates. F or the first cube root in (9) we have 
three possibilities: the root may be multiplied by a cube root of unity. Because 
of the condition 3 LI V = p, the second cube root in (9) must be chosen complex 
conjugate to the first, so the sum is always real, no matter which of the three 
possibilities is chosen. 

Cardano knew about this difficulty, for in Chapter 1 of his" Ars Magna" he 
presents a complete discussion of the number of positive or negative roots of 
cubic equations of the types (1), (2), (3). He knows that in the cases (2) and (3), if 
(t p)3 exceeds (i q)2, there are all in all three real roots. However, in explaining 
the solution by means of cube roots, he carefully avoids the "casus irreducibilis". 
In all of his examples, w is always a root of a positive number, and there is only 
one (positive) root. 

In the "casus irreducibilis" one has to extract a square root from a negative 
number. Such square roots, which we now call "imaginary", oceur also in 
another chapter of the "Ars Magna". In Chapter 37, Cardano poses the prob­
lem: To divide 10 in two parts, the produet of whieh is 40. He writes: 

It is dear that this case is impossible. Nevertheless, we will work thus: We divide 10 into two 
equal parts, making each 5. These we square, making 25. Subtract 40, if you will, from the 25 thus 
produced, as I showed you in the chapter on operations in the sixth book, leaving a remainder of 
-15, the square root of wh ich added to or subtracted from 5 gives parts the product of wh ich is 40. 

These will be 5 + 1/-=15 and 5 - V - 15. 

Cardano next verifies that the two numbers thus obtained satisfy the 
required conditions. He writes: 

Putting aside the mental tortures involved, multiply 5 + y-=-15 by 5 - Y -15, making 25 - ( -15), 
which is + 15. Hence this product is 40. ". This is truly sophisticated. ". (Trans la ted by T.R. 
Witmer: The Great Art or The Rules of Algebra by Girolamo Cardano, M.LT. Press, Cambridge, 
Mass. 1968.) 

As far as I know, Cardano was the first to introduce eomplex numbers 
a + -v-=:tJ into algebra, but he had serious misgivings about it. 

Lodovico F errari 

In 1536, a youth of 14 years eame into Cardano's household as a servant. He 
learned mathematies and developed into an eminent mathematieian, Cardano's 
friend and seeretary. 

Ferrari discovered that the general equation of degree 4 can be redueed to a 
eubie equation and henee be solved by means of square roots and eube roots. 
Cardano explained Ferrari's method in Chapter 39 of his" Ars Magna", and he 
stated that "it is Lodovico Ferrari's, who gave it to me on my request". 

Cardano's exposition of the method starts with a theorem about squares and 
reetangles, whieh he explains as folIows: 



The Solution of Cubic and Biquadratic Equations 57 

K N H 

M F 
E 

0 
L 

A B C G 

Fig.13 

"Let the square AF be divided into two squares AD and DF, and two 
supplements, DC and DE, and let me add the gnomon KFG around it in order 
to complete the whole square AH (see Fig. 13). I say that this gnomon will 
consist of GC 2 plus twice the added line GC x CA, for FG is GC x CF, from the 
definition given at the beginning of the second book of the Elements, and CF 
equals CA by the definition of a square. Since, according to 1,43 of the 
Elements, KF equals FG, the two surfaces GF and FK consist of GC x 2 CA, 
and GC2 equals FH, according to the corollary to II,4 of the Elements. Bence 
the proposition is dear. H, therefore, AD equals x 4 , and CD and DE [each] 
equal 3x2 , and DF equals 9, BA will equal x 2 and BC will necessarily equal 3. 
Since, therefore, we shall wish to add more squares to DC and DE, these will be 
CL and KM. In order to complete the whole square LMN is necessary. This, as 
has been demonstrated, consists of the square of GC [plus 2GC x BC], one-half 
the [original] number of squares, for CL is the surface produced by GC x AB, as 
has been shown, and AB is x2 because we assumed that AD is x4 and, therefore, 
FL and MN are made up of GC x CB, according to 1,42 of the Elements. Bence 
the surface LMN (this is the number to be added) is GC x 2BC (that is, times 
the coefficient of x 2 , which is 6) plus GC times itself (that is, times the added 
number of squares). This demonstration is our own." 

Let me explain this, using our modern algebraic notation. H we put AB = s, 
BC = a, and CG = b, the theorem proved by Cardano is equiva1ent to the 
identity 

(s+a+b)2 =(s+a)2 +2s b+2ab+ V 

In the appliation of this identity to the solution of the biquadratic equation, 
Cardano takes for s = AB the square of the unknown x, so that he obtains 

(10) 

In a biquadratic equation, the term x 3 can always be made to disappear, so 
only terms with x 4 , x 2, x, and a constant term remain. As an exampJe, Cardano 
considers the equation 

(11) x 4 +6x2 + 36 =60x. 
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In order to reduce the left-hand side to a square (x2 + a)2, he adds 6 x 2 to 
both sides, thus obtaining 

(12) 

Next he says: 

Now if 6x2 +60x had a square root, we would have the solution. But it does not. Hence there 
must be added to both sides alike enough squares and a number so that on one side there is a 
trinomium with a root and on the other the same. 

This means: if 6 x2 + 60 X would be the square of a binomium p x + q, we 
would extract square roots from both si des of (12). But since 6 x2 + 60 x is not a 
complete square, we have to add a term 2 b x 2 and a constant term to both sides 
in order to obtain complete squares on both sides. Putting a = 6 in the identity 
(10), Cardano has an identity 

(x 2 +6+b)2 =(x2 +6)2 +2b x 2 + 12b+b2. 

So, if one adds 

to both sides of (12), one obtains 

(13) (x 2 +6 +b)2 =(6 x2 + 60x) +(2 b x 2 + 12 b + b2 ) 

=(2 b+6)x2 +60x+(b2 + 12 b). 

Now b is chosen in such a way that the right hand side of (13) becomes a 
complete square of a binomium p x + q. The condition for this is 

(2b+6)(b2 + 12b)=302 
or 

or 

(14) 

This is a cubic equation for b, which can be solved by the method explained 
in an earlier chapter of Cardano's book. The result is 

b=V190+1I33903 +V190-1I33903 -5. 

Now the right-hand side of (13) is a complete square, and one can extract 
square roots from both sides, thus obtaining a quadratic equation for x. 

Cardano and Ferrari now were in a awkward position. They had made 
extremely important discoveries, but they could not publish them, because 
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Cardano had sworn an oath by the Sacred Gospel never to publish Tartaglia's 
solution of the cubic equation, which formed the basis of their common work. 

In the year 1543 Cardano and Ferrari decided to go to Bologna and ask 
Annibale delIa Nave whether there was any truth in the rumours that Scipione 
deI Ferro had discovered the solution of the cubic equation even before Tarta­
glia. They were welI received and readily given permission to examine the 
posthumous papers of Scipione, in which the solution was clearly explained. 

Now Cardano decided to publish the solution of the cubic and biquadratic 
equation in his book "Ars Magna" (1545), stating clearly that the solution of 
equation (1) had been discovered by Scipione deI Ferro and rediscovered by 
Tartaglia, that he himself had extended the solution to equations (2) and (3), and 
that the solution of the biquadratic equation was due to Ferrari. 

Tartaglia was furious. The very next year he published the story of the oath, 
with all details, including the text of the oath. 

Rafael Bombelli 

Rafael Bombelli was the author of a very influential work in three books 
entitled l'Algebra. It was first printed in Venice 1572, and next in Bologna 1579. 

BombelIi admired Cardano's "Ars Magna", but he feIt that Cardano had not 
been clear in his exposition ("ma nel dire fu oscuro"). So he decided to write a 
treatise that would enable a beginner to master the subject without the aid of 
any other book. 

Book 1 of Bombelli's Algebra deals with the calculation of radicals, in 
particular of square roots and cube roots. Very remarkable is his approximation 
of square roots by continued fractions. To approximate V2, Bombelli writes 

(1) 

(2) 

(3) 

From this he finds 

1 
V2=1+-. 

Y 

y= 1 +V2. 

By adding 1 to both sides of (1), one obtains 

1 
y=2+-. 

Y 

Substituting (3) into (1), Bombelli finds 

1 
V2=1+-1· 

2+­
y 
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I shall follow the usage to write this continued fraction as 

1 1 
1+--. 

2+ Y 

Continuing in this way, Bombelli obtains an infinite continued fraction 

111 
V2=1+---" .. 

2+ 2+ 2+ 

If, after a finite number of steps, one neglects l/y, one obtains an approxima­
tion of V 2, for instance 

or 

and so on. 

l+i=t 
1 1 7 

1+--=-
2+ 2 5' 

Bombelli applies the same method to other square roots such as VB. He 
obtains a first approximation 

and a second approximation, replacing the 6 in the denominator by 6 + t 

4 4 3 
V13~3+--=3-. 

6+ 6 5 

Chapter 2 of Bombelli's Algebra deals with the solution of equations up to 
degree 4. For the cubic and biquadratic equations he follows Cardano. In 
contrast to Cardano, he fully discusses the "casus irreducibilis". Solving the 
equation 

(4) 

by the rule of Cardano, he finds 

(5) x=V2+V -121 +V2-V -121. 

Following Cardano, Bombelli calls the imaginary roots "sophistic", but he 
notes that the equation (4) is by no means impossible, for it has the root x=4. 
He now investigates whether he can attach a meaning to the cube root of a 
complex number. More precisely, he tries to equate the first cube root in (5) with 

a complex number p+V -q: 

(6) V2+v -121 =p+V -q. 

This would yield 

2+V -121 =(p3 - 3 pq)+(3 p2 -q)V -q. 
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This equation can be satisfied by putting 

(7) 

and 

(8) 

Now if these two conditions are satisfied, we also have 

(9) {h-v -121 =p-v -q. 

Multiplying (6) and (9), Bombelli obtains 

or 

(10) 

Substituting this into (7), one obtains a cubic equation for p: 

(11) 

A solution of this equation is p = 2, and from (10) one has 

so we have 

and 

hence 

q=5-4=1, 

{h-V -121 =2-V -1, 

X=V2+ V -121 +V2 -11-121 

=(2+V -1)+(2-V -1)=4. 
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After having found this result, Bombelli was very much satisfied. He writes: 
"At first, the thing seemed to me to be based more on sophism than on truth, 
but I searched until I found the proof." 

Bombelli introduced a notation for what we call + i, namely piil di meno, and 
for - i, meno di meno. He presented rules of ca1culation such as 

meno di meno uia men di meno Ja meno, 

wh ich means 
( - i) x ( - i) = -1, 

and he gives some examples of ca1culations involving complex numbers. 
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I shall give an example of Bombelli's notation. The expression 

V2+V -121 =V2+11 i, 
whieh oeeurs in his solution of a eubie equation, is written as 

R.e. L 2 p. di m.1U. 

Here R.e. me ans Radiee eubiea. The Letter Land the inverted L at the end 
play the role of braekets: the eu be root is to be extraeted from the whole 
expression between the Land the inverted L. The abbreviation p. di m. means 
piu di meno. 



Chapter 3 
From Viete to Descartes 

Fran(:ois Vzete 

For the life of Fran<;ois Viete (1540-1603) see the article VIETE by H.L.L. 
Busard in Dictionary of Scientific Biography XIV, p. 18-25. 

Viete was born in Fontenay-le-Comte on the river Vendee. He studied law 
at the University of Poitiers, where he received a bachelor's degree in 1560. 
Four years later he ente red the service of Antoinette d'Aubeterre as a secretary 
and educator of her daughter Cath6rine de Parthenay. His lectures on the 
elements of geography and astronomy have been published in 1637 under the 
tide "Principes de cosmographie". His "Harmonicon coeleste", a treatise in 
five books on Ptolemaic astronomy, is ex ta nt in several manuscripts. 

In 1571, Viete began to publish his "Canon mathematicus, seu ad tri­
angula cum appendicibus". The publication of the first two books, dealing 
with plane and spherical trigonometry, was finished in 1579. The last two 
books of the Canon, on astronomy, have not been published. 

In 1573, Viete was appointed counselor to the parliament of Brittany at 
Rennes, and in 1580 he became "rnaltre de requetes" at Paris, an office 
attached to the parliament. In 1584 he was banished from the royal court, but 
in 1589 he was recalled by Henri III and became counselor of the parliament 
at Tours. 

During the war against Spain, Viete served Henri IV by decoding in­
tercepted letters written in a code. For details of his decoding see D. Kahn: 
The Code Breakers (New York 1968), p. 116-118. 

Viete returned to Paris in 1594 and to Fontenay-Ie-Comte in 1597. 
Most important for the history of algebra is Viete's "In artem analyticem 

Isagoge" (Tours, 1591). His aim was, to re vive the method of analysis explained 
by Papp os in his great "Collection" and to combine it with the methods of 
Diophantos. To the two kinds of analysis mentioned by Pappos Viete added a 
third, which he called "rhetic" or "exegetic" (from 8~I1Y80J1rxl = to lead, to show 
the way), and which he defined as the procedure by which an unknown 
magnitude is found by solving an equation. 

Viete was the first to use letters not only for unknowns but also far known 
quantities. He used the consonants B, C, D, ... to denote known quantities, and 
vowels A, E, ... to denote unknowns. 

In Chapter 3 of his "Isagoge", Viete explains his "Law of Homogeniety", 
according to which only magnitudes of "like genus" can be compared or 
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added. Thus, where we would write a quadratic equation as 

bx2 +dx=z, 

Viete writes 
"B in A Quadratum, plus D plano in A, aequari Z solido". 

Namely, by Viete's Law of Homogeneity, if A (our x) and B (our b) are line 
segments, D must be a plane area and Z a volume. Hence he writes "D plano" 
and "Z solido". 

This law implies a serious restriction of the algebraic formalism. As we 
have seen, Omar Khayyam managed to circumvent this restriction by in­
troducing a unit of length e. We shall see that Descartes used the same trick. 

In Chapter 4, Viete formulates the "canonical rules" of "species calcu­
lation ", that is, of calculation with letters, as opposed to calculation with 
definite numbers. 

In Chapter 5, Viete presents rules for solving equations. One operation 
called "antithesis" is the transfer of terms from one side of an equation to the 
other side, corresponding to what the Arabic algebrists call al-jabr. Another 
operation is the division of all terms of an equation by one and the same 
"species", and so on. 

In 1593 Viete published his "Zeteticorum libri quinque" (five books on 
finding). In this work he explained the solution of several determinate and 
indeterminate problems. Some of the problems are taken from the "Arith­
metica" of Diophantos. A typical example is the problem: to divide a number, 
which is a sum of two squares, into two other squares. 

In two further treatises Viete discusses the geometrical solution of algebraic 
equations. In the first, entitled "Effectionum geometricarum canonica recensio ", 
he shows that the solution of quadratic equations can be constructed using 
circles and straight lines only. For instance, in order to solve the equation 

Viete constructs two perpendicular li ne segments Band D, next he draws a 
semi-circle centered at the midpoint of B. The two remaining parts of the 
diameter are equal to A (see Fig. 14). 

8 

Fig.14 

In Viete's second treatise "Supplementum geometriae" (1593) he adds to 
Euclid's construction postulates for straight lines and circles one more pos­
tulate, namely: "To draw a straight line from a given point across any two 
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lines (straight lines or a straight line and a circle) such that the intercept 
between the two lines is equal to a given distance". In the history of Greek 
mathematics, constructions based on this postulate are called "neusis con­
structions ". 

By means of this postulate, Viete first solves the problem of constructing 
two mean proportionals between two given line segments. The solution of this 
problem immediately yields the doubling of a cube. Next, Viete solves the 
triseetion of an angle. By the same method he also constructs a regular 
heptagon inscribed in a circle. Finally he shows that all geometrical problems 
leading to cubic or biquadratic equations can be solved by means of neusis 
constructions. 

In the same year 1593, Viete decided to publish book VIII of his" Variorum 
de rebus mathematicis responsorum". In Chapters 1-7 of this book he discusses, 
once more, the doubling of the cube, the trisection of an angle, and the 
construction of a regular heptagon. In Chapter 8 he considers the quadratix, in 
Chapter 11 the lunules that can be squared, and in Chapter 16 he presents a 
construction of the tangent at any point of an Archimedian spiral. 

Most interesting is Chapter 18, in which n is represented as an infinite 
product. The area of a polygon of 4 x 2n sides inscribed in a circle of radius 1 
can be written as 

with 

2 

c1=V! 
C2 =Vt+tCl 
c3 =V!+!C2 

and so on. Letting n go to infinity, one obtains 

2 
n=---­

C1 C2 C3··· 

In 1593 the Dutch mathematician Adrianus Romanus proposed to all 
mathematicians the problem of solving a certain equation of degree 45. The 
ambassador of the Netherlands at the court of the French king Henri IV 
claimed that nobody in France would be able to solve this problem. The king 
thereupon informed Viete of the challenge. Viete saw that the equation was 
solved by the chord subtending an are of 8 degrees in a circle of radius l. 
Thus, the solution can be found by dividing the circumference into 45 equal 
parts. During the same audience, Viete presented one root of the equation, and 
the next day all 23 positive roots. He published his solution in 1595 in a 
treatise entitled "Ad problema, quod omnibus mathematicis totius orbis con­
struendum proposuit Adrianus Romanus, responsum". 

In 1615, after the death of Viete, his Scottish friend Alexander Anderson 
published in one volume two papers of Viete entitled "De aequationem re-
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cognitione" and "De equationem emendatione". In the latter paper Vit~te dis­
cusses several methods of transforming equations. For instance, if one has one 
root D of an equation, one can obtain an equation of lower degree. For this, 
Viete presents several examples. 

Another example. Let a cubic equation 

(1) 

be given, and let E satisfy the condition 

(2) 

For us, this means that -E is a root of the original equation (1), but Viete 
does not acknowledge negative roots. From (1) and (2) he concludes 

or 
(A + E) (A 2 - AE + E 2 ) = B· (A + E). 

Now one can divide by A+E, and one obtains a quadratic equation for A. 
In the same paper, Viete deals with the solution of biquadratic and cubic 

equations. He starts with a biquadratic equation 

(3) 

If A 2 E 2 +iE4 is added to both sides, one obtains 

(4) 

The right hand side becomes a complete square, if E satisfies the equation 

or 

(5) 

which is a cubic equation for E 2 • Viete's method is essentially the same as that 
of Ferrari. 

In Chapter 7 of the "Emendatione" a new method is taught for solving the 
cubic equation 

(6) 

Viete intro duces a new unknown E by the equation 

(7) B=E(A+E). 
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Substituting (7) into (6) one obtains 

and hence 

(8) 

From (7) one can solve A + E and substitute it into (8). One obtains a 
quadratic equation for E3 : 

(9) 

which can be solved for E3 and hence for E: 

(10) 

Now A can be formed from (7). In contrast to the method explained in 
Cardano's Ars Magna, one has to extract only one cube root. Yet, the final 
result is the same as in Cardano's method, for if one introduces another 
unknown E' = A + E, one has 

B=E'(E' -A) 

and one can derive, as before, a quadratic equation for g3: 

from wh ich one obtains 

(11) 

Now A = E' - E is a differences of two cube roots, as in Cardano's Ars 
Magna. 

Viete knows ab out the relation between the roots and the coefficients of an 
equation. In Chapter 10 of the "Emendatione" he formulates a theorem: 

Si A cubus -B-D-G in A quad. +B in D+B in G+D in G in A, aequatur B in D in G: A 
explicabilis est de q uadlibet illarum trium B, D vel G. 

This means: If 

A 3 +( -B-D-G)A2 +(BD+BG+DG) A =BDG 

then A equals any one of the three quantities B, D, or G. 

Another paper published by Anderson is entitled "Ad angulares sectiones 
theoremata Krx8oA!lafrreprx" (Most General Theorems on Divisions of Angles). 
In this paper, Viele considers the trisection of an angle and uses it to obtain a 
trigonometrical solution of a cubic equation in the "Casus irreducibilis". If one 
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puts, with an arbitrary radius R, 

one has the equation 

(12) 

2R cos<p=A 

2R cos 3<p = ± B 

and every cubic equation having three real roots can be reduced to this form 
and solved by trigonometry. 

Simon Stevin 

Simon Stevin, born at Brugge in 1548, came to Leyden in 1582. Here he 
published several books on mathematics and mechanics, all in Dutch. In his 
opinion the Dutch language was, of all languages, the best to express ideas in 
general, and scientific ideas in particular. Several mathematical expressions, 
coined by Stevin, are still in use at Dutch schools. For instance, we still call 
mathematics "wiskunde", that is, the science of that what is certain (gewis). 

Stevin was an excellent engineer. He built windmills, locks, and ports. 
Maurits, the prince of Orange, the great leader in the war against Spain, used 
Stevin as an adviser in buildung fortifications. Stevin's book on this subject, 
called "Stercktebouw", became very po pul ar. It influenced the famous French 
builder of the fortifications Vauban. 

In Stevin's "Wereldschrift" (World Script) he defended the Coperican sys­
tem. His highly original books on mechanics were inspired by Archimedes. 

Most influential was a booklet of 36 pages entitled "De Thiende" (The 
Tenth), first published in 1585. In the same year Stevin brought out a French 
translation: "La Disme". For a facsimile of the Dutch edition with English 
translation see "The Principal Works of Simon Stevin", Vol. 2 (Amsterdam 
1958), p. 371-454. 

In this booklet, Stevin denotes the units by @, their tenth parts by CD, and 
so on. As an example, I shall reproduce his multiplication of 0.000378 by 0.54: 

@ (3) @ 
3 7 8 

5 4 Q) 

1 5 1 2 
1 8 9 0 

2 0 4 1 2 
@ (3) @ (j) ® 

Decimal fractions were used by the Chinese and Arabs long before Stevin 
(see J. Tropfke: Geschichte der Elementarmathematik, 4th edition, p.106 and 
110-112), but it was Stevin who made them popular in the West. 
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Soon after Steving the decimal point came into use. For instance, on page 
218 of Clavius' "Astrolabium tribus libris explicato" (Rome 1593) one finds the 
notation 46.5, and Napier, who published his table of logarithms in 1614, used 
the decimal point systematically. 

Of course, the decimal notation can be used for all real numbers, wh ether 
rational or irrational. Like our engineers, Stevin does not make a distinction 
between rational and irrational numbers. He says right at the beginning of his 
book "L'arithmetique" (Leyden 1585): 

Nombre est cela, par lequel s'explique la quantite de chacune chose, 

and 
Nombre n'est point quantite discontinue .... Il n'y a aucuns nombres irrationels, irreguliers, 

inexpliquable, ou sourds. 

Thus, with one stroke, the classical restriction of "numbers" to integers 
(Euclid) or to rational fractions (Diophantos) was eliminated. For Stevin, the 
real numbers formed a continuum. His general notion of areal number was 
accepted, tacitly or explicitly, by all later scientists. According to Descartes, 
Leibniz, and Newton, every ratio of one line to another can be expressed by a 
"number". For the wording of their definitions see J. Tropfke: Geschichte der 
Elementarmathematik I, p. 137. 

Stevin also accepted negative numbers, as did several of his predecessors. 
However, he did not accept imaginary solutions of equations, because "they 
don't help us in finding real solutions". 

In his book "Stelreghel" (= Algebra) Stevin introduced several simplifi­
cations of the algebraic notation. Thus, he used + and - for addition and 
subtraction, M and D for multiplication and division, y for square root, yQ) 
for cube root, and so on. 

Pierre de F ermat 

For a survey of the life and work of Fermat see Michael S. Mahoney: The 
Mathematical Career of Pierre de Fermat (1601-1665), Princeton University 
Press 1973. A lively description of Fermat's brilliant work in number theory 
has been given by Andre Weil: Number Theory, An approach through history, 
Birkhäuser, Basel 1983. Here we shall be concerned only with Fermat's dis­
covery of the method of Analytic Geometry. 

Analytic geometry was invented, nearly simultanuously and independently, 
by Fermat and Descartes. The invention was not very difficult, but it was of 
fundamental importance for the development of geometry and algebra. Its 
primary aim was to solve geometrical problems by algebraic methods. Con­
versely, the method can also be used to apply geometrical methods to algebraic 
problems. 

Fermat's exposition of the method of analytic geometry is explained in his 
"Introduction to Plane and Solid Loci". In January 1643, Fermat sent this 
treatise to his correspondent Pierre de Carcavi. It was published after the death 
of Fermat in his "Varia Opera" (1679), and again in a better edition in Vol. 1 
of the "Oeuvres de Fermat" (1891). 
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A 
Fig.15 

What are "Plane and Solid Loci"? Fermat gives the following explanation: 
Whenever the local end point of the unknown quantity describes a straight line or a circle, a 

plane locus results, and when it describes a parabola, hyperbola, or ellipse, asolid locus results 
(Mahoney's translation). 

Let me explain this. In Fermat's "Introduction" a variable point I is 
determined by two (orthogonal or skew) coordinates, which he denotes by A 
and E, using Viete's notation (see Fig. 15). The "local endpoint" is the endpoint 
I of the ordinate E. So, according to F ermat's explanation, a "plane locus" is a 
circle or a straight line, and a "solid locus" is a conic section. 

The first part of the "Introduction", dealing with plane loci, was finished in 
April 1636. This is clear from a letter to Mersenne, in which Fermat writes: 

I have completely restored Apollonius' treatise On Plane Laci. Six years aga I gave it to Mr. 
Prades .... lt is tme that the prettiest and most difficult problem, which I had not yet solved, was 
missing. Now the treatise is complete in every point, and I can assure you that in all of geometry 
there is nothing comparable to these propositions (Mahoney's translation). 

Wh at was this "most difficult problem"? This is clear from a letter to 
Roberval, written in September 1636, in which Fermat first explains some 
applications of his method of coordinates, and next continues: 

I have omitted the principal application of my method, which is for finding plane and solid 
loci. lt has served me in particular for finding that plane locus that I earlier found so difficult: If 
from any number of given points straight lines are drawn to a (variable) point, and if the sum if 
the squares of the lines is equal to a given area, the point lies on a circumference given in position. 

The solution of this "most difficult" problem is presented as Theorem 11 5 
of the "Introduction". Fermat first treats several special cases, in which the 
given points lie on a straight line. Next he deals with the case in which one of 
the given points (Q in Fig. 16) lies outside the line AE. To treat this case, he 

A E 

Fig.16 
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introduces orthogonal coordinates for the point Q as weIl as for the variable 
point I. The coordinates of I are IX and IY. Now the problem is easy to solve, 
and there is no difficulty in extending the method to the general case. 

In principle, the method of coordinates had al ready been used by Apol­
lonios in his "Conica". See for this subject Otto Neugebauer: Apollonius­
Studien, Quellen und Studien Gesch. der Math. B 2, p. 215-254. In the "Coni­
ca", a variable point on a conic section is determined by two line segments, 
usually called "abscissa" and "ordinate". Following modern usage, I shall 
denote the two line segments by x and y (see Fig. 17). If the point I varies on a 
conic section, there is adefinite algebraic relation between x and y, which is 
called the "symptoma" of the curve. 

Fig. 17 Parabola 

In the "Conica", the "symptoms" of the three conic sections are 

Parabola 
Hyperbola 
Ellipse 

y2 = px (see Fig. 17) 
y2: x (a+x)=p:a 

y2 :x(a-x)= p:a. 

In Fermat's "Introduction", the equation of a straight line through the 
origin reads 

D·A=B·E 

(see Fig. 18). Fermat formulates this as a theorem: 
If D· A = B· E, then the locus of the point I is a straight line. 

~ 
N A Z 

Fig.18 
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Fig. 19. Parabola 

In the same way, the parabola is treated (see Fig. 19). Fermat shows: 
If Aq. (that is, the square of A) equals D· E, the point I lies on a parabola. 

The equation of the circ1e is written as 

(13) Bq.-Aq.=Eq. 

and Fermat proves that all equations containing Aq and Eq and A and E 
multiplied with given quantities may be reduced to this Equation (13), provided 
the angle NZI is right and the coefficient of Aq. is equal to that of Eq. 

At the end of his treatise, Fermat explains a general method to reduce any 
quadratic equation in x and y to one of the special forms 

ax=by 

xy=b 

x 2±xy=ay2 

x 2=ay 
b2_X2=y2 

b2_X2= ay2 

b2+X2= ay2 

straight line 
hyperbola 
pair of lines 
parabola 
circ1e 
ellipse 
hyperbola. 

Thus every quadratic equation in x and y represents a straight li ne or a 
conic section. The same result was proved, by a different method, by Descartes, 
as we shall see presently. 

Rene Descartes 

Our algebraic notation is mainly due to Rene Descartes (1596-1650). Des­
cartes introduced this notation right at the beginning of his treatise "La 
geometrie", in which the principles of "analytic geometry" are explained. This 
treatise is apart of Descartes' great philosophical work "Discours de la 
Methode" (1637). Descartes obviously considered his "Geometrie" as a stan­
dard example to elucidate his general considerations concerning the method of 
science. 

The French text of "La Geometrie" has been published, together with an 
English translation, by David Eugene Smith and Marcia Latham in 1954. It 
was reprinted by Dover, New York. 
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8 

Fig.20 

Descartes begins by saying that "any problem in geometry can be reduced 
to such terms that a knowledge of the lengths of certain lines is sufficient for 
its construction". Now the standard operations in arithmetic are: addition, 
subtraction, multiplication, division, and the extraction of square roots. In 
geometry, after having chosen a fixed line called "unity", one can define five 
operations on line segments corresponding to the arithmetical operations. Of 
course, li ne segments can be added and subtracted. To multiply two line 
segments BD and BC, if AB is taken as unity, one has only to join the points 
A and C, and to draw DE parallel to CA; then BE is the required product (see 
Fig.20). In other words: the product ab=c is defined by the proportion 

(14) e:a=b:c 

where e is the unity. 
One sees the advantage of this notation. In Greek geometry, the product of 

two line segments is an area: it cannot be added to a straight line segment. On 
the other hand, according to Descartes the product of two line segments is 
again a line segment. lust so, the quotient of two line segments is a line 
segment: if (14) holds, b is the quotient c/a. 

K 

Fig.21 

The square root of a line segment is explained thus: One adds to GH a 
segment FG = e, one divides F H into two equal parts at K, one draws a 
semicirc1e FIH with cent re K, and one erects a perpendicular GI to FH. The 
line segment GI is the required root (see Fig.21). 

Descartes now denotes his line segments by a, b, ... , and he writes 

a+b,a-b,ab,~, va. 
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He also writes 

yaa+bb 

for the square root of a2 + b2 • Thus, all essentials of our algebraic notation 
have been established by Descartes. 

In contrast to Stevin, Descartes does not introduce the notion "real num­
ber". For hirn, the quotient of two line segments is a line segment. Thus, he 
avoids alliogical difficulties connected with irrational numbers. 

Descartes next shows how the equations 

can be solved geometrically. 

Z2 =az+b2 

y2= -ay+b2 

z2=az-b2 

Next, Descartes turns to a kind of problems that had been discussed by 
Euc1id and Apollonios, namely the "problem of three or four lines". If three 
straight lines are given in position, and if line segments are drawn from a 
variable point in given angles to those three lines, and if it is given that the 
rectangle on two of these line segments is in a given proportion to the square 
on the third; or if four straight lines are given, and if line segments are drawn 
from a variable point in given angles to the four lines, and if the rectangle on 
two of these line segments is in a given proportion to the rectangle on the two 
remaining lines, then it is required to prove that the point lies on a given conic 
section. 

According to Pappos, Apollonios says in the third book of his treatise on 
the "locus of three or four lines", that Euc1id had not solved this problem, and 
that he hirnself too had not been able to solve it completely, nor had anyone 
else. "This", says Descartes "led me to try to find out whether, by my own 
method, I could go as far as they had gone". 

Descartes next states that in the ca se of three or four lines the required 
points lie all on one of the conic sections, or even in some cases on a circ1e or 
straight line. He now proceeds to prove this by his own method of coordinates. 

Let AB, AD, EF, and GH be straight lines given in position (see Fig.22). It 
is required to find points C such that the line segments CB, CD, CF, and CH 
drawn from C to the four given lines satisfy the condition that CB· CD be in a 
given proportion to CF· CH: 

(15) CB· CD=a· CF· CH. 

Let this condition be satisfied, says Descartes, and let the segments AB and 
BC be called x and y. Thus, every point C is determined by two coordinates x 
and y, the angle AB C being given. 

It is very strange that orthogonal coordinates are called, after the latinized 
name of Descartes, "Cartesian coordinates". Descartes hirnself does not sup­
pose ABC to be a right angle. 
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Fig.22 

Descartes next shows that all segments CB, CD, CF, and CH are linear 
functions of x and y. It folIo ws that the Equation (15) is a quadratic equation 
for x and y. For every assumed value of y (or x) the corresponding value of x 
(or y) can be constructed by solving a quadratic equation. Thus, the required 
curve can be drawn, says Descartes. 

In the second book of his Geometry, Descartes proceeds to investigate the 
nature of the curves thus obtained. His notations are rather clumsy. He 
reduces the Equation (15) to the form 

(16) 
2 2n bcfglx-bcfgxx 

y = 2m y - - x y + --'-0::---'--
Z ez 3 -cgzz 

and next, simplifying the notations a little, he solves for y: 

(17) 

(18) 

y=m-~x+ l/mm+ox+f. xx. 
z V m 

n 
Introducing y - m + - x = y' as a new coordinate, Descartes simplifies (17) to 

z 

y'= Vmm+ox+~xx 
and he shows, using some theorems from the first book of the Conica of 
Apollonios, that the curve is a conic seetion or a straight line. 

Descartes' method can be applied to any curve determined by a quadratic 
equation. The final result is the same as that obtained by Fermat: Every 
quadratic equation in x and y determines a conie seetion, or in exceptional 
eases a straight line. 



Chapter 4 
The Predecessors of Galois 

Modern algebra begins with Evariste Galois. With Galois, the character of 
algebra changed radically. Before Galois, the efforts of algebrists were mainly 
directed towards the solution of algebraic equations. Scipione dal Ferro, Tar­
taglia, and Cardano showed how to solve cubic equations, and Ferrari suc­
ceeded in solving equations of degree 4. Gauss proved that the cyclotomic 
equation 

can be completely solved by radicals, and that every algebraic equation can be 
solved by complex numbers a+bi. Galois, on the other hand, was the first to 
investigate the structure of fields and groups, and he showed that these two 
structures are closely connected. If one wants to know whether an equation 
can be solved by radicals, one has to analyse the structure of its Galois group. 
After Galois, the efforts of the leading algebrists were mainly directed towards 
the investigation of the structure of rings, fields, algebras, and the like. 

The most important predecessors of Galois were Lagrange, Gauss, and 
Abel. The work of Gauss on algebraic equations will be discussed in Chapter 
5. In the present chapter, we shall discuss the work of Waring, Vandermonde, 
Lagrange, Malfatti, Ruffini, Cauchy, and Abel on the solution of algebraic 
equations. 

Waring 

If an equation of degree n 

xn-al xn- 1 +az xn- Z _ .•• + ... =0 

has n roots, it is weIl known since Viete that the coefficients of the equation 
are all equal to the elementary symmetric functions of the roots: 

a 1 =Xj +xz + ... +xn 

aZ=xl XZ+Xl X3+ ... +Xn-l xn 

etc. 

In his treatise "Miscellanea analytica" (Cambridge 1762), Edward Waring 
has shown that all rational symmetric functions of the roots can be expressed 
as rational functions of the coefficients of the equation. He first derives ex-
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pressions for the power sums 

and next for arbitrary symmetrie polynomials. 
In a later treatise "Meditationes algebraieae" (Oxford 1770) Waring derives 

another method for expressing symmetrie polynomials. This method is the 
same we find in modern textbooks (see e.g. Weber's Lehrbuch der Algebra, 
seeond or third edition, p. 163-167). 

Waring also investigates the solution of the "eyclotomie equation" 

x"-1=0 

and diseusses the problem: to find equations that ean be solved by sums of the 
form 

x=~+~+ ... +~. 

Thus, Waring is eertainly one of the earliest predeeessors of Galois theory. 

Vandermonde 

The mathematieal work of Alexandre-Theophile Vandermonde has been 
diseussed in a very interesting paper of Lebesgue: "L'oeuvre mathematique de 
Vandermonde", L'enseignement mathematique, New Series 1, p. 203-223 
(1955). 

In 1770, Vandermonde presented to the Paris Aeademy a memo ir entitled 
"Sur la resolution des equations". Starting with the weil known solution of 
quadratie and eubie equations, Vandermonde develops general prineiples upon 
whieh the solution of equations may be based. He writes the solution of the 
quadratie equation in the form 

Taking for the square root the two possible signs, one obtains the two 
roots. Next he rewrites his formula as 

H(x1 +X2)+V(X1 +X2)2_ 4x l X2], 

thus introdueing the elementary symmetrie funetions of the roots. 
Vandermonde now asks whether the general equation of degree n ean be 

solved by a similar expression 

in wh ich Pi, ... , p" are the n-th roots of unity. 
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Today, expressions like 

are ealled "Lagrange resolvents". Lagrange introdueed the same expressions in 
a memoir to the Berlin Aeademy in 1771, as we shall see presently. The 
memoir of Vandermonde, in whieh the same expressions oeeur already, was 
presented to the Paris aeademy already in 1770, but it was published only in 
1774. 

In the ease of the eubie equation, the method of Vandermonde and La­
grange leads at onee to the solution. If i and j are the primitive third roots of 
unity, one has 

with 
S=XI +x~ +xj +6Xl X2 X3 

X =xi X2 +x~ X3 +X~ Xl 

Y =Xl X~ +X2 X~ +X3 xi. 

Here Sand X + Yand XYare symmetrie funetions of the roots, so X and Yare 
the roots of a quadratie equation. Next, express ions like Xl +iX2+jX3 ean be 
obtained as eube roots, and Xl, X2, X3 ean be found. 

For the biquadratic equation, Vandermonde modifies his approach a little. 
For degrees larger than 4, his method does not yield a general solution, but in 
special cases it works. Thus, Vandermonde succeeds in solving the equation 

X ll _1=0. 

He first reduces it to an equation of degree 5 having the roots 

where p is a primitive eleventh root of unity. N ext he solves this q uintic 
equation by introducing his "Lagrange resolvents". These resolvents may be 
written as 

where a is a primitive fifth root of unity, while Xl, ... , Xs are the roots of the 
quintic equation. In order that L S may be expressed rationally, the roots Xi 

must be taken in a definite order. In the special case of the eleventh roots of 
unity this order can be found by trial and error, but for the general case a 
proof is needed. As we shall see in the chapter on Gauss, the essential 
requirement is, to prove that for every prime number p a "primitive root" g 
mod p exists sueh that all integers not divisible by p are congruent to powers 
of g. The expression "primitive root" is due to Euler, and Gauss has first 
proved its existence. 
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Vandermonde claims that the solution of the equation 

x"-l =0 

by his method will always be easy ("nous sera toujours facile"). It seems that 
he did not see the difficulty of establishing an appropriate order of the mots. 

In Chapter 5, we shall explain Gauss' solution of the problem. 
Gauss does not quote Vandermonde. Why not? In his paper on Vander­

monde quoted right at the beginning of the present section, Lebesgue has 
discussed this question. He first notes that Gauss has seen the Histoire de 
l'Academie for the year 1771, in which Vandermonde's memoir was published. 
According to Lebesgue, Gauss knew the work of Vandermonde. Lebesgue 
quotes an entry in a notebook of Gauss, in which a paper of Vandermonde on 
topological questions is mentioned, wh ich appeared in the same volume as 
Vandermonde's paper on algebraic equations. Lebesgue assurnes that Gauss 
was infl uenced by Vandermonde's work on the cyclotomic eq uation. N ow why 
did he not quote Vandermonde in his "Disquisitiones arithmeticae"? 
Lebesgue's explanation is: Vandermonde did not prove his assertion, and 
Gauss regarded any mathematical assertion as valuable only if it is accom­
panied by a fuH proof. Lebesgue judges this rigorous point of view "profonde­
ment injuste". In his opinion, no discovery in mathematics has ever been made 
by deductive logic. Discoveries always result from "un travail de creation de 
l'imagination": the rigorous proof comes afterwards. 

Lagrange 

J oseph Louis Lagrange was of Italian origin: he was born in Torino in 
J anuary 1736. In 1771 he presented an extremely interesting memoir to the 
Berlin Academy: "Reflections sur la resolution algebrique des equations". It 
covers 217 pages in Volume 3 of the "Oeuvres de Lagrange" (published by J.­
A. Serret in 1869). I shall now summarize the most interesting parts of this 
Memoir. 

Lagrange first considers a cubic equation, which can be written as 

(1) 

The solution is weIl known from the "Ars magna" of Cardano. It can be 
written in the form 

(2) x=r+s, 

where r3 and S3 are the roots of a quadratic equation. Lagrange shows that r 
and s can be expressed as functions of the three roots a, b, C of the equation (1): 

(3) 

(4) 

r= 1/3(a+cxb+cx2 c) 

s= 1/3(a+cx2 b+cxc), 
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where a is a primitive third root of unity: 

(5) 

The same results ean also be obtained by a direet method, says Lagrange. 
He starts with an arbitrary linear funetion of the roots a, b, c 

(6) y=Aa+Bb+ Cc. 

By permuting the roots one obtains a set of six expressions, whieh are the 
roots of an equation of degree 6. If it is required that this equation eontains 
only powers of y3, it can be shown that the eoefficients A, B, C are neeessarily 
proportional to 1, rJ., a2 or to 1, a2 , rJ.. Thus one obtains, onee more, the ex­
pressions (3) and (4). 

Several fundamental ideas of Galois theory are already present in this part 
of the treatise of Lagrange. First, the idea that one should express intermediate 
quantities (like rand s) as rational functions of the roots a, b, c. Seeondly, 
Lagrange shows that it is useful to study the behaviour of rational functions 
like (6) under permutations of the roots. Finally: expressions like (3) and (4), 
formed by means of roots of unity and ealled "Lagrange Resolvents", are very 
useful. As we have seen, the same expressions had already been introdueed by 
Vandermonde in 1770. 

Next Lagrange eonsiders a biquadratic equation, which can be written as 

(7) x 4 +nx2 +px+q=O. 

Lodovieo Ferrari has shown that the solution ean be obtained by first solv­
ing a eubie equation 

(8) 

Lagrange shows that the roots of this equation ean be expressed as fune­
tions of the roots a, b, c, d of the original equation: 

(9) u=~(ab+cd), v=~(ac+bd), w=~(ad+bc). 

If the roots are permuted, the function u gives rise to only three funetions 
u, v, w. This explains why u is a root of a cubie equation. 

Very interesting from the historical point of view is Seetion 100. In this 
section Lagrange considers rational functions f(x', x", ... , x(n)) of the roots of a 
general equation of degree n. The roots are considered as independent vari­
ables or, as we say today, "indeterminates". Lagrange himself onee uses the 
expression "indeterminee". 

Two funetions t and y of the roots are ealled similar (semblable) if all per­
mutations of the roots that leave t invariant also leave y invariant, and eon­
versely. Lagrange now proves a theorem whieh will be quoted as "Theorem 
100", namely: 
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1f all permutations which leave t invariant also leave y invariant, then y can 
be expressed as a rationalfunction of t and the coefficients of the given equation. 

The idea of the proof is as follows. Let t' , t", ... , t(") be the different values 
the function tassumes when the roots are permuted, and let y', y", ... , y(") be 
the corresponding values of y. The number n is a divisor of n!, and t satisfies 
an equation e = 0 of degree n. Hence any function T of t can be written as 

(10) 

Let T', T", ... be the values of T corresponding to the values t', t", ... of t. 
Lagrange forms the sum T' y' + T" y" + .. , and expresses it as a linear function 
of the indeterminates No, ... , N"_l : 

(11) 

Now in order to compute y' one has only to specify the coefficients 
No, NI"'" N"_l in such a way that T", T"', ... all become zero. This means 
that the polynomial (10) is required to have the roots t", t"', .... If this poly­
nomial is multiplied by t - t', it has to be divisible by the polynomial e. Thus 
one obtains 

(12) (t-t') T=ce 

with constant c. This condition gives rise to a set of linear equations for 
No, NI' ... , N,,_ l' which can be solved by elementary calculations, provided the 
polynomial e has no double roots. Lagrange chooses No = 1, but this is not 
always possible, and it is not essential for his proof. 

Lagrange applies his theorem to equations of degrees 2, 3, and 4. About the 
quintic he says: 

"Il serait apropos d'en faire l'application aux equations du cinquieme degre et des degres 
supcrieurs, dont la resolution est a present inconnue; mais cette application demande un trop 
grand nombre de recherehes et de combinaisons, dont le succes est encore d'ailleurs fort douteux." 

Lagrange also considers special equations such as the "cyclotomic equa­
tion" 

hut he does not go very far. The complete solution of this equation by means 
of radicals was given by Gauss in 1801 in his admirable "Disquisitiones arith­
meticae". 

MalJatti 

Lagrange presented his "Reflections" to the Berlin Academy in 1771. One 
year earlier, in 1770, Gianfrancesco Malfatti presented to the Accademia delle 
Scienze di Sienaa highly interesting treatise on quintic equations entitled "Oe 
aequationibus quadratocubicis dissertatio analytica". It was published in the 
Atti della Accademia di Siena in 1771. 
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According to Raffaela Franci and Laura Toti Rigatelli (Atti deI Convegno 
su GoF. Malfatti, Ferrara, 23-24 ottobre 1981, p. 179-203), Malfatti's treatise is 
written in bad latin and contains many printing errors, so that it is not easy to 
read it. However, Franci and Toti Rigatelli have given a very lucid explanation 
of Malfatti's ideas. The following summary is based on their account. 

Malfatti first considers a cubic equation 

(1 ) x 3 + 3 ax+b=O. 

Following Euler, he considers a root x satisfying the linear equation 

(2) x+m VI 2 +n VI =00 

To eliminate the third roots, Malfatti uses a method of Manfredi. Replacing 

VI by a. VI and by a. 2 V f, where a. is a third root of unity, and multiplying (2) 
by the two linear functions of x thus obtained, Malfatti obtains an equation of 
degree 3: 

(3) 

Putting 1= 1, one gets 

(4) 

This equation is equivalent to (1), provided 

(5) 

(6) 

(7) 

From this pair of equations one can find m3 and n3 and hence m and n. 
Now Malfatti applies the same method to the quintic equation 

He wants to obtain a root x of (6) from the equation 

Replacing VI by a. V f, a. 2 V f, a. 3 V f, a.4 V f, where a. is a fifth root of unity, 
and multiplying (7) by the linear expressions thus obtained, Malfatti obtains a 
"canonical equation" of degree 5 for x. Putting 1=1 and equating the coef­
ficients of the canonical equation with those of (5), Malfatti obtains a set of 
conditions for m, p, q, n. To simplify these conditions he puts 

mn=y, pq=u 
and 

25uy-5a2 +5c/3=zo 
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After tedious calculations Malfatti ends up with an equation of degree 6 for 
z. In the general case this equation has no rational factor of degree 1 or 2 or 3, 
but if it has, the given equation (6) can be solved by radicals. On can then 
determine first z and next m, p, q, n, and one finally obtains the roots: 

(8) 

Xo= -(m+p+q+n) 

Xl = -(ctm+ctZ p+ct3 q+ct4n) 

X z = -(ctZ m+ct4 p+ctq+ct3 n) 

X3= _(ct3 m+ctp+ct4 q+ct2 n) 

X4= -(ct4m+ct3 p+ct2 q+ctn). 

It is easy to solve the linear equations (8) for m, p, q, n. It folIo ws that 
m, p, q, n are linear functions of the roots, and that z is a biquadratic function 
of the roots. 

Independent of Malfatti, Lagrange too constructed a "resolvent" z, which is 
a function of the roots assuming six values when the roots are permuted. This 
function is "similar" to Malfatti's z in the sense of Lagrange, for both are 
invariant under a group of 20 permutations of the roots x k • In modern no­
tation the permutations of this group can be defined by the formulae 

(9) k'=.gk+h (mod5) 

with g=1,2,3 or 4, and h=0,1,2,3 or 4. We shall see that the same group 
plays an important role in the theory of Galois. 

Ruffini 

Paolo Ruffini, born 1765, was a student and admirer of Lagrange. He pub­
lished several papers claiming to prove that the general equation of fifth degree 
or higher cannot be solved by radicals. His first treatise, published in 1898 in 
Bologna (Opere matematiche di Paolo Ruffini, Vol. 1, p. 1-324), is entitled 

"Teoria generale delle equazioni, in cui si dimostra impossibile la soluzione 
algebraica delle equazioni generale di grado superiore al quarto", 
which means: 

General theory of equations, in which it is proved that the algebraic so­
lution of the general equations of degree larger than four is impossible. 

A few years later Ruffini wrote a small treatise entitled "Rischiarimenti e 
risposte alle obbiezioni" (Elucidations and Answers to Objections), wh ich was 
found among his manuscripts and pr in ted in Opere matematiche, Vol. 1, 
p.327-342. 

A second memo ir on the solution of equations of degrees larger than 4 was 
published in Volume 9 of the Memorie di Matematica e Fisica della Societa 
Italiana delle Scienze (Modena 1802), and republished in Ruffini's Opere I, 
p.345-406. 
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Finally, in 1813, Ruffini published a third memoir entitled "Riflessioni in­
torno aHa soluzione delle equazioni algebraiche generali" (Opere 11, p. 155-
268), in which the ideas of his earlier memoirs were further elaborated. 

Ruffini's methods were essentially those of Lagrange. He considered ra­
tional functions of the roots of a general equation of degree n. If P is the 
number of permutations that leave such a function unaltered, p is a divisor of 
n!, and the number of different values the function assumes if the roots are 
permuted is n !Ip. As Lagrange had already shown, such a function is a root of 
an equation of degree n !Ip. Ruffini studies in great detail the set of p per­
mutations leaving the function unaltered. In particular, he shows that in the 
case of the quintic the degree n !Ip can be 2 or 5 or 6, but not 3 or 4, which 
me ans that aresolvent in the sense of Lagrange satisfying an equation of de­
gree 3 or 4 is impossible. If n !Ip is not 2, it must be divisible by 5. If n !Ip is 5, 
resolvents of degree 5 exist, but they cannot be reduced to binomial equations 

Z5 -m=O. 

Ruffini claims to have proved that the general quintic equation cannot be 
solved by radicals, but his proof is not conclusive, because it is based on the 
hypo thesis that these radicals can all be expressed as rational functions of the 
roots. It was Abel who first completed the proof by showing that the radicals 
needed for solving an equation can always be chosen as rational functions of 
the roots of the equation and of certain roots of unity. 

Ruffini's proof was not well received by his contemporaries and successors. 
Malfatti criticized Ruffini's proof and concluded that there still remain doubts 
wh ether the general solution of the quintic equation is impossible. Malfatti's 
note, entitled "Dubbii proposti al socio Paolo Ruffini sulla sua dimostrazione 
della impossibilita di risolvere le equazioni superiori al quarto grado", was 
published in Vol. 11 of the Memorie di Matematica e Fisica della Societa Ita­
liana delle Scienze, p. 579-607. 

Carnot and Legrendre expressed similar doubts. See p. 59 of B.M. Kiernan: 
Galois Theory from Lagrange to Artin, Archive for History of Exact Sciences 
8, p. 40-154 (1971). 

Cauchy seems to have considered Ruffini's proof as conclusive (see p. 60 of 
Kiernan's paper), but Abel expressed his doubts thus: 

Le premier, et, si je ne me trompe, le seul qui avant moi ait eherehe a demontrer 
I'impossibilite de la resolution algebrique des equations generales, est le geometre Ruffini; mais son 
memoire est tellement complique qu'il est tres difficile de juger de la justesse de son raisonnement. 
Il me parait que son raisonnement n'est pas toujours satisfaisant. 

A thorough study of Ruffini's work and its relation to the theory of sub­
stitution groups is due to Heinrich Burkhardt. It was published in 1892 under 
the title "Die Anfänge der Gruppentheorie und Paolo Ruffini" in Zeitschrift 
für Mathematik und Physik 37, Supplement (Abhandlungen zur Geschichte der 
Mathematik VI), p. 121-159. Burkhardt shows that several fundamental no­
tions of the theory of permutation groups are already present in the work of 
Ruffini. In particular, Ruffini distinguishes between what we now call transitive 
and intransitive groups. 
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Cauchy 

Ruffini had proved that the number of different values whieh a non-sym­
metrie rational funetion attains eannot be less than 5, unless it is 2. Cauehy 
generalized this result of Ruffini to funetions of n variables. His paper of 1815 
eontaining this generalization is entitled "Sur le Nombre des Valeurs qu'une 
Fonetion peut aequerir, lorsqu'on y perrnute de tous les manieres possible les 
quantites qu'elle renferme", Journal de l'Eeole Polyteehnique, eahier 17, tome 
10, p. 1-28 (Oeuvres eompIetes d'Augustin Cauehy, 2me serie, Vol. 1, p.64-90). 

Let n be the number of independent variables, and p the largest prime num­
ber eontained in n. Cauehy proved: The number of different values of a non­
symmetrie rational function of n variables cannot be less than p, unless it is 2. 

Cauehy introduced a distinction between permutations and substitutions. If 
one writes the n variables in any order, one has apermutation. A substitution is 
the passage from one permutation to another. The passage from the permu­
tation 1.2.4.3 to 2.4.3.1 is denoted by 

(1 .2 .4. 3). 
2.4.3. 1 

Galois used the same terminology, although not eonsistently. He defined the 
notion "group of substitutions". In later times, the "substitutions" of Cauehy 
and Galois were often called "permutations", in agreement with the original 
meaning of the Latin verb permutare. 

Cauchy also defined products of substitutions. The product ST is obtained 
by first performing Sand next T. The same convention was used by Galois. 

During the years 1844-1846 Cauehy published a sequence of papers on 
substitutions. He calls two substitutions "similar", if they partition into cycles 
in the same way. He proves that P and Q are similar if and only if Q is equal 
to R -1 PR. He also proves that the order of any group of substitutions is 
divisible by the order of any substitution in the group, and that the order of 
any group of substitutions on n variables is a divisor of n!. The latter theorem 
had al ready been proved by Lagrange. Cauchy's proof is the same as that of 
Lagrange : the group of all substitutions is partitioned into cosets of the 
subgroup. The same method was used later on by Jordan in order to prove 
that the order of any subgroup of a finite group divides the order of the group. 
Jordan generously attributed this theorem to Lagrange and Cauehy. 

Abel 

Still in his teens, the extremely gifted young mathematicien Niels Henrik 
Abel (born 1802) thought that he could solve the general quintie equation, but 
he soon discovered his error. In the spring of 1824 he suceeeded in proving 
that a solution by radieals is impossible. At his own expense he published a 
pamphlet in Freneh entitled "Memoire sur les equations algebriques" (Oeuvres 
completes de Niels Henrik Abel, publiees par L. Sylow et S. Lie, Vol. 1, p.28-
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33), in which he presented a completely clear proof of this impossibility. A 
new, more elaborated version of the same proof was published in 1826 in 
Crelle's Journal für die reine und angewandte Mathematik, Vol. 1, under the 
title "Demonstration de l'impossibilite de la resolution algebrique des equa­
tions generales qui passent le quatrieme degre (Oeuvres I, p. 66-87). The main 
ideas are the same in both papers, but some parts were expanded and other 
parts simplified in the later paper. 

Abel makes use of the results obtained by Lagrange and Cauchy concern­
ing the number of values a function of n variables can attain if the variables 
are permuted. However, the essential point in his proof is the first step, which 
is quite new. 

Abel starts with an equation 

(1) 

in which the coefficients are "general ", that is, they are just letters or inde­
pendent variables. Supposing that one can express y as a function of the coef­
ficients by means of radicals, Abel states that one can write y as 

(2) y= p+ PI R l /m+ Pz R Z/m+ ... + Pm-I R(m-I)/m 

where rn is a prime number. The quantities R,P,Pl, ... ,Pm_1 are supposed to be 
expressions of the same form as y, involving other radicals, and so on until one 
arrives at rational functions of the coefficients of the original equation. In the 
terminology of Galois, one starts with the field of rational functions of 
a,b,c,d,e with constant coefficients, and one "adjoins" one radical with prime 
exponent after the other. Among the constant coefficients Abel always includes 
the rn-th roots of unity, where rn is any one of the prime exponents used in the 
solution. 

One can suppose, says Abel, that R I /m cannot be expressed as a rational 
function of a,b, ""P,Pl'PZ' ... for otherwise the adjunction of the radical 
would be superfluous. One can also suppose that in (2) not all coefficients 
Pl>Pz"" are zero. 

In his first paper Abel supposes PI =1=0 (in his second paper he shows that 
this restriction is not essential). Now replacing R by R/pr, one can make PI 
equal to 1. Putting R I/rn = z, one has 

(3) 

Substituting this value into (1), one obtains a result of the form 

(4) 

in which q,ql,qZ"" are polynomials in a,b""pl>Pz"" and R. 
Now comes the crucial step. Abel asserts: For (4) to be valid, it is necessary 

that 
q=o, ql =O,.·.,qm_l =0. 
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The proof is very ingenious. The two Equations (4) and 

(5) 

have a root z in eommon. If q, q l' ... are not zero, the number of roots they 
have in eommon is at most rn - 1. Let k be this number. Then, by ealculating 
the largest eommon divisor of the polynomials on the left of (4) ane! (5), one 
ean find an equation of degree k 

(6) 

For the eontinuation of the proof I shall follow the simplified exposition in 
Abel's seeond paper. If the polynomial on the left of (6) is faetorized, one of the 
faetors must be zero. Thus, one obtains an irredueible equation for z: 

(7) 

One ean suppose, says Abel, that it is impossible to find an equation of the 
same form of lower degree. This equation has its )1 roots in eommon with the 
equation (5). Now all roots of this latter equation are of the form a z. The 
degree Jl is at least 2, for otherwise z would be a rational funetion of 
a, b, P, P1' pz, .... It follows that the equation (7) has at least two roots z and 
az: 

(8) 
t 0 + t 1 Z + t z Z2 + ... + t 1'- 1 zl'- 1 + zl' = 0 

to + a t 1 Z + a2 t z ZZ + ... + al'-1 tJl - 1 ZI'-1 + al' zl' = O. 

Multiplying the first equation by al' and subtraeting it from the second, one 
obtains an equation of degree less than )1, whieh is impossible. Henee in (4) aJl 
eoeffieients q, q l' ... , qm- 1 must be zero. 

The equation (4) was obtained by substituting (3) into (1) and using (5). 
Now (5) is satisfied not only by z but also by 

a z, aZ z, ... , am- 1 z. 

Henee, replaeing R 1/m in (2) by ak R 1/m, ... , one always obtains roots of the 
equation (1). These roots are all different, henee rn eannot be larger than 5, and 
if the roots thus obtained are called Y l' ... , Ym one has 

Y1 =p+z+ P2 ZZ + ... +Pm-1 zm-1 

Yz =p+az+az pz ZZ + ... +am- 1 Pm-1 zm-1 

These equations ean easily be solved for P, z, P2 Z2, ... , Pm- 1 Zm-1. lt follows 
that P,P2"",Pm-1 and z=R 1/m are rational functions of the roots Yl"."Ys of 
the equation (1). Of course, R = zm is also a rational funetion of the roots. 
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The quantity R may be given as a rational function of an earlier radical 
VI!". This function can be written as 

(9) 

If this quantity is treated in the same way as the y of equation (2), one sees 
that either the adjunction of VI!" is unnecessary, or the quantities VI!", S, S2' ... 
can be expressed as rational functions of the roots y l' ... , Y 5. By repeating the 
same reasoning one conc1udes that all irrational quantities occurring in the 
expression of the roots y are rational functions of these roots. 

This is just the hypo thesis from which Ruffini started in his proof of the 
unsolvability of the quintic equation. This hypo thesis is now fully justified. 

From this point onwards, Abel was able to use the methods and results of 
Lagrange, Ruffini, and Cauchy. In particular, he used (and quoted) the result of 
Cauchy which says that the number of values a rational function can attain 
cannot be 3 or 4, wh ich implies that the number m can only be 2 or 5. Abel 
discusses the two cases m = 5 and m = 2 separately, and he conc1udes that in 
both cases the solution of the general quintic equation by radicals is im­
possible. 

Two months before his death in 1829, Abel published another paper, en­
titled "Memoire sur une c1asse particuliere d'equations resoluble algebrique­
ment", Crelle's Journal für die reine und angewandte Mathematik, Vol. 4 (Oeu­
vres I, p.478-514). 

This memo ir deals with a particular c1ass of equations of all degrees which 
are solvable by radicals. To this c1ass belongs the cyc1otomic equation x"-1 
=0. Abel proves the following general theorem: 

If the roots of an equation are such that all roots can be expressed as 
rational functions of one of them, say x, and if any two of the roots, say 8 x 
and 81 x (where 8 and 81 are rational functions) are connected in such a way 
that 

(10) 

then the equation can be solved by radicals. 
Today, groups in which multiplication is commutative are called Abelian, 

and equations having the property (10) are called, since Kronecker (1853), Abe­
lian equations. 

Abel's theorem just stated is a special case of a main theorem of Galois 
theory, which says: 

An equation is solvable by raqicals if and only if its Galois group G is 
solvable, that is, if G possesses a composition series 

G-::JH 1 -::JH2 -::J ... -::JHm=E 

in which all indices are prime numbers. It is easy to see that every finite Abe­
lian group is solvable. Galois presented a proof of his main theorem to the 
Academy of Paris in May 1829, in the same year in which Abel's paper was 
published. 
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Carl Friedrich Gauss 

The most important contributions of Gauss to the theory of algebraic equa­
tions are: 

first, the complete solution of the "cyclotomic equation" 

(1 ) 

by means of radicals, 

second, the proof that every polynomial in one variable with real coef­
ficients is a product of linear and quadratic factors. This theorem implies what 
we now call the "fundamental theorem of algebra": Every polynomial f(x) 
with complex coefficients is a product of linear factors. 

We shall now discuss these two extremely interesting contributions. 

The Cyclotomic Equation 

The equation (1) is called cyclotomic, because its solution is closely con­
nected with the construction of a regular polygon of n sides inscribed in a 
given circle. 

To see this, one has only to note that the equation (1) has n complex roots 

(2) cos (2 n kin) + i sin (2 n kin) k = 0, 1,2, ... , n - 1. 

This trigonometric solution was known to De Moivre and Euler long be­
fore Gauss. Now if one represents the complex numbers a + i b by points in the 
plane with orthogonal coordinates (a, b), it is clear that the complex numbers 
(2) are represented by the vertices of a regular n-gon inscribed in the unit 
circle. Hence, if one succeeds in solving the equation (1) by means of square 
roots, one can construct the regular n-gon with ruler and compass. 

The Pythagoreans already knew how to construct regular polygons of 
3, 4, 5, and 6 sides. Their constructions can be found in Book 4 of the Elements 
of Euclid. For the ascription of this book to the Pythagoreans see my book 
"Die Pythagoreer" (Artemis-Verlag, Zürich 1979), p. 348-351. 

Lagrange solved the equation 

(3) 
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as follows. One root is x = 1. The others are roots of the equation 

whieh ean be written as 

(4) 

Putting 

(5) 

one obtains 

(6) 

This quadratie equation ean be solved for y, and next (5) ean be solved fer 
x. It follows, onee more, that the regular pentagon ean be eonstrueted by 
me ans of ruler and eompass. 

Euclid's eonstruetion is also based on the solution of a quadratie equation. 
Proposition 11 in Book 2 of Euclid's Elements reads in the translation of 
Heath: 

To cut a given straight line so that the rectangle contained by the whole and one of the 
segments is equal to the square on the remaining segment. 

If the given straight line is ealled a and the seeond segment y, Euclid's 
problem is, to solve the equation 

(7) 

In his solution of the problem II, 11 Euclid first solves the equivalent equa­
tion 

(8) 

and next he subtraets the reetangle a y on both sides, thus obtaining the so­
lution of (7). If the given segment a is taken as a unit of length, it is seen that 
(8) is the same as Lagrange's equation (6). 

In Book 4, Euclid uses the solution of (7) in his eonstruetion of the regular 
pentagon. Just so, Lagrange uses the solution of (6) for the solution of the 
eyclotomie equation (3). 

Lagrange next applies the same method to the equation 

(9) 

(Oeuvres III, p. 246). Dividing by x -1 and next by x 5, Lagrange obtains 
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Putting again 

one obtains a quintic equation for y. 
Lagrange left it at that, but Vandermonde succeeded in solving the quintic 

equation by radicals, as we have seen in Chapter 4. 
At the age of not quite 19 years, Gauss discovered that the regular 17-gon 

can be constructed with ruler and compass. In Chapter 7 of the famous work 
of Gauss entitled "Disquisitiones arithmeticae" the full proof of the solvability 
of the equation (1) by radicals was given. The equation 

(12) X l7 -1=0 

is treated as a special case. Since we do not know how the young Gauss found 
the solution of (12) and hence the construction of the 17-gon, we have no other 
choice than to follow Gauss and to treat the general case first. 

Gauss first shows that the general equation (1) can be reduced to the spe­
cial case in which n is prime, by writing n as a product of powers of primes. A 
special case, namely n= 15, was already known to Euc1id. Euc1id shows: if one 
can inscribe in a circ1e a regular triangle and a regular pentagon, one can also 
inscribe a regular polygon of 15 sides. 

Dividing (1) by x-I, one obtains the equation 

(13) X =xn - l +xn - 2 + ... +x+ 1 =0. 

Supposing n to be prime, Gauss first proves that the polynomial X is ra­
tionally irreducible. Next he announces his main result: If n -1 is a product of 
factors (1. ß y ... , the equation (1) can be solved by solving equations of degrees 
(1., ß, y, .... For instance, if n is 17, we have 

so the equation (12) can be solved by solving four quadratic equations, and 
hence the 17-gon can be constructed with ruler and compass. More generally, 
if n - 1 is apower of 2, which happens for 

(14) n=3, 5, 17,257,65537, 

the regular n-gon can be constructed with ruler and compass. 
The prim es mentioned in (14) were known to Gauss. Other prim es of the 

form 2m + 1 are not known up to the present day (December 3, 1982). 
Still supposing n to be prime, Gauss denotes by r any one of the raots of 

(13). Now the roots are 

(15) 

Two powers rÄ and rll are multiplied by adding the exponents and reducing 
the sum A + J1 modulo n. 
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Gauss next notes that every rational function of the roots can be written as 

(16) 

To simplify the notation, Gauss writes [2J instead of r l . Thus, the roots (15) 
are rewritten as 

(17) [IJ, [2J, ... ,[n-l]. 

In Chapter III of the Disquisitiones, Gauss has proved: if n is prime, the 
multiplicative group of illtegers modulo n is cyc1ic, i.e. a "primitive element" g 
exists such that all exponents not divisible by n are congruent to powers of g. 
So the roots (17) can be reordered and written as 

(18) 

This reordering is an essential point in the theory of Gauss. The exponents 
of gare called indices. They play the role of logarithms: two powers of gare 
multiplied by adding their in9ices (mod n -1). 

Now let e be any divisor of n -1. Putting 

n-l=e! 
and 

Gauss considers the set of root!; 

where 2 is an arbitrary integer incongruent to zero (mod n), and he forms the 
sum 

(19) (1,2)= [2J + [2hJ + [Ä h2J + ... + [Äh J - 1J. 

These sums are independent of the choice of g. They are called periods. 
Gauss elucidates the formation of the periods by working out the example 

n = 19. I prefer to give the example n = 17, elaborated by Gauss in Section 354 
(Werke, Vol. I, p.437). As a primitive element (mod 17) Gauss chooses g=3. 
Thus, the indices (mod 16) 

i =0,1,2,3,4,5,6, 7, 8, 9,10,11,12,13,14,15 

give rise to the powers of 3 (mod 17) 

J1 =gi= 1,3,9,10,13,5, IS, 11,16,14,8,7,4,12,2,6 

and to the roots 
r ,,] Jl 3 9 10 6 lf' =r =r,r ,r ,r , ... ,r. 
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The divisors of n - 1 = 16 are 

e= 1, 2, 4,8,16 

corresponding to 

f= 16, 8, 4, 2,1. 

There is only one period (16,1), namely the sum of all roots. There are two 
periods with f = 8, namely 

and 
(8,1)= [lJ + [9J + [13J + [15J + [16J + [8J + [4J + [2J 

(8,3) = [3J + [10J + [5J + [11J + [14J + [7J + [12J + [6]. 

There are four periods with f =4, namely 

(4,1), (4,3), (4,9), (4,10). 

There are eight periods with f = 2, such as 

(2, 1)=[1J +[16J =r+r- 1, 

and there are 16 periods with f = 16, namely the single roots. 
Gauss also considers the period (f, 0), which is a sum of f units and hence 

equal to f 
In Seetion 345 Gauss proves a general theorem to the effect that a product 

(f, A)' (f, p) 

can be expressed as a sum of periods thus: 

(20) (f, A)' (f,p)=(f, A+ p)+(f, A' + 11) + (f, A" + p)+ .... 

Now let us apply formula (20) to the case n = 17. The sum 

(8,1)+(8,3) 

is the sum of all roots and hence equal to - 1. The product 

(8,1). (8,3) 

can be computed by (20): it is -4. Hence (8,1) and (8,3) are the roots of the 
quadratic equation 

(21) 
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By solving this equation, one obtains (8,1) and (8,3). Next (4,1) and (4,9) 
ean be eomputed by the same method. Their sum is (8,1) and their produet 
-1, so they are the roots of the quadratie equation 

(22) x 2 -(8,1)x-1=0. 

lust so, (4,3) and (4,10) are the roots of the equation 

(23) x 2 -(8, 3)x-1 =0. 

By the same method the periods (2, A) and finally the roots [J.I] ean be 
obtained as roots of quadratie equations. 

In the general ease, one has to faetorize n - 1 

n-1=IJ.ßy··· 

and to solve equations of degrees IJ., ß, y, .... In § 359, Gauss shows that these 
equations ean be solved by radieals. 

I suppose that these examples are suffieient to explain the main ideas of 
Gauss on the subjeet of the eyclotomie equation. 

The "Fundamental Theorem" 

In the notation of Gauss, every algebraie equation of degree m ean be writ­
ten as 

(24) xm+Axm- 1 +Bxm- 2 + ... +M =0 

or X =0. The so-ealled "Fundamental Theorem of Algebra" says that every 
polynomial X with real or eomplex eoeffieients ean be faetored into linear 
faetors in the field of eomplex numbers. 

It is suffieient to prove the theorem for polynomials with real eoeffieients, 
for if X has eomplex eoeffieients, the produet XX is real, and its faetorization 
implies the faetorization of the faetors X and X. SO Gauss is justified in re­
strieting hirnself to real polynomials X. 

In his first proof Gauss does not introduee eomplex numbers. He proves 
the fundamental theorem in the following form: 

Every polynomial X with real coefficients can be Jactored into linear and 
quadratic Jactors. 

Gauss eonsidered the theorem so important that he has given four proofs. 
The prineiples, on whieh the first proof is based, were diseovered by Gauss in 
Oetober 1797. The first proof was published in 1799, the seeond and third in 
1816, and the fourth in 1849. The fourth proof is based on the same prineiples 
as the first. Here I shall restriet myself to the first three proofs. 
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All four proofs have been translated from Latin into German by E. Netto 
and published under the title "Die vier Gauss'schen Beweise für die Zerlegung 
ganzer algebraischer Funktionen in reelle Faktoren ersten oder zweiten Gra­
des", Ostwald's Klassiker der exakten Wissenschaften, Vol. 14 (Leipzig 1913). 

The First Proo! 

The first proof of Gauss was published in his dissertation (Werke III, p. 1-
30). Before exposing his own proof, Gauss critizes earlier proofs given by 
d'Alembert, Euler, Fontenex, and Lagrange. His main objection is that in all 
these proofs the existence of roots is presupposed. It is shown that the roots 
can be obtained as complex numbers, provided they exist in some sense or 
other. There are other objections to the single proofs, which will not be dis­
cussed here. 

Gauss starts with areal polynomial 

(25) 

in wh ich x is an indeterminate ("unbestimmte Größe"). What he wants to 
prove is that a linear or quadratic factor of X exists. A real linear factor im­
plies the existence of areal root ± r, where r is positive or zero. An irreducible 
quadratic factor implies the existence of two complex roots 

(26) r(cos cp ± i sin cp), 

hence the quadratic factors can be written as 

(27) x2 -2xrcos cp+r2 (r>O). 

Substituting one of the roots (26) into the equation X =0 and separating 
the real and imaginary parts, one obtains a pair of real equations for rand cp: 

(28) r m cos m cp +Arm - 1 cos(m -1) cp + ... + L rcos cp + M =0 

(29) rm sin m ({J + A rm - 1 sin (m - 1) cp + ... + L r sin cp = O. 

Gauss notes that Euler obtained this pair of equations by using complex 
numbers. Gauss avoids complex numbers: he derives (28) and (29) directly 
from the assumption that the polynomial X has a linear factor x ±r or a 
quadratic factor (27). 

Gauss interprets (28) and (29) as equations of algebraic curves in polar 
coordinates, and he proceeds to prove that these curves intersect in at least one 
point. If this is proved, it follows that X has a linear or quadratic factor, and 
by continuing the process one obtains a factorization of X into linear and 
quadratic factors. 
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The equation (28) is called U =0, and (29) is called T=O. To illustrate the 
proof, I have drawn the curves U =0 and T=O for the case of a quadratic 
equation 

x 2 +1 =0. 

U:O 

---+--~~---t---- T=O 

T=O 

Fig.23 

In orthogonal coordinates x and y we have two curves of order m. The axis 
y=O is always apart of the second curve T=O. 

Gauss now studies the intersections of the two curves with a circle of radius 
R, and he proves: 

For a sufficiently large radius R there are exactly 2m intersections of the 
circle with T=O and 2m intersections with U =0, and every point of intersection 
of the second kind lies between two points of intersection of the first kind. 

Gauss presents a complete proof of this lemma. He next notes that the 4m 
points change only very little if R is made a little larger or sm aller. In modern 
terminology we would say that the 4m points are continuous functions of R. 
Gauss does not prove this continuity: he only says that it is "easy to see". 
Next Gauss studies the behaviour of the branches of the curves U =0 and T= 0 
inside the circ1e, and he asserts: There exists a point of intersection of a branch 
of the first curve with a branch of the second curve. For this conclusion he 
gives an intuitive, geometrical proof. He denotes the point of interseetion of the 
circle with the negative x-axis by 0, the next neighbouring point on the circle 
by 1, and so on, as in Fig.23. The odd numbers denote points on U =0, the 
even numbers points on T=O. Now he says: If a branch of an algebraic curve 
enters a certain domain, it must also leave the same domain somewhere. In a 
footnote he adds: 

It seems to be well demonstrated that an algebraic curve neither ends abruptly (as it happens 
in the transcendental curve y= l/logx), nor does it quasi loose itself after an infinite number of 
windings in a point (like a logarithmic spiral). As far as I know nobody has ever doubted this, but 
if anybody requires it, I take it on me to present, on another occasion, an indubitable proof. 

If this starting point is accepted, it follows that every "even point" is con­
nected with (at least) another even point by a branch of the curve T=O, and 



The Second Proof 97 

every "odd point" with another odd point by a branch of the curve U = o. 
Now, however complicated these connections may be, one can show that a 
point of intersection always exists. This is proved as follows. 

Suppose that no point of intersection exists. The point 0 is connected with 
the point 2m by the x-axis. The point 1 cannot be connected with any point on 
the other side of this axis without intersecting the axis. So, if the point 1 is 
connected with the odd point n, we must have n<2m. Just so, if 2 is connected 
with n', we must have n' < n. Note that the difference n' - 2 is even, because 2 
and n' are both even. Continuing in this way, one finally finds a point h con­
nected with h + 2. But now the branch wh ich enters the circle at the point h + 1 
must necessarily intersect the branch connecting h with h + 2, contrary to our 
hypothesis. Hence there exists a point of intersection. 

From this exposition one sees that the first proof of Gauss is based upon 
assumptions about the branches of algebraic curves, which appear plausible to 
our geometrical intuition, but which are not strictly proved by Gauss. Alexan­
der Ostrowski has shown in a very illteresting paper "Über den ersten und 
vierten Gauss'schen Beweis des Fundamentalsatzes der Algebra", that all as­
sumption made by Gauss can be justified by indubitable proofs. Ostrowski's 
paper was first published in Nachrichten der Gesellschaft der Wissenschaften 
Göttingen 1920, and reprinted in Gauss' Werke X, 2. 

The Second Proo! 

The second proof is purely algebraic. The only suppositions made about 
the fjeld of real numbers are: 

1 ° that every real equation of an odd degree has areal root, 
2° that every quadratic equation with complex coefficients has two complex 

roots. 
The idea underlying the second proof is simple, but the working out is 

rather difficult. Gauss starts with areal polynomial of degree m 

(30) y=xm_Lxm- 1 +L' xm - 2 - ••• + ... 

If one supposes for a moment that Y can be factored into linear factors 

(31) Y=(x-a)(x -b)(x-c) ... 

in some field extension, then a linear combination 

(32) (a+b)t-ab 

can be formed with a new indeterminate t. If the roots a, b, c, ... are permuted, 
the linear function (32) assumes 

m'=tm(m+1) 
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values, henee it is a root of an equation of degree m'. The roots of this auxilia­
ry equation are linear funetions of t of the form (32). As soon as one root of 
the auxiliary equation is known, a + band ab are known, so a and b ean be 
expressed by means of square roots. This remains true if the indeterminate t is 
speeialized in such a way that different linear funetions (32) remain different 
after the speeialization. 

Now if m is a number of the form 

(33) m=2/lk 

where k is odd, the degree of the auxiliary equation is of the form 

(34) 

where k' is again odd. 
As soon as a eomplex root of this auxiliary equation is known, two roots a 

and b of the original equation can be computed as complex numbers by ex­
tracting a square root. 

Continuing in the same way, one finally arrives at an equation of an odd 
degree. The eoeffieients of this equation are symmetrie funetions of the roots 
a, b, .. , with real eoefficients, so they are known real numbers. Sinee the degree 
is odd, this equation has at least one real root. Going baek trough the se­
quence of auxiliary equations, one ean compute at least one eomplex root of 
the original equation. 

In this simplified form, the proof works if it is known that the equation 
Y = 0 has m roots a, b, ... in some extension of the field of real numbers. The 
existence of such an extension can be proved by Kronecker's method of 
"symbolic adjunction": the proof can be found in any textbook of modern 
algebra. However, Gauss does not follow this road. He eonstructs his auxiliary 
equations without assuming the existence of the roots. For instance, he eon­
structs the auxiliary equation of degree m' as folIows. 

First, the special polynomial (30) is replaced by a polynomial y, the roots of 
which are indeterminates a, b, c, ... 

(35) y=(x -a)(x -b)(x-c) .... 

Gauss next forms an auxiliary polynomial , in a new variable u, defining , 
as the product of the m' expressions 

(36) u-(a+b)t+ab 

obtained by permuting the ro01s. This polynomial , is symmetrie in the inde­
terminates a, b, C, ••. , henee it can be expressed in a unique way as a poly­
no mi al in u and t and the coeffieients of y, which are the elementary symmetrie 
functions of a, b, C, .••. After this, the eoefficients of y are replaced by the eoef­
ficients E., E.',... of the given polynomial (30), and thus the auxiliary poly­
nomial Z is obtained. 
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In Sections 12-15 Gauss proves a theorem: 

1f the discriminant of Y is not zero, the discriminant of Z cannot be zero. 

The proof of this theorem covers four pages in Netto's translation. Right at 
the beginning of the proof Gauss says: "The proof of this theorem would be 
extremely simple if we could presuppose that Y is a product of linear factors." 

Afterwards Gauss substitutes for t such areal value that the discriminant of 
Z is still different from zero, and he shows: if a root of Z is known, a pair of 
roots of the original polynomial Y can be computed. Obviously, he first de­
rived his method of finding a root of Y from the assumption that Y is a pro­
duct of prime factors, and afterwards he reshaped his proofs so as to make 
them independent of this assumption. 

The Third Proof 

The third proof of Gauss is much simpler. According to his own testimony 
he found this proof by continued thinking after the second proof was printed 
in 1816. 

Gauss starts with a polynomial 

(37) 

with real coefficients. He puts 

(38) rm cos m qJ + A rm - 1 cos (m - 1) qJ + ... + L r cos qJ + M = t 

(39) rm sin m qJ + A rm - 1 sin(m -1) qJ + ... + L r sin qJ = u. 

The expressions t and u are the same as the expressions U and T in Gauss' 
first proof. They are the real and imaginary parts of the complex expression 
obtained by substituting 

(40) z =r(cos qJ + i sin qJ) 

into (37). 
The derivatives of t and u with respect to qJ are called - u' and + t ' . Thus 

we have 

t ' =m rm cosm qJ +(m-1)Arm - 1 cos(m-1) 4> + ... + Lr cos qJ 

u' =m rm sinm qJ +(m -1) Arm - 1 sin(m -1) qJ + ... + Lrsin qJ. 

Gauss now proves that 
t t ' +u u' 

is positive for a sufficiently large value R of r, no matter what value qJ has. It is 
easy to see that this is true. For large r the main terms of t and u are 

r m cos m qJ and r m sin m qJ 
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and the main terms of t' and u' are 

m rm cos m q; and m rm sin m q;. 

So the main term of t t' + u u' is 

m r2m(COS 2 m q; + sin2 m q;)=m r2m 

which is positive. 
The second derivatives of t and u with respect to q; are called - u" and 

+t": 

(41) 

(42) 

t" =m2 rm cosm q; + ... +Lrcos q; 

u" = m2 rm sin m q; + ... + L r sin q;. 

Gauss wants to show that there is a point in the plane at wh ich t and u are 
both zero. As we have seen, the existence of such a point implies the existence 
of a complex root of the polynomial X. If this root is real, X has a linear 
factor, and the process can be continued. If the root is not real, X has a qua­
dratic factor, and the process can also be continued. 

Suppose no point with t = u = 0 exists, then t 2 + u2 is always different from 
zero, and the function 

(43) 

is everywhere finite. Note that the factor r in the denominator cancels out, 
because t', u', t", u" are divisible by r. Now Gauss considers the double integral 

(44) Q= SI ydrdq;, 

integrated from r = 0 to r = Rand from q; = 0 to q; = 360°. One can integrate 
first with respect to r or first with respect to q;: the result is the same. The 
indefinite integral with respect to q; is 

(45) 

for if one differentiates the function on the right with respect to q;, one obtains 
just y. Now the function on the right has the same value for q;=0 as for q; 
= 360°, so the integral on the left, taken from 0 to 360, is zero. This implies 

(46) Q=O. 
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On the other hand, if one integrates first with respect to r, one obtains the 
indefinite integral 

(47) 
tt'+uu' J ydr= 2 2· 
t +u 

For r=O this expression is zero, and for r= R it is positive, as we have seen. 
So the integral on the left, extended from 0 to R, is positive, and hence Q is 
positive, contrary to (46). So the hypo thesis that t and u are never both zero 
leads to a contradiction. 

It is very easy to follow the proof of Gauss step by step. But how did he 
find his proof? In particular, how did he find the complicated expression y 
defined by (43)? I don't know, but I ean make a guess. 

We may eonsider X = t + i u as a funetion of the complex variable 

(48) z=r(cos ep + i sin ep). 

Geometrically speaking, the function 

X(z) = X(r, ep)= t + i u 

defines a mapping of the z-plane into the X-plane. In the X-plane we mayaiso 
introduce polar coordinates: 

(49) 

We now have 

(50) 

X =s(cos ß + isin ß). 

u 
tgß=-· 

t 

Differentiating (50) with respeet to ep and r one obtains 

(51) 
oß tt'+uu' 
-;-=cos2 ß 2 
uep t 

u 

and 

(52) 

Differentiating onee more, one obtains 

(53) oU oV 
-=-=y. 
or oep 

Gauss himself makes use of the equations (53), from which he eoncludes 

J y d r = U and J y d ({J = v. 
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So it seems quite possible that he arrived at his complicated function y by 
differentiating U with respect to rand V with respect to cp. He could know 
beforehand that au/ar and av/acp are equal, because U and V are the deriva­
tives of one and the same function ß with respect to cp and r. 

It is true that the angle ß is not uniquely defined: it is defined only modulo 
2n, but in a neighbourhood of any point (r,cp) the angle ß is a differentiable 
function of rand cp, so the total differential 

dß= U dcp+ V dr 

is well-defined. It is possible that Gauss wanted to avoid the use of multi­
valued functions like ß, and that this was the reason why he used only the 
derivatives U, V and y in his proof. 

We now ask: How does the angle ß vary when the point z moves on a 
large circle r = R in the z-plane? 

In his first proof, Gauss has shown: if cp goes from 0 to 2 n, and if R is 
sufficiently large, the point X passes m tim es through the first, second, third, 
and fourth quadrants (in this order), which implies that ß goes from zero to 
m·2n. Now let us ca1culate J dß. Because of (51), we obtain 

(54) ß(2n)- ß(O)= J dß= J U dcp. 

This difference must be a multiple of 2n. Since U is positive, it is a positive 
multiple, say m'· 2n. From Gauss' first proof we know that m' is equal to m, the 
degree of the polynomial X, but Gauss does not need this result. For his pres­
ent proof, it is sufficient to know that J Ud cp is positive. 

As long as t 2 + u2 is not zero, the integral (54) is a continuous function of r, 
so the integer m' cannot change, and the integral J Ud cp remains constant. On 
the other hand, it is positive for r = Rand zero far r = O. Thus one obtains a 
contradiction. 

It is quite possible that Gauss had this simple proof in mind. However, he 
found a way to avoid the use of the multivalued angle ß, writing the integral 
J U dcp as a double integral 

JUdcp=Jjydrdcp 

and interchanging the order of the integrations. Because J y d cp is always zero, 
the double integral is zero, but on the other hand J Ud cp is positive for suf­
ficiently large R. Thus Gauss obtained a contradiction. 



Chapter 6 
Evariste Galois 

Evariste Galois was born in Oetober 1811. Twenty years and seven months 
later he died in a duel. In the meantime he had ereated one of the most 
important and beautiful theories in the history of algebra: the Theory of Galois. 

The dramatie story of his life is weIl known. One may eonsult the classieal 
biography of Paul Dupuy: "La vie d'Evariste Galois" in Annales de l'Eeole 
Normale, serie 3, Vol. 13, p. 197-266, or the more reeent biography "Evariste 
Galois" by L. Kollros, also in Freneh, in "Kurze Mathematiker-Biographien", 
Birkhäuser -Verlag, Basel 1978. 

The Work of Galois 

The mathematieal works of Galois have been published first in 1846 by 
Liouville in his Journal de Matbematiques. They were reprinted in 1897 by 
Gauthier-Villars with an introduetion by Emile Pieard. A more eomplete, 
eritieal edition of aIl preserved letters and manuseripts, prepared by R. Bour­
gne and J.-P. Azra, was published by Gauthier-Villars in 1962 under th~ title 
"Eerits et memoires mathematiques d'Evariste Galois". 

Galois' first published paper was an article of eight pages on continued 
fraetions in Annales de Mathematiques de Gergonne, Vol. 19, p. 294-302 
(1828). In this paper, Galois proved: 

1f one of the roots of an equation of arbitrary degree (with rational 
coefficients) is an immediately periodic continued fraction, then another root is 
also a periodic continued fraction, which one obtains by dividing -1 by the same 
continued fraction, written in the inverse order. 

This is a niee addition to the results of Euler and Lagrange on eontinued 
fraetions. 

In May 1829, Galois presented a first aeeount of his investigations on the 
solution of algebraie equations to the Aeademie des Seienees de Paris. A 
seeond memoir, on equations of prime degree, was presented eight days later, 
on June 11. Both papers were sent to Cauehy, who lost them. They have never 
been found. . 

In February 1830, Galois presented to the Aeademy another memoir on the 
solution of algebraic equations. This time the Aeademy gave the paper to its 
perpetual seeretary Fourier. But Fourier died before he eould examine the 
paper. The manuseript has not been found among his papers. 
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In April 1830 a short note of Galois was published in the Bulletin des 
Sciences mathematiques of Ferussac (Oeuvres mathematiques de Galois, 1897, 
p. 11-12), in which some of the main results of his Academy memoir were 
announced without proofs. The first and most important theorem announced 
in this paper reads: 

In order that an equation of prime degree be solvable by radicals, it is 
necessary and sufficient that, if two of its roots are known, the others can be 
expressed rationall y. 

This theorem implies that the general equation of degree 5 cannot be 
solved by radicals. 

In the same year 1830, Galois published two more littIe papers on ques­
tions of analysis and on the numerical solution of equations (Oeuvres, 1897, p. 
9-10 and 13-14). 

Of great importance for the his tory of modern algebra is another paper 
"Sur la theorie des nombres", published in Ferussac's Bulletin in June 1830 
(Oeuvres, 1897, p. 15-23), in which Galois determined the structure of finite 
fields. An account of the contents of this paper wiII be given at the end of the 
present chapter. 

In January 1831 the Academy received a third, revised version of Galois' 
great memoir. It was entitIed "Memoire sur les conditions de resolubilite des 
equations par radicaux". The text of this memoir can be found in the Oeuvres 
mathematiques (1897), p. 33-50. A critical edition with marginal notes, incIud­
ing corrections made by Galois hirnself, was published in "Ecrits and memoires 
mathematiques d'Evariste Galois" (Paris 1962), p. 37-109. 

The Academy asked the members Poisson and Lacroix to write areport on 
the manuscript. Poisson examined it carefuIly, but he declared that he could 
not understand it. The complete text of Poisson's report has been published by 
Rene Taton in a paper entitled "Les relations d'Evariste Galois avec les 
mathematiciens de son temps", Revue d'histoire des sciences et de leurs appli­
cations I (1947), p. 114-130. The report ends thus (my translation): 

We have done our utmost to understand the demonstrations of Galois. His reasonings are not 
sufficiently cJear, nor are they developed so far that we could judge their exactness, and we are not 
even able to give an idea of his reasoning in the report. The author states that the proposition 
wh ich is the special object of this memoir is apart of a general theory, which is susceptible of 
many applications. It often happens that several parts of a theory, elucidating each other, are 
easier to grasp as a wh oie than isolated. Therefore, to form adefinite opinion, one might wait until 
the author will have published his work as a whole. But in the present state of the part submitted 
to the Academy we cannot pro pose to give it your approbation. 

The Duel 

Galois had no opportunity to explain his complete theory. During these 
years he took part in numerous anti-monarchist riots. He was imprisoned 
twice. In May 1832 he was forced to accept a due!. He was sure that he would 
be killed. In a letter to his political friends he wrote: 

"Je meurs victime d'une infame coquette." 
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It has been said that his opponent wanted to kill hirn in order to get rid of 
a dangerous republican, but this rumour is not confirmed by Galois' own 
testimony, for at the end of his letter he writes. 

"Pardon POUf ceux qui m'ont tue, ils sont de bonne foi." 
I suppose Galois hirnself had more information about the motives of those 

who challenged and killed hirn than his friends, who suspected political mo­
tives. When he says "ils sont de bonne foi" he must have been convinced that 
their motives were sincere. In a letter written to two of his friends on the eve of 
the duel he writes 

Votre tache est bien simple: prouver que je me suis battu malgre moi, c'esHl-dire apres avoir 
epuise tout moyen d'accommodement, et dire si je suis capable de mentir, de mentir meme pour un 
si petit objet que celui dont il s'agissait. 

and in another letter to his political friends 
Je prends le ciel a temoin que c'est contraint et force que j'ai cede a une provocation que j'ai 

conjuree par tous les mo yens. 
Je me repens d'avoir dit une verite funeste ades hommes si peu en etat de I'entendre de sang­

froid. Mais enfin j'ai dit la verite. 
J'emporte au tombeau une conscience nette de mensonge, nette de sang patriote. 

The du el took place on May 30 1832. He used the night before the duel to 
write a long letter to his friend Auguste Chevalier, in which he explained the 
fundamental ideas of his theory. This letter was published in September 1832 
in the Revue encyclopedique, and republished in the Oeuvres (1897), p. 25-32. 
It ends thus: 

Tu feras imprimer cette Lettre dans la Revue encyclopedique. 
Je me suis souvent hasarde dans ma vie a avancer des propositions dont je n't\tais pas sur; 

mais tous ce que j'ai ecrit la est depuis bientöt un an dans ma tete, et il est trop de mon interet de 
ne pas me tromper pour qu'on me soup90nne d'enoncer des theoremes dont je n'aurais pas la 
demonstration complete. 

Tu prieras publiquement Jacobi et Gauss de donner leur avis, non sur la verite, mais sur 
I'importance des theoremes. 

Apres cela, il y aura, j'espere, des gens qui trouvcront leur profit a dechiffrer tout ce gachis. 
Je t'embrasse avec effusion. 
Le 29 mai 1832. E. Galois. 

The next morning Galois was shot. 

The Mernoir oI1831 

For us, who have learnt Galois Theory from a textbook or from a course of 
lectmes, it is not so difficult to und erstand Galois' memoir as it was for 
Poisson. 

Galois starts with an equation I(x)=O. The coefficients are supposed to be 
known quantities, for instance rational or irrational numbers or just letters. All 
rational functions of these coefficients are called rational. One mayaIso adjoin 
other quantities, for instance rn-th roots of rational quantities, and consider as 
rational in a larger sense a11 rational functions of these quantities, says Galois. 
In modern terminology one would say that a certain "ground field" is pre­
supposed, which may be extended by adjunctions in the course of the in­
vestigations. 
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If a polynomial f(x) can be factored without leaving the ground field, it is 
called reducible, otherwise irreducible. 

As a rule, but not consistently, Galois uses the words permutation and 
substitition in the same sense as Cauchy. Apermutation is an ordering of a 
finite set, and a substitution is a passage from one ordering to another (or the 
same) ordering. 

Galois now considers groups of substitutions having the property: if Sand 
T belong to the group, so does sr 

If a polynomial f has a root in common with an irreducible polynomial g, 
then f is divisible by g. This is Galois' first lemma. It is also the first theorem 
in the 1829 memoir of Abel. The lemma implies that the field extension K(V) 
obtained by adjoining a root V of an irreducible polynomial g(x) is completely 
known as soon as the ground field K and the polynomial gare known. In 
modern terminology the field K(V) is isomorphie to the residue dass ring 
K[x]/(g). 

Galois next proves: If an equation g(x) = 0 has no multiple roots and if a, b, 
c, ... are its roots, one can always form a function V of the roots such that all 
values of V obtained by permuting the roots are different. 

F or instance, one can take 

(1) V=Aa+Bb+ Cc+ ... 

with conveniently chosen integers A, B, C, ... , says Galois. 
From this lemma, Galois deduces a special case of what we now call the 

"Theorem of the Primitive Element": 

Lemma 3. If V is chosen as before, all roots a, b, c, ... are expressible as 
rational functions of V. 

To prove this important lemma, Galois puts 

V=<p(a,b,c, ... ). 

He now permutes the roots b, c, ... in all possible ways, keeping fixed only 
root a, and forms the product 

[V -<p(a, b, c, ... )]. [V -<p(a, c, b, ... )] ..... 

This is asymmetrie function of b, c, ... , which are the roots of the 
polynomial 

g(x)/(x - a), 

hence it can be expressed as a rational function of a. So we have an equation 

(2) F(V,a)=O. 

This equation and 

(3) g(a)=O 

have in common only one root a, for it cannot happen that, for instance, 
F(V, b) is zero, says Galois. 
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Now if two equations like (2) and (3) have only one root a in common, this 
root can be computed rationally. Hence a is a rational function of V. 

Galois is right in saying that F(V, b) cannot be zero, for F(V, b) is a product 
of factors 

[V-cp(b,a,c, ... )]. [V-cp(b,c,a, ... )] .... 

in which the permutations (b, a, c, ... ) etc. are all permutations of (a, b, c, ... ) in 
which b comes first, while the others (a, c, ... ) are permuted in all possible 
ways. This follows from the definition of F(V, a), as H.M. Edwards has pointed 
out in his book "Galois Theory" (Springer-Verlag 1984), p. 44-45. Namely: 
since all expressions cp(b, a, c, ... ) etc. are supposed to be different from V 
=cp(a, b, ... ), it follows that F(V,b) is different from zero, and so are F(V,c), 
ete. 

Poisson made a marginal note to Lemma 3, saying: "The proof of this 
lemma is insufficient, but it is true by article 100 of the memoir of Lagrange." It 
is easy to understand Poisson's attitude. Galois' proof is only a sketch, and did 
not elaborate his statement that F(V, b) is not zero. Poisson's last statement "It 
is true by article 100 of Lagrange" is correct, for in artide 100 of Lagrange's 
"Reflexions" a complete proof of the lemma is given. 

In my opinion Galois was right in daiming that his proof is essentially 
correct, but Poisson was right in dedaring that it is incomplete. 

In modern notation we may now write 

(4) K(a, b, c, ... )=K(V) 

where K is the ground field. The "primitive element" V is a root of an 
irreducible equation. Let 

v, V', V", ... , v(n-l) 

be the roots of this equation. Lemma 4 says: If a = cp (V) is a root of the 
original equation, cp(V') will also be a root. The proof is easy. 

Next comes the main theorem: 

Proposition I. There is a group of permutations of the letters a, b, c, ... such 
that 

10 Every function of the roots, invariable under the substitutions of the 
group, is rationally known; 

2° conversely, every function of the roots rationally known is invariable und er 
the group. 

Galois' terminology is not consistent. He first speaks of "permutations" and 
next of "substitutions" forming the group, but what he wants to say is com­
pletely dear. 

To prove this theorem, Galois expresses the roots as rational functions of V: 
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He next writes down the permutations 

epv, 
ep V', 

···,epm_1 V 

···,epm_1 V' 

and he states that the "group of permutations" (meaning the corresponding 
group of substitutions) satisfies the required conditions~ The proof is very short, 
but it is not difficult for a modern reader to elaborate the single steps. 

Galois next investigates how the group of the equation changes when the 
ground field is extended by the adjunction of a root or of all root.s of an 
auxiliary equation. It is c1ear that after the adjunction the Galois group will be 
a subgroup H of the original group G. If H is a proper subgroup, G can be 
decomposed as follows: 

(5) G=H+HS+HS'+ ... 

or, alternately, as 

(6) G=H+TH+T'H+ .... 

These two decompositions are most c1early explained in the letter to 
Chevalier (Oeuvres de Galois, 1897, p. 25-32). 

The two decompositions do not always coincide, says Galois. If they do 
coincide, the decomposition is called "proper". In modern terminology, this is 
the case when H is an "invariant subgroup", or "normal divisor" of G. In 
particular, if all roots of an auxiliary equation are adjoined, the two decom­
positions will coincide. This is Proposition III of Galois. The proof is omitted 
("On trouvera la demonstration"). 

Galois now comes to his main problem: In what case is an equation 
solvable by radicals? 

One can, of course, rest riet onese1f to radieals of prime degree p. Every time 
a p-th root is extracted, Galois supposes the p-th roots of unity to be adjoined 
beforehand. This is not an essential restrietion, because Gauss had proved 
already that the p-th roots of unity can be expressed by means of radicals of 
degrees less than p. 

Let us suppose that the adjunction of a radical r, root of an equation 

(7) xP-s=o, 

leads to a reduetion of the Galois group. Because the p-th roots of unity 

are in the ground field, the same reduction is obtained by adjoining all roots of 
the equation (7). By Proposition III, the decomposition (5) will be a proper 



Galois Fields 109 

decomposition, that is, the subgroup H is a normal divisor. Galois stated, but 
did not prove, that the number of terms in the decomposition (5) (which we 
call the index of H in G) is just the prime number p. Conversely, if G has a 
normal divisor H of prime index p, one can reduce the Galois group G to the 
subgroup H by adjoining a radical of degree p. This is proved as in OUf 
textbooks by taking a function 8 invariant under the subgroup Hand forming 
a "Lagrange resolvent" 

(8) 

where (J. is a p-th root of unity, while 81, 82 , ••• are obtained [rom 8 by the 
substitutions 

representing the co sets in the decomposition (5). 
It follows that an equation g(x) = 0 is solvable by radicals if and only if a 

sequence of subgroups 

exists, such that every Hk is a normal divisor of the preceding Hk_ 1 or G, while 
all indices are prime. If this is the case we say that the group G is sollJable. 

Galois next supposes that the equation f(x)=O is irreducible and of prime 
degree n. He proves: The equation can be solved by radicals if and only if each 
of the substitutions of G transforms X k into x k' by a linear transformation of k 
modulo n: 

k' =ak+b (modn). 

The Galois group of the general quintic equation is not of this form, hence 
this equation cannot be solved by radicals. Thus, Abel's result follows from the 
theory of Galois. 

In the last version of his Academy memoir Galois quoted Abel, but at the 
time when he sent his first version to the Academy he did not even know the 
name of Abel. His main SOUfces were the works of Lagrange, Gauss, and 
Cauchy. 

Galois Fields 

Both Abel and Galois had a clear notion of what we now call "fjeld". 
Galois states right at the beginning of his great memoir: 

"One can agree to consider as rational every rational function of a certain 
number of quantities regarded as known apriori", and he goes on to explain 
what he means by adjoining a certain quantity to the fjeld of quantities 
considered as known. 

The fields considered by Abel and Galois in their papers on the resolution 
of equations all contain the rational number field. In modern terminology they 
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are fields of characteristic zero. If the characteristic were p, the equation 

would have only one root x = 1, whereas Abel and Galois always suppose that 
the p-th roots of unity are all different. 

However, in his paper "Sur la theorie des nombres", which was published 
in 1830 in the Bulletin des Sciences de Ferussac (Oeuvres de Galois, Paris 1897, 
p. 15-23) Galois constructs finite fields, the so-called Galois-Fields. He states 
from the very beginning that his object is to consider algebraic structures in 
which all quantities, multiplied by p, are considered to be zero. In his own 
words, translated into English, he says: 

If one agrees to regard as zero all quantities wh ich, in algebraic calculations, are found to be 
multiplied by p, and if one tries to find, under this convention, the solution of an algebraic 
equation F x = 0, which Mr. Gauss designates by the notation F x == 0, the custom is to consider 
integer solutions only. Having been led, by my own research, to consider incommensurable 
solutions, I have attained some results wh ich I consider new. 

From these words it is clear that the starting point of Galois was the 
calculus of congruences modulo a prime p, initiated by Gauss. It was known 
that residue classes modulo p can be added, subtracted, and multiplied, and 
that the congruence 

ax==b (modulo p) 

can always be solved in rational integers, provided a is not congruent to zero. 
In other words, the residue classes modulo p form a field. 

Gauss had also considered congruences of higher degrees such as 

x 2 == a (modulo p), 

but he admitted rational solutions only. Galois now asks whether one can 
introduce irrational solutions, that is, whether one can enlarge the residue class 
field by the adjunction of roots not contained in the original field. 

Galois supposes the polynomial F x to be irreducible modulo p. He asks 
whether one can solve the congruence F x == 0 by introducing new "symbols", 
which might be just as useful as the imaginary unit i in ordinary analysis. 

Galois calls i one of the roots of the congruence F x == 0 of degree v. He 
forms the pV expressions 

(A) 

where a, a1, a2 , ••. , a v _ 1 are integers modulo p. These pV elements form what 
we call today a "Galois Field" GF(pV). 

It is easy to show that the expressions (A) form a field, that is, that they 
satisfy the weIl known rules of addition, subtraction, multiplication, and di­
vision. 
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Galois now takes an element IX of the form (A), in which the coefficients a, 
a l , ... , a._ l are not all zero. The powers IX, 1X2, ••• cannot be aIl different, hence 
apower IXn must be equal to 1. If n is the smallest integer for which IX" is 1, the 
expressions 

must be all different. In modern terminology, they form a subgroup of the 
multiplicative group of the Galois field. 

Multiplying these numbers by another element ß=t=O, one obtains a coset of 
the subgroup. Going on in the same way, one finds that all co sets together 
form the whole multiplicative subgroup of order p' -1, and that the exponent n 
is a divisor of p' -1. Hence one has 

Next one proves, says Galois, as in the theory of residue c1asses modulo p, 
that there exist "primitive roots" for which n is exactly p' -1. All other non­
zero elements of the Galois field are powers of a primitive element IX. The 
proof of the existence of such an element, given by Gauss for the case of the 
residue dass field modulo p, works just as well in the case of GF(pV). 

We now see that all elements of the Galois field, induding zero, are roots 
of the polynomial 

(B) 

and that every irreducible polynomial F x of degree v is a divisor of the 
polynomial (B). If IX is one of the roots of such a polynomial, the others are 

P p2 pv-l 
IX ,IX , ••• ,IX 

This follows from the weIl known congruence 

(F x)P == F(xP). 

At the end of his treatise, Galois reverses the situation. He starts with any 
field extension of GF(p) in which the polynomial (B) can be completely factor­
ized. Restricting hirnself to the subfield generated by the wots, he takes a 
"primitive element" i of the subfield. Such an element always exists according 
to a theorem known to Abel, says Galois. Every such i is a root of a (modp) 
irreducible polynomial F x. No matter which irreducible polynomial of degree 
v one chooses, one always obtains the same field GF(pV). In most cases, the 
simplest way to obtain such a polynomial is "par tatonnement", says Galois, 
by trial and error. As an example, he takes p = 7 and v = 3. The polynomial 
x3 - 2 is irreducible (mod 7), and a root i of this polynomial generates the field 
GF(7 3 ). 
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The Publication 01 Galois' Papers 

Galois' "Memoire sur les conditions de resolubilite des equations par 
radicaux" was published in 1846, fourteen years after the death of Galois, by 
Liouville in his Journal de mathematiques pures et appliquees 11, p. 381-444. 
In an "A vertissement" preceding the memoir, Liouville reproduces the letter of 
Galois to Chevalier and adds: 

Inserting in their Recueil the letter one has just read, the editors of the Revue encyclopedique 
announced that they would soon publish the manuscripts left by Galois. But this promise has not 
been kept. However, Monsieur Auguste Chevalier has prepared the work. He has given us, and 
one will find in the pages to follow: 

1° A memoir on the conditions of solvability of equations by radicals, with an application to 
equations of prime degree, 

2° A fragment of a second memoir, in which Galois treats the general theory of those 
equations which he calls primitive. 

We have preserved most of the notes which Monsieur Auguste Chevalier had added to the 
memoirs just mentioned. These notes are all marked A.Ch. The unsigned notes are by Galois 
hirnself. 

We will complete this publication by some other fragments drawn from the notes of Galois. 
Without having great importance these notes might still arouse the interest of the geometers. 

The notes mentioned by Liouville in the last sentence have been published 
by Jules Tannery (Manuscrits de Evariste Galois, Gauthier-Villars, Paris 1908), 
and again in "Ecrits et memoires d'Evariste Galois" (Paris 1962). 

Liouville also states that he experienced great joy when he realized, after 
filling a few slight gaps, that the method by which Galois proved his beautiful 
theorem was completely accurate. 

For more information on the activities of Liouville, Hermite, and Serret 
during the years 1846-1854 I may refer to a very interesting paper by B.M. 
Kiernan in the Archive for History of Exact Sciences 8, p. 40-154 (1971) 
entitled "Galois Theory from Lagrange to Artin". Section 11 of this paper 
deals with the publication of Galois' papers and the reaction of the French 
mathematicians to this publication. The next section of the present chapter is 
mainly drawn from Kiernan's paper. 

H ermite, Puiseux, and Serret 

The French mathematician Charles Hermite (1822-1882) was a pupil of the 
same Louis Richard who taught Galois. In 1842, at the age of twenty, he 
published a paper "Considerations sur la resolution algebrique de l'equation 
du cinquieme degre", in which he sketched with great clarity and precision 
Lagrange's ideas concerning the general quintic equation. 

In 1847 or earlier Hermite wrote a letter to Jacobi, in which he mentioned 
Galois' work on elliptic functions. So Hermite was acquainted with the work 
of Galois at a date shortly after the publication of the memoirs of Galois in 
1846 or even earlier. 

In 1850, Victor Puiseux published a fundamental paper entitled "Re­
cherehes sur les functions algebriques" in Vol. 15 of Liouville's "Journal de 
mathematiques pures et appliquees", p. 365-480. In this paper, Puiseux con-
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siders an algebraic function W of a complex variable z defined by an equation 

(9) !(z, w)=O 

in wh ich !(z, w) is a polynomial in w, irreducible in the field of rational 
functions of z. In the neighbourhood of any point Zo which is not a "branch 
point", the roots Wb Wz, ... , Wn of the equation (9) can be expanded as 
convergent power series in z - zoo If Zo is a branch point, one has to use powers 
of z - Zo with fractional exponents. These power series are called up to the 
present day "Puiseux series". 

If one starts with a non-branch point Zo and if one makes z move on a 
closed path, avoiding the branch points and ending at zo, one will end up with 
apermutation of the original roots w1' ••• , wn • These permutations obviously 
form a group, but Puiseux does not use the word "groupe". In Jordan's "Traite 
des substitutions" this group is called "groupe de monodromie". 

In the following year 1851, Hermite published a short paper in which he 
showed that the group of substitutions of the roots w 1' ••• , wn considered by 
Puiseux is just the Galois group of the equation (9), if <C(z) is the ground field. 
Thus, an important link between Galois theory and complex function theory 
was established (Oeuvres d'Hermite I, p. 276-280). 

Liouville conducted aseries of seminars on Galois theory. The seminar was 
attended by Joseph-Alfred Serret, the author of a very influential "Cours 
d'algebre superieure". In the first edition of this textbook (published in 1849) 
one finds a proof of the fundamental third lemma of Galois, which reads in the 
text of Serret (3rd edition, Vol. 2, p. 413): 

If 
f(x)=O 

is an equation of degree n, which has no equal reots, and if 

is a rational function of the reots xo, XI' ... , x._ I ' chosen in such a way that the 1·2· ... ·n values 
which it takes when the reots are permuted are all different, then one can express the wots xo, X I' 

... , x._ I as rational functions of V. 

The proof given by Serret is just the proof of Galois, which we have 
discussed earlier. 

Some time before 1854 Hermite sent to Serret a proof of a theorem of 
Galois which says: An irreducible equation of prime degree is solvable by 
radicals only if all roots can be rationally expressed by any two of the roots. 
Serret inserted this proof in the second edition of his "Cours d'algebre su­
perieure", which came out in 1854. Serret also included a French translation of 
a paper of Kronecker "Über die algebraisch auflösbaren Gleichungen", pre­
sented to the Berlin Academy in 1853 (Kronecker's Werke IV, p. 1-11). 

The third edition of Serret's "Cours d'algebre" (1866) contains a thorough 
exposition of the theory of Galois. Serret says 

"I have followed the order of the propositions which Galois adopted, but very often I had to 
fill out the inadequate preofs." 
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According to Kiernan, Serret's main contribution is notational. For Serret, 
the Galois group is a group of substitutions in the sense of Cauchy. He 
introduces the notation of what we today call "conjugate subgroups". If H is a 
subgroup consisting of m substitutions 

then a conjugate subgroup consists of 

Serret's textbook was very influential. Many editions followed the third 
edition. A German translation by G. Wertheim was published in 1868. 

We now return to the year 1852, and turn to Italy. 

Enrico Betti 

The first to present an exposition of Galois theory according to the ideas of 
Galois, but with more complete proofs, was Enrico Betti, a very interesting 
personality in the his tory of algebra and algebraic topology. His name is 
known to topologists because it is connected with the so-called "Betti-num­
bers" or "homology numbers". 

Actually, these numbers were not invented by Betti, but by Henri Poincare, 
who was inspired by a paper of Betti. The his tory of this invention has been 
studied in a paper by Maja Bollinger "Entwicklung des Homologiebegriffs" in 
Archive for History of Exact Sciences 9, p. 94-170 (1972). It is worthwile to 
summarize the main facts about "Betti numbers" here. 

In Riemann's "Gesammelte mathematische Werke" (1871) one finds a post­
humous "Fragment on Analysis Situs", in wh ich Riemann defines what we 
now call "homology numbers modulo 2", that is, numbers of linearly inde­
pendent homology classes for non-oriented cycles with integers modulo 2 as 
coefficients. Riemann proves that these numbers are independent of the choice 
of the basic cycles. His method of proof is just the same by wh ich Steinitz later 
proved that the degree of a finite field extension does not depend on the choice 
of the basis. One finds the proof in every textbook of modern algebra. 

Riemann visited Betti in Italy. In a letter dated 21 January, 1871, he calls 
Betti "carissimo amico". It appears that Riemann explained his ideas concern­
ing homology numbers to Betti. 

In 1871 Betti published a paper "Sopra gli spazi di un numero qualunque 
di dimensioni" in Annali di matematica pura e applicata (2) 4, p. 140-158 
(1871). The ideas underlying this paper are just the same as in the fragment of 
Riemann, and Betti says expressly that his proof of the independence of the 
homology numbers from the choice of the basis is the same as a proof given by 
Riemann for the special case of closed paths on aRiemann surface. However, 
Betti's proof is not correct, as Heegard and Maja Bollinger have shown. Betti 
misunderstood Riemann's ideas in several respects. 
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Poincare, inspired by Betti's paper, deve10ped a complete1y correct ho­
mology theory. He considered oriented cycles, multiplied by rational numbers, 
so his homology is a "homology with admitted division", as we say today. The 
numbers of linearly independent cycles of all dimensions less than m on a 
manifold of dimension mare called, in honour of Betti, "nombres de Betti". On 
an orientable closed surface, for instance on the Riemann surface of an alge­
braic function, these numbers happen to be equal to the homology numbers 
modulo 2 studied by Riemann and Betti, but in general they may be different. 

Just as Betti elaborated Riemann's ideas on homology, he also elaborated 
the theory of Galois in a paper "Sulla risoluzione delle equazioni algebriche", 
published in 1852 (Opere matematiche I, p. 31-80). In the introduction to this 
paper he writes, referring to the work of Galois and Abel: 

"The conditions for solvability by radicals of equations of prime degree can thus be held 
determined and proved by the procedures of both of these mathematicians. The conditions remain 
to be determined for equations of non-prime degree, and much on this is found proposed by 
Galois and Abel in different ways, but without proof, in their posthumous papers. To fill in these 
gaps is the main intention of my work" (Kiernan's translation). 

In fact, Betti provided proofs for several theorems which Galois merely 
stated. A good example is given on page 107 of Kiernan's paper in Archive for 
History of Exact Seien ces 8. 

Betti is quite near to the modern notion of a quotient group. If H is a 
normal subgroup of G, Betti assumes that the representatives Si of the co sets 
SiH can be chosen in such a way that they form a group. In this particular 
case the group formed by the representatives Si is isomorphie to what we call 
the quotient group GIH. 

For more details on Betti's memoir I may refer to the paper of Kiernan. 
Betti's exposition of Galois theory, being written in Italian, was not as 

influencial as that of Serret, whose "Cours d'algebre superieure" remained a 
standard text for a long time: the sixth edition appeared as late as 1928. 

The Second Posthumous Memoir of Galois 

As we have seen, Galois completely determined the structure of the Galois 
groups of solvable, irreducible equations of prime degree p. Since an equation 
is irreducible only if its group is transitive, and solvable only if the group is 
solvable, the theorem proved by Galois is equivalent to the following: 

A transitive group of permutations of degree p (that is, on p letters) is 
solvable only if its permutations can be written as 

k':=ak+b (modp). 

In a second, unfinished memoir published in 1846 (Oeuvres, p. 51-61) 
Galois investigates the more general case in which the group is supposed to be 
primitive. 
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A transitive group is called primitive, if it is impossible to divide the letters 
into several subsets of more than one elements each: 

in such a way that the group transforms each subset either into itself or into 
another one of the subsets. 

Obviously, a transitive group of prime degree p is always primitive. Galois 
now considers non-prime degrees, and he proves: 

1f a solvable group is primitive, its degree must be apower of a prime. 
Galois' proof of this theorem is not easy to understand, but it is correct. 

Camille Jordan presented an elaborate proof in his "Traite des substitutions" 
(1870). In this monumental volume, Jordan developed an exhaustive classifi­
cation of solvable primitive groups of degree pn. 

The theorem just mentioned had been announced al ready, together with 
other results, in Galois' published paper of 1830 entitled "Analyse d'un me­
moire sur la resolution algebrique des equations" (Oeuvres, 1897, p. 11-12). His 
preliminary results on primitive groups were far surpassed by those of Jordan. 

The remainder of the second memoir of Galois deals with primitive groups 
of degree p2. The memo ir is unfinished. It ends with a question and with the 
words "C'est ce que je vais rechercher". 
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Camille Jordan 

On the life and work of Camille Jordan (1838-1922) one may consult the 
excellent obituary of Henry Lebesgue, read at the Paris Academy in June 1923, 
and reprinted in Jordan's Oeuvres IV, p. X-XXIX. 

Jordan was born at Lyon. At the age of 17, he was admitted to the Ecole 
Polytechnique as the first in rank, with 19.8 points out of 20. In 1876 he 
became professor at the same Ecole. 

The name of Jordan is weIl known to all mathematicians of my generation 
because of his excellent "Cours d'analyse", a considerably enlarged elaboration 
of his lectures at the Ecole Polytechnique. As far as I know, this is the earliest 
textbook in which the whole of classical analysis is presented as a unified, 
completely logical theory. For instance, Jordan was the first to present, in the 
second and later editions of his Cours d'Analyse, clear definitions of the 
notions "volume" and "multiple integral", and he specified conditions under 
which a multiple integral can be evaluated by successive integrations. For me, 
every single chapter of the Cours d'analyse is a pleasure to read. 

lordan's Traite 

Jordan's monumental work of 667 pages "Traite des substitutions et .des 
equations algebriques", published in 1870 by Gauthier-Villars, is a masterpiece 
of mathematical architecture. The beauty of the edifice erected by Jordan is 
admirable. 

In the preface to his Traite Jordan gives due credit to his predecessors: 
first of course to Galois, who "invented the principles of Galois theory", and to 
Betti, who wrote "an important memoir, in which the complete sequence of 
theorems of Galois has been rigorously established for the first time". Next, 
Jordan mentions the contributions of Abel, Hermite, Kronecker, and Brioschi 
concerning the Galois groups of certain division problems of elliptic and 
Abelian functions, and the investigations of the geometers Hesse, Cayley, 
Clebsch, Kummer, Salmon, and Steiner, who studied a multitude of geometri­
cal problems to which the methods of Galois can be applied. FinaIly, he 
acknowledges his indebtedness to the ''Cours d'algebre" of Serret, saying: 

lt is the careful study of this book that initiated us into Algebra and inspired in us the desire 
to contribute to its progress. 

When Jordan says that he was initiated into Algebra by the book of Serret, 
this is certainly true, but it is not the whole truth. An explanation of Galois 
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theory is found only in the third edition of Serret's "Cours d'algebre", which 
appeared in 1864, but three years earlier Jordan had already quoted Galois in 
his These de doctorat (Oeuvres de Camille Jordan I, 1961, p. 1-82). Right in 
the first chapter of this These Jordan introduces the notion "systeme conjuge" 
according to Cauchy. Such a system consists of substitutions A, B, ... and their 
products such as 

A" Bß CY Bß' .... 

This system is, of course, a group in the sense of Galois, and in fact, in 
Chapter III of his These, Jordan writes: 

II est facile de voir, en effect, que la condition necessaire et suffisante pour qu'une equation 
soit irreductible, est que le systeme conjuge qui lui correspond et que Galois nomme son graupe, 
soit transitif. 

It follows that Jordan's initiation into Galois theory is not only due to 
Serret, but also to Galois hirnself. Jordan must have seen the fundamental 
memoir of Galois before 1861, for his These was published in 1861 in the 
Journal de l'ecole polytechnique 12, p. 113-194. 

In 1870, when the Traite was published, Jordan was already famous. 
Scholars from all parts of Europe came to Paris to see hirn. Sophus Lie came 
from Norway and Felix Klein from Germany. Klein and Lie were good friends 
at that time: they lived in Paris in adjacent rooms from April to June 1870, 
and this stay was of decisive importance for their later work on continuous 
and discrete groups of transformatiöns. Klein writes about Lie and hirnself: 

We lived room-to-room and sought scientific inspiration mainly in personal contact, especially 
with younger mathematicians. I was greatly impressed by Camille Jordan, whose Traite des 
substitutions had just been published. It appeared to us as a book with seven seals (Felix Klein, 
Gesammelte math. Abhandlungen I, p. 51). 

Most of Jordan's early papers on Galois theory and on groups of sub­
stitutions were incorporated in his Traite. An excellent commentary to this 
part of Jordan's work, by Jean Dieudonne, can be found in Volume I of 
Jordan's Oeuvres (1961). 

FoIIowing the chronological order, I shall first discuss Jordan's work on 
groups of Euclidean motions, and next present a summary of his Traite. 

On Groups of M otions 

In 1867, Jordan published a short note in the Comptes Rendus of the Paris 
Academy entitled "Sur les groupes de mouvements", in which he announces a 
complete determination of all possible groups of displacements of rigid bodies 
in Euclidean 3-space. In 1868-1869 the enumeration of these groups was 
presented in a two-part memo ir entitled "Memoire sur les groupes de mouve­
ments", Annali di Matematica 2, p. 167-215 and 322-345. 

The displacements considered by Jordan are helicoidal motions not only of 
a limited rigid body, but of the whole space. Particular cases are the rotations 
and translations. A group of motions is defined to be a set containing the 
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product AB of any two elements of the set. Jordan tacitly assurnes his groups to 
contain the inverses A - 1 as weIl. Moreover, he restricts hirnself to topologi­
cally closed sets. This restriction is evident already in the CR-note, for here 
Jordan announces a proposition which he calls "la plus essentielle et la plus 
deIicate a etablir", namely: 

"Let P and pi be two motions chosen at will. One can in general, and with 
some exceptions, obtain any motion by a convenient combination of P and 
Pi." 

It is clear that products composed from P and pi form, in any case, a 
denumerable set and not the whole group. But if one takes the closure of the 

. set of products, one obtains, apart from special cases, the whole group. 
Jordan's work on groups of motions was inspired by the "Etudes cristallo­

graphiques" of Bravais. In fact, Jordan states that several important special 
cases of his enumeration problem had been treated afready by Bravais. He also 
says that his problem of determining all groups of motions can also be 
formulated thus: 

"To determine all systems of molecules which can be superposed to them­
selves in several ways." 

Jordan first determines all closed groups of translations and next all closed 
groups of rotations having one fixed point in common. 

The determination of the translation groups is easy. There are four types of 
discrete groups of translations, genera ted by 3 or 2 or 1 or no linearly 
independent translations. There are three types of continuous groups of trans­
lations, of dimensions 3 and 2 and 1. Combining a continuous group of 
dimension 1 or 2 with a discrete group, one finds three mixed types. So there are 
just 10 types of topologically closed groups of translations. 

The closed groups of rotations are not so easy to find. Discrete groups of 
rotations are, according to Jordan: 

1) cyclic groups Cl' C 2 , C 3, ... , 

2) dihedral groups D4 , D6 , Ds' ... , 
3) the tetrahedral group, 
4) the octahedral group, 
5) the icosahedral group. 
Continuous groups of rotations are 
6) the group of all rotations having a common fixed point 0, 
7) the group of rotations about a fixed axis. 
Combining the last group with a rotation inverting the axis, one 

obtains 
8) the group consisting of all rotations about an axis a and all "full turns" 

about axes b drawn through 0 and perpendicular to a. 
Next Jordan undertakes the gigantic task to find all closed groups of 

motions by combining the rotations with translations. In modem terminology 
his method may be explained thus: 

From all helicoidal motions of the group Gone may take the rotational 
parts, thus obtaining a group of rotations Rand a morphism 

G-+R. 
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The kernel of this morphism is the group T of all translations in G. Hence 

R~G/T. 

So, in order to obtain the group G, one has to find all possible extensions 
of the normal subgroup T such that the factor group is isomorphic to R. This 
is, in fact, Jordan's method. 

Jordan's enumeration is not complete. Leonhard Sohncke noted, in the 
Historical Introduction to his book "Entwicklung einer Theorie der Kristall­
strukturen" (Leipzig 1879), that all crystallographic groups listed in § 20 of 
Chapter 6 of his book are missing in Jordan's list. Sohncke found this lacuna 
because he had investigated, by quite a different method, the regular point 
systems in the plane. 

In spite of this deficiency, Jordan's pioneering work is admirable. Sohncke 
used Jordan's method to determine all three-dimensional crystallographic 
groups preserving the orientation, thus paving the way towards the complete 
enumeration of all crystallographic groups by A. Schoenflies and E.S. von 
Fedorow in the years 1889-1891. For the history of these investigations see J.J. 
Burckhardt: Zur Geschichte der Entdeckung der 230 Raumgruppen, Archive 
for History of Exact Sciences 4, p. 235-246 (1967), and also J.J. Burckhardt: 
Der Briefwechsel von E.S. von Fedorow und A. Schoenflies 1889-1908, same 
Archive 7, p. 91-141 (1971). 

Jordan's memoir was not the earliest paper concerning Euclidean displace­
ments and their composition. As early as 1758, Euler published a paper "Du 
mouvement des corps solides autour d'une axe variable" (Opera omnia, series 
secunda, Vol. 8, p. 154-193). Among other things, Euler proved that every 
displacement of a rigid body can be expressed as a product of an axial rotation 
and a translation. To describe rotations, he introduced the "Euler angles", 
which are still used by physicists. 

Recently, Jeremy Gray has called attention to a nearly forgotten paper of 
Olinde Rodrigues: "Des lois geometriques qui regissent les deplacements d'un 
systeme solide dans l'espace, et de la variation des coordonnt!es provenant de ces 
deplacements consideres independamment des causes qui peuvent les pro­
duire", Journal de Math. (1) 5, p. 380-440 (1840). In this paper, Rodrigues 
proves that every dis placement of a rigid body is the resultant of a rotation 
and a translation along the axis of the rotation. Jordan considers this result as 
weil known, but he does not mention Rodrigues. 

Following Euler, Rodrigues describes a rotation by four parameters g, h, I, 
e, the first three determining the direction of the axis. He develops explicit 
formulae for the resultant of two rotations, and he stresses the fact that this 
product is not commutative. See J.1. Gray: Olinde Rodrigues' paper of 1840 on 
Transformation Groups, Archive for History of Exact Sciences 21, p. 375-385 
(1980) 

We now come to Jordan's Traite des substitutions. 



Series of Composition 121 

On Congruences 

The first "Book" of Jordan's Traite is entitled "Des congruences". In this 
book Jordan first summarizes the main results of Fermat and Gauss on 
congruences between integers and on power residues. Next he expounds, fol­
lowing Galois, the structure theory of wh at we call Galois Fields GF(q). 

Transitive and Primitive Groups of Substitutions 

More than one-third of Jordan's Traite is occupied by Book 2: "On Sub­
stitutions". In Chapter 1 of this book, Jordan deals with substitutions (or, as 
we now call them, permutations) in general. He proves that the order of a 
subgroup H of a group G is a divisor of the order of the whole group. 
Following Cauchy, he proves that a group whose order is divisible by p 
contains an element of order p. 

Next, Jordan defines the notions "transitive" and "primitive". A group is 
called "k-fold transitive" or "transitive of order k", if it transforms any k 
distinct letters into any other k distinct letters. Jordan mentions a 5-fold 
transitive group of substitutions on 12 letters discovered by Mathieu, and he 
proves some theorems on the order of transitivity. The work of Mathieu will 
be discussed in the next chapter together with the work of Cauchy, Serret, and 
Jordan on the possible values of the index i of a subgroup of Sn. 

For a summary of later papers of Jordan on primitive and on multiply 
transitive subgroups of Sn see J. Dieudonne, Vol. I of Jordan's Oeuvres, pages 
XXX to XXXIII. 

Series of Composition 

A composition series of a group G is a sequence of groups 

in which every term is anormal subgroup of the preceding one, and in which 
no inter mediate normal subgroups can be inserted. Jordan proves that the 
quotients of the orders of successive groups are uniquely determined by the 
group, apart from their order. This fundamental theorem occurs already, 
though without proof, in Jordan's "Commentaire sur Galois" in Math. An­
nalen 1 (1869) on p. 152. 

In 1889 Otto Hölder proved the stronger "Jordan-Hölder Theorem", which 
says that the factor groups 

GjR, HjH', ... 

are uniquely determined but for their order and but for isomorphisms. 
Our modern definition of the notion "factor group GjH" by means of 

cosets is due to Hölder. However, the same notion occurs implicitly in an 1875 
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paper of Jordan entitled "Sur la limite de transitivite des groupes non alternes" 
(Oeuvres I, p. 365-396). On p. 371 of this paper Jordan defines: 

Two substitutions sand t permutable with a group H are called congruent modulo H, if one 
has 

s=th 
were h is a substitution in H. 

Jordan now considers a sequence of substitutions S1,S2, ... permutable with 
Hand incongruent modulo H, such that for aB r:J. and ß one has a relation of 
the form 

In this ease Jordan says that S1,S2' ... form "un groupe suivant le module 
H", and he denotes this group by G/H, where G is the group generated by 
S1,S2' .... Contrary to our usage, he does not require H to be contained in G. 
In our notation we would denote Jordan's quotient group by 

G/(GnH), 

and indeed, Jordan states that the order of G is the product of the orders of 
the factor group G/H and the intersection of G and H. 

Jordan next defines "isomorphisms", which are what we today caB homo­
morphisms or just morphisms. One-to-one morphisms are caBed by Jordan 
holoedric, the others meriedric. 

Next Jordan considers the alternating group An. He shows that it is 
genera ted by cyc1es (a b c), and that it is the only non-trivial normal subgroup 
of Sn, except for n = 4. A corollary says: The group An is simple if n exceeds 4. 

Linear Substitutions 

The extremely interesting Chapter 3 of Book 2 of Jordan's Traite (p. 88-249) 
deals with what Jordan caBs linear substitutions, and what we write in matrix 
form as 

x'=Ax. 

In most cases, the field of coefficients is a prime field GF(p), but in some 
cases, the prime field is extended to a Galois field GF(pV). For instance, on 
p. 114-126, in order to reduce the matrix A to the weB-known "Jordan Normal 
Form ", Jordan had to adjoin to the ground field the roots of the "characteris­
tic equation" 

Det(A -H)=O. 

On the history of the Jordan Normal Form see Thomas Hawkins: "Weier­
strass and the Theory of Matrices", Archive for History of Exact Sciences 17, 
p. 119-163 (1977). In Section 4 of this paper, Hawkins shows that Weierstrass, 
in his theory of Elementary Divisors, had already defined a normal form 
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equivalent to that of Jordan. Weierstrass presented his fundamental memoir 
"Zur Theorie der bilinearen und quadratischen Formen" to the Berlin Acad­
emy in 1868 (Monats berichte, p. 311-338= Werke 2, p.19-44), two years be­
fore the publication of Jordan's Traite. 

On p.128-137 of his Traite Jordan uses his normal form to determine the 
set of linear substitutions commuting with a given substitution A. 

According to Dieudonne (Oeuvres de Jordan, p. XIX), Jordan's research on 
linear substitutions was motivated by three different theories. First, in Jordan's 
method of constructing solvable groups (Book 4 of the Traite) linear groups 
appear quite naturally. Secondly, the same groups present themselves in the 
theory of the division of periods of Abelian functions studied by Hermite, 
Kronecker, and Clebsch. Finally, the studies of Mathieu on multiply transitive 
groups induced Jordan to study the group of projectivities of a projective line 
over a Galois field. 

Jordan's main problem is the study of the composition of what we now call 
the "c1assical groups" oyer the Galois field GF(p). In the following summary I 
shall call the groups by their modern names introduced by Dickson and 
modified by van der Waerden and Dieudonne, but I shall also mention some 
deviating names given by Jordan. 

The groups studied by Jordan are: 
the General Linear Group GL(n, p) of all invertible linear transformations 

of n variables (mod p), 
the Special Linear Group SL(n,p) c<;msisting of all linear transformations 

with determinant 1, . 
the corresponding projective groups PGL(n,p) and PSL(n,p), 
the Symplectic Group Sp(2n, p), called by Jordan" groupe ab6lien ", which 

transforms the alternating bilinear form 

into itself (modulo p), 

n 

cP= l)XkYn+k-Xn+kYk) 
1 

the corresponding projective group PSp(2n,p), 
the "groupes de Steiner", which are affine groups of transformations trans­

forming a quadratic form in 2n variables into itself (modulo 2), 
orthogonal groups O(n, p, Q) transforming a quadratic form Q into itself 

(modulo p, where p is an odd prime), 
orthogonal groups O(2n,2,Q) wh ich Jordan calls "groupes hypoab6liens", 

because they are contained in tbe "groupe abelien" Sp(2n,2). 
In many of these cases, Jordan proves that these groups or their subgroups 

of index 2 are simple. 
In 1901, L.E. Dickson published his c1assical treatise "Linear Groups with 

an Exposition of the Galois Field Theory", in which he extended Jordan's 
results to arbitrary Galois fields GF(q). The subject was further developed by 
later authors, notably J.A. de Seguier and J. Dieudonne. For the history of the 
subject see B.L. van der Waerden: Gruppen von Linearen Transformationen 
(Springer-Verlag 1935, reprinted by Chelsea 1948), and J. Dieudonne: Sur les 
groupes c1assiques (Paris, Hermann 1948). 
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The projective group PSL(2,p) can be considered as a group of fractional 
linear transformations in GF(p) 

I az+b 
z=--

cz+d 

with a d - bc = 1. This group, which is called "group of the modular equation", 
plays an important röle in the theory of modular functions. It was investigated 
by Galois (Oeuvres 1897, p.28) and by Serret, Hermite, Mathieu, and Kirkman. 
Its subgroups were discussed by Betti, Hermite, Jordan, and Sylow, and com­
pletely determined by Gierster in 1881. See the article "Endliche Gruppen" by 
H. Burkhardt in Enzyklopädie der math. Wissenschaften I, 1, p.216, and my 
"Gruppen von linearen Transformationen", p. 8. 

The symplectic groups were important for Jordan because they occur as 
Galois groups of the problem of the division of periods of Abelian functions 
having 2n periods. Jordan mentions this fact in his 1869 paper "Sur les 
equations de la division des fonctions abeIiennes" in Math. Annalen I, p.585-
591 (= Oeuvres I, p 231-239). In a footnote he adds: "Nous devons a M. 
Kronecker la communication de cet important resultat." 

Jordan's Presentation of Galois Theory 

In 1869, Jordan published an exposition of Galois theory entitled "Com­
mentaire sur Galois", Math. Annalen I, p. 142-160. With slight changes, the 
content of this paper was incorporated into the Traite (p. 253-274). 

On p. 385-397 of the Traite the exposition is continued. Following Galois, 
Jordan shows that an equation can be solved by radicals if and only if its 
Galois group is solvable, that is, if its composition factors are prime numbers. 

Next, Jordan derives another, more convenient criterion. He shows 
(Theorem IX on page 395): 

For a group L to be solvable, it is necessary and sufficient that a sub­
sequence of normal subgroups of L exists: 

lcFcGcHc ... cL 

such that the substitutions of each group in the sequence are permutable 
modulo the preceding subgroup. In other words, it is required that the factor 
groups 

FIl, GIF, HIG, ... 

are all abelian. 
Why is this criterion more convenient? Suppose one wants to decide 

whether a given group G is solvable. If one follows Galois, one has to find out 
whether anormal subgroup of prime index exists, and anormal subgroup of 
this normal subgroup, and so on. But if one follows Jordan, one has only to 
examine normal subgroups of the wh oie group G. 
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Geometrical Applicatiolls 

Chapter 3 of Book 3 of the Traite (p. 301-333) is devoted to geometrical 
applications of Galois theory. 

I. The first section is entitled "Equation de M. Hesse". In 1844, Ludwig 
atto Hesse has proved (Gesammelte Abh., p. 123-135) that a plane cubic curve 
has nj_l!~ iI:tf!~xion points lying on twelve straight lines. If the curve is real, only 
three of the nine inflection points are real. Jordan denotes the nine points by 
the symbols 

(0 0) 

(1 0) 

(2 0) 

(0 1) 

(1 1) 

(2 1) 

(0 2) 

(1 2) 

(2 2). 

Nine indeterminates are introduced, which are denoted by the same sym­
bols (x y). The twelve lines now correspond to products 

(x y) (x' y') (xl/ yl/) 

that satisfy the relations 

x+x' +xl/=y+y' +yl/=O (mod 3). 

The sum of all these products is called <po Thus we have 

<p = (00) (01) (02) + (10) (11) (12) + ... + (02) (20) (11). 

Jordan now proves that the Galois group of the equation on which the nine 
inflexion points depend, reduces itself to those substitutions of the ni ne inde­
terminates (x y) that do not change the expression <po This group is formed by 
the inhomogeneous linear transformations 

x'=a x+b y+ct (mod 3) 

y'=a'x+b'y+ct' (mod3). 

The order of the group is 

(3 2 -1) (3 2 - 3)= 48, 

and the group is solvable. 
In determining the Galois group, Jordan tacitly supposes the given cubic to 

be "generic", that is, he supposes the coefficients of its equation to be inde­
pendent indeterminates. In special cases, for instance if one of the inflexion 
points is rational, the group may be sm aller. 

H. The next section is entitled "Equations de M. Clebsch". In a paper of 
Alfred Clebsch "Über die Anwendung der Abelschen Funktionen in der Geo­
metrie" (Journal ftir Math. 63, 1864, p. 189-243) the problem was discussed: 
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Given a plane quartic curve, to determine a cubic curve whose intersections 
with the quadric are all fourfold. According to Clebsch, the problem leads to 
an equation X of degree 

Jordan now determines the Galois group of the equation X. The method is 
similar to that applied in Section I. 

In the same Section II, Jordan discussed several similar contact problems 
proposed by Clebsch. 

III. The next problem, also due to Clebsch, is the problem of straight lines 
on a quartic surface having a double conic. According to Clebsch there are 16 
such lines. Jordan aga in determines the Galois group of the problem. 

IV. The problem of the 16 singular points on the "surface of Kummer" is 
treated by the same method. For the definition of the Kummer surface see E.E. 
Kummer: Über die Flächen vierten Grades mit sechzehn singulären Punkten, 
Monatsberichte der Berliner Akademie 1864, p. 246-260. 

V. The most interesting geometrical problem discussed by Jordan is the 
problem of the 27 lines on a cubic surface. For the history of the subject see A. 
Henderson: The Twenty-seven Lines upon the Cubic Surface, Cambridge Tracts 
in Math. 13 (1911). The existence of these lines was discovered in a cor­
respondence between Cayley and Salm on. Cayley found that there are lines on 
the surface, and Salmon found that there are (in general) just 27 lines. Our 
Plate 1 shows a model of a cubic surface with 27 real lines. The model itself is 
in Göttingen in the Mathematical Institute. 

A complete description of the configuration of the 27 lines was given by 
Jakob Steiner in Crelle's Journal für Mathematik 53, p. 133-141 (Steiner's 
Werke II, p. 651-659). One of Steiner's result is: any one of the lines, say a, 
meets ten other lines, which form with a five triangles. Thus there are 45 
triangles on the surface. 

A rigorous proof of the existence of the 27 lines and the 45 triangles can be 
found in my "Einführung in die algebraische Geometrie" (Springer-Verlag 
1939, second edition 1973) p. 148-153. 

Jordan's occupation with the 27 lines begins early in 1869. In a first note in 
the Comptes Rendus of the Paris Academy (Oeuvres I, p. 199-202) he defines 
the symplectic group Sp(2n, p), and he notes that Sp(4,3) is just the Galois 
group of the equation of the 27 lines on the cubic surface. In a second note 
(Oeuvres I, p.203-206) Jordan explains the relation between the symplectic 
group and the 27 lines in greater detail, referring for full proofs to his forth­
coming Traite. In the same year 1869, he published in Journal de math. (2) 
14 (Oeuvres I, p. 249-268) a paper in wh ich the structure of the Galois group is 
derived by a purely combinatorial method, independent of its connection with 
the symplectic group. The content of this paper was incorporated into the 
Traite, p. 316-329. 

Jordan denotes the 27 lines by single letters a, b, .... If a is any one of the 
lines, the 5 triangles containing aare denoted by 

abc, ade, a f g, a h i, a kl. 
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Plate 1 

The 16 remaining lines that do not meet aare called, in a quite definite 
order: 

m, n, p, q, r, s, t, u, 
and 

m', n', p', q', r', s', t', uf
• 

Now the 45 triangles can be written down as 

abc, ade, ... , I ps'. 

The Galois group of the problem is certainly contained in the group of 
substitutions of 27 indeterminates a, b, ... , u' transforming the function 

<p = abc + ade + ... + I p s' 
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into itself. I shall call this group G'. Its order is 

27 x 10 x 8 x 24=51840. 

Jordan now claims that G=G', and he presents arguments in favour of his 
assertion. In my opinion his proof is not sufficient, but the result is correct, as 
we shall see in the next section. 

In his first note in the Comptes Rendus Jordan notes that the problem of 
the 27 lines is closely connected with the problem of the 28 double tangents of 
a quartic plane curve. I shall now explain this connection. 

The 28 Double Tangents of a Plane Quartic 

For the history of this subject see the article "Spezielle ebene algebraische 
Kurven" by G. Kohn and G. Loria in the Enzyklopädie der math. Wis­
senschaften III C 5, especially p. 517-542. 

From the well-known Plücker formulae one easily deduces that a plane 
quartic curve without multiple points has just 28 double tangents. For a 
rigorous algebraic proof of this fact see K.G.B. Jacobi: Beweis des Satzes, dass 
eine Kurve n-ten Grades im allgemeinen i n(n - 2) (n 2 - 9) Doppeltangenten hat, 
Journal ftir Math. 40, p.237-260 (1850). Our Fig.24 shows a quartic curve 
having 28 real double tangents. 

The first to investigate the configuration formed by the 28 double tangents 
and their points of contact was Jacob Steiner in 1855 (Journal ftir Math. 49, 

Fig.24 
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p. 265-272= Werke II, p.605-612). He shows: if one starts with a pair of 
double tangents (xhyd there are 5 other pairs (Xj,Yj)(i=2,3,4,5,6) such that 
the 8 points of contact of any two pairs (xj,yJ and (xk,Yk) always lie on a 
conic. Such a set of 6 pairs (x j , yJ is called aSteiner camp/ex. There are just 63 
Steiner complexes. 

Three double tangents whose contact points lie on a conic form a syzygetic 
tripie (from Greek syn = together and zygos = yoke). If a set of double tangents 
does not contain any syzygetic tri pIe, the set is called asyzygetic. 

Most important for the determination of the Galois group of the 28 double 
tangents is a generation of the quartic curve discovered by Aronhold (Monats­
berichte der Berliner Akademie 1864, p.499-523). Aronhold's method may be 
explained as folIows. 

Seven given points in the plane determine, in general, a linear set of cubic 
curves passing through the seven points. Any two curves of the set intersect in 
two more points. If the two points coincide, the curves have a common tangent 
at that point (see Fig.25). These CX) 1 common tangents form a "curve of class 
4", that is, the dual of a quartic curve. 

Now consider the dual situation. Instead of the cubic curves passing 
through seven given points we may consider, with Aronhold, the linear set of 
curves of class 3 containing seven given lines. Every pair of these curves has 
two more lines in common. If they coincide, the two dual curves have a point 
of contact, and these points of contact lie on a quartic curve. 

Aronhold shows that the seven given lines form a maximal asyzygetic set of 
double tangents of this quartic, and that the other 21 double tangents can be 
constructed rationally from the seven. Every quartic curve without double 

Fig.25 
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points can be obtained by this construction, and every asyzygetic set of seven 
double tangents can be used to generate the quartic. For rigourous proofs of 
these statements see H. Weber: Lehrbuch der Algebra 11, second edition, 
p.425-447. 

Now it is easy to determine the Galois group P of the equation determin­
ing the 28 double tangents. One starts with a "generic" set of seven lines, that 
is, one assurnes the inhomogeneous coordinates of these lines to be inde­
pendent indeterminates. Now one constructs the curve; it will be a generic 
quartic curve. There are 

8x36=288 

asyzygetic sets of seven lines, and in each of the sets there are 7! ways of 
numbering the lines. Any one of the numbered sets can be replaced by any 
other of the 

288 x 7! = 1451520 

numbered sets. Every such replacement yields an automorphism of the field of 
rational functions of the coordinates of the seven lines, and these isomorphisms 
leave the quartic invariant. These automorphisms form the Galois group P. 

I have used the modern expressions "automorphism" and "generic", but 
the same ideas can also be expressed in the terminology of Galois and Jordan: 
see again Weber's Lehrbuch, p. 447-454. 

On p. 454-458 Weber proves that the group P is simple. 

The relation between the 28 double tangents and the 27 lines on a cubic 
surface was established by M. Geiser in 1868. His paper "Über die Dop­
peltangenten einer ebenen Kurve vierten Grades" was published in Math. 
Annalen I, p. 129-138. Geiser's method can be explained as follows. 

From an arbitrary point A on the cubic surface, not lying on one of the 27 
lines, one draws all tangents to the surface. Apart from the tangents at A, 
which form the tangential plane, all tangents lie on a quartic cone. The 
intersection of the cone with an arbitrary plane n is a quartic curve. The 
tangent plane at A intersects n in a double tangent of the quartic. The other 27 
double tangents lie in the planes connecting A with the 27 lines on the cubic 
surface. 

The Galois group of the 27 lines can now be obtained from that of the 28 
double tangents as follows. In the latter group, considered as a group of 
permutations of the double tangents, take the subgroup that leaves invariant 
the double tangent lying in the tangential plane. This subgroup permutes the 27 
other double tangents, and hence it induces a group of permutations of the 27 
lines on the cubic surface. This group G is the Galois group of the 27 lines. Its 
order is, obviously, 

1451520 
28 

51840. 

As we have seen, Jordan constructed a group G' of just this order, and he 
proved that the Galois group G is contained in G'. Since the orders are equal, 
J ordan's assertion G = G' is justified. 
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On p.329-333 Jordan investigates the Galois group of the 28 double 
tangents by another method. He considers the problem of Clebsch: To find all 
curves of order n-3 having 1n(n-3) points of contact with a given curve of 
order n. The method of Clebsch uses Abelian functions. For n=4 OIle has the 
problem of finding the double tangents of a quartic curve. 

Application of Galois Theory to Transcendental Functions 

In Chapter 4 of Book 3 of his Traite, Jordan applies the theory of Galois to 
problems concerning transcendental functions. 

Let me first remind the reader that Jordan makes a distinction between the 
algebraic Galois group of an equation 

(1) fez, w)=O 

and its monodromy grouD with respect to the complex variable z. Let the 
coefficients of the equation (1) be taken from a field of constants K, which may 
also contain variable parameters. In forming the algebraic Galois group of the 
equation (1), one takes as a ground field the field K(z) of rational functions of z 
with coefficients in K. The algebraic group is a group of permutations of the 
roots w l' ... , W n' It contains as a subgroup the monodromy group defined by 
Puiseux and Hermite. lf the field of constants K is enlarged by the adjunction 
of certain algebraic elements, the algebraic group is reduced to the monodromy 
group. 

I shall now summarize the single sections of Jordan's Chapter 4 (p.334-
382). 

I. Jordan first considers the problem of determining cos (x/n) if cos x IS 

given. The quantity cos (x/n) is linked to cos x by an equation of degree n, 
whose roots are 

x+2pn 
(p) = cos ---=--­

n 

and the monodromy group of the equation is formed by the substitutions 

p'=:p+m (modn). 

This is also the Galois group of the equation after the adjunction of 
cos (2 n/n) to the ground field. lf the ground field is the field of rational 
numbers, the substitutions of the algebraic Galois group are of the form 

p'=:ap+b (modn). 

11. Jordan now passes to the theory of elliptic functions. 
Let u = }~(z) be the inverse function of 

dv 

z= L~2)(l-k2V2)' 
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Its derivative is 

Now if A(Z) and A'(z) are given, A(z/n) is a root of an equation of degree n2 • 

The roots of this equation are 

(Pq)=A e+ p:+ q W') 

where wand w' are the fundamental periods of the elliptic function A(Z). 
Supposing n to the prime, Jordan shows that the substitutions of the Galois 

group of the equation are aB of the form 

(2) 
p'=ap+bq+m (modn) 

q'=a'p+b'q+m' (modn). 

If one adjoins to the field K the constants 

A(w/n), A'(w/n), A(w'/n), A'(w'/n), 

the Galois group will be reduced to the monodromy group 

p'=p+m (modn) 

q'=q+m' (modn). 

Since this group is abelian, the resolution of the equation for A(z/n) offers 
no problem. Jordan's main problem is: to find the Galois group of the 
equation of degree n2 determining 

A(w/n) and A'(w/n) 

where w is any primitive period. The roots of this equation are aB of the form 

Eliminating the root A(O/n), one is left with an equation of degree n2 - l. 
The monodromy group of this equation with respect to the complex variable k 
consists of linear transformations of the form 

p*=ap+bq (modn) 

q* =a' p +b' Ci (mod n) 

with ab' - a' b = 1 (mod n). These transformations form the group SL(2, n). 
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III. In the preceding Seetions land 11, the functions under eonsideration 
were the inverse funetions of Abelian integrals on algebraie eurves of genus 0 
or 1. Now Jordan passes to the case of genus 2. In this ease we have 
hyperelliptic integrals 

where Ll(v) is a polynomial of degree 6, and the inverse funetions are Abelian 
funetions of two eomplex variables having 4 periods. Following Hermite, 
Jordan investigates the division problem of these functions, and he ends up 
with the symplectic group Sp(4,p). 

In the ease p = 3 he finds that the group PS p (4,3) is isomorphie to the 
simple group G of the 27 lines on a cubie surface. 

IV. In the last seetion of Book 3 Jordan investigates the possibility of 
solving equations by means of transeendental funetions. In particular he dis­
eusses the methods of Hermite, Kronecker, and Brioschi for solving equations 
of degree 5 by means of modular funetions and elliptie funetions. For higher 
degrees, Jordan shows that such a solution is impossible. 

On Solvable Groups 

The fourth book of the Traite is devoted to the problem: to eonstruet, for 
any given degree d, all solvable transitive groups of substitutions on d letters. 
This is what Jordan ealls Problem A. 

Jordan shows that Problem A for non-primitive groups ean be redueed to 
the same problem for primitive groups, and that primitive groups neeessarily 
ha ve degree d = pn, where p is prime. 

Galois has solved Problem A for groups of degree p, and he has found 
some partial results for primitive groups of degree p2. Jordan now undertakes 
to solve Problem A for primitive groups of degree pn. 

A group of linear transformations of variables Xl, •.• , X n (mod p) is called in 
modern terminology irreducible, and in Jordan's terminology prima ire, if it is 
not possible to find linear funetions Y b " ., Ym of the Xi, in number less than n, 
whieh are transformed by the group into linear funetions of themselves. 

Jordan now shows that Problem A can be reduced to Problem B: 
B. To construct the maximal solvable irreducible groups contained in the 

linear group GL(n, p). 
A special case of Problem B is Problem C: 
C. To construct the maximal solvable irreducible groups eontained in the 

symplectic group Sp(2n,p) or in one of the hypoabelian groups O+(2n,2) or 
O+(2n+ 1, 2). 

The pages 410-662 are devoted to the solution of the Problems Band C. 
Jordan's method is recursive. He indicates a method for solving his problems 
for groups of degree pn, supposing that they are solved for lower degrees 
pm (m < n). He finally arrives at a complete classification of the groups in 
question. 
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In a sequence of papers, published between 1871 and 1875 and republished 
in Oeuvres I, p.277-495, Jordan has completed and extended the results 
obtained in the Traite. His last two papers on the construction and classifi­
cation of solvable permutation groups, published in 1908 and 1917 and re­
published as papers (121) and (126) in Oeuvres 11, have been summarized by J. 
Dieudonne in his introduction to Oeuvres I, p. XXXIV-XLI. 



Part Two 
Groups 



Chapter 8 
Early Group Theory 

What is early, wh at is late? Be it sufficient to say that the present chapter 
deals mainly with the nineteenth century, but if the subject matter requires it, I 
shall extend my account to the first half of the twentieth century. 

After the appearance of Jordan's Traite in 1870, a fundamental change of 
character of the theory of groups took pI ace. Before 1870, only two kinds of 
groups were considered, namely groups of substitutions (or permutations) and 
groups of geometrical transformations. After 1870, the abstract notion "group" 
was developed in several steps, notably by Kronecker (1870), Cayley (1878), 
von Dyck (1882), and Weber (1882). The modern definition of a group by 
means ofaxioms was given for abelian groups by Kronecker (1870), for finite 
groups by Weber (1882), and for infinite groups by the same Weber (1893). The 
whole development of these notions has been described in great detail by H. 
Wussing in his book "Die Genesis des abstrakten Gruppenbegriffs" (1969). 

After the introduction of the abstract notion "group" the main problem of 
group theory was: to investigate the structure of groups independent of their 
representation by permutations or transformations, and only afterwards to 
study these representations. 

Accordingly, the present chapter will be divided into four parts: 
A. Groups of Substitutions 
B. Groups of Transformations 
C. Abstract Groups 
D. The Structure of Finite Groups 

Part A 
Groups of Substitutions 

Early Theorems Concerning Subgroups of S. 

The earliest authors who investigated groups of substitutions were La­
grange, Ruffini, and Cauchy. They were mainly concerned with "generic" (or 
"general") equations of a given degree n, that is, with equations in which either 
the coefficients or the roots Xl,"" X. are independent variables. They were 
interested in forming auxiliary equations, if possible of lower degrees. For this 
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purpose, they eonsidered rational funetions 

and they asked: How many different values does the funetion I assume if the 
roots are permuted? If 11, ... ,!s are these values, they will be the roots of an 
auxiliary equation of degree s: 

(t- 11)(t - 12) ... (t -!s) =0. 

For this reason, oUf early authors were very mueh interested in the possible 
values of s. 

If H is the subgroup of Sn that transforms I into itself, the eosets of H 
transform I into 11, ... ,!so So the number s is just the index 01 H in Sn. 

F or instanee, if n = 4 and I is the funetion 

the index s is 3, and I is a root of a eubie equation. This was noted already by 
Lagrange, and it was the basis of his solution of the quartie equation. 

The ease n = 4, in whieh an auxiliary equation of lower degree ean be used 
to solve the original equation, is an exeeption. If n exeeeds 4, the index s is 
either 2 or at least n. This was proved by Cauehy in 1845 (Comptes Rendus 
Aead. Paris 21, p. 1101). 

In S s there is a subgroup L of index s = 6 and order 20, namely the group 
of linear index substitutions 

k' =Q k+b (mod 5). 

If 1 is a funetion invariant only under this subgroup, it takes six different 
values if the roots are permuted, and these values are the roots of an auxiliary 
equation of degree 6. The permutations of Ss induee permutations of the six 
values, henee Ss is isomorphie to a transitive subgroup H of index 6 in S6' 

This subgroup H is again an exeeption. For n> 6 every subgroup of index n 
in Sn leaves one of the Xk invariant. This was proved by J.A. Serret in a paper 
entitled "Memoire Suf le nombre de valeurs que peut prendre une fonetion 
quand on y perrnute les lettres qu'elle enferme", Journal de Math. (1) 15, p. 
1-44. 

In the same paper Serret proves: 

If s>n and n>8, then s~2n. 

Later authors have shown that this is true for all n> 6. Serret also proves: 

If s>2n, then s~1/2 n(n-l). 
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More results concerning the possib1e value of the index s were obtained by 
Mathieu, Jordan, Sylow, Netto, Frobenius, Borchert, Maillet, and Miller. See the 
article of H. Burkhardt in Enzyklopädie der math. Wissenschaften I, 1, p. 213 f. 

Mathieu 

Two very interesting papers of E. Mathieu on multiply transitive groups of 
substitutions were published in 1861 and 1873 respectively. The first paper is 
entitled "Memoire sur l'etude des fonctions de plusieurs quantites, sur la 
maniere de les former et sur les substitutions qui les laissent invariables", 
Journal de Math. (2) 6, p. 241-323 (1861). 

In this paper Mathieu explains a general method to obtain multiply tran­
sitive groups. In particular he constructs a five-fold transitive group of sub­
stitutions on 12 letters. In the same paper he announces the existence of a five­
fold transitive group of permutations of 24 letters. The construction of this 
group is described in a second paper entitled "Sur la fonction cinq fois 
transitive de 24 quantites", Journal de Math. (2) 18, p. 25-46 (1873). 

The starting point of Mathieu's constructions is the projective linear group 
of fractional linear transformations 

, az+b 
z=--

cz+d 

with coefficients from aGalais field K = GF(q). This group is treefold transitive 
on the projective line over K. Starting with this group, Mathieu succeeds in 
constructing his five-fold transitive groups, by ingenious artifices. 

Sylow 

In the spring of 1872 the Norwegian mathematician M.L. Sylow presented 
to the Mathematische Annalen a paper of fundamental importanc:e for the 
structure theory of finite groups, entitled "Theoremes sur les groupes de 
substitutions ". 

This paper, published in Math. Ann. 5, p. 584-594, contains fuH proofs of 
eight theorems. Most interesting are the following four: 

Theorem I. If pa is the largest power of the prime p contained in the order 
of the group G, there is a subgroup H of order pa. If the normalizer of H is of 
order pa m, the order of G is 

pa m (pr+ 1). 

Theorem II. The group G contains exactly p r+ 1 subgroups of order pa. 
One obtains them by transforming one of them by the substitutions of G, each 
of the subgroups being produced by pa m different transformants. 
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Theorem HI. If the order of a group G is pa, p being prime, every sub­
stitution (J of the group can be expressed by the formula 

with 

and 

(JS = 1 

(Jl = (J3 

(J~ = (Jß (J'l 

(J~ = (Ji (J'l (J{ 

(J-l (Jo (J=(Jo 

(J-l (Jl (J = (Jg (Jl 

(J- 1 (J2 (J = (J'6 (J1 (J2 

Note that (Jo is in the centre and generates a subgroup of order p. Modulo 
this subgroup (Jl is again in the centre, and so on. It follows that groups of 
order pa are solvable. 

As a corollary, Sylow states: 
If the order ~f the Galois group of an algebraic equation is apower of a 

prime, the equation is solvable by radicals. 
A more detailed analysis for the case of a transitive group H yields 
Theorem IV. If the degree of an irreducible equation is pP and if the order of 

its group is also apower of the prime p, each one of its roots can be obtained 
by a sequence of ß abelian equations of degree p. 

Sylow notes that the special case p = 2 of this theorem has already be 
obtained in 1871 by M.J. Petersen. 

In 1887, G. Frobenius published a new proof of Sylow's theorems. His paper 
in CreIle's Journal für Math. 100, p.179-181, is entitled "Neuer Beweis des 
Sylowschen Satzes". He first notes that every finite group can be represented as 
a group of substitutions of its own elements, so that Sylow's proof is valid for 
abstract groups as weIl, but he does not want to use this representation. 
Following Weber, Frobenius defines an abstract finite group by four pos­
tulates, and he presents a new proof of Sylow's theorems based on these 
postulates. 

Part B 
Groups of Transformations 

As we have seen at the beginning of Chapter 7, Leonard Euler and Olinde 
Rodrigues analysed the structure of the group of rigid motions in 3-space, and 
Camille Jordan undertook a systematic investigation of the closed subgroups 
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of this group. It seems that Jordan was the first to use the word "groupe" for 
groups of geometrical transformations. 

Next we have to discuss the investigations of Arthur Cayley and Felix 
Klein on non-Euclidean geometry, of Felix Klein on discrete groups of frac­
tionallinear transformations, and of Sophus Lie on continuous groups. 

Non-Euclidean Geometry 

On the work of Arthur Cayley see the excellent artic1e by John D. North in 
the Dictionary of Scientific Biography. Cayley's work in all parts of algebra 
and geometry has been extremely influencial. In a sequence of papers entitled 
"Memoirs upon Quantics", written between 1854 and 1878, Cayley laid the 
foundations of the Theory of Invariants. 

In his "Sixth Memoir upon Quantics", published in 1859 in Vol. 149 of the 
Philos. Transactions of the Royal Society, Cayley first develops the projective 
geometry of points, lines, and conics in the projective plane, starting with 
coordinates (x, y, z) of points and (~, 11, 0 of lines. I shall denote these coor­
dinates by (X1,X2,X3) and (U1,U2,U3). A quadratic form 

defines a conic. The polar form 

defines the polar of a point y. The covariant form 

F(u, u) = L A ik Ui Uk 

in which the Aik are proportional to the subdeterminants of the matrix (aik), 

defines the "dual conic" formed by the tangents of the original conic. One can 
also start with a dual conic Fand form the covariant f by means of subde­
terminants. 

Cayley next develops a theory of "distances" by assuming a fixed conic 
which he calls "the absolute". He defines the "distance" between two points x 
and y by 

(1) D · () -1 f(x,y) 
1st x,y =cos .~.~ 

V f(x, x) V f(y, y) 

and the "distance" or angle between two lines by 

(2) 
. -1 F(u, v) 

Dlst(U,V)=cos .~.~. 
V F(u, u) V F(v, v) 
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Cayley shows that Dist(x, y) is the integral of an infinitesimal distance ds, 
taken ove~ a straight path of integration from x to y. If y lies on the path of 
integration from x to z, it follows that 

(3) Dist(x, y) + Dist(y, z) = Dist(x, z). 

Cayley considers two special cases. In the first case the form is positive 
definite and can be written as 

!(x,x)=xI +x~ +x5. 

In this case we have 

and 

(4) D · () -1 X1Y1 +X2Y2+ X3Y3 1st x,y =cos 
V xi + x~ + x~ V YI + y~ + Y5 

(5) 

The lines and planes passing through a fixed point 0 in Euclidean 3-space 
can be considered as "points" and "lines" in a projective "plane", and (4) is 
the weIl known formula for the angle between two vectors in 3-space. It 
folIo ws that the "distances" between the "points" and "lines" in the projective 
"plane" just defined are the angles between lines and planes passing through 
O. These "points" and "lines" form, in the terminology of Felix Klein, an 
"elliptic plane". 

The second case considered by Cayley is a limiting case. One obtains it by 
starting with the positive forms 

!(x,x)=exI+ex~ +x~ 

F(u, u)=uI +u~ +eu~ 

and letting e go to zero. One obtains in the limit 

!(x,x)=x~ 

F(u, u)=uI +u~. 

The conic ! = 0 is the line at infinity, counted twice. The dual conic F = 0 is a 
pair of pencils of lines defined by the points at infinity (1, i, 0) and (1, - i, 0). 
These points are just the "points ,circulaires" of Poncelet, so called because 
they are common to all circles in the EucIidean plane. One obtains in the limit, 
introducing inhomogeneous rectangular coordinates x and y, 

(6) Dist(P, P') = V (x - X')2 + (y _ y')2 
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and 

(7) 

that is, one gets the Euclidean distance between two points and the Euclidean 
angle between two lines. 

What we call "projective geometry" is called by Cayley "descriptive geome­
try". According to Cayley, one passes from projective geometry to metrical 
geometry by fixing a conic and calling it "the absolute". He concludes: 

Metrical geometry is thus apart of descriptive geometry, and descriptive geometry is a/l 
geometry and reciprocally ... 

Today we do not share this restricted view of geometry. For us, projective 
geometry is not "all geometry". For instance, topology and Riemannian geo­
metry are not parts of Cayley's "descriptive geometry". 

Felix Klein, in his two papers "Über die sogenannte Nicht-Euklidische 
Geometrie", in Math. Annalen 4 (1871), p. 573-625 and Math. Annalen 6 (1873), 
p. 112-145, distinguishes two types of Non-Euclidean geometry, which he calls 
"elliptic" and "hyperbolic". In the elliptic case the quadratic form f(x, x) 
defining the absolute conic is positive definite: the conic has no real points, 
and we can use Cayley's formulae (4) and (5). Klein's "elliptic plane" can be 
obtained from a sphere in Euclidean 3-space by identifying opposite points. 

Besides this elliptic plane and the Euclidean plane considered by Cayley, 
Klein investigates a third case in wh ich the absolute conic is a non-singular 
conic having real points. As a model, one can take a circle in the Euclidean 
plane. The forms defining the conic and its dual conic are now 

(8) 

(9) 

f(x, x) = -xi-x~+xj 

F(u, u)=uI +u~ -u~. 

Klein's model of the "hyperbolic geometry" of Lobatchewsky and Bolyai is 
obtained by restricting oneself to inner points of the circle: 

f(x,x»o, 

and to lines containing inner points: 

F(u,u»O. 

In this case formula (2) defining the "distance" or angle between two lines 
can be retained, but (1) has to be modified. If'x and y are inner points of the 
circle, the intersections of the connecting line with the circle can be obtained 
from a quadratic equation 

.l.U(x,x)+2.l.1 .l.d(x,y)+.l.U(y,y)=o. 
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The equation has two real roots, hence we have 

f(x, y)2 - f(x, x)f(y, y) > 0. 

So the argument of the function cos- 1 in (1) is larger than 1, and the arc 
cosine is purely imaginary. 

Felix Klein now re pi aces the arc cosine by the logarithm of a cross-ratio. If 
P and Q are the points formerly called x and y, and if A and Bare the points 
of intersection of PQ with the conic, the cross-ration of A and B with respect 
to P and Q is a projective invariant, and its logarithm is Klein's "distance". 

By the way, Cayley's "distance" (1) is just equal to ± i/2 times Klein's 
distance. 

When Volume 2 of Cayley's Collected Papers appeared in 1889, Cayley 
added a note to his "sixth memoir", saying that Klein's replacement of the arc 
cosine by a logarithm is a great improvement. 

In Klein's first paper on non-Euclidean geometry no groups are considered, 
but in the second paper of 1873 the not ion of "transformation group" occurs. 
Klein considers invertible transformations of a manifold, and he defines the 
notion "group", as in Jordan's Traite, by the property: if A and B are in the 
group, so is AB. Later on, Klein has seen that it is necessary to require that 
A - 1 is in the group if Ais. 

In § 3 of Klein's second paper on non-Euclidean geometry in Math. An­
nalen 6, Klein introduces a group he calls "Hauptgruppe". It is generated by 
the Euclidean dis placements, the similarity transformations, and the reflexions. 

In §4 Klein explains that each one of the different "methods of geometry" 
is characterized by a group of transformations. This is also the fundamental 
idea in Klein's famous "Erlanger Programm" (1872). On the his tory of this 
"program" see David E. Rowe: A Forgotten Chapter in the History of Felix 
Klein's Erlanger Programm, Historia Mathematica 10, p. 448-457 (1983). 

According to Klein, projective geometry deals with those properties of 
figures that are invariant under projective transformations, Euclidean geometry 
with properties invariant under the "Hauptgruppe", and so on. The groups of 
the elliptic and hyperbolic geometries are the groups of projectivities trans­
forming a conic (or in three dimensions a quadratic surface) into itself. 

Felix Klein and Sophus Lie 

Klein and Lie became friends at Berlin. In 1870 they went to Paris, where 
they lived in adjacent rooms for two months. As we have seen in Chapter 4, 
they were very much impressed by Camille Jordan, whose Traite des sub­
stitutions had just appeared. 

In 1871 a joint paper of Klein and Lie entitled "Über diejenigen ebenen 
Kurven, welche durch ein geschlossenes System von einfach unendlich vielen 
vertauschbaren linearen Transformationen in sich übergehen" was published in 
Math. Annalen 4, p. 424-429. 
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The expression "geschlossenes System von linearen Transformationen" in 
the title just means "group of linear transformations". In fact, the authors 
state: 

The expression "closed system of transformations" corresponds to what in the theory of 
substitutions is denoted by the term "group of substitutions". 

The groups considered by Klein and Lie are one-dimensional continuous 
groups. In a footnote the authors state correctly that all one-dimensional 
continuous groups are commutative. In the same footnote the authors give an 
example of a three-dimensional continuous group which is not commutative, 
name1y the group of projectivities of a plane that transform a conic into itse1f. 
From this paper one sees that Lie's ideas about continuous groups of transfor­
mations began to take shape about 1870. 

In later years, the ideas of the two friends went into different directions. Lie 
developed his theory of continuous groups and applied it to the study of 
differential equations, whereas Klein mainly investigated discrete groups. Dis­
crete groups of fractional linear transformations play an important role in the 
study of automorphic functions. 

The testimonies of Klein and Lie on their early friendship and their later 
divergent development are reproduced on p. 153 of the book of H. Wussing: 
Die Genesis des abstrakten Gruppenbegriffs (Verlag der Wissenschaften, East­
Berlin 1969). 

On the further development of the theory of discrete groups and automor­
phic functions see the article "Automorphe Funktionen" by R. Fricke in 
Encyclopädie der mathematischen Wissenschaften II B 4 (1913), and also my 
report "Gruppen von linearen Transformationen", Ergebnisse der Mathematik 
IV, 2 (Springer 1935). 

F elix Klein on Finite Groups of Fractional Linear Transformations 

In lune 1875, Felix Klein submitted to the Math. Annalen an important 
paper entitled "Über binäre Formen mit linearen Transformationen in sich 
selbst" (Math. Annalen 9, p. 209~217). In this paper he determined all finite 
groups of fractional linear transformations of a complex variable z: 

(10) 
az+b 

z'=--. 
cz+d 

These transformations transform circles into circles, while preserving the 
orientation of the function-theoretical z-plane. If the points and circles in the 
plane are transferred to a sphere by means of a stereographie projection, one 
obtains transformations of the sphere into itself preserving the orientation, 
which can be extended to projective transformations of the real projective 
space P3 into itself. These projectivities are, in the terminology of Klein, 
hyperbolic motions. Converse1y, every orientation-preserving projective transfor­
mation that transforms the sphere into itself yie1ds a fractional linear transfor­
mation of the complex variable z. So the problem of determining all finite 
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groups of transformations (10) is equivalent to the problem of finding an finite 
groups of hyperbolic motions in P3. 

Klein first notes: if a hyperbolic motion has a finite order, it must be a 
"rotation" leaving invariant an points of an axis connecting two real points on 
the sphere. Next he proves: if the product of two rotations is again a rotation, 
the axes must intersect in a point inside the sphere. From this he concludes: an 
axes of rotations belonging to the finite group G intersect in one point, which 
is a fixed point of the group. 

We may assurne, Klein says, that this fixed point is the centre of the 
sphere. In this case the rotations are Euclidean rotations. Now the finite 
groups of Euclidean rotations are known from a classical investigation of 
Jordan (see Chapter 7). They are: 

1) Cyclic groups, 
2) Dihedral groups, 
3) the tetrahedral group, 
4) the octahedral group, 
5) the icosahedral group. 

Thus, Klein's problem is completely solved. 
A direct derivation of the types of finite groups of fractional linear transfor­

mations was given by H.H. Mitchen in 1911 (Transactions Amer. Math. Soc. 
12, p.208-211). 

The icosahedral group is isomorphic to the alternating group A s . Hence 
the icosahedron can be used to illustrate the Galois theory of the quintic 
equation. This was done in Klein's very nice booklet "Vorlesungen über das 
Ikosaeder und die Auflösung der Gleichungen vom fünften Grad" (Leipzig 
1884). 

Sophus Lie 

The Norwegian Sophus Lie, the founder of the theory of "Lie Groups", was 
born at Nordfjordeid in December 1842. An account of his life and work was 
given by H. FreudenthaI in the Dictionary of Scientific Biography, Vol. 8, 
p.323-327. 

According to Lie's own biographical statements, his friendship with Felix 
Klein, whom he met at Berlin in the winter 1869/70, was of great importance 
for his later work on groups of transformations. In the summer of 1870, Lie 
discovered his famous contact transformation, which transforms straight lines 
into spheres (see Sophus Lie: Gesammelte Abhandlungen, Vol. 1, p.93-96). In 
1871 Lie obtained a scholarship from the university of Christiania, and in 1872 
he finished his PhD-thesis entitled "Over en Classe geometriske Transfor­
mationer" (Gesammelte Abhandlungen, Vol. 1, p. 105-214, in German). 

During this time Lie developed his integration theory of partial differential 
equations. According to FreudenthaI, this theory is "now found in many 
textbooks, although rarely under his name". For a survey of this theory see 
Freudenthal's article in D.Sc.B. mentioned before. 

Lie's investigations on the integration of differential equations induced hirn 
to consider groups of transformations transforming a differential equation into 
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itself. It is tme that these investigations were published only much later (1882-
1883) in a sequence of papers (Gesammelte Abhandlungen 5, p.238-313 and 
362-424), but we know from Engel's introduction to this volume 5 that Lie's 
occupation with this subject began at least ten years earlier. Engel informs us 
that a treatise on differential equations, which Lie intended to write, has 
remained unwritten. Engel continues (Vol. 5, p. VIII): 

This is a pity, for Lie attached great weight to just these applications. Originally he had 
developed his whole theory of transformation groups only because this theory was the instrument 
he needed to treat his integration problems. 

In the present chapter, I only want to discuss the pre-history of Lie's theory 
of finite-dimensional continuous groups. The theory itself will be discussed in 
Chapter 9. 

Part C 
Abstract Groups 

The subject matter of the present Part C has been treated more fully by H. 
Wussing: Die Genesis des abstrakten Gruppenbegriffes, East-Berlin 1969. 

Abstract algebraic structures, defined solely by the laws of composition of 
theirs elements, occur already at an early stage. For instance, the mIes for 
adding and multiplying complex numbers a ± bi were explained as early as 
1560 in Bombelli's "Algebra". 

As we have seen in Chapter 6, Galois defined his "Galois Fields" GF(q) by 
describing the laws of composition of the elements. The same holds for Hamil­
ton, who discovered the algebra of quaternions in October 1843, as we shall 
see in Chapter 10. 

It is very remarkable that abstract fields and algebras were discovered at 
such an early stage. In the case of groups the history took a different course. 
Galois introduced groups of substitutions in 1829, and Jordan investigated 
groups of motion in 1867. The first to introduce abstract abelian groups, 
defined by the rule of composition of their elements, was Kronecker in 1870. 
The first steps towards the general notion of an abstract group was taken by 
Cayley in 1854 and 1878, and the first clear definition of this notion was given 
by Walter van Dyck in 1882. In the same year, Heinrich Weber presented 
another, equivalent definition. 

I shall now describe the development in greater detail, starting with the 
work of Euler and Gauss on number theory. 

Leonhard Euler 

In a paper entitled "Theoremata circa residua ex divisione potestatum 
relicta" (Theorems on the residues left by the division of powers), published in 
1761 (Opera omnia, series prima, Vol. 2), Euler divides the powers a/l of any 
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integer a by a prime p, and considers the remainders of this division. If a is not 
divisible by p, there is apower a" which yields residue 1, and if A is the least 
integer having this property, the powers 

yield just A different residues. Euler now proves that A is a divisor of p -1. The 
method is the same by wh ich Lagrange proved that the order of any element 
in a group of substitutions is a divisor of the order of the group, and by which 
Jordan proved that the order of any subgroup of a finite group is a divisor of 
the order of the group, namely: the set of all non-zero residues modulo p is 
divided into cosets 

(r, a r, a2 r, ... , a"- 1 r). 

As an application, Euler presents a "more natural" proof of a theorem of 
Fermat 

aP - 1 == 1 (mod p) 

which he had proved earlier by means of the expansion of (a+b)p. 

earl Friedrich Gauss 

In the last part of his "Disquisitiones arithmeticae", Gauss defines a "com­
position" of binary q uadratic forms as folIows. 

If a form 

can be transformed into a product of two forms 

by a substitution 

x = p x x' + p' x y' + p" y x' + p'" y y' 

Y = q x x' + q' x y' + q" y x' + q'" y y', 

then Gauss says that F is transiormable into 11', and if the six integers 

pq' -q p', pq" -q p", ... ,p" q'" -q" p'" 

have no common factor, he says that F is composed from the forms land 1'. 
The form I is called primitive, if a, b, c have no common factor. If the 

primitive [orms land l' have the same discriminant D, it is always possible to 
find a form F which has the same discriminant, and is composed of land f'. 
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Two forms fand gare defined to be in the same class, if f can be 
transformed into g by a linear transformation 

x=o:x' + ß y' 

y = }' x' + c5 y' 

having determinant 1. Gauss proves: if F is composed from fand 1', the class 
of F is uniquely determined by the classes of fand 1'. So the composition of 
forms yields a composition of classes, wh ich is commutative and associative. 
In modern terminology, the classes of primitive forms having a given discrimi­
nant form a finite abelian group. The unit element of the group is repre­
sen ted by the principal form 

Ernst Schering 

Ernst Schering, a pupil of Gauss, investigated the structure of the group of 
classes of binary quadratic forms of a given discriminant D. His paper "Die 
Fundamental-Classen der zusammensetzbaren arithmetischen Formen" was 
published in 1869 in the Abhandlungen of the Göttingen academy 14, p.3-13. 
In this paper he proved that the group of quadratic forms having a given 
discriminant possesses a set of generators A, B, C, ... of orders a, b, c, ... such that 
every dass can be uniquely expressed as a product 

in wh ich 0: runs over the residue dasses module a, and ß over the residue 
dasses modulo b, etc. This is what we now caU the "fundamental theorem on 
finite abelian groups". 

Implicitly, the same result had al ready been obtained by Abel in his paper 
on equations having a commutative Galois group (Oeuvres I, p.499). As we 
shaU see presently, the "fundamental theorem" holds for every finite abelian 
group. 

Leopold Kronecker 

The first German mathematician who fully realized the importanc:e of the 
investigations of Abel and Galois on the solvability of algebraic equations was 
Leopold Kronecker. In 1853 he published a paper "Über die algebraisch 
auflösbaren Gleichungen, erste Abhandlung", Bericht über die Verhandlungen 
der Akademie Berlin 1853, p.365-374. In this paper he announces the impor­
tant theorem: 

"The roots of every abelian equation with integer coefficients can be repre­
sented as rational functions of roots of unity." 
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As we have seen in Chapter 7, Kronecker also investigated the Galois 
group of the problem of the division of abelian functions having 2n periods. 
He found that this Galois group is just the symplectic group Sp(2n,p), and he 
informed Jordan of this fact. 

In 1870, Kronecker published a paper entitled "Auseinandersetzung einiger 
Eigenschaften der Klassenzahl idealer komplexer Zahlen", Monatshefte der 
Berliner Akademie 1870, p.881-889. In this paper, Kronecker introduces the 
notion of an abstract abelian group. He considers a finite number of elements 

()', ()", ... 

such that from any two of them a third element f(8', ()") is defined according to 
a fixed rule. He supposes the commutative and associative laws 

f«()', ()") = f(8", ()') 

f«()', f(8", ()"') = f(f( ()', ()"), ()"'). 

Later on, he uses instead of f«()', ()") the simpler product notation ()'. ()". 
Kronecker next proves the fundamental theorem on finite abelian groups, 

which asserts, for every finite abelian group, the existence of a "fundamental 
system" of generators ()b()2, ... of orders nl,n2, ... , such thst 

1) the expression 

represents all elements (), and every element just once. 
2) every ni is divisible by ni+ 1 

3) the product nl n2 ... is equal to the order of the group. 
Kronecker notes that this theorem is in fuH accordance with the results of 

Schering. 
We now turn to England. 

Arthur Cayley 

In 1854, Cayley published two papers under the title "On the Theory of 
Groups, as Depending on the Symbolic Equation ()n = 1" in Philos. Magazine 
of the Royal Society London, Vol. 7. He starts with a &ymbol e representing 
an operation on quantities x, y, .... He writes 

e(x, y, ... ) = (x', y', ... ). 

If x', y', ... represent apermutation of x, y, ... , the operation e is "what is 
termed a substitution", says Cayley. If the operand is a single quantity x, the 
symbol eis an "ordinary function symbol" 

ex=x'=fx. 
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The symbol 1 "will naturally denote the operation which leaves the oper­
and unaltered", and e cI> denotes the "compound operation". Cayley notes that 
these symbols e are not in general commutative, but are associative. 

Next, Cayley introduces the notion of a group table. He says 
A set of symbols 

1, et., ß, ... 

all of them different, and such that the product of any two of them ... belongs to the set, is said to 
be a group. lt folio ws that if the entire group is muItiplied by any one of the symbols, either as 
further or as nearer factor, the effect is simply to reproduce the group; or what is the same thing, 
that if the symbols of the group are multiplied together as to form a table, thus: 

Further factors 

a ß 
~ 

ß 0 a 
U 
.;:l a a a 2 ßa ... 
" ß2 ... ß ß aß oS 

" t: 

that as weil each line as each column of the square will contain aIl the symbols 1, CL, ß, .... 

The next step towards the abstract definition of groups was made by 
Cayley in 1878. In his paper "The Theory of Groups", American Journal of 
Mathematics 1, p. 50-52 he writes: 

A set symbols CL, ß, y, ... such that the product aß of each two of them (in each order, aß or 
ß a) is ·a symbol of the set, is a group '" 

A group is defined by the laws of combination of its symbols. 

and he formulates the problem: to find all finite groups of a given order n. 
He also states that every finite group of order n can be represented as a group 
of substitutions upon n letters. He say: 

But although the theory as above stated is a general one, including as a particular case the 
theory of substitutions, yet the general problem of finding all groups of a given order n, is really 
identical with the apparently less general problem of finding all groups of the same order n wh ich 
can be formed with the substitutions upon n letters. 

To prove this proposition, Cayley uses the group table. He tacitly supposes 
that the multiplication of the symbols a, ß, y, ... in his definition of a group is 
associative: 

(a ß) y =a(ßy)· 

He also supposes that the group has a unit element, and that every line and 
every column of the multiplication table contains all elements of the group. We 
may say that the abstract notion of a finite group was present in his mind, but 
that he did not clearly state the conditions the multiplication aß has to satisfy. 
In this respect, Kronecker's earlier paper of 1870 on abelian groups was better, 
for Kronecker clearly formulated the commutative and associative laws. 

In 1882, the abstract notion "group" was defined with complete clarity, 
nearly simultaneously, hy Walter von Dyck and Heinrich Weber. It so happens 
that their papers were hoth puhlished in one and the same Volume 20 of the 
Mathematische Annalen. The paper of von Dyck is dated "Leipzig, am 6. 
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Dezember 1881", and that of Weber is dated "Königsberg in Preussen, Mai 
1882". The wording of their definitions is completely different, as we shall see 
presently. 

Walter von Dyck 

Walter Dyck, as he calls himself in Math. Annalen 20, was Felix Klein's 
assistent at Leipzig from 1871 to 1884. He was strongly influenced not only by 
Klein, but also by Hamilton and Cayley. At the top of his paper "Grup­
pentheoretische Studien" in Math. Annalen 20, p. 1-44, he inserts a quotation 
from Cayley: 

A group is defined by means of the laws of combination of its symbols. 

Right at the beginning Dyck states his problem as follows: 
To define a group of discrete operations, wh ich are applied to a certain object, while 

abstracting from any special form of representation of the single objects and supposing the 
operations to be given only by those properties that are essential for the formation of the group. 

Dyck starts with m generating operations At, ... ,Am , which can be applied 
to an object denoted by 1. He supposes the operations to be invertible. He 
now applies the operations 

to the object 1, and he forms composite products, which are to be read from 
left to right. Thus he obtains a group G. 

Next he states that isomorphie groups are considered as one and the same 
group. Thus, wh at matters in the definition of a group is only the law of 
composition of its elements. 

Operations, multiplied from left to right, automatically obey the associative 
law, so Dyck's groups satisfy the modern "group axioms". Conversely, if one 
starts with an abstract group in the modern sense, one can always interpret the 
group elements A as operators, acting on the group by multiplying all group 
elements by A on the right. So Dyck's definition of a "discrete group" is 
equivalent to the modern definition of a finitely generated abstract group. 

Dyck next notes that the structure of the group is known as soon as one 
knows the relations between its generators, which can be written as 

He first considers the case of a group G without relations, a "free group" as 
we call it today. In this case every element of the group can be written in only 
one way as a produt of factors Ai and Ai- t. In order to avoid negative 
exponents, Dycks introduces a new generator An defined by the relation 

(1) 

Now, if G is such a free group, and if G is any group generated by 
At, ... , Am in which certain relations Fh = 1 hold, then the expressions Fh gener-
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ate anormal subgroup H in G, and there is a morphism G-,>G (Ai -~ Ai) with 
kernel H. In modern terminology, we have an isomorphism 

(2) G';:G/H. 

Dyck also shows that the free group G can be represented as a group of 
fractional linear transformations 

(3) 
, az+b 
z=--

cz+d 

as follows. One starts with a domain bounded by m + 1 arcs of circles inside a 
fixed circle and perpendicular to it (the shaded domain in Fig.26). Let the 
vertices, in which two ofthe bounding arcs come together, be a1, ... ,am ,an. The 
inversion with respect to the arc· a1 an (or the reflection if a1 an is a line 
segment) transforms the "shaded domain" onto a "white domain". The oper­
ation Ai is defined to be the product of the inversions with respect to the two 
adjacent circles ai_ 1 ai and ai ai+ l' The relation (1) is satisfied, and the oper­
ators A l' ... , Am generate a free group G. The shaded and the white domain 
form together a fundamental domain of the group G. 

Fig. 26. Dyck's construction of a fundamental domain 

Heinrich Weber 

Weber's paper "Beweis des Satzes, dass jede eigentlich pnmitIve quadra­
tische Form unendlich viele Primzahlen darzustellen fähig ist" was composed in 
May 1882 and published in Math. Annalen 20, p. 301-329. The first section is 
entitled "Hilfssätze über Gruppen". It starts with the following definition: 

A system G of elements of any kind, eI> e2, ... , eh is called a group oJ order 
h, if it satisfies the following conditions: 

1. From any two elements of the system one derives a new element of the 
same system by aprescription, which is called composition or multiplication. In 
signs 
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2. One always has 

(er es) et= er(es et)= er es et· 

3. From e er= e es or from er e = es e it follows that er= es. 
From these postulates Weber derives, always for finite groups, the existence 

of a unity eo and of an inverse element e- 1 to every element e. 
The restriction to finite groups was dropped by Weber in 1893. In his paper 

"Die allgemeinen Grundlagen der Galois'schen Gleichungstheorie", Math. An­
nalen 43, p. 521-549 Weber defines: 

A system S of things (elements) of any kind in finite or infinite number 
becomes a group, if the following assumptions are fulfilled: 

1) A prescription is given, according to which from any first and second element of the system 
adefinite third element of the same system is derived. 

Weber next intro duces the notation AB, and he says that the commutative 
law is not presupposed, but: 

2) the associative law is assumed ... 
3) it is supposed that, if AB = AB' or AB = A' B, then necessarily B = B' or A = A' must hold. 

For finite groups one obtains, as a consequence of 1), 2), 3): 
4) If two of the three elements A, B, C are taken arbitrarily in S, the third can always be 

determined in such a way that 
AB=C 

holds. 

Weber proves 4) for finite groups, and he continues: 
For infinite groups this proof is not conclusive. For infinite groups we will include the 

property 4) as a postulate in the definition of the notion group. 

The same definition was also given in Weber's very influential "Lehrbuch 
der Algebra", right at the beginning of Volume 2 (dated Strassburg, July 1886). 

Later investigations concerning the reduction of the group axioms and their 
dependence are outside the scope of the present chapter. 

Part D 
The Structure of Finite Groups 

After the introduction of the notion Abstract Group by Cayley, Kronecker, 
Dyck, and Weber, the theory of groups changed its character. Formerly the 
main problems were: to determine the structure of permutation groups under 
certain conditions such as transitivity and primitivity, and to determine the 
structure of finite-dimensional continuous groups of transformations. After­
wards, the problem was: to find general theorems concerning the structure of 
abstract groups, to determine all finite groups of a given order h, and so on. 

Some fundamental structure theorems for finite groups have been discussed 
already in Parts A and C of the present chapter, namely: 
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1. The "Main Theorem" on finite abelian groups, which says (in modern 
terminology) that every finite abelian group is a direct product of cycIic 
groups. The orders n 1 , n2 , '" of these groups can be chosen in such a way that 
each ni is divisible by ni + l' Alternately, they may be chosen as powers of 
primes. As we have seen, this theorem was proved by Kronecker in 1870. The 
uniqueness of the factors ni was proved by Frobenius and Stickelberger in 1879 
(Crelle's Journal für Math. 86, p.217-262). The generalization of these theo­
rems to finitely genera ted abelian groups is easy (see my Algebra H, fifth ed., 
p.8). 

2. Sylow's theorems, which say: If the order h of a finite group is divisible 
by pa, but not by a higher power of the prime p, there is at least one subgroup 
of order pa. All these subgroups are conjugate, and their number is of the form 
kp+1. 

3. Every finite group of order pa contains at least one element of order p 
permutable with aIl group elements. The factor group with respect to the 
subgroup generated by this element contains again such an element of order p, 
and so on, so the group is solvable. This theorem too was proved in 1872 by 
Sylow. 

The further development of the theory of finite groups at the end of the 
nineteenth century is to a large extent due to Otto Hölder. We shall now 
discuss the mathematical work of this remarkable scholar, and also his little 
known work in the philosophy of mathematics. 

Otto Hölder 

Otto Hölder (1859-1937) was an excellent mathematician. Like his great 
teacher Weierstrass, he was one of those who gave a new direction to modern 
mathematics: the direction from formal caIculations and heuristic thinking to a 
rigorous, critical attitude. It is a pIeasure to read his lucid papers. 

For a short biography of Hölder I may refer to my obituary "Otto 
Hölder", Sitzungsber. sächs. Akademie Leipzig 90, p.97-101 (1938). From this 
abituary I quote: "All those who knew Hölder weIl appreciated his quiet, kind 
nature and his noble character." 

In Hölder's PhD thesis (Tübingen 1882) he solved the problem: Ir one 
caIculates from a continuous mass density k the Newtonian potential V, under 
what condition does it satisfy the Laplace equation 

AV= -21tk? 

To us modern mathematicians, such a problem may seem natural, but in 
Hölder's time even the existence of non-differentiable functions was a new and 
startIing result. Before Weierstrass, most mathematicians tacitly assumed every 
continuous functions to have a derivative. Hölder's solution of the problem 
was highly original: the function k has to satisfy a "Hölder condition". 
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In the same careful way Hölder investigated the behaviour of the potential 
function in the vicinity of a surface on wh ich a continuous mass distribution is 
glven. 

Under the influence of Weierstrass Hölder next moved into complex func­
tion theory. The well-known "Theorem of Casorati-Weierstrass" concerning the 
behaviour of a complex function in the neighbourhood of an iso la ted singu­
larity was first correctly formulated by Casorati, but his paper, in Italian, was 
very difficult to understand. Next, Weierstrass proved the theorem for the case 
of a function which is regular in the whole z-plane, its only singularity being at 
infinity. Hölder was the first to state the theorem with complete clarity and full 
generality, and to present an extremely simple proof. See on this subject E. 
Neuenschwander: The Casorati-Weierstrass Theorem, Historia Math. 5, p. 139-
166 (1978). 

In 1884, Hölder became "Privat-Dozent" at Göttingen. To obtain the 
"Venia legendi", the right to lecture, he had to present a "Habilitationsschrift". 
In this paper, entitled "Zur Theorie der trigonometrischen Reihen" (Math. 
Annalen 24, p.181-216) Hölder investigates the representation of arbitrary 
(possibly not bounded) functions by Fourier series. In order to define the 
Fourier coefficients as integrals, he had to introduce a new definition of the 
integral of an unbounded function. 

Early in his career, Hölder had tried to obtain an algebraic differential 
equation for the Gammafunction, without success. In 1886, he succeeded in 
proving that such a differential equation is impossible. 

Most important for our present purpose are Hölder's classical investi­
gations on Galois theory and on finite groups. His first paper on these subjects 
was entitled "Zurückftihrung einer Gleichung auf eine Kette von Gleichungen", 
Math. Annalen 34, p.26-56 (1889). If one wants to solve an equation by 
radicals, it is sometimes necessary to introduce "accessory irrationalities", that 
is, quantities that cannot be expressed as rational functions of the roots with 
coefficients from a given ground field. Hölder now asks: Is it possible to solve 
any given equation by adjoining the roots of a sequence of auxiliary equations 
such that 

a) no accessory irrationalities are introduced, 
b) after the adjunction of the roots of all preceding auxiliary equations the 

Galois group of each auxiliary equation is simple? 
The solution is, of course: To any composition series of the Galois group 

corresponds a sequence of field extensions as required. Hölder now defines the 
notion "factor group", and he shows that the Galois groups of the single 
auxiliary equations are just the simple factor groups of the composition series. 

Hölder next shows that these factor groups are uniquely defined but for 
their order and but for isomorphisms. This is the famous "Jordan-Hölder 
Theorem". As we have seen, Jordan had already proved that the indices in the 
composition series are unique but for their order. 

The Jordan-Hölder theorem can be extended to infinite groups. If a group 
has a composition series, all such series have the same factor groups up to 
isomorphy, and every normal subgroup is a member of a composition series. 
These two statements are consequences of a still more general Refinement 
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Theorem due to Otto Schreier, which is also valid for groups with operators. 
See O. Schreier: Abhandlungen math. Seminar Hamburg 6, p. 300-302. 

In a later paper, Hölder proved that an irreducible cubic equation having 
three real roots cannot be solved by real radicals. 

In a sequence of papers published in Math. Annalen during the years 1892-
1895, Hölder systematically investigated the structure of finite groups. The 
titles of these papers are: 

Über einfache Gruppen. Math. Ann. 40, p. 55-88 (1892). 
Die Gruppen der Ordnungen p3, pq2, pqr, p4. Math. Ann. 43, p.301-412 

(1893). 
Bildung zusammengesetzter Gruppen. Math. Ann. 46, p. 321-422 (1895). 
The problem considered in this last paper is: If the structures of a factor 

group G/H and of the normal divisor H are given, how can one find all 
possible structures of the group G? Hölder, and later Otto Schreier, developed 
methods to solve this problem. See o. Schreier: Ueber die Erweiterung von 
Gruppen I, Monatshefte rur Mathematik und Physik 34, and H, Abhandlungen 
Math. Seminar Hamburg 4, p. 321-346 (1926). 

In another paper Hölder determined the structure of all groups of square­
free order. Such a group G always has a cyclic center H, the factor group G/H 
being cyclic too. Hölder also determined all representations of such groups by 
linear transformations over the field of complex numbers. 

During the years 1914-1923 Hölder mainly occupied himself with logical­
philosophical questions. These investigations finally resulted in an excellent, 
though little known book entitled "Die mathematische Methode". I have tried 
to summarize the leading ideas of this book in my obituary. What follows is a 
free translation from this obituary. 

According to Hölder one of the essential characteristics of the mathemati­
cal method can be described as building new notions as a superstructure to 
notions present at a certain stage, in the following sense. The notions and 
methods applied at a certain stage are envisaged as objects of the mathemati­
cal investigation at a higher stage. For instance: one applies a certain algo­
rithm or method of proof, and afterwards one considers the scope and the 
limits of this method, making the method itself an object of investigation. 
From this, Hölder concludes that it is impossible to comprehend the whole of 
mathematics by means of a logical formalism, because logical considerations 
concerning the scope and the limits of the formalism necessarily transcend the 
formalism and yet belong to mathematics. This conclusion is fully confirmed 
by later investigations of Kurt Gödel. 

Hölder also considers the question, how subsets of a set can be defined. He 
concludes that the notion "set of all subsets" is not admissible. If this con­
clusion is admitted, it follows that Dedekind's definition of the set of real 
numbers by means of cuts cannot be accepted. Thus, Hölder is forced to 
postulate the existence of the continuum of real numbers by special axioms. 

I have tried to give the reader an idea of the scope of the work of this 
excellent mathematician and philosopher of mathematics. Now let us return to 
group theory. 
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Finite Linear Groups 

Camille Jordan proved in 1878 (Crelle's Journal für Math. 84) that every 
finite group of linear transformations, say G, has an abelian normal subgroup 
H such that the index i does not exceed abound depending only on the 
number of variables. The subgroup H can be diagonalized, that is, its matrices 
consist of blocks, each block being a multiple AI of a unit matrix 1. The blocks 
correspond to linear subspaces of the complex n-dimensional vector space on 
which G operates, the whole vector space being the direct sum of the sub­
spaces. If there are several subspaces with different values of A., the group G is 
"imprimitive", that is, it permutes the subspaces. Hence, if G is primitive, the 
subgroup H consists of multiples AI of the unit matrix I. In this case, the 
factor group G/H can be regarded as a group of projective transformations, 
and the order of this projective group is bounded. 

Explicit limits for the index i were given by Bieberbach (1911), Frobenius 
(1911), Blichfeldt (1916), and Speiser (1927). For more details see the excellent 
exposition of A. Speiser: Die Theorie der Gruppen von endlicher Ordnung 
(fourth edition, p. 194-202). 

In 1898, E.H. Moore proved a theorem of fundamental importance (Math. 
Annalen 50, p. 213-214). namely: 

Every finite group of linear transformations with complex coefficients leaves 
invariant a positive H ermitian form 

(1) 

Moore's proof is very simple: one applies to the unit form 

all transformations of the group, and one adds the results. 
The same result has already been obtained in 1896 by A. Loewy. It was 

published without proof in a Comptes-Rendus note entitled "Sur les formes 
definies a indeterminees conjuguees de M. Hermite" (CR. Acad. Paris 123, 
p.168-171). 

Moore's method of constructing an invariant positive Hermitean form can 
be extended to compact Lie groups. One has only to replace the summation by 
an integration over the Lie group, using an invariant volume element dV, 
according to an idea of Adolf Hurwitz. His paper "Über die Erzeugung von 
Invarianten durch Integration" was published in Nachrichten der Ges. der 
Wiss. Göttingen 1897, p. 71-90. 

Even more generally: If the matrix elements of a group of complex linear 
transformations are bounded, the group leaves invariant a positive Hermitean 
form. This was proved by H. Auerbach in 1932 (Comptes Rendus Acad. Paris 
195, p. 1367). 

Now let us return to finite groups. As we have seen, Felix Klein has 
determined all finite binary projective groups, that is, all finite groups of 
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fractional linear transformations 
az+b 

z'=--
cz+d 

with complex coefficients a, b, c, d. A simple direct derivation of these groups 
was given by H.H. Mitchell in 1911 (Transactions Amer. Math. Soc. 12, p. 208-
211). 

The investigation of finite ternary projective groups was started by C. 
Jordan (1878) and H. Valentiner (1889) and completed by H.F. Blichfeldt 
(Math. Annalen 63, p. 552-572, 1907). 

The real projective orthogonal group in 4 dimensions PO(4, lR) is a direct 
product of two subgroups isomorphic to the complex binary projective unitary 
group PU(2, <C): 

PO(4, lR)~PU(2, <C) x PU(2, <C). 

This isomorphism was used by E. Goursat in 1889 (Annales Ecole normale 
(3)6, p. 9-102) to determine all finite subgroups of PO(4, lR). The corresponding 
groups of four-dimensional rotations have been determined by W. Threlfall 
and H. Seifert in 1931 (Math. Annalen 104, p. 1-70). 

In 1905, H.F. Blichfeldt determined all primitive finite linear groups in 4 
dimensions (Math. Annalen 60, p. 204-231). 

For a more complete account of the theory of finite linear groups see my 
"Gruppen von linearen Transformationen", Springer-Verlag 1935. 



Chapter 9 
Lie Groups and Lie Aigebras 

Part A 
Lie Groups 

What we today call a Lie group is called by Sophus Lie and his followers a 
"finite continuous group". It is a connected topological group in wh ich the 
elements in a neighbourhood of any group element are uniquely determined by 
the values of r parameters a1 , ••• , ar , which vary in an open set of a Euclidean 
space. The parameters may be real or complex variables. 

Lie's Theory 

The fundamental ideas of Lie's theory of "finite continuous groups" are 
already contained in his first sequence of papers on the subject, published 
during the years 1874-1879 (Gesammelte Abhandlungen 5, p.1-223). How­
ever, in these early papers, the presentation of his ideas is not at all satisfac­
tory. For instance, Lie supposed that all elements of an r-dimensional group of 
transformations can be characterized by the values of r parameters a1 ,.·., ar . 

Later on Lie realized that in many cases this parametrization is valid only 
locally, in a neighbourhood of every group element. Also, in his definition of 
the notion "group", Lie only required products of group elements to be in the 
group, and he claimed that a transformation group in this sense must ne­
cessarily contain the identity and the inverse of every group element. Later on 
he recognized that the existence of the identity and of the inverse T- 1 must be 
postulated. 

In December 1880, Lie presented to the Mathematische Annalen a paper 
entitled "Theorie der Transformationsgruppen" (Math. Annalen 16, p.441-
528), in which he gave a better exposition of his theory. An English translation 
of this paper, with a very useful commentary, was published in 1975 by M. 
Ackermann and R. Hermann under the title "Sophus Lie's 1880 Transfor­
mation Group Paper" (Math. Sci. Press, Brookline, Mass.). 

In earlier papers, Lie had not specified the nature of the functions defining 
the transformations of a group. In his Annalen paper, Lie supposed these 
functions to be analytic functions, defined by power series in the neigh­
bourhood of any point of their domain of definition. The groups were sup-
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posed to eontain the inverses T- 1 of their elements, and some errors in Lie's 
earlier papers were eorreeted. 

A still better exposition of the whole theory was given in a monumental 
three-volume work of Sophus Lie and Friedrieh Engel entitled "Theorie der 
Transformationsgruppen" (Teubner, Leipzig, 1888-1893). This work was very 
influential: we all leamt the prineiples of Lie's theory from it. In the following 
exposition I shall use this standard work as my main souree. 

From the very beginning, Lie and Engel eonsider transformations 

(1) 

defined in a eertain domain D by means of analytie funetions h, whose 
funetional determinant is different from zero. Henee, if one restriets oneself to 
a suitable neighbourhood of any point of D, the transformations are invertible. 

Next the authors eonsider transformations (1) depending on r parameters 
a 1 , ... , a,: 

(2) 

Again, the funetions h are supposed to be analytie funetions of the x and a, 
defined in a eertain domain. Moreover, the authors suppose that the parame­
ters are essential, that is, that it is not possible to represent the same set of 
transformations by less than r parameters. 

If the produet of two transformations (2) always belongs to the set, the set 
is ealled a finite continuous group. It is shown that the eomposition of two 
group elements is defined by analytieal funetions 

(3) 

This theorem and many later theorems are valid only loeally, in a neigh­
bourhood of the identity transformation and in a neighbourhood of a point X o 
of the manifold on whieh the group operates. Very often, manifolds and 
groups ean be parametrized only loeally, and the produet of two group 
elements in a neighbourhood of unity ean very well fall outside this neigh­
bourhood. Therefore, if one wants to obtain a rigorous theory, one has to 
restriet oneself to suitable neighbourhoods of the identity I. For instanee, 
instead of requiring that products ST are always in the group, one may 
postulate: "Every neighbourhood U of the element I contains a sub-neigh­
bourhood V of I such that, if Sand T are in V, the product ST is an element 
of U". See O. Schreier: Abstrakte kontinuierliche Gruppen, Abhandlungen 
math. Seminar Univ. Hamburg 4 (1925) p. 15-32. If all enunciations of Lie and 
Engel are modified in this way, one obtains a rigorous theory of Lie groups, or 
rather of "group kemels", that is, of open sets in the space of the parameters a 
in which products ST and inverses S-l are defined locally. 

On page 22, the authors note that a finite continuous group in their sense 
does not necessarily contain the identity and the inverse transformation T- 1 to 
every element T In later enunciations, they often add an extra condition like 
"if the group eontains the identity ... ". In wh at follows, I shall always pre­
suppose the existence of land T - 1. 
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Infinitesimal Transformations 

A fundamental idea in Lie's theory is the passage from transformations T 
to wh at Lie calls infinitesimal transformations. Lie obtains them, in all of his 
papers, by differentiating the transformations (2) with·respect to the parameters 
a, and he writes them first in the form 

(4) 

Next he considers the infinitesimal transformations as linear operators on 
functions F(x 1 , ••• ,xn). He puts 

(5) 

This way of expressing infinitesimal transformations as differential oper­
ators allows him to form commutators 

(6) (A,B)=AB-BA. 

The idea to consider linear differential operators (5) is due to Jacobi, who 
also introduced the "Jacobi symbol" (A,B) and proved the "Jacobi identity" 

(A,(B, C))+(B,(C,A))+(C,(A,B))=O. 

Lie next proves: The infinitesimal transformations belonging to an r-dimen­
sional Lie group are linear combinations of r linearly independent infinitesimal 
transformations: 

(7) 

and if A and B are in the set (7), so is their commutator (A, B). 
Conversely, if Al' ... ' Ar are linearly independent infinitesimal operations 

such that the set (7) also contains the commutators (A, B), Lie states that each 
of the infinitesimal transformations of the set generates a one-dimensional 
group, and that the union of these one-dimensional groups is an r-dimensional 
continuous group. This theorem is locally true, and in fact, Lie's proof is valid 
only locally. 

Today, linear sets (7) in which products (A, B) are defined satisfying the 
postulates 

(B,A)= -(A,B) 

(A, (B, C» + (B, (C, A)) + (C, (A, B)) = 0 

are called "Lie algebras". As a first introduction to the theory of Lie groups 
and Lie algebras I can recommend: 

(8) 

P.M. Cohn: Lie groups. Cambridge Tracts in Mathematics 46 (1957). 
The fact that the commutators (A, B) are in the linear set (7) implies 
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The eonstants Ciks depend only on the rules of composition of the group 
elements, not on the partieular representation of the group as a group of 
transformations. Isomorphie Lie groups have, for a suitable ehoiee of the basis 
elements of the linear set (7), the same eonstants Ciks • Even more: if two groups 
G and H are locally isomorphic, their eonstants Ciks are the same, or in other 
words: Locally isomorphic groups define isomorphic Lie algebras. 

In the book of Lie and Engel the notion "loeally isomorphie" does not 
oeeur. On page 291 of Vol. I the authors assert: "If two r-dimensional Lie 
groups have the same eonstants Ciks ' they are isomorphie". This is not true. 
For instanee, the group of rotations about the origin in the eomplex z-plane 

z'=eia z 

is loeally isomorphie, but not isomorphie to the group of translations of the 
realline 

x'=x+a. 

It is very eurious that Lie and Engel did not note this. They solved the 
differential equations determining the eomposition of the group by means of 
power se ries, whieh eonverge in a neighbourhood of the unity element, and 
they left it at that. 

Three Fundamental Theorems 

In Chapter 25 of Volume 3 of their "Theorie der Transformationsgruppen", 
Lie and Engel summarized the essentials of the theory in three fundamental 
theorems. In order to re ta in some of the flavour of the text, I shall present a 
slightly abridged, but fairly literal translation. 

First Fundamental Theorem. If a set of 00' transformations 

(9) 

is an r-dimensional group, the x;, eonsidered as funetions of the a, satisfy 
differential equations of the form 

(10) 

in whieh the determinant of the ~k is not identieally zero, the ~ji being sueh 
that the rexpressions 

represent independent infinitesimal transformations. 
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Conversely, if a set (9) of oor transformations satisfies differential equations 
of the form (10) and contains the identical transformation, while the de­
terminant of the lJ}k(a) has a finite value different from zero for the identical 
transformation, then the set (9) is an r-dimensional group with pairwise inverse 
transformations. It coincides with the union of all one-dimensional groups 
genera ted by the oor-1 infinitesimal transformations. 

XF= LAkXkF. 
1 

Second Fundamental Theorem. Any r-dimensional group of transformations 
(9) consisting of pairwise inverse transformations contains r independent infini­
tesimal transformations 

satisfying relations of the form 

(11) (Xi,Xk)! = L ciksXsf, 
s~ 1 

and the group is the union of the oor-1 one-dimensional subgroups generated 
by the infinitesimal transformations 1: Ak X J 

Conversely r independent infinitesimal transformations X 1 f, ... , X J satisfy­
ing relations of the form (11) always generate an r-dimensional group with 
pairwise inverse transformations. 

Third Fundamental Theorem. If 

are independent infinitesimal transformations of an r-dimensional group, wh ich 
implies that they satisfy relations of the form (11), then the r 3 constants Ciks' 
which determine the composition of the group elements, satisfy the equations 

(12) 
L (cik< Ctjs + Ckjt ctis + C jit ctks) = o. 
t~ 1 

Conversely, if one knows r 3 constants satisfying the relations (12) and if n is 
sufficiently large, there exist r independent infinitesimal transformations Xi 
which satisfy (11) and hence generate a group with just these constants Ciks . 

Every one of these theorems consists of two halves. The first half is valid 
for every Lie group G, and also for every locally Euclidean "group kerneI" in 
which products are defined in a neighbourhood of the unity element. The 
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second halves, the converse theorems, are valid only locally. To illustrate this, 
let us consider an example. 

Consider the upper half of the unit circle in the (x, y)-plane. Projecting it on 
its diameter, we can characterize every point by its first co ordinate x. Now 
consider an infinitesimal rotation of the circle about its centre: 

Integrating this infinitesimal rotation, one obtains a "group kerneI" consist­
ing of rotations with angles between -180° and + 180°. Rotations with larger 
angles cannot be represented by transformations of the line segment between 
-1 and + 1 on the x-axis. 

It follows that the first and the second fundamental theorem are valid only 
locally, in a neighbourhood of the identity transformation. 

For the third theorem the situation is more complicated. If a Lie algebra is 
given, that is, if the coefficients Ciks are known, it can be proved that a Lie 
group kernel exists having just these constants. This was proved by F. Schur in 
1889. However, the existence of aglobai Lie group corresponding to a given 
Lie algebra was proved only much later by Elie Cartan. 

For a thorough discussion of the whole problem of the rigorous foundation 
of Lie's fundamental theorems I may refer the reader to: 

F. Schur: Neue Begründung der Theorie der endlichen Transforma­
tionsgruppen, Math. Annalen 35, p. 161-197 (1890); 

E. Cartan: La theorie des groupes finis et continus et l'Analysis Situs, Paris 
1930; 

E. Cartan: La theorie des groupes finis et continus et la geometrie differen­
tielle, Paris 1937; 

D. Montgomery and L. Zippin: Topological Transformation Groups, New 
York 1955. 

In the last mentioned paper the authors show that it is not necessary to 
suppose, as F. Schur had done, that the composition functions (3) have second 
continuous derivatives. If the functions are continuous, one can make them 
analytical by introducing new variables. 

For more information about the history of Lie group theory see H. Freu­
denthaI: L'algebre topologique, en particulier les groupes topologiques et de 
Lie, Revue de Synthese (3), Nos 49-52, p. 223-243 (1968). 

Part B 
Lie Algebr~s 

The main results of Part A and their immediate consequences may be 
summarized thus: 

Every Lie group defines a Lie algebra. Conversely, if the Lie algebra is 
given, the structure of the Lie group is completely determined locally, that is, 
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two Lie groups having isomorphic Lie algebras are locally isomorphic. The 
local Lie subgroups of the Lie group are determined by the subalgebras of the 
Lie algebra. If the Lie group is locally simple, that is, if it has no locally 
defined invariant Lie subgroup, the Lie algebra is simple, that is, it has no 
ideal except itself and the zero ideal. Hence, to investigate the structure of Lie 
groups and in particular of simple Lie groups, one has to investigate the 
structure of Lie algebras and in particular of simple Lie algebras. 

The structure theory of Lie algebras is mainly due to Wilhelm Killing and 
Elie Cartan. I shall now sketch the his tory of this structure theory. 

Sophus Lie and Friedrich Engel 

In 1883, Lie determined all simple Lie a:gebras of dimension r having 
maximal subalgebras of dimensions r -1, r - 2, and r - 3. Later on, using a 
paper of M. Page (American Journal of Math. 10, 1888) Lie also succeeded in 
treating the case r -4. 

In 1885, Lie published a memo ir entitled "Allgemeine Untersuchungen 
über Differentialgleichungen, die eine continuierliche, endliche Gruppe gestat­
ten" (Math. Annalen 25, p.71-151. In this memoir and ill a later paper 
(Sitzungsberichte sächs. Ges. der Wiss. 1889, p.276-289) Lie indicated four 
types of locally simple Lie groups, namely 

Type A: the projective linear groups PGL(n,er) with n>1, 
Type B: the projective orthogonal groups PO(2n,er) with 2n>4, 
Type C: the projective symplectic groups PSp(2n, er) which trans form an 

alternating bilinear form 

into itself, 
Type D: the projective orthogonal groups PO(2n -1, er) with 2n -1> 1. 

A Lie algebra is called integrable or solvable if it has a composition series 

in which each composition factor Ai _ d Ai is a one-dimensional Lie algebra. 
In 1887, Friedrich Engel published a note in Sitzungsberichte der 

sächsischen Ges. der Wiss. 1887, p.89-99, in wh ich he proved that every non­
integrable Lie algebra contains a three-dimensional simple subalgebra, and 
conversely. 

Wilhelm Killing 

Wilhelm Killing (1847-1923) was a teacher of mathematics at the Lyceum 
Hosianum in Braunsberg (now Braniewo, Poland). The starting point of his 
investigations on Lie groups was the so-called "space problem". It may be 
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stated thus: What kinds of metrical geometry are conceivable in which rigid 
bodies can move freely? Well-known examples are the Euc1idean and Non­
Euclidean geometries. The problem is: Are there other possibilities, if certain 
conditions are imposed on the free motions? 

Killing noted that the free motions must necessarily form a Lie group. 
Thus, he was led to the examination of the possible structures of Lie groups. 

During the years 1888-1890, Killing published aseries of pioneer papers 
entitled "Die Zusammensetzung der stetigen endlichen Transformationsgrup­
pen" in Math. Annalen 31, 33, 34, and 36. The importance of these papers can 
hardly be overestimated. Elie Cartan writes in his introduction to Vol. 1 of his 
"Oeuvres complt~tes" on page 25: 

Dans une serie de memoires parus dans les Mathematische Annalen de 1888 a 1890, Killing fait 
faire un pas enorme a la theorie. 

And on page 26: 
Le but de mes premiers travaux, eontenus dans ma These (1894) a ete d'exposer et de 

demontrer d'une maniere rigoureuse les resultats obtenus par Killing ... Je n'avais done en somme 
a faire qu'un travail de mise au point; je me suis attaehe a mett re de I'ordre et de la preeision un 
peu partout, a eombler les laeunes qui pouvaient exister dans les demonstrations et a etablir sur 
des bases solides eelles qui reposaient sur des theoremes inexaets. 

The main results obtained by Killing are formulated by Elie Cartan in the 
introduction to his These thus: 

1. Besides the four great c1asses of simple groups found by Lie, there are 
just five possible structures of simple groups, having 14, 52, 78, 133, and 248 
parameters respectively. 

2. Every non-integrable Lie group is (locally) composed of an integrable 
invariant subgroup and another subgroup which is a direct product of simple 
Lie groups. 

Note: An invariant subgroup H of a group G, characterized by the con­
dition 

aHa- 1 =H forall a in G, 

is what we today call anormal subgroup. The Lie algebra corresponding to 
such a subgroup is an ideal in the Lie algebra of G. 

Of the two theorems 1. and 2. announced by Killing, the first has been 
completely proved by Cartan, as we shall see in the next seetion. Regarding 
the second theorem, Cartan notes on page 115 of his These that Killing's proof 
is "manifestly insufficient". As we shall see, Cartan replaced 2. by a weaker 
theorem: Every Lie group G contains a maximal integrable invariant subgroup 
r such that Gjr is a direct product of simple groups. 

In what follows, I shall often use the terminology of Lie, Killing, and 
Cartan. That is, I shall speak of Lie groups and their subgroups, suppressing 
the word local. However, the reader should realize that all proofs presented by 
these ancient authors are based on the consideration of the infinitesimal trans­
formations of the groups, that is, on the consideration of Lie algebras. The 
ground field is always <c or (in later papers of Cartan) IR. Still later, Cartan 
also cOJlsidered the global properties of Lie groups, but this does not belong to 
the subject matter of the present chapter. 
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Elie Cartan 

Elie Cartan (1869-1951) was one of the greatest and most original mathe­
maticians of his time. In 1894 he pubIished his famous These "Sur la structure 
des groupes de transformations finis et continus" (Oeuvres completes I, p. 137-
285), which is one of the most important mathematical papers ever produced. 

In the introduction to his These, Cartan mentions a doctoral thesis of 
Arthur Umlauf, entitled "Über die Zusammensetzung der endlichen continuier­
lichen Transformationsgruppen" (Leipzig 1891) and written under the direction 
of Friedrich Engel. In this thesis, some of the theorems announced by Killing 
are rigorously proved. The remaining gaps in Killing's demonstrations were 
filled by Cartan. 

To explain Killing's method and Cartan's proofs, I must first say a few 
words on the notion adjoint group. 

Every element t of a Lie group Ginduces an inner automorphism of G: 

This automorphism induces an automorphism of the Lie algebra LG : 

X-+X'=TX. 

The linear transformations T thus defined from a group: the adjoint group 
of the given group. To every element t of G corresponds a transformation T, 
and the mapping t-+ T is a homomorphism. The kernel of this homomorphism 
is the centre of G. 

This homomorphism induces a homomorphism of the Lie algebra L G onto 
the Lie algebra LA of the adjoint group. To every element 

(1) 

of the Lie algebra L G corresponds a linear transformation of the Lie algebra LA: 

(2) 

namely 

(3) AY=(X, Y). 

The matrix of this linear transformation A will also be denoted by A. 

The Characteristic Roots 

The characteristic equation of a matrix A is 

(4) LI(w) = det(A -w I) =0. 
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In oUf case, the matrix elements aij of A are linear functions of the Ai' so 
L1(w) is a homogeneous form of degree r in Al' ... ,Ar, and w. Cartan sets 

(5) 

and he supposes that IJ'r_k(A) is not identically zero. Now he chooses the first 
basis element Xl as a "general" element such that 

The equation (4) for X=X 1 certainly has a root w=O, because of 

so k is never zero. The root w = ° has multiplicity k for X = Xl. 
It is weIl known that for every root w1 of the characteristic equation an 

eigenvector Y1 exists such that 

If the root has multiplicity m=m 1 >1, one can find another eigenvector Y2 

modulo Y1 , such that 

and so on. Thus, one obtains a set of m vectors Y1 , Y2 , ••• , Ym • These elements 
and their linear combinations 

are said to belang to the. raot w 1. They are characterized by the property 

Altogether, there are 

linearly independent elements Yi belonging to the roots o,w1 , ••• ,wp of the 
equation (4), and these elements can be chosen as basis elements of the Lie 
algebra. All this is quite c1ear, if one considers the Jordan normal form of the 
linear transformation A. 

If the Lie algebra L G is solvable, it is easy to see that all roots of the 
characteristic equation are zero, hence we have in this case 

(-1)' L1(w)=wr • 

Conversely, if all roots are zero, LG is solvable according to Engel. His 
proof, a little modified,. is reproduced on page 46 of Cartan's thesis (Oeuvres 
completes I, p. 176). 
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The following theorem is due to Killing: 

The Lie product of two elements belonging to the roots wa and W p is zero if 
wa + W p is not a root, and belongs to W y if wa + w p = W y ' 

A special case is: If X and Y belong to the root zero, so does (X, Y). Hence 
the elements X belonging to the root zero form a subalgebra L H of the Lie 
algebra L G • According to the theorem of Engel L H is solvable. The solvable 
Lie algebra L H plays a fundamental role in the investigations of Killing and 
Cartan. 

Let 

be a generic element of the subalgebra LN" That is: let Al"'" Ak be inde­
terminates. We have formed the characteristic polynomial (5) for X =X l' but 
we can just as well form it for X = X).. Cartan now proves (These, p. 38 
= Oeuvres completes I, p. 168) that the roots wa of this polynomial are linear 

functions of the indeterminates Al"'" Ak • This theorem had been proved by 
Killing only for the case that H is abelian. 

Following Weyl, I shall simplify the notation and write (X instead of W a • So 
every root (X is a linear function of Al' ... , Ak • 

Semi-Simple Lie Groups 

A Lie group G is called semi-simple if it does not contain any solvable 
invariant Lie subgroup. For the Lie algebra L G this means that it does not 
contain any solvable ideal. 

In his These, p. 53 (Oeuvres completes I, p. 183) Cartan proves: 

Theorem IV Every semi-simple Lie group is a direct product of simple 
invariant subgroups. 

So the study of semi-simple Lie groups or Lie algebras can be reduced to 
the study of simple Lie groups and Lie algebras. 

Next, Cartan proves: 

Theorem V If G is semi-simple, Xl"'" X k generate a maximal abelian sub­
group H. The non-zero characteristic roots (X are all simple and can be divided 
into pairs with zero sum: (X + (X' = 0, hence (x' = - (x. If X a and X _ a belong to such 
a pair, the Lie product 

belongs to LH alld is never zero. If (X is a root, its multiples 2 (x, 3 (x, ••• are not 
roots. 

Because of this theorem, the defining relations of a semi-simple Lie algebra 
L G can be simplified very much. As basis elements one can choose: 

k elements Xl' ... , X k generating the subalgebra L H , 

and r - k elements Y,. belonging to the r - k simple roots (x. 



The defining relations are now 

(X;.,Xp)=o 

(X;., Ya)= IX Ya 

Lie Algebras 

(Ya, Yp)=O, if IX+ß is not a root 

(Ya, Yp) = Ya+p Ca,p, if IX+ ß -4=0 is a root 

(Y", Y_J=X I bal + ... +Xkb"k' 
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As an example, let us consider the simple group SL(n, <C), it consists of all 
n x n-matrices with determinant 1. Its infinitesimal transformations are all ma­
trices A having trace zero. A maximal abelian subalgebra LH consists of all 
diagonal matrices 

with Al +A2 + ... +An =0. The roots IX are the n(n-1) differences Ai-Aj . The Y" 
are the matrices Cij having 1 in row i and column j, and zero anywhere else. 
We have 

(X;.,Xp) =0 

(X;., Ci)=(Ai-Aj) Cij 

if i -4= k 

(Cji , Ck)= -Cki if i-4=k 

(Cij , Cji)=X;. (..1'i= 1,Aj = -1). 

By an elaborate investigation of all possible cases, Cartan has been able to 
determine all types of simple Lie groups. He finds that there are not other 
types than the four sequences discovered by Lie and the five exceptional 
groups discovered by Killing. 

Cartan's derivations were simplified by Weyl, by myself, by Dynkin, and by 
FreudenthaI. See: 

H. Weyl: Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen 
durch lineare Transformationen, KapitelIII: "Struktur der halb-einfachen 
Gruppen", Selecta Hermann Weyl, p. 325-347, or Math. Zeitschrift 24, p.354-
376 (1926). 

B.L. van der Waerden:' Die Klassifikation der einfachen Lieschen Gruppen, 
Math. Zeitschrift 37, p. 446-462 (1933). 

E. Dynkin: Classification of Simple Lie Groups (Russian with English 
summary), Mat. Sbornik N.S. 18 (60), p. 347-352 (1946). 

H. Freudenthai: Zur Klassifikation der einfachen Lie-Gruppen, Proceedings 
Akad. Amsterdam A 60, p. 379-383 (1958). 
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In the third part of his These (Oeuvres completes I, p.227-286) Cartan 
examines the structure of non-solvable Lie groups. He shows that aB solvable 
invariant subgroups of such a group Gare contained in a maximal solvable 
invariant subgroup r, the factor group Glr being semisimple. In modern 
terminology, what he shows is that aB nilpotent ideals in a Lie algebra L are 
contained in a maximal nil potent ideal R, which we today call the radical of L. 
The residue ring LIR is a direct sum of simple Lie algebras. 

Weyl's Group (S) 

Let L G be the Lie algebra of a simple Lie group G, and let L H be, as before, 
the Lie algebra belonging to a maximal abelian subgroup H. The elements of 
L H will now be written as 

Hermann Weyl proves, in § 4 of his Chapter III quoted before (Selecta 
Hermann Weyl, p. 338-342) that the basis (X 1"'" X k) of LH can be chosen in 
such a way that the roots 

have rational coefficients. Following Killing and Cartan, Weyl intro duces the 
quadratic form 

and he proves that this form is positive. Using the terminology of general 
relativity, I shall write 

with tacit summation. To every vector (Ai) we may define a covector (AJ by the 
formula 

Its inversion can be written as 

The scalar product of a covector p and a vector A is defined as 

and the scalar product of two covectors as 
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,,3_1.1 1.3_1. 2 

Fig.27 

Every root adefines a plane (a.A.) =0, and the reflection with respect to this 
plane is defined by 

, (a p) 
p =p-2-- o a. 

(a a) 

These reflections Sa have been considered already by Killing. They generate 
a finite group (S), which transforms the finite set of roots a into itself. In 
modern papers, this group is called the "Group of Weyl". 

Let me illustrate these notions by an example. Let G be the special linear 
group SL(3, <C). The Lie algebra L G consists of the 3 x 3-matrices with trace 
zero. The subalgebra L H is formed by the diagonal matrices 

with ,P + A 2 + .A. 3 = O. The non-zero roots are the 6 linear forms 

In the space of covectors, these roots may be visualized as six vectors 
pointing from the centre to the vertices of a regular hexagon (see Fig. 27). The 
reflection Sa transforms the vector a into -a. The group (S) genera ted by these 
reflections is the dihedral group D 3 , consisting of three rotations and three 
reflections. 

For the general case see H.S.M. Coxeter: Discrete Groups Generated by 
Reflections, Annals of Math. 35, p. 588-621 (1933). 

Real Simple Lie Aigebras 

The structure of real simple Lie algebras has been determined by Cartan in 
1914 (Annales de l'Ecole Normale 31, p.263-355). Every Lie algebra over IR 
can be extended to a Lie algebra over <C, and if the real algebra is simple, its 
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complex extension is either simple or a direct sum of two complex conjugate 
simple Lie algebras. Thus, starting with the known types of simple complex Lie 
algebras, one can determine the real Lie algebras of which they are extensions. 

Cartan's classification of real simple Lie algebras was derived by a more 
elegant method by F. Gantmakher (Mat. Sbornik 5, p. 101-146 and 217-249, 
1939). Combining Gantmakher's methods with those of Dynkin, Freudenthai 
was able to obtain a still simpler derivation. See H. Freudenthai : Lie Groups 
(polycopy), Yale University 1961. 

Among the real Lie algebras belonging to a given simple Lie algebra there 
is always one Lie algebra generating a compact Lie group, as Weyl has shown. 
See Selecta Hermann Weyl, p. 342-346. This fact is of fundamental importance 
in the representation theory of simple Lie groups, as we shall see in Chap­
ter 14. 



Part Three 
Algebras 



Chapter 10 
The Discovery of Algebras 

In the present chapter, the discovery of special algebras or "hypercomplex 
number systems" such as the ordinary complex numbers, the quaternions, the 
octonions, etcetera will be described. The general theory of the structure of 
algebras will be the subject of the next Chapter 11. 

Complex Numbers 

As we have seen in Chapter 2, Cardano was the first to introduce complex 

numbers like 5 +~ and 5 -~ as solutions of his problem: To divide 
10 into two parts, the product of which is 40. However, the introduction of 
these mysterious numbers caused hirn "mental torture". 

The next step was taken by Bombelli, who used the expressions 

piu di me no ( = i) 
me no di meno ( = - i) 

and who gave rules for ca1culating with complex numbers. As we have seen, he 
used cube roots of complex numbers in his solution of cubic equations in the 
"casus irreducibilis". 

Albert Girard (1629) calls the numbers a ±"}l-b solutions impossibles. The 
term imaginary numbers was introduced by Descartes. He writes: "F or every 
equation one can imagine as many roots (as its degree indicates), but in many 
cases no quantity exists which corresponds to wh at one imagines." See Rene 
Descartes: La geometrie, in: Discours de la methode (1637). 

After Descartes, the leading mathematicians made free use of complex 
numbers. For instance, Johann Bernoulli used logarithms of complex numbers 
for the purpose of transforming integrals (Opera omnia, Vol. 1, p. 400). Roger 
Cotes, Abraham de Moivre, and Leonhard Euler knew the formula 

(cos x + i sinx)n = cos nx + i sin nx. 

For Cotes and de Moivre see Ivo Schneider: Der Mathematiker Abraham 
de Moivre, Archive for History of Exact Sc. 5, p. 234-246 (1968). For Euler see 
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§ 133 of his Introductio in Analysin Infinitorum, Opera omnia, series prima, 
Vol. 1. 

Euler visualized complex numbers as points in a plane with rectangular 
coordinates x, y. Introducing polar coordinates r, ({J, he wrote 

x + i Y = r( cos ({J + i sin ({J) 

and he represented the roots of the equation 

zn= 1 

as vertices of a regular polygon in the z-plane. He defined the exponential 
function eZ for complex z, and he proved 

eiq> = cos ({J + i sin ({J 

(see § 138 of the Introductio just quoted). 
In his § 32 of the same Introductio Euler formulates the "fundamental 

theorem of algebra" as folIows: 
Every integer funetion of z ean be faetored into real linear or quadratie faetors. Although this 

has not be proved rigorously yet, the truth of this statement will be more and more corroborated 
in what folIows .... 

One year later, in 1749, Euler composed a paper "Recherches sur les 
ra eines imaginaires des equations" (Mem. Acad. des Sciences Berlin, Vol. 5, 
published 1751), in which he defines: 

On nomme quantite imaginaire eelle qui n'est ni plus grande que zero, ni plus petite que zero, 

ni egale a zero; ce sera done quelque chose d'impossible, eomme par example y-=1, ou en general 

a+bY-=1· 
In § 7 of the same paper Euler undertakes to prove that every real poly­

nomial in z can be factored into real linear and quadratic factors. The idea of 
his proof is the same as that of the second proof of Gauss, which we have 
discussed in Chapter 5. However, as Gauss notes, the proof of Euler pre­
supposes the existence of the roots in some undefined way. As we would say 
to-day, Euler's proof is correct if the existence of the roots in some extension 
field of IR. is presupposed. 

Although Euler knew the geometrical representation of complex numbers 
by points in a plane, he did not give a satisfactory definition of the notion 
"complex number". Clear geometrical definitions of the addition and multipli­
cation of complex numbers, conceived as directed line segments in a plane, 
were given by Caspar WesseI in 1797, by J ean Robert Argand in 1806, by J ohn 
Warren in 1828, and by Carl Friedrich Gauss in 1831. The expression "com­
plex numbers" seems to be due to Gauss. 

William Rowan Hamilton defined (1843) the complex numbers as pairs of 
real numbers subject to conventional rules of addition and multiplication. On 
the other hand, Augustin Cauchy interpreted (1847) the complex numbers as 
residue classes of polynomials in IR. [x] modulo x 2 + 1. 
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Hamilton's Discovery of Quaternions 

Analogous to the complex numbers a+bi are the quaternions 

a+bi+cj+dk 
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which William Rowan Hamilton discovered on October 16, 1843. Their multi­
plication is defined by the mies 

i2 =/=k2 = -1, 

ij=k, jk=i, 

ji= -k, kj= -i, 

ki=j, 

ik= -j. 

How did Hamilton arrive at this mies? What was his problem and how did 
he find the solution? We are weil informed about these matters through 
documents and papers reproduced in Volume 3 of Hamilton's Mathematical 
Papers (Cambridge Univ. Press 1963), namely: 

First, an entry in Hamilton's Note Book dated 16 October 1843 (Papers 3, 
p. 103-105), 

second, a letter to J ohn Graves dated 17 October 1843 (Papers 3, p. 106-
110), 

third, a paper in the Proceedings of the Royal Irish Academy entitled "On 
a New Species of Imaginary Quantities Connected with the Theory of Quater­
nions" and presented on November 13, 1843 (Papers 3, p. 111-116), 

fourth, the Preface to Hamilton's "Lectures on Quaternions", dated June 
1853 (Papers 3, p. 117-155, in particular p. 142-144), 

fifth, a letter to his son Archibald which Hamilton wrote shortly before 
his death in 1865 (Papers 3, p. xv-xvi). 

In these documents we can follow exactly each of Hamilton's steps. In this 
exceptional case we can observe what may go on in the mind of a mathema­
tician when he poses himself a problem, when he approaches the solution step 
by step, and when, at the end, through a sort of lightning stroke, he so 
modifies the problem that it becomes solvable. 

Hamilton knew and used the geometrical representation of complex num­
bers, but in his published papers he preferred the definition of complex num­
bers as pairs of real numbers (a, b). He now posed hirnself the problem: To find 
out how number-triplets (a, b, c) are to be multiplied in analogy to pairs (a, b). 

In the letter to his son just mentioned, Hamilton writes: 
Every morning in the early part of the above-cited month (October 1843), on my coming down 

to breakfast, your brother WilIiam Edward and yourself used to ask me: "Weil, Papa, can you 
multiply triplets?" Whereto I was always obliged to reply, with a sad shake of the head, "No, I 
can only add and subtract them". 

In analogy to the complex numbers a + b i, Hamilton wrote his triplets as 

a+bi+cj. 
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He visualized his basic units 1, i,j as mutually perpendicular "directed seg­
ments" of unit length in space. Later on Hamilton hirnself used the word 
vector, which I shall also use. He sought to represented products such as 

(a+bi +cj)(x + yi + zj) 

as vectors in the same space. He required 
first, that it be possible to multiply term by term, 
secondly, that the length of the product vector be equal to the product of 

the lengths of the factors. He called this rule "law of the moduli". 
Today we know that the two requirements can be fulfilled only in spaces of 

dimensions 1, 2, 4, and 8. This was proved by Adolf Hurwitz, as we shall see 
presently. Therefore Hamilton's attempt in three dimensions was bound to fai!. 
His profound idea was, to pass to four dimensions. 

About his first attempts we learn more from the documents. To fulfill the 
"law of moduli" at least for the numbers a+bi, Hamilton set ii= -1, as for 
ordinary complex numbers, and just so he set jj = -1. But what was ij and 
what wasji? 

At first, Hamilton assumed ij = ji, and calculated: 

(a+ ib + jc)(x + iy+ jz) =(ax -by -cz) + i(ay +bx)+ j(az+cx)+ ij(bz+cy). 

Now, he asked, what is one to do with ij? Shall it have the form a+ßi+yj? 

First attempt. In Hamilton's letter to John Graves he writes: 
"Its square (namely the square of ij) would seem to be = 1, because i2 = / 

= -1, and this might tempt us to take ij = 1, or ij = -1; but with neither 
assumption shall we have the sum of the squares of the coefficients in the 
product = to the product of the corresponding sums of squares in the factors." 

Second attempt. Hamilton considered the simplest case 

(a+ib+ jc)2 =a2 _b2 _c2 +2iab +2jac+2ijbc. 

He calculated the sum of the squares of the coefficients of 1, i, and j on the 
right-hand side and found 

Therefore, he said, the condition respecting the moduli is fulfilled, if we 
suppress the term involving ij altogether, and, what is more, a2 _b2 _c2, 2ab, 
2ac are precisely the coordinates of the square-point, deduced in space, by a 
slight extension of Mr. Warren's rule for points in the plane .... In fact, if we 
double, in its own plane, the rotation from the positive semiaxis of x to the 
radius vector of the point a, b, c, we attain the direction of the radius vector 
drawn to a2 -b2 _c2, 2ab, 2ac." 
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Third attempt. Hamilton reports that the ass um pt ion ij = 0, which he made 
in the second attempt, subsequently did not appear to be quite right to hirn. 
He writes in the letter to Graves: 

Behold me therefore tempted for a moment to fancy that ij =0. But this seemed odd and 
uncomfortable, and I perceived that the same supression of the term which was de trop might be 
attained by assuming what seemed to me less harsh, namely that ji = -ij. I made therefore ij = k, ji 
= - k, reserving to myself to inquire whether k was 0 or not. 

Fourth attempt. Somewhat more generally, Hamilton multiplied a+ib+jc 
and x+ib+jc. In the letter to Graves, Hamilton conc1udes: 

The coefficient of k still vanishes, and 

are easily found to be the correct coordinates of the product-point in the sense that the rotation 
from the unit line to the radius vector of a, b, c being added in its own plane to the rotation from 
the same unit line to the radius vector of the other factor-point x, b, c, conducts to the radius 
vector of the lately mentioned product-point; and that the latter radius vector is in length the 
product of the two former. Confirmation of ij= -ji, but no information yet of the value of k. 

The Leap into the Fourth Dimension 

After this encouraging result Hamilton said to hirnself: "Try boldly then 
the general product of two triplets" (letter to Graves, Hamilton's Papers 3, 
p. 107). He calculated 

(a + ib + je) (x + iy + j z) = (ax -b y -cz) + i(ay + bx) + j(az + cx) + k(bz -c y). 

He tried to set k=O and asked: Is the law of the moduli satisfied? In other 
words: docs the identity 

hold? The answer is: No, the first membcr excceds the second by (bZ-cy)2. 
But, says Hamilton, this is just the square of the coefficient of k in the 
development of the product 

(a + ib+ jc)(x + iy + jz), 

if we grant that ij = k, ji = - k, as before. 
And now comes the flash of lightning glVlng the entirc problem a ncw 

direction. In the letter to Graves, Hamilton writcs: 

And here there dawned on me the notion that we must admit, in some sense, a fourth 
dimension of space for the purpose of calculating with trip lets ... 

or, transferring the paradox to algebra, we must admit a third distinct imaginary symbol k, not 
to be confounded with either i or j, but equal to the product of the first as multiplier, the second 
as multiplicand, and therefore I was led to introduce quaternions such as a+ib+jc+kd, or 
(a, b, c, d). 
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Hamilton next explains the reasons why he thought it likely that 

ik=iij= -j, kj=ijj= -i 

and 
ki=j, jk=i 

and finally 

k2 =ijij= -iijj=-1. 

In Hamilton's letter to his son we learn even more about the external 
circumstances under which the decisive flash of insight befell hirn. He writes: 

But on the 16th day of the month [October 1843] wh ich happened to be a Monday and a 
Council day of the Royal Irish Academy - I was walking in to attend and preside, and your 
mother was walking with me, along the Royal Canal ... ; and although she talked with me now and 
then, yet an undercurrent of thought was going on in my mind, which gave at last a result, 
whereof. .. I feit at once the importance. An electric circuit seemed to elose, and a spark flashed 
forth, the herald (as I foresaw immediately) of many long years to co me of definitely directed 
thought and work ... 

I puUed out on the spot a pocket-book, which stiU exists, and made an entry there and then. 
Nor could Iresist the impulse - unphilosophical as it may have been - to cut with a knife on a 
stone of Brougham Bridge, as we passed it, the fundamental formula with the symbols i,j, k: 

wh ich contains the solution of the Problem, but of course, as an inscription has long since 
mouldered away. 

This was written many years later. In his Note Book, written on the same 
day on which he had cut his fundamental formula on the stone, the course of 
his ideas was explained in greater detail thus: 

I believe I now remember the order of my thought. The equation ij =0 was recommended by 
the circumstance that 

(ax - y2 _ Z2)2 + (a +X)2(y2 + Z2) = (a2 + y2 + Z2) (x 2 + y2 + Z2). 

I therefore tried whether it might not be tme that 

(a 2 +b2 +C2)(X2 + y2 +z2)=(ax -by -czj2 +(ay+bx)2 +(az+cx)2, 

but found that this equation required, in order to make it tme, the addition of (bz _cy)2 to the 
second member. This forced on me the non-neglect of ij, and suggested that it might be equal to k, 
a new imaginary. 

By underscoring the words forced and suggested Hamilton emphasizes a 
distinction between two mental experiences. The first was a compelling logical 
condusion, which came immediately out of the calculation: one cannot set ij 
equal to zero, for then the law of modul i would not hold. The second ex­
perience was an insight which came over hirn in a flash at the canal (" an 
electric circuit seemed to dose, and a spark flashed forth "), namely the idea 
that ij = k might be taken to be a new imaginary unit. What Hamilton presents 
here is a profound psychological analysis of his own thoughts. 
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The same pocket book, in which Hamilton noted his rules of multiplication 
of the units i,j, k, also contains the formulae for the coefficients of the product 

(a+bi +cj +dk)(a+ ßi+yj + bk) 

and an outline of the proof of the "law of moduli". 
For the sake of completeness I may mention that the law of multiplication 

of quaternions had already been discovered, but not published, by Gauss as 
early as 1820. See the article of E. Study "Theorie der gemeinen und höheren 
komplexen Grössen", Encyclopädie der mathematischen Wissenschaften IA4. 

Octonions 

The letter to John Graves in which Hamilton announced the discovery of 
quaternions was written on the 17th of October 1843, one day after the 
discovery. The seed which Hamilton sowed fell upon fertile soil, for in De­
cember 1843 Graves already had found an algebra with 8 basis elements 

1, i,j, k, I, m, n, 0, 

the algebra of octaves or octonions. Graves defined their multiplication as 
follows: 

i2=j2=k2=12=m2=n2=02= -1 

i=jk=lm=on= -kj= -ml= -no 

j=ki=ln=mo= -ik= -nl= -om 

k=ij=lo=nm= -ji= -01= -mn 

I=mi=nj=ok= -im= -jn= -ko 

m=il=oj=kn= -li= -jo= -nk 

n=jl=io=mk= -Ij= -oi= -km 

o=ni=jm=kl= -in= -mj= -Ik 

(see Hamilton's Mathematical Papers, Vol. 3, p. 648). 
In 1848 Graves published his discovery in the Transactions of the Irish 

Academy 21, p. 338. 
In Graves' algebra of octonions, the "law of moduli" holds, but the algebra 

is not associative, as Hamilton pointed out. 
Octonions were rediscovered by Arthur Cayley in 1845 (Collected Papers I, 

p. 127 and XI, p. 368-371). Because of this the octonions are also known as 
Cayley Numbers. 

A modified construction of an algebra of "octonions" was presented by 
Claude Chevalley. In his book "The Algebraic Theory of Spinors" (Columbia 
Univ. Press 1954), p. 123-128, Chevalley starts with a non-singular form Q in 8 
variables wh ich can be reduced to the form 
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and he constructs an algebra of dimension 8 with a non-associative multiplica­
tion x * y such that 

Q(x * y) = Q(x) Q(y). 

Graves made an attempt to construct a similar algebra with 16 basis 
elements in which the "law of moduli" holds, but his attempt did not succeed. 
It could not succeed, for today we know that identities of the form 

(1) 

are possible only for n = 1, 2, 4 or 8. I shall now give a short summary of the 
his tory of these identities. 

Product Formulae Jor Sums oJ Squares 

Euler certainly knew the law of the modul i for complex numbers a + bi: 

In a letter of Euler to Goldbach dated May 4, 1748, edited by P.H. Fuss 
(Correspondence mathematique et physique I, Petersburg 1843) we find a 
similar formula for sums of four squares. It agrees with Hamilton's "law of 
moduli" for quaternions. 

The formula for 8 squares, which Graves and Cayley proved by means of 
octonions, had already been found by c.P. Degen in 1818. See c.P. Degen: 
Adumbratio demonstrationis theorematis arithmeticae maxime generalis, 
Memoires de l'Academie de St. Petersbourg VIII, p. 207 (1822). 

Hamilton's original problem was: Can triplets (a, b, c) and (x, y, z) be so 
multiplied that the law of moduli holds? In other words: Is it possible so to 
define u, v, w as bilinear functions of a, b, c and x, y, z that the identity 

(2) 

holds? 
The first to show the impossibility of such an identity was Adrien Marie 

Legendre. In his "Theorie des nombres" (1830) he no ted that the numbers 3 
and 21 can be expressed as sums of three squares of rational numbers: 

3= 1+1+1 

21=16+4+1 

but that 3 x 21 = 63 cannot be represented in this way, since 63 is an integer of 
the form 8 n + 7. It follows that an identity of the form (2) is impossible, at least 
if one restricts oneself to bilinear forms u, v, w with rational coefficients. See 
A.M. Legendre: Theorie des nombres, 3rd ed., p. 198. 
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If Hamilton had known of this remark by Legendre he would probably 
have given up the search to multiply triplets. Fortunately he had not read 
Legendre: he was an autodidact. 

The question for what values of n an identity of the form (1) is possible was 
finally decided by Adolf Hurwitz. With the aid of matrix multiplication he 
proved that n = 1, 2,4 and 8 are the only possibilities. See A. Hurwitz: Über die 
Composition der quadratischen Formen von beliebig vielen Variablen, Nach­
richten Ges. der Wiss. Göttingen 1898, p. 309-316. 

Geometrical Applications of Quaternions 

In 1885, Cayley showed that three-dimensional as weIl as four-dimensional 
rotations can be represented by quaternions. See A. Cayley: Recherches 
ulterieures sur les determinants gauches, Crelle's Journal ftir Math. 50, p. 312-
313. See also F. Klein: Zur Nicht-Euklidischen Geometrie, Math. Annalen 37, 
p.546-554 (1890), and E. Study, Math. Papers from the Chicago Congress 
1894, New York 1896, p. 376. 

Let me start with the four-dimensional case. Let 

X=s+ix+jy+kz 

be a variable quaternion and let A and B be quaternions of norm 1. The 
transformation 

(3) X'=AXB- 1 

is a four-dimensional rotation, and all four-dimensional rotations can thus be 
obtained. 

If B=A, one obtains a transformation 

(4) X'=AXA- 1 

which leaves the "scalar part" s of the quaternion X invariant and transforms 
the "vector part" 

ix+jy+kz 

according to a three-dimensional rotation. All three-dimensional rotations can 
thus be obtained. Namely: since A has norm 1, it can be written as 

A = cos rp +(ip + jq +kr) sin rp, 

the vector v =(p, q, r) being a unit vector: 

An easy calculation now shows that the transformation (4) is a rotation 
about the axis v over an angle 2rp. 
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If the quaternion A is written in the usual form 

A=a+ib+jc+kd 

the coefficients a, b, c, d are called the Cayley-Klein parameters of the rotation. 
They were systematically used by Klein and Sommerfeld in their classical book 
"Über die Theorie des Kreisels" (1897). 

If quaternions are used to represent rotations, the composition of rotations 
is very easy. If two rotations are obtained from quaternions Al and A 2 , their 
product results from the quaternion Al A 2 • The composition formulae thus 
obtained are identical with the formulae of Olinde Rodrigues for the com­
position of rotations (see the section "On Groups of Motions" in Chapter 7). 

The Arithmetic of Quaternions 

In 1896, Adolf Hurwitz published a highly interesting paper "Über die 
Zahlentheorie der Quaternionen" (Nachrichten der Gesellschaft der Wissensch. 
Göttingen 1896, p. 313-340), in which he developed a factorization theory of 
"integer quaternions", and applied it to the problem of representing integers as 
sums of four squares. In 1919 Hurwitz elaborated his ideas with full proofs in a 
very nice booklet entitled "Vorlesungen über die Zahlentheorie der Quater­
nionen". I shall now sketch the history of the problem and present an account 
of the ideas of Hurwitz. 

In 1621, in his edition of the Arithmetica of Diophantos, c.G. Bachet noted 
that apparently every integer is either a square or a sum of 2 or 3 or 4 squares. 
Later authors called this assertion "Bachet's theorem". Bachet verified it for alI 
integers up to 325. If zero terms are alIowed, we may say that every integer N 
is a sum of four squares: 

(5) 

The first proof of this assertion was given by Joseph-Louis Lagrange in 
1772 (Oeuvres 3, p.189-201). One year later, Leonard Euler presented a 
simpler proof (Opera omnia, Pars prima, Vol. 3, p. 218-239). For more details I 
may refer to Leonard Eugene Dickson: History of the Theory of Numbers, 
Vol. 2. 

In 1828, Karl Gustav Jakob Jacobi proved that the number of repre­
sentations of a given integer N as a sum of four squares of (possibly negative 
or zero) integers is equal to 

24S, if N is even, 

8S, if N is odd, 

where S is the sum of alI odd divisors of N. See K.GJ. Jacobi: Werke, Vol. 1, 
p. 239-247, and Vol. 6, p. 245-251. 
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In his proof, Jacobi made use of thetafunctions. A purely algebraic proof 
was given by Hurwitz by means of his number theory of integer quaternions. I 
shall now explain the fundamental ideas of his theory. 

Hurwitz defines: A quaternion 

q=s+ix+jy+kz 

with rational coefficients s, x, y, z is called integer, if the coefficients are either 
all integers or all of the form n + 1/2. In other words: integer quaternions are 
the linear combinations of 

p=!(1 +i+j+k), i,j, k. 

In the ring of integer quaternions, there are 24 units. This explains the 
factor 24 in the expression 24S found by Jacobi. 

The norm of an integer quaternion is a sum of four squares: 

(6) N =qq' =(s+ix + jy+kz)(s -ix -jy -kz) =S2 +x2 + y2 +Z2. 

If N is even, the numbers s, x, y, z in (6) are necessarily integers, but if N is odd, 
they may be of the form n + 1/2. Hurwitz now proves that the number of 
representations of N as a norm of an integer quaternion is always 24S. If N is 
odd, the numbers s, x, y, z are integer in only 1/3 of the cases; this explains why 
for odd N the number of integer representations is only 8S. 

To prove these results, H urwitz develops a factorization theory of integer 
quaternions. He first shows by means of a generalization of the Euclidean 
algorithm that every onesided ideal in the ring of integer quaternions is a 
principal ideal, that is, it is genera ted by one single element. It follows that any 
two integer quaternions have a (right or Jeft) "largest common divisor" d. 

If a quaternion q is multiplied by one of the 24 units, one obtains a right or 
left associated quaternion qc or cq. To restrict the choice of the unit t:, Hurwitz 
now intro duces the notion primary. A quaternion is called primary, if it is 
congruent to 1 or 1 + 2p modulo 2(1 + i). 

Now let q be any quaternion having an odd norm. Hurwitz proves that 
among the 24 quaternions qt: (or eq) associated to q there is just one primary 
quaternion. 

An integer quaternion n is called prime, if n = ab implies that a or b is a 
unit. Hurwitz proves: n is prime if and only if its norm nn' is an ordinary 
prime p. And: There are just p + 1 primary quaternions whose norms are equal 
to a given odd prime p. 

Next, Hurwitz proves his fundamental factorization theorem: 
Let c be a primary quaternion, and 

N(c)=pqr ... 
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where p, q, r, ... are (equal or unequal) prime Jactors oJ N(c). Then c can be 
represented in exactly one way as a product 

c=1tI~p ... 

where 11:, K, p, ... are primary quaternions having norms p, q, r, ... in just this 
(arbitrary, but Jixed) order. 

Now it is easy to determine the number of quaternions having a given 
norm N. The result is 24S. 

For the extension of the methods of Hurwitz to other algebras see the 
papers of G. Aeberli and H. Gross in Comment. Math. Helv. 33, p. 212-239 
and 34, p. 198-221. 

Biquaternions 

Quaternions with complex coefficients are caIIed by Hamilton biquaternions. 
See W.R. Hamilton: Lectures on Quaternions (1853), art. 669. The algebra of 
these biquaternions is isomorphie to a fuII matrix ring over the complex 
number field, for quaternions a+ib+jc+kd with complex coefficients a,b,c,d 

. (a+bi -C+di) can be represented by matnces . b' . 
C+dl a- I 

In 1873, WiIIiam Kingdon Clifford published a "Preliminary Sketch of 
Biquaternions", Proc. London Math. Soc. 4, p. 381-395 (Mathematical Papers, 
p. 181-204). In this paper, Clifford intro duces two different kinds of "biquater­
nions". Both kinds can be written as 

q+wr 

where q and rare quaternions, while w commutes with aII quaternions. In the 
first part of his paper Clifford supposes 

and he uses his biquaternions to describe rigid motions in Euclidean space. In 
the second part (Sections III-V) he supposes 

and he uses the second kind of biquaternions to describe non-Euclidean 
motions. Introducing two new units 

~=lj2(I+w), '1=lj2(I-w) 
he finds 

so one can say, in modern terminology, that Clifford's second algebra of 
biquaternions is a direct sum of two quaternion algebras. 
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The first kind of Clifford's biquaternions was used by Eduard Study to 
obtain a parametric representation of the Euclidean group of rigid motions. 
See E. Study: Von den Bewegungen und Umlegungen, Math. Annalen 39, 
p. 441-566 (1891). 

Full Matrix Algebras 

The n x n-matrices form an algebra of dimension n2 • As basis elements one 
can take the matrices eij having an element 1 in row i and column j, and 0 
elsewhere. The multiplication rules are 

This algebra is called the full matrix algebra of rank n over the ground field K. 
For the history of the theory of matrices I may refer to e.e. MacDuffee: 

The Theory of Matrices, Ergebnisse der Math. 11 5 (Springer-Verlag 1933, re­
printed by Chelsea). Here I shall mention only those nations and theorems 
that are most important for the theory of algebras. 

The characteristic function of a matrix A is defined as a polynomial in A: 

This polynomial remains unchanged if A is rcplaced by P AP-l. Its second 
coefficient is the trace of the matrix: 

and its last coefficient is the determinant 

By a suitable extension of the ground field F, the matrix A can be reduced 
to its Jordan normal form. This normal form consists of blocks, each block Bi 
having one and the same element Ai in the main diagonal and elements 1 just 
above the main diagonal, all other elements being zero. Obviously, the charac­
teristic polynomial of the normal form is 

Since the characteristic function of the normal form P AP- 1 is the same as that 
of A, it follows that the roots )'1"'" An of the characteristic function F(.J.) are 
just the diagonal elements of the Jordan normal form. These roots are called· the 
fundamental roots of the matrix A. 



190 Chapter 10. The Discovery of Algebras 

An important theorem says: The matrix A satisfies the "fundamental equa­
tion" 

(7) F(A)=An -Cl An- l + ... +( -1)"cnI =0. 

This theorem was first announced by A. Cayley, and verified for n = 2 and 
n=3, in his pioneer paper "Memoir on the Theory of Matrices", Philos. Trans­
actions Royal Soc. London 148, p. 17-38 (1858). It was proved by E. Laguerre 
in his paper "Sur le calcul des systemes lineaires", Journal de l'Ecole polytech­
nique 42, p. 215-264 (1867). Other proofs were given by Frobenius (1878), 
Buchheim (1885), Weyr (1890), Taber (1890), Pasch (1891), Molien (1893), and 
again Frobenius (1896). For full references see the article of E. Study "Theorie 
der gemeinen und höheren komplexen Größen", Encyklopaedie der math. 
Wissenschaften IA 4, p. 171 (1898). 

The equation (7) can be written as 

Consequently, if an element A of any matrix algebra is non-singular, which 
means that cn = det (A) is not zero, the matrix A has an inverse A -1 within the 
algebra. 

Group Algebras 

In the same paper of 1854, in wh ich Cayley introduced the notion of an 
abstract group (Phi!. Mag. 7, p. 40-47), he also introduced what we today call 
the "Group Algebra" of a finite group G. The basis elements of this algebra 
are just the group elements g l' ... , gn' In the multiplication rule 

the coefficients are 

if gjgk=gi 
otherwise. 

Every representation of the group G by linear transformations can be 
extended to a representation of the group algebra. Conversely, every represen­
tation of the group algebra yields a representation of the group. Therefore 
the study of the structure of the group algebra is of primary importance in 
the theory of group representations. 

The first to investigate the structure of the group algebra of a finite group 
was Theodor Molien. In 1893 he published an important paper "Über Systeme 
höherer komplexer Zahlen" in Math. Annalen 41, p. 83-158. In this paper, 
Molien proved several fundamental theorems concerning the structure of al­
gebras over the complex fie1d <c (see Chapter 11). In a later paper entitled 
"Eine Bemerkung zur Theorie der homogenen Substitutionsgruppen" (Sitzungs­
berichte der Naturforscher-Gesellschaft der Universität Dorpat 11, p.259-274) 
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Molien applied his general theory to the group algebra of a finite group. He 
proved that this group algebra is a direct sum of full matrix algebras, and from 
this he concluded that every representation of the algebra (and hence of the 
group) is completely reducible, and that every irreducible representation is 
contained in the regular representation. Weshall return to this subject in 
Chapter 13. 

Grassmann's Calculus of Extensions 

As far as I know the first to define explicitly the notion of "n-dimensional 
vector space" was Hermann Günther Grassmann in his book "Die lineare 
Ausdehnungslehre" (1844). But of course, the notion "vector space" was im­
plicit in the work of several earlier authors. In Newton's "Principia" the 
velocities and forces are vectors. The addition of complex numbers was defined 
by Wessei and Argand as an addition of "directed line segments" in the plane. 
The Galois fields GF(pn) constructed by Galois are n-dimensional vector spaces 
over the prime field GF(p). The algebra of quaternions is a four-dimensional 
vector space over JR., and Hamilton knew it, for he wrote in his letter to 
Graves: "And here dawned to me the notion that we must admit, in asense, a 
fourth dimension of space ... ". 

Grassmann's Ausdehnungslehre is very difficult to understand. His expla­
nations are mixed with philosophical theories. His starting point is a "general 
doctrine of forms" which "ought to preceed all special branches of mathe­
matics". His sums and products of vectors in an n-dimensional vector space 
are defined by purely geometrical considerations, without using basis elements 
e l' ... , en • From our modern axiomatic point of view we can understand what 
he means, but his contemporaries did not understand it. 

In 1862, Grassmann published another book entitled "Die Ausdehnungs­
lehre vollständig und in strenger Form bearbeitet", but this book too had 
very little influence, as Grassmann notes himself in the "Vorrede" to the 
second edition (1878) of his first" Ausdehnungslehre". 

However, as Grassmann states in the same Vorrede, the situation changed 
completely in 1867, when Hermann Hankel published Part 1 of his "Vorle­
sungen über die complexen Zahlen und ihre Funktionen" under the subtitle 
"Theorie der complexen Zahlensysteme". Chapter VII of this book is entitled 
"Theorie und geometrische Darstellung der alternierenden Zahlen". Hankel's 
"alternierende Zahlen" are just Grassmann's "Ausdehnungsgrößen", namely n­

dimensional vectors and their alternating tensor products. 
In the present section I shall follow Hankel's completely clear explanations, 

which are based, as Hankel himself says, on Grassmann's "Ausdehnungslehre 
von 1862", which I have not seen. 

Hankel considers an algebra generated by elements i 1 , ... , in subject to the 
multiplication rules 
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He notes that if a and ß are vectors: 

then the product 

has the property 

a=a 1 i1 + ... +an in 

ß=b1 i1 + .,. +bn in 

aß= -ßa. 

More gene rally, a product of any number of vectors changes its sign if two 
successive factors are interchanged. 

Following Grassmann, Hankel explains a geometrical interpretation of the 
alternating products of vectors. If two vectors lie in the same line, their 
product is zero. If not, they span a parallelogram lying in a certain plane and 
having adefinite area. Two products ab and cd are equal if they lie in parallel 
planes and if they span parallelograms having the same area and the same 
sense of rotation from a to b as from c to d. Just so, a product of three vectors 
can be constructed as an oriented parallelepipedon, and so on. 

Grassmann's products of vectors and alternating tensors are called exterior 
products. In modern presentations of the theory, for instance in Claude 
Chevalley's "Algebraic Theory of Spinors" (1954), Grassmann's algebra is 
enlarged by inc1uding a unit element. The algebra now has 2n basis elements 

1 

iab=iaib (a<b) 

iabc=iaibic (a<b<c) 

In a historical appendix on p. 140 of his book, Hankel informs us that 
Grassmann's external multiplication has been rediscovered independently by 
Saint-Venant (1845), by O'Brien (1847), and by Cauchy (1853). 

Clifford Algebras and Rotations in n Dimensions 

In 1878, William Kingdon Clifford published a paper "Applications of 
Grassmann's Extensive Algebra", American Journal of Math. 1, p. 350-358, in 
which he defined an algebra genera ted by 
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subject to the conditions 

As in the case of Grassmann's algebra, one can take as basis elements the 
2n elements 

1 

and so on. This algebra is called the first Clifford algebra. For n = 1 one 
obtains the complex numbers, for n = 2 the quaternions. 

An important subalgebra is generated by the products of an even number 
of i's. Today this sub algebra is called the second Clifford algebra. For n = 3 its 
basis elements 

obey the multiplication rules of the quaternions. 
In an extremely interesting, but nearly forgotten treatise "Untersuchungen 

über die Summen von Quadraten" (Bonn 1884), R. Lipschitz applied the 
second Clifford algebra to represent the rotations in n dimensions. He first 
showed that all rotations A, for which det (I + A) is not zero, can be obtained 
as 

where C is an antisymmetric matrix. Next, putting 

X=1x 1 +i12x2+···+ilnxn 

Y=1Yl+ iI2Y2+···+ ilnYn 

A = lAo + l:iab Aab + l:iabcd Aabcd + ... 

(with a<b<c< ... ), he proved that every rotation X-+Ycan be obtained from 
the formula 

(8) 

in which AI is derived from A by replacing i 1 by - i 1· 

This very remarkable formula can be written in a simpler form. Putting 

XiI =x and Yi 1 = y, 

and multiplying botl. sides of (8) by i l' one gets 

x=i1 Xl + ... +inxn 

Y = i 1 Y 1 + ... + in Y n 
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and 

But i11 Al i 1 is just A, SO we obtain the simple formula 

(9) AxA-1=y. 

The formula (9) shows that there exists a representation of orthogonal 
transformations A by Clifford numbers A. The representation is not unique, for 
A can be multiplied by an arbitrary numerical factor, but A can be normed in 
such a way that only a factor ± 1 remains arbitrary. To the product of two 
ClifTord numbers A and A' corresponds the product of the corresponding 
rotations, so we have here a two-valued representation of the group of ro­
tations. The ground field may be 1R or ce. 

The same two-valued representation of rotations in n dimensions was 
rediscovered for n=4 by P.A.M. Dirac in 1928, and for all n by R. Brauer and 
H. Weyl in 1935. I shall now describe their approach. 

Dirac's Theory of the Spinning Electron 

P.A.M. Dirac's famous paper "The Quantum Theory of the Electron" was 
presented to the Royal Society in January 1928 and published in the Proceed­
ings A 117, p. 610-629. 

Dirac's starting point was a second-order relativistic wave equation for a 
free electron, which had been proposed by O. Klein and W. Gordon and 
others, and which can be written as: 

(10) 

with 

where X 1 ,X2 ,X3 are the space coordinates of the electron and xo=ct. Putting 
Po= -iP4' Dirac rewrites (10) as 

(11) 

For theoretical reasons, Dirac wants to replace (11) by a first-order wave 
equation of the form 

(12) (i~ YJJP JJ +mc) '1' =0. 

The equation (12) implies (11), provided the matrices YJJ satisfy the con-
ditions 

(13) 
y;=l 

YJJ YJJ+Yv yJJ=O for jl=Fv. 
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If these eonditions are satisfied, the sum L:p; beeomes a eomplete square: 

(14) 

Starting with Pauli's spin matriees 

Dirae sueeeeds in eonstrueting a set of 4 x 4-matriees y p. satisfying the eon­
ditions (13). Next he proves the invarianee of the wave equation (12) by 
showing that every solution of (13) in 4 x 4-matriees may be obtained from the 
original solution by a transformation 

(15) , -1 
Yp. =ryp. r . 

If the PI' are subjeeted to a Lorentz transformation 

the left hand side of (14) remains invariant. The right hand side beeomes 

where the y~ again satisfy the eonditions (13), so that they may be written in 
the form (15). Thus, to every Lorentz transformation eorresponds a 4 x 4-
matrix r, and one obtains a representation of the Lorentz group by 4 x 4-
matriees r. 

In (15), the matrix r ean be replaeed by ar, where a is an arbitrary 
eonstant. However, the matriees r ean be normed in sueh a way that only a 
faetor ± 1 remains arbitrary, so wc have he re a two-valued representation of 
the Lorentz group. 

If Dirac's matriees y I' are multiplied by i, one obtains matriees il' (/1 
= 1, 2, 3,4) satisfying the multiplieation rules of the Clifford numbers. It follows 
that for n = 4 the Clifford algebra is isomorphie to a full matrix algebra over 
the field of eomplex numbers. We shall see presently that this is the ease for all 
even values of n. 

For the historieal development of the quantum theory of the spinning 
eleetron 1 may refer to my article "Exclusion Principle and Spin" in the 
volume "Theoretieal Physics in the Twentieth Century", edited by M. Fierz 
and V.F. Weisskopf, Interseience Publishers 1960. 

Spinars in n Dimensions 

In 1935, Riehard Brauer and Hermann Weyl published a beautiful paper 
entitled "Spinors in n Dimensions", American Journal of Math. 57, p. 425-449, 
in whieh they used Clifford algebras in order to obtain two-valued matrix 
representations of the group of rotations in n dimensions. 



196 Chapter 10. The Discovery of Algebras 

The existence of such representations had been recognized as early as 1913 
by Elie Cartan. In his These de doctorat (1894) Cartan had developed a 
complete classification of all simple Lie algebras, and in his 1913 paper "Les 
groups projectifs qui ne laissent invariant aucune multiplicite plane" (Bulletin 
de la societe math. de France 41, p. 53-96) the same Cartan determined all 
irreducible matrix representations of these Lie algebras. Among these he found 
a class of representations wh ich, when integrated, led to two-valued repre­
sentations of orthogonal groups. 

The cases n=3 and n=6 were known already to Felix Klein and Sophus 
Lie. The real orthogonal group in 3 dimensions is locally isomorphie to the 
special unitary group SU(2, <C), and the real orthogonal group in 6 dimensions 
is locally isomorphie to the special unitary group SU(4, <C). If the ground field 
is extended to the eomplex number field <C, one obtains loeal isomorphisms to 
the special linear groups SL(2, <C) and SL(4, <C). For a full explanation of these 
and the related isomorphisms for n = 4 and n = 5 see my booklet" Gruppen von 
linearen Transformationen" (Springer-Verlag 1935) p. 18-28. 

In his 1913 paper, Cartan restrieted hirnself to deseribing the matrix repre­
sentation of the infinitesimal transformations of the classieal groups, including 
the rotation groups. On the other hand, Brauer and Weyl suceeeded in eon­
structing the global two-valued representations by means of Clifford algebras. 

Right at the beginning of their paper, Brauer and Weyl state: 
Our pro ce du re is exactly the same as followed by DIRAC in his classical paper on the 

spinning electron. We introduce n quantities Vi which turn the fundamental quadratic form into the 
square of a linear form 

xi + ... +x; =(Vl Xl + ... +Vn Xn)2. 

For this purpose we must have 

Clearly the quantities PI' ... , Pn , multiplied by i, are just the Clifford num­
bers i l , ... , in' Beeause of their relation with Dirac's theory of the spinning 
electron, Brauer and Weyl call their quantities "spinors". The same expression 
is also used by Elie Cartan in his two volumes "Lec.;ons sur la theorie des 
spineurs" (Paris, Hermann 1938), in whieh he construets two-valued repre­
sen tat ions of orthogonal groups by a geometrieal method. This method, which 
is more complicated than that of Brauer and Weyl, will not be discussed here. 

Brauer and Weyl first construct a matrix representation of the algebra of 
spinors. If n is even, n = 2 v, the algebra is isomorphie to a full matrix algebra 
of rank 2'. If n is odd, n=2v+1, the algebra of spinors is a direct sum of two 
matrix algebras, but it has a subalgebra, the second Clifford algebra generated 
by the even products of the Pi' which is a full matrix algebra of rank 2". 

If the matrices ~, ... , p,. representing the spinors PI"'" Pn are transformed 
into P;, ... , P,.' by an orthogonal transformation of the P,., one obtains an 
automorphism of the full matrix algebra. Now it is known (and proved in § 11 
of the paper of Brauer and Weyl) that every automorphism X -+X* of a full 
matrix algebra is an inner automorphism: 

X*=AXA- I 
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in which the matrix A is uniquely determined but for a factor c. Thus one 
obtains a multi-valued representation of the orthogonal group. The matrices A 
can aga in be normed in such a way that only a factor ± 1 remains arbitrary. 

For more details I may refer to the paper of Brauer and Weyl, which is 
also reprinted in the "Selecta Hermann Weyl" (Birkhäuser, Basel 1956), p. 431-
454. 

Chevalley's Generalization 

In his booklet "The Algebraic Theory of Spinors" (Columbia University 
Press 1954) Claude Chevalley has generalized the theory of Clifford algebras. 
Instead of the sum xi + ... + x; from which Lipschitz as weIl as Brauer and 
Weyl started, Chevalley considers an arbitrary quadratic form Q(u) defined on 
an n-dimensional vector space M. The ground field is completely arbitrary: it 
may even have characteristic two. From the vector space M and the form Q(u) 
Chevalley constructs a generalized Clifford algebra. 

In a paper "On Clifford Aigebras", Proceedings Akademie Amsterdam 
A 69, p. 78-83, I have given a simplified account of ChevaIley's construction. 
For the structure theory of Chevalley's generalized Clifford algebras and their 
application to the representation theory of orthogonal groups I may refer to 
the treatise of ChevaIley. 

If the quadratic form Q(u) is identically zero, ChevaIley's algebra becomes a 
Grassmann algebra. 

Generalized Quaternions 

Let F be a field of characteristic =1= 2. An algebra of generalized quaternions 
is generated by a basis (1, i,j, k) and defined by the rules of multiplication 

IS 

(16) 

ij=k, 

/=ß, 

jk= -iß, 

ji= -k, kj=iß, 

The norm of a generalized quaternion 

k2=-aß, 

ki= -ja, 

ik= ja. 

q=s+ix+jy+kz 

N(q)=(s+ ix+ jy+ kz) (s- ix- jy- kz) 

=S2 - ax2 - ß y2 + aß Z2. 

The algebra of generalized quaternions is semisimple in the sense of Mac­
lagan Wedderburn (see Chapter 11). Hence it is either a division algebra or a 
full matrix algebra over the ground field F. More precisely: if the quadratic 
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form (16) takes the value zero only for s=x=y=z=O, every non-zero q has an 
inverse q-l, and the algebra is a division algebra. On the other hand, if the 
form takes the value zero, there are zero divisors and the algebra is a full 
matrix algebra of 2 x 2 matrices over F. So it is important to know under what 
conditions the quadratic form (16) takes the value zero. 

Any quaternion can be written as 

(17) q=(s+ ix) + j(y- iz). 

If z happens to be zero, we have 

(18) q=s+ix+jy. 

If z is not zero, we can multiply (17) on the right by y + iz, and thus obtain 
a quaternion of the form (18). The norm of this quaternion is 

(19) 

and we see: if the quaternary form (16) takes the value zero, so does the 
ternary form (19). 

Now let F be the field of rational numbers. The conditions under which the 
diophantine equation 

(20) 

is solvable have been established in 1798 by Adrien-Marie Legendre (see his 
"Theorie des nombres", third edition, Vol. 1, §IH and §IV). His condition can 
be formulated as follows: 

In (20) one can assume (X and ß to be square-free integers. If 1J is the largest 
common divisor of (X and ß, one can put s = 1J. t and divide the quation (20) by 
1J. Thus one obtains a reduced diophantine equation 

(21) 

in which a, b, c are integers such that abc is square-free. 
Now the conditions for rational solvability of (21) are: 
1) a, b, c are not all positive and not all negative. 
2) If p is any odd prime factor of a (or of b or cl, then -be (or -ac or 

-ab) is a square residue modulo p. 
It is clear that the conditions 1) and 2) are necessary. Now suppose they are 

satisfied. Legendre proves: If (21) were not solvable, one could construct 
another equation with sm aller coefficients, also satisfying the conditions and 
not solvable. This would lead to an infinite descent, which is impossible. So 
(21) is solvable. 

This method .of "descente infinie" is due to Lagrange: "Sur la solution des 
problemes indetermines du second degree", Memoires de l'academie de Berlin 
23 (1769)=Oeuvres de Lagrange H, p. 375-399. See also Andre Weil: Number 
Theory, An approach through history, pages 100-101 and 327-328. 
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In 1923, Helmut Hasse transformed the conditions 1) and 2) thus: The 
equation (21) is required to be solvable in real numbers not all zero, and also 
in p-adic numbers for all odd primes p occurring in the factorization of abc. 

The general principle of which this theorem is a special case is called by 
Hasse "the local-global principle". It says: If a quadratic diophantine equation 
is locally solvable for all primes p, and also for the "locus" 00, that is, if it is 
solvable in all p-adic fields and also in the field 1R., it is solvable in rational 
numbers. This principle is valid not only for homogeneous quadratic equations 
in three unknowns, but quite generally for all homogeneous quadratic diophan­
tine equations. See H. Hasse: Über die DarsteIlbarkeit von Zahlen durch qua­
dratische Formen im Körper der rationalen Zahlen, Crelle's Journal für Math. 
152, p. 129-148 (1923). 

In a later paper (same Journal 153, p. 113-130, 1924) Hasse has generalized 
his local-global principle to arbitrary algebraic number fields. Here the p-adic 
number fields must be replaced by P-adic nu mb er fields defined by the prime 
ideals P of the number field F. 

On the arithmetics of generalized quaternions see 
B. Venkov: Zur Arithmetik der Quaternionen, Bulletin Acad. Sei. URSS (6) 

16, p. 205-246 (1923), 
c.G. Latimer: Arithmetics of Generalized Quaternion Aigebras, Amer. 

Journal of Math. (2) 27, p. 92-102 (1926), 
C.E. Wahlin: A Quadratic Algebra and its Application to a Problem in 

Diophantine Analysis, Bulletin Amer. Math. Soc. 33, p. 221-231 (1927), 
I.W. Griffith: Generalized Quaternion Aigebras and the Theory of Num­

bers, Amer. Journal of Math. 50, p. 303-314 (1928), 
H. Brandt: Idealtheorie in Quaternionenalgebren, Math. Annalen 99, p. 1-

29 (1928), 
M. Eichier: Zur Zahlentheorie der Quaternionen-Algebren, Journal für 

Math. 195, p. 127-151 (1956), 
G. Aeberli: Der Zusammenhang zwischen quaternären und quadratischen 

Formen und Idealen in Quaternionenringen, Commentarii Math. Helv.33, 
p. 212-239 (1959). 

Crossed Products 

In 1929, in her lectures at Göttingen, Emmy Noether developed a theory of 
crossed products ("verschränkte Producte"). This theory was explained by 
Helmut Hasse in Part II of his 1932 paper "Theory of Cyc1ic Aigebras over an 
Aigebraic Number Field", Transactions American Math. Soc. 34, p.180-2oo. 
See also Max Deuring: Aigebren (Ergebnisse der Math. IV, 1, Springer-Verlag 
1935), p. 52-67. 

Let Z be a separable normal extension of a field F. Let n be the degree of 
Z over Fand G its Galois group. A crossed product of G and Z is defined as 
an algebra A of the following type: A has a Z-basis consisting of n elements Us 
corresponding to the elements S of G, for which the relations 

(22) 

(23) 
zus=uszs 

USuT=US, T a s , T 
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hold, the as, T being non-zero elements of Z. The set of coefficients as, T lS 

called the factar set of A. The associativity of A is ensured by the conditions 

(24) 

The algebra A is simple and normal over F, which means that its centre is 
F. The factor set may be replaced by an equivalent set 

(25) 

The algebra obtained from A by extending the ground field F to a field L 
will be denoted by AL' If AL is a full matrix algebra, L is called a splitting field 
of A. Hasse proves on p. 184 of his paper that Z is always a splitting field. 

Cyclic Algebras 

An important class of crossed products is formed by the cyclic algebras. 
They were constructed by Leonard Eugen Dickson in his 1914 paper "Linear 
Aigebras and Abelian Equations", Transactions American Math. Soc. 15, 
p.31-46. 

Let Z = F (z) be a cyclic extension of degree n of the ground field F, and let 

I,S,S2, ... ,sn-l (sn=l) 

be the automorphisms forming the Galois group of Z. As in the preceding 
section, the element resulting from z by applying the automorphism S will be 
denoted by zS. The cyclic algebra A is now generated by the products 

(26) UiZk (i,k=O,I, ... ,n-l), 

subject to the multiplication rules 

(27) 

(28) 

where a '*' 0 is a given element of F. 

un=a, 

All products ZkUi can be reduced to products (26) by a repeated application 
of the rule (27). The result is 

(29) 

and now, by applying (28) and (29), every product of two basis elements (26) 
can be expressed as a sum of terms (26) with coefficients from F. 

If n = 2 and if the characteristic of the field F is not 2, we have a general­
ized quaternion algebra 
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A eyclie algebra is always simple and normal over F. The algebra A is 
denoted by 

A=(a,Z,S). 

Aeeording to Wedderburn, two eyclie algebras (a, Z, S) and (ß, Z, S) over 
the same field F are isomorphie if and only if alß is the norm of an element of 
Z. See J.H. Maclagan Wedderburn: On Division Algebras, Transaetions Amer­
iean Math. Soe. 22, p. 129-135 (1921). 

L.E. Diekson has proved: A is a division algebra if an is the least power of 
a whieh is the norm of an element of Z. On the other hand, if a itself is a norm 
of an element of Z, the algebra A is a fuH matrix algebra of n x n-matriees. 



Chapter 11 
The Structure of Algebras 

General Notions and Notations 

The basis element of an algebra will be denoted by 

Their multiplication is defined by 

(1 ) 

with coefficients aijk taken from a ground field F. 

(2) 

(3) 

The elements of an algebra will be denoted like this: 

the coefficients being either elements of F or indeterminates. If the coefficients 
Xl' ... , X n are indeterminates, the expression (2) will be called a generic element 
of the algebra. 

With any element u of an associative algebra we may associate a linear 
transformation U: 

X->UX 

of the algebra into itself. The mapping u->U is called the regular representation 
of the algebra. I t has the usual properties of a representation of a ring: 

(4) 

u+v->U + V 

uv-> Uv. 

If Ej is the matrix representing ej in the regular representation, we have 

The matrix elements of E j are, for every fixed j, the elements aijk • 

If the algebra has a unit element, the regular representation is an isomor­
phism, and the matrix X corresponding to a generic element x is non-singular. 



Benjamin Peirce 203 

As we have seen in the preceding chapter, every non-singular matrix in a 
matrix algebra has an inverse element within the algebra. It follows that the 
non-singular matrices U form an n-parametric Lie group. This important link 
between associative algebras and Lie groups was no ted by Henri Poincare in 
his paper "Sur les nombres complexes", Comptes Rendus Acad. Paris 99, 
p.740-742 (1884). The infinitesimal transformations of this Lie group are just 
the matrices (4), and the Lie product CU, V] is 

(5) CU, V]= UV- VU. 

A second Lie group is formed by the non-singular transformations 

X~XV. 

Every transformation of the first Lie group commutes with every transfor­
mation of the second Lie group. 

Benjamin Peirce 

Benjamin Peirce's pioneer memoir "Linear Associative Aigebras" was read 
before the National Academy of Science in Washington in 1870, and next 
lithographed in 100 copies for private circulation. It was published post­
humously in 1881 in American Journal of Math.4, p.97-215, with addenda 
due to the author and his son C.S. Peirce. 

The author's friend George Bancroft received a copy. In an accompanying 
letter, preserved in the manuscript division of the New York Public Library, 
Benjamin Peirce explained the main purpose of the memoir. The following 
extract from this letter is drawn from the article PEIRCE, BENJAMIN in 
Dictionary of Scientific Biography. 

This work undertakes the investigation of all possible single, double, tripie, quadrupie, and 
quintuple Algebras wh ich are subject to certain simple and almost indispensable conditions. The 
conditions are those well-known to algebrists by the terms of distributive and associative, which are 
defined on p. 21. It also contains the investigation of all sex tu pie algebras of a certain dass, i.e. of 
those which contain what is called in this treatise an idempotent element. 

Peirce was the first to introduce the notions ni/potent and idempotent. An 
element A is called nilpotent if some power An is zero, and it is called 
idempotent if A 2 = A. 

If i is an idempotent element, every element A of the algebra can be written 
as a sum 

(6) A=iA+(A -iA)=B+ C, 

the first term iA = B having the property iB = B, while the term C has the 
property i C = O. 

The decomposition (6) is called in the modern literature a right Peirce 
decomposition. The elements iA = B form a right ideal R having the property 
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iR = R, and the elements A - iA = C form another right ideal R' having the 
property iR' = O. The whole algebra is a direct sum of these two right ideals. 

Just so, one can define a Zeit Peirce decomposition. Combining the right and 
left decomposition, one obtains a two-sided Peirce decomposition 

(7) A = iAi +(iA - iAi) + (Ai - iAi) + (A - iA - Ai + iAi). 

These decompositions play an important part in the theory of Maclagan 
Wedderburn and in aII later presentations of the general theory of algebras. 

Peirce proved several theorems concerning nil potent and idempotent ele­
ments. Next he investigated the possible types of algebras having at most 6 
basis elements. 

Eduard Study 

Peirce's list of algebras of dimensions up to 6 was imcomplete, even for 
dimensions 3 and 4. A complete list of algebras with unity of dimensions up to 
4 over the fields 1R and <C was presented by Eduard Study: "Über Systeme von 
complexen Zahlen", Nachrichten Ges. der Wiss. Göttingen 1889, p. 237-268. 

As we have seen in Chapter 10, Study used biquaternions to obtain a 
parametric representation of Euclidean motions. 

The state of the theory of algebras in 1898 was summarized by Study in his 
article "Theorie der gemeinen und höheren complexen Größen" in the 
Encyklopädie der mathematischen Wissenschaften IA4, Vol. 1, Part 1, p. 147-
183. This article was brought up to date by Elie Cartan in 1908 in his article 
"Nombres complexes. Expose d'apres l'article aIIemand de E. Study" in the 
Encyclopedie des sciences mathematiques I, 5. 

Gauss, Weierstrass and Dedekind 

In a review in the "Göttinger gelehrte Anzeigen" for 1831 Carl Friedrich 
Gauss, speaking of complex numbers and their use in number theory, raised 
the question as to why "the relations between things which represent a multi­
plicity of more than two dimensions cannot yield other types of quantities 
permissible in general arithmetic" (see c.F. Gauss, Werke 2, p. 169-178). 

In 1883, in a letter to Hermann Amandus Schwarz, Karl Theodor Weier­
strass considered this question, giving it a concrete algebraic formulation. The 
letter was published in 1884 in the Nachrichten der Ges. der Wiss. Göttingen 
(p. 395-414) under the title "Zur Theorie der aus n Haupteinheiten gebildeten 
complexen Größen". In this paper, Weierstrass proved: A commutative algebra 
over 1R of dimension n > 2 always has divisors of zero. 

In the next year 1885, Richard Dedekind published a paper under the same 
title in the same "Göttinger Nachrichten" (1885, p.141-159), in wh ich the 
problem was considered from a more general point of view. Dedekind starts 
with a commutative algebra over the complex number field defined by multi-
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plication rules (1). He puts 

(8) P ij = L arsr asij 
r. s 

and he assurnes 

(9) 

Under these conditions Dedekind shows that new basis elements e; can be 
introduced such that 

(10) 
for j+k 
for j=k. 

This means: the algebra is a direct sum of copies of the complex field <C. 

Georg ScheJJers 

As we have seen, Henri Poincare pointed out in 1884 that every algebra 
over IR or <C having a unity element defines a pair of commuting Lie groups. 
This note made a strong impression on Sophus Lie, who in 1886 obtained a 
professors hip at the University of Leipzig. In his seminary Lie repeatedly 
invited his listeners to apply the methods of Lie group theory to the lll­

vestigation of the structure of algebras. 
The suggestion was taken up by Lie's first pupil Georg Scheffers. In his 

paper "Zurückftihrung complexer Zahlensysteme auf typische Formen", Math. 
Annalen 39, p.292-390 (1891), Scheffers considered associative algebras over 
the complex number field <C having a unity element. His starting point was the 
connection between algebras and Lie groups just mentioned. 

In the theory of Lie groups, an important distinction is made between non­
solvable and solvable (or integrable) Lie groups. The latter have a composition 
series in which aB factor groups are one-dimensional. Corresponding to this 
distinction, Scheffers intro duces a distinction between quaternion systems and 
non-quaternion systems. By definition, an algebra is a non-quaternion system if 
it has a composition series of two-sided ideals of dimensions 1,2,3, ... , n: 

Scheffers now proves: 

(ei) 

(ei' e2 ) 

(ei' e2 , e3), etc. 

An algebra over <C is a quaternion system if and only if it contains a 
subalgebra isomorphic to the algebra of quaternions and having the same 
unity element as the whole algebra. 
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An algebra A IS called reducible if it is a direct sum of two proper 
subalgebras 

A=B+C 
such that BC=O. 

Scheffers proved several theorems concerning the structure of non-quater­
nion systems. These theorems enabled hirn to construct all irreducible non­
quaternion systems having up to 5 basis elements. 

By a different method, H. Rohr determined all algebras of dimensions up to 
5 in his Ph D-theses (Marburg 1890) entitled "Über die aus 5 Haupteinheiten 
gebildeten complexen Zahlensysteme". His results agree with those of Scheffers. 

In the continuation of his paper, Scheffers also determined all irreducible 
quaternion systems up to 8 basis elements. 

Theodor Molien 

Theodor Molien (1861-1941) was born in Riga and educated at the univer­
sity of Dorpat (now Tartu) in Estonia. He spent abrief period (1884-85) at 
Leipzig, where Felix Klein was then a professor. In 1885 he became "Dozent" 
at the university of Dorpat, and in August 1891 he finished his thesis "Über 
Systeme höherer komplexer Zahlen", which was published in Math. Annalen 
41, p. 83-156 (1893). 

In 1897 Molien published two papers on the representations of finite 
groups, which will be discussed in a later chapter. In 1901 he became professor 
of mathematics at the university of Tomsk in Siberia. 

I shall now summarize Molien's extremely important thesis of 1891. Molien 
considers associative algebras over the field <C having a unity element. The 
product xu of two elements x and u is denoted by 

(11) 

If this set of equations can be splitted into two partial systems of rand 
n - r equations such that the first partial system contains only the variables 
Xl' ••. , X r and u 1> ••• , Ur: 

(12) , .... i 
x i =4Ja jkXjUk (i,j,k=1, ... ,r) 

then the algebra defined by (12) is called an accompanying system of the 
original algebra. In modern terminology the mapping 

is a homomorphism of the algebra onto the accompanying system, and the 
equations 

Xl = 0, ... , X r = 0 

define a two-sided ideal, the kernel of the homomorphism. 
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An algebra having no accompanying system with 0< r < n is a simple 
algebra in the modern sense. Molien calls it primitive ("ursprünglich"). 

In § 3, Molien considers linear and bi linear forms on the algebra. H, in a 
linear form 

the element x' is replaced by a product XU, one obtains abilinear form 

(13) 

which is called a derived form of the algebra. H the gi are such that 

(14) g(uv)=g(vu), 

then the form (13) is said to have the polar property; I shall call it a polar form. 
Molien notes that every algebra having a unity element has at least one 

non-zero polar form, namely the trace of xu in the regular representation: 

(15) Tr(xu)= L d.ia'jkXjUk· 
i,j,k,s 

Note that the coefficients of this form are just the Pjk introduced by 
Dedekind in his investigation of commutative algebras: 

(16) 

Molien proves: If a derived form having the polar property has rank r, then 
an accompanying system of dimension r exists. It follows that a simple algebra 
has only one polar form, namely the form (15), and that this form has rank n. 
Conversely: If the form (15) has rank n and if it is the only derived polar form, 
the algebra is simple. 

At the end of Chapter H, Molien proves a theorem of fundamental impor­
tance, namely: 

Theorem 30. The basis of any simple algebra can be chosen in such a way 
that the product equations assume the form 

(17) X;k= LXijujk · 
j 

This me ans, in modern terminology: 
Every simple algebra over <C is a complete matrix algebra. 
As we shall see later, this theorem is a special case of a fundamental 

theorem of Maclagan Wedderburn. 
For a more detailed analysis of Molien's thesis I may refer to a very 

interesting paper by Th. Hawkins: Hypercomplex Numbers, Lie Groups, and 
the Creation of Group Representation Theory, Archive for History of Exact 
Sciences 8, p.243-287 (1972). Hawkins shows that the work of Molien is 
closely related to that of Killing on Lie algebras. 
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.tlie Cartan 

Several results obtained by Molien in 1891 and published by hirn in 1893 
were rediscovered by Elie Cartan and published in 1898 in a paper entitled 
"Les groupes bilineaires et les systemes de nombres complexes", Annales de la 
Faculte des Sciences de Toulouse 12 B, p. 1-99 (Oeuvres completes, Partie 2, 
Vol. 1, p. 7-105). 

It seems that Cartan was not aware of Molien's work, for the earliest 
mention of Molien in Cartan's publications is in his article "Nombres com­
plexes" in the Encyclopedie des sciences matbematiques, which appeared in 
1908. In this article, Cartan fully acknowledges Molien's accomplishments. 

Cartan's methods of proof are quite different from those of Molien. In his 
These of 1894, Cartan had investigated the structure of Lie algebras, in particu­
lar of simple and sem i-simple Lie algebras. In his 1898 paper just mentioned, 
he applied the same methods to the study of algebras, in particular of simple 
and semi-simple algebras. The ground field is always <C, and the algebra 17 is 
always supposed to have a unity element. 

Cartan starts with the regular representation, in which every element of 17 

is represented by the linear transformation 

In the regular representation, a generic element x of the algebra 17 IS 

represented by a matrix 

(18) 

The characteristic equation of the matrix X is 

(19) det(X -wI)=O. 

Let W l , W 2 ' .•. , Wh be the different roots of this equation. Cartan now 
replaces the generic element x by an element a such that W l , ... , Wh are all 
different. 

Consider one of the roots, say w 1 • If the root has multiplicity m1 = m, there 
exists a sequence of elements 

oc 1, oc~, oc'{, ... , OClm-l) 

such that 

aal = W1 a l 

aa'l = w1 a'1 + All OC 1 

aa'{ = W1 a'; + A21 a l + A22 a~ etc. 
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Thus, every root defines a linear subspace generated by the elements 
a l , a'l' cl;, ... such that, if y belongs to the subspace, so does yz for every z in 
the algebra. In other words, the subspaces are right ideals, and the whole 
algebra is a direct sum of these right ideals. 

In particular, the unity element G can be written as a sum of elements Gi 

belonging to the h subspaces : 

and we have 

An element I] is said to have the character (a, ß) if 

(20) 

which means that I] belongs to the right ideal genera ted by Ga and to the left 
ideal generated by Gp. These characters (a, ß) had been introduced al ready by 
Scheffers. The conditions (20) imply 

Gi I] = 0 for i =1= a 

I]ej=O for j=l=ß. 

The product of an element of character (a, ß) by an element of character 
(y, b) is zero if ß =1= y, and it has character (a, b) if ß = y. 

Next, Cartan investigates the properties of nilpotent elements. He caBs 
them "nombres pseudo-nuls", and defines them by the property that their 
characteristic roots are aB zero. This definition is equivalent to that of Peirce. 

Cartan's theory culminates in two theorems. The first theorem says, in 
modern terminology: 

Every simple algebra over <C is a Jull matrix algebra. 
This theorem had been obtained by Molien, but Dickson notes that 

Molien's proof is not altogether satisfactory. See L.E. Dickson: Linear AI­
gebras (Cambridge Tracts 16, New York 1914), p. 56. 

Cartan defines a semi-simple algebra as a direct sum of simple algebras. His 
se co nd theorem says: 

Every algebra over <C is a direct sum oJ a simple or semi-simple subalgebra 
and a nilpotent invariant subalgebra (i.e. a ni/potent two-sided ideal). 

Maclagan Wedderburn defined a semi-simple algebra as an algebra having 
no nilpotent invariant subalgebra. Cartan's second theorem implies that a 
semi-simple algebra in the sense of Wedderburn is also semi-simple in the 
sense of Cartan, and conversely. 

Next, Cartan studies the structure of simple and semi-simple algebras over 
the real number field 1R.. Once more, his theorems can be obtained as special 
cases of those of Wedderburn. 
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M aclagan Wedderburn 

The first to develop a general theory of algebras over an arbitrary field 
was l.H. Maclagan Wedderburn. His paper "On Hypercomplex Numbers" was 
published in 1908 in Proc. London Math. Soc. (2) 6, p. 77-118. 

Wedderburn defines a "complex" as a linear subspace of the algebra under 
consideration. He defines the sum and the product of two complexes. A 
subcomplex B of an algebra A having the properties 

AB~B and BA~B 

is called an invariant subcomplex of A. We call it a two-sided ideal. Theorem 3 
says that every such ideal defines a residue-class algebra AlB. Wedderburn 
calls it the difference algebra of A and B. 

Obviously, every algebra Al has a composition series of invariant sub­
algebras 

Wedderburn now proves that the residue algebras 

are unique but for their order. 
If A is a sum B + C of two subalgebras, and 

BC=O=CB, 

A is said to be reducible. 
Next, Wedderburn proves several theorems concerning nilpotent subal­

gebras, culminating in 

Theorem 13. 1f N is a maximal nilpotent invariant subalgebra of an algebra 
A, all nilpotent invariant subalgebras are contained in N. 

The uniquely defined subalgebra N is what we today call the radical of A. 
If N is zero, A is called semi-simple. Wedderburn's Main Theorem says: 

1. Any algebra is the sum of its radical N and a semi-simple algebra. 
2. A semi-simple algebra can be uniquely expressed as a direct sum of simple 

algebras. 
3. A simple algebra is a full matrix algebra over a division algebra. 

In his proofs, Wedderburn makes an extensive use of the methods of Peirce. 
He also quotes Scheffers, Molien, and Cartan. 

Emil Artin 

In 1927, Wedderburn's main theorem was generalized by Emil Artin in a 
paper "Zur Theorie der hyperkomplexen Zahlen", Abhandlungen math. Semi-
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nar Hamburg 5, p. 251-260. Instead of algebras over a field, Artin considered 
rings satisfying a "descending chain condition", wh ich says: Every descending 
chain of left (or right) ideals 

is finite. Chain conditions of this kind has been introduced by Emmy Noether 
in her theory of ideals and in her lectures on group theory. Assuming a 
descending chain condition for left or right ideals, Artin was able to prove 
Wedderburn's main theorem for simple and sem i-simple rings. 

Emmy Noether and her School 

In 1924, when I came to Göttingen as a student, I had the pleasure to 
attend a course of Emmy Noether on Hypercomplex Numbers. In 1926/27 she 
again lectured on the same subject. This time the title of her course was 
"Hyperkomplexe Zahlen und Darstellungstheorie". My lecture notes are lost, 
but the contents of my notes were incorporated in Emmy Noether's 1929 paper 
"Hyperkomplexe Größen und Darstellungstheorie", Math. Zeitschrift 30, 
p.641-692. Moreover, the Chapters 2 and 3 of Max Deuring's book "Alge­
bren" (Springer 1935) are mainly based on Emmy Noether's lectures. 

In the school of Emmy Noether, the structure theory of Wedderburn and 
Artin was extended to more general rings. Gottfried Köthe defined: A right or 
left ideal N in a ring A is called a nilideal, if all its elements are nilpotent. The 
union of all two-sided nil ideals is a two-sided nilideal ; Köthe calls it the 
radical R of A. See Gottfried Köthe: "Die Struktur der Ringe, deren Rest­
klassenring nach dem Radikal vollständig reduzibel ist", Math. Zeitschrift 32, 
p.161-186 (1930). 

In the school of Emmy Noether it was feit that the radical R, as defined by 
Wedderburn or by Köthe, is too small. lf the descending chain condition is not 
satisfied, it was not possible to obtain satisfactory structure theorems for AIR. 
Therefore, Reinhold Baer and Jakob Levitzki have proposed other definitions 
of the radical. See: 

R. Baer: Radical Ideals, American Journal of Math. 65, p. 537-568 (1943). 
J. Levitzki: On the Radical of a General Ring, Bulletin American Math. 

Soc. 49, p. 462-466 (1943). 
However, these definitions still did not lead to a satisfactory structure 

theory of rings without finiteness conditions. The first to solve the riddle and 
to present a beautiful general theory was Nathan Jacobson. 

N athan J acobson 

In two papers published in 1943, Jacobson developed a structure theory for 
rings without finiteness assumptions. The titles are: 

Structure Theory of Simple Rings without Finiteness Assumptions, Trans. 
Amer. Math. Soc. 57, p. 228-245 (1945). 
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The Radical and Semi-Simplicity for Arbitrary Rings, American Journal of 
Math. 67, p. 300-320 (1945). 

Let A be a ring, and M a right A-module such that MA =1=0. The module is 
called simple or irreducible if it has no proper A-submodule other than the zero 
module. To every element a of A there corresponds a linear transformation of 
M into itself 

XHxa, 

and these transformations define a representation of A. The elements a repre­
sented by zero form a two-sided ideal: the kernel of the representation induced 
by the module M. 

Now the radical R of A is defined as the intersection of all kerneIs of 
irreducible representations, that is, of representations induced by simple A­
modules. 

This is an extern al definition, because it uses the totality of all irreducible 
A-modules. However, Jacobson proves that it can be replaced by an internal 
definition. 

A right ideal I in A is called modular if there is an element e in A such that 

ea=a(l) for all a in A. 

Jacobson proves that every irreducible A-module M is isomorphic to a 
residue class module All, where I is a maximal modular right ideal. It follows 
that the radical R is the intersection of the maximal modular right ideals. 

Jacobson also proves that the radical contains all one-sided nilideals. So 
the radical of Köthe is contained in the radical of Jacobson. 

The ring A is called sem i-simple if its Jacobson radical is zero. For an 
exposition of Jacobson's theory I may refer the reader to Jacobson's excellent 
book "Structure of Rings", American Math. Soc. Colloquium Publ. 37, 1956. 

Normal Simple Algebras 

As we have seen, every simple algebra A is a full matrix algebra over a 
division algebra D. The centre of D is a finite extension of the ground field F. If 
D is normal, that is, if its centre is F, the full matrix algebra A is also normal. 

The direct product A x B of two algebras A and B with basis elements 
u i ' ... , um and Vi' ••. , Vn is defined as an algebra with basis elements 

UjVk U=1, ... ,m; k=1, ... ,n). 

The V are assumed to commute with the u, so a product 

can be computed as 
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The direct product of two simple algebras A x B is again simple, provided 
the product Z x Z' of their cent res is simple. Hence, if A and Bare both 
normal simple algebras, their product is normal and simple. If A is a full 
matrix ring over a division algebra D, and B a full matrix ring over D', the 
product A x B is a fuH matrix ring over D x D'. 

The Brauer Group is defined as folIows. Two normal simple algebras over F 
are said to be in the same dass, if they are isomorphic to full matrix rings over 
one and the same division algebra D. Thus, every dass {D} belongs to just one 
division algebra D. If A and Bare full matrix rings over D and D', the product 
belongs to {D x D'}. 

To every algebra A we can define an inverse isomorphie algebra A * as 
folIows: 

ab=e implies b*a*=e*. 

Now one can prove that A x A * is a full matrix algebra over F, so the dass 
{D} x {D*} is the unit dass {F}. It follows that the dass es {D} form a 
commutative group, the Brauer Group belonging to the field F. See Richard 
Brauer: Über Systeme hyperkomplexer Zahlen, Math. Zeitschrift 30, p. 79-107 
(1929). 

If the ground field F is extended to S, the composition constants of A 
remaining unchanged, one obtains an enlarged algebra 

As=A x S. 

If A is normal and simple, so is A s : its centre is S. If As is a complete 
matrix ring over S, the field S is called a splitting field. A splitting field of a 
division algebra D is a splitting field of the whole dass {D}. 

According to A.A. Albert and Emmy Noether, splitting fields of D which 
are finite extensions of F can be characterized as those fields that can be 
imbedded, by irreducible matrix representations, as maximal subfields into 
algebras A of the dass {D}. In particular, all maximal subfields of D are 
splitting fields. See A.A. Albert: On direct products, Transactions Amer. Math. 
Soc. 33, p. 690-711 (1931), and E. Noether: Nichtkommutative Algebren, Math. 
Zeitschrift 37, p. 514-541 (1933). 

Gottfried Köthe has proved (Journal für Math. 166, p. 182-184) the exis­
tence of separable splitting fields wh ich are maximal subfields of D. 

Since splitting fields exist, the dimension (D: F) is always a square. This was 
first proved by J.H. Madagan-Wedderburn in his fundamental paper "On 
hypercomplex numbers", Proc. London Math. Soc. (2) 6, p. 77-118 (1908). 

For proofs and fuHer references I may refer to M. Deuring: Algebren 
(Springer-Verlag 1934), p. 46-47. 

The Strueture of Division Algebras 

Since aH simple algebras are fuH matrix rings over division algebras D, the 
problem to find all simple algebras over a given field F is equivalent to the 
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problem of finding all division algebras over F. This problem can be solved for 
several important types of fields F, namely 

1. The field IR 
2. Finite fields 
3. P-adic fields 
4. Algebraic number fields. 
I shall now consider these four cases separately. 

1. Division Algebras over IR 

In this case, the only possible division algebras are 
the real number field IR, 
the complex number field <C, 
the algebra of quaternions. 
This was proved by Georg Frobenius in 1878 in a paper "Über lineare 

Substitutionen und bilineare Formen", Crelle's Journal für Math. 84, p. 1-63. 
See also Olive Hazlett: On the Theory of Associative Division Algebras, Trans. 
Amer. Math. Soc. 18, p. 167-176 (1917). 

2. Finite Skew Fields 

Division algebras over a prime field GF(p) are finite skew fields. They are 
all commutative, that is, they are the well-known Galois fields GF(p"). This was 
first proved by J.H. Mac1agan Wedderburn: A Theorem on Finite Algebras, 
Trans. Amer. Math. Soc. 6, p. 349-352 (1909). Other proofs were given by L.E. 
Dickson (1927), E. Arti;1 (1928), R. Brauer (1929), and E. Witt (1931). For 
references see M. Deuring: Algebren, p. 49 and 65. 

3. Normal Simple Algebras over a P-adic Field 

A P-adic field Fp is defined by a prime ideal P in an algebraic number field 
F, as folIows. If n is an integer divisible by P, but not by p2, the elements of Fp 

are formal power series 

the coefficients Ci being quotients of algebraic integers alb, in which the 
denominator b is not divisible by P. These "P-adic numbers" were introduced 
by Kurt Hensel in 1904, and used in the theory of algebraic number fields by 
Hensel and Hasse. See 

Kurt Hensel: Theorie der algebraischen Zahlen I, Leipzig 1908, and 
Helmut Hasse: Zahlentheorie, third edition 1969; English translation: 

Number Theory, Springer-Verlag 1980. 
The structure of division algebras over a P-adic field Fp was investigated by 

Helmut Hasse in a sequence ofpapers 1931-1933. For fuH references and proofs 
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see M. Deuring: Algebren, p. 109-114. The main results of Hasse's theory may 
be summarized as folIows: 

Let Fp be a P-adic field, and let R be its ring of integers. The element n 
generates a prime ideal P in R. The residue class ring R/P is a GF(q). For 
every fixed integer f, let w be a primitive (qJ -l)th root of unity, and let 

be the extension of Fp generated by w. Then WJ is the only unramified 
extension of Fp of degree f, and every normal simple algebra A of dimension P 
over Fp is a cyclic algebra 

where S is the automorphism of the field WJ defined by 

If a is divisible by nr, but not by nr + 1, then the Brauer class of the algebra 
A is completely determined by the fraction r/f modulo 1. Thus, the Brauer 
Group is isomorphie to the additive group of rational integers r/f modulo 1. 

4. Division Algebras over an Algebraic Number Field 

Chapter VII of Deuring's "Algebren" is wholly devoted to this subject. The 
main contributors to this theory are A.A. Albert, Richard Brauer, Helmut 
Hasse, and Emmy Noether. I shall now summarize their results. 

Let F be an algebraic number field, and let Z = F(z) be a cyclic extension of 
F, of degree (Z: F) = n. If S is an automorphism generating thc Galois Group of 
Z, we have defined a cyclic algebra 

A=(a,Z,S) 

as an algebra over F having basis elements 

UiZk (i,k=O,l, ... ,n-l) 

and multiplication rules 

In Chapter 10 we have seen that A is a fuH matrix ring over F if and only if 
a is a norm of an element of Z over F. 

Now the question, under what conditions a is a norm in Z can be answered 
by class field theory. Let me first recall a few notions from valuation theory. 
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According to David van Dantzig, every valuation V of a field F defines a 
complete extension Fv of F, in which the convergence criterion of Cauchy 
holds. See D. van Dantzig: Zur topologischen Algebra I, Math. Annalen 107, 
p. 587-626 (1932). 

The valuations of algebraic number fields have been completely determined 
by Alexander Ostrowski in his fundamental sequence of papers "Untersu­
chungen zur arithmetischen Theorie der Körper", Math. Zeitschrift 39, p. 296-
404. The main results of this paper, as far as they are concerned with algebraic 
number fields, may be summarized as follows. 

If F is an algebraic number field, there are two kinds of valuations, namely 
P-adic valuations defined by prime ideals P of F, and archimedean valuations 
defined by the possible embeddings of F into the real number field 1R or into 
the complex number field <C. In the latter case, the field Fv is just 1R or <C, and 
the valuation is defined by the classical absolute value: 

<p(a)= lai for every element a of 1R or <C. 

Now let Z be a cyclic extension field of F. Every valuation V of F can be 
extended to a valuation of Z. In the P-adic case, since Z is cyclic, all prime 
ideal factors of P in Z are transformed into each other by the automorphisms 
of the Galois group, so we may choose one prime factor at random and call 
the corresponding valuation V: it does not matter which prime factor we 
choose. In the archimedean case all embeddings of F into 1R or <C are obtained 
from one embedding by applying the Galois group, so in this case too we may 
choose an extension of the valuation Vat random and call it V. In any case the 
complete field Zv is an extension of the complete field Fv . 

Now the condition for an element a of F to be a norm of an element of Z 
is, that for every valuation V of F the element a of Fv be a norm of an element 
of Z v. This is Basse's "Iocal-glo bai principle" for cyclic extensions Z of a 
number field F. 

Let us see what this means for P-adic and for archimedean valuations. In 
the P-adic case a is a norm of an element of Zv if and only if the norm-residue 
symbol 

(a~z) 

is equal to 1. For an explanation of the meanmg of this symbol see Max 
Deuring: Algebren, p. 123-126. 

In the archimedean case the fields Fv and Zv are either 1R or <C. If both are 
1R or if bath are <C, there is no condition for a, for in these cases every element 
of Fv is trivially a norm of an element of Zv. But if Fv =1R and Zv=<C, there is 
a condition. The norm of a non-zero element a of<C with respect to 1R is aa, so 
it is always positive. Bence the required condition is, that in all embeddings of 
F into 1R the map of a is always positive, or in other words, that all real 
conjugates of the algebraic number a be positive. 
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An immediate eonsequenee of the loeal-global theorem is: 
The cye/ic algebra A is a complete matrix ring ouer F if Jor euery valuation V 

oJ F the extended algebra 
Ay=AxFy 

is a complete matrix ring over Fy . 

This "Ioeal-global theorem" for eyclie algebras is a generalization of the 
same theorem for generalized quaternion algebras (see Chapter 10). It is due to 
Helmut Hasse (Transaetions Amer. Math. Soe. 34, p. 171-214, 1932), but the 
idea to eonneet tbe theory of eyclie algebras with the norm-residue theory is 
due to Emmy Noether. In this eonneetion I may quote Hermann Weyl's 
Memorial Address "Emmy Noether" (Seripta mathematiea 3, p.201-220, 
1935): 

Hasse aeknowledges that he owed the suggestion for his beautiful papers on the conneetion 
bctween hypercomplex quantities and the theory of dass fields to easual remarks by Emmy 
Noether. She eould just utter a far-seeing remark like this, "Norm rest symbol is nothing else than 
eydie algebra" in her prophetie lapidary manner, our of her mighty imagination that hit the mark 
most of the time and gained in strength in the course of years; and such aremark could then 
become a signpost to point the way for difficult future work. 

In a classieal paper entitled "Beweis eines Hauptsatzes in der Theorie der 
Aigebren" (Journal für Math. 167, p.399-404, 1932), Helmut Hasse, Riehard 
Brauer, and Emmy Noether generalized the loeal-global theorem to all normal 
simple algebras A over an algebraie number field F. They proved: 

A is a Juli matrix ring over F if and only if all algebras A y are Juli matrix 
rings over Fy . 

Two proofs of this beautiful theorem ean be found in Deuring's "AIge­
bren", p. 117 and 132. The seeond proof is due to Max Zorn: Note zur 
analytischen hyperkomplexen Zahlentheorie, Abhandlungen math. Seminar 
Hamburg 9, p. 197-201 (1933). 

Basing themselves on this loeal-global theorem, Hasse, Brauer, and Noether 
were able to obtain their "Main Theorem": 

Every normal division algebra over an algebraic number Jjeld F is a cye/ic 
algebra ouer F. 



Chapter 12 
Group Characters 

The present chapter will be divided into two parts: 
Part A: Characters of Abelian Groups 
Part B: Characters of Finite Groups 

Part A 
Characters of Abelian Groups 

Genera and Characters of Quadratic F orms 

The history of the theory of group characters begins with Gauss. In Sections 
228-233 of his "Disquisitiones arithmeticae", Gauss discusses the question: 
What kind of integers n can or cannot be represented by a given binary 
quadratic form 

(1) 

with integer coefficients a, b, c? 
Gauss restricts himself to primitive forms, that is, he assumes a, b, c to have 

no common divisor. He defines the determinant D of the form F as 

(2) 

and he proves: 
1f p is an odd prime divisor of D, the numbers n not divisible by p that can be 

represented by F are either all residues, or all are non-residues modulo p. 
If the form is primitive and if p divides D, then a and c cannot both be 

divisible by p. Suppose a is not. Depending on wh ether a is a residue or not, 
the form will represent only residues or non-residues. 

If the odd prime p is replaced by 2, the situation is more complicated. We 
have to take into account not only the modulus 2, but also its powers 4 and 8. 
Gauss proved: 

If D = 3 (mod 4), the odd numbers represented by F are either all = 1 or all 
=3 (mod4). 
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If D = 2 (mod 8), the odd numbers represented by F are either all = 1 or 
= 7, or all = 3 or = 5 (mod 8). 

If D = 6 (mod 8), the odd numbers represented by F are either all = 1 or 
= 3, or all = 5 or = 7 (mod 8). 

If D = 4 (mod 8), the odd numbers represented by F are either all = 1, or all 
=3 (mod4). 

If D = 0 (mod 8), the odd numbers represented by F are either all = 1, or all 
= 3, or all = 5, or all = 7 (mod 8). 

Gauss now defines, for every form F, certain "characters", as follows: 
If the form F represents only residues modulo p, Gauss assigns to F the 

character R· p, and if it represents only non-residues, he writes N . p. Similarly 
he writes 1,4 if F represents no other odd numbers than those = 1 (mod 4), 
and so on. For instance, the complete character of the form 

will be 

3,4; N·23; R·7, 

which means that a and c and hence all odd numbers represented by the form 
are = 3 (mod 4), that a is a non-residue mod 23, and that c is a residue mod 7. 

In 1839, Lejeune Dirichlet used the Legendre symbol G), which is + 1 for 

residues and -1 for non-residues modulo p, in order to write the results of 
Gauss in a more convenient form. His theorems read: (n) 

Theorem 2.1. If p is an odd prime divisor of D, then remains constant 
for all n not divisible by p. P 

Theorem 2.2. If D = 3 (mod 4), ( _1)(n-l)/2 remains constant for aIl odd n. 
Theorem 2.3. If D = 2 (mod 8), ( _1)(n 2 -1)/8 remains constant for all odd n. 
Theorem 2.4. If D=6 (mod8), (_I)(n-l)/2+(n2 -1)/8 remains constant for all 

odd n. 
Theorem 2.5. If D = 4 (mod 8), ( _l)(n-l)/2 remains constant for all odd n. 
Theorem 2.6. If D=O (mod8), both (_1)(n-l)/2 and (_I)<n2 -1)/8 remain 

constant for all odd n. 
Two forms Fand G belong to the same dass, if there is an integer linear 

transformation 
x=ax'+by' 

y=cx'+dy' 

with ad - bc = 1 transforming F into G. It is dear that two forms belonging to 
the same dass represent the same numbers. It follows that the characters 
defined by Gauss depend only on the dass to which the form F belongs. 

Forms with negative determinants are either positive or negative. Forms 
with positive determinants are indefinite: they take positive as weIl as negative 
values. Now consider two forms Fand Gwhich are either both positive or 
both negative or both indefinite. Gauss defines: Fand G belong to the same 
genus, if they have the same determinant and the same characters. 
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Gauss next defines a composition of forms, or rather of form dasses. 
According to Gauss, the dasses of primitive forms having a given determinant 
form what we now call a finite abelian group. 

If the form F represents a number n, and if G represents n', any form of the 
product dass will represent nn'. Now if n and n' are both residues or both non­
residues modulo p, the product nn' will be a residue, and if only one of the two 
is a residue, the product is a non-residue. Similarly, if n and n' are both == 1 
(mod 4), the product will also be == 1 (mod 4), and so on. So, if the characters of 
two dasses of forms are known, the characters of the product dass (mod p or 
mod 4 or mod 8) are known. 

Basing hirnself on these results of Gauss, Peter Gustav Lejeune Dirichlet 
has given the following definition: 

Any one of the symbols 

(3) (pn), ( _1)(n-l)/2, 

used in the Theorems 2.1 to 2.6, and also any finite product of some of these 
symbols, is ca lied a character of a class g of forms G. These characters are 
functions X(g) having the property 

(4) x (g g') = X (g) X (g'). 

For any given determinant D =l= 0, we have only a finite number of primes 
dividing D, and hence only a finite number, say A, of symbols (3) defining a 
genus. The number of possible values of the set of characters (3) is 2\ for every 
character can take the value + 1 or -1. However, Gauss has proved that only 
half of the possible sets of characters are realized by form dasses. Thus, the 
number of genera is only 2"'--1. 

Dirichlet's version of Gauss' theory of genera was first published in 1839 in 
a paper entitled "Recherches sur diverses applications de l'analyse infinite­
simale a la theorie des nombres", Crelle's Journal für Math. 19, p. 324-369. 
The contents of this paper was expounded by Richard Dedekind in the fourth 
supplement to Dirichlet's "Vorlesungen über Zahlentheorie" (third edition, 
1879). 

The notion "character" was generalized by Dedekind in 1879 in his famous 
"tenth supplement" to Dirichlet's Vorlesungen. Dedekind considers functions 
X(A) of ideals A in an algebraic number fjeld having the property 

(5) X(AB) = X(A) X(B) 

and depending only on the dass of the ideal A. Now the dasses of ideals in an 
algebraic number field form a finite abelian group. So the characters X(A) are 
group characters of an abelian group. Dedekind realizes this from the very 
beginning, for in a letter to Frobenius he said: 

After all this (i.e. after Dirichlet's investigations) it was not much to introduce the concept and 
name of characters far every Abelian group, as I did in the third edition of Dirichlet's Zahlen­
theorie. 
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The ideas of Dedekind on characters of abelian groups were explained in 
greater detail by his friend Heinrich Weber in 1882 in a paper "Beweis des 
Satzes, daß jede eigentlich primitive quadratische Form unendlich viele Prim­
zahlen darzustellen fahig ist" (Math. Annalen 20, p. 301-329). In this paper, 
Weber defines finite abelian groups by means of postulates, gives a new proof 
of the "fundamental theorem on abelian groups", and shows how all characters 
of such a group can be obtained from the characters of the fundamental 
generators ej , ez, ... of orders 11 1 , nz, .... One just assigns to each of the 
generators ei and l1 i-th root of unity W i and one puts 

The product of two characters is again a character. The characters form an 
abelian group isomorphie to the original group. 

In a nutshell, the theory of characters of finite abelian groups is already 
contained in Dedekind's "tenth supplement". 

Duality in Abelian Groups 

We have defined characters X of a finite abelian group G by the property 

(6) x(ab) = x(a) X(b) 

and we have defined the product of two characters by 

(7) xx'(a) = x(a) x'(a). 

If two characters X and x' ha ve the property 

x(a)=x'(a) for all a, 

it follows that X = X', and if two group elements a and a' have the property 

x(a) = x(a') for all X, 

it follows that a=a'. 
From these properties one sees that the roles of the characters X and the 

group elements a can be interchanged. If r is the character group of G, then G 
can be regarded as the character group of r. The groups G and r form a 
"group pair" in the sense of Pontryagin. See L. Pontryagin: The Theory of 
Topological Commutative GIOUpS, Annals of Math. 35, p. 389-395 (1934). 

This duality can be extended to abelian topological groups. Besides the 
paper of Pontryagin just mentioned, the most important papers on this subject 
are: 

A. Haar: Über unendliche kontinuierliche Gruppen, Math. Zeitschrift 33, 
p. 129-159 (1931), 
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J. von Neumann: Almost periodic Functions in a Group I, Transactions 
Amer. Math. Soc. 36, p. 445-492 (1934), 

J.F. Alexander: On the Characters of Discrete Abelian Groups, Annals of 
Math. 35, p. 389-395 (1934), 

E.R. van Kampen: Locally Bicompact Abelian Groups and their Character 
Groups, Annals of Math. 36, p. 448-463 (1935). 

To fix the ideas, let me start with an example. The rotations about a point 
o in a plane form a compact abelian topological group. If x is the angle of a 
rotation, the group multiplication is defined by an addition of the angles 
modulo 2n. 

As characters of an abelian topological group, one defines all continuous 
boundedfunctions X satisfying (6). In our case, the only characters are 

(8) 

To every integer neorresponds just one eharaeter. The produet of two 
eharacters corresponds to the sum of the integers: 

XmXn=Xm+n' 

so the eharacter group r is the additive group of the integers: a diserete 
abelian group. Conversely, the eharacter group of r is G. 

In Diriehlet's theory of Fourier series it is shown that the characters Xn 

form a complete orthogonal set of periodic functions of x. The orthogonality 
relations are 

(9) 
2,,__ {2n r Xm(x) Xn(x) dx = 0 

if m=n 

if m =!= n, 

and every eontinuous periodic funetion ean uniformly be approximated by a 
finite sum of eharacters Xn • 

In this example we have seen that the eharacter group of a eompact 
topological group is a diserete group, and conversely. As we shall see presently, 
this is a general property of separable topologieal groups. If G is compact and 
separable, the character group r is discrete and countable, and conversely. 
This was proved by Pontryagin in his paper just quoted. 

John von Neumann's paper starts with a general theory of alm ost periodic 
functions on an arbitrary group G, which may or may not be a topologieal 
group. A complex-valued function f(x) defined on a group G is called almost­
periodic, if every sequence of funetions f(a v xbJ contains a uniformly con­
vergent subsequence. If G is a topological group, the functions f(x) are re­
qUlred to be continuous. According to S. Boehner (Math. Annalen 96, p. 119-
147, 1934) this general definition of almost-periodicity is equivalent to Harald 
Bohr's original definition, if G is the additive group of real numbers. 

Von Neumann now defines mean values and sealar produets of almost­
periodic funetions. He shows that the matrix elements of bounded repre­
sentations are almost-periodic and satisfy certain orthogonality relations. Fol-
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lowing Weyl and Pet er, von Neumann uses an integral equation to prove that 
the matrix elements dik(X) of irreducible bounded representations form a com­
plete set of functions in the space of almost-periodic functions. For a summary 
of von Neumann's paper with simplified proofs see my "Gruppen von linearen 
Transformationen", p. 57-62. 

In Part V of his paper, von Neumann considers the special case of locally 
compact, separable abelian groups. In this case the irreducible representations 
are all of degree 1, and their matrix elements dii(X) are just the characters x (x). 
It follows that these characters form a complete set of orthogonal functions in 
the space of almost periodic functions. Using a method of Haar, von Neumann 
shows that there exist "sufficiently many" characters to separate all group 
elements. This means: if x(a)=x(b) for all characters X, then a=b. Hence, the 
given group G and the group of characters r form a "group pair" in the sense 
of Pontryagin. 

E.R. van Kampen extended the theories of Pontryagin and von Neumann 
to locally bicompact groups. 

Part B 
Characters of Finite Groups 

We now turn to non-abelian finite groups. 
The origins of the theory of group characters and representations of finite 

groups have been investigated very carefully by Thomas Hawkins in three 
papers: 

1) The Origins of the Theory of Group Characters, Archive for History of 
Exact Sciences 7, p. 142-170 (1971), 

2) Hypercomplex Numbers, Lie Groups, and the Creation of Group Repre­
sentation Theory, same Archive 8, p. 243-287 (1972), 

3) New Light on Frobenius' Creation of the Theory of Group Characters, 
same Archive 12, p. 217-243 (1974). 

I have made a grateful use of these three papers. 
The creator of the theory of characters of non-abe1ian finite groups is 

Georg Frobenius. As Hawkins has shown, Richard Dedekind played a vital 
role in the events that led to this creation. I shall now describe these events. 

Dedekind's Introduction of the Group Determinant 

Hawkins has drawn the attention to an unpublished manuscript of Dede­
kind written in 1886 and entitled "Gruppen-Determinante und ihre Zerlegung 
in wirkliche und überkomplexe Faktoren" (University Library Göttingen, De­
dekind Manuscript V 5). In this manuscript, Dedekind associates with every 
element gi of a finite group a variable Xi' The product gigj is aga in a group 
element, so it is associated with a variable x k ' which Dedekind calls xij' 
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Dedekind now forms the determinant of the Xij. Eaeh row and eaeh eolumn of 
this determinant is apermutation of the variables x j' ... , x n • Let e be this 
determinant. Later on in the same paper Dedekind ehanged his definition of 
the xij: he defined xij to be the variable assoeiated with gi gj- I. In what follows 
I shall adopt this latter definition. Putting 

we now have 

Let R be the group algebra generated by the group elements gk and let 

be a generie element of this algebra. Multiplying gx with the group elements gj' 
one obtains 

So the matrix (Xi) is just the matrix representing gx in the regular represen­
tation of the group algebra, and Dedekind's "group determinant" e is the 
determinant of this matrix. 

One of the first diseoveries of Dedekind was: If G is abelian, the de­
terminant e faetorizes into linear faetors with eharaeters as eoeffieients: 

(1 ) 

In February 1886, Dedekind deeided to eompute the group determinant for 
some non-abelian groups. He first eonsidered the symmetrie group S3. The 
group elements are 

gj =1 g4=(23) 

g2=(1 2 3) g5=(1 3) 

g3=(1 3 2) g6=(1 2). 

Dedekind found the deeomposition 

(2) 

with U=X j +x2 +x3 

v=x4 +x5 +x6 

u j =x 1 +pX2+p2 X3 

uz=x j +p2X2+pX3 

VI=X4+pX5+p2X6 

V2=X4+p2X5+PX6 

where p is a primitive eube root of unity. 
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Dedekind succeeded in factorizing the quadratic factor u! U2 - v! V2 by 
enlarging the field of coefficients <C to an algebra of dimension 4 over <C. For 
the definition of this algebra, which is in fact isomorphic to the full matrix 
algebra of 2 x 2 matrices, see the paper 1) of Hawkins. 

Dedekind next considered the dihedral group D 5 of order 10. Once more, 
he was able to factorize e into linear and quadratic factors. 

(3) 

Next he took the quaternion group. He obtained a factorization 

e = (u! + U2 +u3 + u4) (u! + U2 -u3 -u4) (u! -U2 +u3 - u4) 

. (u! -U 2 -U3+U4)(vi+v~+v;+v~? 

In this case, the quadratic factor represents the norm of a quaternion, so it 
can be factorized by introducing quaternions as coefficients: 

vi + v~ + v; +v~ =(v! + iV 2 + jV3 +kv4)(v! -iv2 -jv3 -kv4). 

Dedekind did not publish his results, but in February 1895 he wrote a 
letter to Frobenius in which be raised tbe following cryptic question: 

Do hypercomplex numbers with non-commutative multiplication also intrude in your re­
search? But I do not wish to bother you with the request for an answer, which I will best obtain 
through your work (Dedekind's Werke, Vol. 2, p. 419-420). 

In March 1896 Dedekind returned to the subject, defined the group de­
terminant, stated his results concerning its factorization in tbe abelian case, 
and indicated wbat may happen when bypercomplex numbers are allowed as 
coefficients. In his next letter (April 3, 1896) he conjectured that tbe number of 
linear factors of e is equal to tbe order of tbe abelian group GIG', where G' 
denotes tbe commutator group, and that the linear factors of tbe group 
detcrminant eorrespond "in a ccrtain way" to tbe charaeters of tbe group GjG'. 
He continued: 

I would be delighted if you wished to involve yourself with these matters, because I distinctly 
feel that I will not achieve anything here. 

Frobenius on the Group Determinant 

Frobenius went to work at onee. On April 12 be dispatched a long letter to 
Dedekind in whieb several highly interesting results concerning the prime 
faetors of the group determinant are explained witb full proofs. By tbe kind­
ness of Clark Kimberling I have received eopies of tbe correspondence between 
Dedekind and Frobenius. I shall now give a brief summary of tbe contents of 
tbis letter. For more details I may refer to pages 224-230 of Hawkins' paper 3). 

After a few remarks on Hamiltonian groups, Frobenius proves that the 
number of linear factors in e is equal to tbe order of the abelian group GIG', 
as Dedekind bad conjeetured, and that tbe linear fact ars can be written as 

F(x)= LX(R)xR , 
R 
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where x R is the variable Xi associated with the group element R, while X is a 
charaeter of G in the classieal sense: 

X(RS) = X(R) X(S). 

Frobenius notes that these charaeters X are at the same time characters of 
the abelian group GIG' and conversely, which implies that their number is 
equal to the order of GIG'. 

Frobenius' proof is essentially the one he published in his paper "Über 
Gruppencharaktere", which was presented to the Berlin academy on July 30, 
1896. 

In the letter, Frobenius next passes to the non-linear factors of B. I shall 
use Hawkins' notation (which is also Frobenius' notation in his later letters): 

(4) B =n<pe , 

and I shall denote any prime faetor of B by <P, its degree by f, and its exponent 
in (4) by e. 

Frobenius first derives an important relation, valid for every prime factor <P: 

(5) 

As Hawkins notes, one can hardly overemphasize the importance of the 
relation (5). The eomplex funetion P on the right hand side of (5) is just what 
Frobenius later ealled a eharaeter of G. 

Frobenius' derivation of the relation (5) is very interesting. It has been 
explained by Th. Hawkins in his paper "The Creation of the Theory of Group 
Charaeters", Riee University Studies 64, p. 57-71 (1978). Frobenius defines his 
funetion P(A) for A =1= E by 

(6 a) <P=X{+X{-l( I P(A)x A )+··· 
A*E 

and for A =E by 

(6 b) P(E)= f 

Using OUf hindsight, we ean easily see that the funetion P(A), thus defined, 
is just the traee of A in an irredueible representation of the group G. We know 
that <p is the determinant of the matrix X representing the generie element 
E Ax A in an irreducible representation of the group algebra. Now if we replace 
the variable XE by XE - A, we obtain from (6 a) and (6 b) 

det(X -AI)=( -A)f +( _A)f- 1 I P(A)xA +··· 
A 
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which implies that I'P(A)xA is the trace of the matrix X, and hence that P(A) 
is the trace of the matrix representing A in the irreducible representation 
corresponding to the prime factor cJl. 

Frobenius next notes that the prime factors cJl have the multiplicative 
property 

(7) cJl(z) = cJl(x) cJl(y) 

where 

(8) 

From the modern point of view, formula (8) IS just the multiplication 
formula for elements of the group algebra. In fact, if 

and 

are two elements of the group algebra, their product is just 

where Z A is defined by (8). 
The notion "group algebra" was known to Frobenius. As we have seen in 

Chapter 6, the group algebra of a finite group had been defined by Cayley as 
early as 1854. In a letter to Dedekind, dated July 15, 1896, Frobenius explains: 

Many times I have thought about how, to the multiplication of elements, one could adjoin 
another operation (addition) .... Thus out of the elements A, B, C, ... of the group, you form, by 
regarding them as hypercomplex units, linear combinations xA + yB + zC + ... with scalar factors 
x, y, z, ... (Hawkins' translation). 

Now let us return to the letter of April 12. On page 12 of this letter, 
Frobenius calculates the decomposition of the group determinant G into prime 
factors in the case of the dihedral group of order 8 defined by the relations 

He finds a decomposition of the form 

In this example and in all examples computed by Dedekind the following 
theorems hold, which Hawkins calls Theorems A and B: 

A. A linear change of variables is possible such that each factor cJl becomes 
a function of its own set of v variables. 

B. v=ef 
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On page 13 of his letter Frobenius raises the question whether A and Bare 
gene rally true. The remainder of the letter is largely devoted to the proof of A 
and B. 

First, Frobenius derives from (6) the "orthogonality relations" 

(10) ~ P(AB- 1)= L P(AR-1)·P(RB- 1) 
e R 

(11 ) 0= L P'(AR-1)·P(RB-1) 
R 

in which P' is the function P belonging to another prime factor cJ>' different 
from cJ>. 

In the course of the derivation of (10) Frobenius notes that 

(12) P(AB)= P(BA), 

and in the margin he notes the equivalent farmula 

(13) 

After having proved Theorem A, Frobenius announces: "Finally I believe 
to have found a proof of v = ef But it does not please me at all and it must be 
possible to simplify it greatly." Indeed the proof is long and tedious. 

At the end of this letter Frobenius asks Dedekind for help: 
After your investigations on numbers from several units (that is, on algebras) you are certainly 

completely familiar with the methods of investigation, and you can provide simplifications. For my 
reasoning is so complicated that I myself do not rightly know where the main point* of the proof 
is ... 

and he adds a footnote : 
* I believe it is contained in the equation 'l'(AB) = 'l'(BA), for this implies that the system 

(XAB~') is permutable with 'l'(BA - '). 

Five days later, on April 17, Frobenius writes jubilantly. 
At the end of my last letter I gave up the search and requested your assistance. The next day I 

saw, if not the entire solution, at least the way to do it. My feeling that the equation 'l'(AB) 
= 'l'(BA) provided the key did not deceive me. I still have a long way to go but I am certain I 
ha ve chosen the right path .... Do you know of a good name far the function <P ... ? Or should '1' 
be called the character of <P (which agrees for linear <P)? (Hawkins' translation). 

In the letter of April 17, Frobenius still hesitates whether he might call P a 
character, but in later letters and in his paper of July 20 entitled "Ueber 
Gruppencharaktere" (Sitzungsberichte Akad. Berlin 1896, p.985-1012) the 
functions P are called "Gruppencharaktere". 

In the letters as weIl in the paper on group characters, frequent use is made 
of a theorem concerning the characteristic roots of a set of commuting ma­
trices. This theorem was proved in a paper "Ueber vertauschbare Matrizen", 
which was published in the Sitzungsberichte far 1896 on pages 601-614. I shall 
now summarize this paper, and next discuss the letters of April 17 and April 
26 and the paper on group characters. 
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Frobenius on Commuting M atrices 

The mam theorem of Frobenius' paper "Über vertauschbare Matrizen" 
says: 

III. Given m commuting n x n-matrices A, B, ... , there exists an ordering a1, a2 , ••• , an; 
b1 , b2 , ••• , bn ; ••. of the characteristic roots of A, B, ... such that for any polynomial f(u, v, ... ) in m 
variables u, v, ... the characteristic roots of f(A, B, ... ) are 

Special cases of this theorem are already present in an earlier paper of 
Frobenius "Über lineare Substitutionen und bilineare Formen", Crelle's Jour­
nal ftir Math. 84, p. 1-63 (1978), and Frobenius hirnself claims that he was 
already in possession of Theorem In when he wrote this earlier paper. Theo­
rem In is also mentioned in an "Excurs" inserted in the letter of April 17, 
1896. 

If the m matrices are called Al' ... , Am' and if the polynomial f is a linear 
form in u l' ... , Um with variable coefficients Xl' ... , X m : 

it follows that the characteristic roots of 

(14) 

are the n linear functions of the x's 

(15) 

where r?) denotes the s-th characteristic root of Ai in the ordering of 
Theorem In. Since the determinant of A is the product of the characteristic 
roots, we have 

(16) det (A) = I1 Cl>?) x;). 
i 

In the continuation of his paper, Frobenius assurnes m = n, and he takes for 
Al' ... ,An the matrices of the regular representation of a commutative algebra. 
Let e1 , ... , en be the basis elements of such an algebra, and let 

(17) 

The matrices of the regular representation of this algebra are the matrices A j 
with elements al{)=aijk , and (17) implies 

(18) 
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Since the algebra is commutative, we have 

According to Theorem III, the s-th characteristic root of the left-hand side 
of (18) is r?)r~s), and of the right-hand side L:ri')aijk, so (18) implies 

(19) r~S)rk(S) = L: r(s) a· ·k 
J l lJ' 

which means that for every fixed s the numbers r1s), ... , r~S) obey the same 
multiplication rules as the basis elements e1, ... ,en of the algebra. In other 
words, the mapping cp(s): 

(20) 

is a homomorphism of the algebra: 

cp(S) (a + b) = cp(s)(a) + cp(S) (b), 

cp(S)(a· b) = cp(S)(a)· cp(s)(b). 

In Dedekind's paper of 1885 "Zur Theorie der aus n Haupteinheiten gebil­
deten komplexen Größen", which we have discussed in Chapter 6, a matrix 
(Pij) had been defined: 

(21) Pij = I arsr asij ' 
r. S 

and Dedekind had proved: if det (pijH= 0 the algebra is a direct sum of copies 
of <I:. Frobenius now uses this result and proves: If det (Pij)=!= 0, the determinant 
of the r?) is not zero, or in other words: The linear forms L:r?) Xi are linearly 
independent. 

Using our hindsight, we may say that Frobenius developed a theory of 
irreducible representations of commutative algebras. If the ground field is 
algebraically closed, all irreducible representations of a commutative algebra 
are of degree one. The commuting matrices Ek of any representation of the 
algebra always have a common eigenvector, which generates a one-dimensional 
invariant subspace of the vector space on which the matrices operate. Modulo 
this subspace there is again an eigenvector, and so on. Thus the matrices can 
be written in triangular form, the elements below the main diagonal being zero. 
The diagonal elements cp(s)(a) define irreducible representations of the algebra. 

If det (Pi) =l= 0, the algebra is what we call semi-simple, and according to 
Dedekind it is a direct sum of simple subalgebras wh ich are copies of the 
complex number field <I:. If this is assumed, the unit element of the algebra is 
the sum of the unit elements of the n simple algebras: 
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and every element of the algebra ean be written as a sum 

The homomorphisms cp(s) ean now be obtained as 

and they ean be eonsidered as representations of the algebra by eomplex 
numbers. It is dear the these n homomorphisms are linearly independent. 

The Letter oI April 17, 1896 

Right at the beginning of this letter Frobenius expresses his feeling that the 
relation 

(22) '1' (AB) = '1' (BA) 

whieh he had derived in his earlier letter, provides the key to the entire 
solution of his problem. We shall now see how Frobenius used this key. 

From (22) one derives, substituting R - 1 Sand R for A and B, 

(23) 

which means that the function '1' depends only on the dass of eonjugate 
elements to which S belongs. So each eharacter '1'(s) ean be regarded as a 
veetor having k eomponents 

where k is the nu mb er of dasses. The orthogonality relations (10) and (11) 
imply that the I vectors '1'(s) are linearly independent, hence their number is at 
most equal to the number of dasses : 

l~k. 

On page 3 of his letter, Frobenius introduees a set of integers ha/ly. One 
forms the products ABC, where A is in Ca' B in C/l' and C in Cy, and one 
counts how many produets ABC are equal to the unit element E. This number 
is ha/ly. It is symmetrie in a, ß, y, and it is divisible by ha. 

Frobenius next investigates the question: What happens to the prime fae­
tors iP if the variables x R are restricted by the condition 

(24) 
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Following Hawkins, I shall call the restricted function <P*. On page 8 of his 
letter, Frobenius proves that <P* is apower of a linear function: 

(25) 

The conditions (24) can be interpreted as follows. The elements of the 
group algebra are sums 

(26) 

Now the conditions (24) imply a restriction to a subalgebra conslstmg of 
those sums x in which all elements S belonging to any dass Ca have one and 
the same coefficient xs. For the sake of darity let us call this coefficient tao 
Then the sum (26) can be written as 

(27) 

where ea is the sum of all elements S of the dass Ca" 
The sums (27) form a subalgebra L of the group algebra. Its basis elements 

are the elements ea , and its multiplication rules are 

(28) 

Since ha'Py=ha,yp, the subalgebra L is commutative. In fact, it is the centre of 
the group algebra. Its composition constants are 

(29) 

These composition constants playa fundamental role in Frobenius' theory 
of group characters, as we shall see presently. 

Frobenius next derives an extremely interesting formula 

(30) 

What does this formula mean? Let us rewrite it as 

(31) 

This formula says that the complex numbers 

(32) 
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obey the same multiplication rules as the basis elements ea of the algebra };. In 
other words, the mapping 

(33) 

is a homomorphic mapping of the algebra}; into the complex number field. 
The introduction of the numbers ra defined by (32) is not my invention. The 

same numbers are denoted by r~s) in Frobenius' paper "Über Gruppencharak­
tere", and the formula (31) occurs already in Frobenius' earlier paper "Über 
vertauschbare Matrizen" in the form 

(34) r!S)~k(S) = };r.(s) a· .k' 
J I IJ 

valid for any commutative algebra. See formula (19), wh ich is identical with 
(34). 

At the end of his letter Frobenius proves that 1= k: the number of charac­
ters is equal to the number of classes in the group. 

The Letter 01 April 26 

At the beginning of this letter, Frobenius restates his earlier result: Every 
prime factor iP of the group determinant can be transformed by a linear 
transformation of the variables xk into a function of v = el variables, but not 
less. Next he reports that in all examples communicated by Dedekind e = 1 
holds. He says: "It would be wonderful if e= I", but he has been able to prove 
this only in the cases 1 = 1 and 1 = 2. 

Next Frobenius introduces an algebra having composition constants aaPY 

defined by (29). He quotes Dedekind's paper of 1885 "Zur Theorie der aus n 
Haupteinheiten gebildeten complexen Zahlen". This paper, says Frobenius, 
"lies on my desk while I am writing this", and he adds "and there is no end to 
my astonishment". He shows that the algebra}; satisfies Dedekind's condition 

(35) 

This result is of fundamental importance for Frobenius. After having 
proved it, he says: 

This simple proof cost me an incredible amount of strain and despair (Anstrengung und 
Verzweiflung). 

The condition (35) implies, according to Dedekind, that the algebra}; is a 
direct sum of copies of the complex field <C. Basing hirnself on this result, 
Frobenius is able to construct a complete set of representations of }; by 
complex numbers 

and to prove that the determinant of the r~s) is not zero. Thus, a solid base for 
his theory of group characters was laid. 
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On page 10 of his letter, Frobenius returns to the factorization of the group 
determinant. He manages to compute the functions P for five groups: 

the tetrahedral group A 4 of order 12, 
the icosahedral group A 5 of order 60, 
the group PSL(2,7) of order 168, 
the octahedral group S 4 of order 24, 
the group Ss of order 120. 
By means of the equation 

h=Ief 

in which h is the order of the group, Frobenius calculates the products ef, and 
he finds that they always are squares. 

For the tetrahedral group Frobenius actually calculated the factorization of 
the group determinant, and he found e = f = 3. In all cases, ef was just the 
square of P(E). He calls this "very curious, as long as it is not understood". At 
this stage, he was not yet able to prove 

e = f = P(E). 

As early as 1893, Molien had proved that the group algebra of a finite 
group is a direct sum of full matrix algebras. I fully agree with Hawkins' 
remark: 

Had he (Frobenius) known of Molien's work, he would certainly have seen its relevance, via 
the group algebra, to the study of the group determinant and to the matters that were currently 
puzzling hirn: the reasons why e = J and h = L J 2 (Archive for History of Exact Sciences 12, p. 240). 

Frobenius' Paper" Über Gruppencharaktere" 

In this paper, which was presented to the Berlin academy on July 16, 1896, 
the line of thought explained in the letters is reversed and abridged. Instead of 
first defining the functions P and next introducing the ra defined by (32), 
Frobenius first intro duces the ra , and next defines the "characters" X by the 
formula 

(36) 

in which f is an arbitrary factor, which may be specified at a later stage. If fis 
equated to the degree of an irreducible factor of the group determinant, the 
characters X are just the functions P introduced in the letter of April 12, but in 
his published paper Frobenius does not mention the group determinant. 

Frobenius defines the integers haßy as in his letters, and he sets, once more, 

(37) 
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He notes that the aa.py are the multiplication constants of a commutative 
algebra, to which the theorems proved by Weierstrass in 1884 and by Dede­
kind in 1885 can be applied. 

Frobenius next recalls the results of his paper on commuting matrices. 
Putting 

(38) 

he finds that the characteristic roots of the matrix (aa.p) are linear functions 

(39) 

Here x o, Xl' ... , X k _ l are variables corresponding to the k dasses Ca., the first 
variable X o corresponding to the unity element E. He shows that Dedekind's 
condition 

is satisfied, and that the set of equations 

(40) hp hyXp Xy= fI ha.'pyXa. 
a. 

has k different solutions 

such that the determinant of the X~) is different from zero. 
In § 5 of this paper Frobenius intro duces a new notation. Instead of X~) or 

Xa. he writes X(A), where A is any element of the dass Ca.' He derives several 
interesting properties of the functions X, for instance 

h X(A) X(B) = f I x(AR -1 BR). 
R 

In the case of an abelian group, this relation reduces to 

X(A) X(B) = fX(AB), 

so, if one chooses f = 1, the charactersx of an abelian group coincide with the 
dassical characters defined by Dirichlet and Dedekind. 

The main ideas of the paper under discussion are all contained in the 
letters, but the letters contain much more information concerning the factoriza­
ti on of the group determinant. On this subject Frobenius composed another 
paper, which I shall now discuss. 
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The Proof of e = fand the F actorization of the Group Determinant 

Between September 4 and September 6 of the same year 1896 in which 
Frobenius started his studies on the group determinant, he finally succeeded in 
proving e = f In a letter to Dedekind dated September 6, he describes this 
event as folIows: 

I will ... attempt to gather together the entire theory of the group determinant ... out of my 
highly scattered and disorganized papers. To same extent, however, such disorder is usefu!. That is, 
after my return horne, I could no longer find the proof that I wrote to you long ago: lf f =2, then 
e ~ 2 also. After much torment I arrived at a new form of this proof and recognized here the 
possibility of generalization which I had completely despaired of in connection with the first proof 
(translated by Hawkins). 

Now that e = f was established, Frobenius was able to publish his results 
concerning the factorization of the group determinant. His paper "Über die 
Primfaktoren der Gruppendeterminante" was presented to the Berlin academy 
on December 3 (Sitzungsberichte 1896, p. 1343-1382). 

Later on, in 1897, Frobenius learned about the paper of Molien and recast 
his own results in terms of matrices. He showed that his characters 'l' are just 
the traces of irreducible representations. In the next chapter I shall discuss his 
1897 paper "Ueber die Darstellung der endlichen Gruppen durch lineare 
Substitutionen ". 
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Representations of Finite Groups and Algebras 

The theory of representations of finite groups by matrices with complex 
matrix elements was developed, nearly simultaneously, by three authors: Theo­
dor Molien, Georg Frobenius, and William Burnside. Their earliest papers on 
this subject are: 

Th. Molien: Eine Bemerkung zur Theorie der homogenen Substitu­
tionsgruppen, Sitzungsberichte der Naturforscher-Gesellschaft Dorpat (= Yurev 
in Estonia) 11, p. 259-276, presented April 24, 1897, 

Th. Molien: Über die Anzahl der Variablen einer irreduziblen Substitu­
tionsgruppe, same volume, p. 277-288, presented September 25, 1897, 

G. Frobenius: Über die Darstellung der endlichen Gruppen durch lineare 
Transformationen, Sitzungsber. preuss. Akad. Berlin 1897, presented November 
18,1897, 

W. Burnside: On the Continuous Group that is Defined by Any Given 
Group of Finite Order, Proceedings London Math. Soc. 29, p. 207-225, read 
January 10, 1898, 

W. Burnside: Same title (second paper), same volume, p. 546-565, read June 
9,1898. 

Thomas Hawkins has carefully investigated the genesis of these papers, and 
in particular the question of their independence. See his paper "Hypercomplex 
Numbers, Lie Groups, and the Creation of Group Representation Theory", 
Archive for History of Exact Sciences 8, p. 243-287 (1972). One of his con­
cltlsions is that Molien and Frobenius were completely independent of each 
other. Regarding Burnside, Hawkins concJudes that he was fully aware on the 
connection of his paper with that of Frobenius on the prime factors of the 
group determinant, and that he "relied heavily for inspiration on the results in 
Molien's thesis on the characterization of simple hypercomplex systems". On 
the other hand, Burnside did not know the papers of Molien and Frobenius 
just mentioned. 

The main results of the three papers are essentially the same, namely: 
1. The regular representation of a finite group G is completely reducible. 
2. Every irreducible representation is equivalent to one of the components 

of the regular representation. 
3. If an irreducible component has degree f, it occurs f times in the regular 

representation. It follows that the sum I:P is equal to the order of the group G. 
4. The number of inequivalent irreducible representations is equal to the 

number of cJasses in the group G. 
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Molien also proved: 
5. Every representation of G is eompletely redueible. 
Burnside proved another important theorem, whieh he formulates thus: 
It is further shown that, if g can be represented as a group of linear substitutions performed on 

rn symbols, so that to the operation Sk of g there corresponds the substitution 

i=m 

(1 ) x;= L Q'ikXi (s=I,2, ... ,rn), 
i= 1 

then the equations 

(2) X;=LQ"kX'Yk (s,i=I,2, ... ,rn; k=I,2, ... ,n) 
i,k 

define a finite continuous group wh ich is the direct product of a number of groups each of wh ich 
is simply isomorphie with a general linear homogeneous group. 

The two formulae of Burnside may be interpreted thus. The first formula (1) 
means that every element Sk of the group g is represented by a matrix A k 

having elements asik ' In the seeond formula these matriees A k are multiplied by 
faetors Yk and added, so as to obtain a matrix 

(3) 

representing the element L:Sk h of the group algebra. Burnside restriets hirnself 
to non-singular matriees A y , whieh form a group, and he asserts that this 
group is a direet produet of groups, eaeh isomorphie with a group G L(j, Q::). 

lf one eonsiders all matriees A y, without restrieting oneself to non-singular 
matriees, one obtains an algebra: a representation of the group algebra. Mohen 
proved that this algebra is a direet sum of full matrix algebras. Burnside's 
result is an immediate eonsequenee of this theorem of Molien. 

The methods of the three authors are quite different. Molien's investigations 
are based on the strueture theory of algebras developed in his Thesis of 1891. 
Frobenius' paper is based on his theory of group eharaeters, and Burnside's 
paper is based on Cartan's strueture theory of semisimple Lie groups. 

For further details I may refer to the paper of Hawkins quoted before. 

Heinrich Maschke 

The scientific career of Heinrich Maschke was sketched by Hawkins in 
Section 5 of his paper as folIows: 

Although he obtained his doctorate at Göttingen in 1880, and hence before Klein became a 
professor there, Heinrich Maschke (1853-1908) was a student of Klein's insofar as his mathemati­
cal activity was concerned. After receiving his doctorate, Maschke taught in a Gymnasium in 
Berlin until he returned to Göttingen in 1886 on aleave of absence. Under Klein's influence, he 
soon became a contributor to the general research program of Klein's form-problem and published 
a number of papers dealing with the determination of the invariants for particular groups of linear 
transformations and also with the linear groups themselves. Realizing he had no future as a 
mathematician in a Gymnasium and little chance of obtaining a university position in Germany, he 
immigrated to the United States in 1891. In 1892 he joined his friend Oskar Bolza, another student 
of Klein's, and E.H. Moore to form the Mathematics Department of the recently-established 
University of Chicago. 
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As we have seen in Chapter 8, E.H. Moore proved in 1896 that every finite 
group of linear transformations with complex coefficients has an invariant 
positive Hermitean form. In the same year 1896, A. Loewy independently 
obtained the same result. 

This theorem was used by Maschke in 1898 to prove that every finite group 
of linear transformations is completely reducible. The principle of this proof is 
weil known: If the vector space on which the group operates has an invariant 
linear subspace, there is an orthogonal subspace which is also invariant, and 
the whole space is the direct sum of two invariant subspaces. This construction 
is repeated until one obtains a decomposition of the whole space into irredu­
cible subspaces. See H. Maschke: Über den arithmetischen Charakter der Sub­
stitutionen endlicher Substitutions gruppen, Math. Annalen 50, p. 492-498 
(1898). 

Issai Schur 

A simplified eXposItIOn of the representation theory of finite groups was 
given by Issai Schur in a paper entitled "Neue Begründung der Theorie der 
Gruppencharaktere", Sitzungsberichte preuss. Akad. Berlin 1905, p. 406-432. 

In the introduction to his paper, Schur explains his relation to his prede­
cessors thus: 

The present paper contains a wholly elernentary introduction into the theory of group 
characters, which was established by Frobenius, and wh ich can also be designated as the theory of 
representations of finite groups by linear hornogeneous substitutions. 

An elementary justification of this theory has recently been given by Mr. Burnside. However, 
Burnside makes use of a tool which is, in principle, alien to the subject, namely the notion of 
Hermitean forms. Therefore, I don't consider it superfluous to cornmunicate a ncw presentation of 
Frobenius' theory, which operates with still simpler tools. 

Starting with a matrix representation of a finite group H of order h: 

(4) a-+A, 

Schur defines a group matrix X by the formula 

(5) 

the x a being independent variables. He now formulates a fundamental theorem, 
which is known in the modern literature as Schur's Lemma, although it occurs 
already in Burnside's theory, as Schur hirnself admits. The lemma reads: 

I. Let X and X' be two irreducible group matrices oJ degrees J and 1'. 1J P is 
a constant matrix having J rows and l' columns, Jor wh ich the equation 

(6) XP=PX' 

holds, then either P is zero, or X and X' are equivalent, and P is a quadratic 
matrix oJ degree J = l' having a non-vanishing determinant. 
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This lemma holds for an arbitrary ground field. If the groundfield is 
algebraically closed (the only case considered by Schur), the lemma implies: 

11. If X is an irreducible group matrix of degree f, every eonstant matrix P 
eommuting with X must be a multiple of the unit matrix. 

Schur next derives orthogonality relations for the matrix elements of irre­
ducible representations. 

Theorem 111 of Schur says: 
Every group matrix X of degree n and rank r is equivalent to a group matrix 

having the form 

in whieh Xl' ... , X mare irreducible group matriees, while Nn _ r is the zero matrix 
of degree n - r. 

Apart from the appended zero matrix, this theorem had already been 
obtained by Molien and Maschke. However, Maschke had used Hermitean 
forms, which can be formed only if the ground field is <C, whereas Schur's 
proof is completely elementary and valid for every ground field, provided the 
characteristic of the ground field is not a divisor of the order of the group G. 

Representations of the Symmetrie Group 

Many authors in the first half of our century have investigated the repre­
sentations of special finite groups. The literature on this subject is too vast to 
be discussed here. For a general survey I may refer to my "Gruppen von 
linearen Transformationen" (Springer-Verlag 1935, reprinted by Chelsea 1948), 
p. 78-84. Here I shall restrict mys elf to the representations of the symmetric 
group, which play an important role in the theory of invariants as weil as in 
Quantum Mechanics. 

The story beg ins with a sequence of papers by A. Young entitled "Quanti­
tative Substitutional Analysis" in Proceedings London Math. Soc., of which 
the first two (1900 and 1902) are most important. The complete list of these 
papers is: 

I. Proc. (1)33, p. 97-146 (1900) 
11. Proc. (1) 34, p. 361-397 (1902) 

III. Proc. (2) 28, p. 255-292 (1928) 
IV. Proc. (2) 31, p. 253-272 (1930) 
V. Proc. (2) 31, p. 273-288 (1930) 

VI. Proc. (2) 34, p. 196-230 (1932) 
VII. Proc. (2) 36, p. 36 (1933) 

VIII. Proc. (2) 37, p. 441 (1934). 
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In these papers, Young analyses the strueture of the group algebra of 
the symmetrie group Sn' He proves that the unity element e of this group is a 
sum of idempotent elements ei : 

(7) 

e=e 1 +···+ek 

e;=ei 

The units ei are obtained as folIows. A Yaung Tableau is an arrangement of 
the integers 1,2, ... , n in rows of non-increasing lengths, as in the following 
example: 

135 

2 4 

Let P be the sum of all permutations transforming the rows into them­
selves, and let N be the alternating sum of all pe::mutations transforming the 
columns into themselves. If T is the sum of the n! products P N obtained by 
permuting the numbers in the tableau, we have 

Now the element 

is one of the desired nilpotent elements of the group algebra. 
In his second paper, Young has ealculated the value of the eonstant c. Let 

rJ. 1 , •.• , rJ. h be the lengths of the rows in the tableau defining ei . Then 

(8) 
r, S 

The ea are in the centre Z of the group algebra A, and their number is 
equal to the number of the classes in the group Sn and henee to the dimension 
of the eentre Z. It follows that Z is a direet sum of fields ei F isomorphie to the 
ground field F, provided the eharaeteristie of F is not a prime faetor of n! . 

The deeomposition (7) is of great importanee in the theory of invariants. 
Let 

f(u, v, ... , w) 

be a multilinear form in n rows of variables 
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N ow, if the vectors u, ... , ware numbered from 1 to n, one can apply all 
elements of the group algebra of the symmetrie group Sn as operators, operat­
ing on the form f, and one finds 

(9) 

Whereas the multilinear form f is quite arbitrary, the terms eJ have strong 
symmetry properties. One term is symmetrie in all variables, another term 
antisymmetrie. On the importance of the expansion (9) for the theory of 
invariants see J.H. Grace and A. Young: The Algebra of Invariants (Cam­
bridge 1903, reprinted by Chelsea), p. 359-364. 

In the same year 1900, in which Young's first paper was published, Frobe­
nius presented to the Berlin academy a paper "Über die Charaktere der 
symmetrischen Gruppe" (Sitzungsber. preuss. Akad. 1900, p. 516-534), in wh ich 
the characters of Sn are determined. Frobenius first shows that to every 
partition 

corresponds just one character. Frobenius puts 

ß,=!X,+h-r 

and he proves that the character X",(s) of apermutation s which is a product of 
cycles of lengths Yl' Y2' ... is equal to the coefficient of 

in the polynomial 

TI (xq - x,)· (xi' + .. ' + xk')(xi2 + ... + xk 2 ) •••• 

q <r 

The paper of Frobenius just cited is independent of Young's investigations, 
but in 1903 Frobenius used Young's Substitutional Analysis to determine the 
irreducible representations of Sn (see G. Frobenius: Über die charakteristischen 
Einheiten der symmetrischen Gruppen, Sitzungsber. preuss. Akad. Rerlin 1903, 
p. 328-358). His main result may be expressed thus: Every product PN defined 
by a Young Tableau generates a minimalIeft ideal in the algebra A, and if the 
elements of this left ideal are multiplied by the group elements, one obtains an 
irreducible representation of the group. In this way, all irreducible repre­
sentations of Sn can be obtained. 

A simplified proof due to an oral communication of John von Neumann 
was presented in Volume 2 of my Algebra (first edition 1931, p.203-207, 
English translation 1970, p. 93-97). 

Other contributions to the representation theory of Sn are due to I. Schur,. 
H. Weyl, A. Young, D.E. Littlewood and A.R. Richardson. See D.E. Lit­
tlewood: The Theory of Group Characters and Matrix Representations of 
Groups, second edition (1950), p. 59-146. 
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The Representation of Groups by Projective Transformations 

In three papers in Crelle's Journal für Mathematik 127 (1904), 132 (1907), 
and 139 (1911), Issai Schur developed a method of constructing the repre­
sentations of a finite group by projective transformations. 

Let H be a finite group, and h its order. A projective representation of H is 
defined by a mapping 

a-+A 

having the property 

The set of complex numbers Ba,b is caBed the factor set of the mapping. Two 
factor sets Ba,b and B~,b are caBed associated if 

(10) 

the l' a being arbitrary factors =l= O. The passage from one factor set to an 
associated set me ans a multiplication of the matrix A by a factor l'a' Note that 
A and yA define the some projective transformation. 

Every factor set is associated with a set consisting of h-th powers of unity. 
It follows that the classes of associated factor sets form a finite group M, the 
multiplicator of the group H. Let m be the order of M. 

If G is a group containing in its centre a suhgroup S such that 

(11) G/S~H, 

then every irreducible representation of Ginduces a projective representation 
of H, and all projective representations of H can thus he obtained. 

If (11) holds and if S is contained in the commutator group of G and has 
the same order m as M, then aB irreducible projective representations of H can 
be obtained from irreducible representations of G. If this is the case, G is caIIed 
a representation group of H. A method to construct representation groups is 
presented in Schur's second paper in CreIIe's Journal 132 (1907). 

A group H is called closed if it is its own representation group, that is, if aB 
projective representations are associated to ordinary matrix representations. 
For instance, all cyclic groups are closed. The quaternion group is closed. A 
group H is cJosed if aB its Sylow groups are. 

1. Schur has determined the representation groups of 

SL(2, pO), PGL(2, pO), A", and Sn, 

and R. Frucht has determined the representation groups of aB finite abelian 
groups (CreBe's Journal 166, p. 16-29, 1931). 

For more information about projective representations of finite groups I 
refer to my "Gruppen von linearen Transformationen", p. 84-88. 
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Emmy Noether 

The first to develop a general representation theory of groups and algebras, 
valid for arbitrary ground fields, was Emmy Noether. In the Winter semester 
1927-28 I attended her course of lectures "Hyperkomplexe Grössen und Dar­
stellungstheorie" at the university of Göttingen, and she used my lecture notes 
as a basis for her publication "Hyperkomplexe Grössen und Darstellungs­
theorie" in Math. Annalen 30, p. 641-692. This publication has had a pro­
found influence on the development of modern algebra. I shall now summarize 
its content. 

In the introduction Emmy Noether states that in recent publications the 
structure theory of algebras and the representation theory of finite groups have 
been separated completely. She, on the other hand, aims at a purely arithmeti­
cal foundation, in which the structure theory and the representation theory of 
groups and algebras appear as a unified whole, namely as a theory of modules 
and ideals in rings satisfying finiteness conditions. 

Emmy Noether's paper is divided into four chapters. 

Chapter I. Group-Theoretical Foundations 

§ 1. Groups with Operators. The notions in this section are due to Wolfgang 
Krull and Otto Schmidt. Whereas Krull restricted himself to abelian groups, 
the Russian group theorist Otto Schmidt introduced the general notion 
"Group with Operators", requiring only 

G(ab)= G(a)· G(b). 

See O. Schmidt: Über unendliche Gruppen mit endlicher Kette, Math. Zeit­
schrift 29, p. 34-41 (1928). 

§ 2. The 1somorphy Theorems. In this section the well-known theorems con­
cerning group homomorphisms, factor groups, and isomorphisms are general­
ized to groups with operators. 

§ 3. Composition Series. In this section, Emmy Noether formulates the Jordan­
Hölder theorem for groups with operators. For the proof she refers to page 57 
of her paper" Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und 
Funktionenkörpern, Math. Annalen 96, p. 26-61 (1926). 

§ 4. Direct Products and Intersections. Two equivalent definitions ofthe notion 
"direct product" are given. Every group satisfying the finiteness condition for 
descending chains of normal subgroups is a direct product of indecomposable 
factors. In his paper quoted before, Otto Schmidt has proved that such a 
decomposition is unique but for isomorphisms. 

§ 5. Completely Reducible Groups. A group (with or without operators) is 
called completely reducible, if it is a direct product of simple groups. The 
factors are at the same time composition factors, and hence unique but for 
isomorphisms. 
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§ 6. Moduli over a Field. Algebras. If a module over a skew field K has a 
finite basis, it is a direet sum of one-dimensional modules: 

and henee eompletely redueible. The number n is ealled the rank of G over K; 
today it is ealled the dimension of the veetor spaee G. 

§ 7. Matrices. A matrix over a skew field K having a right inverse also has 
a left inverse, and eonversely. Sueh a matrix is ealled regular. 

Chapter II. Non-Commutative Ideal Theory 

§ 8. The Homomorphy Theorem for Rings. This theorem says: Every homo­
morphie image of a ring 0 is isomorphie to a residue dass ring olA, where A is 
a two-sided ideal in o. Today we eall A the kernel of the homomorphism. 

§ 9. Idempotent Elements. Direct Sums of Right Ideals. Let 0 be a ring with 
unity e. If 0 is a direet sum of right ideals: 

and if 

then 

and 

Conversely, if 

and if one puts 

then 0 is a direet sum 

Benee a right deeomposition 

implies a left deeomposition 
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§ 10. Sums of Two-Sided Ideals. If 0 is a ring with unity, and if 0 is a sum of 
two-sided ideals 

(12) 

then 

If the Ai eannot be further deeomposed into two-sided ideals, the deeom­
position (12) is unique. 

§ 11. The Centre. To every deeomposition (12) of a ring 0 eorresponds a 
deeomposition of the eentre Z: 

Z=Zl+···+Zn 

Zi=AJ1Z. 

§ 12. Nilpotent I deals. An ideal C is nil potent, if apower of C is zero. 
If a ring 0 has a nil potent right ideal R, it also has a nil potent two-sided 

ideal. The sum of two nil potent right ideals is a nilpotent right ideal. If the 
finiteness eondition für inereasing ehains of right ideals is satisfied, there is a 
maximal nilpotent two-sided ideal, whieh eontains all nil potent right or left 
ideals. It is ealled the radical of o. If 0 is a ring without radieal, so is the eentre Z. 

§ 13. Completely Reducible Rings. A ring is ealled right completely reducible, if 
it is a direet sum of simple right ideals. 

A right eompletely redueible ring with unity has no radieal. 
Conversely: A ring without radieal with deseending ehain eondition for 

right ideals is right eompletely redueible, and it has a unity element. 

§ 14. Completely Reducible Simple Rings. If a ring 0 with unity is simple and 
right eompletely redueible, all right ideals are isomorphie and the ring is a 
eomplete matrix ring over a skew field A. 

Conversely: the ring of n x n-matriees over A is simple and eompletely 
reducible. 

Chapter III. Modules and Representations 

§ 15. Representations and Representation Modules. Let 0 be a ring, and K a 
ring with unity. In the applieations K is always a skew field. 

A representation of degree n is a homomorphism 

where (!) is a ring of n x n-matriees over K. 
A representation module is a "double module" M, whieh is a left o-module 

and a right K-module: 
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and which is a direct sum 

M=x1K+ ... +xnK, 

the unity element of K being a unity operator. 
Every representation module generates a representation: 

Conversely: Every representation is generated by a representation module. 
Operatorisomorphie representation modules genera te equivalent represen­

tations, and conversely. 

§ 16. Reducible Representations. If K is a skew field, every submodule A of a 
representation module M has a basis (Yl' ... ' Yr) which can be completed to 
form a basis of M: 

If this is supposed, the matriccs of the representation ass urne the form 

and the representation is called reducible. 
A composition series 

leads to matrices of thc form 

in which the R ii are irreducible representations, genera ted by the composition 
factors A i _ dA i . The theorem of Jordan-Hölder implies that the R ii are unique 
but for equivalence and but for their order. 

§ 17. Direct Sum Decompositions of Representation Modules. Let M be an 0-

module, and 0 a ring having a unity element e. Then every element m of M can 
be decomposed: 

m=em+(m-em) 

and thus M becomes a direct sum 
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such that e is a unity operator for Me' and eMo=O. Thus one ean always 
restriet oneself to the study of modules for whieh e is a unity operator. In the 
ease of a representation module this means that e is represented by the unity 
matrix E. 

If 0 is a direet sum of two-sided ideals 

o=A J + ... +As 

then every o-module for whieh e is a unity operator is a direet sum 

M=AJM+ ... +AsM. 

Benee one ean always restriet oneself to representations of indeeomposable 
rings, that is, of rings whieh eannot be deeomposed into two-sided ideals. 

§ 18. Modules and Representations of Completely Redueible Rings. Of funda­
mental importanee for Emmy Noether's representation theory is the theorem: 

Let 0 be simple and eompletely reducible, and let M be a finite o-module for 
whieh the unity element of 0 is a unity operator. Then M is eompletely reducible, 
and the irredueible eomponents of M are isomorphie to the simple left ideals Li of o. 

The proof is extremely simple. Let 0 and M be written as 

o=L J + ... +Ln 

M=(om J, ... ,omk)· 

Then 

M=( ... ,Limk , ••• ) 

and if those modules Li mk are left out of aecount, whieh are eontained in the 
sum of the preeeding ones, M becomes a direct sum of modules Li mk isomor­
phie to Li' 

§ 19. The Simple Composition Faetors of Modules and Representation Modules. 
Let 0 be a ring with maximal and minimal eondition for left ideals, and let R 
be the radieal. Then every simple o-module is either annihilated by 0, or it is 
isomorphie to a simple left ideal in 01R. If, in partieular, M is a module of 
finite rank over a field r, it is a representation module, and one ean eonc1ude 
that all irredueible representations (apart form the zero representation) are 
genera ted by the simple left ideals of 01R. 

Chapter IV. Representatiolls of Groups and Algebras 

§ 20. Algebras. If 0 is an algebra over a field r, and if one restriets oneself to 
those left and right ideals that are r -modules, the finite ehain eonditions for 
these ideals are satisfied, and one can apply the theorems of § 19 to determine 
the irredueible representations. The result is: All irredueible representations are 
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genera ted by the simple left ideals of 

o=o/R, 

where R is the radical of o. Since 0 is semi-simple, it is a direct sum of simple 
algebras: 

(13) 

and there are just as many irreducible representations as there are terms in the 
sum (13). 

In particular, if r is algebraically closed, every sub algebra Ai is a full 
matrix ring of rank n~ over r. In this case every irreducible representation 
contains just n~ linearly independent matrices, and every completely reducible 
representation contains 

ni + ... + n; 
linearly independent matrices, where n1 , •.. , ny are the degrees of the inequiva­
lent components of the representation. This theorem is due to G. Frobenius 
and I. Schur: "Über die Äquivalenz der Gruppen linearer Substitutionen", 
Sitzungsber. preuss. Akad. Berlin 1906. 

§ 21. Extension of the Ground Field. TIle Representations of the Centre. If 
0= a 1 r + ... + an r is an algebra, and Q an extension of the ground field I~ one 
can form a new algebra 

retaining the rules of multiplication for the basis elements ai. Thus one obtains 
an algebra oQ over Q. If oQ is a ring without radical, so is 0, but the converse 
is not always true. The quest ion whether oQ has a radical depends on the 
structure of the centre Z of o. 

Let Q be the algebraically closed (algebraic) extension of r. If 0 is without 
radical, so is Z, and hence Z is a sum of fields 

If one of these fields is an inseparable extension of r, then ZQ has a radical, 
and so has 00. On the other hand, if all fields Zi are separable over r, the 
algebra oQ has no radical, and all representations of 0 in Q are completely 
reducible. 

A representation of 0 is called absolutely irreducible if it remains irreducible 
after passing from r to the algebraically closed extension Q. Emmy Noether 
now proves: 

If 0 Q has no radical, then in every absolutely irreducible representation the 
elements Z of the centre Z are represented by diagonal matrices EC Every 
absolutely irreducible representation of 0 in duces a linear representation z->( 
of Z. The number of classes of absolutely irreducible representations equals the 
rank of Z. 
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§ 22. Application to Abelian Groups. The absolutely irreducible represen­
tations of abelian groups are just the well-known characters X. 

§ 23. The Determinant of an Algebra. By means of indeterminates Xl' ... , X n 

one can form the "generic element" of an algebra 0: 

If a~A is a representation, the generic element w is represented by 

The determinant of the matrix W is called the system determinant. The 
regular representation gives rise to the regular system determinant. If the repre­
sentation a ~ A is reducible, the matrix W can be written as 

(
Wll ) 

W= ~2l ~22 

i:l We2 ... w"e 

and Det (W) is the product of the system determinants of the irreducible 
representations w~ Jt;i' 

§ 24. Traces and Characters. For every representation a~A the trace of Ais 
a linear function of a: 

Tr(a + b) = Tr(a)+ Tr(b) 

Tr(cO() = 0( Tr (c). 

The traces in the absolutely irreducible representation are called characters 
x(a). 

Ir 0 has no radical and if the characteristic of the field r is zero, every dass 
of equivalent representations is uniquely determined by its traces. 

§ 25. Discriminants. Ir Tr(a) is the trace of a in the regular representa­
tion, one can form the determinant of the matrix formed by the traces Tr(a; Clk). 

This determinant is called the discriminant. If one passes to another basis, the 
discriminant is multiplied by the square of the transformation determinant. 

The discriminant is zero if 0 has a nilpotent ideal. On the other hand, if 0 

has no radical and if the characteristic of the field is zero, the discriminant is 
not zero. 

Note that the matrix formed by the traces 

was used already by Dedekind and Molien as a criterion for semi-simplicity. 
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§ 26. The Group Algebra. If 0 is the group algebra of a finite group of order 
h, the discriminant of 0 is 

D=hh e. 

Hence, if the order of the group is not divisible by the characteristic of the 
ground field, the group algebra 0 has no radical, all representations are 
completely reducible, and the number of absolutely irreducible representations 
is equal to the number of classes. 

I have followed Emmy Noether's exposition as closely as possible in order 
to give the reader an idea of the personal style of her exposition. 



Chapter 14 
Representations of Lie Groups and Lie Algebras 

Aeeording to Sophus Lie, every loeal representation of a Lie group G by 
linear transformations is generated by a representation of the Lie algebra L G of 
G. The matriees of this representation are linear eombinations 

and a neighbourhood of the unity element of G is represented by the matriees 

expA=exp (Al Xl + ... + Anxn), 

the Xi varying in a neighbourhood of the origin in IR" or <cn• It is true that Lie 
does not use the modern expressions "exp" and "neighbourhood", but his 
statements are equivalent to what I have just said. 

The first to develop a general representation theory of Lie groups was Elie 
Cartan. 

Cartan's Theory 

Aeeording to Elie Cartan, if one wants to find aB irredueible Lie groups of 
linear transformations, it is suffieient to find all irredueible representations of 
simple Lie groups. This was proved on p.99 of Cartan's paper of 1909 "Les 
groupes de transformations eontinus, infinis, simples", Annales de l'Eeole nor­
male (3) 26, p. 93-161. 

If the ground field is the eomplex number field <C, there are four infinite 
sequenees and five exeeptional types of simple Lie algebras. For these types 
Cartan has determined all irredueible representations in his fundamental paper 
"Les groupes projeetifs qui ne laissent invariante aueune multiplieite plane", 
Bulletin de la Societe Math. de Franee 41, p. 53-96 (1913). 

As we have seen in Chapter 9, the four infinite sequenees of simple groups 
diseovered by Sophus Lie are 

A: the projeetive linear groups PG L(n, <C) with n> 1, 
B: the projeetive orthogonal groups PO(2n, 11:) with 2n>4, 
C: the projeetive sympleetie groups PSp(2n, <C), 
D: the projeetive orthogonal groups PO (2n -1, <C) with 2n -1 > 1. 
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Let us begin with type A. Instead of PGL(n, <C) we mayaIso consider the 
locally isomorphic group SL(n, <C). Hs elements are the n x n matrices having 
determinant 1. Hs infinitesimal transformations are the matrices having trace 
zero: 

(1) 

There are two methods to find the representations of this group SL: the 
global and the infinitesimal method. Both methods are purely algebraic, and 
both end up with the same results. 

The Global M ethod 

The global method starts with the group GL(n, F), the field F being an 
arbitrary field of characteristic zero. It is a method which yields all those 
representations of the group GL, in which the elements of the matrix T(A) 
representing a matrix Aare polynomials in the matrix elements a,cA of A. 

The global method was inaugurated by Issai Schur in his doctoral thesis 
(Berlin 1901). The method was further developed by Hermann Weyl in 1925 
and by D.E. Littlewood and A.R. Richardson in 1934. The most important 
papers on the subject are: 

I. Schur: Über eine Klasse von Matrizen, die sich einer gegebenen Matrix 
zuordnen lassen, Diss. Berlin 1901 = Werke I, p. 1-70; 

H. Weyl: Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen 
durch lineare Transfonnationen I, Math. Zeitschrift 23, p. 271-309 (1925), or 
Selecta Hermann Weyl, p. 263-298; 

I. Schur: Über die rationalen Darstellungen der allgemeinen linearen Grup­
pe, Sitzungsber. preuss. Akad. Berlin 1927, p. 59-75, 

D.E. Littlewood and A.R. Richardson: Group Characters and Algebra, 
Philos. Transactions Roy. Soc. A 223, p. 99-141 (1934). 

In explaining the global method, I shall follow the exposition in my 
"Gruppen von linearen Transformationen" (Springer-Verlag 1935), p.88-91, 
which is largely inspired by the work of Hermann Weyl. 

The central idea underlying the global theory is very simple. First one 
shows that every representation in which the matrix elements are polynomials 
in the aKl can be decomposed into representations in which the matrix ele­
ments are homogeneous polynomials. If m is their degree, we shall say that we 
have a representation of height m (in German : Stufe m) .. 

A fairly general representation of height m is the tensor representation. If 
u i ' ... ,un are the basis vector of a vector space on which GL(n,F) operates, and 
Vi' •.. , Vn the basis vectors of another copy of the same vector space, etc., then 
the products of m factors 
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are the basis elements of a tensor space V of height m. The elements of this 
space are tensors 

The matrix elements of the tensor representation of GL(n, F) are 

The linear closure S of this set of matrices consists of aIl symmetrical 
matrices, that is, of those matrices, in which the matrix elements 

remain unchanged if one and the same permutation Q is applied to the K as 
weIl as to the A. The proof, due to Hermann Weyl, is very simple. 

Every permutation Q in Sm, if applied to the K as weIl as to the A, induces a 
linear transformation 

of the tensor space into itself. Let R be the set of these linear transformations. 
According to the theorem of Weyl just quoted, the linear closure S consists of 
those transformations of V into itself that are permutable with the matrices of 
R. But R is a representation of the symmetrie group Sm, and hence completely 
reducible. By a theorem of Issai Schur, it is very easy to determine aIl linear 
transformations commuting with a given completely reducible set of matrices. 
It follows that S is a direct sum of full matrix rings over the ground field F, 
and that all irreducible representations of GL of height mare contained in the 
tensor representation. 

We have seen that the irreducible representations of Sm are determined by 
Young tableaux like 

135 
2 4 

If P is the sum of the permutations within the rows of such a tableau, and 
N the alternating sum of the permutations within the columns, the product PN 
is (apart from a constant factor) an idempotent element of the group algebra of 
Sm' Now if the operator PN is applied to aB tensors t, one obtains a linear set 
of tensors, wh ich is transformed into itself by all transformations of GL, and 
these transformations form an irreducible representation of GL. All rational 
representations of height m can be obtained in this way. That's all! 

The Infinitesimal Method 

The infinitesimal method of Elie Cartan is based on the structure theory of 
simple Lie algebras. I shall follow the exposition of Weyl (Selecta Hermann 
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Weyl, p. 266-278), starting with the simplest case: the Lie algebra L G of the 
special linear group G = SL(n, <C). 

This group contains a maximal abelian subgroup H formed by the diagonal 
matrices of determinant 1. The infinitesimal transformations of this group are 
given by diagonal matrices of trace zero: 

Let eik (i * k) be the matrix having 1 in row i and column k, and zero 
everywhere else. The eik form, together with the matrices h(A), a basis of the Lie 
algebra L. The commutator relations containing the matrices h(A) are: 

(2) 
[h, h'] =0 

[h, eik] = (Ai - Ak ) eik · 

Because of these relations, the linear forms Ai - Ak are called the roots of the 
Lie algebra. The element ea=eik is said to belong to the root a=Ai-Ak • 

Let ha be the h(A), for which Ai = 1 and Ak = -1, all other Xs being zero. The 
commutators relations between the eil are 

Cartan's problem is to find a mapping 

u~u 

if a+ ß is a root 
if not. 

such that 
[u, v]~[u, V]= UV- VU. 

This means: the matrices H (Al' ... , An) and Eu. have to satisfy the conditions 

(3) 
[H,H']=O, [H, Ea] = aEu.' 

[Eu., Ep] = ±Eu.+p or O. 

The vectors on which the matrices U operate will be denoted by latin 
letters. If a vector satisfies the relation 

He=Ae 

in which A is a linear form in the Xs, we shall say that e has weight A. 
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If a veetor X has weight A, then H X also has weight A, and E~ X has weight 
A+lI.. 

If e =1= 0 is a veetor of weight A, one ean form an invariant linear subspaee 
spanned by the veetors 

If the representation is irredueible, this subspaee must be the whole veetor 
spaee V, so Vhas a basis eonsisting of veetors eaeh having adefinite weight. 

Let A be a weight: 

(4) 

and let A~ be the value of A for H =Ha , that is, 

The weight A is ealled extreme with respeet to lI., if A + lI. is no longer a 
weight. Starting with an extreme weight A, one ean form the sequenee 

In this sequenee let eh+ 1 be the first zero veetor. The veetors 

have weights 

A,A-lI., ... ,A-hll.. 

One ean also return from ei to ei _ 1 : 

The final result of Cartan's investigation ean be formulated thus. Let 

be m sets of "eogredient variables". This means: is a linear transformation T is 
applied to the x, the same transformation will be applied to the y, the z, ete. 
Let 

be a partition of the integer m subjeet to the eonditions 
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If one applies to the form 

aB linear transformations T of the x, y, ... , one obtains a linear set of forms Tf 
Applying to these forms the infinitesimal transformations of SL(n, <C), one 
obtains an irreducible representation of the Lie algebra Lc;, and all irreducible 
representations of L G can be obtained in this way. 

Evidently, these infinitesimal representations can be extended to glohal 
representations of SL, and even to global representations of the general linear 
group GL. One has only to apply to the forms Ti all non-singular linear 
transformations S of GL. The representations of GL thus obtained are just the 
rational representations which Issai Schur had found in 1901. In a letter to 
Hermann Weyl, dated March 1st, 1925, Cartan states that he had determined 
the irreducible representations of the Lie algebra without knowing about the 
research of Issai Schur. 

Cartan applied the same method to the Lie algebras of types B, C, and D. 
For the sympletic groups (type C) the result is similar: all irreducible infinitesi­
mal representations can be extended to global representations which are con­
tained in the tensor representations of Sp(n, <C). 

For the orthogonal groups (types Band D) the situation is different. In 
Chapter 10, in the section "Spinors in n Dimensions", I have described two­
valued "spinor representations" of the orthogonal groups, which are implicit 
already in the work of Lipschitz on sums of squares, and which have been 
established explicitly by Brauer and Weyl. Cartan, who systematically de­
termined all infinitesimal irreducible representations by his method of weights, 
naturally also found these two-valued representations. See E. Cartan: Oeuvres 
completes I, p. 387-393. 

By the same method, Cartan also determined the infinitesimal irreducible 
representations of the five exceptional simple Lie algebras. 

Hermann Weyl 

The story of how Hermann Weyl arrived at his admirable representation 
theory of semi-simple groups is very curious. In April 1918, Weyl published the 
first edition of his famous book on general relativity: "Raum, Zeit, Materie". 
In the fourth edition of this book (1921) Weyl inserted a section (§ 18) entitled 
"Gruppentheoretische Auffassung der Raummetrik", which may be summa­
rized thus. 

In a Riemannian manifold we have at any point P a tangential vector space 
of dimension n. In this vector space a "Pythagorean metric" is defined by a 
quadratic form 
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The group of rotations transforming this form into itself is a Lie group G of 
dimension 

!-n(n-1). 

Weyl now asks: What properties of the group G characterize the quadratic 
"Pythagorean metric"? 

Weyl first requires the transformations of G to preserve volumes, that is, to 
have determinant one. His second condition demands the existence and unicity 
of parallel displacements of vectors to infinitely near points preserving the 
metric. This condition implies that the dimension of the group G is at most 
!- n(n -1). Weyl's third condition requires the existence of sufficiently many 
congruent displacements of vectors to infinitely ne ar points. This condition 
implies that the dimension of Gis at least !-n(n-1). 

Weyl conjectures that the only groups satisfying these conditions are the 
rotation groups defined by non-singular quadratic forms. He states that he has 
proved this conjecture for n = 2 and n = 3. 

Early in 1921, Weyl succeeded in proving his conjecture. His paper "Die 
Einzigartigkeit der Pythagoreischen Maßbestimmung" was submitted to the 
Math. Zeitschrift in April 1921 and published in Vol. 12 in January 1922. 

Independent of Weyl, Elie Cartan found a simpler proof of Weyl's conjec­
ture, based on his representation theory of Lie groups. His proof was an­
nounced in a Comptes-Rendus note in 1922 (C.R. Acad. Sc. Paris 175, p. 82), and 
published in 1923 in a paper entitled "Sur un theoreme fondamental de M.H. 
Weyl", Journal de Math. 2, p. 167-192 (Oeuvres completes III, p. 63-88). 

Cartan se nt an offprint of his c.R.-note to Weyl. An extremely interesting 
correspondence between Cartan and Weyl followed. The dates of the most 
important letters are: 

from Weyl October 5, 1922, 
from Cartan October 9, 1922, 
from Cartan June 28, 1923, 
from Cartan March 1st, 1925, 
from Weyl March 22, 1925, 
from Cartan March 28, 1925. 
I am indebted to Dr. B. Glaus, librarian at the E.T.H. Zurich, for showing 

me the first three letters from Cartan to Weyl. Thereupon Elie Cartan's son 
Henri Cartan sent me copies of the other three letters. The letters and copies 
are now in the archive of the E.T.H. Zurich. 

From the first letter, in which Weyl thanks Cartan for sending his c.R.­
note, we see that Weyl was not familiar with Cartan's general theory of Lie 
groups before October 1922. He writes: 

Unbewandert auf den gebahnten Strassen der allgemeinen Theorie der kontinuierlichen Grup­
pen, deren Anlage und Ausbau man Ihrer Meisterschaft verdankt, habe ich auf eigene Faust einen 
steilen, unbequemen Fusspfad durch das Gestrüpp zum Ziel gebahnt. Ich zweifle nicht daran, dass 
Ihre Methode der Natur der Sache besser entspricht... 

I must confess that I am not able to translate the poetic imagery of 
Hermann Weyl into English. I am not a poet. 
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Cartan's answer is very courteous. He praises Weyl's "important theorem", 
and he adds: "Once the theorem being recognized as true, the simplicity of its 
proof is nothing compared with its philosophical significance ("sa portee philo­
sophique"). 

In June 1923, Weyl sent Cartan a copy of his book "Mathematische 
Analyse des Raumproblems". Cartan answered at once: "Je vous remercie bien 
vivement d'avoir bien voulu m'envoyer votre beau livre." 

From the correspondence we see that Weyl began to study Cartan's theory 
in October 1922, because he saw that this theory was a great help in his study 
of the "space problem". Very soon he had maste red Cartan's theory, and he 
even made important contributions himself. His investigations resulted in three 
beautiful papers, of which he sent copies to Cartan in February 1925. The 
papers were published in Math. Zeitschrift 23 (1925) and 24 (1926) under the 
general title "Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen 
durch lineare Transformationen" with subtitles: 

Kapitel I: Das gruppen theoretische Fundament der Tensorrechnung, 
Kapitel II: Die Darstellungen der Komplexgruppe und der Dehnungs-

gruppe, 
Kapitel III: Struktur der halb-einfachen Gruppen, 
Nachtrag (3 pages). 
The three papers and the "Nachtrag" are reprinted in "Selecta Hermann 

Weyl" (Birkhäuser, Basel 1956) on pages 262-366. 
Chapter I is wholly devoted to the special linear group G = SL(n, <C). First, 

the irreducible representations of the Lie algebra LG are determined by 
Cartan's infinitesimal method. Next, Weyl proves an extremely important theo­
rem: 

Every representation of the Lie algebra L G , and hence every representation of 
the group G, is completely reducible. 

Weyl proves this theorem by means of what he hirnself calles the "unitary 
trick", which 'I now shall explain. If one restriets oneself to unitary transfor­
mations, which transform the Hermitean form 

into itself, one obtains a compact Lie group H. On every Lie group one can 
introduce an invariant volume element dV. Now if one has a representation of 
a compact Lie group H, one can use an idea of Hurwitz. Starting with any 
positive Hermitean form in the space of the representation, one applies to it all 
transformations of Hand integrates over H. Thus one obtains a positive 
Hermitean form invariant under the transformations of the representation. 
Every invariant subspace defines an orthogonal invariant subspace, and it 
follows that every representation of H is completely reducible. 

If one has an irifinitesimal representation of H, one can always integrate it, 
thus obtaining aglobaI representation of a covering manifold of H. Weyl 
proves that the unitary group H = SU(n, <C) is simply connected, wh ich implies 
that every infinitesimal representation can be extended to aglobai univalued 
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representation of H. We have just seen that these global representations are 
completely reducible, so we may conclude that every infinitesimal representa­
tion of H is completely reducible. 

Next, Weyl proves: 1f the infinitesimal transformations of H transform a 
linear subspace into itself, so do the irifinitesimal transformations of G. Since the 
representation space of the Lie algebra L H is a direct sum of irreducible 
subspaces, the same holds for L G . This completes the proof of Weyl's theorem. 

Weyl's proof is very remarkable. Hurwitz' idea of integration cannot be 
directly applied to the group G, because G is not compact. Therefore Weyl first 
passes from the group G to the compact group H, next to the Lie algebra L H , 

next to L G , and finally to G: 

G ----------> H 

) j 
LG~LH' 

A genius like Weyl was needed to find this proof. 
The second paper in Math. Zeitschrift 24 consists of the Chapter II and III. 

In Chapter II Weyl applies his methods to the symplectic group Sp(2n, a::) and 
to the rotation group 0 (n, a::). In the case of the symplectic group the unitary 
subgroup H is aga in simply connected, which implies that all infinitesimal 
representations generate univalued global representations. Once more, all re­
presentations are contained in the tensor representations. 

In the case of a complex rotation group Gone first forms the subgroup H 
of real rotations. This group is compact, but not simply connected. It has a 
simply connected two-fold covering group H*. The Lie algebra of H* is the 
same as that of H; I shall call it L lI . Now one can apply the "unitary trick", 
passing from G to H*, from H* to L H, and from L H to LG. Result: all 
infinitesimal representations of Gare completely reducible, and the irreducible 
representations are those found by Cartan. They generate one-valued or two­
valued representations of G. The simplest two-valued representations are the 
"spinor representations". 

In Chapter III Weyl presents a new simplified derivation of Cartan's 
structure theory of semi-simple Lie groups. He shows that the "unitary trick" 
can be extended to all semi-simple groups. 

In Chapter IV Weyl shows that his representation theory can be extended 
to all semi-simple groups, including the exceptional groups. 

In 1927, Weyl published, together with his pupil F. Pet er, a paper entitled 
"Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kon­
tinuierlichen Gruppe", Math. Annalen 97, p. 737-755. In this paper the authors 
first note that the representations of a compact Lie group Gare equivalent to 
unitary representations. Next they prove that the matrix elements eik(s) of the 
irreducible representations form a complete orthogonal set of functions on the 
group G. The proof is based on the theory of integral equations. 
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J ohn von Neumann 

In the papers of Cartan and Weyl all representations of Lie groups were 
supposed to satisfy certain conditions of differentiability. In 1929 J ohn von 
Neumann showed that these conditions can be replaced by very weak con­
tinuity conditions. See J. von Neumann: "Über die analytischen Eigenschaften 
von Gruppen linearer Transformationen und ihrer Darstellungen", Math. Zeit­
schrift 30, p. 3-42. Apart of von Neumann's results had al ready been present­
ed in an earlier paper: "Zur Theorie der Darstellungen kontinuierlicher Grup­
pen", Sitzungsber. preuss. Akad. 1927, p. 76-90. Both papers are reproduced in 
John von Neumann's CoBected Works, p. 134-150 and 509-549. 

Von Neumann defines the absolute value of a matrix A with complex 
coefficients as 

(5) lAI =Vl"lallv I2 • 

He first considers groups of matrices and next their representations. If G is 
a group of matrices and C its closure, he proves that the component of E in C 
is a Lie group H, genera ted by infinitesimal linear transformations 

U=a 1 Vl+···+ak~' 

whereas C/H is a discrete group. 
Concerning the representations of G, von Neumann proves: If the variation 

of a representation D(A) in a neighbourhood of E, defined by means of the 
metric (5), is less than 2, the representation is continous. In a suitable neigh­
bourhood of E the matrix elements of D(a) are convergent power series in the 
real and imaginary parts of the matrix elements allv ' 

In a paper "Stetigkeitssätze für halbeinfache Liesche Gruppen" (Math. 
Zeitschrift 36, p. 780-786, 1933) I have given a simpler proof of von Neumann's 
second theorem, and I have proved that aB representations of compact semi­
simple Lie groups are continuous. This latter result had been obtained already 
in 1930 by Elie Cartan: "Sur les repn':sentations lineaires des gro~S clos", 
Comment. Math. Helv. 2, p. 269-283. It has been considerably generalized by 
Hans FreudenthaI in a paper "Die Topologie der Lieschen Gruppen als alge­
braisches Phänomen", Annals of Math. 42, p. 1051-1074 (1941). 

In 1934, John von Neumann published an extremely important paper 
"Almost Periodic Functions in a Group I", Transactions Amer. Math. Soc. 36, 
p. 445-492. The introduction to the paper begins thus: 

The object of the present paper is to extend H. Bohr's famous theory of alm ost periodic 
functions to arbitrary groups, and to show that it gives just the maximum range over which the 
fundamental results of Frobenius-Schur representation theory and its extensions by Peter and Weyl 
hold. We shall see in particular that all bounded linear representations of a group are equivalent 
to unitary representations and belong to this dass. Another point of importance is that we free 
ourselves completely from all topological assumptions (such as continuity, ete.) by the use of a 
definition of almost periodicity due to Boehner. Thus we find that the general theory, whieh 
applies to every group G whatsoever, is eompletely free from topologieal assumptions, but all of its 
results (for example, all series expansions) have a property of dos ure ; if applied to functions whieh 
are eontinuous in a eertain topology, they will lead only to funetions of the same kind. 
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If fand gare complex-valued functions on a group G, their distance D(f, g) 
is defined as the least upper bound of the difference If(x) - g(x)l: 

D(f, g) = l.u.b.lf(x) - g(x)l· 

A set M of such functions is called conditionally compact (c.c.), if every 
sequence f1'/2' ... contains a subsequence such that 

DU!, - fJ--tO as 11, v--t 00. 

A function f(x) in G is called almost periodic if the set R J of all functions 
f(xa) and the set L J of all functions f(ax) are both conditionally compacL This 
definition is due to S. Bochner (Math. Annalen 96, p. 119-147, 1927). If G is 
the additive group of real numbers and if fis continuous, Bochner's definition 
is equivalent to that of Harald Bohr. 

The convex Co(M) of a set M of functions is defined as the set of all linear 
combinations 

If fis almost periodic, there exist a constant towards which a subsequence 
of Co(R J) converges uniformly. Such a constant is called a right mean of the 
function f If f(x) is alm ost periodic, it has exactly one right mean, wh ich is 
also a left mean, and wh ich is called the mean 

Mf=Mxf(x). 

It is easy to see that the matrix elements dik(X) of a bounded representation 
of Gare almost periodic, Now, if one starts with a positive Hermitean form 

and if one applies to this form all transformations of a bounded representation 
and forms the mean M h, it follows that every bounded representation of G is 
unitary and completely reducible. 

If di/x) are the matrix elements of an irreducible bounded representation, 
the orthogonality relations of Issai Schur can be generalized as follows: 

(6) 

(7) 

My dij(x y-1) dkl(y) = (1/n) (j jk du(x) 

Mydij(Xy-1)d~I(Y)=O, if D' is in equivalent to D. 

If f(x) and g(x) are alm ost periodic, the cross product f x g is defined as 

Under this multiplication, the almost periodic functions form a ring R. If 
the group G is finite, this ring is just the group algebra. 
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In the ring R a scalar product (f, g) can be defined as 

and a norm N (f) as 
(f, g)=M y[f(y) g(y)] 

N(f)=V(f,f)· 

A set of functions J; is called complete if the linear combinations 

(8) yJl+···+yJ,. 
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are everywhere dense in the vector space R, that is, if every almost periodic 
function f can be approximated by a linear combination (8): 

N(yJl + ... +yJ,.- f)<8. 

In order to prove the completeness /of the dik(X), John von Neumann 
considers the integral equation 

with in which ft(x) is complex conjugate to f(x- 1 ). 

This method is a generalization of a method employed by F. Peter and H. 
Weyl in Math. Annalen 97 (1927), p. 737-755. In § 14 of my book "Gruppen 
von linearen Transformationen" I have proved the completeness of the dik(X) 
by another method due to Gottfried Köthe. In my proof I have used the 
theory of generalized Hilbert spaces developed by Franz Rellich in Math. 
Annalen 110, p. 342-356 (1934). 

Von Neumann proved a little more than the completeness of the functions 
dik(X). He proved: Every almost periodic function f(x) can be uniformly ap­
proximated by a linear combination of the dik(X). 

All theorems just mentioned are also true if one restricts oneself to con­
tinuous bounded functions f(x) on a topological group G and to continuous 
bounded representations. 

A topological group is called maximally almost pe riodi ca I, if for any two 
group elements a and b an almost periodic function f exists such that 

Examples of such groups are the compact topological groups and the 
abelian locally compact topological groups. 

In 1935, Hans Freudenthai proved that there are no other maximally 
almost periodical groups than those just mentioned and their direct products. 
More precisely: 

Every connected, locally compact, separable, maximally almost periodical 
topological group is a direct product of the translation group of a Euclidean n­
dimensional space 1R n and a connected compact topological group. 

See H. Freudenthai : Topologische Gruppen mit genügend vielen fastpe­
riodischen Funktionen, Annals of Math. 37, p. 57-77 (1935). 
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and spread to both Egypt and western Europe. 
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sequences of problems and solutions, a tradition which 
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ous ancient civilizations. In particular, the author shows that 
Babylonian and Chinese algebra must have had a common 
source. 
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should possess, not only for its revelation of unexpected 
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